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Abstract: This work focuses on two problems in machine translation: lexical
choice and target-side morphology. The first problem is the correct transfer of
meaning from the source language to the target language. The second prob-
lem, which is mainly relevant for morphologically rich target languages, is then
the choice of the correct surface form of each target lexeme. We work with these
problems within the framework of phrase-based machine translation and we
propose a discriminative model of translation which utilizes both source and
target context information and which uses rich linguistically motivated fea-
tures. We show how our model addresses specific weaknesses of standard
phrase-based systems and that it provides consistent improvements of trans-
lation quality across a broad range of experiments. Apart from our main con-
tribution, we also provide a number of experimental evaluations, analyses and
manual annotation experiments, mostly related to English-Czech translation.
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Abstrakt: Práce se zabývá dvěma problémy strojového překladu: lexikální vol-
bou a morfologií v cílovém jazyce. První úlohou je správné přenesení významu
ze zdrojového jazyka do cílového. Druhá úloha, která hraje roli především
při překladu do tvaroslovně bohatých jazyků, je pak správná volba povrchové
formy u cílových lexémů. Tyto úlohy řešíme v rámci frázového strojového
překladu. Navrhujeme diskriminativní překladový model, který využívá ling-
visticky motivované rysy extrahované jak ze zdrojového, tak z cílového kon-
textu. Ukazujeme, že tento model řeší konkrétní slabiny standardních frá-
zových systémů. Pomocí řady experimentů pak dokládáme, že model konzis-
tentně zlepšuje kvalitu výsledného překladu. Vedle tohoto hlavního příspěvku
popisujeme analýzy, ruční anotace a experimenty zaměřené především na an-
glicko-český překlad.
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1
Introduction

Machine translation (MT) is an important task in natural language processing
(NLP). This work focuses on two problems in MT: lexical choice and target-side
morphology.

The first problem is the correct transfer of meaning from the source lan-
guage to the target: when translating a foreign word, the system should dis-
ambiguate its sense in the source language and choose a lexeme in the target
language which best corresponds to its meaning.

The second problem is then the choice of the correct surface form of each
lexeme. This task is mainly relevant for target languages with rich morphol-
ogy where multiple surface forms can correspond to a single lexeme. Surface
forms may carry information about gender, grammatical number, case and
other morpho-syntactic attributes. The correct choice then depends both on
the source sentence (e.g. transfer of singular/plural for nouns) and on the tar-
get sentence (e.g. the grammatical case of nouns may depend on the valency
frame of the target verb).

We work with these problems within the framework of phrase-based ma-
chine translation (PBMT), the predominant approach to MT. At the time of
writing, PBMT is gradually being replaced in the research community by deep
learning. However, lexical choice and target-side morphology represent the
basic challenge of MT, and we therefore believe that many of the findings in
this work are more general and can be relevant even for the newly emerging
approaches to MT.
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1.1 Motivation
We address the two tasks (lexical and morphological choice) with a single dis-
criminative model which operates on the level of phrases and which uses con-
text information from both the source and target sentence. In this work, we
will refer to the proposed model as DPTM (discriminative phrasal translation
model).

While we use a single model jointly for both tasks, it is useful to motivate
the use of context information separately for lexical choice and for target-side
morphology.

Lexical choice can be viewed as a specific setting of word sense disambiguation
(Vickrey et al., 2005; Carpuat and Wu, 2007): the various possible translations
of a word (or a phrase) in the target language can be thought of as the senses of
the source-side word/phrase to be disambiguated. For instance, we can iden-
tify senses of the English word “shoot” by their Czech translations “střelba”
(shooting a weapon) or “natáčení” (shooting a film). It is well known in the
field of computational linguistics that context information is essential for dis-
ambiguating the word sense. We include source-context information in DPTM
exactly for this purpose.

Morphological choice requires additional sources of information. When
selecting the correct surface form of a word, the system needs some informa-
tion from the source sentence (for instance, to select the grammatical number
– singular or plural) but also from the target sentence which is currently being
constructed.

PBMT is not capable of correctly modelling lexical choice or morphological
coherence by itself. We provide specific examples in Section 3.3 which illustrate
this issue and clearly motivate the use of context information beyond the scope
of what standard PBMT systems can capture.

The model that we propose explicitly takes context information into ac-
count and attempts to avoid the problems of standard PBMT systems. We de-
scribe how DPTM can handle the motivating examples in Chapter 5.

1.2 Contributions
The main contribution of this work is the implementation and evaluation of
a discriminative model of translation which utilizes both source and target
context information and which uses rich linguistically motivated features. We
show how our model addresses specific weaknesses of standard PBMT sys-
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tems and that it provides consistent improvements of translation quality across
a broad range of experiments.

Apart from this main contribution, we also describe and analyze the English-
Czech system Chimera (Bojar et al., 2013b) which we helped develop. We pro-
vide a number of experimental evaluations, analyses and manual annotation
experiments. However, it should be noted that the design of Chimera itself is
not our contribution.

We also briefly document several research ideas which were unsuccessful
but which may still prove interesting for some readers.

1.3 Background of the Work
The basic setting of this work was proposed and partially explored during the
JHU Summer Workshop in 2012. The team topic was Domain Adaptation in
Machine Translation. In this joint effort, we developed the first integration of
a discriminative model in the Moses toolkit (Koehn et al., 2007).1 The model
used only source context information. In parallel, the integration was also car-
ried out for hierarchical phrase-based translation which brings other technical
challenges.

During the workshop, the team never managed to obtain positive results
due to a number of bugs and design problems in the implementation. The
work and its state at the end of the workshop is described in the final report
(Carpuat et al., 2012). We also described the original implementation along
with preliminary results in a follow-up article (Tamchyna et al., 2014a). The
experiments presented in that work were carried out by Fabienne Braune and
Alexander Fraser.

Some members of the original team continued the work on discriminative
models further. For hierarchical PBMT, the effort of Fabienne Braune eventu-
ally led to the publication of positive results (Braune et al., 2016). Our contri-
bution to the work on hierarchical MT is mainly the common codebase (shared
between phrase-based and hierarchical approaches) which was developed at
the workshop.

Our main focus has been the phrase-level discriminative model. Together
with Marcin Junczys-Dowmunt, we re-implemented the integration of the phra-
sal discriminative model in Moses. The refactored code was then included in
the main branch of Moses.

1Moses is perhaps the most widely-used implementation of PBMT with a developer com-
munity that includes prominent researchers in the field.
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We then continued experimenting with and extending this model. Our
most significant extension is the addition of target-side context information
to the model, which requires some additional implementation effort for effi-
ciency. This extension is described in a joint conference paper (Tamchyna et al.,
2016a).

1.4 Outline
We introduce the basic concepts of phrase-based MT in Chapter 2. In Chap-
ter 3, we describe the Chimera system for English-Czech translation. Until
recently, Chimera could be considered state-of-the-art for English-Czech MT
and it forms our baseline. We also analyze its properties and limitations in
this chapter, providing motivation for our approach. We describe the machine
learning methods relevant for our work in Chapter 4.

Chapter 5 introduces our discriminative model (DPTM). Its full integration
into a PBMT system proved to be a technical challenge which we describe in
Chapter 6. The main experiments are presented in Chapter 7.

We discuss related work in Chapter 8. Chapter 9 describes possible future
extensions and applications of DPTM and concludes the thesis.
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2
Phrase-Based Machine Translation

Phrase-based MT (PBMT, Koehn et al. 2003) has been, until recently, the most
popular approach to MT. We focus PBMT in this work and this chapter de-
scribes some of its basic concepts. Topics which are directly relevant for this
work are described in more detail. Koehn (2010) is an excellent source of fur-
ther information on phrase-based MT.

The essential ingredient for building a phrase-based translation system are
parallel data: a collection of sentences in the source language and of their trans-
lations in the target language.

We denote our collection of target sentences E = (e(1), . . . , e(N)) and the
source sentences F = (f (1), . . . ,f (N)). We use the letters e and f as is custom-
ary in MT literature (e originally stood for English and f for French, or foreign).
Each sentence consists of words: e(i) = (e

(i)
1 , . . . , e

(i)
n ) and f (i) = (f

(i)
1 , . . . , f

(i)
m ).

Parallel training data is invaluable because it allows the statistical MT sys-
tem to learn the correspondences between source-language units (words, phra-
ses, constituents,...) and target-language units. In the next section, we will
sketch how correspondences between words may be obtained from this data.

2.1 Word Alignment
Word alignment is an essential first step in the training of phrase-based trans-
lation models. The techniques used for word alignment today were originally
developed for statistical word-based translation – in particular, word alignment
uses the so-called IBM models (Brown et al., 1993). The mathematical back-
ground of these models is beyond the scope of this work.
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Here we only note that the IBM models attempt to capture translation in
a probabilistic framework where the mapping between words is a latent vari-
able. The optimization procedure attempts to find such an alignment that best
explains the training data, i.e. that makes the parallel corpus as probable as
possible.

In today’s practice, this optimization is done in both directions (aligning
English words to foreign words and vice versa) and the two mappings are then
symmetrized using one of several possible heuristics.

After the word alignment step, we have the parallel corpus and a (possibly)
many-to-many mapping between source-side and target-side words in each
sentence.

2.2 Phrase Extraction
Once the word alignment of the parallel data is available, phrase pairs are ex-
tracted from the training corpus. In phrase-based MT, a phrase is simply a
continuous sequence of words. Phrases do not necessarily correspond to any
meaningful linguistic units.

We describe this step in more detail because it is highly relevant for the fea-
ture extraction procedure of DPTM. Note that there are many possible meth-
ods for obtaining phrase translation tables from parallel data. The one that we
discuss here is the most common approach.

žl
u
tý

b
y
l

te
n

p
a
p
o
u
še
k

the
parrot
was

yellow

Figure 2.1: Extraction of phrase pairs from an English-Czech sentence pair “the
parrot was yellow”, “žlutý byl ten papoušek”.

The phrase extraction algorithm goes over every sentence in the parallel
data and obtains all admissible phrase pairs from it. A phrase pair is admissible
when it is consistent with the word alignment.

The consistency criterion is a heuristic which is best illustrated by an intu-
itive example. In Figure 2.1, we show a short English-Czech sentence pair and
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the word alignment represented as a matrix of Boolean values. A phrase pair is
consistent with the alignment if it contains at least one aligned word pair and
if it fulfills the following condition: all words in the source phrase are aligned
only to words inside the target phrase, and vice versa.

In the example, the phrase pair “was yellow”, “žlutý byl” is consistent:
none of the English words are aligned outside the Czech phrase and no Czech
words are aligned outside the English phrase. On the other hand, the phrase
pair “the parrot”, “byl ten papoušek” is not consistent because the Czech word
“byl” is aligned to “was” which is not part of the English phrase.

Note that some words can be unaligned. There are slight differences among
implementations of phrase extraction with regard to unaligned words – some
allow phrase pairs with unaligned words at phrase boundaries to be extracted
while others do not.

2.3 Phrase Table
The phrase table is a probabilistic phrasal dictionary which is at the core of a
PBMT system.

The phrase extraction algorithm simply outputs a list of all phrase pairs
found in the training data. To construct a phrase table from this list, phrase pair
occurrences are counted and phrasal translation probabilities are estimated
given the counts as follows:

P (ē|f̄) = c(ē ∧ f̄)

c(f̄)
(2.1)

P (f̄ |ē) = c(ē ∧ f̄)

c(ē)
(2.2)

Here we use f̄ and ē to denote the source and target phrase, respectively.
The function c represents the counts of phrase (co-)occurrences in the training
data.

The final phrase table usually contains the phrase pairs, their direct and
inverse phrasal translation probabilities, direct and inverse lexical weights (a
smoothed variant of phrase translation probabilities based on lexical transla-
tion probabilities), word alignment information and possibly other data, such
as raw phrase counts (from which the probabilities were estimated).
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2.4 Language Model
The language model (LM) is another essential component of a phrase-based
system. We first introduce the noisy channel formulation of the translation
problem from which the need for a LM follows directly.

The noisy channel model (Shannon, 2001) can be used to connect MT and
information theory; we can view translation as communication over an imper-
fect communication channel. The input sentence f is considered to be origi-
nally sent in English as sentence e. During transmission, noise is added and e

arrives in a foreign language.
The task of translation is then to reconstruct the original sentence, i.e. we look

for the most probable sentence e given the input f :

ê = arg max
e

P (e|f)

= arg max
e

P (f |e)P (e)

P (f)

= arg max
e

P (f |e)  
TM

P (e)  
LM

(2.3)

The first equality holds because of Bayes’ theorem. Since we are only inter-
ested in the most probable result (argmax) and P (f) is independent of e, we
can disregard the denominator.

The two probability distributions correspond to the noisy channel view: the
source generates a sentence e with a probability P (e). This sentence is then
sent over the noisy channel which transforms e into f with the probability
P (f |e). This decomposition gives us the two basic components: the translation
model (TM) and the language model.

The task of language modelling is to estimate the probabilities of strings in
the target language. We describe LMs in some detail here because the model
that we propose in this work is closely related.

We can use the chain rule of probability to arrive at a more convenient de-
composition:

P (e) = P (e1) · P (e2|e1) · P (e3|e1, e2) · · ·P (el|e1, . . . , el−1) (2.4)

In this formula, we predict one word at a time and we condition the pre-
diction on previous words in the sequence. State-of-the-art LMs are currently
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based on deep neural networks (recurrent and/or convolutional, Józefowicz
et al., 2016) which indeed utilize the whole history of words.

However, in phrase-based MT, the common approach to language mod-
elling are still count-based n-gram models which we further describe here.
These models make an additional strong independence assumption:

P (e) ≈ P (e1) · P (e2|e1) · · ·P (el|el−n, . . . , el−1) (2.5)

The equation states that we can approximate the true conditional probabili-
ties by only looking back at a fixed-sized window of nwords (this is the so-called
Markov assumption). Typically, n is around 2-4 words. When a model looks
at a history of 2 words, we call it a trigram (3-gram) LM because the full size
of the n-gram is three words.

Note that Equation 2.5 mixes n-grams of different lengths: we begin with
an unconditional unigram probability P (e1), continue with a bigram P (e2|e1)
etc. This is typically not done in practice. Instead, in order to keep the n-
gram length constant and also to explicitly account for sentence beginning and
end, special tokens “<s>” and “</s>” are usually added to the sequence. For
example, the probability of the sentence “thank you very much” according to
a trigram LM would be the following:

P (”thank you very much”) = P (”thank”|”<s><s>”)
× P (”you”|”<s>thank”)
× P (”very”|”thank you”)
× P (”much”|”you very”)
× P (”</ s>”|”very much”)

The maximum likelihood estimate of n-gram probabilities is again based
on counts in the corpus:

P (ei|ei−n, . . . , ei−1) =
c(ei−n, . . . , ei)

c(ei−n, . . . , ei−1)
(2.6)

For instance, to estimateP (”very”|”thank you”), we simply count the num-
ber of occurrences of the sequence “thank you very” in the training data. We
then divide this count by the number of occurrences of the prefix “thank you”
(followed by anything).
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Observations of long word sequences are sparse and smoothing is required.
The most common method for n-gram LMs is modified Kneser-Ney smoothing
(Chen and Goodman, 1999).

2.5 Log-Linear Model
The noisy channel formulation can be generalized. We lose the information-
theoretic interpretation of the model but obtain a much more flexible frame-
work.

Going back to Equation 2.3, we can decide to give one of the probability
distributions a different weight by raising its value to the power of λ. In log
space, this is equivalent to multiplying the log-probability.

We can also add other features which could help discriminate good and
bad translation candidates. We end up with a product of many scores fi, each
with a parameter λi which controls its relative importance. When we move
to log space, our model score becomes a weighted sum of feature values. We
arrive at the formulation of the log-linear model:

ê = arg max
e

exp
∑
i

λifi(e,f) (2.7)

Note that in the special case where we only have two features (TM and LM),
represent them as log-probabilities and set both λi to one, this formulation is
equivalent to the noisy channel model. In practice, we omit the final expo-
nential because it is a monotonic function (and therefore it cannot change the
ranking of translation candidates).

Phrase-based translation makes several assumptions and approximations
which we will informally state here because they affect the probabilistic inter-
pretation of the model score and of individual features. Our discussion loosely
follows the introduction to PBMT in Zens (2008).

The argmax in Equation 2.7 is defined over English sentences e. In PBMT,
we decompose the input sentence into phrases. Each English sentence that our
model can produce is in fact the result of the following decisions:

1. How to segment f into phrases f̄i,

2. how to order these phrases in the translation e,

3. how to translate the phrases f̄i into the target phrases ēi.

A single possible translation e can often be constructed from f in different
ways by selecting a different phrasal segmentation and reordering. In theory,
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the phrase-based system should therefore sum over all possible phrasal seg-
mentations and orderings. This is not done in practice. Instead, PBMT ap-
proximates the sum by the maximum: the most probable segmentation.

Without providing a rigorous definition of segmentation and reordering,
let us denote both as a single latent variable S. Our discussion so far can be
formulated as follows:

ê = arg max
e

∑
i

λifi(e,f) (2.8)

= arg max
e

∑
S

∑
i

λifi(e, S,f) (2.9)

≈ arg max
e

max
S

∑
i

λifi(e, S,f) (2.10)

We begin with the log-linear model formulation. Equation 2.9 makes the
marginalization over the values of the latent variable S explicit. Equation 2.10
then makes the maximum approximation to the sum.

This equation formalizes the fact that feature scores depend not only on the
actual translation but also on the segmentation and reordering. Indeed, the
total phrasal translation probability PTM(e, S|f) ∝

∏
(ēi,f̄i)

PTM(ēi|f̄i) is dif-
ferent for different segmentations of f . Similarly, the distortion model score
(see below) clearly depends on phrasal reordering.

In our work, we essentially develop a new component of the log-linear
model. The distinction that we discuss here is important in our case because it
provides a mathematical description of what our model predicts and what is
given.

Features

In this section, we briefly describe the features commonly used in the log-linear
model in PBMT.

In a typical setting, the model includes the four phrase table scores (see
Section 2.3), LM probability and several other scores which we introduce now:

• Phrase penalty is a function which simply adds 1.0 for each phrase that
the system produces. This allows the system to regulate the average
length of phrases used: if the penalty is very low (or even negative), the
system is encouraged to produce many short phrases, and vice versa.
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• Word penalty is a similar feature. Its general purpose is to regulate the
average length of translations – some languages use more words on av-
erage than others. By explicitly counting the words, we allow the model
to directly control the translation length.

• Distortion penalty is a basic form of a reordering model. It penalizes
(or encourages, when set to a small or negative value) when the system
“jumps around” the input sentence. It is usually calculated as the (ab-
solute value of) the difference between the end position of the previous
input phrase and the beginning of the current input phrase.

Weight Optimization

So far we have introduced the mathematical formulation of the log-linear model
and briefly described the features that it typically includes in PBMT. Each fea-
ture fi has an associated weight λi and in this section, we briefly discuss how
the weight values are optimized.

The weights are typically set to maximize translation quality on a held-
out set of parallel sentences. In order to address this task, we need a way to
automatically calculate the quality of a translation and an algorithm to search
for a good set of weights.

There are many possible automatic metrics of translation quality. Most
require reference translations of the held-out set (usually produced by profes-
sional translators) against which MT outputs are compared by measuring some
sort of overlap, see e.g. Bojar et al. (2016c). The most common metric is BLEU
(Papineni et al., 2002), even though its limitations are well known.

Similarly, there are many optimization algorithms for finding the model
weights. Note that this optimization problem is difficult: the error function
(e.g. BLEU) is piece-wise constant, preventing the direct use of gradient-based
optimizers. Moreover, the evaluation of model parameters may require re-
translating the held-out set, which is computationally expensive.

The most popular approach to weight optimization (or tuning) has tradi-
tionally been minimum error rate training (MERT, Och 2003). Successful alter-
natives have been proposed (Hopkins and May 2011; Cherry and Foster 2012,
inter alia) but we opt for using MERT in our work.
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2.6 Decoding
We have briefly introduced the underlying models of PBMT. In this section, we
turn our attention to the problem of decoding, i.e., finding the most probable
translation of an input sentence under the phrase-based model. We describe
decoding in more detail because our model is tightly integrated in the phrase-
based search. When implementing the integration, we encounter several tech-
nical challenges which can only be described given sufficient background.

Translation Options

The first step of decoding goes through all possible segmentations of the source
sentence (here, we mean by segmentation the division of the sentence into con-
tinuous spans). For each source-side span, the phrase table is consulted to ob-
tain all possible translations of the span.

Figure 2.2: Example of translation options for a single Czech sentence.

Figure 2.2 shows an example of the result. Candidate translations are found
for various overlapping source spans. Once the set of translation options is avail-
able, the task is to find a selection of phrasal translations and determine their
order such that:

• each source word is covered exactly once, and

• the model score of the translation is as high as possible.

Beam Search

We now describe the search for the best translation hypothesis. This search is
not exact; pruning is required for computational tractability. Similarly to other
parts of the phrase-based pipeline, there are several possible solutions of the
search problem. Here we describe the “standard” stack-based beam search
algorithm.
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Figure 2.3: Decoding in phrase-based MT.

Figure 2.3 gives an example of a (subgraph of) search graph that the de-
coder explores. The input sentence and the translation options are the same as
in Figure 2.2.

The left-most state is the starting point: an empty hypothesis. No output
has been produced so far and no part of the input has been covered. The empty
squares illustrate the Boolean coverage vector that keeps track of which input
words have already been translated.

The first hypothesis expansion1 translates a single input phrase. All possi-
ble starting positions in the source sentence are considered and evaluated. The
translation is produced left to right: the first translated phrase will be the first
phrase in the output.

As decoding progresses, we gradually expand the partial hypotheses to
cover more and more of the input sentence until we obtain the best translation
candidate.

We need to prune the partial hypotheses during search based on their model
score (we discard the least promising translations). The overall hypothesis

1By the term hypothesis expansion, we refer to extending the current partial hypothesis by
translating an uncovered source phrase.
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score decreases as it covers more of the input sentence. Partial hypotheses are
therefore organized in stacks depending on how many source words they have
already covered (i.e., the sum of the coverage vector) which prevents short par-
tial translations from competing with longer outputs (which naturally have a
lower probability).

The phrase-based search explores the graph, organizing partial hypotheses
on stacks and pruning. Once all the surviving translations have been evalu-
ated, the final stack contains the top-scoring possible translations of the full
sentence. The subgraph in Figure 2.3 shows only a single full translation.

Scoring of Partial Translations

The step of scoring of partial translation hypotheses is crucial for our work.
Recall that we introduced various features in the log-linear model (Section 2.5)
which together form the model score (the score is their weighted combination).
So far we have always formulated the problem as scoring the full pair of sen-
tences (e,f), however in reality, we need to evaluate these features for partial
outputs.

This introduces the problem of decomposing the features over decoder de-
cisions. For example, the standard phrasal translation probability PTM(e|f)
decomposes very naturally: each phrase pair has a fixed probability estimated
from the training data which is independent of the rest of the translation. The
feature can therefore be evaluated for phrase pairs in isolation (locally). Such
features are called stateless. Word penalty or phrase penalty are also examples
of stateless features.

The LM, on the other hand, is a stateful feature. In order to determine the
probability of a hypothesis expansion, the LM needs to see the previously gen-
erated words.2 This is intuitively obvious: for example, the probability of pro-
ducing a comma should be much lower when we are at the beginning of a
sentence as opposed to somewhere in the middle.

By state, we mean the information from the previous output required for
the evaluation of the feature. In the case of a trigram LM, a hypothesis state
would be the last two words of the partial translation. No words before that
can affect the final LM score any more.

Note that unlike the TM, the LM has to evaluate the same phrasal transla-
tion multiple times during the search. Consider the word (phrase) “kissed” in
Figure 2.3 – two LM evaluations of the phrase are shown in the subgraph, one

2Recall that the probability of a sentence according to a LM is a product of conditional
probabilities, each predicting a single word based on its (limited) history.
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for the context “<s> John” and the other for “<s> Johnny”. In practice, the LM
is evaluated many times for each target phrase as phrases typically appear in
many different contexts during the search.

This implies that LM evaluation is much more computationally expensive
than TM evaluation (which is in fact done even before decoding, when transla-
tion options are loaded from the phrase table). This is evidenced by the amount
of implementation effort to make LMs efficient (see e.g. Heafield 2011). Even
with the many optimizations currently included in state-of-the-art LM toolkits,
LM evaluation still accounts for a large part of decoding time in PBMT systems.

Recombination and Pruning

The notion of a state is important for decoding because it informs the decoder
when two partial translations can be considered equivalent. Note the question
mark in Figure 2.3: the partial translation “Johnny kissed Mary” is very similar
to “John kissed Mary”. At this point in the search, no feature will be able to
distinguish between them (assuming again only a trigram LM).

The decoder tests partial translations for equality (in this sense) by com-
paring their coverage vectors and feature states. If they are all identical, the
hypotheses are recombined and they are treated as a single hypothesis from
this point onward. Hypothesis recombination makes decoding much more
efficient but still does not eliminate the need for pruning.

Pruning occurs multiple times during translation. Even when possible trans-
lations are loaded from the phrase table, a limit of maximum translations per
source phrase is usually applied which discards phrase pairs with low model
score according to the weighted combination of stateless feature scores.

However, the most important stage of pruning occurs during search. Each
stack has a limited size. When a new partial hypothesis is added to the stack,
its state is first compared with existing hypotheses so that it can potentially be
recombined. If it does not match with any hypothesis, the decoder attempts
to add it to the stack which may already be full. Pruning simply discards the
lowest scoring hypothesis in the stack in this situation. (Note that different
pruning strategies can be employed, notably threshold pruning which requires
hypothesis not to be worse than the current best hypothesis by a certain ratio.)

Future Cost

Consider two competing partial translations which have covered the same num-
ber of input words (and therefore share a stack) but they differ in which part
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of the source sentence they have translated. One partial translation may have
translated only the easy parts so far; there is less entropy in its decisions and
it therefore has a higher probability than the other hypotheses, which already
made some difficult decisions (i.e. decisions with a lower overall probability).

Future cost is a method of preventing these “cheaper” translations from fill-
ing the stacks and thereby discarding all the “difficult” translations. Because
even bad translations of easier spans can have a higher probability than good
translations of difficult parts of the input, pruning would introduce search er-
rors.

The future cost is added to the model score of each partial hypothesis. It
is a heuristic estimate of the cheapest possible cost of finishing the translation
from the given partial hypothesis. The “cheap” partial hypotheses obtain a
higher future cost because of the low-probability translations they will have to
produce in the future.

2.7 Factored Translation
In this section, we briefly introduce factored phrase-based MT (Koehn and
Hoang, 2007) which we utilize in our work. Factored MT was introduced in as
a way to make PBMT more linguistically plausible. Words are not represented
simply as tokens but instead as vectors of factors. Each word can therefore in-
clude not only its surface form but also the lemma, morphological tag or any
other type of information.

Factored MT enables complex scenarios which involve a sequence of trans-
lation and generation steps. See Tamchyna (2012) for a thorough description
of this paradigm and the evaluation of its various possible configurations.

In this work, we avoid complex factored setups and only use factored MT
as a way of including additional information about words both on the source
side and on the target side. In the source, the information is mainly used for
generating features used by DPTM. On the target side, we also employ the
factors for language modelling in some experiments.
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3
Empirical Analysis of

English-Czech Phrase-Based
Translation

We describe and analyze Chimera (Bojar et al., 2013b; Tamchyna et al., 2014b;
Bojar and Tamchyna, 2015; Tamchyna et al., 2016b), a hybrid translation sys-
tem built around a phrase-based component. It was developed as a submis-
sion to the WMT news translation shared task. So far, we participated in years
2013-2016 and achieved first place every time until 2016 (Bojar et al., 2013a,
2014, 2015, 2016a). Considering these results, we could say that until recently,
Chimera represented the state of the art for English-Czech translation.

We therefore see Chimera as our ultimate baseline. Note however that be-
cause it is a hybrid system, improving over its performance by adding discrim-
inative models would be a strong result.

While DPTM should ideally achieve this goal, a more modest aim for our
work is to move some of the advantages of the hybrid design directly into
the statistical (phrase-based) component – by not relying on external tools and
the rather complex system combination, the translation system would become
much more practical. And perhaps more importantly, some parts of the com-
bination are language-dependent; by “simulating” their effect with DPTM, we
could make the approach more generally applicable in terms of language pairs.

We contributed to the system-building effort when developing Chimera;
the original idea for the combination is not ours.
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3.1 Design of Chimera
Chimera is a combination of three major components:

• a factored phrase-based MT system built on Moses (Koehn et al., 2007),

• a transfer-based deep-syntactic MT system TectoMT (Popel and Žabokrt-
ský, 2010),

• and a rule-based post-editing tool Depfix (Rosa et al., 2012).

The phrase-based core of Chimera is a fairly standard PBMT system with
several tweaks. We add the translations produced by TectoMT into the phrase-
based system through an additional phrase table extracted from synthetic data.
Finally, the output of Moses is post-edited using Depfix. We will describe each
part in more detail in the following sections.

System Versions

Before describing the individual components, let us first note that Chimera
went through slight changes during the four years of participating in WMT.
Most importantly, it competed in the unconstrained track for the first three years.
This mainly allowed us to use large amounts of in-domain monolingual Czech
data. In 2015, we also added a significant amount of parallel data, most of
which was later included in CzEng 1.6 (Bojar et al., 2016b), the official con-
strained parallel corpus for WMT16.

In 2016, we constrained the training data for the first time to allow for a
better comparison with competing systems. This implies that our monolingual
training data were limited.

Additionally, we experimented with various “tweaks” each year. In some
cases, these tweaks were included in our primary submission.

For simplicity, we only describe the two versions of Chimera directly re-
lated to this work: our submission from 2015 (unconstrained) because this is
the system that we analyze most thoroughly here (building on Tamchyna and
Bojar 2015), and 2016 (constrained) which is the final baseline for our work on
discriminative models.

Phrase-Based Component

The PBMT component of Chimera differs from a “vanilla” phrase-based sys-
tem in several aspects. We use factored translation (Koehn and Hoang, 2007)
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and translate English surface word forms jointly into Czech word forms and
their morphological tags (and sometimes even lemmas).

This factored scheme makes our target-side data somewhat more sparse.
There is a high amount of syncretism in Czech; a single word form often rep-
resents multiple morphological variants. For example, adjectives in the inflec-
tional paradigm “jarní” do not inflect at all: the same word form is used for all
(3-4) genders, 7 cases and two numbers (singular and plural).

Empirically, we find that once the training data is large enough, attach-
ing the morphological tag to the surface form does not harm the BLEU score
very much, and the improvements from the additional models enabled by this
scheme easily outweigh this potential slight loss.

Capitalization or upper-casing of surface forms is determined using the
“supervised truecase” scheme: as part of pre-processing, we lemmatize and
tag all of our parallel data. We then use the letter case of the lemma to de-
termine the case of the surface form. We will denote this factor stc from now
on.

We evaluated several possible ways of handling capitalization and upper
case in Bojar et al. (2013b); unsupervised truecasing, using a recaser and trans-
lating directly to surface forms all performed worse than our stc scheme.

We use the positional morphological tagset of Czech which is described
more thoroughly in Hajič and Vidová-Hladká (1998).

Thanks to the factored configuration, the system has access to Czech mor-
phological tags on the target side during translation. This allows us to build
language models (LMs) not only over the surface forms but also over the se-
quences of tags. This should encourage our MT system to produce outputs
which are morpho-syntactically more coherent.

Training Data

Let us describe the training data for both years of Chimera (2015 and 2016) in
more detail.

Training data for 2015 are summarized in Tables 3.1 and 3.2, which are
adapted from Bojar and Tamchyna (2015).

The constrained part of our parallel data consists of CzEng 1.0 (Bojar et al.,
2012) and Europarl (Koehn, 2005). We then add OpenSubtitles corpora as
collected and processed by OPUS,1 our own pre-processing of DGT Acquis2

which includes sentence alignment (Varga et al., 2005) and de-duplication, and

1http://opus.lingfil.uu.se/
2https://ec.europa.eu/jrc/en/language-technologies/dgt-acquis
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Source # sents # en tokens # cs tokens Constrained?
CzEng 1.0 14.83M 235.19M 206.05M ✓
Europarl 0.65M 17.62M 15.00M ✓
OpenSubtitles 33.25M 291.38M 237.61M -
DGT Acquis 3.82M 93.44M 84.81M -
EAC-TM 3351 24330 23106 -
ECDC-TM 2499 4092 41591 -

Table 3.1: Chimera 2015: Summary of parallel data used in our constrained
and full setup.

Full Constrained
# sents # tokens l b m lm l m lm

Czech Press 305.41M 4852.59M - ✓ - - - - -
CWC articles 38.42M 627.97M - ✓ - - - - -
CzEng news 0.20M 4.22M - ✓ ✓ ✓ - ✓ ✓
RSS 4.81M 73.68M ✓ ✓ ✓ ✓ - - -
WMT mono 44.08M 738.88M ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.2: Chimera 2015: Monolingual data sources and LMs, l=long, b=big,
m=morph, lm=longm.

finally, we also include two small translation memories provided by the EU,
namely EAC-TM3 and ECDC-TM.4

Our monolingual data do not overlap with the parallel data very much: we
only use the small news section of CzEng 1.0. We add all WMT News Crawl
corpora from 2007 until 2014. We use the Articles section of the Czech Web
Corpus (CWC, Spoustová and Spousta 2012). Czech Press is a large in-house
collection of news. Finally, RSS is the output of Ondřej Bojar’s collection script
which stores RSS feeds of major Czech press websites and which is updated
every day.

For 2016, our data is simpler as we only use the constrained datasets. CzEng
1.6 in the pre-release version (the official training set for WMT) contains 51.34
million sentence pairs with 713.5 and 605.0 million tokens in English and Czech,
respectively.

Monolingual data statistics are summarized in Table 3.3. In this constrained
scenario, all LMs use the same training data.

3https://ec.europa.eu/jrc/en/language-technologies/ecdc-translation-memory
4https://ec.europa.eu/jrc/en/language-technologies/eac-translation-memory
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# sents # tokens
CzEng 16.pre news 0.21M 4.52M
WMT mono 51.47M 871.15M

Table 3.3: Chimera 2016: Monolingual data sources.

Language Models

In 2015, we used four LMs in the Chimera system: “long”, “big”, “morph” and
“longm”; see Table 3.2.

The long LM is a 7-gram model over surface forms (stc) trained mainly on
WMT News Crawl data. We treat each year of the News Crawl as a separate
corpus; we estimate a LM over each of them and then use SRILM interpolation
(Stolcke, 2002) to combine the individual models. The interpolation minimizes
the perplexity of a held-out data set; we use older WMT dev-sets for this pur-
pose.

The big LM is a model over stc which uses as much monolingual data as
possible. We were not able to build a 5-gram model due to disk requirements
so we reduce the LM order to 4-grams.

The morph and longm are LMs trained over morphological tags. Tags are
naturally much less sparse than word forms; there are only around two thou-
sand distinct tags in our corpora. This enables us to effectively model larger
sequences; the morph is a 10-gram LM over tags and longm is a 15-gram LM. In
practice, longm does not bring measurable improvements over morph.

In 2016, we simply took over the scheme from the previous year, even though
the constrained setting could possibly have benefited from a different combi-
nation. All of our LMs are trained using all the monolingual data available in
the constrained setting. We again have long, big, morph and longm with roughly
the same parameters (except for pruning of low-frequency n-grams). The long
model is again the only interpolated model. In comparison with 2015, we also
add a 4-gram model over word lemmas.

TectoMT

TectoMT (Popel and Žabokrtský, 2010) is a translation system which uses the
analysis-transfer-synthesis approach. It is loosely based on the Functional Gen-
erative Description formalism (Sgall, 1967); it uses the tectogrammatical (deep
syntactic) layer as the transfer layer.
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Each input sentence is first automatically analyzed; after tokenization and
some normalization heuristics, TectoMT runs a tagger (Hajič et al., 2007) and
obtains a dependency parse. MST parser (McDonald et al., 2005) is used which
allows for non-projective trees. The (shallow) syntactic tree corresponds to the
analytical layer. TectoMT then applies a set of rules and models which further
analyze the sentence on the tectogrammatical layer.

Roughly speaking, nodes in the tectogrammatical tree correspond to con-
tent words. Each node is represented by its tectogrammatical lemma (t-lemma),
functor (semantic role in the sentence; e.g. actor, patient, predicate), and gram-
matemes (meaning-bearing grammatical attributes, such as the semantic part
of speech, tense or number).

Additionally, formemes are stored in each t-node which provide a useful
concise representation of relevant morpho-syntactic properties on the t-layer.
They allow the transfer module to easily access information which is otherwise
only available on the level of shallow syntax (a-layer).

The basic assumption in TectoMT transfer is that t-trees are so abstract that
they are isomorphic in English and Czech: both the English and Czech t-trees
have the same number of nodes and identical structure. This simplifies transfer
considerably: we already have the deep tree, the only task is to correctly label
its nodes. A maximum-entropy classifier is used to select the best translation
and formemes locally for each node.

Once transfer is complete, TectoMT has a tectogrammatical tree in the target
language. A pipeline of generation rules is then applied to realize this deep-
syntactic structure on the surface. Naturally, generation moves in the opposite
direction than analysis; first, the t-tree is transformed into an a-tree. The a-tree
is then linearized and words are inflected and post-processed to create the final
translation.

Because the generation pipeline is based on rules, TectoMT tends to pro-
duce grammatically correct outputs where phenomena such as long-distance
agreement (e.g. between verbs and subjects) are handled correctly by design.
This implies that while TectoMT often makes severe errors in MT, these errors
are very different from the typical problems of statistical phrase-based engines.
TectoMT is therefore is an almost ideal candidate for system combination.

For completeness, let us note that TectoMT today is one of the applications
of the underlying modular NLP toolkit Treex.5

5http://ufal.mff.cuni.cz/treex
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Integration in Chimera

The approach to integration of TectoMT is simple yet surprisingly effective.
Bojar et al. (2013b) obtain translations of the dev-set and the test-set from Tec-
toMT. They then view the pairs of source sentences and their translations as
a new parallel corpus. They word align this corpus and extract phrasal trans-
lations from it using the standard Moses pipeline. They then add the new
synthetic phrase table as an additional model in the log-linear combination.

MERT is then used to balance out the importance of the standard phrase
table (obtained from true parallel data) and the TectoMT phrase table. Note
that MERT can tune the weights reliably only because TectoMT translations
of the dev-set are also included in the phrase table; otherwise, the synthetic
phrase table would only be used for the most common words or in cases of
overlap between the dev- and test-data.

This approach is dubbed by the authors “poor-man’s system combination”.
It is somewhat cumbersome – whenever a new document is to be translated,
the TectoMT phrase table needs to be re-created. On the other hand, it is also
surprisingly effective as it allows to combine Moses and TectoMT translations
under any phrasal segmentation. The phrase-based component is also not lim-
ited to its 1-best or n-best outputs but can instead explore its full search space,
enriched with TectoMT translation suggestions.

Depfix

Depfix (Rosa et al., 2012) is a rule-based system for automatic post-editing of
MT outputs. It is tailored to English-Czech translation, but porting it to other
language pairs could be relatively straightforward.

It operates by applying a sequence of rules on the MT output. It uses mor-
phological and syntactic information both from the source sentence and the
target sentence. Rosa et al. (2012) even implemented their own version of the
MST parser adapted to MT outputs. Depfix also uses the word alignment be-
tween the source and translation to determine word correspondences.

Depfix rules are hand-tailored to fix some typical and systematic errors
made by MT systems. Morphological agreement, the correct transfer of gram-
matical number, tense or negation are all handled by the system.

While Depfix usually has only a negligible effect on automatic evaluation
scores (BLEU), it does improve MT output quality as judged by human anno-
tators, according to the WMT shared task results (Bojar et al., 2013a, 2014).
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System BLEU TER Manual

W
M

T1
3 M+T+D 20.0 0.693 0.664

M+T 20.1 0.696 0.637
Google Translate 18.9 0.720 0.618
T 14.7 0.741 0.455

W
M

T1
4

M+T+D 21.1 0.670 0.373
uedin-unconstr. 21.6 0.667 0.357
M+T 20.9 0.674 0.333
Google Translate 20.2 0.687 0.168
T 15.2 0.716 -0.177

W
M

T1
5 M+T+D 18.8 0.715 0.686

Google Translate 16.4 0.750 0.515
uedin-jhu 18.3 0.719 0.503
T 13.4 0.763 0.209

W
M

T1
6 udedin-nmt 26.3 0.639 0.59

M+T+D 21.7 0.677 0.30
Google Translate 23.2 0.678 0.19
T 15.2 0.730 -0.03

Table 3.4: Automatic scores and results of manual ranking in WMT 2013-2016.
BLEU (cased) and TER from matrix.statmt.org. The top other system and
Google Translate reported for reference.

When running Chimera, we simply translate each input sentence using
Moses with the factored LMs and the added TectoMT phrase table. We then
post-process the outputs using Depfix as a final step.

3.2 Analysis of the Combination
Chimera was analyzed thoroughly in Tamchyna and Bojar (2015). In this sec-
tion, we look at some of the results from that article and interpret them in
relation with the main goal of our work. All of these analyses were carried out
with Chimera 2015 as described above.

Automatic and Manual Evaluation

To illustrate the overall performance of Chimera and its components, we pro-
vide the official results of WMT news translation tasks from 2013 to 2016. Ta-
ble 3.4 lists the results. Letters M, T, D stand for Moses (here: the phrase-based
component of Chimera), TectoMT and Depfix, respectively.
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Constrained Full Delta
M 21.28 22.59 1.31
M+T 23.37 24.24 0.87
Delta 2.09 1.65 -

Table 3.5: BLEU scores on WMT newstest2014 of the first two components of
Chimera 2015. Adapted from Bojar and Tamchyna (2015).

(r) obývací zóna s jídelní a kuchyňskou částí v domácnosti mladého páru .
living zone with dining and kitchen section in household younggen couplegen .

(m) obývací zóna s jídelnou a kuchyní v sekci domácnosti mladý pár .
living zone with dining_room and kitchen in section householdgen youngnom couplenom .

(t) živá zóna pokoje s jídelnou a s kuchyňským oddílem v domácnosti mladého páru .
alive zone roomgen with dining_room and with kitchen section in household younggen couplegen .

(c) obývací prostor s jídelnou a kuchyní v domácnosti mladého páru .
living space with dining_room and kitchen in household younggen couplegen .

Figure 3.1: Example of translations by various stages of Chimera. The input
sentence: “the living zone with the dining room and kitchen section in the household
of the young couple .” Table rows correspond to: (r) reference, (m) Moses, (t)
TectoMT, and (c) Chimera (without Depfix). Errors are in bold, glosses are in
italics. Adapted from Tamchyna and Bojar (2015).

We list the results here mainly to illustrate that Chimera is indeed a very
strong system and even at the time of WMT16, it performs better in terms of hu-
man evaluation than Google Translate, perhaps the best-known publicly avail-
able MT system.

The final combination is better than either component by itself. Table 3.5
illustrates the difference in BLEU that TectoMT provides over plain Moses. The
table also shows that the improvement holds when we go from the constrained
setting to the unconstrained system. TectoMT is a source of grammatically
coherent translations possibly with unseen morphological variants and this
advantage does not disappear as we add (very large) additional training data
to the statistical component. These results again illustrate that Chimera is a
very strong baseline due to its hybrid nature.

For completeness, we re-use the example translations from Tamchyna and
Bojar (2015) to illustrate how the individual components can often work to-
gether to improve the final translation. Plain Moses (m) generates a relatively
adequate translation with two problems:
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• The syntactic attachment of the word “section” is wrong in the transla-
tion.

• The phrase “young couple” is in the wrong case (nominative).

TectoMT outputs a fully grammatical translation with serious lexical trans-
lation errors at the beginning of the sentence; the translation of “living” roughly
means “alive” in Czech, there is also a superfluous word “pokoje”.

The full combination fixes both the errors of Moses and of TectoMT. For the
second error made by Moses (“young couple”), the system presumably uses
the correct translation provided by TectoMT.

Experiments with Forced Decoding

Forced decoding refers to running inference in a model when the desired out-
put is already known. This procedure is useful when we want to obtain the
model score (the probability according to the model) of some given output, or
to determine whether the model is even capable of producing the output.

all different? reachable? score diff

3003 2665 1741 1601 (<)
140 (>)

924 (unreachable)
338 (identical)

Table 3.6: Forced decoding – an attempt of m to reach the test set translations
produced by m+t (Tamchyna and Bojar, 2015).

In Tamchyna and Bojar (2015), we attempted to find out whether the Moses
component could produce the translations of M+T by itself and if so, why it
did not. We report this analysis here because it helps illustrate how much we
can improve the results of Moses by building a better model: in the previous
section, we saw that TectoMT provides correct (and sometimes novel) morpho-
logical variants of words.

These experiments attempt to find whether a better model within Moses
(such as our discriminative model) can theoretically lead the phrase-based
component to these better translations without the need for TectoMT. Or al-
ternatively, whether TectoMT indeed provides so many novel word forms that
better modelling of translation has no hope of reaching these results.

Table 3.6 shows the results of the forced decoding experiment. Out of the
full test set (3003 sentences), M and M+T produced identical translations in
338 cases. From the remainder, roughly two thirds of translations by M+T
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were in fact reachable for plain Moses. The analysis shows that model score is
the main problem: translations by M+T have a higher BLEU score than plain
Moses outputs (24.78 vs. 23.03) but they mostly (in 1601 cases) have a lower
model score (labeled as “<” in Table 3.6).

In 140 cases, when we guided the decoder towards the translation of M+T,
we obtained a higher model score than that of the original translation. These
are search errors and we nearly eliminated them by adjusting parameters of the
search (specifically, we increased the pop limit of the cube pruning algorithm
to 5000), reducing the number of such cases to 28 sentences.

Overall, this is a promising finding: while not all of the better translations
are reachable for the statistical component, most of them can in fact be pro-
duced by Moses itself. If we add new model components to Moses which better
capture translation quality, we can potentially guide the model towards them
and obtain a higher BLEU score.

Errors in Morphology

The overall goal of our work on discriminative models is to improve lexical
choice and morpho-syntactic coherence of translations. The analysis from Tam-
chyna and Bojar (2015) on morphological errors provides a potentially use-
ful insight into which types of errors in morphology are the most prominent.
We can determine (i) which phenomena are improved by adding the transfer-
based system and also (ii), which phenomena resist even the combination.

We looked at the WMT14 test set. We lemmatized the system outputs as
well as the reference translation and then used a monolingual word aligner
based on hidden Markov models (Zeman et al., 2011) to find the corresponding
tokens in the reference and the outputs. This procedure matched a different
number of lemmas in each setting.

We then looked at each system variant independently and automatically
analyzed the matched tokens. We look at cases where the lemma matches but
the surface form differs – we consider these to be morphological errors. The sys-
tem found the correct lemma but failed to inflect it as needed. This is of course
a simplified view: a different wording elsewhere in the MT output may have
required this different form and vice versa. Even so, this analysis gives us in-
teresting insights when we look at statistics from the full test corpus. We limit
ourselves to the POS that inflect in Czech: adjectives (A), numerals (C), nouns
(N), pronouns (P) and verbs (V).

Because plain Moses is the weakest system, it matched a lower number of
lemmas with the reference (39255, see Table 3.7). We only consider the matched
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System # lemmas # errors # errors by part of speech
A C N P V

M 39255 5877 1200 90 2727 502 1358
M+T 39684 5382 1066 75 2454 480 1307

M+T+D 39610 5369 1071 76 2431 468 1323

Table 3.7: Morphological errors made by Chimera divided by part of speech.
A=adjective, C=numeral, N=noun, P=pronoun, V=verb (Tamchyna and Bojar,
2015).

lemmas when looking for errors in morphology, so this system has an advan-
tage over the other variants which matched around 400 more lemmas (and
therefore had more “opportunities” to make an error in our simplified count-
ing). However, plain Moses also makes the largest number of errors in mor-
phology: 5877 as opposed to 5382 and 5369.

We can make interesting observations when we further look at the distribu-
tion of errors across different parts of speech (POS). Naturally, the distribution
is very similar to the frequency of the POS in the data. For instance, roughly
46% of the errors (2727/5877) are made in nouns; nouns make up about 37%
of the tokens in the test set (limited to A, C, N, P and V).

However, the reduction of errors when we add TectoMT is interesting. There
is only little difference in verbs (the number of errors is only 4 per cent lower)
and pronouns (5%). On the other hand, we see a large reduction in nouns and
adjectives (about 11%).

We can conclude that verbs and pronouns are frequent and difficult; not
only for Moses but also for the combination with the deep-syntactic TectoMT.

We further look specifically at errors of plain Moses which M+T fixed. When
we focus on nouns and adjectives, we find that in almost all instances, the mor-
phological tags differ only in case (393 out of 407 errors fixed). This implies that
even with the morphological LMs, Moses struggles with phenomena related
to morphological coherence, such as valency and noun-adjective agreement.
Fixing the prediction of morphological case seems to be a promising direction.

3.3 Limitations of the Phrase-Based Component
So far, we have illustrated how Moses and TectoMT work together in combi-
nation. However, a simpler and less language-dependent solution would be to
avoid using TectoMT and make the model in Moses as adequate as possible.
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In this section, we show that phrase-based models have some inherent lim-
itations. We describe these problems and illustrate them on several examples
of translations produced by the plain Moses component of Chimera.

Data Sparsity in the Translation Model

Recall that during translation, the phrase-based system looks up possible trans-
lations of all source spans in the phrase table and then searches for their best
possible combination according to the log-linear model.

In an ideal situation, we can translate the input sentence using only a cou-
ple of long phrases. This is desirable because we can be reasonably sure that
morphological agreement and syntax within the phrasal translation is correct:
we saw this translation in the training data. On the other hand, when we build
the translation from very short phrases or even word by word, we risk making
an error in coherence at every step.

In practice, phrase-based systems typically use phrases only a couple of
words long. In Chimera, the average phrase length when translating WMT
news tests is only around 2.5 words (Tamchyna and Bojar, 2015).

This issue is an example of data sparsity: because the model needs to ob-
serve each phrase in the data, we would in principle require exponentially
larger training data to obtain a linear improvement in the average length of
applied phrases. Note that we would also need to observe each source phrase
many times with different translations, in order to obtain robust estimates of
its phrasal translation probabilities.

Data Sparsity in LMs

In reality, the system is therefore often forced to translate the input in short
chunks. In this situation, it relies even more on the language model (LM) to
“knit” the short phrasal translations together. Unfortunately, LMs suffer from
data sparsity as well, for similar reasons: conventional (non-neural) LMs esti-
mate the conditional probability of the next word given a context from n-gram
counts in the training data.

We would ideally like to model as long context as possible. But with ev-
ery added word, we again need exponentially larger training data to robustly
estimate n-gram probabilities. LMs work well only when the information re-
quired to disambiguate the next word is locally available in a very small win-
dow. Moreover, when the immediate context is very uncommon (and therefore
unobserved in the training data), LMs fall back to low-order n-grams or even
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unigram probabilities. In this case, LMs fail even when the required informa-
tion is close.

Context Information

Finally, let us go back to the phrase table and make one last remark. The phrase-
based model makes strong independence assumptions when estimating trans-
lation probabilities. One of them is that the conditional probability of a phrase
f̄ being translated as ē is independent of all other words in the source sentence.
We will show that in combination with data sparsity, this leads to clearly wrong
translations.

Translation Examples

Consider Figure 3.2 which shows translations produced by the statistical com-
ponent of Chimera (plain Moses). In the first set of examples, we show the role
of source context in the disambiguation of word sense.

The English word “shooting” is ambiguous. When translating into Czech,
we need to know which sense of the word is meant in the current sentence.
For simplicity, let us consider only two basic meanings: shooting a weapon
(translated into Czech as “střelba”) or shooting a film (Czech translation is
“natáčení”). In the sentences in Figure 3.2, the latter sense is correct. The cue
which helps us decide is the English word “film”.6

In the first sentence, the phrase-based system produces the correct trans-
lation. This is possible because (i) the phrase table may simply contain the
whole phrase “shooting of the film”, or (ii), the LM probability of “natáčení
filmu” is sufficiently large. Once we move the cue word outside of the imme-
diate context by inserting the word “expensive” inbetween, the data sparsity
and strong independence assumptions of the model break the translation: the
word “shooting” is translated in the wrong sense as “střelby”.

The phrase table cannot cover “shooting” and “film” by a single phrase
any more and phrasal translation probabilities do not capture the context of
the phrases. The LM has a similar problem: the words “střelby” and “film”
are simply too distant. Note that if we only consider bigram probabilities, the
whole translation is fine: “střelby na”, “na drahý”, and “drahý film” are all
plausible n-grams.

6The sentence could hypothetically also describe firing a weapon at a copy of an expensive
film. While possible, this meaning is a priori improbable and an intelligent translation sys-
tem should work with the default reading, when extra-sentential context which could provide
more evidence is not available.
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Input Chimera Output
shooting of the film . natáčení filmu . ✓

shootingcamera of_film .
shooting of the expensive film . střelby na drahý film . ×

shootingsgun at expensive film .
the man saw a cat . muž uviděl kočku . ✓

man saw catacc .
the man saw a black cat . muž spatřil černou kočku . ✓

man saw blackacc catacc .
the man saw a yellowish cat . muž spatřil nažloutlá kočka . ×

man saw yellowishnom catnom .

Figure 3.2: Examples of problems in the phrase-based component of Chimera:
lexical selection and morphological coherence over larger context. Each trans-
lation has a corresponding gloss in italics.

In the next set of examples in Figure 3.2, we focus on morphology instead
of lexical choice. Aside from selecting the correct lexical translation (lemma),
the MT system needs to output the correct surface form of the words.

Consider the sentence “the man saw a cat .”. Because it has a very simple
structure and all words are sufficiently common, the phrase-based system cor-
rectly inflects all word forms. In particular, it correctly selects the accusative
case for the Czech word “kočku” (cat). When we insert an adjective between
the verb and its object, the system still handles it well as long as the adjective
itself is common enough. If we “surprise” the system by choosing an unusual
adjective, the n-gram context breaks again and the whole noun phrase is mis-
translated into nominative case. Note that the correct inflection of the adjective
“nažloutlý” was available as a translation of “yellowish” in the phrase table.

The correct morphological case cannot be reliably inferred from the source
context only. Source context information can certainly help in the decision – for
instance, English subjects are often translated into nominative case in Czech,
direct objects in Czech are often accusative etc. However, there are many phe-
nomena that affect morphology which are only present on the target side: dif-
ferent translations of the same English verb can have different valency require-
ments; the MT system can switch between active and passive voice, reversing
the original roles of subject and object in the sentence etc.

Consider again the second set of examples in Figure 3.2. Instead of trans-
lating “saw” as “uviděl”, the decoder could have chosen the translation “všiml
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si”. In this case, the object needs to be in the genitive case. This information is
simply not available on the source side.

The examples clearly show that considering wider context information can
be beneficial for translation quality. In the first sentence, a model which can ef-
fectively incorporate the cue word “film” when disambiguating the translation
of “shooting” should be able to select the correct translation even when the two
words are somewhat far apart.

In the second sentence, the model should be able to recognize which verb
appeared in the sentence and select the morphological case of the object ac-
cording to its valency requirements.
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4
Machine Learning Background

In this chapter, we describe the basic machine learning (ML) notions relevant
for this thesis, especially linear models (linear and logistic regression) and their
training.

We first describe the theoretical concepts underlying the models. We then
move on to describing the implementation that we selected for our work, namely
the Vowpal Wabbit toolkit.1

4.1 Theoretical Foundations
In order to formalize our work, we first define some basic notions. Let D =

(X,Y ) be the training data, where X = (x1, . . . , xn) are the inputs and Y =

(y1, . . . , yn) the associated outputs.
In this very general formulation, the goal of ML models is to learn from the

training data to predict the correct value yi given the instances xi.
One branch of models deals with classification problems: the usual scenario

for classification is that yi can be either positive or negative (binary classifica-
tion); alternatively, yi can be one of multiple classes (multi-class classification).

For example, we can build models to answer questions such as “Is this sen-
tence written in German?” (binary decision). Our inputs xi are then sentences
(written in German or other languages) and desired outputs yi are either 0 or
1 (or -1 and +1).

1http://hunch.net/~vw
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Alternatively, we can ask the question “In which language is this sentence
written?”. Our inputs xi are the same as in the previous case but yi is now
selected from a pre-defined set of possible values (e.g. German, English, etc.).

Another branch are regression models. In this case, values yi are usually as-
sumed to be real numbers. An example of regression would be, given a house,
to predict its price on the real-estate market.

Linear Models

Let us assume that we have a function fv(xi) that generates a vector of fea-
tures given our input xi. Going back to the example of language classification,
our function could return a vector which contains the occurrences of various
characters, their bigrams (pairs or consecutive characters) etc.

We can then attempt to capture the relationship between our input xi and
the predicted value yi with a linear model. Let us denote the predicted value
ŷi. Then the basic linear model is defined as follows:

ŷi = w · fv(xi) (4.1)

The prediction of our model is simply the dot product between a vector of
feature weights w and the feature vector which describes the current input.

We assume that there is a linear relationship between fv(xi) and yi, i.e. that
the value yi is a linear combination of feature values.

Training a linear model corresponds to finding such a vector of feature
weights that minimizes the error which our model makes. Consider again the
task of classifying whether a sentence in written in German. We would like our
model to assign a high weight to features which correspond to occurrences of
characters which best identify German (such as “ß”). That way, when these
characters occur at test time, the high positive weight will increase the value
of the dot product and the model will output a positive prediction.

Linear Regression

The basic form of the linear model that we defined in Equation 4.1 is a linear
regression model.

Parameter Estimation

Unless stated otherwise, we always assume that each training instance is drawn
independently and that the training instances are identically distributed (the
“i. i. d.” assumption).
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Under an additional assumption about the distribution of target values in
the training data, it can be shown that maximum likelihood estimation (MLE)
of model parameters w for linear regression corresponds to minimizing the
squared loss (Bishop 2006, section 1.2.5):

L(w) =
∑
i

(yi −w fv(xi))
2 (4.2)

Linear Regression for Classification

Note that in general, the values of linear regression predictions (the dot prod-
uct) lie between−∞ and +∞. For (binary) classification, we would ideally like
the model to output values around 0 for negative examples and +1 for positive
examples.

This fact does not prevent us from using the simple dot product in practice
for classification. When we label our training instances with 0 and 1, minimiz-
ing the squared error will lead to a model which in practice produces predic-
tions roughly in this range.

Logistic Regression

A more principled solution is to view the classification problem in a proba-
bilistic setting.

Let us define several notions first. A discriminative model is an estimate of
the conditional probability distribution P (Y |X). On the other hand, a generative
models attempts to estimate the joint probability distribution P (X,Y ).

Because P (X,Y ) = P (Y |X) · P (X) (Bayes’ rule), the common intuition
is that discriminative models are preferable for classification because they di-
rectly solve the task at hand whereas generative models learn a more complex
task (see e.g. Bishop 2006, section 1.5.4). (The advantages of generative mod-
els include the ability to create additional data instances by sampling the joint
distribution and outlier or novelty detection, through estimating P (X)).

Logistic regression is a simple probabilistic discriminative model. In its
basic form, it is a binary classifier – training examples are either positive or
negative and the classifier produces the probability that an example is positive,
P (1|x).

Its mathematical formulation is very simple as well – it can be viewed as
linear regression (a basic linear model) squeezed by the logistic sigmoid func-
tion to ensure that its predictions are valid probabilities; the range of logistic
sigmoid is (0, 1).
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Assuming that we already have a weight vector w, the output of logistic
regression is defined as follows:

P (1|x) = 1

1 + exp(−w fv(x)) (4.3)

We can turn this conditional probability into a classification decision simply
by choosing a threshold (typically 0.5) and declaring an example as positive
when the value exceeds this threshold.

Parameter Estimation

Using maximum likelihood estimation to train our model means that we max-
imize the probability of the data given the model parameters. The probability
of the data in the case of logistic regression can be expressed as follows (as-
suming y = 1 for positive examples and 0 for negative examples):

P (D|w) = P (Y,X|w) =
∏
i

P (1|xi,w)yi(1− P (1|xi,w))1−yi (4.4)

Note that whenever yi = 1, the first term (the probability of the positive
class) is unchanged and the second term equals one, and vice versa. We are
interested in minimizing the cross-entropy:

L(w) = − logP (D|w) = −
∑
i

logP (1|xi,w)yi(1− P (1|xi,w))1−yi (4.5)

In order to optimize this objective function, we need the formula for the
gradient with respect to the model parameters:

∇L(w) = −
∑
i

fv(xi)

(
yi −

1

1 + exp(−w fv(xi))

)
(4.6)

Multiple Classes

The standard practice for multi-class classification is to use multiple logistic
regression, also known within NLP as the maximum-entropy classifier. In our
work, we instead rely on the VW reduction schemes which address multi-class
(or even multi-label) classification by combining many binary classifier mod-
els.

Let us only note here that the generalization of the logistic function for
multiple classes is the softmax function. Suppose we have K possible labels
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(classes) {1, . . . , K}. Let us also generalize our feature vector function so that
its output also depends on the currently predicted class ŷ; i.e., we have fv(x, ŷ).
Then the softmax represents the probability of the example x belonging to the
predicted class ŷ:

P (ŷ|x) = exp(w fv(x, ŷ))∑K
y′=1 exp(w fv(x, y′))

(4.7)

4.2 Implementation
We use Vowpal Wabbit (VW) for most of our work. VW is a fast ML toolkit
with support for various types of models, distributed computation and on-line
learning. Here we briefly describe the parts of VW relevant for this thesis.

Feature Hashing

First, let us discuss a more technical aspect of VW which is useful for under-
standing how the model parameters are represented in the toolkit.

For efficiency, VW does not work with feature strings. Instead, each feature
has an integer identifier from a pre-defined range. The user defines how many
bits to use for storing the feature IDs (i.e., the upper limit on how many distinct
features can be used). For example, with 12 bits, the number of possible distinct
features is 212 = 4096.

When the user provides a feature name as a string, the name is hashed into
this pre-defined range and the hash becomes the feature ID. This allows VW
to store data in a compact way and to maintain the weight vector as a single,
dense array, as opposed to a sparse data structure. (The user can also provide
feature IDs as integers; in this case, feature hashing is omitted by default.)

By default, VW does no checking for hashing collisions. It is again up to
the user to define a sufficiently large hash size so that collisions are mostly
avoided.

Training Criteria

VW does not directly implement the various ML models (such as logistic re-
gression) as separate modules. Instead, it operates with a basic linear model
(i.e., the scalar product between a feature vector and a single weight vector) and
provides several “loss functions” which turn this model into different classi-
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fiers, e.g. logistic regression (logistic loss), support vector machine (hinge loss),
or linear regression (squared loss).2

For our work, we experiment with logistic loss and squared loss which we
introduce here for completeness:

Llogistic(w, x, y) = log(1 + exp(−y ·w · fv(x)) (4.8)

Lsquared(w, x, y) =
1

2
(w · fv(x)− y)2 (4.9)

Multi-Class Classification

VW does not implement multi-class classification (such as multiple logistic re-
gression) directly. Instead, it provides reductions to binary classification or
regression problems. In our work, we use the cost-sensitive one-against-all
reduction for training models with logistic loss.3

In this setting, VW internally createsK binary classification problems where
K is the number of possible classes. Each classifier decides whether the current
instance belongs to the given class. Additionally, each label has an associated
cost which can be used to weigh misclassifications differently or to allow for
multi-label classification (where multiple labels can be correct for a single in-
stance).

For squared loss, we use VW in a mode which converts each multi-class de-
cision into K independent regression problems. Each regressor directly pre-
dicts the cost associated with the given label.4

Label-Dependent Features

When the number of possible classes becomes too large, multi-class classifica-
tion tends to perform poorly – if there are K possible classes, we would effec-
tively need to train K independent models, each predicting a single class.

Notice how we define multiple logistic regression in Section 4.1: we ex-
tended our feature vector function to take the predicted class as an additional
parameter. Some ML toolkits are designed to keep K independent vectors of
feature weights and select the vector based on the currently predicted class. K
separate models are therefore trained.

2https://github.com/JohnLangford/vowpal_wabbit/wiki/Loss-functions
3The exact command-line setting is “csoaa_ldf mc”.
4The setting in this case is “--csoaa_ldf m”, see e.g. https://www.umiacs.umd.edu/~hal/

tmp/multiclassVW.html for a thorough discussion.
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VW internally uses a slightly different (and more flexible) approach: when
predicting label k, it combines the hashes of active features and the label ID into
a new hash (conceptually, this is similar to concatenating the feature string and
the label).

In the label-dependent features mode, VW does not automatically do this com-
bination and instead relies on the user to explicitly make the features class-
dependent. Each class is therefore defined not by its label but by the features
associated with it.

This approach has several advantages: class labels are not necessary and
we need not specify the number of classes ahead of time. More importantly,
we can decide that some features should in fact not be combined with the label
and should instead be shared among multiple classes.

This flexibility is advantageous because often classes (labels) are not com-
pletely unrelated and some features should in fact be shared among them. This
can lead to more robust parameter estimation because data sparsity is reduced:
before, we effectively updated a separate feature vector depending on which
class was predicted (i.e., we had an independent model for each possible class).
With shared features, we may observe the same feature in multiple classes and
get more reliable statistics for it.

For illustration, consider again our language identification example from
Section 4.1. When we know that a sentence is in German, we also know that it
is written in Latin script and uses some characters more frequently than other
languages (letters with umlauts, “ß” etc.). When a sentence is written in Rus-
sian, it uses the Cyrillic script. But Cyrillic is also used in other related lan-
guages, such as Ukrainian or Bulgarian.5 Because the script is shared, it can
become a target-side feature: for the languages which use it, we can define
a new feature “cyr” and combine our input features with this label as well.
Similarly, we can add “lat” for languages written in Latin script.

Let us consider a very simple example. Suppose we only classify five lan-
guages: English, German, Russian, Bulgarian and Ukrainian, and that we only
have single-character features. For the Russian training sentence “спасибо”
(“thank you”), the instance would be defined as follows with label-dependent
features:

0 en_с lat_с en_п lat_п en_а lat_а en_с lat_с en_и lat_и ...

0 de_с lat_с de_п lat_п de_а lat_а de_с lat_с de_и lat_и ...

1 ru_с cyr_с ru_п cyr_п ru_а cyr_а ru_с cyr_с ru_и cyr_и ...

5These languages all use different variants of Cyrillic but nonetheless share the majority of
character types.
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0 uk_с cyr_с uk_п cyr_п uk_а cyr_а uk_с cyr_с uk_и cyr_и ...

0 bg_с cyr_с bg_п cyr_п bg_а cyr_а bg_с cyr_с bg_и cyr_и ...

This setting allows the model not only to learn how to recognize Russian.
It can also learn that Cyrillic characters (such as “п”) should not appear in
languages written in Latin script (features such as “lat_п” should receive a
large negative weight) and vice versa (from English and German training ex-
amples). When the model encounters a sentence written in Cyrillic at test time,
languages which use Latin script (and the “lat_?” features are therefore ac-
tive) should automatically become much less probable than those written in
Cyrillic. We would not directly obtain this sort of generalization without label-
dependent features.

Namespaces and Quadratic Feature Expansion

In the previous example, we repeated each character feature twice (e.g., “ru_с”
and “cyr_с”) in order to produce all combinations with the target-side features
(“ru”, “cyr”). This is somewhat wasteful and it also makes the feature specifi-
cation less readable. VW therefore implements a feature pre-processing trick.

Features can be divided into namespaces and the user can specify that fea-
tures from some given namespaces should be combined automatically. This
combination produces the full Cartesian product: every feature from names-
pace A is combined with every feature from namespace B. (We obtain a “qua-
dratic” number of features.)

In our work, we always define two namespaces and request their combina-
tion. We call the first namespace S (source or shared) and we put all features
which do not depend on the predicted class in this namespace. The second
namespace is called T (target) and contains all features of the currently pre-
dicted class.

Our language identification example would be simplified as follows (the
syntax which we use here is quite similar to the VW format):

shared |s с п а с и б о

0 |t en lat

0 |t de lat

1 |t ru cyr

0 |t uk cyr

0 |t bg cyr
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When we request the quadratic feature expansion,6 the final feature set is
the union of S, T , and S × T .

Normalization of Model Predictions

In order to obtain a conditional probability distribution P (y|x) from the raw
model predictions, we need to normalize the K independent scores produced
by VW at test time.

The calculation of normalization depends on the loss function used in train-
ing. Note that by shifting the actual “model” to the definition of the loss func-
tion, the raw outputs of VW are very different for each of the loss functions.

Specifically, VW trained with squared loss (along with the reduction to K

regressors) produces numbers roughly in the interval (0, 1). In this case, we
clip the outputs to the interval (0, 1) and then divide them by the sum of their
clipped values (L1 norm):

P (ŷ|x) =
clip[0,1](w fv(x, ŷ))∑K

y′=1 clip[0,1](w fv(x, y′))
(4.10)

On the other hand, when using logistic loss, the output additionally goes
through a logarithm function during training; VW therefore produces scores
with larger magnitudes, often negative. The suitable normalization in this case
is the softmax function, see Section 4.1.

Efficient Training

VW is very fast in a single-core setting but when the training data is very large
(as in our case), distributed processing is advantageous. VW supports paral-
lelization during training through its implementation of AllReduce (Agarwal
et al., 2011).

In this scheme, there are many worker nodes arranged in a tree and a sin-
gle master node at the root of the tree. Workers process chunks of training
data independently, synchronize their learned weight vectors with others and
communicate updates through the tree.

In practice, using AllReduce yields nearly linear speed-up (i.e., using 10
nodes makes training roughly 10 times faster) which allows us to scale to large
datasets.

6The exact command-line option in this case is “-q st”.

43





5
Discriminative Models of

Translation

In this chapter, we introduce and formally define our main contribution, the
discriminative phrasal translation model (DPTM). The chapter is structured
as follows: we first provide a mathematical definition of the model. We then
describe the feature templates which we use. We explain how translation ex-
amples are extracted and how we train the model. Finally, we introduce our
attempt to approximate discriminative models by a simple measure of context
similarity in Section 5.5.

Recall the motivating examples of erroneous translations produced by the
PBMT component of Chimera in Section 3.3. We showed that the errors have
two main causes:

• inherent limitations of standard PBMT model components,

• data sparsity in the phrase table and the LM.

We propose a discriminative model which operates on the level of phrase
pairs. It predicts the translation probability of phrasal translations in the current
context. The context comprises the full source sentence and several target-side
words preceding the current phrase (similarly to a LM, our model is evaluated
as the translation is constructed). We use a rich linguistically motivated feature
set to describe the context and to avoid data sparsity issues.

The scores predicted by DPTM are used as a single additional feature in the
log-linear model of a phrase-based MT system.
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5.1 Mathematical Formulation
As stated in Section 4.1, discriminative models estimate the conditional proba-
bility distribution P (Y |X) where Y are labels/classes and X are inputs. In the
case of MT, we assume that our inputs are sentences in the source language,
F = (f (1), . . . ,f (N)) and “labels” are their translations in the target language
E = (e(1), . . . , e(N)). The variables F and E denote the whole training corpus
whereas f (i) and e(i) correspond to individual sentences.

As we discussed in Section 2.5, PBMT models predict not only the transla-
tion but also the phrasal segmentation and reordering. The mapping between
source and target phrases also includes word alignment information. Also
note that possible translations of the same input sentence can differ both in the
number of phrase pairs and in the number of produced target words. Loosely
following Zens (2008), we introduced a latent variable S (for “segmentation”)
that captures this information and that is predicted along with the translation.

Our model is proposed within the paradigm of PBMT. To simplify its de-
scription, we make the assumption that this additional latent variable S is also
predicted by the model. However, we do not model the probability of this
latent variable explicitly; we disregard P (S) which corresponds to treating it
simply as a uniform distribution. Finally, we make a standard independence
assumption and decompose the probability P (E|F ) of our corpus into a prod-
uct of probabilities of the individual sentences e(i),f (i). Given these assump-
tions, we can write:

P (E, S|F ) =
∏
i

P (e(i), Si|f (i)) (5.1)

=
∏
i

P (e(i)|f (i), Si) · P (Si) (5.2)

∝
∏
i

P (e(i)|f (i), Si) (5.3)

Equation 5.2 simply rewrites the probability distribution using the Bayes’
rule. In Equation 5.3, we use the assumption that P (Si) is uniform: each term
is multiplied by the same constant P (Si) and can therefore be disregarded (but
we lose equality between 5.2 and 5.3).

Based on this discussion, our model only needs to learn to estimate the
conditional probability distribution P (e(i)|f (i), Si). I.e., the segmentation and
reordering are not predicted but instead are treated as given in our model. This
is consistent with the definition of log-linear model features – as discussed in

46



Section 2.5, feature scores are conditioned also on segmentation and reorder-
ing.

Let us define some additional notation: we denote source-side phrases in
the i-th sentence (given a particular phrasal segmentation) (f̄ (i)

1 , . . . , f̄
(i)
m ) and

the individual words (f
(i)
1 , . . . , f

(i)
n ). We use a similar notation for target-side

words and phrases. When sentence indices are not needed, we will sometimes
omit them and denote (any pair of) sentences simply as e,f . Similarly, we will
sometimes write (f̄1, . . . , f̄m) for phrases and (f1, . . . , fn) for words.

The question arises how to further decompose the sentence-level condi-
tional probabilitiesP (e|f , S). DPTM decomposes them into phrase-level prob-
abilities as follows:

P (e|f , S) =
∏

(ēi,f̄i)

P (ēi|f̄i,f , estart−1, estart−2, . . . , estart−t) (5.4)

The model predicts the conditional probability of each target-side phrase
based on the corresponding source-side phrase, the source-side context infor-
mation (the full source sentence f ) and some limited left-hand side target con-
text. For simplicity, we denote target words to the left of the current phrase
as estart−1, estart−2, . . . , estart−t, where t determines the number of considered
target words.

Because we condition on the source phrase, DPTM has similarities to the
phrase table. On the other hand, by conditioning on the several preceding
target words, DPTM resembles a LM as well. The information that we consider
when predicting the target phrase probability is very similar to Devlin et al.
(2014).

Now we describe how the phrasal probability is calculated. We define a
function GEN(f̄) which represents the possible translations of a source phrase
according to the phrase table. Similarly to Section 4.1, we use w to denote the
learned weight vector and the function fv() to represent the vector of features.
The probability under our model is then defined as follows:

P (ēi|f̄i,f , estart−1, . . . , estart−t) =
exp(w · fv(ēi, f̄i,f , estart−1, . . . , estart−t))∑

ē′∈GEN(f̄i)

exp(w · fv(ē′, f̄i,f , estart−1, . . . , estart−t))

(5.5)
It is simply a linear model with a single vector of weights w. Its score is

transformed to a conditional probability distribution using the softmax func-
tion.
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Note that by using the GEN(f̄) function, we formally assign a zero proba-
bility to all translations of f̄ which are unknown to the phrase table. We de-
scribe this case only for completeness – in practice, DPTM is only evaluated on
translations proposed by the phrase table.

Objective Function

As we use VW in our work, the discussion on its training criteria in Section 4.2
applies here directly. We experimented with using squared loss and logistic
loss in training. Because the objective function impacts the range of the model
scores, we need to consider it when normalizing model predictions. We use
softmax with logistic loss as described above, for squared loss we evaluated
softmax and the “clipping” normalization as defined in Equation 4.10.

Specifically, when DPTM is trained with logistic loss as the objective, model
predictions are optimized to approach zero or one (the true label) after being
transformed by the logistic sigmoid function. Raw model predictions are logits
and therefore have a much higher range of values and they form nice proba-
bility distributions after the softmax transformation in our multiclass setting.

On the other hand, when training regression with squared loss, raw model
predictions are optimized directly towards the true label (0 or 1). It is not en-
tirely clear how to transform individual outputs of regression into a probability
distribution for multiclass classification.

Empirically, we found that the raw predictions of the regression model of-
ten lie outside the (0, 1) interval. When we use the “clipping” normalization,
many predictions are transformed into zeros. Note that in the log-linear model,
we further take the log of the probability, which theoretically approaches −∞
in this situation (in practice, it is limited by a large negative number) and there-
fore disproportionately penalizes translations which are considered incorrect
by DPTM. We speculate that the MT system may be forced to accept all the sug-
gestions by DPTM and may be unable to consider alternatives (alternatively,
log-linear model weight optimization might learn to ignore DPTM entirely).

We also experimented with using softmax for normalizing the regression
outputs (trained using the squared loss objective). However, this transforma-
tion produces much less informative probability distributions (closer to uni-
form, higher entropy) than those produced by the classification setting (nor-
malized using softmax).

We carried out extensive experiments with the squared loss objective. We
found no difference in intrinsic prediction accuracy of the model. However,
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we failed to improve the final MT quality by adding DPTM when using this
criterion.

We were originally interested in using squared loss specifically when con-
sidering smooth penalties for negative examples (see Section 5.3). Our mo-
tivation was that a regression objective might be better suited for faithfully
learning the mapping between training examples and their associated loss (i.e.,
penalty). However, when experimenting with the BLEU penalty and squared
loss, we find that the model produces even more flat, uninformative distribu-
tions. Overall, we did not find a suitable configuration or transformation of
the outputs of squared loss for use in the MT log-linear model.

When optimizing the model with logistic loss, the predictions form nicer
probability distributions (as explained above) which can be more naturally in-
tegrated in the MT system. We therefore use the logistic loss in all experiments
reported in this work.

Global Model

In our setting, different target-side phrases are the classes that we want to pre-
dict. However, the number of possible labels is extremely large (there are mil-
lions of target phrase types in larger experiments). While the GEN function
used in normalization alleviates the need to evaluate all existing target phrases
for each prediction (so model evaluation is tractable), there is a problem of data
sparsity in training.

Recall that in multi-class classification, an independent weight vector is as-
sociated with each possible label. Training DPTM in this way would be equiv-
alent to building millions of different classifiers. Most of these models would
have little training data (positive instances) because most phrases are rare – the
distribution of phrase types follows a power law similar to Zipf’s law for word
types.

Additionally, many phrases share words or even subphrases and with this
approach, they would be treated as distinct classes; the model would not have
a chance to take an advantage of this fact.

We therefore use namespaces, label-dependent features and quadratic fea-
ture expansions in VW, as described in Section 4.2. In this setting, classes are
not defined by a single label but instead by a set of features. It is up to the
user to define the features associated with each class. These features are then
combined with the label-independent features to form the final feature set.

Label-dependent features may be shared among classes. For instance, En-
glish phrases “see a cat” and “feed a cat” can share the features for words “a”
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and “cat”. This parameter sharing allows the model to learn e.g. that the En-
glish word “cat” usually translates to the Czech word “kočka”, regardless of
the current phrase or other words inside the phrase.

From now on, we assume that there are two feature namespaces – S for
shared (=label-independent) features and T for translation features (=label-de-
pendent). Features in S describe the source context, the source phrase and the
limited target-side context (in other words, everything that does not change
with the currently predicted translation). Features in T describe the currently
predicted phrase (e.g., its concatenated words as a single indicator feature, the
individual words within the phrase etc.).

There is also one more technical advantage of defining our examples this
way. Because the quadratic feature expansions of VW namespaces are done
on the fly, we save an enormous amount of space: we define only the features
in S and T and leave the large Cartesian product S × T to VW.

5.2 Feature Set
In this section, we introduce the features used in DPTM. We first describe the
linguistic annotation used for each language in our experiments and then we
present the feature templates based on the linguistic information.

Linguistic Resources

While our model definition is language independent, the features do use some
linguistic annotation. Theoretically, the model could also be built without
any linguistic processing by only considering features based on surface forms
and perhaps some heuristics (e.g., using fixed-sized word prefixes as an ap-
proximation of stems/lemmas). While this is an interesting scenario for low-
resource languages, we do not evaluate such settings in this work.

We focus on four languages in our work: English (the source language in
most experiments), Czech, German and Romanian. We mainly evaluate the
various possible model settings on English-Czech translation. We use Ger-
man and Romanian primarily to verify that our findings do not depend on the
language pair at hand.

English. For English (as a source language), we use the Morče tagger (Hajič
et al., 2007) to obtain lemmas and tags (Penn Treebank tagset, Marcus et al.
1993). We also parse each English sentence with the MST parser (McDonald
et al., 2005). Finally, we assign dependency roles (or analytical functions, afun1)

1https://ufal.mff.cuni.cz/pcedt2.0/en/a-layer.html#labeling
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to words based on the PCEDT annotation (Hajič et al., 2011). This annotation
scheme is loosely based on the Functional Generative Description (FGD, Sgall
1967). Examples of afun include “Sb” for subjects or “Pred” for predicates. We
use the Treex (Popel and Žabokrtský, 2010) toolkit as a wrapper for this entire
pre-processing pipeline.

Overall, this linguistic annotation enables us to extract (on the source side)
features from surface word forms, lemmas, morphological tags and some syn-
tactic information – specifically, we use the afun attribute and the lemma of the
parent.

Czech. We lemmatize and tag the Czech data using MorphoDiTa (Straková
et al., 2014). The Czech positional tagset (Hajič and Vidová-Hladká, 1998) is
very detailed, it fully describes the morphological properties of each word.
The information includes (fine-grained) part of speech (POS), case, number,
gender, tense, degree of comparison etc. There are several thousand permissi-
ble tag values and around two thousand can be observed in a corpus.

German. We use TreeTagger (Schmid, 1994) for German. Note that the
German tagset is much more coarse than the Czech tagset. For instance, case
information is not included in the tags, which may limit their utility for DPTM.

Romanian. We use the tagset and tagger developed by Tufis et al. (2008).
We rely on the pipeline outputs as provided to us for the participation in the
QT21 joint system combination submission (Peter et al., 2016).

Note that we use morphological information on the target side but not syn-
tactic information. We can relatively easily configure an MT system to jointly
predict words along with their lemmas and tags. (The phrase table then con-
tains morphologically disambiguated words.) This technique has been shown
to work in practice and in fact enable interesting target-side models which im-
prove translation, especially into morphologically rich languages (see e.g. the
discussion of morphological LMs in Section 3.1)

However, we cannot reasonably expect a phrase-based MT system to also
predict the syntactic structure of the partial translation. The addition of syn-
tactic information in the target would introduce non-local dependencies and
structural requirements on the translations which cannot be captured by a stan-
dard phrase-based model and which are simply beyond the scope of this work.

Feature Templates

In this section, we describe feature templates that we have implemented for
DPTM. Note that we evaluate some of them only briefly in targeted experi-
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ments. We describe the feature configurations used in the main experiments
at the end of the section.

As discussed in Section 2.7, we slightly abuse the paradigm of factored MT
in our work. We use factors on both the source and the target side to store lin-
guistic information about individual words. Specifically, our factored scheme
(for most experiments) is as follows:

• Source: stc+lemma+tag+parent-lemma+afun

• Target: stc+lemma+tag

The factor stc refers to supervised truecasing, see Section 3.1. Most of the
feature templates that we describe here can work with any single factor and
even with combinations of factors.

The following is a list of source-side feature templates. These features de-
pend only on the input sentence:

• Source indicator. A single feature; the concatenation of all words inside
the current source phrase.

• Source internal. Each word inside the current source phrase represented
as a single feature. Word position within the phrase is ignored.

• Source context. Words in a fixed-sized window around the current source
phrase represented as separate features. Word position relative to the
current phrase is included in the feature string.

• Source sentence bag of words. All words in the current input sentence
(including the current source phrase) represented as individual features.
Word position within the sentence is ignored.

• Source sentence bigrams. All bigrams (pairs of consecutive words) in
the current input sentence (including the current source phrase) repre-
sented as individual features. Word position within the sentence is ig-
nored.

In the next list, we define features which require target-side context infor-
mation. Their depend also on the current partial translation (words to the left
of the currently predicted target phrase).

• Target context. Words in a fixed-sized window before the current target
phrase represented as separate features. Word position relative to the
current phrase is included in the feature string.
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• Bilingual context. Pairs of source-target words. For each word in a fixed-
sized window before the current target phrase, we extract the correspond-
ing source words using word alignment information. We generate a sep-
arate feature for each word pair found. The relative position of the target
context word is also included. Bilingual context features are directly in-
spired by bilingual LMs (Niehues et al., 2011).

• Target context bigrams. All bigrams in a fixed-sized window before the
current target phrase, along with their relative position.

Finally, we define the translation features which describe the currently pre-
dicted target phrase. To connect this division of features with the discussion
on feature namespaces above: all features presented until now are part of the
shared namespace S, they remain constant when we change the translation of
the current phrase. The features that we will introduce now are in the transla-
tion namespace T – they describe the currently predicted class. (In other words,
they are label-dependent.)

• Target indicator. The concatenation of all words inside the current target
phrase.

• Target internal. Each word inside the current target phrase represented
as a single feature. Word position within the phrase is ignored.

• Target bigrams. All bigrams in the current target phrase represented as
individual features; their position is ignored.

• Translation scores. Phrase table feature scores represented as dense fea-
tures with real-valued weights. (All other features are sparse indicators
with weight 1.0).

Figure 5.1 illustrates our feature set on a sample sentence. We show the
source-side dependency tree, the factored representation of the input sentence
and of the partial translation. For each feature template category (e.g. source
indicator), we show only a handful of features and we try to vary their factor
configurations as well to illustrate the flexibility.

Note that as stated before, the final feature set is in fact the union of S,
T and the full Cartesian product S × T . This expansion generates features
such as “stc:a_black-lemma:černý” or “stc-stc-1:saw:uviděl-stc:černou” which
describe the translation in its context and give the model some generalization
power. For instance, DPTM can learn that “black” tends to translate as “černý”
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Dependency parse of the input sentence.

stc the man saw a black cat .
lemma the man see a black cat .

tag DT NN VBD DT JJ NN .
afun AuxA Sb Pred AuxA Atr Obj AuxK

plemma man saw <root> cat cat saw <root>
Factored representation of the input sentence, current phrase highlighted.

stc muž (the man) uviděl (saw) černou (a black)
lemma muž uvidět černý

tag NNMS1—–A—- VpYS—XR-AA— AAFS4—-1A—-
Partial translation, current phrase highlighted.

Source indicator stc:a_black tag:DT_JJ afun:AuxA_Atr . . .
Source internal lemma:a lemma:black stc+tag:a_DT stc+tag:black_JJ . . .
Source context lemma-3:the lemma-2:man lemma-1:see lemma+1:cat . . .
Source BOW lemma:the stc:the lemma:man stc:man . . .
Source bigrams stc:the_man stc:man_saw . . .
Target context stc-1:uviděl tag-1:VpYS—XR-AA— stc-2:muž . . .
Bilingual context stc-stc-1:saw:uviděl stc-lemma-1:saw:uvidět . . .
Target context bigrams stc-2:muž_uviděl
Target indicator stc:černou lemma:černý tag:AAFS4—-1A—- . . .
Target internal lemma+tag:černý_AAFS4—-1A—- . . .
Target bigrams —
Translation scores p-direct:0.1 lex-direct:0.013 p-inverse:0.5 lex-inverse:0.007

Extracted features.

Figure 5.1: Example of feature extraction.
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Feature Type Configurations
Czech A Czech B

Source Indicator s, l, l+t, t l, t
Source Internal s, s+a, s+p, l, l+t, t, a+p l, l+a, l+p, t, a+p
Source Context s (-3,3), l (-3,3), t (-5,5) l (-3,3), t (-5,5)
Target Context s (2), l (2), t (2), l+t (2) l (2), t (2)

Bilingual Context — l+t/l+t (2)
Target Indicator s, l, t l, t
Target Internal s, l, l+t, t l, t

Table 5.1: Feature templates used for English-Czech translation. Letter abbre-
viations refer to word factors: s (stc), l (lemma), t (morphological tag), a (an-
alytical function), p (lemma of dependency parent). Numbers in parentheses
indicate context size.

from all phrases which contain these words, and thanks to lemmatization, it
can learn that this correspondence holds regardless of the Czech inflected form
(“černá”, “černou”, “černými” etc.).

From other examples, it can learn that nouns tend to be accusative when
preceded by adjectives in accusative, or that subjects (afun “Sb”) tend to trans-
late into nominative case.

Feature Configurations

Table 5.1 specifies the basic feature configurations used in our English-Czech
experiments. Originally, we worked with the first variant (Czech A) in the table
but later found that the second configuration tends to perform better.

Some types of features are not listed in Table 5.1 at all. Specifically, we do
not use translation model scores, bag-of-words features or any of the bigram
features in our experiments.

In preliminary evaluations, all bigram feature types worsened model accu-
racy as well as the final MT quality. We do not cover these experiments in our
work. Possibly, these features could prove useful if the learning parameters
and regularization were carefully tuned.

We conduct a separate set of experiments with the translation model fea-
tures, see Section 7.3. In our main experiments, we opt not to use this feature
type.
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We evaluated bag-of-words features and found that they increase the train-
ing set size considerably and do not bring a significant improvement. However,
more experimentation would be required to draw reliable conclusions.

5.3 Extraction of Training Examples
Before we train DPTM, we extract training examples. Our extraction procedure
requires the parallel data and a phrase table trained on this data (which we use
to look up alternative translations of phrases). We go over each sentence in
the parallel corpus. We assume that both the source and the target sentences
contain (as factors) the linguistic information described above.

For each phrase pair which can be extracted from the sentence pair, we
generate a set of training examples. We look up all possible translations of the
current source phrase in the phrase table. The current target phrase is a positive
example and all other phrasal translations serve as negative examples.2

Because phrase tables tend to be very large and moreover, most of their
content is redundant and/or noisy, we perform significance test filtering of the
phrase table as proposed by Johnson et al.. The filtering reduces the phrase
table to a fraction of the original size and allows us to greatly speed up the
extraction of training examples. Because there are fewer training examples
and fewer possible translations per phrase, we also save a large amount of disk
space when generating the feature extract files.

Loss of Negative Examples

With the feature file format that we use, we can define the loss associated with
selecting a wrong translation separately for each negative example. Our basic
setting is 0/1 loss: when the system selects the correct translation, it pays no
penalty. When any other translation is chosen, it pays a penalty of one.3

As an alternative, we follow the suggestion made by Marine Carpuat at
the JHU Workshop on domain adaptation in MT (Carpuat et al., 2012) and
we base the loss on BLEU, which makes the penalty for negative examples
more smooth. The motivation is that translation candidates which only differ
very slightly from the correct target phrase should perhaps not be penalized
as heavily as completely different, unrelated translations. Note that in phrase-

2We could probably subsample negative examples for improved efficiency but we have not
experimented with such settings.

3Note that so far, we have used 1 to denote correct labels (positive examples), as is custom-
ary in ML literature.
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based systems, phrasal translations can often only differ in minor details such
as punctuation.

Because BLEU is a document-level metric, its application to individual sen-
tences, let alone phrases, is problematic. Recall that BLEU is defined as follows:

BLEU = BP · exp
n∑

i=1

(λi log pi) (5.6)

BP stands for brevity penalty which discourages translations shorter than
the reference. The terms pi in the equation are n-gram precisions for n-gram
size 1 up to 4. Our phrases will rarely contain four or more words. Even more
rarely, any 4-gram will match with the correct translation. BLEU is undefined
(or zero, as is often done in practice) in these cases.

There are several smoothing techniques which address this problem. We
opt for using BLEU+1 (Lin and Och, 2004) where for each n-gram size we add
a single virtual matching n-gram to avoid zero precision. Moreover, because
target phrases are mostly short, we only look at n-grams up to size two; our
loss could be formulated as “1 - BLEU2+1”.

Translation 1 - BLEU2+1
sušeného odstředěného mléka 0
odstředěného mléka , 0.29
odstředěného mléka na 0.29
odstředěného mléka se 0.29
odstředěného sušeného mléka 0.42
odstředěného mléka 0.63
odstředěné mléko vyrobené 0.71
sušeným odstředěným mlékem 0.71
se sušeným odstředěným mlékem 0.78
odstředěné mléko 0.85
odstředěné mléko 0.85
odstředěné 0.90

Figure 5.2: BLEU loss for negative examples: alternative translations of the
English phrase “skimmed milk”. The correct translation has a loss of zero.

Figure 5.2 shows an example of our BLEU loss applied in the model training
data. The correct translation (in the current context) is “sušeného odstředěného
mléka” and therefore has a loss of zero. Translation candidates which only
differ slightly from this translation obtain a smaller loss. During training, the
model will therefore be penalized less for producing similar translations.
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Leaving One Out

The training data for DPTM and the phrase table is identical. This can poten-
tially lead to model overfitting: when we use translation model probabilities
as features, our model will learn to rely too heavily on their values. To counter
this effect, we use leaving one out in a way similar to Wuebker et al. (2010).

In machine learning, leaving one out is a form of cross-validation where the
model is always estimated on all available data except for a single example. The
model is then evaluated on this “left-out” example. This procedure is typically
expensive but avoids the potential problem of standard cross-validation where
unbalanced folds can lead to unreliable estimates of true model performance.

We perform leaving one out during the extraction of training examples for
DPTM. Our aim is to cancel the contribution of the current phrase pair from
the phrase table. We use a phrase table format which stores not only phrasal
translation probabilities but also their number of occurrences in the parallel
data, from which the probabilities can be calculated on the fly according to
Equation 2.1.

Before we extract a training example from a given phrase pair ē, f̄ , we first
remove its contribution from the raw counts by subtracting one from the counts
of ē, f̄ and ē∧ f̄ . The number of co-occurrences can drop to zero in which case
we do not extract a training example at all (the phrase pair was only observed
in the current sentence).

If the phrase pair “survives”, we recalculate its discounted direct and in-
verse translation probabilities. The feature extraction then uses the discounted
values.

Note that because training instances can be filtered out, leaving one out
affects model training even when translation model probabilities are not in-
cluded in its feature set.

Efficiency

The training files with features can be very large. For example, when extracting
examples from 1 million English-Czech sentence pairs, we process 22 million
phrase pairs, each creating a single positive and multiple negative examples.
The total size of the feature extract files (in the text format) is roughly 58 GB,
which corresponds to around 5 GB after gzip compression.

In order to create such large training files (relatively) efficiently, we take ad-
vantage of the fact that features from a single sentence pair do not depend on
any other sentences in the data. This allows us to trivially parallelize the task of
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feature extraction: we simply distribute sentence pairs evenly among multiple
computer nodes in our cluster and extract features separately. We then con-
catenate the outputs. Note that our round-robin distribution of sentences to
workers changes the order of the training examples; this is in fact desirable for
online learning (stochastic gradient descent) because it makes the order more
random.

Finally, let us note that we also run feature extraction in multiple threads
on each node. Together, these optimizations allow us to produce the training
files relatively quickly even for large parallel corpora.

5.4 Training
We train the model using VW. For efficiency, we use the AllReduce paralleliza-
tion scheme (see Section 4.2) which allows us to distribute training jobs across
cluster nodes. We usually run around 10-20 jobs; the provided speed-up is
roughly linear.

In order to avoid overfitting, we measure the accuracy of the model after
each pass over the training data. We use a fixed held-out dataset for this eval-
uation. We typically run 10 passes over the data and select the model with the
best accuracy afterwards.

Other parameters of VW include hash size which we set to 26 or 28 depend-
ing on the data size and feature set. We experiment with different values for
regularization, see Section 7.3. As discussed before, we train the model with
logistic loss. All other parameters of VW are left to their default values.

Finally, because the behavior of VW can change over time, we use our forked
version of VW which is frozen and which contains minor fixes of the installa-
tion files.4

5.5 Context Similarity Feature
This concludes the description of our model. Now, for completeness, we re-
port on a preliminary experiment which was done before the development of
DPTM. With the goal of improving mainly lexical choice, we implemented an
additional feature for the log-linear model in the decoder which scores phrases
without the need for a classifier, relying on a simple measure of similarity. The
motivation was to explore whether a very simple solution might also be effec-
tive for this task.

4https://github.com/moses-smt/vowpal_wabbit
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Given a phrase pair (ē, f̄), the feature computes the cosine similarity be-
tween the current context and the contexts in training data where f̄ was trans-
lated as ē. The feature therefore promotes translations which occurred in a
similar context. In our experiments, we worked with context size of 3 words
on each side, disregarding their position.

We denote the sets of context words which we compare A and B. If we
disregard word counts in the context vector, cosine similarity is reduced to:

sim1(A,B) =
|A ∩B|√
|A| ×

√
|B|

We experimented with this simplified measure and with a formula that
takes word frequencies into account:

sim2(A,B) =

∑
i Ai ·Bi√∑

i A
2
i ×

√∑
i B

2
i

We evaluated a range of experimental settings, however the feature was
never beneficial. Even parameter tuning assigned nearly zero weight to it. We
attribute the result (at least partially) to the following problems:

• The feature heavily depends on phrase segmentation.

• No abstraction from surface forms is done.

• Function words have the same weight as content words.

The feature is very unstable: if the decoder chooses a slightly different seg-
mentation of the input, observed contexts of the individual phrases change
dramatically and the feature score is very different. We could perhaps miti-
gate this issue if we disregard function words and punctuation and also if we
use e.g. lemmas instead of word forms, reducing the sparsity of the observa-
tions.

However, a more principled solution is indeed to use a discriminative clas-
sifier with a rich set of features – issues such as the distinction of function and
content words, abstraction to lemmas or sensitivity to phrase boundaries are
naturally resolved by the representation of context and the utilization of ma-
chine learning.

The classifier can learn what is a suitable generalization for this task and au-
tomatically downweigh the unimportant features (such as punctuation). Also,
as it is presented with all possible phrasal segmentations during training, it
can discover a robust set of features which are not sensitive to shifted phrase
boundaries.
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6
Integration in Phrase-Based

Translation

So far, we have introduced DPTM as a stand-alone model. In this chapter, we
describe the integration of DPTM into a phrase-based MT system. Our model
is integrated directly in the Moses phrase-based decoder and is available in the
toolkit as a standard feature function.

Recall the definition of the log-linear model in Section 2.5. The score of a
(partial) translation produced by the system is calculated using this equation.
We integrate our score by adding another feature into the log-linear model.1

6.1 Motivation
In this section, we describe why it is desirable to integrate our model in the
translation process as tightly as possible.

When additional features are added to MT systems, their integration in
decoding can be problematic. Imagine for instance using a dependency parser
score as a feature (in order to promote syntactically well-formed translations).
Such a feature is most easily evaluated when the full translation is already
available. On the other hand, evaluating partial translations is difficult.

In such situations, n-best list rescoring can be used instead. The decoder
translates the input without the additional feature and produces n best trans-
lations of each input sentence. The model then evaluates only the full transla-

1To avoid confusion, we will only use the term feature to refer to the log-linear model fea-
tures within this chapter.
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tions and possibly causes a different translation to be selected as the top can-
didate for further evaluation.

The main disadvantage of such solutions is the limited impact of the model
– many possible translations are pruned during search. In fact, n-best lists do
not really represent the search space well. Most alternative translations in an n-
best list are typically very similar to each other (Gimpel et al., 2013). The model
therefore has a very limited set of translations to choose from. When integrated
in the search directly, the model can guide the MT system as the translation is
constructed and reach translations that would otherwise not appear in the n-
best list.

Because the evaluation of DPTM (esp. when target-context information is
considered) is expensive, we first experimented with n-best list rescoring as
well. We obtained modest gains when using our model but the improvements
were limited due to the reasons discussed above. We do not report on these
experiments in this work and instead describe a relatively efficient way of using
DPTM directly in the search.

6.2 Evaluation with Source Context
When target-context information is not used, the integration of DPTM is rela-
tively simple. Recall the description of decoding in Section 2.6. The first step
when a new input sentence arrives is to collect translation options for all source
spans from the phrase table.

After this step, we already have all the information required for evaluating
our model: the source context for each span is constant and we have all the pos-
sible translations at hand (so that we can calculate the normalized conditional
probability).

When target context is disabled, we therefore fully evaluate our model even
before decoding starts (but after translation options are collected) and add the
model score to each possible translation of each source span. Note that we
need to retrieve all translations for a source span in a single step to make nor-
malization efficient.

According to our description of decoding in Section 2.6, our model is a state-
less feature when target-side context information is not used.

When we evaluate a set of span translations, we first extract the relevant
features for the source context. These features are shared across the possible
translations of the phrase (they belong to the namespace S as defined above).
We make use of VW feature hashing to store the features efficiently.

62



Figure 6.1: Multiple evaluations of a single translation option during decoding.

We then go over all the possible translations. For each target phrase, we
generate its features (in the namespace T ), add them to the object holding the
source-context features and we evaluate our model (with quadratic feature ex-
pansions generated automatically on the fly). We remove the namespace T

again and move on to the next translation. When we have evaluated all of the
translations of the input span, we normalize the scores.

The most computationally expensive part in this scenario is feature extrac-
tion. It is a sequence of many relatively expensive string operations. How-
ever, because a source-context-only model is evaluated only once for each span
translation, the cost is negligible compared to the decoding time.

6.3 Evaluation with Target Context
Recall the discussion about LMs in decoding. The LM is a stateful feature be-
cause it is non-local: the LM probability of a phrasal translation depends on
the target-side words preceding this translation.

When we add target-context features to DPTM, the same argument applies.
Our model now needs to be evaluated many times for each target translation –
every time it appears in a new target-side context. Figure 6.1 shows an exam-
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ple: the target phrase “kissed” follows the words “<s> John” the first time and
the words “<s> John yesterday” the second time. This is just a subgraph, this
phrase appears many times during a full search. Also note that because DPTM
score is locally normalized, we need to evaluate all the possible translations of
the source phrase (“políbil”, see Figure 2.2) before producing the probability
of “kissed” in each context. For our feature, the hypothesis state is defined as
the last t words (for target context size t).

The most naive approach to integrating the model would be to do the fol-
lowing operation every time a partial hypothesis is expanded with a phrasal
translation (ēi, f̄i):

1. Generate the source-side and target-side context features.

2. Fetch all possible translations ē′i of the current input span f̄i.

3. Generate features and evaluate the model for each translation ē′i.

4. Normalize the predictions and return the probability of the proposed
translation ēi.

This naive procedure is very computationally expensive and makes experi-
menting on a large scale infeasible. Also, DPTM could not be realistically used
in practice with this approach. We therefore make several optimizations which
we describe in the following sections.

Separation of Source-Context and Target-Context Evaluation

One advantage of having a simple linear model is the possibility of dividing its
evaluation into multiple stages. We can categorize the features in the feature
vector as follows:

1. Source-context features (namespace S), denoted fsrc

2. Target-context features (namespace S), denoted ftgt

3. Translation features (namespace T ), denoted ft

Then the (unnormalized – raw) score of our model is defined as:2

s = w · {fsrc ∪ ftgt  
S

∪ ft
T

∪{{fsrc ∪ ftgt} × ft}  
S×T

} (6.1)

2We ask the reader to excuse the rather creative notation which mixes sets and vectors.
Hopefully, the meaning is apparent from the equations.
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The formula is the dot product between the weight vector and the feature
vector, which we divide into categories as described above. Note that S×T cor-
responds to the quadratic expansion of the two namespaces. This expansion
is carried out automatically inside VW.

Thanks to distributivity of multiplication, we can split the dot product into
several parts (calculated at different stages) and add them together later to ar-
rive at the final score.

All features except for ftgt are available before decoding which allows us
to calculate the “source-context only” part of the score ahead of time. Also
note that we need to calculate this part only once for each target phrase. The
“source-context only” part is calculated as follows:

ssrc = w · {fsrc ∪ ft ∪ {fsrc × ft}} (6.2)

We store the raw ssrc for each phrase pair in cache and combine it with the
rest of the score afterwards. During decoding, when we need to evaluate the
translation in its target context, we compute the “target-context only” part of
the score:

stgt = w · {ftgt ∪ ft ∪ {ftgt × ft}} (6.3)

Note that we include the translation features ft in both equations. This is
a technical necessity because we rely on VW for the quadratic feature expan-
sions. This means that the contribution of ft is counted twice. To obtain the
correct result, we therefore need to subtract the contribution of ft again. The
final model score is calculated as follows:

s = ssrc + stgt −w · ft (6.4)

Note that in terms of size, both ft and ftgt are usually quite small compared
to fsrc. This trick allows us to do most of the expensive feature generation only
once before decoding.

Caching of Feature Hashes

Generating feature values from string representations is an expensive opera-
tion which we would like to avoid as much as possible. VW internally rep-
resents features by their hashes. This allows us, once we generate a feature
vector, to obtain the hashes from VW and store the generated feature identi-
fiers simply as a vector of integers (along with their floating-point values) for
future use.
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In the previous section, we described how the partial (source-context) score
can be calculated. During this optimization, we generate the features ft for
each translation option in the current sentence. It would be wasteful to create
these features again so we cache the generated feature vector associated with
each translation option at this time. During decoding, we simply look it up in
cache.

We have successfully decreased the number of operations required when
evaluating a hypothesis expansion. With all the optimizations described so
far, DPTM evaluation of a hypothesis expansion looks roughly as follows (if
we disregard normalization for a moment):

1. Look up the source-context only partial score ssrc.

2. Look up the generated features ft for the current translation.

3. Generate target-context features ftgt, calculate stgt and finally s.

Again, we would like to avoid generating features. We note that target-
side contexts can often repeat during the decoding of a single sentence. We
therefore also cache ftgt. Whenever we evaluate a new hypothesis, we first
check whether we have seen its current context and if so, we simply load its
feature vector from cache.

With these optimizations, we often avoid generating features entirely. Hy-
pothesis evaluation then amounts to loading a single number from cache (the
partial score), the computation of the dot product between the (quite small)
feature vector and the weight vector w (which VW handles very efficiently)
and several addition operations.

While still not comparable to the handful of operations done by optimized
LMs (e.g. KenLM, Heafield 2011), these tricks make using DPTM for large-
scale experiments viable.

Caching of Final Results

We have already stated several times that the model score needs to be locally
normalized. When scoring a translation ēi in a given context, we also need to
evaluate all the alternatives ē′i. Once we have calculated these scores, there is
no reason to throw them away, we therefore store them in a cache as well.

Because the phrase-based decoder will probably try most of the alternative
translations anyway, we can save a lot of computation.

When we combine all the three tricks described above, we arrive at the com-
plete algorithm illustrated in Figure 6.2.
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function evaluate(t, s)
span = t.getSourceSpan()
if not resultCache.has(span, s) then

scores = ()
if not stateCache.has(s) then

stateCache[s] = CtxFeatures(s)
end if
for all t′ ← span.tOpts() do

srcScore = srcScoreCache[t′]
c.addFeatures(stateCache[s])
c.addFeatures(translationCache[t′])
tgtScore = c.predict()
scores[t′] = srcScore + tgtScore

end for
normalize(scores)
resultCache[span, s] = scores

end if
return resultCache[span, s][t]

end function

Figure 6.2: Algorithm for obtaining classifier predictions during decoding.
The variable t stands for the current translation, s is the current state and c
is an instance of the classifier (Tamchyna et al., 2016a).

Evaluation of Decoding Speed

In order to evaluate how effective our optimization is, we added our model to
a baseline English-Czech PBMT system trained on the full CzEng 1.0 corpus
(Bojar et al., 2012). The training data size is around 14.8 million parallel sen-
tences. We measure the average time required to translate a single sentence in
three settings: the baseline, naive integration (includes the final trick – caching
of final results) and the optimized solution. The baseline is naturally the fastest
system and requires only 0.8 seconds on average. The naive implementation
increases this time to 13.7 seconds. When we include all optimizations, we
decrease the time to 2.9 seconds.

While the system is still several times slower than the baseline, the addition
of DPTM does not prevent us from running large-scale experiments any more.
In fact, we were able to thoroughly evaluate hundreds of experimental settings,
which would have not been possible without the optimization.
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7
Experimental Evaluation

In this chapter, we describe our experiments with DPTM. Section 7.1 intro-
duces our baseline system for English-Czech translation. In Section 7.2, we
present our primary experiments where we evaluate the benefit of DPTM for
English-Czech translation in a variety of settings. We also provide a man-
ual analysis of the results. Section 7.3 focuses on the discriminative model
in more detail, evaluating different settings for model training. In Section 7.4,
we present the results of applying DPTM to other languages and to transla-
tion into English. Finally, Section 7.5 describes a small annotation experiment
in which we attempt to set an upper bound on prediction accuracy for target-
side morphology when only source-side context information is available.

7.1 Baseline Setting
We first describe our baseline system(s) for English-Czech translation. We also
evaluate the impact of significance test filtering and additional target-side fac-
tors on translation quality of the baseline.

Corpora

In our English-Czech experiments, the data that we use is largely similar to a
constrained Chimera setup. We use (subsets of) CzEng 1.0 (Bojar et al., 2012) as
our parallel training data. We always use the same data for training DPTM and
the phrase table. We only use the target side of the parallel data for training
the LM; no additional monolingual corpora are included.
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We use WMT test sets from various years as our development and test cor-
pora. In most experiments, WMT13 is our development set and we test on
WMT14 test set.

We follow the data processing pipeline as described in Section 5.2.

Training Pipeline

We use standard tools for building PBMT systems bundled with the Moses
toolkit. We use Eman (Bojar and Tamchyna, 2013) extensively to keep track of
experiments and results.

We use standard settings for phrase table training. We set the maximum
phrase length to 7 words. We do not smooth the phrasal translation probabili-
ties. As described in Section 5.3, we use significance test filtering of the phrase
table. This filtered phrase table is used both for training the DPTM and in the
final MT system. We evaluate whether this filtering affects translation qual-
ity below. Because our model requires target-side morphological information,
our phrase table is factored and translates from truecased surface forms (stc)
into stc+lemma+tag.

Unless specified otherwise, we use a single 5-gram LM over surface forms
(stc) with modified Kneser-Ney smoothing (Chen and Goodman, 1999). Our
implementation of choice is KenLM (Heafield, 2011) with the default parame-
ters.

We use minimum error rate training (MERT, Och 2003) for optimizing the
weights of the log-linear model. Due to stability concerns, we typically run
MERT five times and report the average. We use MultEval (Clark et al., 2011)
to determine whether the differences between systems are statistically signif-
icant.

Effect of Phrase Table Filtering

Filtering of the phrase table helps DPTM scale to large data – if we used the
original phrase table, the number of phrases and possible translation options
for each source phrase would make feature extraction even more computation-
ally expensive and the training files might become unmanageably large. By
removing singleton phrases and rare/noisy phrase pairs, phrase table filtering
possibly also helps DPTM avoid overfitting during training.

Because filtering is necessary for DPTM, we need to verify that it does not
hurt translation quality. Otherwise, it might happen that our model simply

70



mitigates the loss caused by phrase table filtering and would not improve trans-
lation quality (as much) over a baseline with an unfiltered phrase table.

Johnson et al. report no decrease and sometimes even improvements of
translation quality when applying significance test filtering. We still need to
verify that this holds for our setting as well.

We therefore ran a small experiment where we compare two settings:

• A baseline system without significance test filtering.

• A baseline system with the filtered phrase table.

We use 1M parallel training sentences from CzEng 1.0 for training the sys-
tem. As in our other experiments, we run MERT five times and use MultEval
to compare the results.

System Table Size BLEU (WMT14)
baseline 29.7M 13.2
+filter 4.7M 13.2

Table 7.1: Effect of phrase table filtering.

Table 7.1 shows the obtained results. Phrase table size is reduced to roughly
16% of the original size but the average BLEU remains exactly the same. This
result shows that we do not weaken our baseline system by using phrase table
filtering.

Additional Target-Side Factors

Our feature set requires that the target side contains not only surface word
forms but also lemmas and morphological tags. When a phrase table is trained
this way, we make its training data somewhat more sparse: instead of sim-
ply obtaining statistics for each surface form, we count the concatenations of
form+lemma+tag and estimate translation probabilities from them.

To illustrate the problem, consider the Czech word “hrad” (“castle”). Its
nominative and accusative cases are identical. The following sample parallel
corpus shows that the translation is the same both when “hrad” is the subject
or the direct object in the sentence:

The castle stands on the hill. Hrad stojí na kopci.
The army conquered a castle. Armáda dobyla hrad.
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When we “disambiguate” the form “hrad” by appending its morphological
tag to it, we force the statistical model to count the statistics of the two words
separately, which introduces data sparsity.

To quantify this effect, we count the number of distinct Czech word forms
in the CzEng 1.0 parallel corpus and compare it to the number of distinct
form+tag combinations. There are around 1.29 million distinct word forms and
roughly 2.17 million distinct form+tag concatenations in the corpus, which is
quite a prominent difference.

In Chimera, we use these sparse models because the benefit of LMs over
target-side morphological tags clearly outweighs the loss. In this set of exper-
iments, our aim is to verify that we do not lose more by the data sparsity than
we gain by applying DPTM. Note that as described above, we only use a single
LM over surface forms in most of our experiments; the additional target-side
factors are therefore only utilized by DPTM. (Experiments which include these
additional LMs are described later in Section 7.2.)

We evaluate the difference in BLEU for two sizes of training data, 1 million
and 5 million parallel sentences. We train a pair of baseline systems for each
data size. The first system only produces surface word forms while the other
system also outputs lemmas and tags. Note that BLEU is always measured
over word forms only.

stc stc+lemma+tag
1M 13.2 13.0
5M 15.5 15.2

Table 7.2: Effect of using additional target side factors in a baseline system.

The results in Table 7.2 show that there is a small but statistically significant
decrease of BLEU for both data sizes. However, the improvements gained by
using DPTM outweigh this loss.

7.2 Discriminative Models for English-Czech Trans-
lation

This section contains our main experiments. We evaluate the utility of DPTM
for English-Czech translation under various conditions. Some of these results
were presented in Tamchyna et al. (2016a).
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Effect of Training Data Size

The goal of this set of experiments is to answer the following two questions:

• Does the discriminative model scale to large data sizes?

• Is target-side context information useful?

We train systems on subsets of CzEng 1.0 of the following sizes:

• small – 200 thousand sentence pairs,

• medium – 5 million sentence pairs,

• full – roughly 14.8 million sentence pairs.

We use (subsets of) the feature set A (see Section 5.2) in these experiments.
We compare a baseline system, a system with source-context features only and
finally, a system with a full feature set including target-context information.

small medium full
baseline 10.7 15.2 16.7
+source 10.7 16.0 17.3
+target 11.2 16.4 17.5

Table 7.3: BLEU scores obtained on the WMT14 test set (Tamchyna et al.,
2016a).

Table 7.3 shows the obtained BLEU scores. Statistically significant differ-
ences (α=0.01) are marked in bold. When evaluating statistical significance,
we compare the “+source” systems to the baselines and the “+target” systems
to “+source”.

For the smallest setting, DPTM with source-context features only brings
no improvement. However, the addition of target-side context on top of the
source-context only model improves the BLEU score by 0.5.

When we move to the medium-sized setting, source-context features be-
come effective and improve BLEU by 0.8. Target-side context brings an addi-
tional significant improvement of 0.4 points.

Finally, in the full-data setting, the differences remain significant, albeit
somewhat smaller: source-context features add 0.6 BLEU and target-context
features add another 0.2 BLEU on top of the baseline.

This is an encouraging finding. It shows that with the optimizations, we
are indeed able to scale up to realistic data sizes. More importantly, target-
side context information seems useful as it consistently improves translation
quality.
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Target Context Size

In our original preliminary experiments, we found that target context of size
two seemed the most promising. In the following set of experiments, we eval-
uate different context sizes thoroughly in full translation systems.

Our setting is again English-Czech translation. We use 1M parallel sen-
tences from CzEng 1.0 as our training data, we tune on WMT13 and evaluate
on WMT14 test set. We use feature set B as the starting point and we vary the
target context size from 1 to 5 preceding words. For each setting, we need
to run feature extraction and model training again (because the feature set
changes). We then run MERT five times and report the average, similarly to
other experiments.

Here we are not only interested in the final BLEU score. We would also like
to answer the following questions:

1. How does the context size affect model accuracy (intrinsic evaluation)?

2. What is the impact on decoding speed?

3. Is there any effect on the weight assigned by MERT?

Table 7.4 lists all results. Let us discuss the first question, intrinsic accuracy.
We evaluate the VW model on a held-out set which comes from a rather dif-
ferent domain than most of its training data (news as opposed to the mix of
domains in CzEng 1.0).1 Note that target-context features in the evaluation are
extracted from the true (gold) context, which means that the model is cheating
when compared to the source-context setting only (context size 0).2

Nevertheless, we can make some interesting observations based on the re-
sults. There is an improvement of accuracy only when we go from a single
word to two words of context. This difference of 0.6 is quite convincing but
when we increase the size, held-out accuracy begins to drop. We attribute the
decrease to model overfitting – target context of this size probably helps the
model memorize the training data better and so the weights of context fea-
tures may be set too high. It is also possible that long target context does not
generalize as well across domains, making the model more sensitive to domain
shift.

In terms of decoding speed, the results confirm our expectation. The base-
line system (no discriminative model) is the fastest one, requiring only around
0.28 seconds per sentence. The addition of the source-context model slows the

1The test set which we use to measure BLEU is the news domain as well.
2We discuss this issue in more detail in the Section 7.3, Intrinsic Evaluation.
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Context Size Accuracy Secs Per Sentence BLEU
0 70.442 0.36 13.8
1 77.982 0.75 14.0
2 78.584 1.00 14.0
3 78.517 1.18 13.4
4 78.498 1.28 13.7
5 78.220 1.47 13.6

baseline – 0.28 13.0

Table 7.4: Effect of target context size.

system down somewhat: even though we do not need to evaluate different tar-
get contexts, we still need to score each translation option in its source context,
which takes a small amount of time.

When we add target context, DPTM begins to track the feature state in de-
coding. As described in Section 6.3, this leads to multiple model evaluations
for different target contexts and prevents hypothesis recombination. As the
context grows larger, we observe a steady decrease in decoding speed down
to 1.47 seconds per sentence.3 However, it is encouraging to see that a large
context size does not make decoding prohibitively expensive, and that our im-
plementation seems to scale relatively well in such a setting.

Final translation quality as measured by BLEU shows an interesting pat-
tern: without target-side context, DPTM achieves a lower BLEU score (13.8)
than when target context of a suitable size is used. At least in this data setting,
the ideal context size appears to be either 1 or 2 preceding words. The best
context size can of course depend on many factors (training data size, the do-
main of evaluation data etc.) and it should be ideally optimized by grid search
on a held-out set. Due to the number of experiments in this work, we do not
optimize this variable and instead use target context of size two (unless stated
otherwise).

We also make an observation regarding MERT when context size varies.
We find MERT increasingly unstable as context size increases. We perform
additional 5 optimization runs for each setting giving us a total of 10. We cal-
culate the standard deviation of the final BLEU score for each context size and

3Note that the times reported in this section are much lower than in Section 6.3. The reason
is training data size; here we only trained the MT system on 1 million sentence pairs, resulting
in a much smaller phrase table, LM and VW model.
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observe a steady increase from 0.12 (context size 1) up to around 0.7 (sizes 3
and higher).

We further inspect the optimized model weights for cases where MERT
was particularly unsuccessful and while it is difficult to interpret the numbers
directly, we find that DPTM obtains a suspiciously high weight (around 0.2)
in all of these cases. Our (very) intuitive interpretation is that by including a
lot of the target context information, our model becomes a substitute for both
translation model scores and the LM. MERT can easily improve BLEU by giving
a higher weight to DPTM. However, better translation quality could be reached
by a more fine tuned combination of all components (recall that our model
optimizes cross-entropy, not the final evaluation metric) but this combination
is harder to find.

Using different optimization algorithms such as pairwise ranking optimiza-
tion (PRO, Hopkins and May 2011) or batch MIRA (Cherry and Foster, 2012)
could provide further insights into this problem. Even though all approaches
include some degree of randomness, these alternative algorithms are empiri-
cally much more stable than MERT. On the other hand, we found that at least
in the case of PRO, the output is often suboptimal (albeit stable) and thus the
results may not provide a complete picture when comparing systems close in
performance (Tamchyna and Bojar, 2013).

Language Models over Morphological Tags

Our baseline setup does not include a LM over morphological tags. The goal of
target-side context features in DPTM is primarily to improve morpho-syntactic
coherence. Arguably, a LM over tags has a similar role; we therefore carried
out experiments to determine whether the model contributions are comple-
mentary.

We use 1 million sentences from CzEng 1.0 as our training data. We tune
on WMT13 test set and we evaluate on WMT14 test set. Each BLEU score is an
average over 5 runs of MERT. We use the feature set B in these experiments.

LMs
stc stc+tag

baseline 13.0 14.0
+source 13.8 14.5
+target 14.0 14.7

Table 7.5: Effect of LMs over morphological tags. Statistically significant dif-
ferences are shown in bold.
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As Table 7.5 shows, the LM over morphological tags is very beneficial,
adding a full BLEU point on top of the baseline. We gain another 0.5 BLEU by
including DPTM with source-context features only. When we also use target-
context features, the BLEU score goes up another 0.2 points. When we compare
these last two systems using MultEval, we find that the difference is statistically
significant (α=0.01).

The comparison with a system without the morphological LM shows that
the effects are largely complementary. In this baseline setting, source-context
features improve BLEU more (by 0.8 as opposed to 0.5) but the difference be-
tween source-only and source+target model remains similar, around 0.2 BLEU
points. Again, this difference is statistically significant according to MultEval.

While the benefit of DPTM is somewhat reduced when we add the mor-
phological LM, the difference in BLEU compared to the source-context only
remains significant. We attribute this improvement to our expressive feature
set.

We do not only model the sequence of morphological tags. For instance,
each tag in the target-side context is combined with every word and tag in the
proposed translation. When the proposed phrase consists of multiple words,
these features can allow the model to directly connect a target-context tag with
a tag at the end of the proposed phrasal translation. In contrast, the LM over
morphological tags needs to estimate the probability of the full n-gram (with-
out skipping any words in between), and consequently struggles with data
sparsity.

Furthermore, DPTM uses bilingual LM features. These features (extracted
jointly from tags and lemmas) capture the relationship between source-context
and target-context words and morphology. Bilingual LMs were shown to sig-
nificantly improve translation quality (Niehues et al., 2011) and this informa-
tion is simply not available to the decoder without DPTM.

Manual Analysis

In this section, we focus on manually identifying how DPTM affects trans-
lation outputs. Recall from our discussion in Section 3.3 that we expect the
source-context model to improve mainly lexical choice (lemma selection) and
the target-context information to help with morpho-syntactic coherence of the
outputs (surface form selection).

Figure 7.1 shows a sentence from the test set translated by all system vari-
ants. The baseline translation has two main problems: the verb “took place” is
translated as “došlo” which is correct but the Czech verb has an unusual va-
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input: the most intensive mining took place there from 1953 to 1962 .
baseline: nejvíce intenzivní těžba došlo tam z roku 1953 , aby 1962 .

the_most intensive miningnom there_occurred there from 1953
, in_order_to 1962 .

+source: nejvíce intenzivní těžby místo tam z roku 1953 do roku 1962 .
the_most intensive mininggen place there from year 1953 until year 1962 .

+target: nejvíce intenzivní těžba probíhala od roku 1953 do roku 1962 .
the_most intensive miningnom occurred from year 1953 until year 1962 .

Figure 7.1: An example sentence from the test set. Each translation has a cor-
responding gloss in italics. Errors are marked in bold (Tamchyna et al., 2016a).

lency frame: it is subjectless and the event which occurred has to be expressed
by a prepositional phrase with the preposition “k”. The phrase-based system is
not capable of such syntactic transformations and simply translates the subject
into nominative case (which would be correct for most other verbs).

The second issue is the baseline translation of “to”. This particle is ambigu-
ous in English and its translation varies depending on its current sense. In this
case, it expresses a time span but the PBMT system translates it in the sense of
purpose, roughly as “in order to”.

The output of the system with source-context model included still mistrans-
lates the main verb. However, the translation of “to” is fixed as the correct sense
is selected. We attribute this change to the context information: the surround-
ing numbers are most likely years and the preposition “from” probably helps
disambiguate the sense as well. However, there is still a subtle error present:
the translation of “from” should not be “z” in this sense.

Finally, the addition of target-context features on top of the source-context
model fixes all the problems in this case. The model pushes the PBMT system
to choose a verb translation “probíhala” for which morpho-syntactic coherence
can be maintained more easily (the translation of “mining” can simply remain
as the subject of the sentence). The translation of “from” is also corrected to
“od roku” which is more suitable in this case.

Figure 7.2 shows several other examples of how the addition of source-
and target-context model on top of the baseline gradually corrects errors in
the translation. In all of these cases, the final translation is fully accurate and
grammatical.

Naturally, in many sentences, the effect of our models is far less prominent
and sometimes, DPTM even prefers a worse translation than the one produced
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input: destruction of the equipment means that Syria can no longer produce new
chemical weapons .

+source: zničením zařízení znamená , že Sýrie již nemůže vytvářet nové chemické zbraně .
destruction_ofinstr equipment means , that Syria already cannot produce new chemical
weapons .

+target: zničení zařízení znamená , že Sýrie již nemůže vytvářet nové chemické zbraně .
destruction_ofnom equipment means , that Syria already cannot produce new chemical
weapons .

input: nothing like that existed , and despite that we knew far more about each other .
+source: nic takového neexistovalo , a přesto jsme věděli daleko víc o jeden na druhého .

nothing like_that existed , and despite_that we knew far more about onenom on other .
+target: nic takového neexistovalo , a přesto jsme věděli daleko víc o sobě navzájem .

nothing like_that existed , and despite_that we knew far more about each other .
input: the authors have been inspired by their neighbours .

+source: autoři byli inspirováni svých sousedů .
the authors have been inspired theirgen neighboursgen .

+target: autoři byli inspirováni svými sousedy .
the authors have been inspired theirinstr neighboursinstr .

Figure 7.2: Examples of sentences from the test set showing improvements in
morphological coherence. Each translation has a corresponding gloss in italics.
Errors are marked in bold (Tamchyna et al., 2016a).

by the baseline system. However, on average, DPTM seems to have a positive
effect on translation quality, as evidenced by the consistent improvements in
BLEU.

We cannot fully confirm our expectation that source-context information
helps mainly with lexical choice whereas target-context features improve mor-
phology and syntax of the translation. Overall, our impression is that even the
source-context model mostly improves morpho-syntactic coherence and cor-
rections of semantics are more rare. Target-context information further helps
maintain overall agreement and coherence of the translations.

So far, we have only relied on automatic metrics to judge the differences
in translation quality. We carried out two annotation experiments to evalu-
ate whether these differences are also visible for humans. In each of these
experiments, the annotator was presented with the source sentence and two
translations: the baseline and an improved system. The evaluation was blind
(translations in each instance were ordered randomly) and the annotator’s task
was simply to compare the overall translation quality, without any specific cri-
teria such as lexical choice or morphological coherence.

We selected 104 random sentences from the test set translated by the full-
sized systems listed in Table 7.3. BLEU scores of this sample were 15.08 (base-
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line), 16.22 (source context), and 16.53 (source+target context). This confirms
that our sample does not deviate from the full test set – while the absolute
BLEU scores are all slightly lower, the differences between them correspond
to the differences measured on the full corpus. This sample was identical for
both experiments.

Setting Equal Baseline is Better New is Better
+source 52 26 26
+target 52 18 34

Table 7.6: Results of manual evaluation.

In the first experiment, the annotator compared the baseline and the system
with source-context model. Interestingly, even though the difference in BLEU
is convincingly large (over 1 BLEU point in the sample), the annotator found
no difference between the two systems. Table 7.6 shows the specific results.

In the second experiment, the annotator compared the baseline and the
system with source- and target-context model. In this setting, the improved
system was judged as better in roughly 1/3 of the instances, both were marked
as equal quality in half of the instances and in the remaining 18 sentences, the
baseline translation won.

Integration in Chimera

The improvement of the state of the art for English-Czech MT is our ultimate
goal. We therefore integrate DPTM into Chimera for WMT16. Our baseline is
thoroughly described in Section 3.1. Let us only note here that the main phrase
table is trained on the new CzEng 1.6 corpus. This new version is several times
larger than CzEng 1.0 which we use for our other experiments.

Our model setup is somewhat cumbersome in this setting. First, we do not
use CzEng 1.6 as the training data for the model. In preliminary experiments
for WMT16, it was found that using CzEng 1.6 may not lead to better BLEU
as opposed to using CzEng 1.0. Coupled with the difference in size, we opt to
use CzEng 1.0 for DPTM. Second, because training the full Chimera system is
very time consuming, we attempt to reuse as much of the baseline system as
possible. We therefore do not build an additional phrase table with the factors
required by DPTM and instead reduce the feature set only to stc, lemma and
tag factors on each side. Our feature set is a subset of Czech A.

Chimera is a highly tuned MT system so it is a very difficult baseline to beat.
In fact, we have experimented with various techniques to improve Chimera
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in the past and many of them failed, even though they usually provide good
results. For instance, hierarchical models or lexicalized reordering models do
not improve BLEU for Chimera.

We show the results in Table 7.7. The first four rows show BLEU scores of
the basic PBMT component of Chimera where we always add a single model.
Each BLEU score is again an average over 5 optimization runs. DPTM improves
over the PBMT baseline significantly (from 19.1 to 19.4) but not as much as
OSM or TectoMT.

setup BLEU
M 19.1
M+DPTM 19.4
M+OSM 19.7
M+T 20.0
M+T+OSM 20.91±0.67*
M+T+OSM+DPTM 20.96±0.67*

Table 7.7: BLEU scores of Chimera system variants in 2016. Results obtained
from a single optimization run are marked by asterisks.

The last two rows are the results of a single optimization run as reported
in Tamchyna et al. (2016b). They show that unfortunately, DPTM does not
improve translation quality of the final system. This is further supported by
the results of the manual evaluation which ranked the two systems (Chimera,
Chimera+DPTM) as identical.

TectoMT is a very strong component which provides the PBMT baseline
with long, (mostly) grammatical phrases. Long-distance dependencies which
are important for morphological coherence are handled well in TectoMT (which
works with deep syntactic parse trees instead of sequences of surface forms).
DPTM arguably does not have as much space for improving morpho-syntactic
coherence when the TectoMT phrase table is included in the system.

Errors in Morphology

Recall our automatic analysis of morphological errors made by the various
components of Chimera in Section 3.2. We made several observations about the
types of errors that TectoMT can improve and errors that all of the components
struggle with. We repeat the analysis here for the system with DPTM and look
for a systematic improvement in some of these categories.

Table 7.8 does not provide a clear answer. DPTM seems to slightly reduce
the number of errors in morphology across most parts of speech. The dif-

81



System # lemmas # errors # errors by part of speech
A C N P V

M 29163 4600 819 98 2019 434 1230
M+DPTM 29101 4458 823 105 1959 416 1155

Table 7.8: Morphological errors made by Chimera and DPTM divided by part
of speech. A=adjective, C=numeral, N=noun, P=pronoun, V=verb.

ferences seem too small to suggest any significant pattern. Unfortunately, we
do not find any systematic improvement of a certain error type.

7.3 Model Training
In this section, we describe experiments related to how we set the parameters
of our model and to model training.

Intrinsic Evaluation

We have already presented some results of intrinsic evaluation without clearly
defining how we measure it. Here we evaluate DPTM in three basic settings
and present the results.

We evaluate DPTM by measuring accuracy, i.e. the ratio of correctly classi-
fied instances.4 Recall that our basic setting is multi-class classification: each
source phrase has a number of possible translations and the task of DPTM is
to predict which one is correct in the current (source and target) context.

In order to estimate the model accuracy, we use a development set. We
extract all possible phrase pairs from this set and we generate instances for
classification from each phrase pair occurrence and its context (exactly as we
would do in training). We then use a trained model to predict the conditional
probability distribution over the possible translations of each source phrase in
the held-out set. The model prediction is correct when the correct translation
is the most probable one.

We also define a baseline to compare against. For each source phrase, we
look at the phrase-level translation probability P (ē|f̄). The baseline predicts
the most probable translation every time regardless of the current context (this
is equivalent to always choosing the most frequent translation).

4For readability, we present accuracy multiplied by 100 throughout this work.
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For this experiment, we use English-Czech translation again. We train all
models on the full CzEng 1.0 corpus and we evaluate them on WMT13 test
set. The baseline achieves an accuracy of 51.5. This number is quite high con-
sidering the morphological richness of Czech. The source-context only model
reaches 66.3 and when we also add target-context features, the accuracy im-
proves to 74.8.

The final number is not really comparable with the previous two results be-
cause of how we generate the instances: the last model needs target-side con-
text information but because this evaluation happens outside of MT decoding,
we have no partial MT outputs. We therefore extract the target-context features
from the true target sentence, which gives the target-context model an unfair
advantage. However, the result does show that there is potential in the target
context features.

Regularization

We experimented with various settings for L2 regularization. The motivation
for using a regularization term is to avoid model overfitting by penalizing high
values in the weight vector. The aim is to prevent the model from relying on
any single feature too heavily.

L2 regularization term is simply the L2 norm of the parameter vector w.
The term is added to the loss function with a weight λL2 ; the weight can be
tuned to optimize the model accuracy on a held-out set.

In terms of implementation in VW, note that the regularization weight is in-
terpreted differently depending on whether VW is in the online learning mode
or in a batch scenario. In our case (online learning), the term is applied for each
example; the L2 weight therefore needs to be set rather low.

As illustrated in Figure 7.3, we found no setting of the weight which im-
proves either the classifier accuracy or the final BLEU score. As the weight
approaches zero, the effect of the regularization is so low that it is effectively
not applied.

The smallest value that we evaluate is 1× 10−9 where the obtained accuracy
is 78.47 and BLEU is 13.62±0.45, i.e. nearly identical to our baseline where L2

regularization is disabled.

Loss of Negative Examples

All of our experiments in this work are carried out with the 0/1 loss scheme in
training because in our preliminary evaluation, the BLEU loss did not perform
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Figure 7.3: Effect of L2 regularization on model accuracy and BLEU. The base-
line accuracy is 78.55 and BLEU is 13.81.

better. In this section, we compare the two settings more rigorously in a full
MT system pipeline.

We use our medium-size data setting with 5 million parallel training sen-
tences. For both loss types, the average BLEU of the WMT14 test set over sev-
eral runs of MERT is 16.2. We find no statistically significant difference be-
tween the two ways of penalizing negative examples. This finding is somewhat
surprising: we have expected that changing model training is such a promi-
nent way would have a significant effect on final results.

There is still room for experimentation in this area. Notably, sentence-level
BLEU has repeatedly shown a low correlation with human ranking (see e.g.
Bojar et al., 2016c). The metric also disregards word similarity (inflections of
the same lemma are penalized the same as an entirely different word). Exper-
iments with more recent metrics might lead to better results.

Leaving One Out and Phrase Table Features

As described in Section 5.2, our original aim was to include translation model
scores as features in DPTM. In preliminary experiments, we did not find these
features to be helpful and we therefore use a simpler feature set in the majority
of our experiments. In this section, we examine the effect of using TM scores
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in the model both in terms of intrinsic and extrinsic evaluation. We also look
at the interplay between our leaving-one-out strategy and TM features.

Leave Feature Set
One Out standard +TM scores
× 75.40 74.71
✓ 76.05 75.12

Table 7.9: Model accuracy with TM features and leaving one out.

We show in Table 7.9 that in terms of classifier accuracy, leaving one out
is always helpful. Somewhat surprisingly, the difference is larger when TM
features are not included. As discussed in Section 5.3, leaving one out affects
feature extraction even when TM features are not used because it filters out
some of the training instances.

First recall that we also use phrase table filtering. Our setting of this filter
always discards singleton phrase pairs. These are “1-1-1” singletons: c(ē), c(f̄)
and c(ē ∧ f̄) are all equal to one. (I.e. neither the source nor the target phrase
appear anywhere else in the data.) In order for the phrase pair to appear in
the filtered phrase table, at least one of c(ē), c(f̄) therefore must be higher than
one.

Leaving one out will then discard a phrase pair if and only if c(ē ∧ f̄) = 1.
These are phrases that appear multiple times in the training data but co-occur
only once. In our experiments, about 4.4 per cent of training examples are
discarded by this criterion. Because their filtering improves held-out accuracy,
we believe that these phrase pairs are mostly noisy and/or do not generalize
well outside their specific context.

Another result illustrated by Table 7.9 is that we achieve better accuracy
when not using the TM scores. Unfortunately, it seems that even with signif-
icance test filtering and leaving one out, we cannot entirely avoid overfitting to
these features.

Several factors may contribute to this result. First, because TM scores (un-
like all other features in our feature set) are dense features – they appear with
every training example – their weight grows naturally larger during the on-
line training of our model and could be overestimated. We do use the default
adaptive setting of VW which maintains different learning rates for individual
features and theoretically should allow the mixing of dense and sparse fea-
tures. However, a more careful treatment of these dense score features might
be necessary.
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Second, the phrase table still captures the probability distribution of the
training data; when the model learns to rely on it too heavily, it may not gen-
eralize to our dev/test domain as well as before.

Table 7.10 shows the final BLEU scores of the evaluated configurations. We
find that even though leaving one out has some effect on the model accuracy,
the difference is not apparent in translation quality when TM features are not
used.

When we add the TM score features, the overall BLEU score decreases sig-
nificantly. As expected, leaving one out seems to play a role in this setting. It
gives a slight improvement (15.8 vs. 15.9) but this difference is not statistically
significant according to MultEval (p-value is 0.03).5

Leave Feature Set
One Out standard +TM scores
× 16.2 15.8
✓ 16.2 15.9

Table 7.10: Final BLEU scores with TM features and leaving one out.

An interesting observation is that model accuracy and BLEU score are not
necessarily correlated. When TM scores are disabled, we obtain a 0.65 im-
provement in accuracy thanks to leaving one out but there is no effect on BLEU.
Similarly, the difference between accuracies 75.40 and 75.12 is small but there
is a 0.3 difference in BLEU between these systems. Insight into the feature set
of the model seems essential for understanding its performance in the MT sys-
tem.

7.4 Additional Language Pairs
So far, we have focused on English-Czech translation. However, at its core, our
method is language independent. While the feature set that we have presented
is tailored more to translating into morphologically rich languages, DPTM can
work with any target language. Similarly, while we require some linguistic
tools for both the source and the target language, DPTM can conceivably im-
prove translation even when such tools are not available (see our discussion in
Section 5.2).

5Note that we report BLEU=16.4 in our main English-Czech translation results. This dif-
ference illustrates the degree of randomness in MERT (even when we do multiple runs and
averaging), here a different sample lead to a slightly worse result.
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Feature Type Configurations
German Romanian

Source Indicator s, l, l+t, t l, t
Source Internal s, s+a, s+p, l, l+t, t, a+p l, l+a, l+p, t, a+p
Source Context s (-3,3), l (-3,3), t (-5,5) l (-3,3), t (-5,5)
Target Context s (2), l (2), t (2), l+t (2) l (2), t (2)

Bilingual Context l+t/l+t (2) l+t/l+t (2)
Target Indicator s, l, t l, t
Target Internal s, l, l+t, t l, t

Table 7.11: Feature templates used for English-German and English-Romanian
translation. Letter abbreviations refer to word factors: s (stc), l (lemma), t
(morphological tag), a (analytical function), p (lemma of dependency parent).
Numbers in parentheses indicate context size.

In this section, we present our experiments with several other language
pairs. In the next section, we evaluate DPTM for English-German and English-Ro-
manian translation. We then move to translation into English with Czech, Ger-
man and Romanian as source languages.

English-German

We have described the linguistic tools used for processing these languages in
Section 5.2. In terms of corpora, we train on the constrained parallel data from
the WMT14 translation task. The data consists of Europarl (Koehn, 2005) and
Common Crawl6 corpora and amounts to around 4.3 million sentences. We
tune and evaluate our systems on WMT13 and WMT14 test sets, respectively.

The feature set for English-German translation is different from English-
Czech, Table 7.11 lists the used feature templates.

Otherwise, our setup is fairly similar to English-Czech experiments: we
have a 5-gram LM over surface forms trained on the target side of the parallel
data. We tune the system using MERT and report the average over 5 runs.

The baseline BLEU score average is 15.7 and the addition of DPTM (source
and target context) improves this result to 16.2; the difference is statistically
significant. While this improvement is not as large as we have observed for
English-Czech translation, it still shows that DPTM can be used for a very dif-
ferent target language in a straightforward way.

6http://commoncrawl.org/
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Note that because the German tagset is much more coarse-grained than
the Czech tagset, the improvements in morphological coherence may be lower
than would be possible with a more suitable granularity of tags.

English-Romanian

We report on two different sets of experiments with English-Romanian. The
first experiment has a very similar setting to our evaluation of English-Czech
and English-German translation. The second set was carried out as part of the
WMT16 translation task. Both experiments use the same feature set which is
described in Table 7.11.

The parallel training data are identical in both experiments: we use the data
made available for WMT16, i.e. Europarl and SETIMES2 (Tiedemann, 2009),
around 600 thousand sentence pair altogether.

In the first experiment, the baseline system is fairly similar to our other
baselines: the LM is a 5-gram model trained only on the target side of the
parallel data. We tune and test our system on WMT16 dev- and test-sets, re-
spectively.

The baseline system achieves a BLEU score of 19.6. When we add DPTM
(again, both with source and target context information), the BLEU score im-
proves to 20.2 points. This difference is statistically significant.

Our second set of experiments is related to a system-building effort for the
WMT16 translation task. Here we do not attempt to carefully isolate and de-
scribe the effect of DPTM. Instead, we are interested simply in developing the
best possible system for the language pair at hand. These experiments are de-
scribed in more detail in Tamchyna et al. (2016b).

Setting BLEU
baseline 26.2
+tagLM 26.6
+ccrawl 28.0
+RM 28.1
+DPTM 28.3

Table 7.12: BLEU scores of system variants for English-Romanian translation
(Tamchyna et al., 2016b).

Because these experiments were carried out before WMT16 ended (the ref-
erence translation of the test set was not available), we split the provided devel-
opment set into two parts; we tune on the first half and evaluate on the second
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half (so the scores are not comparable between the first and the second set of
experiments).

Our baseline uses a LM trained not only on parallel data but also on the
News Crawl 2015 data provided in WMT. Table 7.12 lists the system results
(with statistically significant differences marked in bold) as we gradually in-
clude additional components in the system: a 7-gram LM over morphological
tags (+tagLM), a large 4-gram LM over surface forms trained on the Com-
mon Crawl corpus (+ccrawl), a lexicalized reordering model (+RM) and fi-
nally, our discriminative model with source and target-side context informa-
tion (+DPTM).

The results show that DPTM can improve translation into other languages
and that it can outperform even a very competitive baseline. Note that some
of the models included in the baseline are trained on much larger data than
DPTM (which does not use the large additional monolingual data).

Translation into English

In this section, we describe our experiments with translation into English. We
developed DPTM and the features mainly with morphologically rich target
languages in mind. Morpho-syntactic coherence in English is more driven by
word position than inflection, DPTM therefore does not have as much space
for improvement in this scenario. Also recall our manual analysis in Section 7.2
– in English-Czech translation, DPTM seems to improve morpho-syntactic co-
herence more than semantics overall. If we reduce its ability to improve mor-
phology, we can expect the gains to be lower.

We evaluate three language pairs: German-English, Romanian-English and
Czech-English. Let us first describe the feature set for each language pair and
then move on to the data sets that we use.

Table 7.13 lists the features used for each setting. We do not use a depen-
dency parser for German and Romanian. This limits our feature set to forms,
lemmas and tags on each side. For Czech-English, we use the MST parser
trained on the Prague Dependency Treebank 2.0 (Hajič et al., 2006). Analytical
functions (e.g. “Sb” for subjects) could arguably provide some information to
the model about the required position of English words in the translation.

The data used for German-English are identical to our English-German
experiments. For Romanian-English, the data are the same as for the WMT
system-building effort. Our Czech-English data are identical to the opposite
direction, we use the full CzEng 1.0 corpus. The evaluation sets therefore differ
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Feature Type Configurations
German, Romanian Czech

Source Indicator l, t l, t
Source Internal l, t l, l+a, l+p, t, a+p
Source Context l (-3,3), t (-5,5) l (-3,3), t (-5,5)
Target Context l (2), t (2) l (2), t (2)

Bilingual Context l+t/l+t (2) l+t/l+t (2)
Target Indicator l, t l, t
Target Internal l, t l, t

Table 7.13: Feature templates used for German-English, Romanian-English
and Czech-English translation. Letter abbreviations refer to word factors: s
(stc), l (lemma), t (morphological tag), a (analytical function), p (lemma of de-
pendency parent). Numbers in parentheses indicate context size.

among the languages: we use WMT14 for German and Czech and the second
half of WMT16 development set for Romanian.

De-En Ro-En Cs-En
baseline 22.2 28.4 22.7
+DPTM 22.4 28.7 23.3

Table 7.14: Results of experiments with translation into English.

Table 7.14 lists the results. As expected, the improvements are smaller over-
all than in the opposite direction. However, DPTM does consistently and sig-
nificantly improve translation quality even in this setting. The difference is the
largest in Czech-English, possibly thanks to the source-side syntactic features.

7.5 Source Context for Target-Side Morphology
In this section, we describe a small annotation experiment which we carried
out to determine whether target-side morphology can be successfully predicted
from source context information only. This was a preliminary experiment and
we present its results here for completeness.

We already illustrated the need for target-side context when predicting
word inflections on several examples in Section 3.3. Here we ask human an-
notators to guess the correct morphological variant of target-side words and
we quantify the results. Our motivation for this experiment is to set an up-
per bound on the prediction accuracy of target-side morphology when only
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source-context information is available – if even a human annotator cannot
disambiguate all instances correctly, we cannot realistically expect a machine-
learning model to successfully solve this task.

Specifically, the annotation task was to determine the surface form of a
Czech word given the following information:

• the word lemma and POS,

• the full source sentence (English) along with its morphological analysis,

• and the set of English words aligned to the predicted Czech word.

Factor Source Sentence
form He wants me to call my mother .
lemma he want me to call my mother .
tag PRP VBZ PRP TO VB PRP$ NN .
afun Sb Pred Sb AuxV Adv Atr Obj AuxK

Target word: matka|N

Figure 7.4: Example instance of the annotation task for morphology prediction.
The annotator is asked to write the correct form of the word “matka” given its
POS and the source sentence. The correct inflection in this case is “matce”.

Figure 7.4 shows an example instance for annotation. In this instance, the
annotator should predict the surface form of the lemma “matka” (“mother”) in
the translation. The correct answer is extracted from the target side of the par-
allel data; the annotator does not see the Czech translation and has to imagine
what the translation probably looks like. In this instance, the actual transla-
tion contains the verb “zavolat” which requires a dative case for the object:
“matce”.

This setting may seem unnatural but the information that the annotators see
is roughly what the classifier has access to in the features. Naturally, annotators
use their intuition – both linguistic and based on their world knowledge – while
the classifier only has a model trained on some limited corpus.

Two independent annotators were presented with 100 instances. The an-
notation instances were randomly selected from parallel sentences taken from
CzEng 1.0. We discarded 13 instances which were marked as erroneous by one
or both annotators. Causes of these errors were two-fold: either the predicted
word did not belong in the sentence at all (implying a non-parallel sentence
pair or a very loose translation) or it was misaligned within the English sen-
tence.
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From the remaining 87 instances, annotator A answered correctly in 67
cases and annotator B in 65 cases. They agreed in 65 instances (not only the
correct ones). While a more rigorous study would be needed to obtain a re-
liable estimate, our small annotation experiment suggests that human anno-
tators have roughly 0.76 accuracy on the filtered instances and 0.66 on all in-
stances. The inter-annotator agreement is around 0.74.

Note that this experiment was done on real parallel data (albeit automati-
cally collected and therefore noisy). Results using MT outputs could be some-
what different.

We can interpret this result in two ways. It could be viewed as a positive
result for using only source context – if 76% accuracy was attainable with a
machine learning model, this would most likely be a useful signal for the MT
system already. Indeed, source context information has been used for predict-
ing morphology quite successfully, as discussed in Chapter 8.

On the other hand, the result shows that there is an inherent limit on what
is achievable with source context information alone. This, along with our ob-
servations in Section 3.3 confirms the strong motivation for considering also
target-side context information in morphology prediction.
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8
Related Work

There is a large amount of work which focuses on utilizing wider source-context
information in MT, mostly by applying discriminative models. Here we de-
scribe several of the most relevant articles from this area.

Giménez and Màrquez (2007) proposed to use source context for phrasal
translation. They incorporated their module in a full MT system, thus being
able to evaluate its impact on translation quality. While no improvement of
BLEU score was achieved, they carried out manual evaluation and confirmed
that their model helps MT quality. They used a rich feature set based on the
WSD system of Yarowsky et al. (2001). Local context was captured by a win-
dow of fixed length 5, from which words, POS tags and phrase-chunking labels
were extracted. Global context was modeled as a bag of lemmas of the whole
source sentence.

They used local linear support vector machines (SVM). For each source
phrase f̄i and for each of its possible translations ēj , they trained a binary one-
against-all classifier Ci,j . Sentences where f̄i was translated as ēj served as
positive examples and all other occurrences of f̄i as negative examples. Train-
ing such models is very taxing in terms of computing time and storage space
and does not allow for parameter sharing. No target context information was
used.

Carpuat and Wu (2007) described an approach related to Giménez and
Màrquez (2007), naming the task “phrase sense disambiguation” (PSD). The
PSD module was based on their WSD system (Carpuat et al., 2004) and uti-
lized an ensemble of four machine-learning models: a naive Bayes model, a
maximum-entropy model, a boosting model and a kernel-PCA model. The
features were also based on their state-of-the-art WSD system. They carried
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out a large-scale evaluation using realistic data sizes across several language
pairs. Their results showed a consistent improvement of scores according to a
wide range of MT metrics (including BLEU). This approach has a similar draw-
back to Giménez and Màrquez (2007): predictors for different source phrases
are trained independently. The method was never fully integrated in phrase-
based search and it does use target-side context.

Chan et al. (2007) included source-context information in a hierarchical MT
system. They used SVMs to predict the probability of translation given source
context and included the scores as a feature in the decoder (limiting the pre-
dictions to short phrases). They also reported gains in BLEU score.

Mauser et al. (2009) introduced the “discriminative word lexicon”, a tech-
nique which attempts to predict, for each word in the target vocabulary, whether
or not it should appear in the translation of a given sentence. The authors
trained a binary classifier for each target word, using as features only the bag
of words (from the whole source sentence). Sentences where the target word
occurred were used as positive examples, other sentences served as negative
examples. During decoding, all classifiers were queried and translation hy-
potheses were rewarded based on the scores of words that they contained.
Significant improvements of BLEU score were reported.

Jeong et al. (2010) also proposed a discriminative lexicon with features ex-
tracted from the context. Their feature set was designed for morphologically
rich languages but they only make use of source context information.

Daiber and Sima’an (2015) make an explicit assumption that target-side
morphology can be partially predicted by the source-side context only. They
show that indeed, source-context information can be used successfully to some
degree.

Subotin (2011) proposed a discriminative model and unlike others, they
also included target-side context information. However, the algorithm is tightly
coupled with cube pruning in hierarchical MT and includes specific rules for
passing non-local information about agreement between the individual rules.
Our method provides a more general framework where any information can
be extracted from source- and target-side context. While we do rely on hy-
pothesis construction from left to right, we do not make assumptions about
the pruning strategies used.

Discriminative LMs are also relevant to our work: they use non-local fea-
tures from (only) the target-side context in a discriminative setting. Notably,
inspired by the success of a similar technique in automatic speech recognition
(ASR), Li and Khudanpur (2009) proposed a discriminative LM for rescoring
MT outputs. Unlike our method, these LMs are not integrated in search but are

94



only used for n-best re-ranking. However, this enables them to use arbitrary
target-side features because the full translation is already known.

Our idea for using bilingual context features comes from the work on bilin-
gual LMs (Niehues et al., 2011) where the authors extended standard n-gram
LMs to also capture limited source-side context. This is achieved by concate-
nating each target word in the LM context window with its source-side coun-
terpart(s). While this technique indeed allows the system to condition phrasal
translations on the source-side context, the model may suffer from data spar-
sity inherently present in count-based n-gram LMs.

Finally, neural networks have become a prominent topic in MT recently.
Our work is most similar to Devlin et al. (2014) who add the predictions of a
fully-connected multilayer NN as an additional feature in a phrase-based MT
system. The NN has access to both source-side and target-side context. Our
approach is arguably more flexible in the design of features and may allow
more expressive feature sets to be easily integrated in the model – application-
specific features (e.g. promoting correct translations of fixed terminology) may
easily be added to our model; similarly, the addition of discourse-level infor-
mation or sentiment annotation is trivial in our model. Devlin et al. (2014)
describe a number of technical challenges involved in optimizing the model
speed for realistic use; our obstacles were somewhat different and our solu-
tions may be useful to other researchers.

Purely neural MT based on the encoder-decoder architecture (Sutskever
et al., 2014) is the newly emerging state of the art in MT. This approach can
theoretically use information from arbitrarily long context (source- and target-
side); indeed, translations produced by IWSLT2015 NMT submissions show
that NMT systems usually outperform PBMT in grammaticality and long-di-
stance linguistic dependencies between words (Bentivogli et al., 2016). On the
other hand, PBMT still has a strong presence in the industry and thanks to the
consistent improvements of translation quality provided by DPTM and also
the number of possible applications that DPTM allows, our model may still be
useful to both researchers and users of MT in the future.
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9
Conclusion

The thesis describes our attempt to address the issues of lexical and morpho-
logical choice in statistical MT. We developed a phrasal discriminative transla-
tion model (DPTM) with a rich set of features extracted from both source- and
target-side context. The model is fully integrated in phrase-based search and
can be used relatively efficiently even on large data sets.

DPTM leads to consistent improvements of translation quality over base-
line PBMT systems in various settings. Importantly, the improvements from
both the source- and target-context model scale well as the training data grows
larger, suggesting that DPTM indeed provides the MT system with informa-
tion which is not available to the baseline model components. Also, even though
we primarily designed DPTM and its features for English-Czech translation,
the whole framework is language-independent and can be successfully applied
to other language pairs. We have provided several analyses of the results, both
automatic and manual, to illustrate what types of phenomena are improved
by our model.

However, when integrated in our strongest baseline, Chimera, DPTM does
not provide any gains in BLEU or according to human evaluation. We believe
that DPTM may potentially still be useful for Chimera in different settings: for
instance, our model could be used to capture extra-sentential context informa-
tion which Chimera currently does not utilize. We have not experimented with
such settings in this work.

We have not described all of our attempts to improve translation quality us-
ing discriminative modelling. In particular, we invested a lot of effort in train-
ing on n-best lists with the following motivation: some authors have claimed
that discriminative models only work well when trained towards the final eval-
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uation metric (such as BLEU), not cross-entropy loss (see Auli et al. 2014, inter
alia). Also, by training on n-best lists, the model should theoretically learn to
fix errors that the baseline system actually makes and that are correctable (Li
and Khudanpur, 2009). Moreover, exposure bias might be mitigated by train-
ing on n-best lists (in our training scheme, target-side features of our model
are extracted from the true target context, perhaps leading the model to rely
on them too much). However, our work in this direction was not successful
and when our simple training scheme (train on true parallel data, optimize
cross-entropy) began to produce positive results, we did not explore this area
further.

We also helped implement and experimented with a word-level discrimi-
native model, originally proposed as a team project for the MT Marathon in
Prague in 2013: “A Discriminative Lexicon for Translating to Morphologically
Rich Languages”.1 We even integrated the model in Chimera for a WMT sub-
mission but due to the lack of positive results, we eventually focused entirely
on DPTM. It may in fact be interesting to reconsider the word-level model as an
alternative now that the implementation of DPTM is finished and thoroughly
evaluated.

9.1 Future Work
DPTM provides quite a general framework for using discriminative models in
PBMT. With small extensions of the feature set, DPTM could be used to take
into account various new types of information.

For instance, by including features describing the surrounding sentences,
DPTM could access discourse-level information and perhaps be used to im-
prove MT output coherence when translating longer documents.

Similarly, by explicitly adding features which describe the sentiment of the
input sentence, DPTM might be used to steer the MT output towards transla-
tions with a similar emotional polarity.

DPTM is already being used successfully within the European innovation
project Health in my Language (HimL) to explicitly model verb valency and
several other phenomena related to semantic fidelity.2

In the following section, we describe one particular application which is
beyond the scope of the thesis but is already completed and published.

1http://ufal.mff.cuni.cz/mtm13/project-final-presentations/lexicon_morph_rich_
final.pdf

2http://www.himl.eu/files/D2.2-intermediate-report-on-srl-and-fidelity.pdf
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Producing Unseen Morphological Variants in SMT

This work was done jointly with LMU Munich and is described in Huck et al.
(2017). The idea and motivation for this application of DPTM was proposed
by Alexander Fraser, who also proposed the design of the feature set for this
setting.

MT systems struggle when translating into morphologically rich languages
with a large target-side vocabulary. Particularly, while the system may know
the correct lemma of the word to be translated, its inflected surface form re-
quired in the given situation may be unseen in the training data. The work
that we describe here aims to enable the MT system to produce any inflected
word form of known translations.

We address this issue by using a morphological generator for the target lan-
guage and by adding unknown inflections of words as new (synthetic) entries
in the MT system phrase table. We focus on phrases with a single word on the
target side (to avoid problems with agreement). For each phrase, we obtain the
lemma of the target-side word and then generate all its inflected word forms
(optionally with some constraints). We then add all these new word forms as
additional translations of this phrase. We focus on Czech and use MorphoDiTa
(Straková et al., 2014) to perform the generation.

The main issue that the work addresses is how to score the synthetic phrase
pairs. Phrase translation probabilities and lexical weights are based on counts
which are all zero for unseen word forms.

Our contribution to this work is the use of DPTM. We divide the set of fea-
tures into two disjoint parts. The first part only describes the lexical translation
(disregarding morphology) and the second part only describes the morpholog-
ical properties of words (and disregards the lexemes). By splitting our feature
set this way, we effectively obtain two separate models: a predictor of lexical
choice and an independent predictor of target-side morphology. When DPTM
scores a previously unseen word form, there is effectively no difference from
scoring a known surface form: the lemma and tag are viewed independently
and both are known to the model. There is similarity between this work and
two-step translation (Bojar and Kos, 2010; Fraser et al., 2012) which handles
morphological inflection as a second step after translation into stemmed words
– we can view our approach as “two-step MT in one step”.

This work improves the quality of MT into Czech in small- and medium-
resource settings and significantly reduces the target-side OOV rate. It repre-
sents a successful application of our method in a novel setting.

99





Bibliography

Agarwal, A. – Chapelle, O. – Dudík, M. – Langford, J. A Reliable Effective
Terascale Linear Learning System. CoRR. 2011, abs/1110.4198. Available at:
http://arxiv.org/abs/1110.4198.

Auli, M. – Galley, M. – Gao, J. Large-scale Expected BLEU Training of
Phrase-based Reordering Models. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL, p. 1250–1260, 2014. Available at: http://aclweb.org/anthology/D/

D14/D14-1132.pdf.

Bentivogli, L. – Bisazza, A. – Cettolo, M. – Federico, M. Neural versus
Phrase-Based Machine Translation Quality: a Case Study. CoRR. 2016,
abs/1608.04631. Available at: http://arxiv.org/abs/1608.04631.

Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., 2006. ISBN 0387310738.

Bojar, O. – Tamchyna, A. CUNI in WMT15: Chimera Strikes Again. In Pro-
ceedings of the 10th Workshop on Machine Translation, p. 79–83, Stroudsburg,
PA, USA, 2015. Association for Computational Linguistics, Association for
Computational Linguistics. ISBN 978-1-941643-32-7.

Bojar, O. – Tamchyna, A. The Design of Eman, an Experiment Manager. The
Prague Bulletin of Mathematical Linguistics. 2013, 99, p. 39–58. ISSN 0032-6585.

Bojar, O. – Buck, C. – Federmann, C. – Haddow, B. – Koehn, P. – Leveling, J.
– Monz, C. – Pecina, P. – Post, M. – Saint-Amand, H. – Soricut, R. – Specia,
L. – Tamchyna, A. Findings of the 2014 Workshop on Statistical Machine
Translation. In Proceedings of the Ninth Workshop on Statistical Machine Trans-
lation, p. 12–58, Baltimore, MD, USA, 2014. Association for Computational
Linguistics. ISBN 978-1-941643-17-4.

Bojar, O. – Chatterjee, R. – Federmann, C. – Haddow, B. – Huck, M. – Hokamp,
C. – Koehn, P. – Logacheva, V. – Monz, C. – Negri, M. – Post, M. – Scarton,

101

http://arxiv.org/abs/1110.4198
http://aclweb.org/anthology/D/D14/D14-1132.pdf
http://aclweb.org/anthology/D/D14/D14-1132.pdf
http://arxiv.org/abs/1608.04631


C. – Specia, L. – Turchi, M. Findings of the 2015 Workshop on Statistical Ma-
chine Translation. In Proceedings of the 10th Workshop on Machine Translation, p.
1–46, Stroudsburg, PA, USA, 2015. Association for Computational Linguis-
tics, Association for Computational Linguistics. ISBN 978-1-941643-32-7.

Bojar, O. et al. Findings of the 2016 Conference on Machine Translation
(WMT16). In Bojar, O. – . (Ed.) Proceedings of the First Conference on Machine
Translation (WMT). Volume 2: Shared Task Papers, 2, p. 131–198, Stroudsburg,
PA, USA, 2016a. Association for Computational Linguistics, Association for
Computational Linguistics. ISBN 978-1-945626-10-4.

Bojar, O. – Dušek, O. – Kocmi, T. – Libovický, J. – Novák, M. – Popel, M. –
Sudarikov, R. – Variš, D. CzEng 1.6: Enlarged Czech-English Parallel Corpus
with Processing Tools Dockered. In Sojka, P. – Horák, A. – Kopeček, I. – Pala,
K. (Ed.) Text, Speech, and Dialogue: 19th International Conference, TSD 2016, č.
9924 v Lecture Notes in Computer Science, p. 231–238, Cham / Heidelberg
/ New York / Dordrecht / London, 2016b. Masaryk University, Springer
International Publishing. ISBN 978-3-319-45509-9.

Bojar, O. – Kos, K. 2010 Failures in English-Czech Phrase-based MT. In Pro-
ceedings of the Joint Fifth Workshop on Statistical Machine Translation and Met-
ricsMATR, WMT ’10, p. 60–66, Stroudsburg, PA, USA, 2010. Association for
Computational Linguistics. Available at: http://dl.acm.org/citation.cfm?
id=1868850.1868855. ISBN 978-1-932432-71-8.

Bojar, O. – Buck, C. – Callison-Burch, C. – Federmann, C. – Haddow, B. –
Koehn, P. – Monz, C. – Post, M. – Soricut, R. – Specia, L. Findings of the
2013 Workshop on Statistical Machine Translation. In Proceedings of the Eighth
Workshop on Statistical Machine Translation, p. 1–44, Sofia, Bulgaria, August
2013a. Association for Computational Linguistics. Available at: http://www.
aclweb.org/anthology/W13-2201.

Bojar, O. – Graham, Y. – Kamran, A. – Stanojević, M. Results of the WMT16
Metrics Shared Task. In Proceedings of the First Conference on Machine Transla-
tion, p. 199–231, Berlin, Germany, August 2016c. Association for Computa-
tional Linguistics. Available at: http://www.aclweb.org/anthology/W/W16/
W16-2302.

Bojar, O. – Žabokrtský, Z. – Dušek, O. – Galuščáková, P. – Majliš, M. –
Mareček, D. – Maršík, J. – Novák, M. – Popel, M. – Tamchyna, A. The Joy
of Parallelism with CzEng 1.0. In Chair), N. C. C. – Choukri, K. – Declerck,

102

http://dl.acm.org/citation.cfm?id=1868850.1868855
http://dl.acm.org/citation.cfm?id=1868850.1868855
http://www.aclweb.org/anthology/W13-2201
http://www.aclweb.org/anthology/W13-2201
http://www.aclweb.org/anthology/W/W16/W16-2302
http://www.aclweb.org/anthology/W/W16/W16-2302


T. – Doğan, M. U. – Maegaard, B. – Mariani, J. – Moreno, A. – Odijk, J. –
Piperidis, S. (Ed.) Proceedings of the Eight International Conference on Language
Resources and Evaluation (LREC’12), Istanbul, Turkey, May 2012. European
Language Resources Association (ELRA). ISBN 978-2-9517408-7-7.

Bojar, O. – Rosa, R. – Tamchyna, A. Chimera – Three Heads for English-to-
Czech Translation. In Proceedings of the Eighth Workshop on Statistical Machine
Translation, p. 92–98, Sofia, Bulgaria, August 2013b. Bălgarska akademija na
naukite, Association for Computational Linguistics. Available at: http://

www.aclweb.org/anthology/W13-2208.

Braune, F. – Fraser, A. – Daumé III, H. – Tamchyna, A. A Framework for
Discriminative Rule Selection in Hierarchical Moses. In Bojar, O. – . (Ed.)
Proceedings of the First Conference on Machine Translation (WMT). Volume 2:
Shared Task Papers, 2, p. 92–101, Stroudsburg, PA, USA, 2016. Association
for Computational Linguistics, Association for Computational Linguistics.
ISBN 978-1-945626-10-4.

Brown, P. F. – Pietra, S. A. D. – Pietra, V. J. D. – Mercer, R. L. The Mathemat-
ics of Statistical Machine Translation: Parameter Estimation. Computational
Linguistics. June 1993, 19, 2, p. 263–311.

Carpuat, M. – Wu, D. Improving Statistical Machine Translation using Word
Sense Disambiguation. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), Prague, Czech Republic, 2007.

Carpuat, M. – Su, W. – Wu, D. Augmenting Ensemble Classification for Word
Sense Disambiguation with a Kernel PCA Model. In Proceedings of Senseval-3,
Third International Workshop on Evaluating Word Sense Disambiguation Systems,
Barcelona, Spain, 2004. SIGLEX, Association for Computational Linguistics.

Carpuat, M. – Daumé III, H. – Fraser, A. – Quirk, C. – Braune, F. – Clifton, A.
– Irvine, A. – Jagarlamudi, J. – Morgan, J. – Razmara, M. – Tamchyna, A. –
Henry, K. – Rudinger, R. Domain Adaptation in Machine Translation: Final
Report. Technical report, 2012. Available at: http://hal3.name/damt/.

Chan, Y. S. – Ng, H. T. – Chiang, D. Word Sense Disambiguation Improves
Statistical Machine Translation. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, p. 33–40, Prague, Czech Republic,
June 2007. Association for Computational Linguistics. Available at: http:

//www.aclweb.org/anthology/P/P07/P07-0005.

103

http://www.aclweb.org/anthology/W13-2208
http://www.aclweb.org/anthology/W13-2208
http://hal3.name/damt/
http://www.aclweb.org/anthology/P/P07/P07-0005
http://www.aclweb.org/anthology/P/P07/P07-0005


Chen, S. F. – Goodman, J. An empirical study of smoothing techniques for
language modeling. Computer Speech & Language. 1999, 13, 4, p. 359–393.
Available at: http://dx.doi.org/10.1006/csla.1999.0128.

Cherry, C. – Foster, G. Batch Tuning Strategies for Statistical Machine Trans-
lation. In Proceedings of the 2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
NAACL HLT ’12, p. 427–436, Stroudsburg, PA, USA, 2012. Association for
Computational Linguistics. Available at: http://dl.acm.org/citation.cfm?
id=2382029.2382089. ISBN 978-1-937284-20-6.

Clark, J. H. – Dyer, C. – Lavie, A. – Smith, N. A. Better Hypothesis Test-
ing for Statistical Machine Translation: Controlling for Optimizer Instabil-
ity. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies: Short Papers - Volume 2, HLT
’11, p. 176–181, Stroudsburg, PA, USA, 2011. Association for Computational
Linguistics. Available at: http://dl.acm.org/citation.cfm?id=2002736.

2002774. ISBN 978-1-932432-88-6.

Daiber, J. – Sima’an, K. Machine Translation with Source-Predicted Target Mor-
phology. In Proceedings of the 15th Machine Translation Summit (MT Summit
2015), p. 283–296, 2015.

Devlin, J. – Zbib, R. – Huang, Z. – Lamar, T. – Schwartz, R. M. – Makhoul, J.
Fast and Robust Neural Network Joint Models for Statistical Machine Trans-
lation. In Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Vol-
ume 1: Long Papers, p. 1370–1380, 2014. Available at: http://aclweb.org/

anthology/P/P14/P14-1129.pdf.

Fraser, A. M. – Weller, M. – Cahill, A. – Cap, F. Modeling Inflection and
Word-Formation in SMT. In EACL 2012, 13th Conference of the European Chap-
ter of the Association for Computational Linguistics, Avignon, France, April 23-27,
2012, p. 664–674, 2012. Available at: http://aclweb.org/anthology-new/E/
E12/E12-1068.pdf.

Giménez, J. – Màrquez, L. Context-aware Discriminative Phrase Selection
for Statistical Machine Translation. In Proceedings of the Second Workshop
on Statistical Machine Translation, StatMT ’07, p. 159–166, Stroudsburg, PA,
USA, 2007. Association for Computational Linguistics. Available at: http:
//dl.acm.org/citation.cfm?id=1626355.1626374.

104

http://dx.doi.org/10.1006/csla.1999.0128
http://dl.acm.org/citation.cfm?id=2382029.2382089
http://dl.acm.org/citation.cfm?id=2382029.2382089
http://dl.acm.org/citation.cfm?id=2002736.2002774
http://dl.acm.org/citation.cfm?id=2002736.2002774
http://aclweb.org/anthology/P/P14/P14-1129.pdf
http://aclweb.org/anthology/P/P14/P14-1129.pdf
http://aclweb.org/anthology-new/E/E12/E12-1068.pdf
http://aclweb.org/anthology-new/E/E12/E12-1068.pdf
http://dl.acm.org/citation.cfm?id=1626355.1626374
http://dl.acm.org/citation.cfm?id=1626355.1626374


Gimpel, K. – Batra, D. – Dyer, C. – Shakhnarovich, G. – Tech, V. A Systematic
Exploration of Diversity in Machine Translation. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, p. 1100–1111,
2013.

Hajič, J. – Vidová-Hladká, B. Tagging Inflective Languages: Prediction of
Morphological Categories for a Rich, Structured Tagset. In Proceedings of
the COLING - ACL Conference, p. 483–490, 1998.

Hajič, J. – Panevová, J. – Hajičová, E. – Sgall, P. – Pajas, P. – Štěpánek, J. –
Havelka, J. – Mikulová, M. – Žabokrtský, Z. – Ševčíková-Razímová, M. –
Urešová, Z. Prague Dependency Treebank 2.0, 2006.

Hajič, J. – Votrubec, J. – Krbec, P. – Květoň, P. – others. The best of two worlds:
Cooperation of statistical and rule-based taggers for Czech. In Proceedings
of the Workshop on Balto-Slavonic Natural Language Processing: Information Ex-
traction and Enabling Technologies, p. 67–74, 2007.

Hajič, J. – Hajičová, E. – Panevová, J. – Sgall, P. – Cinková, S. – Fučíková,
E. – Mikulová, M. – Pajas, P. – Popelka, J. – Semecký, J. – Šindlerová, J. –
Štěpánek, J. – Toman, J. – Urešová, Z. – Žabokrtský, Z. Prague Czech-English
Dependency Treebank 2.0, 2011.

Heafield, K. KenLM: Faster and Smaller Language Model Queries. In Pro-
ceedings of the Sixth Workshop on Statistical Machine Translation, p. 187–197,
Edinburgh, Scotland, July 2011. Association for Computational Linguistics.
Available at: http://www.aclweb.org/anthology/W11-2123.pdf.

Hopkins, M. – May, J. Tuning as Ranking. In EMNLP, p. 1352–1362. ACL,
2011. Available at: http://www.aclweb.org/anthology/D11-1125. ISBN 978-
1-937284-11-4.

Huck, M. – Tamchyna, A. – Bojar, O. – Fraser, A. Producing Unseen Mor-
phological Variants in Statistical Machine Translation. In Proceedings of the
15th Conference of the European Chapter of the Association for Computational Lin-
guistics, volume 2: Short Papers, p. 369–375, Stroudsburg, PA, USA, 2017. Uni-
versitat Politécnica de València, Association for Computational Linguistics.
ISBN 978-1-945626-35-7.

Jeong, M. – Toutanova, K. – Suzuki, H. – Quirk, C. A Discriminative Lexicon
Model for Complex Morphology. In The Ninth Conference of the Association for

105

http://www.aclweb.org/anthology/W11-2123.pdf
http://www.aclweb.org/anthology/D11-1125


Machine Translation in the Americas. Association for Computational Linguis-
tics, November 2010. Available at: http://research.microsoft.com/apps/

pubs/default.aspx?id=140709.

Johnson, H. – Martin, J. – Foster, G. – Kuhn, R. Improving Translation Qual-
ity by Discarding Most of the Phrasetable. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP-CoNLL), p. 967–975. Available at:
http://www.aclweb.org/anthology/D/D07/D07-1103.

Józefowicz, R. – Vinyals, O. – Schuster, M. – Shazeer, N. – Wu, Y. Exploring
the Limits of Language Modeling. CoRR. 2016, abs/1602.02410. Available
at: http://arxiv.org/abs/1602.02410.

Koehn, P. Europarl: A Parallel Corpus for Statistical Machine Translation. In
Conference Proceedings: the tenth Machine Translation Summit, p. 79–86, Phuket,
Thailand, 2005. AAMT, AAMT. Available at: http://mt-archive.info/

MTS-2005-Koehn.pdf.

Koehn, P. Statistical Machine Translation. Cambridge University Press, 1st edi-
tion, 2010. ISBN 0521874157, 9780521874151.

Koehn, P. – Hoang, H. Factored Translation Models. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL), p. 868–876,
Prague, Czech Republic, June 2007. Association for Computational Linguis-
tics. Available at: http://www.aclweb.org/anthology/D/D07/D07-1091.

Koehn, P. – Och, F. J. – Marcu, D. Statistical Phrase-based Translation. In
Proceedings of the 2003 Conference of the North American Chapter of the As-
sociation for Computational Linguistics on Human Language Technology - Vol-
ume 1, NAACL ’03, p. 48–54, Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics. doi: 10.3115/1073445.1073462. Available at:
http://dx.doi.org/10.3115/1073445.1073462.

Koehn, P. – Hoang, H. – Birch, A. – Callison-Burch, C. – Federico, M. –
Bertoldi, N. – Cowan, B. – Shen, W. – Moran, C. – Zens, R. – Dyer, C. – Bojar,
O. – Constantin, A. – Herbst, E. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of the 45th Annual Meeting of the ACL on
Interactive Poster and Demonstration Sessions, ACL ’07, p. 177–180, Strouds-
burg, PA, USA, 2007. Association for Computational Linguistics. Available
at: http://dl.acm.org/citation.cfm?id=1557769.1557821.

106

http://research.microsoft.com/apps/pubs/default.aspx?id=140709
http://research.microsoft.com/apps/pubs/default.aspx?id=140709
http://www.aclweb.org/anthology/D/D07/D07-1103
http://arxiv.org/abs/1602.02410
http://mt-archive.info/MTS-2005-Koehn.pdf
http://mt-archive.info/MTS-2005-Koehn.pdf
http://www.aclweb.org/anthology/D/D07/D07-1091
http://dx.doi.org/10.3115/1073445.1073462
http://dl.acm.org/citation.cfm?id=1557769.1557821


Li, Z. – Khudanpur, S. Large-scale Discriminative n-gram Language Mod-
els for Statistical Machine Translation. In Proceedings of AMTA, 2009.
Available at: http://www.cs.jhu.edu/~{}zfli/pubs/discriminative_lm_

for_smt_zhifei_amta_08.pdf.

Lin, C.-Y. – Och, F. J. ORANGE: a Method for Evaluating Automatic Evaluation
Metrics for Machine Translation. In Proceedings of Coling 2004, p. 501–507,
Geneva, Switzerland, Aug 23–Aug 27 2004. COLING. Available at: http:

//www.aclweb.org/anthology/C04-1072.

Marcus, M. P. – Marcinkiewicz, M. A. – Santorini, B. Building a Large Anno-
tated Corpus of English: The Penn Treebank. Comput. Linguist. June 1993, 19,
2, p. 313–330. ISSN 0891-2017. Available at: http://dl.acm.org/citation.
cfm?id=972470.972475.

Mauser, A. – Hasan, S. – Ney, H. Extending Statistical Machine Translation
with Discriminative and Trigger-Based Lexicon Models. In Conference on Em-
pirical Methods in Natural Language Processing, p. 210–218, Singapore, August
2009.

McDonald, R. – Pereira, F. – Ribarov, K. – Hajič, J. Non-projective depen-
dency parsing using spanning tree algorithms. In Proceedings of the conference
on Human Language Technology and Empirical Methods in Natural Language Pro-
cessing, p. 523–530, 2005.

Niehues, J. – Herrmann, T. – Vogel, S. – Waibel, A. Wider Context by Using
Bilingual Language Models in Machine Translation. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, p. 198–206, Edinburgh, Scotland,
July 2011. Association for Computational Linguistics. Available at: http:

//www.aclweb.org/anthology/W11-2124.pdf.

Och, F. J. Minimum Error Rate Training in Statistical Machine Translation.
In Proc. of ACL, p. 160–167, Sapporo, Japan, 2003. ACL. Available at: http:
//aclweb.org/anthology-new/P/P03/#1000.

Papineni, K. – Roukos, S. – Ward, T. – Zhu, W.-J. BLEU: A Method for Au-
tomatic Evaluation of Machine Translation. In Proceedings of the 40th An-
nual Meeting on Association for Computational Linguistics, ACL ’02, p. 311–318,
Stroudsburg, PA, USA, 2002. Association for Computational Linguistics.
doi: 10.3115/1073083.1073135. Available at: http://dx.doi.org/10.3115/

1073083.1073135.

107

http://www.cs.jhu.edu/~{}zfli/pubs/discriminative_lm_for_smt_zhifei_amta_08.pdf
http://www.cs.jhu.edu/~{}zfli/pubs/discriminative_lm_for_smt_zhifei_amta_08.pdf
http://www.aclweb.org/anthology/C04-1072
http://www.aclweb.org/anthology/C04-1072
http://dl.acm.org/citation.cfm?id=972470.972475
http://dl.acm.org/citation.cfm?id=972470.972475
http://www.aclweb.org/anthology/W11-2124.pdf
http://www.aclweb.org/anthology/W11-2124.pdf
http://aclweb.org/anthology-new/P/P03/#1000
http://aclweb.org/anthology-new/P/P03/#1000
http://dx.doi.org/10.3115/1073083.1073135
http://dx.doi.org/10.3115/1073083.1073135


Peter, J.-T. et al. The QT21/HimL Combined Machine Translation System. In
Bojar, O. – . (Ed.) Proceedings of the First Conference on Machine Translation
(WMT). Volume 2: Shared Task Papers, 2, p. 344–355, Stroudsburg, PA, USA,
2016. Association for Computational Linguistics, Association for Computa-
tional Linguistics. ISBN 978-1-945626-10-4.

Popel, M. – Žabokrtský, Z. TectoMT: Modular NLP Framework. In Loftsson,
H. – Rögnvaldsson, E. – Helgadottir, S. (Ed.) IceTAL 2010, 6233 / Lecture
Notes in Computer Science, p. 293–304. Iceland Centre for Language Technol-
ogy (ICLT), Springer, 2010.

Rosa, R. – Mareček, D. – Dušek, O. DEPFIX: A System for Automatic Correc-
tion of Czech MT Outputs. In Proceedings of the Seventh Workshop on Statistical
Machine Translation, WMT ’12, p. 362–368, Stroudsburg, PA, USA, 2012. As-
sociation for Computational Linguistics. Available at: http://dl.acm.org/
citation.cfm?id=2393015.2393066.

Schmid, H. Probabilistic Part-of-Speech Tagging Using Decision Trees. In Inter-
national Conference on New Methods in Language Processing, p. 44–49, Manch-
ester, UK, 1994.

Sgall, P. Generativní popis jazyka a česká deklinace. Academia, 1967.

Shannon, C. E. A Mathematical Theory of Communication. SIGMOBILE Mob.
Comput. Commun. Rev. January 2001, 5, 1, p. 3–55. ISSN 1559-1662. doi:
10.1145/584091.584093. Available at: http://doi.acm.org/10.1145/584091.
584093.

Spoustová, J. – Spousta, M. A High-Quality Web Corpus of Czech. In Chair),
N. C. C. – Choukri, K. – Declerck, T. – Doğan, M. U. – Maegaard, B. – Mari-
ani, J. – Moreno, A. – Odijk, J. – Piperidis, S. (Ed.) Proceedings of the Eight Inter-
national Conference on Language Resources and Evaluation (LREC’12), Istanbul,
Turkey, May 2012. European Language Resources Association (ELRA). ISBN
978-2-9517408-7-7.

Stolcke, A. SRILM – An Extensible Language Modeling Toolkit. In Proceedings
International Conference on Spoken Language Processing, 2, p. 901–904, Novem-
ber 2002.

Straková, J. – Straka, M. – Hajič, J. Open-Source Tools for Morphology,
Lemmatization, POS Tagging and Named Entity Recognition. In Proceed-
ings of 52nd Annual Meeting of the Association for Computational Linguistics:

108

http://dl.acm.org/citation.cfm?id=2393015.2393066
http://dl.acm.org/citation.cfm?id=2393015.2393066
http://doi.acm.org/10.1145/584091.584093
http://doi.acm.org/10.1145/584091.584093


System Demonstrations, p. 13–18, Baltimore, Maryland, June 2014. Associa-
tion for Computational Linguistics. Available at: http://www.aclweb.org/

anthology/P/P14/P14-5003.pdf.

Subotin, M. An exponential translation model for target language morphol-
ogy. In The 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, Proceedings of the Conference, 19-24
June, 2011, Portland, Oregon, USA, p. 230–238, 2011. Available at: http:

//www.aclweb.org/anthology/P11-1024.

Sutskever, I. – Vinyals, O. – Le, Q. V. Sequence to Sequence Learning with
Neural Networks. In Proceedings of the 27th International Conference on Neu-
ral Information Processing Systems, NIPS’14, p. 3104–3112, Cambridge, MA,
USA, 2014. MIT Press. Available at: http://dl.acm.org/citation.cfm?id=
2969033.2969173.

Tamchyna, A. – Bojar, O. What a Transfer-Based System Brings to the Com-
bination with PBMT. In Babych, B. – Eberle, K. – Lambert, P. – Rapp, R. –
Banchs, R. – Costa-Jussà, M. (Ed.) Proceedings of the Fourth Workshop on Hy-
brid Approaches to Translation (HyTra), p. 11–20, Stroudsburg, PA, USA, 2015.
Association for Computational Linguistics, Association for Computational
Linguistics. ISBN 978-1-941643-67-9.

Tamchyna, A. – Braune, F. – Fraser, A. – Carpuat, M. – Daumé III, H. – Quirk,
C. Integrating a Discriminative Classifier into Phrase-based and Hierarchical
Decoding. The Prague Bulletin of Mathematical Linguistics. 2014a, 101, p. 29–41.
ISSN 0032-6585.

Tamchyna, A. – Popel, M. – Rosa, R. – Bojar, O. CUNI in WMT14: Chimera
Still Awaits Bellerophon. In Proceedings of the Ninth Workshop on Statistical
Machine Translation, p. 195–200, Baltimore, MD, USA, 2014b. Association for
Computational Linguistics. ISBN 978-1-941643-17-4.

Tamchyna, A. – Fraser, A. – Bojar, O. – Junczys-Dowmunt, M. Target-Side
Context for Discriminative Models in Statistical Machine Translation. In
Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), p. 1704–1714, Stroudsburg, PA, USA, 2016a.
Association for Computational Linguistics, Association for Computational
Linguistics. ISBN 978-1-945626-00-5.

Tamchyna, A. – Sudarikov, R. – Bojar, O. – Fraser, A. CUNI-LMU Submis-
sions in WMT2016: Chimera Constrained and Beaten. In Bojar, O. – . (Ed.)

109

http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://www.aclweb.org/anthology/P11-1024
http://www.aclweb.org/anthology/P11-1024
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=2969033.2969173


Proceedings of the First Conference on Machine Translation (WMT). Volume 2:
Shared Task Papers, 2, p. 385–390, Stroudsburg, PA, USA, 2016b. Association
for Computational Linguistics, Association for Computational Linguistics.
ISBN 978-1-945626-10-4.

Tamchyna, A. Feature Selection for Factored Phrase-Based Machine Transla-
tion. Master’s thesis, Charles University in Prague, 2012.

Tamchyna, A. – Bojar, O. No Free Lunch in Factored Phrase-Based Machine
Translation. Lecture Notes in Computer Science. 2013, 7817, p. 210–223. ISSN
0302-9743.

Tiedemann, J. News from OPUS - A Collection of Multilingual Parallel Corpora
with Tools and Interfaces. In Nicolov, N. – Bontcheva, K. – Angelova, G. –
Mitkov, R. (Ed.) Recent Advances in Natural Language Processing, V. Borovets,
Bulgaria: John Benjamins, Amsterdam/Philadelphia, 2009. p. 237–248. ISBN
978 90 272 4825 1.

Tufis, D. – Ion, R. – Ceausu, A. – Stefanescu, D. RACAI’s Linguistic Web Ser-
vices. In Proceedings of the International Conference on Language Resources and
Evaluation, LREC 2008, 26 May - 1 June 2008, Marrakech, Morocco, 2008. Avail-
able at: http://www.lrec-conf.org/proceedings/lrec2008/summaries/90.

html.

Varga, D. – Németh, L. – Halácsy, P. – Kornai, A. – Trón, V. – Nagy, V. Parallel
corpora for medium density languages. In Proceedings of the Recent Advances
in Natural Language Processing RANLP 2005, p. 590–596, Borovets, Bulgaria,
2005.

Vickrey, D. – Biewald, L. – Teyssier, M. – Koller, D. Word-Sense Disambigua-
tion for Machine Translation. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), Vancouver, Canada, October 2005.

Wuebker, J. – Mauser, A. – Ney, H. Training Phrase Translation Models with
Leaving-One-Out. In Annual Meeting of the Association for Computational Lin-
guistics, p. 475–484, Uppsala, Sweden, July 2010.

Yarowsky, D. – Cucerzan, S. – Florian, R. – Schafer, C. – Wicentowski, R.
The Johns Hopkins SENSEVAL2 System Descriptions. In In Proceedings of
SENSEVAL2, p. 163–166, 2001.

110

http://www.lrec-conf.org/proceedings/lrec2008/summaries/90.html
http://www.lrec-conf.org/proceedings/lrec2008/summaries/90.html


Zeman, D. – Fishel, M. – Berka, J. – Bojar, O. Addicter: What Is Wrong with
My Translations? The Prague Bulletin of Mathematical Linguistics. 2011, 96,
p. 79–88.

Zens, R. Phrase based statistical machine translation: models, search, training. PhD
thesis, 2008.

111




	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Background of the Work
	Outline

	Phrase-Based Machine Translation
	Word Alignment
	Phrase Extraction
	Phrase Table
	Language Model
	Log-Linear Model
	Decoding
	Factored Translation

	Empirical Analysis of English-Czech Phrase-Based Translation
	Design of Chimera
	Analysis of the Combination
	Limitations of the Phrase-Based Component

	Machine Learning Background
	Theoretical Foundations
	Implementation

	Discriminative Models of Translation
	Mathematical Formulation
	Feature Set
	Extraction of Training Examples
	Training
	Context Similarity Feature

	Integration in Phrase-Based Translation
	Motivation
	Evaluation with Source Context
	Evaluation with Target Context

	Experimental Evaluation
	Baseline Setting
	Discriminative Models for English-Czech Translation
	Model Training
	Additional Language Pairs
	Source Context for Target-Side Morphology

	Related Work
	Conclusion
	Future Work

	References

