Charles University in Prague

Faculty of Mathematics and Physics

Doctoral Thesis

Michael Barton

Quadratic Clipping and its
Generalization for Polynomial

Systems

Supervisor: Prof. RNDr. Adolf Karger, DrSc.
Field of Study: General Problems of Mathematics

and Computer Science

Acknowledgements

I would like to thank Prof. Adolf Karger, my supervisor, for his sugges-
tions and constant support during this research. I am also thankful to Prof.
Bert Jiittler for his guidance through my short term attachment at Johann
Radon Institute for Computational and Applied Mathematics in Linz, Aus-

tria, which was crucial to the successful completion of this thesis.

[would also like to thank the Austrian Science Fund (FWF) for partially sup-
porting this research through the project SFB F013 “Numerical and Symbolic
Scientific Computing”, subproject 15.

I hereby certify that I have written this thesis myself without using any

sources other than cited.

Permission is herewith granted to The Charles University in Prague to cir-
culate and to have copied for non-commercial purposes the above title upon

the request of individuals or institutions.

In Prague, January 18, 2007 Michael Barton

i

Abstract

We present an algorithm which is able to compute all roots of a given univari-
ate polynomial within a given interval. In each step, we use degree reduction
to generate a strip bounded by two quadratic polynomials which encloses the
graph of the polynomial within the interval of interest. The new interval(s)
containing the root(s) is (are) obtained by intersecting this strip with the
abscissa axis. In the case of single roots, the sequence of the lengths of the
intervals converging towards the root has the convergence rate 3. For double
3

roots, the convergence rate is still superlinear (5). We show that the new

technique compares favorably with the classical technique of Bézier clipping.

The generalization of algorithm for polynomial systems is presented. Demon-
strating on bivariate case, polynomials are both represented by surfaces in
R? and the solution is therefore the intersection of graphs of both polynomi-
als and the plane zy. Likewise the univariate case, we construct the linear
bounding spatial strips of graphs of both polynomials, which define a paral-
lelogram in the plane zy. This parallelogram is intersected with the original

domain in order to define the new one.

Keywords

root finding, polynomial, Bézier clipping, polynomial system, L? norm.

il

Contents

Acknowledgements ii
Abstract iii
1 Introduction 1
2 Preliminaries 6
2.1 Bézier curveso 6
2.1.1 The de Casteljau algorithm 11

2.1.2 Degreeelevation. 14

2.1.3 Nonparametric curves 18

2.2 Bézier patches oL 20
2.2.1 Tensor product oL 24

2.2.2 Degreeelevation. L. 26

2.2.3 Nonparametric patches 27

2.3 Linear space of polynomials 29
2.4 Degree reduction and dual basis 32
2.5 Bézier clipping and its convergence rate 35

iv

3 Computing roots via quadratic clipping

3.1 The root-finding problem

3.2 Algorithm

3.3 Convergence rate

4 Comparison

4.1 Convergence rates, number of operations and time per itera-

tion step .

4.2 Number of iterations and computing times vs. accuracy

5 Bivariate linear clipping

5.1 The root—finding problem

5.2 The generalization of Ly norm and dual basis

5.3 Algorithm

5.4 Examples

6 Conclusion

List of Figures

40

40

41

46

53

53

%)

66

66

67

67

68

70

7

84

85

List of Tables

References

vi

91

93

1 INTRODUCTION 1

1 Introduction

Efficient and robust algorithms which compute the solutions (of systems of)
polynomial equations are frequently needed for modeling, processing and
visualizing free-form geometry described by piecewise rational parametric
representations. For instance, the problem of intersecting a straight line with
a rational parametric surface leads to a polynomial system consisting of two
equations for two unknowns. If the surface is given in implicit form, then only
a single equation has to be solved. Such intersections have to be computed
for visualizing free-form surfaces using ray-tracing Nishita, Sederberg and
Kakimoto (1990); Efremov, Havran and Seidel (2005). Similarly, the problem
of computing the closest point(s) on a curve or surface to a given point leads

to polynomial equations, see e.g. Wang, Kearney and Atkinson (2003).

Solutions of various geometric problems in computer geometry, such as surface—
surface intersections, bisectors / medial axes, convex hull computations, etc.,
lead to piecewise algebraic curves Lee (1999); Patrikalakis and Maekawa
(2002b); Kim, Elber and Seong (2005). In this situation, efficient meth-
ods for analyzing and representing these curves are needed Gonzalez-Vega
and Necula (2002); Gatellier et al. (2003). Root finding algorithms for (sys-
tems of) polynomial equations are again an important ingredient of these
techniques; they are used to determine “critical points” (which are needed to
determine the topology of the curve) and suitable initial points for tracing

the curve.

More precisely, in these and similar applications, all solutions of a (system
of) polynomial equation(s) within a certain domain €2, which is typically a
box in R”, are sought for. We are interested in numerical techniques which

guarantee that all solutions are found. Two major approaches exist:

1 INTRODUCTION 2

Figure 1: Root-finding problem: all roots of polynomial f(z) on

interval [a, b] are required.

Homotopy methods (see, e.g. Li, 2003; Sommese and Wampler, 2005) start
with the solutions of a simpler system with the same structure of the set
of solutions. This system is then continuously transformed into the original
system, and the solutions are found by tracing the solutions of the auxiliary

system. These techniques are particularly well suited for 2 = C".

Bézier clipping and related techniques are based on the convex-hull property
of Bernstein-Bézier- (BB-) representations. The main idea is described in
Section 2.5. Combined with subdivision, these techniques lead to fast (achiev-
ing quadratic convergence for single roots) solvers for univariate polynomials
Nishita, Sederberg and Kakimoto (1990); Nishita and Sederberg (1990). Mul-

tivariate versions, such as the IPP algorithm, exist and have found their way

1 INTRODUCTION 3

X

Figure 2: Bivariate polynomial system: polynomial system (1) over

domain €2 represented as curves intersection.

into industrial software, such as commercial CAD systems Sheerbrooke and
Patrikalakis (1993); Elber and Kim (2001); Ko, Sakkalis and Patrikalakis
(2005); Mourrain and Pavone (2005).

We will formulate a novel technique for computing the roots of univariate
polynomials and will present a way of a generalization for multivariate case.
Both methods are based on degree reduction. This term denotes the process
of approximating a polynomial of a certain degree by a lower degree one, with
respect to a suitable norm, and possibly subject to boundary conditions. It
has been studied thoroughly in the rich literature on this subject Eck (1992);
Lutterkort, Peters and Reif (1999); Ahn, Lee, Park and Yoo (2004); Sunwoo

(2005). In earlier years, the issue of degree reduction was motivated by degree

1 INTRODUCTION 4

Figure 3: Bivariate polynomial system: solution of the system (1)

represented as the intersection of three surfaces: z = f(z,y), z =

g(z,y), z=0.

limitations of CAD systems.

The basic idea of the new robust univariate root solver quadratic clippingq
(quadclip) is briefly descibed as follows. The input of the algorithm consists
of a polynomial f, interval [a,b] and accuracy e, the output are all roots of
f on [a,b] within desired precision . In the first step, the best quadratic
approximant of f with respect to L? norm is detected. Then, upper and
lower quadratic bounds are constructed and its roots symbolically computed.
At most four real roots are obtained. Discussing the mutual position of roots
and the original interval [a, b], a new subinterval is located. If no roots exist,

the interval is erased. Algorithm works till the lenght of all root-containing

1 INTRODUCTION 5

intervals is less then prescribed accuracy «.

The possibility of generalization of quadclip for multivariate polynomial

systems is shown. Demonstrated on bivariate system

f(x, =0
(,y) n

g(z,y) = 0,

the algorithm linbivar works with three surfaces in R? instead of two curves
in R? (compare: Figure 2 and 3). Requiring all roots of system (1) lying in
domain €2, the best planar approximants with respect to generalized L2 norm
of both surfaces are found. Constructing planar boundaries for both surfaces,

its intersection with plane (z,y) gives the new domain.

The remainder of this thesis is organized as follows. Section 2 summarizes
the basic informations on Bézier curves and patches, degree reduction, dual

basis, L? norm and about the classical technique of Bézier clipping.

Section 3 desribes the new algorithm: quadratic clippinq (quadclip) and
shows cubical convergence rate in single roots and superlinear convergence
rate in double root cases. Further, we provide a detailed comparison of
quadclip with Bézier clipping with respect to criteria such as computational

effort, rate of convergence and computing times.

Section 4 shows the generalized algorithm (linbivar) for bivariate polyno-
mial systems (1). We present roughcasted comparison with results of Mour-
rain and Pavone (2005). In addition, the way of generalization for system of

n variables is briefly suggested.

2 PRELIMINARIES 6
2 Preliminaries

In this section, we summarize some basic concepts and results concerning

Bézier curves and patches, dual basis, degree reduction, L? norm and Bézier

clipping.

2.1 Bézier curves

A Bézier curve of degree n € N is defined by formula

b(t) = iB?(t)bi, te0,1], 2)

where coefficients b; € E,,, are called control points and B(t) are the Bern-

stein polynomials given by

s = (7)) 3)

]

and the binomial coefficients are determined by

! 0 otherwise.

Example 1 Bézier curves of degree 4 of different shape are shown in Fig. 5,

corresponding Bernstein polynomials

2 PRELIMINARIES 7

By(t) = (1—1t)", (5)
Bi(t) = 4t(1—1) (6)
By(t) = 6t*(1 —1)? (7)
Bi(t) = 4t*(1 —1), (8)
By(t) = t (9)

are displayed in Fig. 4.

Observing the importance of the order of control points, two neighbouring
points are connected by a line. The set of these lines and control points is

known as control polygon.

Figure 4: Bernstein polynomials for n = 4.

2 PRELIMINARIES

b

by

by

by

(c) (d)
Figure 5: Bézier curves of degree 4: curve with b) inflection, c) loop,

d) cusp.

2 PRELIMINARIES 9

Properties of Bernstein polynomials: Looking at the definition of Bern-
stein polynomials in more detail, the definition (3) yields directly the list of
properties below:

1. nonnegativity: B*(t) > 0 for all i, n and ¢ € [0, 1];

2. partition of unity: Y., BI'"(t) =1 for all t € [0, 1];

3. linear precision: Y ., £BP(t) =t for all t € [0, 1];

4. symmetry: BP(t) = Bll'_,(1 —t) for any n and ¢ € [0, 1];

5. recursion: BP(t) = (1 —t)B! 1(t) + B! (t);

6. for any n, BP'(t) attains exactly one maximum on [0,1] for ¢ = £;

7. derivative: £ B'(t) = n(B";'(t)+ B} '(t)), where B"{'(t) = Br'(t) =

0;
8. (1—t)Bp(t) = "HF B (1);
9. tBp(t) = HL B (t);

Properties of Bézier curves: As a result of Bernstein polynomials prop-

erties above, one can easily formulate following attributes of Bézier curves.

1. affine invariance: barycentric combinations are invariant under affine
mapping. In other words, affine image of control polygon and the

control polygon of the affine image of the curve are the same;

2. convex hull property: for any Bézier curve and any parameter t, €

[0, 1], the point b(%y) lies inside the convex hull of the control polygon;

3. endpoints interpolation: b(0) = by and b(1) = by;

2 PRELIMINARIES 10

b, by

by

bg
b3

Figure 6: Variation diminishing property: arbitrary line has no more

intersections with Bézier curve then with its control polygon.

4. end-tangent vectors: b’(0) = n(b; —by) and b'(1) = n(b, — b,_1);

5. variation diminishing property: number of intersections of a line with
Bézier curve is bounded by the number of intersections of the line with

control polygon.

Example 2 Let by, by, by be three control points of Bézier curve of degree
n=2b(t) =37, B?b; tc0,1] and let us construct

by(t) = (1 —1t)by+ thy,

bi(t) = (1 —1t)b;, +tby,

b2(t) = (1 —1t)b}+tbl.

Inserting the first two equations into the third one, we obtain

2 PRELIMINARIES 11

b bs

by

by
b3

Figure 7: Convex hull property: curve is included inside the convex
hull of its control polygon.

b(t) = i B?b; = bZ(t).

We observe that given parabola is decomposed into two linear interpolants.
Therefore, for fixed value t, € [0,1], it is easy to construct b(ty) by three
linear interpolations (see Figure 8).

2.1.1 The de Casteljau algorithm

The basic idea of linear decomposition, shown in example 2, is easily gener-
alized to arbitrary degree. Let us assume Bézier curve of degree n, b(t) =
> i o B'b;. Then, with respect to recursive property of Bernstein polynomi-
als, we obtain

2 PRELIMINARIES 12

b,

b,

by

Figure 8: Construction of parabola by linear interpolation.

n—1 n—1
b(t)=(1-1)Y Bl 'bi+tY B} 'by. (10)
=0 =0

In other words, b(¢) is expressed by linear combination of two curves of
degree n — 1. This principle is a basic ground for the de Casteljau algorithm
(11), which recursively repeats the decomposition. For a fixed value t = t,
we obtain a recursive formula for constructing the point b(¢y) = b} on given
Bézier curve:

b (t5) = (1 — to) b~ (t5) + tob (1), (11)

where b; =b), k=1,2,...,nand i =0,1,...,n — k. Sought point b(ty) is

found by sequence of linear interpolations (see table 1 and figure 9).

Subdivision: A Bézier curve b™ is usually defined on the interval [0, 1], but

it can be easily defined on arbitrary subinterval [0, ¢]. Handling Bézier curve

2 PRELIMINARIES 13

by

Figure 9: de Casteljau algorithm: Construction of a point of Bézier

curve for parameter value ¢, = %

by control points, the construction of the new control polygon is required.

Finding this control polygon is known as subdivision of Bézier curve.

Using de Casteljau algorithm, the control points c¢;, that define curve b” on

subinterval [0, c], are given by formula
¢; = by(c), (12)

for all i = 0,...,n, (see Fig. 10). Analogously, following the symmetry
property of Bernstein polynomials, the control points corresponding to the

subinterval [c, 1] are given by the b?*(c), i =0,...,n.

2 PRELIMINARIES 14

byt byt
by
Table 1: Scheme of point construction via de Casteljau algorithm.

2.1.2 Degree elevation

Handling and shaping a Bézier curve using its control points is really a skillful
approach. With respect to barycentric coordinates, each control point has
its weight of influence on changing the shape. In order to modify the curve
slightly, more control points are desired. Degree elevation (or degree raising)
is a standard technique, which allows us to describe a n-th degree Bézier

curve as a Bézier curve of higher degree.

Let us assume Bézier curve of degree n is given by its control points b, ..., b,,.
Our task is to find a control polygon b(()l), e ,bE}ll that defines the same

curve.

2 PRELIMINARIES 15

by

Figure 10: Subdivision: Construction of a control polygon of Bézier

curve defined on subinterval [0, g

According to the notation from (2) and using properties of Bernstein poly-

nomials we rewrite our curve as

“n+1 +1
b(t) = ZnnTB"“ . Z ! CBE (Obi, te(0.1) (13)
=0

Looking at this equation in more detail, one can easily see that the upper
bound of the first sum may be increased to n + 1 since the last expression
is equal to zero. Shifting the index of the second sum by one and adding a
zero-term for 1 = 0 we get

n+1 n+1

n+1
b(t) = 73"“ B'"'(t)b;_y, te€[0,1]. (14
() ;é; 7L+-1 +'§E:714_1 1 € [7] ()

Summing up appropriate coefficients, we obtain a formula for control points
of (n + 1)-st degree Bézier curve

1
n+1

b = — b, + (1-

¢ — Yo;, i=0,...,n+1. (15)
n

2 PRELIMINARIES 16

by = b" b; = by

Figure 11: Degree elevation: Bézier cubic represented by five control

points after one elevation step.

Vertices b{" are constructed by piecewise linear interpolation and convex

i

hull of the new control polygon lies inside the original one (see Figure 11).

One can easily see, that this process may be repeated to obtain control
polygon with higher number of control points than is the degree of given
curve. This act allows us to modify original curve with higher precision

which is desirable in many applications.

Let us denote control polygon of n-th degree Bézier curve by bg,...,b,.
After r degree elevation steps, this curve is described by n +r control points

bgl), e ,b;llr (see Figure 12). New control points are defined by formula
b = 3, () i, (16
=\)

which is easily proved by induction.

2 PRELIMINARIES 17

b,

by

Figure 12: Repeated degree elevation: Parabolic arc after four degree

elevation steps.

Degree reduction: The inverse process is at least as important as the
previous one. Having a Bézier curve of degree n, the goal is to find Bézier
curve of lower degree defining the same curve. Generally, the exact degree
reduction is not possible. For example, cubic with a cusp cannot be expressed
like quadratic. Thus, degree reduction is an aproximative technique and the
value of the error between the original curve and the reduced one depends
on the metric we apply. Many techniques are known (for more information
see Introduction and References). Reduction with respect to L? metric is

described in section (2.4).

2 PRELIMINARIES 18

1
6

Figure 13: Nonparametric curve: polynomial f(z) of degree six on

[0, 1] represented as a Bézier curve.

2.1.3 Nonparametric curves

The following property may seem to be trivial, but its further application
(section 3) forces me to emphasize its significance. Discussing Bézier curve
of degree n, both coordinates of this curve are desribed by polynomials of
degree at most n (see (2) and (3)). Investigating polynomials, one can imme-
diately see, that this group of functions is easily described by Bézier curves.
Let us assume polynomial y = f(z) of degree n over interval [0,1]. Its

parametrization as a Bézier curve is

b(t) = =) (17)

2 PRELIMINARIES 19

where polynomial f(t) is assumed to be expressed with respect to Bernstein

basis

F) =2 biB (). (18)

According to the linear precision property of Bernstein polynomials, control
points are uniformly distributed in the direction of z-axis (see Figure 13).
Then, given polynomial is rewritten as

b(t) =) B} (1), (19)

=0 | bi

where real numbers b; are known as Bézier ordinates and the uniform sepa-

rators i/n, i = 0,...,n are called Bézier abscissas.

Of course, we are not restricted only to unit interval [0,1]. Due to the
affine invariance property of Bézier curves, we can describe polynomial over

arbitrary domain [a, b]. Bézier abscissas are a +i(b—a)/n, i =0,...,n.

2 PRELIMINARIES 20

2.2 Bézier patches

Bézier patch of bidegree (m,n) is defined by formula

b™" (u, v) ZZB’” b, [u,v] €[0,1] x [0, 1], (20)

i=0 j5=0

where coefficients b;; are called control points and B["(u), Bj(v) are the

Berstein polynomials defined in 3.

For a fixed value ug € [0, 1], the term

b" (ug, v ZZBm ug) BM(v)by;, v € [0,1], (21)

i=0 j=0
depends only on one parameter v and therefore defines a curve on given
surface. This curve is called isoparametric v-curve. For all ug € [0,1], we
obtain a system of v-curves lying on the patch. Analogously, fixing parameter
v, the second system of isoparametric u-curves is obtained. The double

summation in equation (20) may be easily represented in matrix form:

bog A bgn V},"(v)
b (u,v) = | UM () ... U™(u) : : o (22)
me N bmn Vn (’U)

n

where the matrix {b;;} is known as geometry matriz of the patch. Obviously,
Bézier patch is uniquely defined by its control points. Similarly to the case of
Bézier curves and its control polygons, the sequence of control points plays
very important role. In order to avoid misinterpretation, each control point
is connected to its neighborou(s) in u and v-directions by line. These lines

and control points form control points mesh.

Example 3 Bézier patch of bidegree (1,1) given by four distinct control
points bgp, bo1, big, b11:

2 PRELIMINARIES 21

bo1

Figure 14: Bilinear Bézier patch: isoparametric curves for u, = %

and vy = %

1 1

b (u,v) =Y > B"(u)B}(v)biy, [u,0] €[0,1] x[0,1] (23)

i=0 j=0

and its matrix expression

by b 1—
b (u,v) = [l—u u] S ‘. (24)

b10 by, v

This bilinear Bézier patch is known as hyperbolic paraboloid, isoparametric

2 PRELIMINARIES 22

Figure 15: Bézier patch of bidegree (3,3): bounding curves and con-

trol point mesh.

u- and v-curves are both lines (see Figure 14).

Properties of Bézier patches: Resulting directly from the properties of

the Bernstein polynomials, we obtain

1. Coefficients of Bézier patch are barycentric coordinates, in other words:

Z Z B"(u)Br v) = 1, (25)

for all u, v € [0, 1];

2. affine invariance: computing the affine image of control points mesh

2 PRELIMINARIES 23

of the surface and control points mesh of the image of the surface, we

obtain the same result;

3. convex hull property: B"(u), B} (v) are nonnegative for all 0 < u,v <
1. With respect to equations (25) and (20), b™"(u,v) lies inside the

convex hull of control points mesh;

4. boundary curves: Evaluating the patch b™"(u,v) for u = 0,1, v =
0,1, four Bézier curves b(0,v), b(1,v), b(u,0), b(u, 1) are obtained,
respectively. Control polygons are formed by appropriate boundary
control points (see Fig. 15);

, %bm’"(u, v)

and evaluating them for v = 0,1, v = 0,1, the corner tangent planes

5. tangent planes in the corners: computing a%bm’”(u,v)

are defined by three corner control points (see Figure 16).

Figure 16: Biquadratic Bézier patch: tangent plane in the corner

control point.

2 PRELIMINARIES 24

Figure 17: Tensor product surface: shaping u-curve b™(u) sweeps

along the path v-curve b3 (v).

2.2.1 Tensor product

Definition of Bézier patch via control points mesh (equation (20)) is classical
approach to this topic. Observing this equation thoroughly, one can inter-
prete this definition more from the kinematic point of view. Fixing the value

of parameter v = 0, we obtain a starting curve

by (u) = b™"(u,0) = Y B"(u)b;,, u€ [0,1]. (26)

1=0

Varying the parameter v, the system ® of Bézier curves of degree m is ob-
tained. This one-parametrical system ® may be apprehended as a trajectory

of curve b{'(u) during certain affine kinematic motion. In other words: curve

2 PRELIMINARIES 25

Figure 18: Tensor product bicubic patch: construction of a point

b33(2, 1) via five de Casteljau algorithms.

b{’(u) is swept out, changing continuously its shape (see Fig. 17). Clearly,
each point travels on the Bézier curve of degree n. Then, u-curves are per-
ceived as shaping curves, v-curves represent trajectories of points b (u) dur-
ing this motion. Resulting from the symmetry of equation (20), u and v-
curves may be replaced by each other to receive the same surface. Then,

surface b™"(u, v) is known as tensor product surface.

Consequently, the construction of a point on a tensor product surface may
be easily reduced to several one-dimensional steps. Figure 18 shows the
application of de Casteljau algorithm for u-curves. The control polygon for

isoparametric v-curve is acquired.

2 PRELIMINARIES 26

2.2.2 Degree elevation

Following the tensor product approach to Bézier patches, the degree elevation
process may be easily reduced to several univariate degree elevation steps of
Bézier curves (see section 2.1.2). Let us assume Bézier patch of bidegree
(m,n) as a one of bidegree (m + 1,n). The goal is to find coefficients bgj,o)

such that

n m+l
b™" (u, v) ZZU’”“ (u)b; B (v). (27)
q?(Z)

The n 4+ 1 terms ¢;(u) express n + 1 univariate degree elevation, that was

discussed in section 2.1.2. Applying repeatedly (15), the coefficinets bz(,lj’o)

are directly obtained:

b0 = L b (1= —)by, 28
2] m_|_1 ¢ 1a9+(m+1) 2,7 ()
where ¢ = 0,...,m+ 1 and j = 0,...,n. Interpreting this result, control

point mesh of the degree elevated Bézier patch is created from the original

one by n + 1 elevations of row control points of isoparametric u-curves (see
Fig. 19).

Requesting the progressive degree elevation by k degrees in one direction,
the formula (16) is applied. The degree elevation in the v-direction is de-
fined analougously. To receive the degree elevated surface by one in both
directions, we elevate in u-direction and the wv-direction. Due to the tensor
product properties, it is irrelevant whether we elevate in u-direction first and

then in v-direction or vice versa.

2 PRELIMINARIES 27

Figure 19: Degree elevation of Bézier patch: reduction to several

univariate degree elevation steps.

2.2.3 Nonparametric patches

Analogously to the section (2.1.3), one of the most significant applications of
Bézier patches is related to polynomials. The graph of polynomial f in two

variables x and y is easy expressed as a Bézier patch by parametrization

Pl,y)=| vy |, (29)
fz,y)

where polynomial f is assumed to be expressed in Bernstein form

flay) =) > B"() B} (y)pij. (30)

i=0 j=0

2 PRELIMINARIES 28

Figure 20: Nonparametric patch: polynomial f(x,y) represented as

Bézier patch.

over unit square [0, 1] x [0,1]. Due to linear precision property of Bernstein

polynomials, the control point mesh is given by

i/m

2 PRELIMINARIES 29

The orthogonal projection of b, ; into the plane z = 0 create a uniform point
mesh known as Bézier abscissas and coeffients b; ; are called Bézier ordinates.
This is ilustrated in Figure 20. Of course, we are not restricted only to unit
domain [0, 1] x [0,1]. Using affine transformation, we can map unit domain
into arbitrary domain [a,b] X [c,d] to obtain Bézier patch over requested

domain.

2.3 Linear space of polynomials

Investigating polynomials and its degree reduction, it is essential to mention

several notes concernig the linear space of polynomials focusing on its norms.

Let TI" be the linear space of polynomials of degree at most n, with the basis
(B!")i=o....n, where

vy (M) (=) (5~ 1
mo= (1) e 32

are the Bernstein polynomials with respect to a certain interval [, 5] C R.

Let us define L? inner product

B
ngﬂ:/fwmww (33)

with respect to the interval [«, 3] and the norm

o 1
1£157 = 5/ e (34)
where h = # — «, induced by it.

In this definition of the norm, the factor 1/h is introduced in order to obtain

a norm which is invariant under affine transformations of the t-axis (see

2 PRELIMINARIES 30

| | t | | t
I [I [

a B Ala) AB)

Figure 21: The affine transformation: the L? norm of f and its affine

image A(f) are the same.

Figure 21). More precisely, for any affine transformation
AItHAO-FAlt (35)

with A; # 0, the norms of f with respect to the interval [, 8] and of fo A}
with respect to the interval A([e, 3]) are identical,

«, —111A([e,
AP = | f o A0, (36)

Various norms on [I"” are available. Focusing on polynomials from the point
of view of Bézier curves, we define the maximum norm on BB-coefficients of
polynomial f:

/1158 = max. Jbi (37)

where constants b; are the y-coordinates of control points (compare with 18
and see Figure 22).

The maximum norm of polynomial f is given by

/]

(8] — max |£(1)]. 38
47 = mas |1(1) 39

2 PRELIMINARIES

ahﬁ
il 5

Figure 22: Maximum norm on BB-coefficients: polynomial f and its

norm ||f||£3o‘é’l?lo with respect to the interval |a, f].

Figure 23: Maximum norm: polynomial f and its norm ||f||[o%’ﬁ] with

respect to the interval [a, 3].

31

2 PRELIMINARIES 32

This is ilustrated in Figure 23.

One can easily check that all three norms — L? norm, maximum norm and
maximum norm on BB-coefficients — satisfy the definition of the norm. Its

affine invariance is obvious.

2.4 Degree reduction and dual basis

The process of approximating a polynomial of degree n by a polynomial of
degree k, where k < n, with respect to a suitable norm, is called degree
reduction. We consider the spaces II" and IT* C 1", along with the L? norm

defined in section 2.3.

Applying degree reduction with respect to this norm to the given polynomial
p gives the unique polynomial ¢ € TI* which minimizes ||p — q||[2°"’8], ie.,
q = arg min [[p — g5, (39)
qetk
Various techniques for computing ¢ are available (see introduction for refer-
ences). We describe a simple technique which is based on the dual basis of

the Bernstein polynomials.

The dual basis to the Bernstein basis of IT*¥ consists of the unique polynomials

D;? of degree k£ which satisfy

1ifi=7y
(B, DRyl = 5, = =0k (40)
0 otherwise

see Figure 25. The polynomials D;-“ can be represented with respect to the

Bernstein basis,

k
1
DE(t) = - > ey BiE), i=0,...,k (41)
§=0

2 PRELIMINARIES 33

| 0
| |

a B

Figure 24: Degree reduction: polynomial p and its best approximant

g with respect to L? norm.

with the coefficients

ENGICY 2+ () D 6 "
BE X @EOCEEDELE) @)

which have been derived in Jiittler (1998), and h = f—a«. Alternatively, these
polynomials can be computed using a recurrence relation involving dual basis

polynomials of lower degree and Legendre polynomials Ciesielski (1987).

The polynomial ¢ obtained by applying degree reduction to p (see (80) and
(39)) with respect to the interval [a,] may be computed from

k

Z 81 B (¢) Z (Zn: biﬁ;ff) B (1), (43)

Jj= Jj=

with the coefficients
Bl = (BP(t), DE(t))lPl. (44)

2 PRELIMINARIES 34

Figure 25: Dual basis: The Bernstein basis of degree 3 and the asso-

ciated dual basis functions.

Using the identity

() ()

(m+n+1) (";jj) ’

(B, B = h (45)

these coefficients can be computed from (86) and (42). Note that these
coefficients do not depend on the interval [, (], since the factors h in (86)

and (45) cancel each other.

Example 4 The degree reduction coefficients for n = 5 and k£ = 2 form the

matrix
23 _3 3
28 7 28
9 2 _3
28 7 28
o 2 _1
5,2 _ 14 7
(87 Ji=o,.5=0,.2= | | Nk (46)
~7
3 2 9
28 7 28
3 _3 2
L 28 7 28

2 PRELIMINARIES 35

e p(t)

Co

Cy

Figure 26: The best quadratic approximant: given polynomial p and
its best approximant ¢ with respect to L? norm; y-coordinates of
control points ¢y, ¢, ¢z are computed via matrix (46); xz-coordinates

are distributed uniformly on [, 3].

The coefficients vector (¢, ¢1, ¢2) of ¢ is obtained by multiplying the row vec-
tor (bg, . ..,bs) of the coefficients of p by this matrix. Representing parabola

q by Bézier curve, the control points are

a (a+3)/2 &

Cyp = y C; = s Co = . (47)
Co C1 Co

This illustrates Figure 26.

2 PRELIMINARIES 36

Algorithm 1 bezclip (p, o, (]) {Bézier clipping}

1: if length of interval [a, f] > ¢ then

2: C « convex hull of the control points of p with respect to [, 3].
3: if C intersects t-axis then

4: Find [0/,] by intersecting C with the ¢—axis.

5: if |o/ — ' |< 3| a— /3] then

6: return (bezclip (p, [/, (]))

7: else

8: return (bezclip (p,[a, 3(a + 3)]) U bezclip (p,[5(a + 5), B])).
9: end if

10: else

11: return (()

12: end if

13: else

14: return ([a, f])

15: end if

2.5 Bézier clipping and its convergence rate

Bézier clipping, presented in Nishita, Sederberg and Kakimoto (1990), is
robust polynomial solver, that gives all roots of given polynomial p on given
interval o, 3]. Presenting a new polynomial solver with similar structure and

comparing it with Bézier clipping (section 3), we recall this method at first.

Bézier clipping, see Algorithm 1 (bezclip), uses the convex hull property of
Bernstein—Bézier representations in order to generate one or more intervals

of maximum length & which contain(s) the roots.

The polynomial p is represented by its Bézier coefficients with respect to the

current interval [«, 3]. The graph of p can be described as a parametric Bézier

PRELIMINARIES 37

ol
‘cba
e
=

(c) (d)

Figure 27: One iteration of bezclip: (a) The polynomial p is repre-
sented in BB-form on [, (], (b) The convex hull C of control polygon
is constructed, (c) C is intersected with t—axis in order to define new
interval [o/, 3], (d) p is subdivided on [/, §'].

2 PRELIMINARIES 38

Figure 28: False positive answer: If the lenght of the interval [,]
is less then prescribed accuracy €, bezclip returns [, f'] as root-

containing interval.

curve (see section 2.1.3) with control points

bi:((n_i)Taw,bi), i=0,...,n. (48)

Due to the convex—hull property, the graph lies within the convex hull C of
the control points (b;)i—o,.. . Consequently, all roots of the polynomial p are
contained in the interval which is obtained by intersecting C with the ¢-axis.
This observation, which is illustrated by Figure 27c, is used in lines 2-4 of

the algorithm to generate the next interval.

In line 6, the de Casteljau algorithm is applied twice to generate the coeffi-
cients with respect to the subinterval [/, 5']. Similar, it is applied once in

line 8, in order to bisect the interval.

For any root contained in [0, 1], the call bezclip(p, [0, 1]) returns an interval
containing that root. Bézier clipping may produce false positive answers (i.e.,
intervals not containing any root) if the graph of the polynomial gets very
close to the t—axis.

2 PRELIMINARIES 39

In order to study the efficiency of Bézier clipping, we analyze the sequence
(h;)22, of the lengths of the intervals [a, §] generated after calling bezclip i
times. Note that algorithm bezclip acts recursively, and combines bisection
with clipping steps. Here we follow only one path in the execution tree which
leads towards one of the roots. As observed by Nishita and Sederberg (1990),
this sequence has convergence rate 2, provided that it leads to a single root.
In the case of multiple roots, however, only linear convergence is achieved.

(See Gautschi (1997) for more information about convergence rates).

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 40
3 Computing roots via quadratic clipping

In this section, we describe a new algorithm quadclip for isolating the roots
of univariate polynomial and analyze its convergence rates in the cases of
roots with multiplicities 1 and 2. Then, we present a detailed comparison

with the standard technique of Bézier clipping.

3.1 The root—finding problem

Let II" be the linear space of polynomials of degree n, with the basis (B]");—o

nin _ (P (E=)(B=1)""

where

are the Bernstein polynomials with respect to a certain interval [, 5] C R.
Any polynomial p € TI"™ can be described by its Bernstein—Bézier represen-

tation with respect to that interval,
p(t) =D uiBMb), te€[af], (50)
i=0

with certain Bernstein—-Bézier (BB) coefficients b; € R.

We consider a given polynomial p € II" in Bernstein—Bézier representation
with respect to the interval o, 5]. All roots of p within [«, /3] are to be found.
More precisely, we want to generate a set of intervals of maximum length &

which contain the roots, where the parameter ¢ specifies the desired accuracy.

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 41

3.2 Algorithm

Based on degree reduction to a quadratic polynomial (see section 2.4), we pro-

pose a new technique for computing the roots, see Algorithm 3 (quadclip).

Some steps of the algorithm will be explained in more detail:

e In line 2 of the algorithm, we generate the best quadratic approximant ¢
with respect to the L? norm on the current interval [, (], see Fig. 29(b).
This is achieved by multiplying the row vector of Bézier coefficients of p
with the degree reduction matrix (ﬁznf

are precomputed and stored in a lookup—table.

)i=0....n;j=0,1,2- These coefficients

e In order to obtain the bound ¢ on

Ip — q||i2" = max |p(t) — q(t)], (51)
tela,f]

see line 3, we raise the degree of the Bernstein—Bézier representation
of the quadratic polynomial ¢ to n. Similar to degree reduction, this
is achieved by multiplying the row vector of Bézier coefficients of ¢
with the degree raising matrix (52?)2':0’2’1;9':0’___’”. These coefficients
are again precomputed and stored in a lookup—table, see Example 5.
The bound is chosen as

5:ig(}?§n|bi_ci|’ (52)
see Fig. 29(c), where b; and ¢; are the coefficients of the Bernstein—
Bézier representations of p and ¢ of degree n with respect to [«,],

respectively.

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 42

Algorithm 2 quadclip(p, [o, (]) {Quadratic clipping}

1: if length of interval [a, f] > ¢ then

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

q < generate a quadratic polynomial by applying degree reduction
with respect to the L? inner product on [, 3] to p.

(5] by comparing the Bernstein—Bézier

§ < compute bound on ||p—q|
representations of p and gq.
m < q — 0 {lower bound}
M <« ¢+ § {upper bound}
if the strip enclosed by m, M does not intersect the t—axis within [«, /]
then
return ()
else
Find intervals [y, 5;], @ = 1,...,k, by intersecting m, M with the
t—axis. The number k of intervals is either 1 of 2.
if max;—i . x|a; — ;] > 3| — | then
return (quadclip (p,[a, 5(+5)]) U quadclip (p,[5(a+5), B])).
else
S+
fori=1,...,k do
S < SUquadclip(p, [a, 5i])
end for
return (S5)
end if
end if

else

return ([«, f])

22: end if

COMPUTING ROOTS VIA QUADRATIC CLIPPING

q

N

M

() (c)
Figure 29: One iteration of quadclip: (a) the polynomial p is repre-
sented in BB-form on [a, 8], (b) ¢ — the best quadratic approximant
of p with respect to Ly norm, (c) the error bound § is obtained as the
maximum length of the thick grey vertical bars, (d) the lower and
upper bounds m = ¢ — 0 and M = ¢+ 9, the intersection of the strip

enclosed by them with the t—axis defines the new interval [/, '].

43

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 44

e Inlines 4 and 5, the bound ¢ is used to construct quadratic polynomials

m and M satisfying
vt e o, Bl mlt) < p(t) < M. (53)

e In lines 6-19 we analyze the strip enclosed by m and M and its inter-
section with the t-axis, see Fig. 30. If the intersection is empty, then
no roots exist. Otherwise, the intersection consists of either one or two
intervals that contain the roots. Their boundaries are found by solving

two quadratic equations, see Remark 2.

e If the length(s) of this/these interval(s) is/are sufficiently small, when
compared to the length of the previous interval [a, 8], then quadclip
is applied to them (lines 14-16). Otherwise we bisect the interval [« (]
and apply quadclip to the two halves (line 11).

For any root contained in [«, /3], the call quadclip(p, [a, §]) returns an inter-
val containing that root. Similar to Bézier clipping, quadratic clipping may
produce false positive answers (i.e., intervals not containing any root) if the

graph of the polynomial gets very close to the t—axis.

Example 5 The degree raising coefficients for n = 5 and £k = 2 form the

matrix
LEh 00
(51’2,’]‘5)i:1,...,2;j:0,...,5: 022 2 20/, (54)
00 & 4T
where coefficients are computed via dual basis
By = (B;(t), D3 ()7, (55)

(see section 2.4). The vector of BB-representation of degree-raised parabola

q is obtained by multiplying the row vector (¢,¢;,¢2) by matrix (BZQ 3-5), see

Figure 31.

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 45

N\ / 3
\/ 4

(a) (b)

Figure 30: The definition of a new domain: a) The parabolic

strip — enclosed by M and m — is intersected with t-axis, five
options may occur, b) Case 1, intervals defined by roots of M
and m are intersected with the original interval [, 5] in order

to obtain the new domains.

Remark 1 In order to construct bound ¢ (see eq. 52)), the maximum norm

on vectors of BB-representation of p and ¢ is used. Clearly,

o= alle” = 316 = el BE0) < 3 s, = cilBE 0

=0
= max |b; — il = [p—qllin, =6, (57)
l—O,...,TL]

therefore the bounds M and m are well defined.

Remark 2 The roots of a quadratic polynomial (cf. lines 6 and 9 of the
algorithm) ¢(t) = Bg(t) do + Bi(t) di + B3(t) dy are t1p = (1 — 7)o+ 1128
where

dy —dy =D
dy —2d; +dy

T2 =

(58)

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 46

Figure 31: The degree-raised parabola: The best quadratic
approximant ¢, its original BB-representation (¢, ¢y,) and

the control polygon of ¢ after degree raising.

with D = d} — dydy. If |dy — 2d; + dp| is below a user-defined threshold
(which depends on the accuracy of the numerical computation), then the
computation of the roots via (58) becomes numerically unstable. In this
situation we apply Bézier clipping to the control polygon of ¢ in order to
bound the roots.

3.3 Convergence rate

In order to make this thesis self-contained, we start this section by formu-

lating two technical lemmas.

Lemma 1 For any given polynomial p, there exists a constant C,, depending

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 47

solely on p, such that for all intervals [a, B] C [0, 1] the bound § generated in
line 3 of Algorithm quadclip satisfies 6 < C,h3, where h = 3 — a.

Proof 1 Due to the equivalence of norms in finite-dimensional real linear

spaces, there exist constants C; and Cy such that

vrel™: s < il and 5T < Coflrl@?, (59)

where the three norms are the maximum (/4,) norm of the Bernstein—-Bézier
coefficients, the L? norm and the maximum norm (see section 2.3) all with

respect to the interval [, 5]. The constants C; and C3 do not depend on the

A

Hp - QaHL%’ﬂ]

e | N
$ lIp — gl|%”

Y

<

Figure 32: The lenghts of both thick grey vertical bars are of
O(h?).

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 48

given interval [, /3], since all three norms are invariant with respect to affine
transformations of the ¢-axis; cf. (83) and (84).

Consequently,

6= |lp— |B1’300 < Cillp - Q||2 MO < Oy lp - Qull? <
< C1Cylp — Qa2 < 6 0102 max, 1" (to)] h3,

(60)

where (Q, is the quadratic Taylor polynomial at t = « to p and p” is the
third derivative. [J

Lemma 2 For any given polynomial p there exist constants V,,, D, and A,
depending solely on p, such that for all intervals [o,] C [0, 1] the quadratic
polynomial q obtained by applying degree reduction to p satisfies

Ip—qll&® <V, 1%, | —q||@? < D, k%, and ||p" - ¢"|27 < A, b, (61)

with h = 8 — «, where ||.| 8 is defined as in (77).

Proof 2 Similar to the proof of the previous lemma, it can be shown that

the norm
SO b ||| P 4 B2 || 2, (62)

7| = ||
satisfies

a, a,B
7]l < G5 (63)

where the constant C3 does not depend on the interval [«, 5], again due to the
affine invariance. Therefore, and using similar arguments as in the previous

proof,

Ip — alll? = lp — a7+ I’ = |27+ B2 |)p" — "||[a,m§
< Cyllp — qlls™ < Csllp — Qa5 < CoCslp — Qull2” (64)
1
S 5 C20s " (to)| b,

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 49

where (), is the quadratic Taylor polynomial at ¢ = « to p. Clearly, this
implies (61) OJ.

Now we are able to analyze the speed of convergence. The case of single and
double roots will be dealt with separately. In the case of single roots, we

obtain the following result.

Theorem 1 If the polynomial p has a root t* in [a, 3] and provided that
this root has multiplicity 1, then the sequence of the lengths of the intervals
generated by quadclip which contain that root has the convergence rate d =
3.

Proof 3 The call quadclip(p, [«, 5]) generates a sequence of intervals

([evi, Bi])i=0.1.2.... (65)

with the lengths h; = 3; — a; whose boundaries converge to t*. We assume
that the first derivative satisfies p'(¢*) > 0. If this assumption is violated,

one may consider the polynomial —p instead of p.

Let g; be the quadratic polynomial obtained by degree reduction with respect
to the interval [, 3;]. Since p’ is continuous and due to Lemma 2, the

inequalities

*\ || [, Bi 1 * ;B4 *
I =P ()P < /() and g = P17 < 2007 (66)

| =

hold for all but finitely many values of 7, where the maximum norm refers to

the interval [«;, 3;]. These two inequalities imply

1
L%”Bi} < —p'(t*), hence Vte€ |, Bi]: q.(t) > Ep'(t*). (67)

DN | =

lg; —p'(t)]

On the other hand, the vertical width 29; of the strip enclosed by m and M
is bounded by 2 C, h?, due to Lemma 1. Thus, the lengths h; of the intervals

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 50

M

slope 3p/(1*)

20;

hit1

- =

40/p'(t)

Figure 33: Proof of Eq. (68)

satisfy
4C,
hivi < —2 b}
+1 = p’(t*) i

(68)

for all but finitely many values of 7, see Fig. 33. [

As for Bézier clipping, multiple roots slow down the speed of convergence.
However, the rate is still super-linear for double roots, as described in the

following Theorem. See Figure 34 for an illustration.

Theorem 2 If the polynomial p has a root t* in [a, 3] and provided that
this root has multiplicity 2, then the sequence of the lengths of the intervals

generated by quadclip which contain that root has the convergence rate d =
3

5"

Proof 4 Similar to the proof of the previous Theorem, we analyze the se-

quence (65) of intervals with lengths h; generated by the algorithm which

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 51

20;

|

| |
| |
L hiy1 N

Figure 34: The convergence rate in the double root: The roots

of lower bound m define the new interval [1, B;11]-

contain the double root. We assume that the second derivative satisfies
p"(t*) > 0. If this assumption is violated, one may again consider the poly-

nomial —p instead of p.

Again, let ¢; be the quadratic polynomial obtained by degree reduction with
respect to the interval [y, 5;], and let §; be the associated distance bound ob-
tained in line 3 of the algorithm. Since p” is continuous and due to Lemma 2,

the inequalities

[oCéi,Bi] < [ai,0i] <

p'(t*) and g —p"|I%

p"(t) (69)

RS-
RS-

||pll _ pll (t*) |

hold for all but finitely many values of 7, where the maximum norm refers to

3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 52

the interval [, 5;]. These two inequalities imply

1 1
il < ip"(t*), hence Vit € [y, ;] : ¢} (t) > =p"(t*). (70)

{I_ Ui t*
g —p" ()] 5

We consider the lower bound m; = ¢; — §; obtained by applying degree reduc-
tion with respect to the interval [o;, 3;]. Due to p”(¢*) > 0, its intersections
with the ¢t—axis bound the next interval [a;q, 8;11] for all but finitely many
values of i. Let

m; = %(t — V2 bt —) + o (71)

with certain real coefficients a; = ¢/'(t*), b; = ¢/(t*) and ¢;. According to
(70), the leading coefficient satisfies

" (t") (72)

for all but finitely many values of . Due to the two Lemmas and to p'(t*) = 0,

the other two coefficients satisfy

Bl < D, h? (73)

i = Ip'(#*) = ' ()] < [Ip’ — ¢

and
|ci| = |p(t*) — m(t)| < [p(t*) — q(t*)] + |a(t) — m(t")]

o (74)
< llp = all 2% 46 < (V, + Cy) 2.

The coefficients ¢; are non—positive, ¢; < 0.

For all but finitely many values of 4, the lengths of the interval [c; 1, §;11] are

bounded by the difference of the roots of the lower bound m;, which leads to

b <2y Z 2 Bl 2l 2Dy g, UG+ 1) e
B Pt

)

(75)

)

Hence, the sequence (h;);—o12,.. has the convergence rate % O

4 COMPARISON 53
4 Comparison

We compare the two algorithms (Bézier clipping and quadratic clipping)
with respect to five criteria: convergence rate, number of operations per
iteration step, time per iteration step, number of iterations needed to achieve
a certain prescribed accuracy, and computing time needed to achieve a certain

prescribed accuracy.

4.1 Convergence rates, number of operations and time

per iteration step

The results concerning the convergence rates are summarized in Table 2.

With respect to these rates, the new algorithm clearly performs better than
Bézier clipping. However, the computational effort per iteration step is
equally important. For instance, it is known that solving univariate equa-
tions by the secant method, where the convergence rate is (14+/5)/2 ~ 1.618
for a single root, is generally faster than Newton’s method with quadratic
convergence rate, since it needs only one evaluation of the function per iter-
ation step, while Newton’s method needs one evaluation of the function and
and another one of the derivative. Consequently, the computational costs of
two steps of the secant method and of one step of the Newton method are

comparable.

Table 3 shows the number of operations needed per iteration step, where it
is assumed that one new interval is found (i.e., £ = 1 in line 9 of Algorithm
3) and that this interval has shrunk by more than %, cf. line 5 of Algorithm
1 and line 10 of Algorithm 3. Also, the number of operations needed for

computing the convex hull for Algorithm 1 varies slightly; here we assume to

4 COMPARISON 54

root multiplicity || single root | double root | triple root, etc.

quadclip 3 g 1

bezclip 2 1 1

Table 2: Convergence rates of the algorithms quadclip and bezclip.

degree quadclip bezclip
n = o < X |2 o <y X
2 120 75 30 4 0]229) 90 30 5 0 0] 125
4 228 115 32 4 6385 || 214 62 9 0 0| 28
8 548 243 30 4 2| 827 || 582 174 17 0 0| 773
16 || 1676 691 30 4 2]2403|1698 590 33 0 0 |2321

Table 3: Number of operations per step of the iteration for various

values of the degree n.

have a convex control polygon, since this is the limit case in general.

The classical Bézier clipping has a slight advantage, though the computa-
tional costs of both methods are roughly comparable. The number of op-
erations grows quadratically with the degree n. For both algorithms, the
computational effort grows linearly, except for the quadratic grow caused by
de Casteljau’s algorithm which is used to generate the Bernstein—Bézier rep-
resentation with respect to the newly generated interval. For large degrees
n, the de Casteljau algorithm dominates the overall computational costs and

the computational costs of both algorithms become increasingly similar.

This picture becomes even more clear by comparing the computation times.
We implemented both algorithms in C on a PC with a Intel(R) Xeon(TM)

4 COMPARISON %)

degree of the polynomial 2 4 8 16
quadclip 2.0 2.8 4.4 9.6
bezclip 1.3 1.9 3.5 8.3

Table 4: Time per iterations in microseconds for various degrees n.

CPU (2.40GHz) with 512KB of RAM running Linux and measured the time
needed for 10° iterations (in order to obtain a measurable quantity). The

results are reported in Table 4.

In addition, Fig. 35a shows the relation between computing times and poly-
nomial degree, and Fig. 35b visualizes the ratio fquaac1ip /tbezclip. For large
values of the degree n, the ratio tends to 1, since the computational effort of

the de Casteljau algorithm becomes increasingly dominant.

4.2 Number of iterations and computing times vs. ac-

curacy

In order to analyze the relation between the computational effort and the
desired accuracy, we discuss three examples, which represent polynomials
with a single root, a double root, and two roots which are very close (“near
double root”).

Example 6 (Single root) We applied the algorithms bezclip and quadclip

to the four polynomials
f(t) =(t—5)B—1), fult)=(—-35)2—-1)(+5)?
fst) =t =32 =1)*t+5)", fis(t) = (t—3)(2—1)°(t +5)"°

in order to compute the single root % in the interval [0,1]. Table 5 reports

the number of iterations and the computing times for various values of the

4 COMPARISON 56

t ratio

quadclip

0.84
0.6
bezclip 137

0.4+

0.24

Figure 35: a) Time per 10° iterations of algorithms quadclip and
bezclip. b) Ratio of computing times of both algorithms.

desired accuracy €. The numbers of iterations were obtained from an im-
plementation in Maple, while the computing times were measured with the
help of the implementation in C. The computing times for accuracy below
106 were obtained by multiplying the number of iterations with the time
per iteration (see Table 4). In addition, Figure 37 visualizes the relation

between computing times and desired accuracy.

For these four polynomials, the new algorithm (quadclip) performs slightly
better than Bézier clipping, though the difference is not that significant: the
overall computing times to achieve a certain accuracy are roughly the same.
In particular, this is true for the realistic range of accuracy (no more than
16 significant digits). This is due to the fact that the quadratic convergence

rate of Bézier clipping is already very fast.

Example 7 (Double root) We applied the algorithms bezclip and quadclip

4 COMPARISON 57

201
4
051 10 fa
0 02 04 06 08 i 0 02 04 06 08 i
+0.5 fo
+10
+1
4.107
500
02 0.4 0.6 08 1
02 04 06 08 1 0 i i i i j
0
500 :
—4.10" A
I3
f16
+1000 1]
—8.107 o
£1500
n==~, n =16

Figure 36: Example 6 (single root): Tested polynomials of degrees 2,
4, 8 and 16 with the root 5 in [0,1].

4 COMPARISON

58

el 1072 10~* 10-8 1071 | 107% 10764 | 10128
o, o, [oN o [oN o o,
I~y - Q| A o, | A o, | A o, | -H 0, - o, - o,
— - — - — yan — fyan — fya — fyan — -
s (8] — (8] — O — (8] — O — (8] — (8] —
b el 0 ko] 0 ko] 0 ko] 0 ko] 0 ko] 0 ko] 0
50 © N © N © N © N © N © N ® N
2 |5 2|5 3|5 2|8 2|5 2|5 2|5 2
2(N|| 1 2 1 3 1 3 1 4 1 5) 1 6 1 7
t20 25120 3.5|2.0 35|20 59|20 7.2|2.0 8.6|2.0 9.9
4 N| 2 2 2 3 3 413 5 4 6 5) 7 5 8
t||54 39|54 55|81 7.2(82 88|10.810.6\13.412.5/13.514.4
8 |N|| 2 2 2 3 3 413 5 4 6 5) 7 5 8
t]8.7 6.8]8.9 10.1|13.0 16.9({13.0 20.4|17.5 23.8|21.8 23.8/121.8 27.4
16|N|| 2 2 2 3 3 413 5 4 6 5) 7 5 8
t|(18.7 16.3|18.7 24.2(28.0 32.3|28.1 39.9|87.5 47.5|46.9 55.4(46.9 63.3

been obtained by extrapolation.

Table 5: Example 6 (single root): Number of iterations N and com-
puting time ¢ in ps for various values of degree n and accuracy e.
The times for more than 16 significant digits (shown in italic) have

4 COMPARISON 59

bezcli
t t p
1.4
" bezclip
1.2
0.8
4
0.6
0.8 .
047 quadclip
quadclip
0.6
0.2+
0.4
07 2 3 4 5 6 7 1 2 3 4 5 6 7
log, log — log, log —
€ €
n=2 n=4

251 bezclip

bezclip

quadclip

quadclip

Figure 37: Example 6 (single root): Computing time ¢ in 107 °s vs.
accuracy. The times for more than 16 significant digits have been

obtained by extrapolation.

4 COMPARISON 60

0.8 f2
c
0.6
4 f 4 d 4
0.2 f16
0 02 04 06 038 1 0 02 04 06 08 1

Figure 38: Example 7 (double root): Tested polynomials fs, fy and
fi6 with the root 3 on [0,1].

to the four polynomials

L)=(t-3)?% fl)=(1t-3)t+2)E-1),
fs(t) = (t = 3)*(4 = t)*(t +5)*(t + 7),

fio(t) = (t = 5)2(4 =)7 (t +5)°(t + 7)

3)’
3)’

in order to compute the double root % in the interval [0, 1]. Table 6 reports
the number of iterations and the computing times for various values of the
desired accuracy €. Again, the numbers of iterations were obtained from an
implementation in Maple, while the computing times were measured with the
help of the implementation in C. The computing times for accuracy below
10716 were obtained by multiplying the number of iterations with the time
per iteration (see Table 4). In addition, Figure 39 visualizes the relation

between computing times and desired accuracy.

For these four polynomials, the new algorithm (quadclip) performs far better

4 COMPARISON

61

e|| 1072 10~* 108 107 | 10732 | 107% | 107'%8
o, o, o o, o o, o,
Iy sl 0o, sl (o} sl o, sl 0o, sl (o} - (o} - (o}
— yan — yan — yan — fyan P P — fan
s (8] — (8] — (8] — (8] — (8] — (8] — (8] —
= el 0 go!) gol) go!) gol) gl) go! 0
20 © N © N © N © N © N © ta]) g ta])
< > 8|5 8|5 8|5 8|5 &|& &|& 8
2 |N| 1 7 1 14|11 27|11 54| 1 107 1 213 1 343
t| 20 86120 15.6|2.0 30.3] 2.0 61.6| 2.0 124| 2.0 246| 2.0 383
4 |N|| 3 7 3 14| 4 27| 4 53| 5 107 7 213| 8 332
t| 7.1 13.6] 7.2 25.1110.4 47.2110.4 93.7/16.8 188|19.6 375|22.4 562
8IN| 3 5) 4 9 6 17| 6 34| 9 68|10 135 12 269
t12.2 16.7|16.4 32.2|26.6 63.1|26.9 124 |39.6 249\ /4.1 /95|52.8 988
16|N|| 3 4 5) 7 6 14| 8 27|10 54| 11 107 12 213
t1127.4 32.3|45.4 56.2|56.1 107|76.8 206|96.2 402|105 823 115 1635

been obtained by extrapolation.

Table 6: Example 7 (double root): Number of iterations N and com-
puting time ¢ in ps for various values of degree n and accuracy e.

The times for more than 16 significant digits (shown in italic) have

4 COMPARISON 62

1004 t

50+
80+

401

bezclip bezclip

60+
30

40
20

20+
quadclip quadclip

0y 2 3 4 5 6 7 0y 2 3 4 5 6 7
log, log E log, log E
9 9
n=4 n=-=~8
Figure 39: Example 7 (double root): Computing time ¢ in 10™°s vs.
accuracy. The times for more than 16 significant digits have been

obtained by extrapolation.

than Bézier clipping. This is due to the higher convergence rate (2) of the

new algorithm.

In practice, the case of doubleroot is unlikely to happen. Conversely, the
case of “near double root” is quite frequent and therefore it is worth of

scrutinizing.

4 COMPARISON 63

0.7
25000 1
067
20000
0.5
fa
047 15000 A
0.3
10000 4
02 f2
5000
0.1 / flG
0 02 04 0.6 08 1 0 02 04 06 08 1
n = 2, 4 n = 8

Figure 40: Example 6 (near double root): Tested polynomials fo, f4
and fg on [0,1].

Example 8 (Near double root) We applied the algorithms bezclip and

quadclip to the four polynomials

fa(t) = (t — 0.56)(t — 0.57), fa(t) = (t — 0.4)(t — 0.40000001) (¢t + 1)(2 — t),
fs(t) = (t — 0.50000002) (¢ — 0.50000003) (¢ + 5)3(t + 7)3,
f16(t) = (t — 0.30000008) (¢ — 0.30000009)(6 —)" (t + 5)°(t + 7)

~— —

in order to compute the two roots which are contained within the interval
[0,1]. Table 7 reports the number of iterations and the computing times for
various values of the desired accuracy . Once again, the numbers of itera-
tions were obtained from an implementation in Maple, while the computing
times were measured with the help of the implementation in C. The comput-
ing times for accuracy below 10716 were obtained by multiplying the number
of iterations with the time per iteration (see Table 4). In addition, Figure 39

visualizes the relation between computing times and desired accuracy.

4 COMPARISON

64

el 1072 1074 1078 1016 1032 1064 10-128
o, o, o, o, o, o, o,
N - o, | A o | A o, | A o, | A o, | A o, - o,
— - — - — - — - — - — - — -
s (8] — (8] — (8] — (8] — (8] — (8] — (8] —
= o) o 8] o) o) o) o 8] o I3
a0 © N © N bS] N © N] N g gz) g 8
S 5 215 8|5 8|5 &5 8|5 8|5 2
2N 1 13 1 18 1 20 1 22 1 25 1 27 1 29
t| 2.0 13.2] 2.0 18.6| 2.0 20.9| 2.0 23.1| 2.0 24.6| 2.0 247.0| 2.0 29.0
4 |N|l 3 7 4 13| 6 27| 8 35|10 37 (12 39 |14 43
t|l 7.1 14.21 9.4 26.9/15.1 52.2123.9 68.4|28.1 71.8|33.6 75.3139.2 83.6
8 |N|| 4 5) 5) 9 7T 181 9 26|11 28|13 30 |15 32
t1116.2 20.2120.3 35.8130.4 71.4|40.2 103 49.4 111|574 119 |66.2 127
16|N|| 2 4 3 7 5 14 7 22 9 24 | 11 26 11 28
t||18.6 32.2|27.4 58.4|50.6 113(63.2 176 |86.4 192|105 208 | 105 224

Table 7: Example 8 (near double root): Number of iterations N and
computing time ¢ in ps for various values of degree n and accuracy .

The times for more than 16 significant digits (shown in italic) have

been obtained by extrapolation.

4 COMPARISON 65

bezclip bezclip

quadclip quadclip

log, log ! log, log !
3 &
n=4 n=2~8
Figure 41: Example 8 (near double root): Computing time ¢ in 10~
vs. accuracy. The times for more than 16 significant digits have been

obtained by extrapolation.

For these four polynomials, the new algorithm (quadclip) performs better
than Bézier clipping, since bezclip achieves quadratic convergence only after
the roots have been separated. Similar effects can be observed if the graph
of the polynomial gets very close to the ¢ axis without intersecting it (two or

more close conjugate—complex roots).

5 BIVARIATE LINEAR CLIPPING 66
5 Bivariate linear clipping

In this section, we present the generalization of univariate polynomial solver
quadclip. Based on degree reduction to linear approximants, the new linear
clipping algorithm (bilinclip) is presented on bivariate polynomial system,

however the idea may be easily applied to the system of n equations.

5.1 The root—finding problem

Let us assume system of two polynomial equations
(76)

in variables z, y. Let both p and ¢ be polynomials of bidegree (m,n)
p(x, y) = Cm,nxmyn + Cm—l,nxm_lyn ++ €0,0, Cm,n 7& 0. (77)

Let us denote IT"™™ the (n+1)(m+1) dimensional linear space of polynomials
of bidegree at most (m, n), with the basis B:’;" = {B(2) B} (¥) }i=0,...m,j=0,...n>

where

R R (78

won () (=6 —y)i
mw =)=)

are the Bernstein polynomials with respect to intervals [«, 5], [y,0] C R,

respectively. Any polynomial p € II™" can be described by its Bernstein—

5 BIVARIATE LINEAR CLIPPING 67

Bézier representation with respect to the domain [«, 5] X [v, 4],

ple,y) =Y > byBM@)Bj(y), [r,y] € [0, 5] x [7,4], (80)

i=0 j=0

with certain Bernstein-Bézier (BB) coefficients b;; € R.

We consider a given polynomial system (76) in Bernstein—Bézier representa-
tion with respect to the domain [«, 5] X [v,d]. All roots of (76) within this
domain are to be found. More precisely, we want to generate a set of do-
mains of maximum diameter 2 which contain the roots, where the parameter

e specifies the desired accuracy.

5.2 The generalization of L; norm and dual basis

Following the section 2.4, the definition of L, norm and dual basis is easily

adopted for bivariate polynomials.

5.2.1 L; norm

We consider the space I[I™" with the L? inner product

B i
(f9)" = / / f(@y) (@, y) dyde (81)
a Jy
with respect to the domain D = [a, 5] X [v, d] and the norm

1712 = 2V F 7P, (52)

where h = (8 — «a)(d — 7), induced by it.

5 BIVARIATE LINEAR CLIPPING 68

Similarly to the univariate case, the factor 1/h is introduced in order to obtain
a norm which is invariant under affine transformations in the directions of

the x and y—axes. More precisely, for any affine transformation

T a bog O T
A —> 0 + 00 (83)
Y aq 0 bn Y

with det(B) # 0 the norms of f with respect to the domain D and of fo.A™!
with respect to the domain A(D) are identical,

112 = 11 o A7 R, (84)

5.2.2 Dual basis

Applying degree reduction with respect to Ly norm to the given polynomial

p gives the unique polynomial p € TI* which minimizes ||p — p||2.

Let us assume IT"™" with basis B;;" and let IT* be the 2(k + 1)-dimensional
subspace of all polynomials p, of which power of both variables x and y is at

most k. Let us assume “monomial” basis {B; }2*{' = {1, 2,5y, 2y, ..., 2Fy*}.

The dual basis {I;}2*{" to the basis {B;}2*{! of TI* is uniquely defined by

formula

oD s lifi=j L
(B;, ;)" =05 = , 4,7=0,...,2k+1. (85)
0 otherwise

The polynomials ID; can be represented with respect to the original basis

2k+1

1
Di(2,y) = 5 > rigBi(a,y), i=0,....2k+1. (86)
j=0

5 BIVARIATE LINEAR CLIPPING 69

According to the dual basis properties (85), coefficients r; ; are easy to com-

pute via linear system of equations.

The polynomial p obtained by applying degree reduction to p (see (80)) with

respect to the domain D may be computed from

plz,y)= > (p D) B = > (Zzbi,zﬂiz> B;, (87)

j=0 j=0 \i=0 (=0
with the coefficients
Bl = (B)P (88)

il

Example 9 Computing coefficients r; j, the equation (86) is multiplied (with
respect to the L? inner product (82)) by B;, i = 0,1,2. Solving the linear
system, the dual basis {ID;}5_, to the basis {B;};_, = {1,2,y} on the unit
domain (0, 1) x (0, 1) is:

Dy =7—6x — 6y

Dy =—-6+122 (89)

D, = —6 + 12y.

Example 10 The matrix of reduction coefficients for m = 3, n = 3.

23 17 11 1
28 28 28 16
1

17 1 _1
(Q') _ |8 8 16 80
J 11 11 1 7

80 16 80 80

1 1 7 13
| 76 ~ 80 ~ 80 ~ 80

The best linear approximant p to p with respect to the L? norm is
p(x,y) = 0o + 617 + 2y, (91)

where

3 3
=Y b8, k=0,1,2 (92)

i=0 j=0

5 BIVARIATE LINEAR CLIPPING 70

and b; ; are the Bernstein-Bézier coefficients of p (see (80)).

5.3 Algorithm

Some steps of the algorithm will be explained in more detail:

e In line 2 of the algorithm, we generate the best linear approximant p
of p with respect to the L? norm on the current domain [« 8] X [7,]

In other words, coefficients &y, 61, d2 are to be found such that

I
I= E/ / p(x,y) — (0o + 010 + d2y) dy da (93)
(e} Y

is minimal. This is achieved via dual basis (see Example 10 and Fig.

42(d)). The linear approximant ¢ is found the same way.

e In order to obtain the bound ¢ on

Ip— |2 = max |p(z,y) — b(z,y)|, (94)
[z,y]eD

see line 3, we represent the linear function p as a Bernstein—Bézier
patch of bidegree (m,n). Therefore, p is represented via (m+1)(n+1)
control points ¢; j, ¢ = 0,...,m,j = 0,...,n. Due to the properties of

Bernstein polynomials, the bound is computed as
5p:rrzyz;x|bi,j—ci,j|, i=0,....m7=0,...,n (95)

see Fig. 43(e), where b, ; and ¢; ; are the coefficients of the Bernstein—
Bézier representations of p and p with respect to domain D, respec-

tively.

5 BIVARIATE LINEAR CLIPPING 71

Algorithm 3 bilinclip(p, q, [, 8], [7,9]) {Bivariate linear clipping}

1. if diameter of domain [«, 8] X [y,d] = D > ¢ then

2:

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:

D, ¢ <+ generate the best linear approximant to p, ¢ with respect to
the L? inner product on D.
6P, 89 < compute bound on ||p — p||2 by comparing the Bernstein—
Bézier representations of p and p.
pY + p+ 67 {upper bound of p}
pY + p — 67 {lower bound of p}
qV « @+ 69 {upper bound of ¢}
q" < g — 6% {lower bound of ¢}
P < parallelogram in the plane z = 0 bounded by lines p¥ = 0, p* = 0,
¢V =0,q¢"=0.
R < rectangle bounding P.
if DN R =0 then
return ()
else
Define new domain D' = D N R.
if diam(D’) > £ diam(D) then
return (bilinclip (p, ¢, [o, 5(a+ B)] x [v, 3(v + 9)])
U bilinclip (p, g, [5(a+ B), B] x [v, 3(v +9)])
U bilinclip (p, ¢, [, 3(a+ B)] x [5(7 +6),])
U bilinclip (p, ¢, [y(a + B), 5] x [3(v +9),0])
else
S « bilinclip(p, q, D')
return (S5)
end if
end if

)

else

return (D)

23: end if

5 BIVARIATE LINEAR CLIPPING

Figure 42: One iteration of bilinclip I: (a) the polynomial system

(76) over given domain D, (b) the graphs of polynomials z = p(z, y),
z = q(z,y) are represented by surfaces in R*, (¢) polynomial p ex-
pressed by Bernstein—Bézier patch over D, (d) p is the best linear

approximant of p with respect to L, norm over domain D.

72

5 BIVARIATE LINEAR CLIPPING

73

Figure 43: One iteration of bilinclip II: (e) p and p are both ex-

pressed in Bernstein-Bézier form, the error bound ¢” is obtained as
the maximum length of the thick black vertical bars, (f) the lower and
upper bounds p” = p — 6 and pV = p + 6?, (g) boundaries of poly-
nomials p and ¢ are intersected with plane xy in order to construct
planar bounding strips P and @, respectively, (h) the intersection of
strips is bounded by the least square that defines the new domain D’.

5 BIVARIATE LINEAR CLIPPING 74

Y ; Y
q" g~ -
R 6 777777 L —
DI
P
D
pU pL Yr---=-=-=-= | ‘
| |
T «@ {,B T

Figure 44: Construction of the new domain: (a) Parallelogram P is
bounded by the least rectangle of which sides are parallel with axes
x and y, (b) intersection of the original domain D and the rectangle

R gives the new domain D'.

e In lines 4 and 5, the bound ¢P is used to construct linear functions
pY(z,y) and p”(z,y) (Fig. 43(f)) satisfying

Viz,yle D: p"(z,y) < plz,y) < p"(z,y). (96)

e In lines 8 and 9, see Fig. 43(g), the root-containing parallelogram P is

constructed and the least rectangle R that includes P is found.

e In lines 10-20 we analyze the mutual position of the original domain
D and the rectangle R, see Fig. 44. If the intersection is empty, then

no roots exist. Otherwise, we obtain the new domain D' = D N R.

e If the diameter of this domain D’ is sufficiently small, when compared
to the length of the diameter of the previous domain D, then bilinclip
is applied to it (line 17). Otherwise we bisect the original domain D
and apply bilinclip to the four subdomains (line 15).

5 BIVARIATE LINEAR CLIPPING I6)

[
0‘6_//
" /
N
02 / \/

X

Figure 45: The null set of p and ¢ in unit domain

5.4 Examples

In all examples bellow, all time-values of C code implementation of bilinclip
were measured on a PC with a Intel(R) Xeon(TM) CPU (2.40GHz) with
1.98GB of RAM running Linux. The loop of 10* repetitons was measured

(in order to obtain a measurable quantity).

Example 11 We applied the alogorithm bilinclip to the polynomials p
and ¢ of the bidegree (5,5) in order to compute all roots within the domain
(0,1) x (0,1), see (Fig. 45). P> and Q™" are the matrices of Bernstein—
Bézier coefficients of p and ¢, respectively. The graphs of both polynomial

in R? are visualized in Fig. 46.

5 BIVARIATE LINEAR CLIPPING 76

Figure 46: Polynomials p and ¢ over unit domain.

[20 —20 —20 —20 —20 —50} [20 30 30 20 —10 —20}
—30 30 30 30 30 30 —30 —30 —10 100 —150 30
~50 50 50 50 50 30 —50 =50 —10 100 —150 30
P55 — 0°5 =
5 50 50 50 50 50 ~50 50 50 100 —150 50
—150 —150 =150 —150 —150 50 ~50 50 50 100 —150 50
50 50 50 50 50 50J —50 =50 20 30 50 50J

Table 8 shows the numbers of progressive steps (clipping), bisection steps,
number of all iterations, number of roots and time with respect to the pre-
scribed accuracy €. According to the shape of both polynomials, bisection
steps dominate when low accuracy is required. After separating roots, al-
gorithm works progressively without bisection steps. Achieving sufficiently
high accuracy, the phantom root is eliminated.

Example 12 We applied the algorithm bilinclip to the Astroid p = T3 +
y3 — 53 and Maltese Cross curve ¢ = (22 4 %) — zy (22 — y?) within the

5 BIVARIATE LINEAR CLIPPING 77

€ 1072 | 107* | 1078 | 10716
clipping 19 28 36 50
bisection 12 12 12 12

all iterations 60 70 78 92

roots 8 7 7 7

time(ms) 1.76 | 2.10 | 2.39 | 3.08

Table 8: Example 11; computing time, number of all itera-

tions and number of roots within prescribed accuracy .

domain (—5,5) x (=5,5) (see Fig. 47). Table 9 shows the numbers of pro-
gressive steps, bisection steps, number of all iterations, number of roots and

time with respect to the prescribed accuracy .

Example 13 bilinclip was applied to the Descartes leaf p = 2% +1* —3 2y
and Lemniscat of Bernoulli ¢ = (22 + y2)> — 222 + 22 within the domain
(—2,2) x(—2,2), see (Fig. 48). Again, Table 10 gives the numbers of progres-
sive steps, bisection steps, number of all iterations, number of roots and time
with respect to the prescribed accuracy . With respect to the multipleroot
in [0, 0], significantly more iterations are necessary. Realizing the structure
of bilinclip, domain (—2,2) x (—2,2) is bisected after first iteration and
root [0, 0] is consecutively included in four subdomains. Consequently, six

roots is reasonable solution within accuracy 10716.

5 BIVARIATE LINEAR CLIPPING

2

)

Figure 47: Astroid and Maltese Cross curve on domain (—5,5) x

(-5, 5).

0

-2

l

£ 10711072107 | 1078 | 1016
clipping 32 40 52 60 72
bisection 49 49 49 49 49
all iterations || 217 | 229 | 241 | 249 361
roots 12 8 8 8 8
time(ms) 8.43 | 9.38 | 9.50 | 9.81 | 11.47

78

Table 9: Example 12; number of iterations with respect to the accuracy .

5 BIVARIATE LINEAR CLIPPING

—2-

Figure 48: Descartes leaf and Lemniscat of Bernoulli on (—5,5) X

<_57 5>

€ 1072 | 10=* | 1078 | 10716
clipping 12 27 41 47
bisection 50 66 66 66

all iterations || 195 | 282 | 298 308
roots 18 10 8 6
time(ms) 3.09 | 4.07 | 4.39 | 4.63

Table 10: Example 13; computing time and number of iterations

within prescribed accuracy e

5 BIVARIATE LINEAR CLIPPING 80

.
.

Figure 49: Intersection of curves of bidegree (6, 6)

bilinclip | IPPx

iter. 2305 389
result 39 78
time(ms) 85 44

Table 11: Example 14; time and number of iterations within

prescribed accuracy &

In order to get comparable data with [PP algorithm, we applied our method
on two examples presented in Mourrain and Pavone (2005). With respect
to computer settings data presented in this paper (Intel Pentium 4, 2.0 GHz
with 512 Mo RAM), our time-concerning data should be increased by some

"handicap” constant compensating different processor tacting.

5 BIVARIATE LINEAR CLIPPING 81

Figure 50: Intersection of curves of bidegree (8, 8)

Example 14 Intersection of curves of bidegree (6, 6) are computed, see Fig.
49. Table 11 shows number of iterations, number of roots and time with
respect to the accuracy ¢ = 1075 computed via bilinclip and interval

projected polyhedron algorithm with local preconditioner (IPP*).

Example 15 Intersection of curves of bidegree (8,8), Mourrain and Pavone
(2005) example a, are computed. Table 12 shows number of iterations, num-
ber of roots and time with respect to the accuracy ¢ = 107% computed via
bilinclip and (IPPx).

Remark 3 In examples above, the behaviour of bilinclip was different
with the respect of single or multiple roots. We remind the definition of
single root of system (76). We say, that point A = [z, yo] is a single root
of system (76) if and only if (p(zo,v0) = 0,¢(x0,y) = 0) and there exist
gradients V ¢, Vi p and are linearly independent (see Figure 51).

5 BIVARIATE LINEAR CLIPPING 82

bilinclip | IPPx

iter. 2045 1055
result 16 60
time(ms) 76 120

Table 12: Example 15; time and number of iterations within

prescribed accuracy e

Figure 51: Single root of bivariate polynomial system.

Remark 4 Let us assume the system (76) has only one single root in domain
D = Dy and let us denote d; the diameter of domain D; after i-th iteration
of bilinclip. According to many examples, the sequence (d;)o,12,.. has the

convergence rate r = 2. The proof is under research.

5 BIVARIATE LINEAR CLIPPING 83

Remark 5 In fact, the algorithm bilinclip is not pure generalization of
quadclip. Contrary to quadclip, the best approximant with respect to L,
norm is "only” linear in bivariate case. Using quadratic approximant, one
can expect — similarly to univariate case — higher convergence rate. Equally,
the number of operations (and consequently the time per one iteration) is
expected to be increased. The intersection of two conics instead of lines
(compare with line 8, Algorithm 3) appears to be more complicated. Anyway,
the improvement of algorithm bilinclip could be possible this way and is

still under research.

6 CONCLUSION 84
6 Conclusion

Based on the techniques of degree reduction, we derived an algorithm for
computing all roots of a given polynomial within a given interval, with a
certain accuracy. We analyzed the convergence rates of the new technique
and compared it with the classical technique of Bézier clipping. In the case
of single roots, the new algorithm performs similarly to Bézier clipping. For
double and near double roots, however, it reduces the computational effort.

This is due to its superlinear convergence rate (%) in the case of double roots.

As a direct improvement of the method, one may replace the quadratic poly-
nomial ¢ by a cubic or even a quartic one. In this case, the formulas of
Cardano and Ferrari are needed to compute the intersections of the bound-
ing polynomial strip with the ¢t-axis. Clearly, these computations are more
involved than in the case of a quadratic polynomial. It is to be expected
that such a generalized algorithm would provide an even higher convergence
rate for single and double roots, and superlinear convergence for roots with

multiplicities 3 and 4.

Demonstrated on bivariate case, the generalization of the algorithm is pre-
sented. This technique is based on approximation by linear polynomials and
it appears to have quadratic convergence rate in single roots, leading to re-
sults comparable to those of Mourrain and Pavone (2005). Attempting to
reach faster convergence rate for single roots and superlinear convergence
for double roots, we will follow the idea of approximation by polynomials of

higher degree.

LIST OF FIGURES 85

List of Figures

10

11

Root-finding problem: all roots of polynomial f(z) on interval

[a,b] are required. 2

Bivariate polynomial system: polynomial system (1) over do-

main €2 represented as curves intersection. 3

Bézier curves of degree 4: curve with b) inflection, ¢) loop, d)

CUSP. + + v e v e e e e e e e e e e 8

Variation diminishing property: arbitrary line has no more

intersections with Bézier curve then with its control polygon. . 10

Convex hull property: curve is included inside the convex hull

of its control polygon. L. 11
Construction of parabola by linear interpolation. 12

de Casteljau algorithm: Construction of a point of Bézier

curve for parameter value tq = % 13

Subdivision: Construction of a control polygon of Bézier curve
defined on subinterval [0,2]. 15

Degree elevation: Bézier cubic represented by five control points

after one elevation step. 16

LIST OF FIGURES

12

13

14

15

16

17

18

19

20

21

22

Repeated degree elevation: Parabolic arc after four degree el-
evation steps. o

Nonparametric curve: polynomial f(z) of degree six on [0, 1]

represented as a Bézier curve. L.

Bilinear Bézier patch: isoparametric curves for uy = % and
Vo = %
Bézier patch of bidegree (3,3): bounding curves and control

point mesh. Lo

Biquadratic Bézier patch: tangent plane in the corner control
point.o

Tensor product surface: shaping u-curve b™(u) sweeps along
the path v-curve by (v).

Tensor product bicubic patch: construction of a point b*?(%, 1)

via five de Casteljau algorithms.

Degree elevation of Bézier patch: reduction to several univari-

ate degree elevation steps. oL

Nonparametric patch: polynomial f(x,y) represented as Bézier
patch.

The affine transformation: the L? norm of f and its affine

image A(f) are the same.

Maximum norm on BB-coefficients: polynomial f and its norm

||f||£3°‘}’3’l?lo with respect to the interval [o,5].

86

LIST OF FIGURES

23

24

25

26

27

28

29

Maximum norm: polynomial f and its norm || f||[ooé’ﬁ ! with re-

spect to the interval [a, B].

Degree reduction: polynomial p and its best approximant ¢

with respect to L2 norm.

Dual basis: The Bernstein basis of degree 3 and the associated

dual basis functions.

The best quadratic approximant: given polynomial p and its
best approximant ¢ with respect to L? norm; y-coordinates
of control points ¢y, ¢1, ¢y are computed via matrix (46); -

coordinates are distributed uniformly on [e,5].

One iteration of bezclip: (a) The polynomial p is represented
in BB-form on [, /3], (b) The convex hull C of control polygon
is constructed, (c) C is intersected with ¢—axis in order to define
new interval [o/, '], (d) p is subdivided on [/, 5'].

False positive answer: If the lenght of the interval [o/, 3] is
less then prescribed accuracy €, bezclip returns [o/, 5] as

root-containing interval.o

One iteration of quadclip: (a) the polynomial p is represented
in BB-form on [, 3], (b) ¢ — the best quadratic approximant of
p with respect to Ly norm, (c) the error bound 4 is obtained
as the maximum length of the thick grey vertical bars, (d)
the lower and upper bounds m = ¢ — 6 and M = ¢ + 6,
the intersection of the strip enclosed by them with the t—axis

defines the new interval [o/,'].

87

LIST OF FIGURES

30

31

32

33

34

35

36

37

38

39

The definition of a new domain: a) The parabolic strip — en-
closed by M and m — is intersected with t-axis, five options
may occur, b) Case 1, intervals defined by roots of M and
m are intersected with the original interval [a, 8] in order to

obtain the new domains.

The degree-raised parabola: The best quadratic approximant
q, its original BB-representation (¢,¢;,¢) and the control

polygon of ¢ after degree raising.
The lenghts of both thick grey vertical bars are of O(h?).
Proof of Eq. (68)

The convergence rate in the double root: The roots of lower

bound m define the new interval [cv; i1, Bit1]- - - - -

a) Time per 10° iterations of algorithms quadclip and bezclip.

b) Ratio of computing times of both algorithms.

Example 6 (single root): Tested polynomials of degrees 2, 4,
8 and 16 with the root in [0,1].

Example 6 (single root): Computing time ¢ in 10™°s vs. accu-
racy. The times for more than 16 significant digits have been

obtained by extrapolation.

Example 7 (double root): Tested polynomials f5, fi and fig
with the root 3 on [0,1].

Example 7 (double root): Computing time ¢ in 10™°s vs. accu-
racy. The times for more than 16 significant digits have been

obtained by extrapolation.

88

29

62

LIST OF FIGURES 89

40

41

42

43

44

45

46

Example 6 (near double root): Tested polynomials fs, fy and

Example 8 (near double root): Computing time ¢ in 107°s vs.
accuracy. The times for more than 16 significant digits have

been obtained by extrapolation. 65

One iteration of bilinclip I: (a) the polynomial system (76)
over given domain D, (b) the graphs of polynomials z =
p(z,y), 2 = q(x,y) are represented by surfaces in R?, (c) poly-
nomial p expressed by Bernstein—Bézier patch over D, (d) p is
the best linear approximant of p with respect to Ly norm over
domain D. 72

One iteration of bilinclip II: (e) p and p are both expressed
in Bernstein-Bézier form, the error bound ¢” is obtained as the
maximum length of the thick black vertical bars, (f) the lower
and upper bounds p’ = p—46” and p¥ = p+ 67, (g) boundaries
of polynomials p and ¢ are intersected with plane zy in order
to construct planar bounding strips P and @), respectively, (h)
the intersection of strips is bounded by the least square that

defines the new domain D’. 73

Construction of the new domain: (a) Parallelogram P is bounded
by the least rectangle of which sides are parallel with axes x
and y, (b) intersection of the original domain D and the rect-

angle R gives the new domain D'. 74
The null set of p and ¢ in unit domain 75

Polynomials p and ¢ over unit domain. 76

LIST OF FIGURES 90

47

48

49

50

51

Astroid and Maltese Cross curve on domain (—5,5) x (=5,5). 78
Descartes leaf and Lemniscat of Bernoulli on (—5,5) x (=5,5) 79
Intersection of curves of bidegree (6,6) 80
Intersection of curves of bidegree (8,8) 81

Single root of bivariate polynomial system. 82

LIST OF TABLES

List of Tables

1

Scheme of point construction via de Casteljau algorithm. . . .
Convergence rates of the algorithms quadclip and bezclip.

Number of operations per step of the iteration for various val-

ues of the degree n. L.
Time per iterations in microseconds for various degrees n.

Example 6 (single root): Number of iterations N and comput-
ing time ¢ in ps for various values of degree n and accuracy e.
The times for more than 16 significant digits (shown in italic)

have been obtained by extrapolation.

Example 7 (double root): Number of iterations N and comput-
ing time ¢ in us for various values of degree n and accuracy .
The times for more than 16 significant digits (shown in italic)

have been obtained by extrapolation.

Example 8 (near double root): Number of iterations N and
computing time ¢ in ps for various values of degree n and ac-
curacy €. The times for more than 16 significant digits (shown

in italic) have been obtained by extrapolation.

Example 11; computing time, number of all iterations and

number of roots within prescribed accuracy

91

14

54

58

61

Example 12; number of iterations with respect to the accuracy €. 78

LIST OF TABLES 92

10

11

12

Example 13; computing time and number of iterations within

prescribed accuracy €o 79

Example 14; time and number of iterations within prescribed

ACCUTACY € + « v v v v e e e e e e e e e e e e 80

Example 15; time and number of iterations within prescribed

ACCUTACY € + « v v v v e e e e e e e e e e e 82

REFERENCES 93

References

Ahn, Y. J., B.-G. Lee, Y. Park, and J. Yoo (2004), Constrained polynomial
degree reduction in the Lo-norm equals best weighted Euclidean approxi-
mation of Bézier coefficients, Comput. Aided Geom. Design 21, 181-191.

Efremov, A., V. Havran and H.-P. Seidel (2005), Robust and numerically
stable Bézier clipping method for ray tracing NURBS surfaces, in Proc.
21st Spring Conference on Computer Graphics, ACM Press, New York,
127-135.

Ciesielski, Z. (1987), The basis of B-splines in the space of algebraic polyno-
mials, Ukrainian Math. J. 38, 311-315.

Eck, M. (1992), Degree reduction of Bézier curves, Comp. Aided Geom. De-
stgn 10, 237-251.

Gautschi, W. (1997), Numerical analysis, Birkhduser, Boston, MA.

Elber, G., and M.-S. Kim (2001), Geometric constraint solver using multi-
variate rational spline functions, In The Sizth ACM/IEEE Symposium on
Solid Modeling and Applications, Ann Arbor, MI, 1-10.

Gatellier, G., A. Labrouzy, B. Mourrain, and J. Técourt (2003), Comput-
ing the topology of three-dimensional algebraic curves, In: T. Dokken

and B. Jiittler, editors, Computational methods for algebraic spline sufaces
(COMPASS), Springer, Berlin, 27—43.

Gonzalez-Vega, L., and 1. Necula, Efficient topology determination of im-
plicitly defined algebraic plane curves, Comp. Aided Geom. Design 19,
719-743.

REFERENCES 94

Kim, M.-S., G. Elber and J.-K. Seong, Geometric computations in parameter
space, in Proc. 21st spring conference on Computer graphics, ACM Press,
New York, 27-32.

Hoschek, J. and D. Lasser (1993), Fundamentals of computer aided geometric
design. AK Peters, Wellesley, MA.

Jittler B. (1998), The dual basis functions of the Bernstein polynomials.
Adv. Comput. Math. 8, 345-352.

Ko, K., T. Sakkalis, and N. Patrikalakis (2005). Resolution of multiple roots
of nonlinear polynomial systems, Int. .J. Shape Model., 11.1, 121-147.

Lee, K. (1999), Principles of CAD/CAM/CAE systems. Prentice Hall.

Li, T. (2003), Numerical solution of polynomial systems by homotopy con-
tinuation methods. In F. Cucker, editor, Special Volume: Foundations of
Computational Mathematics, volume XI of Handbook of Numerical Analy-
sis, North—Holland, 209-304.

Lutterkort, D., J. Peters and U. Reif (1999), Polynomial degree reduction
in the Lo-norm equals best Euclidean approximation of Bézier coefficients.
Comput. Aided Geom. Design 16, 607-612.

Mourrain, B., and J.-P. Pavone (2005), Subdivision methods for solving poly-
nomial equations, Technical Report no. 5658, INRIA Sophia Antipolis,
http://www.inria.fr/rrrt/rr-5658.html.

Nishita, T., T. Sederberg, and M. Kakimoto (1990), Ray tracing trimmed
rational surface patches. Siggraph Proceedings, ACM, 337-345.

Nishita, T., and T. W. Sederberg (1990), Curve Intersection using Bézier
Clipping. Computer—Aided Design 22.9 538-549.

REFERENCES 95

Patrikalakis, N. M., and T. Maekawa (2002a), Chapter 25: Intersection prob-
lems, in G. Farin, J. Hoschek, and M.-S. Kim, editors, Handbook of com-
puter aided geometric design. Amsterdam: Elsevier, 623-649.

Patrikalakis, N. M., and T. Maekawa (2002b), Shape interrogation for com-

puter aided design and manufacturing, Springer, Berlin.

Sherbrooke, E. C., and N. M. Patrikalakis (1993), Computation of the solu-
tions of nonlinear polynomial systems, Comput. Aided Geom. Design 10,
379-405.

Sommese, A. J., and C. W. Wampler (2005), The numerical solution of sys-

tems of polynomials arising in engineering and science. World Scientific.

Sunwoo, H. (2005), Matrix representation for multi-degree reduction of
Bézier curves. Comput. Aided Geom. Design 22, 261-273.

Wang, H., J. Kearney, and K. Atkinson (2003), Robust and efficient compu-
tation of the closest point on a spline curve, in T. Lyche et al., editors,
Curve and surface design: Saint Malo 2002, Nashboro Press, Brentwood,
397-405.

