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Abstra
tWe present an algorithm whi
h is able to 
ompute all roots of a given univari-ate polynomial within a given interval. In ea
h step, we use degree redu
tionto generate a strip bounded by two quadrati
 polynomials whi
h en
loses thegraph of the polynomial within the interval of interest. The new interval(s)
ontaining the root(s) is (are) obtained by interse
ting this strip with theabs
issa axis. In the 
ase of single roots, the sequen
e of the lengths of theintervals 
onverging towards the root has the 
onvergen
e rate 3. For doubleroots, the 
onvergen
e rate is still superlinear (32). We show that the newte
hnique 
ompares favorably with the 
lassi
al te
hnique of B�ezier 
lipping.The generalization of algorithm for polynomial systems is presented. Demon-strating on bivariate 
ase, polynomials are both represented by surfa
es inR3 and the solution is therefore the interse
tion of graphs of both polynomi-als and the plane xy. Likewise the univariate 
ase, we 
onstru
t the linearbounding spatial strips of graphs of both polynomials, whi
h de�ne a paral-lelogram in the plane xy. This parallelogram is interse
ted with the originaldomain in order to de�ne the new one.Keywordsroot �nding, polynomial, B�ezier 
lipping, polynomial system, L2 norm.
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1 INTRODUCTION 11 Introdu
tionEÆ
ient and robust algorithms whi
h 
ompute the solutions (of systems of)polynomial equations are frequently needed for modeling, pro
essing andvisualizing free-form geometry des
ribed by pie
ewise rational parametri
representations. For instan
e, the problem of interse
ting a straight line witha rational parametri
 surfa
e leads to a polynomial system 
onsisting of twoequations for two unknowns. If the surfa
e is given in impli
it form, then onlya single equation has to be solved. Su
h interse
tions have to be 
omputedfor visualizing free{form surfa
es using ray-tra
ing Nishita, Sederberg andKakimoto (1990); Efremov, Havran and Seidel (2005). Similarly, the problemof 
omputing the 
losest point(s) on a 
urve or surfa
e to a given point leadsto polynomial equations, see e.g. Wang, Kearney and Atkinson (2003).Solutions of various geometri
 problems in 
omputer geometry, su
h as surfa
e{surfa
e interse
tions, bise
tors / medial axes, 
onvex hull 
omputations, et
.,lead to pie
ewise algebrai
 
urves Lee (1999); Patrikalakis and Maekawa(2002b); Kim, Elber and Seong (2005). In this situation, eÆ
ient meth-ods for analyzing and representing these 
urves are needed Gonzalez-Vegaand Ne
ula (2002); Gatellier et al. (2003). Root �nding algorithms for (sys-tems of) polynomial equations are again an important ingredient of thesete
hniques; they are used to determine \
riti
al points" (whi
h are needed todetermine the topology of the 
urve) and suitable initial points for tra
ingthe 
urve.More pre
isely, in these and similar appli
ations, all solutions of a (systemof) polynomial equation(s) within a 
ertain domain 
, whi
h is typi
ally abox in Rn , are sought for. We are interested in numeri
al te
hniques whi
hguarantee that all solutions are found. Two major approa
hes exist:
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Figure 1: Root-�nding problem: all roots of polynomial f(x) oninterval [a; b℄ are required.Homotopy methods (see, e.g. Li, 2003; Sommese and Wampler, 2005) startwith the solutions of a simpler system with the same stru
ture of the setof solutions. This system is then 
ontinuously transformed into the originalsystem, and the solutions are found by tra
ing the solutions of the auxiliarysystem. These te
hniques are parti
ularly well suited for 
 = C n .B�ezier 
lipping and related te
hniques are based on the 
onvex-hull propertyof Bernstein-B�ezier- (BB-) representations. The main idea is des
ribed inSe
tion 2.5. Combined with subdivision, these te
hniques lead to fast (a
hiev-ing quadrati
 
onvergen
e for single roots) solvers for univariate polynomialsNishita, Sederberg and Kakimoto (1990); Nishita and Sederberg (1990). Mul-tivariate versions, su
h as the IPP algorithm, exist and have found their way
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y

xzFigure 2: Bivariate polynomial system: polynomial system (1) overdomain 
 represented as 
urves interse
tion.into industrial software, su
h as 
ommer
ial CAD systems Sheerbrooke andPatrikalakis (1993); Elber and Kim (2001); Ko, Sakkalis and Patrikalakis(2005); Mourrain and Pavone (2005).We will formulate a novel te
hnique for 
omputing the roots of univariatepolynomials and will present a way of a generalization for multivariate 
ase.Both methods are based on degree redu
tion. This term denotes the pro
essof approximating a polynomial of a 
ertain degree by a lower degree one, withrespe
t to a suitable norm, and possibly subje
t to boundary 
onditions. Ithas been studied thoroughly in the ri
h literature on this subje
t E
k (1992);Lutterkort, Peters and Reif (1999); Ahn, Lee, Park and Yoo (2004); Sunwoo(2005). In earlier years, the issue of degree redu
tion was motivated by degree
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Figure 3: Bivariate polynomial system: solution of the system (1)represented as the interse
tion of three surfa
es: z = f(x; y), z =g(x; y), z = 0.limitations of CAD systems.The basi
 idea of the new robust univariate root solver quadrati
 
lippinq(quad
lip) is brie
y des
ibed as follows. The input of the algorithm 
onsistsof a polynomial f , interval [a; b℄ and a

ura
y ", the output are all roots off on [a; b℄ within desired pre
ision ". In the �rst step, the best quadrati
approximant of f with respe
t to L2 norm is dete
ted. Then, upper andlower quadrati
 bounds are 
onstru
ted and its roots symboli
ally 
omputed.At most four real roots are obtained. Dis
ussing the mutual position of rootsand the original interval [a; b℄, a new subinterval is lo
ated. If no roots exist,the interval is erased. Algorithm works till the lenght of all root-
ontaining



1 INTRODUCTION 5intervals is less then pres
ribed a

ura
y ".The possibility of generalization of quad
lip for multivariate polynomialsystems is shown. Demonstrated on bivariate systemf(x; y) = 0g(x; y) = 0; (1)the algorithm linbivar works with three surfa
es in R3 instead of two 
urvesin R2 (
ompare: Figure 2 and 3). Requiring all roots of system (1) lying indomain 
, the best planar approximants with respe
t to generalized L2 normof both surfa
es are found. Constru
ting planar boundaries for both surfa
es,its interse
tion with plane (x; y) gives the new domain.The remainder of this thesis is organized as follows. Se
tion 2 summarizesthe basi
 informations on B�ezier 
urves and pat
hes, degree redu
tion, dualbasis, L2 norm and about the 
lassi
al te
hnique of B�ezier 
lipping.Se
tion 3 desribes the new algorithm: quadrati
 
lippinq (quad
lip) andshows 
ubi
al 
onvergen
e rate in single roots and superlinear 
onvergen
erate in double root 
ases. Further, we provide a detailed 
omparison ofquad
lip with B�ezier 
lipping with respe
t to 
riteria su
h as 
omputationale�ort, rate of 
onvergen
e and 
omputing times.Se
tion 4 shows the generalized algorithm (linbivar) for bivariate polyno-mial systems (1). We present rough
asted 
omparison with results of Mour-rain and Pavone (2005). In addition, the way of generalization for system ofn variables is brie
y suggested.



2 PRELIMINARIES 62 PreliminariesIn this se
tion, we summarize some basi
 
on
epts and results 
on
erningB�ezier 
urves and pat
hes, dual basis, degree redu
tion, L2 norm and B�ezier
lipping.2.1 B�ezier 
urvesA B�ezier 
urve of degree n 2 N is de�ned by formulab(t) = nXi=0 Bni (t)bi; t 2 [0; 1℄; (2)where 
oeÆ
ients bi 2 Em are 
alled 
ontrol points and Bni (t) are the Bern-stein polynomials given by Bni (t) = �ni�ti(tn�i); (3)and the binomial 
oeÆ
ients are determined by�ni� = 8>><>>: n!i!(n�i)! if 0 � i � n0 otherwise:Example 1 B�ezier 
urves of degree 4 of di�erent shape are shown in Fig. 5,
orresponding Bernstein polynomials
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B40(t) = (1� t)4; (5)B41(t) = 4t(1� t)3; (6)B42(t) = 6t2(1� t)2; (7)B43(t) = 4t3(1� t); (8)B44(t) = t4; (9)are displayed in Fig. 4.Observing the importan
e of the order of 
ontrol points, two neighbouringpoints are 
onne
ted by a line. The set of these lines and 
ontrol points isknown as 
ontrol polygon.
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) loop,d) 
usp.



2 PRELIMINARIES 9Properties of Bernstein polynomials: Looking at the de�nition of Bern-stein polynomials in more detail, the de�nition (3) yields dire
tly the list ofproperties below:1. nonnegativity: Bni (t) � 0 for all i, n and t 2 [0; 1℄;2. partition of unity: Pni=0Bni (t) = 1 for all t 2 [0; 1℄;3. linear pre
ision: Pni=0 inBni (t) = t for all t 2 [0; 1℄;4. symmetry: Bni (t) = Bnn�i(1� t) for any n and t 2 [0; 1℄;5. re
ursion: Bni (t) = (1� t)Bn�1i (t) + tBn�1i�1 (t);6. for any n, Bni (t) attains exa
tly one maximum on [0; 1℄ for t = in ;7. derivative: ddtBni (t) = n(Bn�1i�1 (t)+Bn�1i (t)), where Bn�1�1 (t) � Bn�1n (t) �0;8. (1� t)Bni (t) = n+1�in+1 Bn+1i (t);9. tBni (t) = i+1n+1Bn+1i+1 (t);Properties of B�ezier 
urves: As a result of Bernstein polynomials prop-erties above, one 
an easily formulate following attributes of B�ezier 
urves.1. aÆne invarian
e: bary
entri
 
ombinations are invariant under aÆnemapping. In other words, aÆne image of 
ontrol polygon and the
ontrol polygon of the aÆne image of the 
urve are the same;2. 
onvex hull property: for any B�ezier 
urve and any parameter t0 2[0; 1℄, the point b(t0) lies inside the 
onvex hull of the 
ontrol polygon;3. endpoints interpolation: b(0) = b0 and b(1) = bn;
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Figure 6: Variation diminishing property: arbitrary line has no moreinterse
tions with B�ezier 
urve then with its 
ontrol polygon.4. end-tangent ve
tors: b0(0) = n(b1 � b0) and b0(1) = n(bn � bn�1);5. variation diminishing property: number of interse
tions of a line withB�ezier 
urve is bounded by the number of interse
tions of the line with
ontrol polygon.Example 2 Let b0, b1, b2 be three 
ontrol points of B�ezier 
urve of degreen = 2, b(t) =P2i=0B2i bi, t 2 [0; 1℄ and let us 
onstru
tb10(t) = (1� t)b0 + tb1;b11(t) = (1� t)b1 + tb2;b20(t) = (1� t)b10 + tb11:Inserting the �rst two equations into the third one, we obtain
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Figure 7: Convex hull property: 
urve is in
luded inside the 
onvexhull of its 
ontrol polygon.
b(t) = 2Xi=0 B2i bi = b20(t):We observe that given parabola is de
omposed into two linear interpolants.Therefore, for �xed value t0 2 [0; 1℄, it is easy to 
onstru
t b(t0) by threelinear interpolations (see Figure 8).2.1.1 The de Casteljau algorithmThe basi
 idea of linear de
omposition, shown in example 2, is easily gener-alized to arbitrary degree. Let us assume B�ezier 
urve of degree n, b(t) =Pni=0Bni bi. Then, with respe
t to re
ursive property of Bernstein polynomi-als, we obtain
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b0

b1
b2b10 b11b20

Figure 8: Constru
tion of parabola by linear interpolation.
b(t) = (1� t) n�1Xi=0 Bn�1i bi + t n�1Xi=0 Bn�1i bi+1: (10)In other words, b(t) is expressed by linear 
ombination of two 
urves ofdegree n� 1. This prin
iple is a basi
 ground for the de Casteljau algorithm(11), whi
h re
ursively repeats the de
omposition. For a �xed value t = t0,we obtain a re
ursive formula for 
onstru
ting the point b(t0) = bn0 on givenB�ezier 
urve: bki (t0) = (1� t0)bk�1i (t0) + t0bk�1i+1 (t0); (11)where bi = bi0, k = 1; 2; : : : ; n and i = 0; 1; : : : ; n� k. Sought point b(t0) isfound by sequen
e of linear interpolations (see table 1 and �gure 9).Subdivision: A B�ezier 
urve bn is usually de�ned on the interval [0; 1℄, butit 
an be easily de�ned on arbitrary subinterval [0; 
℄. Handling B�ezier 
urve
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Figure 9: de Casteljau algorithm: Constru
tion of a point of B�ezier
urve for parameter value t0 = 35 .by 
ontrol points, the 
onstru
tion of the new 
ontrol polygon is required.Finding this 
ontrol polygon is known as subdivision of B�ezier 
urve.Using de Casteljau algorithm, the 
ontrol points 
i, that de�ne 
urve bn onsubinterval [0; 
℄, are given by formula
i = bi0(
); (12)for all i = 0; : : : ; n, (see Fig. 10). Analogously, following the symmetryproperty of Bernstein polynomials, the 
ontrol points 
orresponding to thesubinterval [
; 1℄ are given by the bn�ii (
), i = 0; : : : ; n.
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b0 b1 b2 : : : : : : : : : bn�2 bn�1 bnb10 b11 b12 : : : : : : b1n�2 b1n�1 b1nb20 b21 : : : : : : : : : b2n�1 b2n...bn�10 bn�11bn0Table 1: S
heme of point 
onstru
tion via de Casteljau algorithm.2.1.2 Degree elevationHandling and shaping a B�ezier 
urve using its 
ontrol points is really a skillfulapproa
h. With respe
t to bary
entri
 
oordinates, ea
h 
ontrol point hasits weight of in
uen
e on 
hanging the shape. In order to modify the 
urveslightly, more 
ontrol points are desired. Degree elevation (or degree raising)is a standard te
hnique, whi
h allows us to des
ribe a n-th degree B�ezier
urve as a B�ezier 
urve of higher degree.Let us assume B�ezier 
urve of degree n is given by its 
ontrol points b0; : : : ;bn.Our task is to �nd a 
ontrol polygon b(1)0 ; : : : ;b(1)n+1 that de�nes the same
urve.
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Figure 10: Subdivision: Constru
tion of a 
ontrol polygon of B�ezier
urve de�ned on subinterval [0; 35 ℄.A

ording to the notation from (2) and using properties of Bernstein poly-nomials we rewrite our 
urve asb(t) = nXi=0 n + 1� in+ 1 Bn+1i (t)bi + nXi=0 i + 1n+ 1Bn+1i+1 (t)bi; t 2 [0; 1℄: (13)Looking at this equation in more detail, one 
an easily see that the upperbound of the �rst sum may be in
reased to n + 1 sin
e the last expressionis equal to zero. Shifting the index of the se
ond sum by one and adding azero-term for i = 0 we getb(t) = n+1Xi=0 n + 1� in+ 1 Bn+1i (t)bi + n+1Xi=0 i + 1n+ 1Bn+1i (t)bi�1; t 2 [0; 1℄: (14)Summing up appropriate 
oeÆ
ients, we obtain a formula for 
ontrol pointsof (n+ 1)-st degree B�ezier 
urveb(1)i = in+ 1bi�1 + (1� in + 1)bi; i = 0; : : : ; n+ 1: (15)
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b0 = b(1)4

b1
b2

b3 = b(1)0
b(1)3 b(1)2

b(1)1
Figure 11: Degree elevation: B�ezier 
ubi
 represented by �ve 
ontrolpoints after one elevation step.Verti
es b(1)i are 
onstru
ted by pie
ewise linear interpolation and 
onvexhull of the new 
ontrol polygon lies inside the original one (see Figure 11).One 
an easily see, that this pro
ess may be repeated to obtain 
ontrolpolygon with higher number of 
ontrol points than is the degree of given
urve. This a
t allows us to modify original 
urve with higher pre
isionwhi
h is desirable in many appli
ations.Let us denote 
ontrol polygon of n-th degree B�ezier 
urve by b0; : : : ;bn.After r degree elevation steps, this 
urve is des
ribed by n+ r 
ontrol pointsb(1)0 ; : : : ;b(1)n+r (see Figure 12). New 
ontrol points are de�ned by formulab(r)i = nXj=0 bj�nj� � ri�j��n+ri � ; (16)whi
h is easily proved by indu
tion.
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Figure 12: Repeated degree elevation: Paraboli
 ar
 after four degreeelevation steps.Degree redu
tion: The inverse pro
ess is at least as important as theprevious one. Having a B�ezier 
urve of degree n, the goal is to �nd B�ezier
urve of lower degree de�ning the same 
urve. Generally, the exa
t degreeredu
tion is not possible. For example, 
ubi
 with a 
usp 
annot be expressedlike quadrati
. Thus, degree redu
tion is an aproximative te
hnique and thevalue of the error between the original 
urve and the redu
ed one dependson the metri
 we apply. Many te
hniques are known (for more informationsee Introdu
tion and Referen
es). Redu
tion with respe
t to L2 metri
 isdes
ribed in se
tion (2.4).
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ements
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16Figure 13: Nonparametri
 
urve: polynomial f(x) of degree six on[0; 1℄ represented as a B�ezier 
urve.2.1.3 Nonparametri
 
urvesThe following property may seem to be trivial, but its further appli
ation(se
tion 3) for
es me to emphasize its signi�
an
e. Dis
ussing B�ezier 
urveof degree n, both 
oordinates of this 
urve are desribed by polynomials ofdegree at most n (see (2) and (3)). Investigating polynomials, one 
an imme-diately see, that this group of fun
tions is easily des
ribed by B�ezier 
urves.Let us assume polynomial y = f(x) of degree n over interval [0; 1℄. Itsparametrization as a B�ezier 
urve isb(t) = 24 x(t)y(t) 35 = 24 tf(t) 35 ; (17)



2 PRELIMINARIES 19where polynomial f(t) is assumed to be expressed with respe
t to Bernsteinbasis f(t) = nXi=0 biBni (t): (18)A

ording to the linear pre
ision property of Bernstein polynomials, 
ontrolpoints are uniformly distributed in the dire
tion of x-axis (see Figure 13).Then, given polynomial is rewritten asb(t) = nXi=0 24 i=nbi 35Bni (t); (19)where real numbers bi are known as B�ezier ordinates and the uniform sepa-rators i=n, i = 0; : : : ; n are 
alled B�ezier abs
issas.Of 
ourse, we are not restri
ted only to unit interval [0; 1℄. Due to theaÆne invarian
e property of B�ezier 
urves, we 
an des
ribe polynomial overarbitrary domain [a; b℄. B�ezier abs
issas are a + i(b� a)=n, i = 0; : : : ; n.



2 PRELIMINARIES 202.2 B�ezier pat
hesB�ezier pat
h of bidegree (m;n) is de�ned by formulabm;n(u; v) = mXi=0 nXj=0 Bmi (u)Bnj (v)bi;j; [u; v℄ 2 [0; 1℄� [0; 1℄; (20)where 
oeÆ
ients bij are 
alled 
ontrol points and Bmi (u), Bnj (v) are theBerstein polynomials de�ned in 3.For a �xed value u0 2 [0; 1℄, the termbn(u0; v) = mXi=0 nXj=0 Bmi (u0)Bnj (v)bi;j; v 2 [0; 1℄; (21)depends only on one parameter v and therefore de�nes a 
urve on givensurfa
e. This 
urve is 
alled isoparametri
 v-
urve. For all u0 2 [0; 1℄, weobtain a system of v-
urves lying on the pat
h. Analogously, �xing parameterv, the se
ond system of isoparametri
 u-
urves is obtained. The doublesummation in equation (20) may be easily represented in matrix form:bm;n(u; v) = hUm0 (u) : : : Umm (u) i 26664 b00 : : : b0n... ...bm0 : : : bmn 37775 26664V n0 (v)...V nn (v)37775 ; (22)where the matrix fbijg is known as geometry matrix of the pat
h. Obviously,B�ezier pat
h is uniquely de�ned by its 
ontrol points. Similarly to the 
ase ofB�ezier 
urves and its 
ontrol polygons, the sequen
e of 
ontrol points playsvery important role. In order to avoid misinterpretation, ea
h 
ontrol pointis 
onne
ted to its neighborou(s) in u and v-dire
tions by line. These linesand 
ontrol points form 
ontrol points mesh.Example 3 B�ezier pat
h of bidegree (1; 1) given by four distin
t 
ontrolpoints b00, b01, b10, b11:
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h: isoparametri
 
urves for u0 = 12and v0 = 13 .
b1;1(u; v) = 1Xi=0 1Xj=0 Bmi (u)Bnj (v)bi;j; [u; v℄ 2 [0; 1℄� [0; 1℄ (23)and its matrix expressionb1;1(u; v) = h 1� u u i 24 b00 b01b10 b11 35 24 1� vv 35 : (24)This bilinear B�ezier pat
h is known as hyperboli
 paraboloid, isoparametri
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PSfrag repla
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Figure 15: B�ezier pat
h of bidegree (3; 3): bounding 
urves and 
on-trol point mesh.u- and v-
urves are both lines (see Figure 14).Properties of B�ezier pat
hes: Resulting dire
tly from the properties ofthe Bernstein polynomials, we obtain1. CoeÆ
ients of B�ezier pat
h are bary
entri
 
oordinates, in other words:mXi=0 nXj=0 Bmi (u)Bnj (v) � 1; (25)for all u, v 2 [0; 1℄;2. aÆne invarian
e: 
omputing the aÆne image of 
ontrol points mesh



2 PRELIMINARIES 23of the surfa
e and 
ontrol points mesh of the image of the surfa
e, weobtain the same result;3. 
onvex hull property: Bmi (u), Bnj (v) are nonnegative for all 0 � u; v �1. With respe
t to equations (25) and (20), bm;n(u; v) lies inside the
onvex hull of 
ontrol points mesh;4. boundary 
urves: Evaluating the pat
h bm;n(u; v) for u = 0; 1, v =0; 1, four B�ezier 
urves b(0; v), b(1; v), b(u; 0), b(u; 1) are obtained,respe
tively. Control polygons are formed by appropriate boundary
ontrol points (see Fig. 15);5. tangent planes in the 
orners: 
omputing ��ubm;n(u; v), ��vbm;n(u; v)and evaluating them for u = 0; 1, v = 0; 1, the 
orner tangent planesare de�ned by three 
orner 
ontrol points (see Figure 16).
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Figure 16: Biquadrati
 B�ezier pat
h: tangent plane in the 
orner
ontrol point.
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bm1 (u)
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Figure 17: Tensor produ
t surfa
e: shaping u-
urve bm(u) sweepsalong the path v-
urve bn2 (v).2.2.1 Tensor produ
tDe�nition of B�ezier pat
h via 
ontrol points mesh (equation (20)) is 
lassi
alapproa
h to this topi
. Observing this equation thoroughly, one 
an inter-prete this de�nition more from the kinemati
 point of view. Fixing the valueof parameter v = 0, we obtain a starting 
urvebm0 (u) = bm;n(u; 0) = mXi=0 Bmi (u)bi;0; u 2 [0; 1℄: (26)Varying the parameter v, the system � of B�ezier 
urves of degree m is ob-tained. This one-parametri
al system � may be apprehended as a traje
toryof 
urve bm0 (u) during 
ertain aÆne kinemati
 motion. In other words: 
urve
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Figure 18: Tensor produ
t bi
ubi
 pat
h: 
onstru
tion of a pointb3;3(23 ; 12) via �ve de Casteljau algorithms.bm0 (u) is swept out, 
hanging 
ontinuously its shape (see Fig. 17). Clearly,ea
h point travels on the B�ezier 
urve of degree n. Then, u-
urves are per-
eived as shaping 
urves, v-
urves represent traje
tories of points bm0 (u) dur-ing this motion. Resulting from the symmetry of equation (20), u and v-
urves may be repla
ed by ea
h other to re
eive the same surfa
e. Then,surfa
e bm;n(u; v) is known as tensor produ
t surfa
e.Consequently, the 
onstru
tion of a point on a tensor produ
t surfa
e maybe easily redu
ed to several one-dimensional steps. Figure 18 shows theappli
ation of de Casteljau algorithm for u-
urves. The 
ontrol polygon forisoparametri
 v-
urve is a
quired.



2 PRELIMINARIES 262.2.2 Degree elevationFollowing the tensor produ
t approa
h to B�ezier pat
hes, the degree elevationpro
ess may be easily redu
ed to several univariate degree elevation steps ofB�ezier 
urves (see se
tion 2.1.2). Let us assume B�ezier pat
h of bidegree(m;n) as a one of bidegree (m + 1; n). The goal is to �nd 
oeÆ
ients b(1;0)i;jsu
h that bm;n(u; v) = nXj=0 m+1Xi=0 Um+1i (u)b1;0i;j| {z }qi(u) Bnj (v): (27)The n + 1 terms qi(u) express n + 1 univariate degree elevation, that wasdis
ussed in se
tion 2.1.2. Applying repeatedly (15), the 
oeÆ
inets b(1;0)i;jare dire
tly obtained:b(1;0)i;j = im+ 1bi�1;j + (1� im+ 1)bi;j; (28)where i = 0; : : : ; m + 1 and j = 0; : : : ; n. Interpreting this result, 
ontrolpoint mesh of the degree elevated B�ezier pat
h is 
reated from the originalone by n + 1 elevations of row 
ontrol points of isoparametri
 u-
urves (seeFig. 19).Requesting the progressive degree elevation by k degrees in one dire
tion,the formula (16) is applied. The degree elevation in the v-dire
tion is de-�ned analougously. To re
eive the degree elevated surfa
e by one in bothdire
tions, we elevate in u-dire
tion and the v-dire
tion. Due to the tensorprodu
t properties, it is irrelevant whether we elevate in u-dire
tion �rst andthen in v-dire
tion or vi
e versa.
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Figure 19: Degree elevation of B�ezier pat
h: redu
tion to severalunivariate degree elevation steps.2.2.3 Nonparametri
 pat
hesAnalogously to the se
tion (2.1.3), one of the most signi�
ant appli
ations ofB�ezier pat
hes is related to polynomials. The graph of polynomial f in twovariables x and y is easy expressed as a B�ezier pat
h by parametrizationP(x; y) = 26664 xyf(x; y)37775 ; (29)where polynomial f is assumed to be expressed in Bernstein formf(x; y) = mXi=0 nXj=0 Bmi (x)Bnj (y)pi;j; (30)
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ements x y
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Figure 20: Nonparametri
 pat
h: polynomial f(x; y) represented asB�ezier pat
h.over unit square [0; 1℄� [0; 1℄. Due to linear pre
ision property of Bernsteinpolynomials, the 
ontrol point mesh is given bybi;j(x; y) = 26664 i=mj=nbi;j 37775 : (31)



2 PRELIMINARIES 29The orthogonal proje
tion of bi;j into the plane z = 0 
reate a uniform pointmesh known as B�ezier abs
issas and 
oeÆents bi;j are 
alled B�ezier ordinates.This is ilustrated in Figure 20. Of 
ourse, we are not restri
ted only to unitdomain [0; 1℄� [0; 1℄. Using aÆne transformation, we 
an map unit domaininto arbitrary domain [a; b℄ � [
; d℄ to obtain B�ezier pat
h over requesteddomain.2.3 Linear spa
e of polynomialsInvestigating polynomials and its degree redu
tion, it is essential to mentionseveral notes 
on
ernig the linear spa
e of polynomials fo
using on its norms.Let �n be the linear spa
e of polynomials of degree at most n, with the basis(Bni )i=0;:::;n, where Bni (t) = �ni�(t� �)i(� � t)n�i(� � �)n (32)are the Bernstein polynomials with respe
t to a 
ertain interval [�; �℄ � R.Let us de�ne L2 inner produ
thf; gi[�;�℄ = Z �� f(t) g(t) dt (33)with respe
t to the interval [�; �℄ and the normkfk[�;�℄2 = 1hqhf; fi[�;�℄; (34)where h = � � �, indu
ed by it.In this de�nition of the norm, the fa
tor 1=h is introdu
ed in order to obtaina norm whi
h is invariant under aÆne transformations of the t{axis (see
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Figure 21: The aÆne transformation: the L2 norm of f and its aÆneimage A(f) are the same.Figure 21). More pre
isely, for any aÆne transformationA : t 7! A0 + A1 t (35)with A1 6= 0, the norms of f with respe
t to the interval [�; �℄ and of f ÆA�1with respe
t to the interval A([�; �℄) are identi
al,kfk[�;�℄2 = kf Æ A�1kA([�;�℄)2 : (36)Various norms on �n are available. Fo
using on polynomials from the pointof view of B�ezier 
urves, we de�ne the maximum norm on BB-
oeÆ
ients ofpolynomial f : kfk[�;�℄BB;1 = maxi=0;:::;n jbij; (37)where 
onstants bi are the y-
oordinates of 
ontrol points (
ompare with 18and see Figure 22).The maximum norm of polynomial f is given bykfk[�;�℄1 = maxt2[�;�℄ jf(t)j: (38)
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Figure 22: Maximum norm on BB-
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ients: polynomial f and itsnorm kfk[�;�℄BB;1 with respe
t to the interval [�; �℄.
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Figure 23: Maximum norm: polynomial f and its norm kfk[�;�℄1 withrespe
t to the interval [�; �℄.



2 PRELIMINARIES 32This is ilustrated in Figure 23.One 
an easily 
he
k that all three norms { L2 norm, maximum norm andmaximum norm on BB-
oeÆ
ients { satisfy the de�nition of the norm. ItsaÆne invarian
e is obvious.2.4 Degree redu
tion and dual basisThe pro
ess of approximating a polynomial of degree n by a polynomial ofdegree k, where k < n, with respe
t to a suitable norm, is 
alled degreeredu
tion. We 
onsider the spa
es �n and �k � �n, along with the L2 normde�ned in se
tion 2.3.Applying degree redu
tion with respe
t to this norm to the given polynomialp gives the unique polynomial q 2 �k whi
h minimizes kp� qk[�;�℄2 , i.e.,q = arg minq2�k kp� qk[�;�℄2 : (39)Various te
hniques for 
omputing q are available (see introdu
tion for refer-en
es). We des
ribe a simple te
hnique whi
h is based on the dual basis ofthe Bernstein polynomials.The dual basis to the Bernstein basis of �k 
onsists of the unique polynomialsDkj of degree k whi
h satisfyhBki ; Dkj i[�;�℄ = Æij = 8<: 1 if i = j0 otherwise ; i; j = 0 : : : k; (40)see Figure 25. The polynomials Dkj 
an be represented with respe
t to theBernstein basis, Dki (t) = 1h kXj=0 
i;j Bkj (t); i = 0; : : : ; k; (41)
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Figure 24: Degree redu
tion: polynomial p and its best approximantq with respe
t to L2 norm.with the 
oeÆ
ients
p;q = (�1)p+q�kp��kq� min(p;q)Xj=0 (2j + 1)�k+j+1k�p ��k�jk�p��k+j+1k�q ��k�jk�q� (42)whi
h have been derived in J�uttler (1998), and h = ���. Alternatively, thesepolynomials 
an be 
omputed using a re
urren
e relation involving dual basispolynomials of lower degree and Legendre polynomials Ciesielski (1987).The polynomial q obtained by applying degree redu
tion to p (see (80) and(39)) with respe
t to the interval [�; �℄ may be 
omputed fromq(t) = kXj=0 hp(t); Dkj (t)i[�;�℄Bkj (t) = kXj=0  nXi=0 bi�n;ki;j !Bkj (t); (43)with the 
oeÆ
ients �n;ki;j = hBni (t); Dkj (t)i[�;�℄: (44)
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Figure 25: Dual basis: The Bernstein basis of degree 3 and the asso-
iated dual basis fun
tions.Using the identity hBmi ; Bnj i[�;�℄ = h �mi ��nj�(m+ n + 1) �m+ni+j � ; (45)these 
oeÆ
ients 
an be 
omputed from (86) and (42). Note that these
oeÆ
ients do not depend on the interval [�; �℄, sin
e the fa
tors h in (86)and (45) 
an
el ea
h other.Example 4 The degree redu
tion 
oeÆ
ients for n = 5 and k = 2 form thematrix
(�5;2i;j )i=0;::;5;j=0;:::;2 =

2666666666664
2328 �37 328928 27 � 3280 914 �17�17 914 0� 328 27 928328 �37 2328

3777777777775 : (46)
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Figure 26: The best quadrati
 approximant: given polynomial p andits best approximant q with respe
t to L2 norm; y-
oordinates of
ontrol points 
0, 
1, 
2 are 
omputed via matrix (46); x-
oordinatesare distributed uniformly on [�; �℄.The 
oeÆ
ients ve
tor (
0; 
1; 
2) of q is obtained by multiplying the row ve
-tor (b0; : : : ; b5) of the 
oeÆ
ients of p by this matrix. Representing parabolaq by B�ezier 
urve, the 
ontrol points are
0 = 24 �
0 35 ; 
1 = 24 (�+ �)=2
1 35 ; 
2 = 24 �
2 35 : (47)This illustrates Figure 26.



2 PRELIMINARIES 36Algorithm 1 bez
lip (p, [�; �℄) fB�ezier 
lippingg1: if length of interval [�; �℄ � " then2: C  
onvex hull of the 
ontrol points of p with respe
t to [�; �℄.3: if C interse
ts t-axis then4: Find [�0; � 0℄ by interse
ting C with the t{axis.5: if j �0 � � 0 j< 12 j �� � j then6: return (bez
lip (p, [�0; � 0℄))7: else8: return (bez
lip (p,[�; 12(� + �)℄) [ bez
lip (p,[12(�+ �); �℄)).9: end if10: else11: return (;)12: end if13: else14: return ([�; �℄)15: end if2.5 B�ezier 
lipping and its 
onvergen
e rateB�ezier 
lipping, presented in Nishita, Sederberg and Kakimoto (1990), isrobust polynomial solver, that gives all roots of given polynomial p on giveninterval [�; �℄. Presenting a new polynomial solver with similar stru
ture and
omparing it with B�ezier 
lipping (se
tion 3), we re
all this method at �rst.B�ezier 
lipping, see Algorithm 1 (bez
lip), uses the 
onvex hull property ofBernstein{B�ezier representations in order to generate one or more intervalsof maximum length " whi
h 
ontain(s) the roots.The polynomial p is represented by its B�ezier 
oeÆ
ients with respe
t to the
urrent interval [�; �℄. The graph of p 
an be des
ribed as a parametri
 B�ezier
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) (d)Figure 27: One iteration of bez
lip: (a) The polynomial p is repre-sented in BB-form on [�; �℄, (b) The 
onvex hull C of 
ontrol polygonis 
onstru
ted, (
) C is interse
ted with t{axis in order to de�ne newinterval [�0; � 0℄, (d) p is subdivided on [�0; � 0℄.
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PSfrag repla
ements

� �p t� �0 �0Figure 28: False positive answer: If the lenght of the interval [�0; � 0℄is less then pres
ribed a

ura
y �, bez
lip returns [�0; � 0℄ as root-
ontaining interval.
urve (see se
tion 2.1.3) with 
ontrol pointsbi = ((n� i)� + i�n ; bi); i = 0; : : : ; n: (48)Due to the 
onvex{hull property, the graph lies within the 
onvex hull C ofthe 
ontrol points (bi)i=0;:::;n. Consequently, all roots of the polynomial p are
ontained in the interval whi
h is obtained by interse
ting C with the t{axis.This observation, whi
h is illustrated by Figure 27
, is used in lines 2{4 ofthe algorithm to generate the next interval.In line 6, the de Casteljau algorithm is applied twi
e to generate the 
oeÆ-
ients with respe
t to the subinterval [�0; � 0℄. Similar, it is applied on
e inline 8, in order to bise
t the interval.For any root 
ontained in [0; 1℄, the 
all bez
lip(p; [0; 1℄) returns an interval
ontaining that root. B�ezier 
lipping may produ
e false positive answers (i.e.,intervals not 
ontaining any root) if the graph of the polynomial gets very
lose to the t{axis.



2 PRELIMINARIES 39In order to study the eÆ
ien
y of B�ezier 
lipping, we analyze the sequen
e(hi)1i=0 of the lengths of the intervals [�; �℄ generated after 
alling bez
lip itimes. Note that algorithm bez
lip a
ts re
ursively, and 
ombines bise
tionwith 
lipping steps. Here we follow only one path in the exe
ution tree whi
hleads towards one of the roots. As observed by Nishita and Sederberg (1990),this sequen
e has 
onvergen
e rate 2, provided that it leads to a single root.In the 
ase of multiple roots, however, only linear 
onvergen
e is a
hieved.(See Gauts
hi (1997) for more information about 
onvergen
e rates).



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 403 Computing roots via quadrati
 
lippingIn this se
tion, we des
ribe a new algorithm quad
lip for isolating the rootsof univariate polynomial and analyze its 
onvergen
e rates in the 
ases ofroots with multipli
ities 1 and 2. Then, we present a detailed 
omparisonwith the standard te
hnique of B�ezier 
lipping.3.1 The root{�nding problemLet �n be the linear spa
e of polynomials of degree n, with the basis (Bni )i=0;:::;n,where Bni (t) = �ni�(t� �)i(� � t)n�i(� � �)n (49)are the Bernstein polynomials with respe
t to a 
ertain interval [�; �℄ � R.Any polynomial p 2 �n 
an be des
ribed by its Bernstein{B�ezier represen-tation with respe
t to that interval,p(t) = nXi=0 biBni (t); t 2 [�; �℄; (50)with 
ertain Bernstein{B�ezier (BB) 
oeÆ
ients bi 2 R.We 
onsider a given polynomial p 2 �n in Bernstein{B�ezier representationwith respe
t to the interval [�; �℄. All roots of p within [�; �℄ are to be found.More pre
isely, we want to generate a set of intervals of maximum length "whi
h 
ontain the roots, where the parameter " spe
i�es the desired a

ura
y.
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tion to a quadrati
 polynomial (see se
tion 2.4), we pro-pose a new te
hnique for 
omputing the roots, see Algorithm 3 (quad
lip).Some steps of the algorithm will be explained in more detail:� In line 2 of the algorithm, we generate the best quadrati
 approximant qwith respe
t to the L2 norm on the 
urrent interval [�; �℄, see Fig. 29(b).This is a
hieved by multiplying the row ve
tor of B�ezier 
oeÆ
ients of pwith the degree redu
tion matrix (�n;2i;j )i=0;:::;n;j=0;1;2. These 
oeÆ
ientsare pre
omputed and stored in a lookup{table.� In order to obtain the bound Æ onkp� qk[�;�℄1 = maxt2[�;�℄ jp(t)� q(t)j; (51)see line 3, we raise the degree of the Bernstein{B�ezier representationof the quadrati
 polynomial q to n. Similar to degree redu
tion, thisis a
hieved by multiplying the row ve
tor of B�ezier 
oeÆ
ients of qwith the degree raising matrix (�2;ni;j )i=0;2;1;j=0;:::;n. These 
oeÆ
ientsare again pre
omputed and stored in a lookup{table, see Example 5.The bound is 
hosen as Æ = maxi=0;:::;n jbi � 
ij; (52)see Fig. 29(
), where bi and 
i are the 
oeÆ
ients of the Bernstein{B�ezier representations of p and q of degree n with respe
t to [�; �℄,respe
tively.
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Algorithm 2 quad
lip(p, [�; �℄) fQuadrati
 
lippingg1: if length of interval [�; �℄ � " then2: q  generate a quadrati
 polynomial by applying degree redu
tionwith respe
t to the L2 inner produ
t on [�; �℄ to p.3: Æ  
ompute bound on kp�qk[�;�℄1 by 
omparing the Bernstein{B�ezierrepresentations of p and q.4: m q � Æ flower boundg5: M  q + Æ fupper boundg6: if the strip en
losed by m;M does not interse
t the t{axis within [�; �℄then7: return (;)8: else9: Find intervals [�i; �i℄, i = 1; : : : ; k, by interse
ting m;M with thet{axis. The number k of intervals is either 1 of 2.10: if maxi=1;:::;k j�i � �ij > 12 j�� �j then11: return (quad
lip (p,[�; 12(�+�)℄) [ quad
lip (p,[12(�+�); �℄)).12: else13: S  ;14: for i = 1; : : : ; k do15: S  S [ quad
lip(p; [�i; �i℄)16: end for17: return (S)18: end if19: end if20: else21: return ([�; �℄)22: end if
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)Figure 29: One iteration of quad
lip: (a) the polynomial p is repre-sented in BB-form on [�; �℄, (b) q { the best quadrati
 approximantof p with respe
t to L2 norm, (
) the error bound Æ is obtained as themaximum length of the thi
k grey verti
al bars, (d) the lower andupper bounds m = q� Æ and M = q+ Æ, the interse
tion of the stripen
losed by them with the t{axis de�nes the new interval [�0; � 0℄.



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 44� In lines 4 and 5, the bound Æ is used to 
onstru
t quadrati
 polynomialsm and M satisfying8t 2 [�; �℄ : m(t) � p(t) �M(t): (53)� In lines 6{19 we analyze the strip en
losed by m and M and its inter-se
tion with the t{axis, see Fig. 30. If the interse
tion is empty, thenno roots exist. Otherwise, the interse
tion 
onsists of either one or twointervals that 
ontain the roots. Their boundaries are found by solvingtwo quadrati
 equations, see Remark 2.� If the length(s) of this/these interval(s) is/are suÆ
iently small, when
ompared to the length of the previous interval [�; �℄, then quad
lipis applied to them (lines 14{16). Otherwise we bise
t the interval [�; �℄and apply quad
lip to the two halves (line 11).For any root 
ontained in [�; �℄, the 
all quad
lip(p; [�; �℄) returns an inter-val 
ontaining that root. Similar to B�ezier 
lipping, quadrati
 
lipping mayprodu
e false positive answers (i.e., intervals not 
ontaining any root) if thegraph of the polynomial gets very 
lose to the t{axis.Example 5 The degree raising 
oeÆ
ients for n = 5 and k = 2 form thematrix (�2;5i;j )i=1;:::;2;j=0;:::;5 = 26664 1 35 310 110 0 00 25 35 35 25 00 0 110 310 35 1 37775 ; (54)where 
oeÆ
ients are 
omputed via dual basis�2;5i;j = hB2i (t); D5j (t)i[�;�℄; (55)(see se
tion 2.4). The ve
tor of BB-representation of degree-raised parabolaq is obtained by multiplying the row ve
tor (
0; 
1; 
2) by matrix (�2;5i;j ), seeFigure 31.
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(a) (b)Figure 30: The de�nition of a new domain: a) The paraboli
strip { en
losed by M and m { is interse
ted with t-axis, �veoptions may o

ur, b) Case 1, intervals de�ned by roots of Mand m are interse
ted with the original interval [�; �℄ in orderto obtain the new domains.Remark 1 In order to 
onstru
t bound Æ (see eq. 52)), the maximum normon ve
tors of BB-representation of p and q is used. Clearly,kp� qk[�;�℄1 = nXi=0 jbi � 
ijBni (t) � nXi=0 maxi=0;:::;n jbi � 
ijBni (t) == maxi=0;:::;n jbi � 
ij = kp� qk[�;�℄BB;1 = Æ; (57)therefore the bounds M and m are well de�ned.Remark 2 The roots of a quadrati
 polynomial (
f. lines 6 and 9 of thealgorithm) g(t) = B20(t) d0 +B21(t) d1 +B22(t) d2 are t1j2 = (1� �1j2)�+ �1j2�where �1j2 = d1 � d0 �pDd2 � 2d1 + d0 : (58)
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Figure 31: The degree-raised parabola: The best quadrati
approximant q, its original BB-representation (
0; 
1; 
2) andthe 
ontrol polygon of q after degree raising.with D = d21 � d0 d2. If jd2 � 2d1 + d0j is below a user{de�ned threshold(whi
h depends on the a

ura
y of the numeri
al 
omputation), then the
omputation of the roots via (58) be
omes numeri
ally unstable. In thissituation we apply B�ezier 
lipping to the 
ontrol polygon of g in order tobound the roots.3.3 Convergen
e rateIn order to make this thesis self{
ontained, we start this se
tion by formu-lating two te
hni
al lemmas.Lemma 1 For any given polynomial p, there exists a 
onstant Cp depending



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 47solely on p, su
h that for all intervals [�; �℄ � [0; 1℄ the bound Æ generated inline 3 of Algorithm quad
lip satis�es Æ � Cp h3, where h = � � �.Proof 1 Due to the equivalen
e of norms in �nite{dimensional real linearspa
es, there exist 
onstants C1 and C2 su
h that8r 2 �n : krk[�;�℄BB;1 � C1krk[�;�℄2 and krk[�;�℄2 � C2krk[�;�℄1 ; (59)where the three norms are the maximum (`1) norm of the Bernstein{B�ezier
oeÆ
ients, the L2 norm and the maximum norm (see se
tion 2.3) all withrespe
t to the interval [�; �℄. The 
onstants C1 and C2 do not depend on the
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3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 48given interval [�; �℄, sin
e all three norms are invariant with respe
t to aÆnetransformations of the t{axis; 
f. (83) and (84).Consequently,Æ = kp� qk[�;�℄BB;1 � C1kp� qk[�;�℄2 � C1kp�Q�k[�;�℄2 �� C1C2kp�Q�k[�;�℄1 � 16 C1C2 maxt02[0;1℄ jp000(t0)j h3; (60)where Q� is the quadrati
 Taylor polynomial at t = � to p and p000 is thethird derivative. �Lemma 2 For any given polynomial p there exist 
onstants Vp, Dp and Apdepending solely on p, su
h that for all intervals [�; �℄ � [0; 1℄ the quadrati
polynomial q obtained by applying degree redu
tion to p satis�eskp� qk[�;�℄1 � Vp h3; kp0 � q0k[�;�℄1 � Dp h2; and kp00 � q00k[�;�℄1 � Ap h; (61)with h = � � �, where k:k[�;�℄1 is de�ned as in (??).Proof 2 Similar to the proof of the previous lemma, it 
an be shown thatthe norm krk[�;�℄? = krk[�;�℄1 + h kr0k[�;�℄1 + h2 kr00k[�;�℄1 ; (62)satis�es krk[�;�℄? � C3krk[�;�℄2 (63)where the 
onstant C3 does not depend on the interval [�; �℄, again due to theaÆne invarian
e. Therefore, and using similar arguments as in the previousproof,kp� qk[�;�℄? = kp� qk[�;�℄1 + h kp0 � q0k[�;�℄1 + h2 kp00 � q00k[�;�℄1 �� C3kp� qk[�;�℄2 � C3kp�Q�k[�;�℄2 � C2C3kp�Q�k[�;�℄1 �� 16 C2C3 maxt02[0;1℄ jp000(t0)j h3; (64)



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 49where Q� is the quadrati
 Taylor polynomial at t = � to p. Clearly, thisimplies (61) �.Now we are able to analyze the speed of 
onvergen
e. The 
ase of single anddouble roots will be dealt with separately. In the 
ase of single roots, weobtain the following result.Theorem 1 If the polynomial p has a root t? in [�; �℄ and provided thatthis root has multipli
ity 1, then the sequen
e of the lengths of the intervalsgenerated by quad
lip whi
h 
ontain that root has the 
onvergen
e rate d =3.Proof 3 The 
all quad
lip(p; [�; �℄) generates a sequen
e of intervals([�i; �i℄)i=0;1;2;::: (65)with the lengths hi = �i � �i whose boundaries 
onverge to t?. We assumethat the �rst derivative satis�es p0(t?) > 0. If this assumption is violated,one may 
onsider the polynomial �p instead of p.Let qi be the quadrati
 polynomial obtained by degree redu
tion with respe
tto the interval [�i; �i℄. Sin
e p0 is 
ontinuous and due to Lemma 2, theinequalitieskp0 � p0(t?)k[�i;�i℄1 � 14p0(t?) and kq0i � p0k[�i;�i℄1 � 14p0(t?) (66)hold for all but �nitely many values of i, where the maximum norm refers tothe interval [�i; �i℄. These two inequalities implykq0i � p0(t?)k[�i;�i℄1 � 12 p0(t?); hen
e 8t 2 [�i; �i℄ : q0i(t) > 12 p0(t?): (67)On the other hand, the verti
al width 2Æi of the strip en
losed by m and Mis bounded by 2Cp h3i , due to Lemma 1. Thus, the lengths hi of the intervals
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Figure 33: Proof of Eq. (68)satisfy hi+1 � 4Cpp0(t?) h3i (68)for all but �nitely many values of i, see Fig. 33. �As for B�ezier 
lipping, multiple roots slow down the speed of 
onvergen
e.However, the rate is still super-linear for double roots, as des
ribed in thefollowing Theorem. See Figure 34 for an illustration.Theorem 2 If the polynomial p has a root t? in [�; �℄ and provided thatthis root has multipli
ity 2, then the sequen
e of the lengths of the intervalsgenerated by quad
lip whi
h 
ontain that root has the 
onvergen
e rate d =32 .Proof 4 Similar to the proof of the previous Theorem, we analyze the se-quen
e (65) of intervals with lengths hi generated by the algorithm whi
h
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hi+1Figure 34: The 
onvergen
e rate in the double root: The rootsof lower bound m de�ne the new interval [�i+1; �i+1℄.
ontain the double root. We assume that the se
ond derivative satis�esp00(t?) > 0. If this assumption is violated, one may again 
onsider the poly-nomial �p instead of p.Again, let qi be the quadrati
 polynomial obtained by degree redu
tion withrespe
t to the interval [�i; �i℄, and let Æi be the asso
iated distan
e bound ob-tained in line 3 of the algorithm. Sin
e p00 is 
ontinuous and due to Lemma 2,the inequalitieskp00 � p00(t?)k[�i;�i℄1 � 14p00(t?) and kq00i � p00k[�i;�i℄1 � 14p00(t?) (69)hold for all but �nitely many values of i, where the maximum norm refers to



3 COMPUTING ROOTS VIA QUADRATIC CLIPPING 52the interval [�i; �i℄. These two inequalities implykq00i � p00(t?)k[�i;�i℄1 � 12p00(t?); hen
e 8t 2 [�i; �i℄ : q00i (t) > 12p00(t?): (70)We 
onsider the lower bound mi = qi�Æi obtained by applying degree redu
-tion with respe
t to the interval [�i; �i℄. Due to p00(t?) > 0, its interse
tionswith the t{axis bound the next interval [�i+1; �i+1℄ for all but �nitely manyvalues of i. Let mi = ai2 (t� t?)2 + bi(t� t?) + 
i (71)with 
ertain real 
oeÆ
ients ai = q00i (t?), bi = q0i(t?) and 
i. A

ording to(70), the leading 
oeÆ
ient satis�esai � 12p00(t?) (72)for all but �nitely many values of i. Due to the two Lemmas and to p0(t?) = 0,the other two 
oeÆ
ients satisfyjbij = jp0(t?)� q0(t?)j � kp0 � q0k[�i;�i℄1 � Dp h2i (73)and j
ij = jp(t?)�m(t?)j � jp(t?)� q(t?)j+ jq(t?)�m(t?)j� kp� qk[�i;�i℄1 + Æi � (Vp + Cp) h3i : (74)The 
oeÆ
ients 
i are non{positive, 
i � 0.For all but �nitely many values of i, the lengths of the interval [�i+1; �i+1℄ arebounded by the di�eren
e of the roots of the lower bound mi, whi
h leads tohi+1 � 2s b2ia2i � 2
iai � jbijai +s2j
ijai � 2Dpp00(t?)h2i +s4(Cp + Vp)p00(t?) h3=2i : (75)Hen
e, the sequen
e (hi)i=0;1;2;::: has the 
onvergen
e rate 32 . �



4 COMPARISON 534 ComparisonWe 
ompare the two algorithms (B�ezier 
lipping and quadrati
 
lipping)with respe
t to �ve 
riteria: 
onvergen
e rate, number of operations periteration step, time per iteration step, number of iterations needed to a
hievea 
ertain pres
ribed a

ura
y, and 
omputing time needed to a
hieve a 
ertainpres
ribed a

ura
y.4.1 Convergen
e rates, number of operations and timeper iteration stepThe results 
on
erning the 
onvergen
e rates are summarized in Table 2.With respe
t to these rates, the new algorithm 
learly performs better thanB�ezier 
lipping. However, the 
omputational e�ort per iteration step isequally important. For instan
e, it is known that solving univariate equa-tions by the se
ant method, where the 
onvergen
e rate is (1+p5)=2 � 1:618for a single root, is generally faster than Newton's method with quadrati

onvergen
e rate, sin
e it needs only one evaluation of the fun
tion per iter-ation step, while Newton's method needs one evaluation of the fun
tion andand another one of the derivative. Consequently, the 
omputational 
osts oftwo steps of the se
ant method and of one step of the Newton method are
omparable.Table 3 shows the number of operations needed per iteration step, where itis assumed that one new interval is found (i.e., k = 1 in line 9 of Algorithm3) and that this interval has shrunk by more than 12 , 
f. line 5 of Algorithm1 and line 10 of Algorithm 3. Also, the number of operations needed for
omputing the 
onvex hull for Algorithm 1 varies slightly; here we assume to



4 COMPARISON 54root multipli
ity single root double root triple root, et
.quad
lip 3 32 1bez
lip 2 1 1Table 2: Convergen
e rates of the algorithms quad
lip and bez
lip.degree quad
lip bez
lipn � �� � p j:j P � �� � p j:j P2 120 75 30 4 0 229 90 30 5 0 0 1254 228 115 32 4 6 385 214 62 9 0 0 2858 548 243 30 4 2 827 582 174 17 0 0 77316 1676 691 30 4 2 2403 1698 590 33 0 0 2321Table 3: Number of operations per step of the iteration for variousvalues of the degree n.have a 
onvex 
ontrol polygon, sin
e this is the limit 
ase in general.The 
lassi
al B�ezier 
lipping has a slight advantage, though the 
omputa-tional 
osts of both methods are roughly 
omparable. The number of op-erations grows quadrati
ally with the degree n. For both algorithms, the
omputational e�ort grows linearly, ex
ept for the quadrati
 grow 
aused byde Casteljau's algorithm whi
h is used to generate the Bernstein{B�ezier rep-resentation with respe
t to the newly generated interval. For large degreesn, the de Casteljau algorithm dominates the overall 
omputational 
osts andthe 
omputational 
osts of both algorithms be
ome in
reasingly similar.This pi
ture be
omes even more 
lear by 
omparing the 
omputation times.We implemented both algorithms in C on a PC with a Intel(R) Xeon(TM)



4 COMPARISON 55degree of the polynomial 2 4 8 16quad
lip 2.0 2.8 4.4 9.6bez
lip 1.3 1.9 3.5 8.3Table 4: Time per iterations in mi
rose
onds for various degrees n.CPU (2.40GHz) with 512KB of RAM running Linux and measured the timeneeded for 105 iterations (in order to obtain a measurable quantity). Theresults are reported in Table 4.In addition, Fig. 35a shows the relation between 
omputing times and poly-nomial degree, and Fig. 35b visualizes the ratio tquad
lip=tbez
lip. For largevalues of the degree n, the ratio tends to 1, sin
e the 
omputational e�ort ofthe de Casteljau algorithm be
omes in
reasingly dominant.4.2 Number of iterations and 
omputing times vs. a
-
ura
yIn order to analyze the relation between the 
omputational e�ort and thedesired a

ura
y, we dis
uss three examples, whi
h represent polynomialswith a single root, a double root, and two roots whi
h are very 
lose (\neardouble root").Example 6 (Single root) We applied the algorithms bez
lip and quad
lipto the four polynomialsf2(t) = (t� 13)(3� t); f4(t) = (t� 13)(2� t)(t+ 5)2;f8(t) = (t� 13)(2� t)3(t + 5)4; f16(t) = (t� 13)(2� t)5(t + 5)10in order to 
ompute the single root 13 in the interval [0; 1℄. Table 5 reportsthe number of iterations and the 
omputing times for various values of the
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ratio

n(a) (b)Figure 35: a) Time per 105 iterations of algorithms quad
lip andbez
lip. b) Ratio of 
omputing times of both algorithms.desired a

ura
y ". The numbers of iterations were obtained from an im-plementation in Maple, while the 
omputing times were measured with thehelp of the implementation in C. The 
omputing times for a

ura
y below10�16 were obtained by multiplying the number of iterations with the timeper iteration (see Table 4). In addition, Figure 37 visualizes the relationbetween 
omputing times and desired a

ura
y.For these four polynomials, the new algorithm (quad
lip) performs slightlybetter than B�ezier 
lipping, though the di�eren
e is not that signi�
ant: theoverall 
omputing times to a
hieve a 
ertain a

ura
y are roughly the same.In parti
ular, this is true for the realisti
 range of a

ura
y (no more than16 signi�
ant digits). This is due to the fa
t that the quadrati
 
onvergen
erate of B�ezier 
lipping is already very fast.Example 7 (Double root)We applied the algorithms bez
lip and quad
lip
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" 10�2 10�4 10�8 10�16 10�32 10�64 10�128

degreen quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip2 N 1 2 1 3 1 3 1 4 1 5 1 6 1 7t 2.0 2.5 2.0 3.5 2.0 3.5 2.0 5.9 2.0 7.2 2.0 8.6 2.0 9.94 N 2 2 2 3 3 4 3 5 4 6 5 7 5 8t 5.4 3.9 5.4 5.5 8.1 7.2 8.2 8.8 10.8 10.6 13.4 12.5 13.5 14.48 N 2 2 2 3 3 4 3 5 4 6 5 7 5 8t 8.7 6.8 8.9 10.1 13.0 16.9 13.0 20.4 17.5 23.8 21.8 23.8 21.8 27.416 N 2 2 2 3 3 4 3 5 4 6 5 7 5 8t 18.7 16.3 18.7 24.2 28.0 32.3 28.1 39.9 37.5 47.5 46.9 55.4 46.9 63.3Table 5: Example 6 (single root): Number of iterations N and 
om-puting time t in �s for various values of degree n and a

ura
y ".The times for more than 16 signi�
ant digits (shown in itali
) havebeen obtained by extrapolation.
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ura
y. The times for more than 16 signi�
ant digits have beenobtained by extrapolation.
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ements f16n = 2; 4 n = 16Figure 38: Example 7 (double root): Tested polynomials f2, f4 andf16 with the root 12 on [0,1℄.to the four polynomialsf2(t) = (t� 12)2; f4(t) = (t� 12)2(t + 2)(3� t);f8(t) = (t� 12)2(4� t)3(t+ 5)2(t + 7);f16(t) = (t� 12)2(4� t)7(t+ 5)6(t+ 7)in order to 
ompute the double root 12 in the interval [0; 1℄. Table 6 reportsthe number of iterations and the 
omputing times for various values of thedesired a

ura
y ". Again, the numbers of iterations were obtained from animplementation in Maple, while the 
omputing times were measured with thehelp of the implementation in C. The 
omputing times for a

ura
y below10�16 were obtained by multiplying the number of iterations with the timeper iteration (see Table 4). In addition, Figure 39 visualizes the relationbetween 
omputing times and desired a

ura
y.For these four polynomials, the new algorithm (quad
lip) performs far better
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" 10�2 10�4 10�8 10�16 10�32 10�64 10�128

degreen quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip2 N 1 7 1 14 1 27 1 54 1 107 1 213 1 343t 2.0 8.6 2.0 15.6 2.0 30.3 2.0 61.6 2.0 124 2.0 246 2.0 3834 N 3 7 3 14 4 27 4 53 5 107 7 213 8 332t 7.1 13.6 7.2 25.1 10.4 47.2 10.4 93.7 16.8 188 19.6 375 22.4 5628 N 3 5 4 9 6 17 6 34 9 68 10 135 12 269t 12.2 16.7 16.4 32.2 26.6 63.1 26.9 124 39.6 249 44.1 495 52.8 98816 N 3 4 5 7 6 14 8 27 10 54 11 107 12 213t 27.4 32.3 45.4 56.2 56.1 107 76.8 206 96.2 402 105 823 115 1635Table 6: Example 7 (double root): Number of iterations N and 
om-puting time t in �s for various values of degree n and a

ura
y ".The times for more than 16 signi�
ant digits (shown in itali
) havebeen obtained by extrapolation.
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n = 4 n = 8Figure 39: Example 7 (double root): Computing time t in 10�5s vs.a

ura
y. The times for more than 16 signi�
ant digits have beenobtained by extrapolation.than B�ezier 
lipping. This is due to the higher 
onvergen
e rate (32) of thenew algorithm.In pra
ti
e, the 
ase of doubleroot is unlikely to happen. Conversely, the
ase of \near double root" is quite frequent and therefore it is worth ofs
rutinizing.
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lip andquad
lip to the four polynomialsf2(t) = (t� 0:56)(t� 0:57); f4(t) = (t� 0:4)(t� 0:40000001)(t+ 1)(2� t);f8(t) = (t� 0:50000002)(t� 0:50000003)(t+ 5)3(t+ 7)3;f16(t) = (t� 0:30000008)(t� 0:30000009)(6� t)7(t + 5)6(t+ 7)in order to 
ompute the two roots whi
h are 
ontained within the interval[0; 1℄. Table 7 reports the number of iterations and the 
omputing times forvarious values of the desired a

ura
y ". On
e again, the numbers of itera-tions were obtained from an implementation in Maple, while the 
omputingtimes were measured with the help of the implementation in C. The 
omput-ing times for a

ura
y below 10�16 were obtained by multiplying the numberof iterations with the time per iteration (see Table 4). In addition, Figure 39visualizes the relation between 
omputing times and desired a

ura
y.
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" 10�2 10�4 10�8 10�16 10�32 10�64 10�128

degreen quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip quad
lip bez
lip2 N 1 13 1 18 1 20 1 22 1 25 1 27 1 29t 2.0 13.2 2.0 18.6 2.0 20.9 2.0 23.1 2.0 24.6 2.0 247.0 2.0 29.04 N 3 7 4 13 6 27 8 35 10 37 12 39 14 43t 7.1 14.2 9.4 26.9 15.1 52.2 23.9 68.4 28.1 71.8 33.6 75.3 39.2 83.68 N 4 5 5 9 7 18 9 26 11 28 13 30 15 32t 16.2 20.2 20.3 35.8 30.4 71.4 40.2 103 49.4 111 57.4 119 66.2 12716 N 2 4 3 7 5 14 7 22 9 24 11 26 11 28t 18.6 32.2 27.4 58.4 50.6 113 63.2 176 86.4 192 105 208 105 224Table 7: Example 8 (near double root): Number of iterations N and
omputing time t in �s for various values of degree n and a

ura
y ".The times for more than 16 signi�
ant digits (shown in itali
) havebeen obtained by extrapolation.
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n = 4 n = 8Figure 41: Example 8 (near double root): Computing time t in 10�5svs. a

ura
y. The times for more than 16 signi�
ant digits have beenobtained by extrapolation.For these four polynomials, the new algorithm (quad
lip) performs betterthan B�ezier 
lipping, sin
e bez
lip a
hieves quadrati
 
onvergen
e only afterthe roots have been separated. Similar e�e
ts 
an be observed if the graphof the polynomial gets very 
lose to the t axis without interse
ting it (two ormore 
lose 
onjugate{
omplex roots).



5 BIVARIATE LINEAR CLIPPING 665 Bivariate linear 
lippingIn this se
tion, we present the generalization of univariate polynomial solverquad
lip. Based on degree redu
tion to linear approximants, the new linear
lipping algorithm (bilin
lip) is presented on bivariate polynomial system,however the idea may be easily applied to the system of n equations.5.1 The root{�nding problemLet us assume system of two polynomial equationsp(x; y) = 0q(x; y) = 0 (76)in variables x, y. Let both p and q be polynomials of bidegree (m;n)p(x; y) = 
m;nxmyn + 
m�1;nxm�1yn + � � �+ 
0;0; 
m;n 6= 0: (77)Let us denote �m;n the (n+1)(m+1) dimensional linear spa
e of polynomialsof bidegree at most (m;n), with the basisBm;ni;j = fBmi (x)Bnj (y)gi=0;:::;m;j=0;:::;n,where Bmi (x) = �mi �(x� �)i(� � x)m�i(� � �)m ; (78)Bnj (y) = �nj�(y � 
)j(Æ � y)n�j(Æ � 
)n (79)are the Bernstein polynomials with respe
t to intervals [�; �℄; [
; Æ℄ � R,respe
tively. Any polynomial p 2 �m;n 
an be des
ribed by its Bernstein{



5 BIVARIATE LINEAR CLIPPING 67B�ezier representation with respe
t to the domain [�; �℄� [
; Æ℄,p(x; y) = mXi=0 nXj=0 bijBmi (x)Bnj (y); [x; y℄ 2 [�; �℄� [
; Æ℄; (80)with 
ertain Bernstein{B�ezier (BB) 
oeÆ
ients bij 2 R.We 
onsider a given polynomial system (76) in Bernstein{B�ezier representa-tion with respe
t to the domain [�; �℄ � [
; Æ℄. All roots of (76) within thisdomain are to be found. More pre
isely, we want to generate a set of do-mains of maximum diameter 2" whi
h 
ontain the roots, where the parameter" spe
i�es the desired a

ura
y.5.2 The generalization of L2 norm and dual basisFollowing the se
tion 2.4, the de�nition of L2 norm and dual basis is easilyadopted for bivariate polynomials.5.2.1 L2 normWe 
onsider the spa
e �m;n with the L2 inner produ
thf; giD = Z �� Z Æ
 f(x; y) g(x; y) dy dx (81)with respe
t to the domain D = [�; �℄� [
; Æ℄ and the normkfkD2 = 1kphf; fiD; (82)where h = (� � �)(Æ � 
), indu
ed by it.



5 BIVARIATE LINEAR CLIPPING 68Similarly to the univariate 
ase, the fa
tor 1=h is introdu
ed in order to obtaina norm whi
h is invariant under aÆne transformations in the dire
tions ofthe x and y{axes. More pre
isely, for any aÆne transformationA : 0� xy1A 7! 0� a0a11A+0� b00 00 b111A0� xy1A (83)with det(B) 6= 0 the norms of f with respe
t to the domain D and of f ÆA�1with respe
t to the domain A(D) are identi
al,kfkD2 = kf Æ A�1kA(D)2 : (84)5.2.2 Dual basisApplying degree redu
tion with respe
t to L2 norm to the given polynomialp gives the unique polynomial p 2 �k whi
h minimizes kp� pkD2 .Let us assume �m;n with basis Bm;ni;j and let �k be the 2(k + 1)-dimensionalsubspa
e of all polynomials p, of whi
h power of both variables x and y is atmost k. Let us assume \monomial" basis fB ig2k+1i=0 = f1; x; y; xy; : : : ; xkykg.The dual basis fD ig2k+1i=0 to the basis fB ig2k+1i=0 of �k is uniquely de�ned byformula hB i ; D j iD = Æij = 8<: 1 if i = j0 otherwise ; i; j = 0; : : : ; 2k + 1: (85)The polynomials D j 
an be represented with respe
t to the original basisD i(x; y) = 1h 2k+1Xj=0 ri;j B j (x; y); i = 0; : : : ; 2k + 1: (86)
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ording to the dual basis properties (85), 
oeÆ
ients ri;j are easy to 
om-pute via linear system of equations.The polynomial p obtained by applying degree redu
tion to p (see (80)) withrespe
t to the domain D may be 
omputed fromp(x; y) = 2k+1Xj=0 hp; D j iD B j = 2k+1Xj=0  mXi=0 nXl=0 bi;l�ji;l! B j ; (87)with the 
oeÆ
ients �ji;l = hBm;ni;l ; D j iD: (88)Example 9 Computing 
oeÆ
ients ri;j, the equation (86) is multiplied (withrespe
t to the L2 inner produ
t (82)) by B i , i = 0; 1; 2. Solving the linearsystem, the dual basis fD jg2j=0 to the basis fB ig2i=0 = f1; x; yg on the unitdomain h0; 1i � h0; 1i is: D 0 = 7� 6x� 6yD 1 = �6 + 12xD 2 = �6 + 12y: (89)Example 10 The matrix of redu
tion 
oeÆ
ients for m = 3, n = 3.(�0i;j) = 2666664 2328 1728 1128 1161780 1180 116 � 1801180 1116 � 180 � 780116 � 180 � 780 �1380
3777775The best linear approximant p to p with respe
t to the L2 norm isp(x; y) = Æ0 + Æ1x + Æ2y; (91)where Æk = 3Xi=0 3Xj=0 bi;j�ki;j; k = 0; 1; 2 (92)



5 BIVARIATE LINEAR CLIPPING 70and bi;j are the Bernstein-B�ezier 
oeÆ
ients of p (see (80)).5.3 AlgorithmSome steps of the algorithm will be explained in more detail:� In line 2 of the algorithm, we generate the best linear approximant pof p with respe
t to the L2 norm on the 
urrent domain [�; �℄� [
; Æ℄.In other words, 
oeÆ
ients Æ0, Æ1, Æ2 are to be found su
h thatI = 1h Z �� Z Æ
 p(x; y)� (Æ0 + Æ1x + Æ2y) dy dx (93)is minimal. This is a
hieved via dual basis (see Example 10 and Fig.42(d)). The linear approximant q is found the same way.� In order to obtain the bound Æp onkp� pkD1 = max[x;y℄2D jp(x; y)� p(x; y)j; (94)see line 3, we represent the linear fun
tion p as a Bernstein{B�ezierpat
h of bidegree (m;n). Therefore, p is represented via (m+1)(n+1)
ontrol points 
i;j, i = 0; : : : ; m; j = 0; : : : ; n. Due to the properties ofBernstein polynomials, the bound is 
omputed asÆp = maxi;j jbi;j � 
i;jj; i = 0; : : : ; m; j = 0; : : : ; n (95)see Fig. 43(e), where bi;j and 
i;j are the 
oeÆ
ients of the Bernstein{B�ezier representations of p and p with respe
t to domain D, respe
-tively.
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lip(p, q, [�; �℄, [
; Æ℄) fBivariate linear 
lippingg1: if diameter of domain [�; �℄� [
; Æ℄ = D � " then2: p, q  generate the best linear approximant to p, q with respe
t tothe L2 inner produ
t on D.3: Æp, Æq  
ompute bound on kp � pkD1 by 
omparing the Bernstein{B�ezier representations of p and p.4: pU  p+ Æp fupper bound of pg5: pL  p� Æp flower bound of pg6: qU  q + Æq fupper bound of qg7: qL  q � Æq flower bound of qg8: P  parallelogram in the plane z = 0 bounded by lines pU = 0, pL = 0,qU = 0, qL = 0.9: R re
tangle bounding P .10: if D \ R = ; then11: return (;)12: else13: De�ne new domain D0 = D \ R.14: if diam(D0) � 12 diam(D) then15: return (bilin
lip (p, q, [�; 12(�+ �)℄� [
; 12(
 + Æ)℄)[ bilin
lip (p, q, [12(� + �); �℄� [
; 12(
 + Æ)℄)[ bilin
lip (p, q, [�; 12(� + �)℄� [12(
 + Æ); Æ℄)[ bilin
lip (p, q, [12(� + �); �℄� [12(
 + Æ); Æ℄))16: else17: S  bilin
lip(p, q, D0)18: return (S)19: end if20: end if21: else22: return (D)23: end if
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) (d)Figure 42: One iteration of bilin
lip I: (a) the polynomial system(76) over given domain D, (b) the graphs of polynomials z = p(x; y),z = q(x; y) are represented by surfa
es in R3 , (
) polynomial p ex-pressed by Bernstein{B�ezier pat
h over D, (d) p is the best linearapproximant of p with respe
t to L2 norm over domain D.
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(g) (h)Figure 43: One iteration of bilin
lip II: (e) p and p are both ex-pressed in Bernstein-B�ezier form, the error bound Æp is obtained asthe maximum length of the thi
k bla
k verti
al bars, (f) the lower andupper bounds pL = p � Æp and pU = p + Æp, (g) boundaries of poly-nomials p and q are interse
ted with plane xy in order to 
onstru
tplanar bounding strips P and Q, respe
tively, (h) the interse
tion ofstrips is bounded by the least square that de�nes the new domain D0.
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(a) (b)Figure 44: Constru
tion of the new domain: (a) Parallelogram P isbounded by the least re
tangle of whi
h sides are parallel with axesx and y, (b) interse
tion of the original domain D and the re
tangleR gives the new domain D0.� In lines 4 and 5, the bound Æp is used to 
onstru
t linear fun
tionspU(x; y) and pL(x; y) (Fig. 43(f)) satisfying8[x; y℄ 2 D : pL(x; y) � p(x; y) � pU(x; y): (96)� In lines 8 and 9, see Fig. 43(g), the root-
ontaining parallelogram P is
onstru
ted and the least re
tangle R that in
ludes P is found.� In lines 10{20 we analyze the mutual position of the original domainD and the re
tangle R, see Fig. 44. If the interse
tion is empty, thenno roots exist. Otherwise, we obtain the new domain D0 = D \R.� If the diameter of this domain D0 is suÆ
iently small, when 
omparedto the length of the diameter of the previous domainD, then bilin
lipis applied to it (line 17). Otherwise we bise
t the original domain Dand apply bilin
lip to the four subdomains (line 15).
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xFigure 45: The null set of p and q in unit domain5.4 ExamplesIn all examples bellow, all time-values of C 
ode implementation of bilin
lipwere measured on a PC with a Intel(R) Xeon(TM) CPU (2.40GHz) with1.98GB of RAM running Linux. The loop of 104 repetitons was measured(in order to obtain a measurable quantity).Example 11 We applied the alogorithm bilin
lip to the polynomials pand q of the bidegree (5; 5) in order to 
ompute all roots within the domainh0; 1i � h0; 1i, see (Fig. 45). P 5;5 and Q5;5 are the matri
es of Bernstein{B�ezier 
oeÆ
ients of p and q, respe
tively. The graphs of both polynomialin R3 are visualized in Fig. 46.
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Figure 46: Polynomials p and q over unit domain.
P 5;5 =

26666666666666664
�20 �20 �20 �20 �20 �50�30 30 30 30 30 30�50 50 50 50 50 3050 50 50 50 50 50�150�150�150�150�150 50�50 50 50 50 50 50

37777777777777775 Q5;5 =
26666666666666664
�20 30 30 20 �10 �20�30 �30 �10 100 �150 30�50 �50 �10 100 �150 30�50 50 50 100 �150 50�50 50 50 100 �150 50�50 �50 20 30 50 50

37777777777777775Table 8 shows the numbers of progressive steps (
lipping), bise
tion steps,number of all iterations, number of roots and time with respe
t to the pre-s
ribed a

ura
y ". A

ording to the shape of both polynomials, bise
tionsteps dominate when low a

ura
y is required. After separating roots, al-gorithm works progressively without bise
tion steps. A
hieving suÆ
ientlyhigh a

ura
y, the phantom root is eliminated.Example 12 We applied the algorithm bilin
lip to the Astroid p = x 23 +y 23 � 5 23 and Maltese Cross 
urve q = (x2 + y2) � xy (x2 � y2) within the
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lipping 19 28 36 50bise
tion 12 12 12 12all iterations 60 70 78 92roots 8 7 7 7time(ms) 1:76 2:10 2:39 3:08Table 8: Example 11; 
omputing time, number of all itera-tions and number of roots within pres
ribed a

ura
y ".domain h�5; 5i � h�5; 5i (see Fig. 47). Table 9 shows the numbers of pro-gressive steps, bise
tion steps, number of all iterations, number of roots andtime with respe
t to the pres
ribed a

ura
y ".Example 13 bilin
lip was applied to the Des
artes leaf p = x3+y3�3 xyand Lemnis
at of Bernoulli q = (x2 + y2)2 � 2 x2 + 2 y2 within the domainh�2; 2i�h�2; 2i, see (Fig. 48). Again, Table 10 gives the numbers of progres-sive steps, bise
tion steps, number of all iterations, number of roots and timewith respe
t to the pres
ribed a

ura
y ". With respe
t to the multiplerootin [0; 0℄, signi�
antly more iterations are ne
essary. Realizing the stru
tureof bilin
lip, domain h�2; 2i � h�2; 2i is bise
ted after �rst iteration androot [0; 0℄ is 
onse
utively in
luded in four subdomains. Consequently, sixroots is reasonable solution within a

ura
y 10�16.
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Figure 47: Astroid and Maltese Cross 
urve on domain h�5; 5i �h�5; 5i.
" 10�1 10�2 10�4 10�8 10�16
lipping 32 40 52 60 72bise
tion 49 49 49 49 49all iterations 217 229 241 249 361roots 12 8 8 8 8time(ms) 8:43 9:38 9:50 9:81 11:47Table 9: Example 12; number of iterations with respe
t to the a

ura
y ".
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Figure 48: Des
artes leaf and Lemnis
at of Bernoulli on h�5; 5i �h�5; 5i " 10�2 10�4 10�8 10�16
lipping 12 27 41 47bise
tion 50 66 66 66all iterations 195 282 298 308roots 18 10 8 6time(ms) 3:09 4:07 4:39 4:63Table 10: Example 13; 
omputing time and number of iterationswithin pres
ribed a

ura
y "
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Figure 49: Interse
tion of 
urves of bidegree (6; 6)bilin
lip IPP�iter: 2305 389result 39 78time(ms) 85 44Table 11: Example 14; time and number of iterations withinpres
ribed a

ura
y "In order to get 
omparable data with IPP algorithm, we applied our methodon two examples presented in Mourrain and Pavone (2005). With respe
tto 
omputer settings data presented in this paper (Intel Pentium 4, 2.0 GHzwith 512 Mo RAM), our time{
on
erning data should be in
reased by some"handi
ap" 
onstant 
ompensating di�erent pro
essor ta
ting.
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Figure 50: Interse
tion of 
urves of bidegree (8; 8)Example 14 Interse
tion of 
urves of bidegree (6; 6) are 
omputed, see Fig.49. Table 11 shows number of iterations, number of roots and time withrespe
t to the a

ura
y " = 10�6 
omputed via bilin
lip and intervalproje
ted polyhedron algorithm with lo
al pre
onditioner (IPP*).Example 15 Interse
tion of 
urves of bidegree (8; 8), Mourrain and Pavone(2005) example a, are 
omputed. Table 12 shows number of iterations, num-ber of roots and time with respe
t to the a

ura
y " = 10�6 
omputed viabilin
lip and (IPP*).Remark 3 In examples above, the behaviour of bilin
lip was di�erentwith the respe
t of single or multiple roots. We remind the de�nition ofsingle root of system (76). We say, that point A = [x0; y0℄ is a single rootof system (76) if and only if (p(x0; y0) = 0; q(x0; y0) = 0) and there existgradients rA q, rA p and are linearly independent (see Figure 51).
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lip IPP�iter: 2045 1055result 16 60time(ms) 76 120Table 12: Example 15; time and number of iterations withinpres
ribed a

ura
y "
PSfrag repla
ements

p
q

D

y

x

rA q rA pA

Figure 51: Single root of bivariate polynomial system.Remark 4 Let us assume the system (76) has only one single root in domainD = D0 and let us denote di the diameter of domain Di after i-th iterationof bilin
lip. A

ording to many examples, the sequen
e (di)0;1;2;::: has the
onvergen
e rate r = 2. The proof is under resear
h.
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t, the algorithm bilin
lip is not pure generalization ofquad
lip. Contrary to quad
lip, the best approximant with respe
t to L2norm is "only" linear in bivariate 
ase. Using quadrati
 approximant, one
an expe
t { similarly to univariate 
ase { higher 
onvergen
e rate. Equally,the number of operations (and 
onsequently the time per one iteration) isexpe
ted to be in
reased. The interse
tion of two 
oni
s instead of lines(
ompare with line 8, Algorithm 3) appears to be more 
ompli
ated. Anyway,the improvement of algorithm bilin
lip 
ould be possible this way and isstill under resear
h.



6 CONCLUSION 846 Con
lusionBased on the te
hniques of degree redu
tion, we derived an algorithm for
omputing all roots of a given polynomial within a given interval, with a
ertain a

ura
y. We analyzed the 
onvergen
e rates of the new te
hniqueand 
ompared it with the 
lassi
al te
hnique of B�ezier 
lipping. In the 
aseof single roots, the new algorithm performs similarly to B�ezier 
lipping. Fordouble and near double roots, however, it redu
es the 
omputational e�ort.This is due to its superlinear 
onvergen
e rate (32) in the 
ase of double roots.As a dire
t improvement of the method, one may repla
e the quadrati
 poly-nomial q by a 
ubi
 or even a quarti
 one. In this 
ase, the formulas ofCardano and Ferrari are needed to 
ompute the interse
tions of the bound-ing polynomial strip with the t{axis. Clearly, these 
omputations are moreinvolved than in the 
ase of a quadrati
 polynomial. It is to be expe
tedthat su
h a generalized algorithm would provide an even higher 
onvergen
erate for single and double roots, and superlinear 
onvergen
e for roots withmultipli
ities 3 and 4.Demonstrated on bivariate 
ase, the generalization of the algorithm is pre-sented. This te
hnique is based on approximation by linear polynomials andit appears to have quadrati
 
onvergen
e rate in single roots, leading to re-sults 
omparable to those of Mourrain and Pavone (2005). Attempting torea
h faster 
onvergen
e rate for single roots and superlinear 
onvergen
efor double roots, we will follow the idea of approximation by polynomials ofhigher degree.
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