Abstract Titanium dioxide (TiO₂) and spinel Li₄Ti₅O₁₂ belong to widely studied semiconducting metal oxides. Nanocrystalline TiO₂ and Li₄Ti₅O₁₂ are attractive materials for applications in Li-ion batteries and the former also for photoelectrochemical solar cells. Moreover, spinel Li₄Ti₅O₁₂ could be a promising material for Na-ion batteries too, because of possible accommodation of larger Na⁺ ions (compared to Li⁺). The nanocrystalline TiO₂ anatase with a predominant {001} facet was studied electrochemically by cyclic voltammetry of Li⁺ insertion and by chronoamperometry and compared with anatase materials with dominating {101} facet. Both voltammetric and chronoamperometric diffusion coefficients and activation energies proved higher activity of anatase {001} nanosheets toward Li⁺ insertion than that of the usual anatase nanoparticles exposing the {101} facet. Subsequently, the flatband potential and electron kinetics of TiO₂ anatase nanocrystals with mostly exposed facet {101} or {001} were compared. The anatase {001} nanoplatelets exhibited more negative flatband potential, higher chemical capacitance and longer electron lifetime than anatase {101} nanoparticles. The Li⁺ insertion into TiO2 anatase nanoparticles was studied by Raman spectroscopy and by in situ Raman spectroelectrochemistry. Four combinations of isotopologues, namely ^{6/7}Li_xTi^{16/18}O₂ (x is the insertion coefficient), were prepared and studied. The combination of experimental and theoretical Raman frequencies with the corresponding isotopic shifts brings new inputs for still open questions about the Li-insertion into TiO₂ (anatase). The cyclic voltammograms of Li⁺ insertion into TiO₂ (B) and anatase provided information about capacitive contributions to the overall charge of Li-storage. The enhancement by 30% is found in capacitive charges (normalized to the total voltammetric charges) in TiO₂ (B) compared to those in anatase. Facilitated Li-insertion in TiO₂ (B) is explained by different charging mechanism caused by pseudocapacitive Li-storage in the bulk TiO₂ (B). Sodium insertion into nanocrystalline spinel, Li₄Ti₅O₁₂ (nanoLTS) was investigated by cyclic voltammetry. Changes in the cyclic voltammograms of nanoLTS were observed during long-term cycling. Raman spectroscopy of nanoLTS after Na-insertion reveals a formation of orthorhombic Li_{0.5}TiO₂ phase. The occurrence of this phase is ascribed to induced Li⁺ redistribution into trace anatase impurities.