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Abstract
The goal of automated software verification is either to prove the safety
or to find erroneous behavior. To achieve this, verification techniques
need to efficiently represent program states or sets thereof. In the
thesis, we introduce methods to reduce the size of the program state
representation for explicit and symbolic model checkers.
In particular, we introduce novel dead-variable analyses for parallel
heap-manipulating programs. These analyses are designed for on-the-
fly explicit state model checkers.
In contrast to that, in symbolic model checking, sets of program states
are almost exclusively represented by logical formulae; these formulae
are often obtained from Craig interpolants. In the thesis, we introduce
a novel interpolation technique, which uses variables assignments to
reduce the size of interpolants. Variable assignments can be used e.g.,
to block some uninteresting program paths. Interpolants need not to
represent the program states from the blocked paths; hence, by using
the variable assignment, smaller and more focused interpolants can be
obtained.
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Abstrakt
Při verifikaci program̊u se snaž́ıme rozhodnout, zda program obsahuje
či neobsahuje chyby Zákládńım předpokladem všech verifikačńıch
postup̊u je efektivńı reprezentace a manipulace se stavy program̊u. V
této práci představujeme techniky pro nalezeńı nepostatných informaćı
ve stavech program̊u a pro jejich ostraněńı. Tato práce obsahuje re-
dukce vhodné pro explicitńı i symbolickou reprezentaci stav̊u.
Naše postupy vhodné pro explicitńı reprezentaci byly speciálně
navrženy pro v́ıcevláknové programy. Naše analýzy dokáž́ı nalézt
takové hodnoty v dynamicky alokovaných objektech, tedy na haldě,
které program jǐz nebude v následuj́ıćıch kroćıch č́ıst.
Logické formule v predikátové nebo výrokové logice jsou převažuj́ıćı
symbolickou reprezentaćı množin stav̊u programu. Craigovy in-
terpolanty jsou jedńım z obvyklých postup̊u pro źıskáńı formuĺı s
požadovanými vlastnostmi. V této práci představujeme nový zp̊usob
jejich výpočtu, který použ́ıvá přiřazeńı proměnných pro zmenšeńı je-
jich velikosti. Pomoćı přiřazeńı proměnných m̊užeme zablokovat ty
cesty v programu, které nechceme, aby interpolant bral v potaz a t́ım
zmenšit jejich velikost.
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1
Introduction

Computers are around all of us and their number increases constantly. Nei-
ther hardware nor software failures are admissible in many areas as they
can lead to significant financial losses or even endanger our lives. With the
increasing complexity of current (not only safety-critical) software there is
more space for bugs, which are often hard to discover. This represents the
driving force for automated software verification and more importantly for
its scalability.

Over the years various techniques for software verification have been in-
troduced. Their goal is either to prove safety or to find violation of a cor-
rectness specification. In order to achieve this, all of these techniques need
to represent program states or sets thereof. The number of program states
increases (often exponentially) with the complexity and size of the software
– the well-known state space explosion [29] problem. Verification techniques
differ in the way they cope with the state space explosion. Hence, efficient
representation and manipulation with program states are the key parts of all
these techniques.

State representations. Verification techniques represent program states
in various ways, which typically depend on the kind of the technique. Ex-
plicit state model checkers represent the program state in a similar way as
it is represented at run-time. In contrast to the explicit state model check-
ers which operate on a single program state at a time, the symbolic model
checkers store and manipulate a set of states at a point. The sets are often
represented as logic formulae or Binary Decision Diagrams (BDDs) [19]. In
more details, a logical formula over program variables represent a set of states
which satisfy the formula; i.e., the formula represents the states, such that
the formula evaluates to True if the values from the state are assigned to the
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CHAPTER 1. INTRODUCTION

corresponding variables in the formula. The way the formulae are created
varies substantially among verification techniques. For example, in symbolic
execution [72] the formula is created from program statements (assignments
and conditions) of the program path being considered. In abstract interpre-
tation [34] the abstract domains used are often represented symbolically as
various forms of inequalities.

In explicit state model checkers such as Jpf [106], Spin [57], Zing [6]
and MoonWalker [37] the state holds a single particular value for each
variable. For each thread resp. process, the state contains a call-stack storing
local values of variables. It also contains heap with dynamically allocated
objects and references among objects, if the tool supports dynamic allocation.
Explicit representation of program states is precise; however, it tends to be
large. The reason can be found in programing languages and their complex
semantics. As an example, consider Java and its automatic (un)boxing for
variables of primitive types; this together with caching of boxed instances
with small values forces the model checker to maintain a large set of instances
for boxed values. Moreover collections (i.e., maps, sets, and lists) cannot store
the primitive types, the boxed types must be used instead. This contributes
to the complex structure of the heap as well as to the overall size of the
program state.

A logical formula resp. a predicate is often used to symbolically repre-
sent a set of program states. Verification techniques differ substantially in
a way formulae are constructed, used, in their meaning, and the properties
the formulae should have. However, many state-of-the-art approaches (e.g.,
IC3 [15, 16], UFO [3, 5], Whale [4]) in more or less visible way try to
find safe inductive invariant. Inductive invariant is a formula representing
an over-approximation of all the reachable states such that after any pro-
gram step (resp. loop iteration) a program state from the inductive invariant
cannot result into a state outside the invariant. Inductive invariant is said
to be safe if it does not contain any faulty state; as defined by specification
(e.g., states violating program assertions). The safe inductive invariant can
be seen as a certificate showing the safety of the verified program; once it
is found, the verification terminates. From undecidability of program safety
it follows that no technique can guarantee that for a safe program it finds a
safe inductive invariant in one step; instead the invariant candidates are it-
eratively created and checked whether they are real invariants. These checks
involve possibly costly solver queries, thus smaller candidates will improve
performance of the tools. Note that typically these techniques make also
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1.1. GOALS AND OBJECTIVES

different kinds of solver queries, which could benefit from small formulas as
well.

Craig interpolants [35] are often applied in the symbolic techniques. Their
properties can be used to guarantee that (a) the interpolant formula is an
over-approximation of reachable states, while (b) being precise enough – not
reaching faulty states. Moreover (c) there are scalable approaches to com-
pute interpolants for propositional logic [78, 91, 41, 26] as well as various
kinds of first order theories (e.g., quantifier-free fragments of linear arith-
metic [79, 27]). On the other hand, interpolants are often large. Although
various optimizations to reduce their size have been introduced, their size
still represents an important problem.

1.1 Goals and Objectives

As we have seen, the representation of program states is complex. The size
of the state representation is one of its important properties influencing the
performance of the tools. The states are processed in many ways during ver-
ification; this includes state matching in explicit state model checking and
inductive invariant checks and other solver queries in symbolic techniques.
Every inefficiency in the state representation affects scalability of the tech-
niques; not only the verification tools need to process (unnecessarily) large
state representation, but they can also increase the state space.

For example, in reference-based languages such as Java, the address of
an object is irrelevant for a program; only the structure of the heap should
influence the behavior. Thus, two states with isomorphic heaps, which differ
only in addresses (resp. identifiers) assigned to objects, should behave in the
same way. However, state matching which uses the object addresses directly,
will not detect the aforementioned fact and it identifies such states as differ-
ent. The technique aiming at detection and elimination of this inefficiency is
called heap canonicalization.

It is obvious that elimination of such inefficiencies is an important task,
since it contributes to the solution of the key problem in the verification field
– scalability.

The goal of the thesis is to identify inefficiencies in program states repre-
sentations and to design and implement novel techniques, which will result
in smaller representation of program states.
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CHAPTER 1. INTRODUCTION

1.2 Structure of the thesis

The thesis is structured in the following way. Chapter 2 provides the reader
with necessary background together with a description of related existing
techniques for efficient state representation. Chapter 3 describes the revis-
ited goals as we have identified them based on the current state-of-the-art.
Chapters 4, 5 describe our actual contribution, i.e., the techniques to reduce
the size of explicit resp. symbolic program state representation based on
elimination of their irrelevant parts. Finally, Chapter 6 concludes the the-
sis. In this chapter, we also propose possible future research directions. We
decided to move selected proofs from Chapters 4 and 5 into Appendix A to
improve the legibility.

1.3 Publications

In our work, we do not focus only on the efficient representation of program
states. We also tackled the broader scalability problem in different ways.

In [68, 65] we have shown how variable assignments can be used to produce
smaller Craig interpolants, which are often used to compute symbolic state
representations. These papers are closely related to this thesis; they form a
major part of Chapter 5.

In [66] we have introduced analyzes to identify dead parts of program
states. This work has been extended in the [67]. These papers are closely
related to overall goal of this thesis. They form a major part of Chapter 4.

In [85] we have introduced a novel Partial Order Reduction (POR) tech-
nique for on-the-fly explicit state model checkers. These model checkers do
not have knowledge of the future behavior of the program at a state they
have reached during verification. They need to be conservative resulting in
exploration of unnecessary many thread interleavings. To cope with this is-
sue, static analysis is often employed to compute an (over-)approximation of
the possible future behavior for the reached state. In this paper, we used the
currently reached state in the model checker to improve precision of static
analyses for POR; the analyses use dynamic information from a reached
program state to internally build a happens-before relation among future
program actions. This relation is then used to reduce the future behaviors of
the currently reached state which need to be considered for POR. This means
that more scheduling choices are eliminated and consequently the state space
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1.3. PUBLICATIONS

is reduced. This way the approach helps to push the scalability limits.
In [70] we have followed the broad idea of modular verification. The

software (especially the larger piece thereof) is not monolithic. Rather it is
often split into smaller parts – software components – which can be verified
separately. Each component comes with a specification which, among other,
declare how the component should be used. Often the specification includes
also how the component could interact with other ones, i.e., its behavior. The
verification process is then split into two phases: (1) Behavior specification
of connected components is checked for mutual compatibility, and (2) the
implementation of each component is verified whether it complies with its
behavioral specification. The first phase benefits from behavioral models
which abstract away low-level details unrelated to the component behavior;
thus, their state space is much smaller compared to the state space of the
implementation. The latter phase extends the guarantee from the level of
the specification to the implementation. The second phase benefits from
modularity; only a single component together with a small automatically-
generated environment is verified at a time. The environment represents
the rest of the system (i.e., environment simulates all permitted usages of
the component). In the paper, we have introduced a checker for the second
phase, which is able to verify the compliance of SOFA [22] components with
its behavioral specification in the form of Threaded Behavioral Protocols [90].

In [69] we have introduced an extension to Jpf which helps users to
analyze program states and scheduling choices. It simplifies the process of
revealing and understanding the sources of the state space explosion.

I am the main author of [68, 70, 69] where I created implementations resp.
formal description of the method (i.e., proofs). I have authored large parts
of the text of these papers as well. In [85] I participate mostly in designing
the static analyses.

Reviewed papers

[67] Janč́ık P., Kofroň J. On Partial State Matching, Journal article in Formal
Aspects Of Computing, ISSN 1433-299X, DOI 10.1007/s00165-016-0413-z,
pages 1-27, 2017.

[66] Janč́ık P., Kofroň J. Dead Variable Analysis for Multi-Threaded Heap
Manipulating Programs, In proceedings ACM Symposium on Applied Com-
puting, pages 1620-1627, 2016.

[65] Janč́ık P., Alt L., Fedyukovich G., Hyvärinen A. E. J., Kofroň J. and
Sharygina PVAIR: Partial Variable Assignment InterpolatoR, In proceedings
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Fundamental Approaches to Software Engineering, pages 419-434, 2016.

[68] Janč́ık P., Kofroň J., Rollini S. F., and Sharygina N. On Interpolants and
Variable Assignments, In Proceedings Formal Methods in Computer-Aided
Design, pages 123-130, 2014.

[85] Paŕızek P., and Janč́ık P. Approximating Happens-Before Order: Inter-
play between Static Analysis and State Space Traversal. In proceedings of
International Symposium on Model Checking of Software, SPIN, pages 1-10,
2014

[70] Janč́ık P., Paŕızek P., and Kofroň J. BeJC: Checking Compliance between
Java Implementation and Behavior Specification, In Proceedings of Doctoral
Symposium on Components and Architecture, pages 31-36, 2012

[69] Janč́ık P., Paŕızek P., and Kofroň J. Advanced Debugging with JPF
Inspector, In local proceedings of MEMICS, pages 43-50, 2011

1.4 Note on conventions
Parts of this thesis are based on the aforementioned publications. To be
able to easily distinguish a text included verbatim from the publications, the
corresponding paragraphs are marked with a vertical bar on the left resp.
right side of the text.

[X] The following paragraph is an example of the way we mark the text, which
is a verbatim copy. It means that the original text appeared in the paper
[X].
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2
Background

In this chapter, we describe how state-of-the-art explicit and symbolic model
checkers represent program states and how they perform state matching. We
also describe various optimizations used to reduce the state space and size
of the program state representation.

2.1 Explicit state model check-
ing
Explicit state model checkers exhibit in verifications of parallel systems, es-
pecially in founding subtle synchronization and concurrency bugs. It is made
possible due to cheap computation of successor states, so they are able to
explore all the interesting interleavings.

2.1.1 State representation

Spin model checker uses Promela as an input language. The Promela was
designed as a modeling language; it does not contain function calls (i.e., recur-
sion) and it does not support dynamic allocation. The Spin can only handle
finite models; there are limits on range of variables, length of queues and
number of active processes in Spin. It means that the states have bounded
size and Spin can internally represent states as arrays where (global and
process local) variables are mapped to particular indexes in the array. Such
a simple representation simplifies a state matching process and makes opti-
mizations easier.
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CHAPTER 2. BACKGROUND

dSpin [38] is an extension of Spin (and its input language Promela)
which supports dynamic allocation, references, and function calls. Since the
size of the state is no longer bounded, the authors use more complicated
(non-linear) representation for states. The run-time representation of pro-
gram state consists of several growing arrays and support tables. The tables
contain sizes and offsets of the elements stored in the corresponding grow-
ing array. In particular, heap together with the global variables and global
queues occupy one such an array. Due to unbounded nature of call stack (i.e.,
recursion), each process and its local data is stored in its own array. Because
of such a complex structure, the run-time representation is not suitable for
state matching. In dSpin the structure is first serialized (i.e., linearized)
into a single array – state vector. This permits to reuse the state matching
of Spin and all its the optimizations.

Jpf is an on-the-fly explicit state model checker for Java; Jpf can be seen
as a specialized JVM optimized for systematic exploration of the state space.
From high level perspective, at run-time Jpf represents program states in
a similar way as dSpin. However, Jpf representation is more complicated,
since program states are more complex compared to states of Promela
language. The representation for a thread holds a list of stack frames which
holds parameters, local and temporary variables. Stack frame also contains
pointer to a method to which the frame belongs to. In case of instance
method (i.e., the method is not static) the frame holds also reference to
this. In Jpf, the references are represented by integers. Each element
on the heap has assigned a unique numeric ID. A heap manager is used to
resolve these IDs to representation of the instance. In this representation
values of the fields are stored. From technical reasons, the values of static
fields are stored separately in a special heap. The run-time representation is
designed to be easily accessible by programmers; it resembles the way how a
program is represented at run-time in normal JVM. On the other hand, the
complex heap graph is extremely inefficient for state comparison, thus the
same approach as in dSpin is applied. Before state matching, the run-time
representation is serialized in a single integer array (i.e., state vector), which
holds all relevant data from the program state. State vector is then used in
the state matching.

In order to be safe, the serialization process in Jpf as well as in dSpin
needs to preserve the following property:

Requirement 1 (Uniqueness) For any two different program states, a se-
rializer has to create different state vectors.

8



2.1. EXPLICIT STATE MODEL CHECKING

2.1.2 State matching

Each time the model checker decides to finish a transition, the state matching
is triggered. First, the program state is serialized into state vector (an array
of bytes). Then, the state vector is passed into a state set which decides
whether the given vector is seen for the first time – a new state not being
stored in the set, or it has been processed before – visited state already stored
in the set.

Full state set. Hash set is one of the easiest ways to efficiently represent
a set of items. For each state vector, a hash value is computed. In explicit
state model checkers, Jenkins’ hash functions [71] are often applied in state
matching; in particular, both Jpf and Spin use them. The hash value rep-
resents a key (resp. its modulo w.r.t. size of hash table) to a hash table, full
state vectors for given key are stored in a linked list.

State vectors are large, especially in the case of programs with rich stan-
dard libraries. In Spin state vectors are typically smaller compared to code
model checkers. Still, their size represents a major obstacle as to scaling;
hence the reduction of memory requirements is the driving force in this re-
search area. In many cases, the memory required to store the state vectors
of all the reachable states is by orders of magnitude larger than the available
one.

State collapsing. State Collapsing (SC) [58, 105] is another way to reduce
a state vector. SC partitions the program state (or state vector) into smaller
parts, e.g., stack frames and heap instances. SC matches parts separately;
for each kind of parts, it has a specialized state matching (sub)-procedure.
Specialized matching procedure holds a numbered list of all seen instances
of that kind; given a part it returns its ID. Either the same part is stored
in the list and in such a case its index is returned or if not in list it is
immediately added and index of the added element is returned. If state vector
is constructed, instead of adding whole and possibly large representation of
the part into a state vector, the state collapsing will store only the id. That
is why this technique is sometimes called recursive indexing method.

This technique is still available in Spin. It was also implemented in
former versions of Jpf. The collapsing significantly reduces the size of the
state vector and space needed to store them, on the other hand additional
memory is needed to store indexes for collapsed parts.

9



CHAPTER 2. BACKGROUND

Minimized automaton. The set can be also represented by an automaton
which accepts exactly the represented words; in case of the state matching,
the words are state vectors. Such a representation was proposed in [62] and
implemented in Spin. The main idea is to build and update a minimal
deterministic finite state automaton, which accepts only the stored visited
state vectors. The aim of the authors is to reduce memory used to store
visited states; in automaton representation, if two stored states have the
same prefix, the prefix can be stored only once. The memory savings comes
at a cost of increased run-time; the most performance critical operation is
adding new state into the visited set. This operation includes minimization
of the automation, which can be costly.

The above state matching techniques are safe; in other words, they cannot
mark a state as a visited unless it has been really added into the visited
state set. If these methods require more memory then available (a typical
case), various unsafe (i.e., approximate) methods can be applied to reduce the
required memory. On the other hand, using such techniques, there is some
very small probability that new state will be incorrectly marked as visited.
Consequently, state space will not be explored completely and it may happen
that an error is missed if present only in omitted parts of the state space.
These techniques are often based on hashing, so the omitted parts of state
space are determined by hash collisions. In other words, the omitted parts are
selected randomly and not consistently based on some specific feature used
in verified program; this further reduces the probability, that error state will
be only in the omitted parts of the state space.

Hash-compact. Hash-compact [108] method can be seen as a modification
of the full state set method. The idea of hash-compact is simple, instead of
state vectors it uses and stores only their hashed. The hash-compact is the
default state matching method used in Jpf. Note that Jpf contains and can
be configured to use the full state set method (and any other user provided
state matching method).

This method relies on the fact that hash collisions in big enough space
are rare; in Jpf and in Spin the state vectors is hashed into a single 64-bit
value. The main properties of the hash function being used nearly uniform
distribution (i.e., as less collisions as possible) and speed of hash computation;
in Jpf Jenkin’s LOOKUP3 hash function is used.

Bitstate hashing. Bitstate hashing [56, 59] uses hashes of the state vector
differently. Instead of storing hash values of fixed size (i.e., 64-bit) as is done
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2.1. EXPLICIT STATE MODEL CHECKING

in Hash-compact method, the bitstate hashing allocates a Boolean array of
size h. Initially the array has all bits set to 0; it means no state is visited.
Bitstate hashing use hash function with range 0 - h − 1; the hash of the
state vector is used as an address into the Boolean array. If the bit at given
address is not set the state is new, otherwise if the bit is set, the state is
considered to be visited.

Bitstate hashing suffers from hash collisions, in order to explore whole
state space with reasonable high probability, the Boolean array should be
filled less than 1% [59]; if ratio of the set bits grows beyond 1% in the
Boolean array then the coverage of the state space starts decreasing. To
improve resilience to collisions, multiple different hash functions can be used
to select bits in a single Boolean array; the state is marked as visited only if
bits at all addresses (hash values) are set. The bitstate hashing function is
implemented e.g., in Spin; 2 different hash functions are used.

The optimal state matching algorithm depends a lot on available memory;
if enough memory for full state matching (i.e., for storing all state vectors) it
is reasonable to use these techniques. In such a case, there is a guarantee that
whole state space will be explored. Typically, there is not enough memory
for full state matching; then the hash-compact method is worth trying. It
provides less collisions compared to the bitstate hashing Only if there is not
enough memory to store hashes of state (i.e., for hash-compact method), the
bitstate hashing is reasonable option.

Another technique to reduce memory requirements of state matching is to
reduce the size of the state vectors which needs to be stored; such techniques
nicely matches to safe state matching techniques like a full state set method.
For approximate methods, there is typically enough available memor. In
this case, shorter state vectors could speed-up verification. However, this is
possible only if the reduction (or compression) of the state vector is done
faster than the time needed to compute hashes of the omitted parts.

In [58] various compression techniques to reduce size of the state vector
has been examined; e.g., Run-Length encoding or Huffman compression [63].
These techniques reduce the overall memory requirements, on the other hand,
due to compression they introduce substantial run-time overhead, i.e., slow
down verification.

State vectors may contain some fixed or duplicated data (i.e., data which
can be derived from other values in the state vector) such data are unnec-
essary for state matching and can be omitted from state vector. Typical
example is values of constant final fields. This technique called byte-mask is
used as a default compression method Spin; according [58] the byte mask-
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ing offers modest compression while having not to big overhead compared to
other compression techniques. This technique is applied in Jpf as well.

Dead variable reduction. While the above methods (byte masking and
compression) are fully revertible – original full state vector can be computed.
The Dead Variable Reduction (DVR) does not have such a property. It first
runs an analysis which identifies dead variables. The values of dead variable
are not added into state vector. We will discuss this technique in more detail
later in this chapter.

2.1.3 Search optimizations

Different way to reduce memory required for state matching is to gener-
ate (and consequently store) less program states. Popular optimization for
concurrent systems is Partial Order Reduction (POR). Other techniques are
based on detection of various symmetries; in case of heap – Heap canonical-
ization.

Partial order reduction. Partial order reduction [49] tries to eliminate
unnecessary thread interleavings; i.e., reduce state space explosion caused by
concurrency. POR is based on the notion of independence among transitions
from various threads (resp. processes). Intuitively, if the transitions are in-
dependent, the order in which are executed is irrelevant. So, it is enough
to explore only one theirs interleaving. A typical example of independent
actions are updates of a local variables or two reads of a shared global vari-
able. Over the time various POR algorithms where introduces; among others
POR based on persistent set [50], sleep set [51], ample set [88] and stubborn
set [104].

In on-the-fly model checkers, it is hard to obtain the information about
independence of future program actions, because the future program actions
were not explored yes, thus are not known. Typically, static analysis is used
to create a safe over-approximation of possibly dependent actions. In [85]
we have improved precision of the static analysis by utilizing information
from currently reached program state. This helped us to create more precise
happens-before relation. The relation is used to eliminate interleaving of
dependent actions that provably have fixed ordering due to happens-before
relation between them.

In [47] different approach is taken. Authors observed that during model-
checker run all the dependencies among the actions are resolved once the
program trace is explored. So, in the dynamic POR, the thread scheduling
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choices are added after the trace is explored just before model checker starts
backtracking.

Even though various sophisticated POR techniques have been introduced,
on-the fly code model checkers typically uses only very simple POR (by
default). In Jpf independent actions are bytecode instructions accessing
over local variables. Simple optimizations and heuristics are used for heap
accesses and static fields do determine independence; if exists only a single
runnable thread or accesses to final fields are independent. Heuristics based
on whether the field is accesses from multiple threads and locks held at the
time the fields is accessed are included in Jpf. Jpf does not apply any kind
of static analysis to obtain a knowledge about the future actions and their
independence.

Heap canonicalization Heap-canonicalization [64, 83] is another tech-
nique to reduce the state space. Heap-canonicalization helps to identify pro-
gram states, that are behaviorally equivalent, but their representation of the
memory differs. In reference-based languages (like Java) the address of the
object in the memory (resp. the identifier of the object in the heap assigned
be the model checker) cannot influence the behavior of the program. Heap-
canonicalization identifies such kind of symmetries between program states;
it transforms the state to a canonical representations which is unique for all
the equivalent states. In other words, heap-canonicalization assigns addresses
to heap objects deterministically based only on the shape of the heap graph
and root references – references to the heap from the call stacks.

Heap-canonicalization is tightly connected to state matching. Jpf com-
putes canonical addresses during state matching; Jpf assigns the canonical
addresses while it traverses of the heap and serialize the state into state
vector.

2.1.4 Dead variable analysis

Dead variable analysis (or its complement – Live variable analysis) first ap-
peared as a compiler optimization [2]. Informally, the variable is live at a
program point p if there exists some path from p in the control flow graph
(CFG) of the program such that the variable is read on that path. The vari-
able is dead if it is not live. The results of the dead variable analysis are used
e.g., in register allocation; if new value has to be loaded into a CPU register,
the register with dead variable should be used (if exists) as a target of the
load. The register with dead variable can be safely overwritten without sav-
ing the value of the variable back into memory. The dead variable analysis is
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commonly used also in the model checking to reduce the state space – Dead
Variable Reduction. The liveliness information from the analysis is applied
in the state matching; in more details, the information is exploited during
state serialization when state vector is constructed. If a dead variable is to
be stored into the state vector either (i) a well-known constant value (e.g.,
zero or null) is saved instead of the value of the dead variable or (ii) the dead
variables are not stored into the state vector at all. The first approach is
used e.g., in SPIN for identified dead local variables. The second approach
is used e.g., in Jpf for selected static final fields.

Over the years various dead variable analysis has been introduced [13,
45, 77, 99, 109]. The first versions were focused only on local variables and
exactly followed the above definition of the dead variables from compiler do-
main. Dead local variables can be obtained by quite simple intra-procedural
static analysis. Even these simple analyzes pays-off; they reduce the state
space and memory requirements of verified programs [40, 60].

Over the years analyzes specialized on code verification appeared. In [13,
45], Bozga et al. introduce a live variable analysis for an asynchronous par-
allel composition of processes that communicate via parameterized signal
passing using a set of unbounded queues. All program variables are global
and shared across processes; heap (i.e., object instantiation) and dynamic
process creation are not supported by their formal language. Static analysis
over a control graph – a parallel composition (i.e., dot product) of control flow
graphs of all processes, is used to obtain live variables. Control graphs can
have a reasonable size for formal languages where processes can be assumed
reasonably small; however, in case of programs the control flow graphs are
typically much larger (for example due to used libraries, etc.). In the worst
case, the control flow graph can have a comparable size to the overall state
space. The applied static analysis a straightforward extension of the analysis
for local variables to a global ones and queues. The live variable analysis re-
sults are used to define a live equivalence, which can be seen as a base for the
dead variable reduction. In the papers authors show that their live equiva-
lence is a strong bisimulation. This main result of the paper permits to apply
the reduction in tools [14, 46] which are based on a notion of bisimulation.

In [109], Yorav et al. introduce another dead variable analysis. Their DVA
operates over a parallel composition of communicating processes; variables
are not shared between processes. Heap and recursion are not supported by
the analysis. The support for dynamic process creation comes for free, since
their computation model does not contain shared global state (i.e., variables)
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shared among processes. The analysis in [109] is a backward static analysis.
In the [109] a notion of fully and partially dead variable has been introduced.
The variable is fully dead at given location if on all paths in CFG it is writ-
ten (i.e., defined) before its first read (i.e., used); this corresponds to the
classical DVA as we have introduced it in the above paragraphs. Informally,
the variable is partially dead if it is dead only on some subset of paths from
given location. The subset of paths is determined by a condition (i.e., for-
mula) over program variables. This condition is computed using backward
symbolic propagation over CFG; it can be seen as a computation of weakest
precondition for the variable being dead. Due to its nature, the analysis loses
precision on the loops and array accesses; in the former case, the imprecision
comes from unknown number of loop iteration whereas in the latter case,
from imprecise identification of the index in the array to which it is accessed.

In [77], Levis et al. comes up with a different kind of dead variable analysis.
Their DVA is implemented in Estes [81] which operates on native binaries.
The implementation supports arrays (i.e., indirect memory accesses) and
programs with interrupts. The key idea of their DVA is to used dynamic
information to prune CFG to which the classical static DVA is applied. The
pruned CFG parts are those which cannot be reached from the current pro-
gram state. By removing parts of CFG, the static analysis can provide more
precise result, i.e., more variables can be identified as dead. If a variable is
read only on the pruned basic blocks, then the variable is identified as dead
compared to situation where pruning using is not applied. This dynamic ap-
proach typically gets more precise results compared to classical static analysis
in case of (a) indirect memory access (arrays and object fields) and (b) in
code with complex control structure (if-branches and virtual methods calls)
where branches uses different set of variables. Compared to all the above
analyzes where the dead variables are computed once as a pre-processing
step before the verification run, the Levis’s DVA is executed many times on
a pruned CFG during the verification run.

The whole analysis works as follows. Before the verification run the
Levis’s DVA run a forward static analysis which computes decision paths ;
decision path for given basic-block represents decisions (in other words, con-
ditional branches) that have to be taken in order to reach given basic block.
The decision paths are used later during the verification run to identify the
unreachable parts of CFG. During the verification run the DVA is used in
the following way. If the model checker initiates a state matching, a heuristic
is used to decide whether to compute more precise DVA information or if the
older DVA results from previous analysis runs are to be used. This decision
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step protects against excessive calls to the costly DVA. If DVA is started
it first starts a forward partial simulation from the current program state;
the simulation involves depth limited execution program from the current
program state. During the simulation outcome of the conditional branches
is recorded. For each conditional instruction, (i.e., location in the CFG) the
simulation records whether true-branch or false-branch or both branches
has been taken. The results of the forward simulation are combined with the
decision paths to prune the CFG. The basic block is pruned from the CFG
if the forward simulation identifies that a program will take a branch that is
inconsistent with the decisions for given basic block. Once pruned CFG is
constructed a classical DVA is started and it gets dead variables.

In the paper authors suggests to selectively apply this DVA only on seg-
ments of the programs in which many variables are used exclusively along
a given path in nested branching structure. The results show that in such
cases the analysis performs better compared to classical DVA approach.

In [99], Self et al. introduced a different way how to utilize a dynamic
information in dead variable analysis. Instead of using static analysis to over-
approximate future behavior of the program from given program state, in this
paper authors present a dynamic technique, which first executes a program
trace, and once the trace has been fully determined, the analysis computes
the dead variables for the states along the path. The trace is known if the
analysis is started, thus the analysis knows precisely which branches were
taken and which variables were read and written; the approach mitigates
these sources of imprecision typical for a static analyses. The backward
DVA along the determined trace is quite simple; if the trace ends in the final
program state all variables are marked as dead for a state at the end of the
trace. If the trace ends in a previously visited state, the dead variables of the
visited state, which were computed by the analysis in some previous run, are
used at the end of the trace. The analysis goes backwards along the trace, if
it reaches a read instruction it removed the read variable from dead variables.
In case of write instruction, the variable is added to the set of dead variables.
If the analysis reaches a point on the trace with a non-deterministic choice
(i.e., a user input) all variables are marked as live (i.e., removed from set of
dead variables). This is required since the analysis have no knowledge what
the program will do if non-deterministic choice, different from the choice on
the analyzed trace, is taken (i.e., what happens if the user provides a different
input).

In the paper, the authors introduce a notion of a DVA maximal reduction.
In short, DVA maximal reduction is a state space derived from a full state
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space of a program where the program states contain only the live variables.
The DVA introduced in the paper produces maximally reduced state space
for programs without non-determinism (i.e., for programs containing only a
single trace).

This analysis required depth-first-search state space traversal and cannot
be easily adapted to other searches (e.g., BFS) compared to the other DVA’s
introduces above.

The explicit state code model checkers exhibits in verification of the multi-
threaded programs which are hard to analyze be symbolic approaches due
to numerous thread interleavings. The DVA’s introduced above are not well
suited for this task.

As pointed above, the approach of [13, 45] creates a control graph, which
can be impractically huge in case of programs. The DVA of [109] lacks
support of global variables and heap which is essentials feature for code
verification, especially for Java language. Typically, the main function takes
an array (i.e., heap instance) with parameters from command-line. The DVA
of [77] is inefficient. It executes the trace multiple times. First it is executed
in partial forward simulation, for the second time it is executed during the
verification. Moreover, the computation static DVA (i.e., computation of
the fixpoint) over pruned CFG is done many times. The technique also
requires as an input a limit of length of the forward simulation. In [99] it
has been nicely pointed out, that there is no good value which guarantees
the best result for all program. Moreover, the DVA’s of [77, 99] are not
well suited for multi-threaded programs due to the way they cope with non-
determinism. In single threaded programs, the transitions are quite long;
they are terminated by non-deterministic data choices which simulate random
user inputs. In multi-threaded programs, the transitions are short, often only
a few of instructions. The prevailing source of non-determinism originates
from thread scheduling; the transition terminates on all accesses to shared
fields. In [77] the partial forward simulation terminates with the first non-
determinism; which means that in case of short transitions, it likely does not
obtain useful data. The DVA of [99] derives the dead values from a single
trace, thus it case of non-determinism it assumes all variables are live. This
makes the analysis unsuitable for multi-threaded programs.

From the above, we can see that we are missing an efficient DVA analysis
for verification multi-threaded programs support the global variables and
heap.
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2.2 Symbolic model checking

The symbolic model checkers manipulate with set of states at a time. Histor-
ically, the sets of states have been represented by Ordered Binary Decision
Diagrams (OBBD) [18, 20]. The logical formulae become predominant rep-
resentation with the advent of satisfiability solvers.

Basics of symbolic representation. Predicates can be used to express
set of states as well as transitions among these set of states.

Let have a program with two integer variables x and y. Assume the
following predicate:

p1 ≡ x >= 0 ∧ x < 10 ∧ y > 0

The set of states represented by the predicate includes (x = 1, y = 0) and
(x = 9, y = 1); if the values of program variables from the state are sub-
stituted into the predicate, the predicate evaluates to true. The states
(x = 0, y = 0) and (x = 10, y = 1) are not in the set of the states rep-
resented by the predicate p1; the predicate evaluates to false if the values are
substituted.

Transitions can be represented as predicates over input and output vari-
ables. Typically, the output variables are primed. To illustrate the concept,
assume following program statement:

y = x - 1

The corresponding predicate will be over variables x, y, x′, and y′. Input
variables x and y describe program state before the statement. Output vari-
ables x′ and y′ describe the program variables once the statement is executed.
The predicate corresponding to the statement is:

t1 ≡ y′ = x− 1 ∧ x′ = x

The predicate holds if the statement produces the values in output variables
from specified input, e.g., (x = 1, y = 1, x′ = 1, y′ = 0).

Let be given predicate PI representing a set of input states, predicate T
representing a transition, and predicate PO presenting a set of output states.
The satisfiability solvers can be used to check whether there exists a state
in the input set PI which after execution of program statements represented
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by T will result to some state among the ones in the PO. The input of the
solver will be the conjunction of the predicates is satisfiable.

PI ∧ T ∧ PO

If the predicate PO is representing the faulty states, then this check can
be used to show that faulty states are unreachable, i.e., the safety of pro-
grams. To illustrate the concept, let use the predicate p1 (defined above) to
represent a set of input states, and the above predicate t1 to represent the
transition. Assume that the statement y = x - 1 is followed by x = x / y.
The division statement can fail if the denominator (i.e., variable y) equals 0.
The error states which lead to division be 0 can be described by the predicate
p2

p2 ≡ y′ = 0

The predicate p2 represents the (output) program states which yields to the
error.

In our example, the conjunction to be passed to satifiability solver is:

p1 ∧ t1 ∧ p2 ≡ (x >= 0 ∧ x < 10 ∧ y > 0) ∧ (y′ = x− 1 ∧ x′ = x) ∧ (y′ = 0)

The solver outputs that the conjunction is satisfiable and will produce a
satisfying assignment, e.g., (x = 1, y = 10, x′ = 1, y′ = 0). The satisfying
assignment corresponds to a program execution from an input state in PI
which will result in faulty state, i.e., will cause division by zero.

On the other hand, if we use a different set of initial states described by
the predicate p′1 then the corresponding conjunction passed to solver will be
unsatisfiable; so, from these states the program cannot fail on division by
zero.

p′1 ≡ x >= 2 ∧ x < 10 ∧ y > 0

State matching. Logical implication can be used to compare the sets of
states represented by predicates, i.e., to perform symbolic state matching.
Let predicates p and v be sets of states for the same program instruction
(i.e., location). Let predicate p represents a set of states that can be reached
on currently examined program path and let v represents a set of already
processed (i.e., visited) that cannot reach any error states. If it holds that

p⇒ v
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then we know that p is represents a subset of states of v; in other words
for all the states that can be reached on the current path, it has been shown
that they cannot reach any error state.

Let illustrate this concept on an example and let compare the set of states
represented by the above predicates p1 and p′1. It does not hold that

p1 6⇒ p′1 ≡ (x >= 0 ∧ x < 10 ∧ y > 0) 6⇒ (x >= 2 ∧ x < 10 ∧ y > 0)

As we already know that predicate p1 represents also the state (x = 1, y = 0),
however the p′1 does not represent that state as it requires x >= 2. So, this
state shows why p1 6⇒ p′1.

The satisfiability solvers can be used to check whether p ⇒ v or not.
As in the example above, we let the solver to search for assignments (i.e.,
program states) that violates the implication; i.e., the solver input will be:

¬(p⇒ v)

¬(p⇒ v)⇔ ¬(¬p ∨ v)⇔ (p ∧ ¬v)

The second line shows the equivalent rewrites of the equations above; it high-
lights the fact, that SAT solver is looking for a violation. If the solver does
not found any satisfying assignment and terminates with the outcome that
the formula is unsatisfiable, then we know that there is no counterexample
thus the implication holds. As it is the case for the p′1 ⇒ p1.

Inductive step. In the above paragraphs, we have shown that conjunction

PI ∧ T ∧ PO

can be used to check if it is possible from some input state (in PI) to reach an
output state (in PO) after execution of a program statement(s) represented by
T . However, in verification it is often important to know that from all input
states the program will ends-up in output states (i.e., PO) after execution of
states of T . This property is often called inductive step it can expressed by
the following implication:

PI ∧ T ⇒ PO

The implication claims that for any input program state in PI (i.e., if
PI holds) and any outputs program state such that the output state can be
created from the input state by execution of code represented by transition
T (i.e., T holds), the output program state need the be in the set of program
states represented by PO (i.e., PO have to hold).
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Let us illustrate how the implication works in the example. Assume we
have the following implication:

p′2 ≡ (y′ >= 1)

p′1 ∧ t1 ⇒ p′2 ≡
≡ (x >= 2 ∧ x < 10 ∧ y > 0) ∧ (y′ = x− 1 ∧ x′ = x) ∧ (y′ >= 1)

Let take, e.g., an input state (x = 2, y = 0), which is represented by predicate
p′1. For example, let took an output state (x′ = 1, y′ = 1) that cannot
be created from the input. In such a case t1 does not hold; under given
assignment it does not hold that y′ = x−1; so, antecedent of the implication
is not satisfied and implication holds. Now, let assume and output state (x′ =
2, y′ = 1); this state is created from assumed input state when statement
corresponding transition t1 is executed. In this case, the t1 holds, thus the
antecedents of the implication are satisfied. Hence, the consequent needs
to hold to satisfy the implication. In our example, the output state (x′ =
2, y′ = 1) belongs to the set of states represented by the predicate p′2; i.e.,
consequent p′2 holds.

Note that the above implication will always hold as the p′1 requires x >= 2
and t will force y′ = x− 1 and p′2 expects y′ >= 1.

2.2.1 Bounded model checking

In the above paragraphs, we illustrated usage of satisfiability solving in pro-
gram verification. Now we will briefly describe basic concepts of Bounded
Model Checking (BMC) [10, 28]. The well-known code bounded model
checker are CBMC [30] and ESBMC [32]. Bounded model checkers im-
pose a limit on depth in which the error can be reached. BMC has been
successfully applied in model checking of hardware designs; there the depth
is typically expressed as number of unwinding of transition relation. In case
of programs, the depth can express number of unwinding of the whole transi-
tion relation as well. However, more fine-grained approach is typically taken
in case of program verification; the depth can be expressed as number of
instructions, basic blocks or an iteration of a program loop or recursive calls.
This depends on the way transition relation is constructed from a source
code.

Naturally, the correctness guarantees are given up to certain depth bound;
unless it is shown that given depth is enough to reach all the errors. Exact
depth limits typically exist in hardware design or (hard) real time controllers.
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If the bound is not known in advance, bonded model checkers interactively
increase the depth up-to which the error can occur. This process is stopped
if an error trace is found or if a user specified time and depth limit is reached.
The advantage of the technique are short error traces.

The idea of BMC can be formalized as follow. Let predicate I be the set of
initial states where the program (or system can start). The predicate T be
the transition relation. In contrast to the above introduction to symbolic
representation, it is not a single program statement. Instead it encodes
all statements of the program together with the program locations. The
predicate T is over unprimed (i.e., input) and primed (i.e., output variables).
We will use upper index to denote number of primes added to each variable
occurring in the predicate. This means output variables of T 2 are the input
variables for T 3. And let F be the predicate describing the faulty (error)
states. Note that we use the same convention for faulty states as for transition
relation; predicate F 2 describes the faulty states after two (unwinding) steps.

The BMC works as follows. Initially, the BMC checker verifies that the
initial states are safe by the following SAT call:

I ∧ F

Then the checker iteratively increases the bound up-to which the errors
can be found. Let n be the current bound. To determine whether faulty
state is reachable in n steps, the following formula is created and passed to
SAT solver:

I ∧
n−1∧
i=0

T i ∧
n∨
i=0

F i

Completeness. If any of the above formula is satisfiable the system is not
safe and the checker can generate a witness error trace from the satisfying
assignment of the formula. However, if the formula is not satisfiable the
checker cannot conclude that the program is safe as the error can occur at
larger depth. So, the checker increases the bound n and continues the search
to be safe.

Over the time there were introduced various techniques to detect if the
bound is large enough to cover all the faulty states, so called completeness
threshold. The natural upper bound on number of iterations is a diameter of
the state space, which is the longest shortest path between two states in the
state space. Other well-known threshold is the largest distance of any state
to the set faulty states F .
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Other technique adds additional assertion for each loop and recursive call.
These assertion checks whether the program can continue in looping/recur-
sion beyond the current bound. If these assertions are not violated, the
current bound is large enough, so the properties cannot be violated.

Both above approaches suffer from bounds being too large for general
programs. Consider, e.g., a program loop having iteration-count based on
user input. In such a case, the above techniques cannot found any reasonable
bound, as the loops can iterate arbitrary number of times.

Another technique to detect if all traces to faulty state has been con-
sidered is based on Craig interpolants. This technique can solve the above
problem with the bound if proper interpolants are generated. In context of
BMC the interpolant is a formula that specifies a set of program states; in
the same way as e.g., the predicate I specifies initial states. However, from
the properties of the interpolants it follows, that it over-approximates reach-
able states and it does not include states from which a faulty state can be
reached in given number of unrolling. Let us introduce Craig interpolants in
more details, later we will show Craig interpolants are applied in symbolic
model checking to obtain a symbolic representation of program states.

2.2.2 Craig interpolants

There exist different definitions of Craig’s interpolation Theorem [35]. Below,
we use the definition of Craig interpolants as introduced by McMillan in [78].

Given an unsatisfiable formula Φ ≡ A∧B, a Craig interpolant is a formula
I such that the following holds.

I1. A⇒ I and

I2. B ∧ I ⇒ ⊥ and

I3. free variables, function and predicate symbols in formula I have to
occur in both A and B.

The requirement I1 states that the interpolant I over-approximates A
and the second requirement I2 states that the interpolants is disjunct with
B. The last requirement I3 states that the interpolant is over shared variables
and symbols. In case of predicate logic, the I3 means that formula Φ can
have only the variables common to A and B.

The Craig’s interpolation theorem only guarantees that the interpolant
exists, but it is not constructive. However, algorithms to compute the in-
terpolants for various theories have been introduced in recent years. Let us
mention well-known Krajicek’s [73], and McMillan’s [78] interpolation sys-
tems for predicate logic. These have been generalized in Labeled interpolation
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system [41]. These interpolation systems derive the interpolants from refu-
tation proof which can be obtained from SAT solvers. In contrast to them,
in [26] is presented a method which does not require resolution proof. The
algorithm is based on model enumeration with generation of models. It uses
two SAT solvers corresponding to an A and B part of the Φ; the first solver
generates models satisfying A. These models are projected to variables com-
mon to A and B and generalized w.r.t. A. Then the second solver is used
to check if it generalized model is disjoint with B and then it is generalized
w.r.t. B. The model generalized w.r.t. both A and B is then added to the
interpolant and its negation is added to the first solver as an additional A
clause.

Over the time it has been published a lot of interpolation techniques for
first-order theories; let mention some of them. In [91] Pudlak introduced a
way to compute interpolants for theory of linear inequalities (LI). An inter-
polation technique for linear integer arithmetic (LIA) has been introduced
in [52]. In [79] McMillan extend its interpolation system to quantifier-free
fragment of combined theories of linear inequality and uninterpreted func-
tions (LIUF).

Interpolant properties. In many techniques, multiple interpolants are
computed from a single formula (so called interpolant collectives) Moreover,
these techniques often require special properties to hold for these collectives.
Great summary the properties commonly used as well as equivalences and
necessary conditions on the interpolation techniques can be found in [54].

The Path Interpolation property (PI) belongs to the most commonly re-
quired ones. Let be given an unsatisfiable formula Φ ≡ I ∧ T ∧ F . Let
interpolant R1 is computed using A ≡ I and B ≡ T ∧ F ; we say R1 is an
(I, T ∧F )-interpolant. And let interpolant R2 is computed for the A ≡ I ∧T
and B ≡ F ; i.e., R2 is (I ∧ T, F )-interpolant. Note that the T part of the Φ
has been moved from the B part in case of the R1 into the A part in case of
R2.

The interpolants R1 and R2 have path interpolation property iff it holds
that

R1 ∧ T ⇒ R2

The property can be extended to arbitrary number of the interpolants in a
natural way.

In verification tools, the check of PI property is not done explicitly. In-
stead, if interpolants with PI property are required, the interpolation system
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which produces interpolants with given properties is used; e.g., McMillan
interpolation system.

The interpolants can be seen as a tool which is applied in various ways
(not only) in the verification. In next sections, we will show some of their
applications in this field.

2.2.3 Interpolation-based model checking

BMC techniques guarantee to detect all reachable errors up to given bound
(e.g., number of steps, loop iterations). The BMC techniques are complete if
we can show that given bound is large enough to consider all possible traces.
In contrast to BMC, the unbounded model checking techniques do not have
such a restriction on the bound. They are complete, i.e., the result includes
all the possible program traces.

Many Unbounded Model Checking techniques are based on BMC and use
interpolants for a termination check [78, 25, 107, 5]. Let us introduce their
basic concept. The BMC tool with bound n passes the following formula to
a SAT solver:

I ∧
n−1∧
i=0

T i ∧
n∨
i=0

F i

In case, the formula is satisfiable, the assignment corresponds to real error
trace thus the tool reports and error and terminate. So, let assume that the
formula is unsatisfiable. In case of standard BMC, the tool would continue
with increased the bound. In case of unbounded model checking, the tool
would perform a termination check, i.e., it will try to prove the faulty states
cannot be reached with any bound.

To perform a termination check, first a sequence of n interpolants R
from the above formula is computed. Each interpolant is computed using a
different split of the formula into A and B parts; the split is shown in the
equation below:

I ∧
k∧
i=0

T i︸ ︷︷ ︸
Ak

∧
n−1∧
j=k+1

T j ∧
n∨
i=0

F i

︸ ︷︷ ︸
Bk

For an example assume the bound n = 3. The BMC formula and the
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splits into A and B are as follow:

BMCn=3 ≡I ∧ T 0 ∧ T 1 ∧ T 2 ∧ (F 0 ∨ F 1 ∨ F 2 ∨ F 3)

R1 ≡ I ∧ T 0︸ ︷︷ ︸
A1

∧T 1 ∧ T 2 ∧ (F 0 ∨ F 1 ∨ F 2 ∨ F 3)︸ ︷︷ ︸
B1

R2 ≡ I ∧ T 0 ∧ T 1︸ ︷︷ ︸
A2

∧T 2 ∧ (F 0 ∨ F 1 ∨ F 2 ∨ F 3)︸ ︷︷ ︸
B2

R3 ≡ I ∧ T 0 ∧ T 1 ∧ T 2︸ ︷︷ ︸
A3

∧ (F 0 ∨ F 1 ∨ F 2 ∨ F 3)︸ ︷︷ ︸
B3

The set of states represented by the interpolant R1 over-approximates
the states reachable after one step (application of transition relation), i.e.,
it contains all the reachable states and possibly some additional ones (i.e.,
unreachable). This follows from property I1. Moreover, the R1 does not
include any faulty states; this follows from the interpolant property I2 and
the fact that F1 is part of the conjunction B1. The similar reasoning can
be done for the remaining interpolants R2 and R3 (in general for all Rk

interpolants).

Moreover, this approach requires interpolants R to have a path interpo-
lation property, sometimes also called an inductive-step property. From the
construction of the interpolants the PI property gives us that:

R1 ∧ T 1 ⇒R2

R2 ∧ T 2 ⇒ R3

As we have shown above in the introduction to symbolic representation, this
implication gives us, that from each state represented by R1 after execution
for transition T the program will end-up in a state in set R2. The similar
holds for other transitions.

The interpolants Ri are having variables primed i times. It follows from
the properties of Craig interpolants and the way the BMC formula is parti-
tioned into A and B parts. The same notation, which is used to add primes
to the variables in transition relation T , is used to remove primes from the
variable in the interpolants Ri; to remove the primes from Ri, the notation
R−ii is used. This operation will enable us to compare interpolants from
different unwinding.
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The termination check can be performed, once all interpolants with re-
quired PI property are computed. The check tries to found i and j such that
i < j <= n and

R−jj ⇒R−ii
This check requires a number of solver calls quadratic to current bound

n. If no such pair of interpolants exists, the BMC needs to continue in
next iteration with an increased bound. If such a pair of interpolants exist,
we have found a backward loop and we proved that system is safe (for any
bound). To illustrate that let us take any path p in the system and we will
show that all the state on the path are safe. The state on the path after first
step will be in the set of state represented by R1 and since all Ri represents
only safe states, the state is not faulty. The state on the path after second
step have to be in R2. From inductive step property all states from Ri have
to terminate in Ri+1 after one step. Moreover, this state is not faulty. The
j-th state on the path is represented by Rj.; from the termination check it
follows that this state is represented also by Ri (a superset of Rj).

This fact is used to lower the index of the interpolant; any time the
interpolant Rj should be applied, the index is changed to i. In general a k-th
step will result in a state represented by Rmin(k,i+(k−i)%(j−i)).

For predicate logic, this process is complete. The number of variables is
finite, i.e., number of distinct interpolants w.r.t. implication is finite as well.
Thus, for large enough bound, the BMC formula has to be either satisfiable
or required pair of interpolants exist.

The proposed process should illustrate the concept of termination check.
Different and more efficient termination checks has been introduced. In [107]
the interpolants Ri are preserved and conjoined among BMC iterations.

In [78] the interpolants are used differently. It computes a sequence of
Pi formulae which over-approximate reachable states. Initially, the P is set
to contain the initial states (the P0 ≡ I). To compute Pi+1, first the BMC
formula where initial state I is replaced by Pi is created. If the formula
is satisfiable, the termination check has failed, and BMC bound has to be
increased. If it is unsatisfiable, the interpolant Ri+1 is computed, such that
the A part equals to Pi ∧ T . The Pi+1 is then disjunction of Ri+1 and Pi.
Below we illustrate the formula for bound n = 2 and splitting into A and B
parts.

Ri+1 ≡Pi ∧ T 0︸ ︷︷ ︸
A

∧T 1 ∧ T 2 ∧ (F 0 ∨ F 1 ∨ F 2 ∨ F 3)︸ ︷︷ ︸
B

Pi+1 ≡Pi ∨R−1i+1
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The termination check is done over formulas P ; they have a decreasing logical
strength. So, they have to reach a fix-point. The termination check validates
if the fixpoint (i.e., Pi+1 ⇒ Pi) is reached. If so, the system is safe. The Pi
are iteratively computed until either the fix-point is reached or the query for
Ri+1 is satisfiable.

Semantics of interpolants. From the interpolant properties and the way
they are computed it follows that they represent all the reachable states (in
any location) after one application of transition relation T . This is reason-
able for models of logical circuits where all operations are executed in parallel
and variables represent the values of registers. In case of programs, typically
small set of statements from transition relation can be executed. To be able
to determine which statements to be executed, the program state needs to
incluede an additional variable representing current program location (an
equivalent of instruction pointer register in CPUs). In this case, the inter-
polants do not represent program state at a single location; the location is
encoded in the interpolant formula in a complex unstructured way by the
program location variables.

The above follows from (i) the way BMC formula is constructed, (ii) split
into A and B parts to compute interpolant, and (iii) the properties of Craig
interpolants. If the interpolants are computed from the formula representing
multiple program paths, then the interpolant will over-approximate all the
states on the boundary between A and B parts of the formula.

The above shows, why this monolithic approach is not commonly used in
software verification. The state-of-the art tools like, CBMC [30] or UFO [5],
are using more fine-grained approaches; e.g., at level of basic block or state-
ments.

2.2.4 Abstract reachability graph

The Abstract Reachability Graph (ARG) are used e.g., in the UFO tool; the
similar (non-monolithics) representation of transition system can be found in
CBMC and other BMC checkers. The ARGs are used to represent the un-
winded transition relation in non-monolithic way. They explicitly represent
the locations and information about the paths in the program.

At first let us introduce an execution tree. Execution tree is constructed
from a set of traces, such that common prefixes of the traces shares the same
nodes in the tree. Reachability graph then can be seen as an extension of
that concept such that same suffixes of the traces also shared the nodes of
the graph.
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int main(int max) {

1: int s = 0;

2: for (int i = 0; i < max; i++) {

3: if (i % 2 == 0) {

4: s = s - i;

} else {

5: s = s + i;

6: assert s >= 0;

7: }

}

8: assert i >= max;

9:}

Figure 2.1: Example code

ARG is a directed acyclic graph. Its nodes relate to location in a program
and edges relate to statements in program between corresponding locations.
The ARG has designated entry node representing an initial location in the
program (i.e., start of the main function) and a single error node. Each
node in ARG has assigned label which over-approximates a state reachable
at given node. There is one node corresponding to an error location.

Let us illustrate this concept on an example from Figure 2.1 which itera-
tively decreases and increases variable s. In Figure 2.2, there is corresponding
ARG without labels. Node ni correspond to a location at line i in the exam-
ple program. To ease readability, we annotated its edges with corresponding
conditions and statements from the program. Note that in this ARG the loop
has been unwinded only once; if more unwinding of the loop are necessary,
the sub-graph with nodes n3 - n7 and n2′ would be replicated.

Safety. In Figure 2.3 the nodes and corresponding labels (in the curly
braces). The way to obtain labels will be introduced later. Also note, that
the labels could be simpler if the loop would be unrolled twice.

Now, let us informally introduce basic properties of ARGs. We say that
ARG is well-labelled iff (1) label of the initial node is true and (2) for each
edge in ARG, label of the head node of the edge conjoined with the statement
of the program corresponding to the edge implies the label of the tail node
of the edge. Let us look on the ARG in Figure 2.3. The edge n5→ n6 needs
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n1

n2

n3

n4
n5

n6

n7

n2′

n3′n8

n9
nErr

s := 0; i := 0

!(i < max)

i < max

i%2 = 0

!(i%2 = 0)

s := s− i

s := s+ i

s >= 0

!(s >= 0)

i+ +

!(i < max)

i < max

i >= max

!(i >= max)

Figure 2.2: Abstract reachability graph

n1 {true}

n2 {s >= −i ∗ (i%2)}

n3 {s >= −i ∗ (i%2)}

n4
{s >= 0}

n5 {s >= −i}

n6
{s >= 0}

n7 {s >= −i ∗ ((i+ 1)%2)}

n2′ {s > −i ∗ (i%2)}

n3′ {true}n8 {i >= max}

n9 {true}
nErr {false}

Figure 2.3: ARG with labels

to satisfy:

label(n5) ∧ [[stmt(n5→ n6)]] ⇒ label(n6)

(s >= −i) ∧ (s′ = s+ i) ⇒ (s′ >= 0)

To avoid naming conflicts, new fresh version (with more primes) of the vari-
ables is created each time new value is assigned to the variable. Note, that
the well-labelled requirement is similar to the path-interpolation property.

We say that node n is covered if there exists predecessor node(s) p in the
ARG for the same location as n such that label of n implies the label of the
predecessor node p. Let us recall the the introduction about symbolic state
matching; this means that states reachable at node n are subset of the states
reachable at the predecessor state p. In Figure 2.3 the node n2′ is covered
(by node n2); in the fugure we denoted this using dashed arrow. Both nodes
correspond to the same location at line 2 and it holds:

label(n2′) ⇒ label(n2)

(s > −i ∗ (i%2)) ⇒ (s >= −i ∗ (i%2)) >= 0)

Node is also covered iff all paths to it goes via covered node (i.e., is dominated
by covered node). In Figure 2.3 the node n3′ is covered, as it is dominated
by n2′.

We say that ARG is complete iff the node is covered or it is completely
unwinded (i.e., has the successors and edges corresponding to all its the
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successors in the program). The ARG in Figure 2.3 is complete. If we would
remove covered node n3′ and corresponding edge, it would be still complete
(node n2′ is covered). On the other hand, if we remove node n4 the ARG
would not be complete.

We say that ARG is safe if the error location is unreachable, i.e., label of
the error node nErr is false. The ARG in Figure 2.3 is safe.

Theorem 1 in [5] claims that if we create a safe, complete, and well-labeled
ARG for given program, then the program is safe.

Computing labels. The label for the ARG nodes can be computed using
various techniques, e.g., interpolation, and predicate abstraction. In this
section, we focus on interpolation.

To compute interpolants and to derive labels from them, an ArgCond
formulate is created. It contains only the nodes and edges via which it is
possible to reach an error node. A helper variable cni

is introduced for each
node ni. Moreover, for each node a formula µi in the following form is created:

µi ≡ cni
⇒

∨
i→j

(cnj
∧ [[stmt(ni → nj)]])

The formula µi can be expressed in a way that if a program reaches a node
i (i.e., the premise cni

of the implication holds) then some out-going edge
is taken (i.e.,

∨
i→ j in conclusion of the implication have to hold). In

such a case, program reaches tail node of the edge (i.e., cnj
must hold) and

executes the action on the edge (i.e., [[stmt(ni → nj)]]). In the BMC case,
we have been adding primes to all variables (i.e., created fresh variables)
in the formula after each unrolling step. In contrast to BMC, in this case
fresh variables are created when necessary. In upper part of Figure 2.4 there
are µi for all the nodes from our sample ARG. There are no µ9 and µn′

3
as

there is no path via these nodes to an error node. The ArgCond is then a
conjunction of all µi and cn1 , which force all executions to start in the initial
program state.

The ArgCond formula is passed to the solver. If ArgCond is satisfi-
able, the satisfying assignment gets an error trace. In case of unsatisfiable
ArgCond, the refutation proof can be used to compute interpolants and to
derive the labels.

For example let compute label for node n6. To compute the interpolans
we have to split the formula into A and B part. In this case, the node n6,
resp. µ6 corresponding to that node, and all its successors, i.e., n7, n2′, and
n8 have to be in the B part. All its predecessors, resp. their corresponding
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µ1 ≡ cn1 ⇒ (cn2 ∧ s = 0 ∧ i = 0)
µ2 ≡ cn2 ⇒ ((cn3 ∧ i < max) ∨ (cn8∧!(i < max) ∧ (i = i′′)))
µ3 ≡ cn3 ⇒ ((cn4 ∧ (i%2) = 0) ∨ (cn5∧!((i%2) = 0)))
µ4 ≡ cn4 ⇒ (cn7 ∧ s′ = s− i)
µ5 ≡ cn5 ⇒ (cn6 ∧ s′ = s+ i)
µ6 ≡ cn6 ⇒ ((cn7 ∧ s′ >= 0) ∨ (cnErr

∧!(s′ >= 0)))
µ7 ≡ cn7 ⇒ (cn′

2
∧ i′ >= i+ 1)

µ2′ ≡ cn′
2
⇒ (cn8∧!(i′ < max) ∧ (i′′ = i′))

µ8 ≡ cn8 ⇒ (cnErr
∧!(i′′ >= max))

ArgCond ≡ cn1 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 ∧ µ5 ∧ µ6 ∧ µ7 ∧ µ2′ ∧ µ8

Figure 2.4: The ArgCond formula for ARG from Figure 2.2

µ formulae, have to be in the A part; i.e., n1, n2, n3, n5. The node µ4 can
either in A or B part, let assume it belong to A.

The interpolant over-approximates states on the boundary between A and
B parts. This follows from the semantics of the interpolants. In Figure 2.5 we
highlighted the split of the ArgCond formula as well as the corresponding
ARG. The A parts are in blue, while the B parts are green. The black line
highlights the boundary between the A and B parts; the interpolant over-
approximates the set of states reachable in at the target node of the crossed
edges. The boundary in this case includes node n6, as well as node n7 (due
to the edge n4 → n7), and node n8 (due to n2 → n8). The information
about the reachable states at node n7 and n8 are irrelevant for the state n6
and it only make the interpolant larger.

At node n6 the value of variable s has to be non-negative, while at state
n7 also negative values are permitted. This information about the possibility
of negative value needs is the additional fact that have to be present in the
interpolant itself.

To get a label from the interpolant, all helper variables (i.e., cni
) and all

out-of-scope variables needs to be removed. The labels should describe the
reachable states at node, the above variables do not exist in the state. All
the above variables are quantified out, except of the helper variables for a
node being considered. This variable can be set to true, as all considered
paths goes via that node.

The quantification is a well know bottleneck in the verification as process-
ing of the quantified. In case of Boolean helper variables their elimination will
increase even more the size of the resulting formula. In case of out-of-scope
variables we may end-up with labels having quantifies.
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n1

n2

n3

n4
n5

n6

n7

n2′

n3′n8

n9
nErr

s := 0; i := 0

!(i < max)

i < max

i%2 = 0

!(i%2 = 0)

s := s− i

s := s+ i

s >= 0

!(s >= 0)

i+ +

!(i < max)

i < max

i >= max

!(i >= max)

µ1 ≡ cn1 ⇒ (cn2 ∧ s = 0 ∧ i = 0)
µ2 ≡ cn2 ⇒ ((cn3 ∧ i < max)∨

(cn8∧!(i < max) ∧ (i = i′′)))
µ3 ≡ cn3 ⇒ ((cn4 ∧ (i%2) = 0)∨

(cn5∧!((i%2) = 0)))
µ4 ≡ cn4 ⇒ (cn7 ∧ s′ = s− i)
µ5 ≡ cn5 ⇒ (cn6 ∧ s′ = s+ i)

µ6 ≡ cn6 ⇒ ((cn7 ∧ s′ >= 0)∨
(cnErr

∧!(s′ >= 0)))
µ7 ≡ cn7 ⇒ (cn′

2
∧ i′ >= i+ 1)

µ2′ ≡ cn′
2
⇒ (cn8∧!(i′ < max) ∧ (i′′ = i′))

µ8 ≡ cn8 ⇒ (cnErr
∧!(i′′ >= max))

ArgCond ≡ cn1 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 ∧ µ5∧
µ6 ∧ µ7 ∧ µ2′ ∧ µ8

Figure 2.5: Splitting of ARG and ArgCond into A (blue) and B (green)
parts to compute labels for node n6.

Let assume the interpolant for node n6 is I6. In you case they are no
out-of-scope variables, however the helper variables cn6 , cn7 and cn8 have
to appear in the interpolant. To produce a label for node n6, we have to
remove cn7 and cn8 using quantifiers, and cn6 assign to true. The label will
be label(n6) = ∀cn7 ,∀cn8 I6[cn6 ← >].

Summary. As we have seen, the interpolant over-approximates reachable
program states at the boundary between the A and B parts. If we are
interested in program states at a location (e.g., at an ARG node), then
states from the other location are irrelevant and only increase the size of the
formula. This problem is not specific to ARG; it originates in the properties
of the interpolants. If the input formula (i.e., transition relation) represents
multiple program paths and the interpolant for a selected location computed,
the problem will occur.

2.2.5 Interpolant size reduction

Craig interpolants in propositional logics are typically derived from refutation
proofs [73, 91, 78, 74, 41, 98]. Interpolant has, to some extent, the same
structure as the refutation proof. The interpolant size is linear in the size
of the proof. The main limitation is the need for a proof of a manageable
size. The resolution proof can be of exponential size compared to the size
of the input formula; moreover, the solvers are designed to produce neither
minimal nor small proofs, but to decide satisfiability quickly.
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There are two principle ways to obtain smaller interpolants; (i) reduce
the size of a proof used to compute the interpolant and (ii) reduce the size
of the interpolant formula.

The former techniques are applied once a proof is constructed and before
interpolants are computed; this way interpolant collectives having certain
properties can be computed. The later techniques are either applied as a
post-processing step or are applied as an optimization during the interpolant
computation. As these techniques modify single interpolant, logically equiv-
alent formula have to be produces if interpolant collectives should be derived.
Moreover, in case of collectives the optimization needs to be applied on each
interpolant whereas in case of proof reduction techniques, only one run is
required.

2.2.5.1 Proof reduction techniques

Proof reduction techniques identify and eliminate redundancies in the proofs.
Many techniques have been introduced [8, 53, 12, 94, 48]; below, we first
define a resolution proof and later, we introduce the reduction techniques.

Proofs. Proof can be seen as a directed acyclic graph (DAG) with a single
root node, where the empty clause (i.e., ⊥) is derived in case of refutation
proof.

Before we formally define a resolution proof, a few auxiliary definitions
are needed. A literal is a Boolean variable l or its negation l̄, a clause is
a finite disjunction of literals. In this thesis, we use angle brackets 〈Θ〉 to
denote the clause built over the literals in Θ. A clause can be also built from
multiple sets of literals; denoted as in 〈Θ,Θ′〉 or 〈Θ, {l}〉. The latter is often
abbreviated as 〈Θ, l〉.

Let 〈Θ, p〉 and 〈Θ′, p〉 be clauses. Using variable p as the pivot, their res-
olution yields the clause 〈Θ,Θ′〉 – resolvent. We write Res(〈Θ, p〉, 〈Θ′, p〉, p)
for the resolvent of clauses 〈Θ, p〉 and 〈Θ′, p〉 using variable p as the pivot.
The clauses 〈Θ, p〉 and 〈Θ′, p〉 are called antecedents.

For literal l or a set of propositional formulae A, Var(l) and Var(A) denote
the variable of l and the set of variables in the formulae of A, respectively.

We adopt the definition of the resolution proof from [41]: a resolution
proof R for a CNF formula Φ is a tuple (V,E, cl, piv, s), where V is a set of
vertices in the proof, E ⊂ V × V is a set of edges forming a full binary DAG
(i.e., all the vertices except for the leaves have the in-degree 2). The sink
vertex s has the out-degree 0. Each vertex v ∈ V is associated to a vertex-
clause specified by the cl(v) function. Each vertex clause of a leaf vertex v
corresponds to a clause from the input formula Φ (i.e., cl(v) ∈ Φ). Each inner

34



2.2. SYMBOLIC MODEL CHECKING

vertex v represents resolution of its antecedent vertex-clauses (specified by
cl) using the pivot piv(v); formally, for each inner vertex v, there exist edges
(v1, v), (v2, v) ∈ E such that cl(v) = Res(cl(v1), cl(v2), piv(v)). A refutation
derives the empty clause in the sink vertex s; formally cl(s) = ⊥.

Proofs are often considered as trees for purposes of interpolation. Simi-
lar simplification cannot be done for proof reduction techniques introduced
below.

RecyclePivot. We say that a proof is regular if each variable is used at
most once as a pivot on each path from a leave to the sink vertex; the proof
is irregular, otherwise.

Let us consider a proof represented as a tree. In such a case, on paths
having multiple resolutions with same pivot variable, it is possible to remove
all these resolutions except for the one closest to the sink. After the removal,
it is required to reconstruct the proof; the reconstruction further reduces the
size of the proof. This way, an irregular proof can be converted into a regular
one.

In case of a proof represented as a DAG, more attention is needed. In a
DAG, there can be more paths from a vertex to the sink. To remove vertex
v (with pivot variable p) from the proof, it is required that on all the paths
from v to the sink, there is another resolution with the pivot p. Then, the
proof has to be reconstructed to obtain a valid resolution proof; the same
procedure as for trees can be used. In case a non-tree proof, regular proofs
cannot be always created this way. The reduction can be performed in a
single pass via the resolution proof, because the proof is acyclic.

This reduction has been introduced in [8] as RecyclePivot operation
and it considers only tree-like segments of the proofs. It has been improved
to take whole proof into account in all-RmPivots [53] and RecyclePiv-
otsWithIntersection [48, 94].

RecycleUnits. The DPLL solver increases its knowledge during the search
via so called learnt clauses ; in some cases, a learnt clause is a unit clause (e.g.,
〈x〉 or 〈x〉). The RecycleUnits reduction applies this clauses to prune a
proof. First, it identifies the proof vertices having a unit vertex-clause. Then,
it finds the vertices with resolution having the same pivot variable as the
variable on some unit vertex-clause. The antecedents of vertices identified in
the latter step with the literal of the unit clause, are replaced by the vertex
with the unit clause.

To illustrate it on the example, let us have a vertex vu with unit clause
〈x〉 (found in the first step), the vertex v representing resolution with pivot
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variable x (identified in the latter step). Antecedents of the vertex v are v+

and v− with vertex clause cl(v−) = 〈C, x〉. After the transformation, the
vertex v will have the antecedents v+ and vu (instead of v−). Note that the
vertex-clause of v− is subsumed by the unit clause of vu (i.e., x⇒ (x ∨ C)).
The above transformation can be applied only if it does not introduce a
cycle in the proof; i.e., if the vertex being modified (i.e., v) is not (transitive)
antecedent of the vertex with the unit clause (i.e., vu). The proof needs to
be reconstructed (in the same way as in RecyclePivot) to obtain a valid
resolution proof.

Reduction via subsumption. In [11] a reduction method based on sub-
sumption is introduced. First, for each vertex v, a set of literals σv is com-
puted which are resolved on all paths from the given vertex to the sink. Then,
it attempts to find a pair of vertices v and u such that the vertex-clause of u
subsumes the vertex-clause of v disjoint with σv; i.e., cl(u)⇒ (cl(v) ∨ 〈σv〉).
If the vertex v is not a transitive antecedent of u, then v is replaced by u;
and the proof is reconstructed. If that was the only usage of the vertex v in
the proof, then it is removed and the size of the proof is reduced.

RecycleUnits can be seen as a special case of this reduction; the Re-
cycleUnits considers only the unit clauses for the subsumption. Also, the
RecyclePivot and its extensions are a special case of this reduction.

In [11], the authhors study the effect of the reduction on the interpolants;
the authors show that RecyclePivot may add variables into the inter-
polant. Not all shared variables have to appear in the interpolant, but Re-
cyclePivot can cause that additional shared variables will appear in it.
Moreover, authors introduced additional requirements which guarantee, that
no additional shared variables will appear in the interpolant if the reduction
is applied.

LowerUnits. The LowerUnits [48] and PushdownUnits [94] reduc-
tions use unit vertex-clauses in a different way than RecycleUnits. This
reduction picks a unit clause and detaches its vertex from the proof; then
the proof is reconstructed. Since the resolution with the unit vertex-clause
has been removed, the negated literal of the unit clause needs to be inserted
into the vertex-clauses of the vertices on the paths from the removed vertex
to the sink. If a negated literal has been added into the vertex-clause of the
sink, then the vertex with the unit clause is attached to the sink vertex; i.e.,
new sink vertex is created having the original sink vertex and the unit-clause
vertex as its antecedents. This way the refutation is restored. The unit clause
is pushed down the proof closer to the sink vertex.
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This transformation pays off if the unit clause is applied in the proof many
times, since these resolutions are removed and replaced with only one. Also,
if the variable of the unit clause is resolved on all paths from the detached
vertices to the sink, then the clause of the original sink vertex after the proof
reconstruction will remain False and the unit vertex will not be reattached.
Moreover, re-attaching a unit-vertex to the sink adds the resolution of the
variable to all paths in the proof; this helps RecyclePivot to identify more
resolutions to be removed.

This reduction has been generalized in LowerUnivalents [12] which is
able to move vertices having more complex clauses.

Local proof transformations. The aforementioned reductions operate
and analyze the whole proof. In [94], a set of local rules to transform the
proof is introduced; the rule is defined on a local context and it specifies
condition allowing the application of the rule, and a way the proof should
be modified. The local context is represented by the vertex being considered
and its predecessors (up to depth 2). Local transformation rules are of two
kinds – swapping rules, which are revertible and do not change the clause
derived in the root vertex of the local context, and reducing rules, which
yields a stronger (i.e., smaller) clause in the root vertex of the context. The
local transformations as well as some of the global reductions have been
implemented in Periplo [93].

Structural hashing. In resolution proofs, all derived clauses are deter-
mined by their antecedents. Thus, it is possible to use the input clauses
together with the structure of the resolution sub-proof to determine a ver-
tex clause. Instead of computing and comparing vertex clauses, structural
hashing [33, 94] can be used to identify the vertices with the same vertex
clauses.

The structural hashing algorithm processes the proof from the leaves to
the sink; i.e., it sorts the vertices topologically. It assigns a unique id to each
vertex; for a leaf vertex, a new id is assigned immediately. In case of an inner
vertex, the algorith decides whether the vertex having provably the same
vertex-clause have not been already processed. To identify the above case,
the algorithm maintains a hash-map; each entry in the map corresponds to
a vertex. The map key is a pair of ids corresponding to the left and the right
antecedent of the vertex; the value is the vertex and its id. If the structural
hashing algorithm visits an inner vertex, it gets ids of its antecedents; then it
checks the hash-map if the pair is already stored. If the hash-map contains
the key, the equivalent vertex is used instead of the current one; the structure
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of the proof is changed immediately. If the hash-map does not contain the
given pair of ids, a new id is assigned to the current vertex and it is inserted
into the map.

2.2.5.2 Interpolant reduction techniques

Craig interpolant is a logical formula having certain properties; thus, methods
used to reduce the size of formulae are often applied on them – constant
propagation, structural hashing, BDD-based sweeping. Not much research
effort has been devoted specifically to reduction of interpolant formulae.

And-Inverter Graphs. Often, And-Inverter Graphs (AIGs) are used to
represent interpolants. Some interpolant reduction techniques operate on
AIGs’ in the following, we introduce them.

AIG can be seen as a directed acyclic graph having four types of nodes:
(1) source nodes, (2) sink node(s), (3) internal nodes, and (4) the constant
> node. Primary input (PI) (i.e., an input variable) corresponds to a source
node. Primary output (PO) is a sink node which has exactly one predecessor.
An internal node represents a 2-input AND gate. An edge in an AIG can be
either the inverting or non-inverting (i.e., normal).

Each node and edge in AIG is associated with a Boolean function. The
function for PI is a Boolean variable. A non-inverting edge has a function
of its source node; an inverting edge represents a function complementary to
its source node. For an internal node, the function is the conjunction of the
functions of its incoming edges. The Boolean function of a PO equals to its
incoming edge and it is the formula represented by AIG.

Constant propagation. An interpolant is typically computed from reso-
lution proof in the following iterative process. For each vertex of the proof,
a partial interpolant is computed from the partial interpolants of the an-
tecedent vertices. The process starts in the leave vertices and continues until
the sink vertex is reached; in case of the sink vertex, Craig interpolant is
computed.

In the leave vertices of a proof, partial interpolants are quite often a logi-
cal constant (i.e., True or False). The constant can be used in the successor
vertices to simplify partial interpolants. To demonstrater how constant prop-
agation works on an example, let partial interpolants of the antecedents of
vertex v be I+ and I− ≡ ⊥ (i.e., I− be a constant) and the partial interpolant
for the vertex v be Iv ≡ I+ ∧ I−. Since I− is known to be a constant False,
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it is possible to conclude that Iv ≡ I+ ∧⊥ ⇔ ⊥; so the vertex interpolant Iv
is a constant as well.

Observability don’t cares. In [23, 24], Observability don’t cares (ODC)
are used to reduce the size of interpolants. The reduction attempts at iden-
tifying an input of a formula, which cannot influence its satisfiability and
thus it can be removed (replaced by a constant). In case of interpolants, the
reduction is applied to their sub-formulae.

In [23], the ODC relies on the following identities.

f(X, a) = a ∧ g(X, a) ≡ a ∧ g(X,>)

f(X, a) = a ∨ g(X, a) ≡ a ∨ g(X,⊥)

The reduction attempts at finding a (sub-)formula representing function
f(X, a) in which the variable a is used twice; first, directly in the top level
operation ∧ (resp. ∨) and then in a sub-formula g(X, a) (which represents
partial interpolant of an antecedent vertex). Let us assume a sub-formula in
the first form (i.e., f(X, a) = a ∧ g(X, a)). Observe, if variable a is assigned
a constant False, then function f(X, a) has to evaluate to False as well;
the value of g(X, a) is not important in this case. Thus, it is possible to
replace variable a in sub-formula g(X, a) by a constant True and propagate
the constants as in the reduction technique above.

Note that in [23] ODC reduction is applied onto AIGs representation of
an interpolant formula.

Structural hashing. Structural hashing can be applied onto the inter-
polants as well. In case of proofs, all proof vertices represent the same op-
eration (i.e., resolution) and the order of operands is important. In case of
interpolants, structural hashing is applied on a parse tree of the formula,
where internal vertices represent logical operations ∧ and ∨. In contrast to
proofs, hash-map keys have to include the operation as well as the operands.
Moreover, since logical operations ∧ and ∨ are commutative, it is possible to
normalize the order of the operands in the key (e.g., sort operands by their
ids).

BDD-based sweeping. The sweeping methods have been used in equiv-
alence checking [76]. The reduction uses (reduced ordered) binary decision
diagrams (BDDs) to detect functionally equivalent parts of a formula (resp.
circuit); equivalent Boolean functions yield the same BDDs, thus equivalence
checking is reduced to comparison of the BDD structure. The main disad-
vantage of BDDs is their size, which can blow up exponentially for certain
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formulae. To cope with a given problem, BDDs are not applied to the whole
(interpolant) formula, but only to its sub-formulae.

In [76], the BDD-based sweeping algorithm maintains a work-list of BDDs
ordered by their size. The algorithm operates on the AIG representation of
the formula; each BDD belongs to some AIG node (i.e., a Boolean func-
tion). The algorithm starts from the leaves representing a single variable
(i.e., primary inputs), and it creates a BDD representation for them. Then,
it iteratively picks the smallest BDD from the work list and it takes asso-
ciated AIG node to the smallest BDD. Then, the algorithm goes via the
outgoing edges of the node (in other words, it attempts at finding all usages
of the associated sub-formula) and for each successor node, it tries to creates
a BDD representing its Boolean function.

If some previously visited node has the same BDD as the successor (i.e.,
represent the same Boolean function), then the AIG graph is immediately
reconstructed, the previously visited node is used instead of the successor
and the edges are reconnected (i.e., the redundant sub-formula is replaced
by the equivalent one discovered in previous steps). If no node with the same
BDD exists, then the size of the BBD is checked; if it is below the threshold
then the BDDt is added into the work-list. The use of the threshold prevents
from the blow-up of the BDDs. In [24] the BBD-based sweeping as introduced
above has been applied onto interpolants.

Other variants of the sweeping algorithms include SAT-based [75] and
cut-based sweeping [42]. Instead of BDDs, the former technique uses SAT
solver to decide whether Boolean functions of some AIG nodes are equivalent
or not. The cut-based sweeping is using truth-tables to represent Boolen
functions (i.e., for functions of k variables, it uses a vector of 2k bits).

In [55], the above sweeping strategies are iteratively applied in various
order onto formulae and the effect on their size as well as on performance of
the IC3 [15] verifier is studied. Authors also studied various heuristics to cut
AIGs into layers.

Summary. All the aforementioned reductions (i.e., the proof reductions as
well as the interpolant reductions) are independent of the way the formula
will be used later in the verification process. On one hand, this means that
they are general and their applicability in not restricted to some verification
technique. On the other hand, these reductions cannot target inefficien-
cies specific only a to given verification problem; in particular, for Abstract
Reachability Graphs, these reductions are not able to focus interpolant to a
selected ARG node, and to remove program states from other nodes at the
boundary between A and B parts.
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3
Goals revisited

The overall goal of the thesis is to identify inefficiencies in program state
representation and to design and implement novel techniques, which will
result in smaller representation of program states.

In the previous chapter, we identified shortcomings of state representation
in the state-of-the-art model checking techniques. As we have shown, these
techniques include unimportant pieces of information into their program state
representation. This makes the state space larger and model checker slower,
since larger state representations have to be processed.

In particular, (i) there is no efficient technique to identify dead program
variables in the heap of multi-threaded programs. In case of symbolic repre-
sentation, we have shown that (ii) the commonly used Craig interpolants, due
to their semantics, include states from multiple program locations if applied
on a formula representing multiple program paths or the whole transition
system. If Craig interpolants are used to compute states for a single ARG
node, the included states from other locations only increase the size of the
interpolants.

G1 Design techniques to eliminate dead variables on the heap.

G1a Dead variable analysis for heap.

Design sound dead variable analysis to identify fields of the objects on
the heap whose value will not be read anymore. The analysis should
be tailored for explicit state representation and should support multi-
threaded programs.

G1b Dead variable reduction with state matching.
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Introduce a dead variable reduction based on the above analysis. The
reduction should identify dead values from state vectors. Design a safe
technique for matching state vectors ignoring dead parts.

G2 Design technique to focus Craig interpolants to single program location.

G2a Interpolation technique.

Introduce a way to specify the ARG nodes (i.e., program locations) be-
ing considered. Develop a novel interpolation technique that computes
interpolants focused on a considered ARG node.

G2b Interpolant properties.

Verification tools often require additional properties that the inter-
polants have to satisfy. Show the properties of the interpolants com-
puted by the proposed method.

G2c Interpolant sizes.

The size of the interpolants computed from a refutation proof is one of
their well-known bottlenecks. The goal is to evaluate the introduced
technique w.r.t. the size of the interpolants and to compare it with
other techniques.

With respect to the differences among explicit state and symbolic repre-
sentation of program states, the thesis describing our contribution is divided
into two chapters. The following chapter focuses on explicit state model
checking, while in the chapter 5, we present a novel interpolation technique,
which solves the goals for the symbolic representation.
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4
Dead variable reduction

The on-the-fly model checkers do not construct full state space and then
check the properties on the generated state space. Instead, they generate
successor states from the current one and for each reached state they check,
whether the property of interest holds or not. Applying optimizations is chal-
lenging in such a setting. The optimizations used by these model checkers are
typically very conservative. The successor states (i.e., the future behavior)
of a currently reached state are unknown at the time the state is reached.
Sound optimizations have to assume that the program can do anything the
programming language permits. This makes optimizations such as Partial-
Order-Reduction unnecessarily imprecise. In case of dead variable analysis,
information about future behavior of a state have to be obtained in a differ-
ent way, e.g., using static analysis. Unless additional analysis is performed, a
model checker does not know the variables read by the program in the future
executions from the current state. It had to assume that all variables can be
read (as permitted by the programming language), thus no variable can be
identified as dead.

Program states are complex. They contain a large amount of highly struc-
tured data. The complexity comes mostly from the expressiveness of pro-
gramming languages (dynamic object and thread creation) and the size the
standard libraries. Memory footprint of a minimal run-time environment is
non-trivial. States of the simplest Java program – HelloWorld – have to con-
tain representation of the System class and streams (PrintStreams) used to
print out characters. Explicit state model checkers typically do not model
the system libraries on the API level, instead, they model only lower-level
parts i.e., system-calls and native methods. This pragmatic approach (1)
saves the amount of work needed to create a usable model checker, since the
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libraries are complex and feature-rich, (2) helps to meet precise semantics of
the library code and (3) permits to detect invalid usage of the library code.
As to (3) consider parallel usage of a single HashMap1 from multiple threads.
If the HashMap would be modeled and all operations were atomic (as it is a
typical for modeled methods), it would be impossible to detect errors occur-
ring when the inserting thread causes resizing of the internal hashing table
while another reader threads still uses the map.

Program state consists of call-stacks, global variables (in case of Java
represented by static fields) and heap. It is not surprising that the heap
comprises the largest part of program state; in the Java language all local
variables and static fields, which are not of a primitive type, point to some
instance on the heap (unless holding null).

As we have identified in the background section; there is no DVA tech-
nique suitable from multi-threaded programs which are extensively using
heap – a domain of the highest interest for explicit state code model check-
ers. Existing techniques either rely on static analysis and do not consider
heap [13, 45, 109, 77] or are based on dynamic observation of program state
(so they support heap) but do not support parallelism [99].

In this thesis, we present two dead variable analyses which were designed
to (1) identify Dead fields of Heap instances in multi-threaded programs and
(2) to be compatible with state matching as used in explicit state model
checkers. We implemented both analysis in Jpf and evaluate them on non-
trivial multi-threaded java benchmarks. The first analysis is called Hybrid
DVA is based on static analysis, the second analysis is called Dynamic DVA
as it purely relays on information observed during model checker run-time.

4.1 Overview
[67] The contribution of DVR is two-fold. First, it reduces the state space, since

states differing only in values of the identified dead variables are matched.
This means that only a single representative of each set of matched states is
explored. Second, state matching (i.e., canonicalization, hashing) can pro-
cess only the live parts of state representation (ignoring dead parts), thus
making the whole state matching process faster. This is also of a partic-
ular importance, since explicit-state model checkers spend a large amount
of their runtime (approx. 30%) by state matching [84]. The former effect
applies both for DVAs over local variables as well as for those focusing on

1Note that the standard java.util.HashMap is not thread-safe, the thread safe-
implementations can be found in java.util.concurrent package.
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Thread T1

13 public void run() {

14 ...

15 assert(tree.contains(5));
16 }

Thread T2

17 public void run() {

18 ...

19 assert(tree.contains(1));
20 }

Figure 4.1: Java program composed of two threads where the tree variable
contains red-black tree from Fig. 4.2.

the whole program state. On the other hand, the second effect can be ob-
served only if a large enough portion of a program state is identified as dead,
which can be expected only for the heap. Instead of ignoring dead variables,
some DVR implementations set their value to a predefined constant (e.g., 0
or null). In such cases, the former effect is eliminated, since the size of the
program state is not reduced at all. Note that the more precise DVA is, the
more these effects manifest themselves.

Let us illustrate the aforementioned effects on the Java program in Fig. 4.1
and the red-black trees in Fig. 4.2 stored in the tree variable. The corre-
sponding class is listed in Fig. 4.3. The tree is shared among threads and
we assume that the program can generate either of them. No assertion is
violated irrespective of whether either the left or the right tree has been
generated. While the colours in red-black trees are used only in modifying
operations (insertions and deletions), the contains operation does not ac-
cess them and thus the variables (fields) representing the colours of nodes
are dead. The same holds for the right descendant of the root node holding
value 5. Since operation tree.contains(1) reads only the left descendant
of the root node, and operation tree.contains(5) accesses only the value
of the root node, the whole right sub-tree is dead. It means that the program
states where the tree variable holds the left resp. right tree of Fig. 4.2 are

5

1 8

7 9

5

1

Figure 4.2: Two different red-black trees, which can be identified as equiva-
lent using our DVA for program in Fig. 4.1.
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equivalent w.r.t. dead variables; the model checker can explore the successors
only for the state that is reached first and does not need to re-explore the
successors of the (equivalent) state reached later. This way the state space
is reduced.

To illustrate the second effect, let us inspect the parts of the tree (in
other words the parts of the program states) which are processed by the
state matching (in the case of Jpf, the data appearing in the state vector).
Note that the code in Fig. 4.1 does not modify the tree below the lines 3
resp. 7. First of all, the colours are dead and thus can be ignored by
state matching. More importantly, the right descendant of the root node
(tree.right) is also dead and can thus be omitted from state matching as
well. This simple fact causes the whole sub-tree tree.right (composed of
nodes 7, 8, and 9) not to be accessed and thus it can be omitted from state
matching. The latter effect speeds-up verification also if the state space is not
reduced (i.e., the former effect does not apply). A prominent example of this
effect is representation of environment variables, which form a non-negligible
part of the state, however are seldom accessed by the program.

In order to be useful, DVR itself and DVA as its part need to be fast
enough to pay off, while still having a modest memory demand. The DVR
implementation should be also compatible with all other state matching op-
timizations.

Another important question is how to cope with the states having different
sets of dead variables; in our example, each tree has a different set of them.
The tree at the right-hand side has dead variables in nodes 7, 8, and 9, which
do not exist in the tree at the left-hand side.

4.2 Running example

We have developed two versions of DVA for multi-threaded Java programs;
the first one, called Dynamic DVA (DDVA), aims at precision. The second
one, called Hybrid DVA, uses static analysis (for multi-threaded programs),
and combines the results of the analysis with the knowledge from the dynamic
(runtime) program state. This lightweight analysis is designed to be fast and
easy to integrate into state matching.

We illustrate our analyses using the example from Fig. 4.1 and the tree

variable holding the right-hand-side tree from Fig. 4.2. The tree nodes are
stored using the data structure from Fig. 4.3. We add a suffix holding the
stored value to distinguish the instances of TreeNodes from each other; e.g.,
the root tree node is denoted as TreeNode@5.
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1 public class TreeNode {

2 public int value;

3 public Color color;

4 public TreeNode left;

5 public TreeNode right;

6 ...

7 }

8 boolean contains(int i) {

9 int v = this.value;
10 TreeNode child;

11 if (v == i) return true;

12 if (v < i) child = this.left;
13 else child = this.right;
14 if (child == null) return false;

15 return child.contains(i);

16 }

17 }

Figure 4.3: Red-black tree node representation

Before we show how our analyses work, let us focus on the state space
a bit. Thread T1 will call the TreeNode.contains method, which will
read TreeNode@5.value only. The T2 also calls the TreeNode. contains

method, which in this case reads TreeNode@5.value, TreeNode@5.left, and
TreeNode@1.value. Although both threads are independent of each other
and thus it is enough to explore only one of their interleavings, on-the-fly
model checkers cannot be aware of this fact (since this requires knowledge
about future behaviour of the program). To be safe, they assume, e.g., a
possible conflicting write to a given shared field by another thread and cre-
ate a non-deterministic choice at each of the field reads [86]. In other words,
the model checker will generate 15 unique states out of which 8 states con-
tain a non-deterministic scheduling choice deciding whether T1 or T2 will be
scheduled for execution (Fig. 4.5).

4.2.1 Dynamic analysis

Our dynamic analysis tracks field reads and writes executed by the program
and based on them it identifies live parts of the program state (i.e., live
addresses). During the depth-first search (DFS), the model checker maintains
two data structures related to visited states: (i) a stack of states currently
present at the DFS stack, for which full state vectors are stored to enable
detection of state-space cycles, and (ii) a set of visited states, for which the
pairs 〈live addresses , reduced state vector〉 are stored; these are used for state
matching. The reduced state vectors, which are stored after a state and its
successors are fully explored, do not include dead variables.
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Figure 4.4: Future transitions of thread T1 resp. T2.

To illustrate this process on our motivation example from Fig. 4.1, let us
assume that the model checker uses the DFS exploration strategy and that
thread T1 has a higher priority than T2; in other words, if both threads T1
and T2 can be scheduled at a state, the successor where T1 is executed is
explored first. The corresponding state space is shown in Fig. 4.5.

The model checker is in state S1 just before the Tree.contains calls
where both threads can be scheduled, thus thread T1 is executed first. The
model checker executes the call to the Tree.contains and continues execu-
tion until it encounters the read of TreeNode@5.value field. Just before the
field read (in state S2) it creates a non-deterministic scheduling choice (to
be able to read the value possibly modified by other threads) and the exe-
cution of thread T1 continues. The first executed instruction is the actual
read of TreeNode@5.value, which caused the scheduling choice; the dynamic
analysis stores the fact that at the instance TreeNode@5, its field value has
been read. First, note that our dynamic analysis distinguishes among ob-
ject instances. Also note that our implementation stores this information
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S1

S2

S3 S4

S5

Figure 4.5: State space of T1 and T2. States with decision choices are in
dark grey.

during forward exploration (because Jpf does not provide another way to
obtain this piece of information). The model checker then continues in for-
ward execution of thread T1, it executes the assert statement and thread T1
terminates (state S3). Since in Jpf, a transition has to be executed by a
single thread, a new transition is created and, without any non-determinism,
the only remaining thread T2 is scheduled. The model checker then executes
instructions of thread T2; among others, the reads of TreeNode@5.value,
TreeNode@5.left and TreeNode@1.value. Our analysis stores all these field
reads (in the execution order) as in the previous case; the field writes are
stored in the same way. All these reads are executed in a single transition,
since T2 is the only runnable thread; the transition ends in state S4, where
thread T2 terminates.

If the model checker reaches the visited or final state and it starts back-
tracking, our dynamic analysis uses the stored information to compute live
parts of program states. In the example, the model checker has reached
a final state and thus dynamic analysis marks all fields in all instances as
dead (the program cannot read any of them). The model checker then back-
tracks from S4 to S3; during backtracking the dynamic analysis processes the
stored information for backtracked transition in the reverse order. Thus, due
to field reads, the analysis will mark TreeNode@1.value, TreeNode@5.left,
and TreeNode@5.value as live at the beginning of the transition S3 → S4,
while all other data remain dead. This includes, if the right-hand side tree
is stored in the tree variable, the instances (and their fields) TreeNode@7,
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State TreeNode@5.value TreeNode@5.left TreeNode@5.right TreeNode@1.value TreeNode@1.left TreeNode@1.right

S1 X X X
S2 X X X
S3 X X X
S4
S5 X X X

Table 4.1: Live parts of selected states in Fig. 4.5.

TreeNode@8, and TreeNode@9 as well as the colors of all TreeNode instances.
Since there is only a single outgoing transition from state S3, the live ad-
dresses of state S3 are those at the beginning of the transition S3 → S4.
After the part of the entire state space in Fig. 4.5 is explored, the live ad-
dresses of S1 are stored. During exploration of another execution (most
notably when the other tree from Fig. 4.2 is created by the program), the
state corresponding to the beginning of T1 and T2 is matched with the one
already explored earlier, because the live part of the stored state matches
the corresponding part of the state being explored. If no DVR had been
performed, the corresponding part of the state space (having the same shape
but differing in the tree.right field) would have had to be explored.

State matching. Once the live resp. dead addresses are known at a state,
dynamic analysis computes a reduced state vector and stores the pair con-
sisting of the set of live addresses and the reduced state vector in the set of
visited states. The reduced state vector contains only live values from the
static and instance fields, and call-stacks of the threads. Since local vari-
ables are not considered by our analysis (i.e., none of them is removed), the
complete call-stacks (without any reduction) are stored. In order to speed
up state matching, the same optimization as in [99] is applied – for each
call-stack, we store a list of live addresses used to compute the reduced state
vectors corresponding to this call-stack.

The reduced state vectors enable to detect those states which differ in
dead parts of the heap only. In our example, if the model checker backtracks
over state S1, where the example begins, and generates another state with
the tree from the right-hand side of Fig. 4.2, our state matching procedure
will match this state with S1.

If the model checker reaches a state, it has to check whether the state
(or an equivalent one) has been already visited or not, so the state matching
is initiated; the model checker uses the call-stack of the current state to
find a list of live addresses associated with the call-stack. For each set of live
addresses from the list, a reduced state vector of the current state is computed
and it is checked whether the pair of live addresses and the reduced state
vector is among the visited ones. If so, the state is reported as visited.
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4.2.2 Hybrid analysis

In contrast to our DDVA, where we addressed precision in the case of multi-
threaded programs, our hybrid analysis targets scalability and speed, instead.

Our hybrid analysis consists of two phases. The first phase is executed
before the model checker runs. Cheap simple inter-procedural, context-
insensitive static analysis is performed, identifying the fields that may be
read (i.e., used in the terminology of DVA) by a given method before it ter-
minates (up to the end of its body). The analysis gets only a partial view on
the liveness; on the other hand, it is cheap to compute. In other words, this
phase provides an under-approximation (i.e., a subset) of the live fields at
a state. Additional pieces of information are obtained in the second phase,
performed at model-checker runtime just before each state matching. Note
that the hybrid analysis does not distinguish among object instances; a field
is live either at all instances or at none. Therefore, field writes (i.e., def s)
are not tracked.

In the second phase, the analysis uses information from the call-stacks of
the threads; i.e., the locations (instruction pointers) in the methods at the
call-stacks. It traverses the call-stacks in the top-down manner and extends
the scope for which the liveness is considered. Using the location in the
current method (top stack frame), the analysis uses the results from the first
phase to obtain fields read before the current method terminates; these fields
will be marked as live. Going down the call-stack, the analysis adds the live
fields from the caller using the results from the first analysis computed for
the location right after the call. This way, we obtain the fields which can be
read by a thread before the considered method terminates. Once the whole
call-stack is processed, we know which fields the thread may read before it
terminates. The above processing of the call-stack is done for each thread
and the results are joined together, thus obtaining the final result – the fields
which can be read at a given program state. These fields are marked as live
and only these are considered in state matching.

Note that even though the second phase is executed many times (before
each state matching), it is extremely fast and thus introducing only a minimal
overhead.

Using this approach, we obtain more precise results compared to purely
static DVA. In particular, the information from call-stack determines the
methods that are called; contrary to purely static DVA, which has to consider
all possibly called methods and reads in them. Also, the analysis does not
have to construct the possibly huge cross-product of thread locations, as it
is (typically) done in flow-sensitive analyses of multi-threaded programs.

In state matching, the information is used in a straight-forward way. If
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the analysis identifies a field as possibly live, the value of the field is included
into the state vector, otherwise the value is ignored and not stored. Note that
the results of the hybrid analysis intentionally do not distinguish particular
instances more precisely (e.g., using allocation sites). While the analysis
itself can use a better pointer analysis (e.g., to construct the call graph) to
distinguish among instances of the same type, a slower and more complicated
state matching algorithm, similar to the one used in dynamic analysis, would
be needed to preserve safety in such a case.

4.3 Formalization
In this section, we first introduce parallel heap-manipulating programs as
a parallel composition of guarded-action transition systems and their state
space (using the typical small-step-big-step approach). Later, we formally
describe our dynamic DVR and show its correctness. In contrast to static
DVAs, which identify variables which are dead at a location, our dynamic
analysis identifies the addresses on the heap which contain a dead value at a
program state.

The memory (Mem) is modelled as a function taking an address and
returning the value stored at this address. As usual, writing to the memory
produces a new function Mem ′ being equivalent to the original one for all
but the written address.

Syntax. A program P = (T1, . . . , Tn) is a tuple of concurrently executed
threads T1, . . . , Tn operating over shared memory. For the sake of presenta-
tion simplicity, we omit dynamic thread creation in the formalization, since
it can be added in a straight-forward way not affecting DVA.

Each thread can be seen as a labeled transition system Ti = (Li, T ri ⊆
Li×Guard×Act×Li, liniti ∈ Li), where Li is a set of locations, liniti is the initial
location, and Tri a transition relation (can be seen as CFG) with transitions
labeled by Guarded Act ions. We refer to edges in Tri as to steps ; the steps
are executed atomically. Guards and actions can be arbitrary, provided that
they satisfy the following conditions (later in this section we show how to
extract the information important to DVA): (α) The guards are assumed to
be side-effect-free (i.e., they do not modify the memory), and (β) the actions
and guards are deterministic (i.e., they act as functions; the same input
values result in the same output). Data non-determinism (e.g., user input) is
modelled by branching – one branch for each possible user input. The actions
encode statements of the source code. They typically represent direct or
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indirect writes into memory. Without loss of generality, an action can include
at most one write into the memory ending up the action; more complex
constructs of programming languages are split into several actions. Guards
are intended to express conditions and synchronization primitives from the
source code. The memory is shared by all the threads; it holds all the thread-
local as well as global (shared) data and states of locks (locked/unlocked).

We choose this representation, since we believe that it is best suited
for multi-threaded programs. In contrast to while language [109] in Mur-
phi, our memory is shared among all threads, thus our approach permits
complex interactions involving multiple threads over shared object instances
which is common in multi-threaded code. Our formalization does not include
primitives for message passing and queues as in the If model checker [45]
(unbounded FIFO queues) and Promela [61] (bounded blocking and lossy
channels). The motivation for this decision was that queues are usually not
an inherent part of programming languages. They are typically included in
the language libraries with various semantics – in the form of priority queues,
LIFOs, FIFOs, etc.

Semantics. A program state S = (IP,Mem) is a pair consisting of func-
tion IP (instruction pointers), which for each thread i returns the current
thread location li ∈ Li, and function Mem representing the content of the
memory. In the rest of the chapter, IPS and MemS refer to the correspond-
ing components of state S, respectively. We use S to denote the set of all
possible program states.

For a function f , we write f [d := val] to denote the function which is
equivalent to original f for all inputs but d, for which it returns value val ;
we use this syntax to denote execution of a step in a particular thread. We
write Mem[A] to denote original memory Mem, whose content is modified
by the write of action A.

Definition 1 (State space) The state space (i.e., behaviour) of a concur-
rent program P is the transition system AP = (S,4 ⊆ S × Guard × Act ×
S, Sinit ∈ S) over the program states S, where the initial state Sinit consists
of the initial states of all the threads and the initial state of the memory:
Sinit ≡ (IP (t) = linitt ∀t ∈ 1...n,Mem init).

There is a transition (S,G,A, S ′) ∈ 4, where S ≡ (IPS, MemS) and
S ′ ≡ (IPS′ ,MemS′) iff there exists a thread t and its step (lt, G,A, l

′
t) ∈ Lt

such that:

• IPS(t) = lt and IPS′ = IPS[t := l′t], and

• guard G holds in state S, and
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• MemS′ = MemS[A] (i.e., action A transforms MemS into MemS′).

According to the definition, the guards for all transitions in4 hold, hence
a transition cannot be blocked by its guard. We include guards into the
transitions, because they read the memory, thus are important for DVA. The
state space (i.e., 4) is non-deterministic; two different threads may, at a
state, execute the same action guarded by the same guard.

Definition 2 (Transition equivalence) Let p ≡ S1
G1,A1−−−−−→ · · · and p′ ≡

S ′1
G′

1,A
′
1−−−−−→ · · · be (finite or infinite) traces. We say that p and p′ are transi-

tion-equivalent if they consist of the same sequence of actions and guards:
∀i : Gi = G′i, Ai = A′i.

Since actions are deterministic, the content of memory in all states along
a trace is determined by the initial state of memory and by the actions on
the trace. The sets P and P ′ of traces are equivalent if ∀p ∈ P there exists
a transition-equivalent trace p′ ∈ P ′ and vice versa. We use P to denote the
set of all traces in the transition system AP .

Let read addr : 4→ 2dom(Mem) be a function, which for a given transition
(S,G,A, S ′) ∈ 4 returns the set of memory addresses that are read from
the memory by either guard G or action A or both. Similarly, function
write addr : 4→ 2dom(Mem) for a given transition returns the set of memory
addresses to which action A of the transition writes. Recall that guards do
not modify the memory thus are not considered by this function. Moreover,
from the definition of the action, it follows that the set of written addresses
is either empty or it contains a single address; without this restriction, an
inter-transition data-flow analysis would be needed if multiple writes occur
in a transition to obtain results with the same precision.

In our formalization of the program, we do not exactly specify the form
of guards and actions. Instead, we use read addr and write addr to extract
their behaviour relevant to DVA (i.e., the read and written addresses). Also
note that these functions do not take the guard or action itself, but the whole
transition; the purpose is to precisely model indirect memory accesses and
arrays, where the address which is read or written depends on the content of
the memory (in the initial state of the transition).

Let f be a function and S ⊆ dom(f) be a set. We write f�S to denote
the equivalent partial function with domain restricted to S. We use partial
functions to represent program states omitting dead values.
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Live addresses. The read/write addr functions can be easily generalized
for traces. In a similar way, one can define function tr live addr which
returns the set of addresses that are read before they are written on a given
trace, i.e., the set of live variables for the given trace.

Definition 3 (Live trace addresses) Let p ≡ S1
G1,A1−−−−−→ · · · be a trace.

Function tr live addr : P → 2dom(Mem) is defined as:

tr live addr(p) = { a | ∃i : a ∈ read addr((Si, Gi, Ai, Si+1)) ∧
∀j < i : a 6∈ write addr((Sj, Gj, Aj, Sj+1))}

Note that in contrast to Static DVA, the analysis operates on real program
states and state space instead of program locations in CFG. The values stored
at live addresses at state S1 (initial state of the trace) fully determine the
behaviour of the trace, i.e., the outcome of the actions on the trace as well
as fulfilment of the guards. The tr live addr function points to the memory
addresses whose values are important to follow the trace, and fully determines
the computations done (results of the actions) along the trace. If a state
S ′1 differs from S1 in values at dead addresses only (i.e., S1 and S ′1 equals
on tr live addr(p)), then there exists a trace p′ from S ′1 being transition-
equivalent to p. Moreover, the corresponding states along these equivalent
traces differ only in the memory content which is dead w.r.t. the suffices of
these traces. Note that in general, two transition-equivalent traces can have
different live addresses, however if the initial states of the traces differ at
dead addresses only, then tr live addr(p) = tr live addr(p′).

In the verification, one is typically not interested in a single possible future
behaviour starting at a state (i.e., a single trace), but rather in all possible
future behaviours (i.e., all traces). To reflect this, we extend tr live addr.
We say that an address is live at a state if there is a trace from the state at
which the address is live:

Definition 4 Let a be an address and S ∈ S be a program state. Function
live addr : S → 2dom(Mem) is defined as follows:

live addr(S) = { a | ∃ trace p = S ∗−−→ · · · such that a ∈ tr live addr(p)}
The live addr function refers to the memory addresses on whose values the
future behaviour of the program depends (once program reaches the given
state). Similarly, to the trace-based counterpart, if states S and S ′ equal
w.r.t. live addr(S) (and of course refer to the same program point IP ), then
for any trace p from S there is a transition-equivalent trace from S ′ (i.e., the
future behaviours of S is a subset of the future behaviours of S ′).
This claim is formally expressed in Lemma 1 which is stated later in this
section.
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Figure 4.6: Thread specification (left) and its state space (right)

In the context of DVA, if two program states equal on their live addresses,
their future behaviour is assumed to be the same; informally stated, the sets
of states reachable from either one are the same w.r.t. their live addresses.
This is generally not true for Guarded-Action LTS, and also for programs,
this needs to be proved (e.g., thread synchronization is to be considered).

Consider a single-threaded program P = (T ), where thread T is shown
in Figure 4.6; it consists of three locations L1− L3 and four steps T1− T4.
All steps except for T4 contain guard True, step T4 contains guard X < 0.
The actions are assignments to (global) variables X and Y.

The corresponding state space is depicted in Fig. 4.6 on the right-hand
side; it consists of six states S1 − S6 and five transitions. Note that for
the sake of readability, we used variable names instead of addresses in the
example; while this is doable for global variables, it is not suitable for heap
instances.

To illustrate that the claim above does not hold for LTSs in general, let
us focus on states S2 and S4. State S2 has an empty set of live addresses,
since only the assignment Y := True of step T3 is executed before the final
state is reached; thus only location IP is considered in state matching. State
S4 has the same location as S2, and its set of live addresses equals to that
of S2. However, the future behaviour of these states is different – from S4
there is an additional trace taking step T4 into S6.

First, note that problem is caused by unsatisfied guards; guard X < 0
does not hold in S2, thus there is no transition which could make the variable
X live. Later in the subsection about guard restrictions, we focus on the
problem in more detail.

Also note that the claim below the live addr definition holds; from state
S2 there is a trace S2 T3−−→ S3. From state S4 there is a transition-equivalent
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trace S4 T3−−→ S5.

Safety properties. Out of the transition-equivalent traces p and p′ one
may end up in an error state while the other in a safe state. This is because
the values on which the decision whether the state is safe or not depends
are ignored. For example, consider Figure 4.6; transition-equivalent traces
S2 T3−−→ S3 and S4 T3−−→ S5 and the safety property (IP = L3 ∧ X > 0).
While the first trace leads to the safe state S3, the second one leads to the
error state S5.

Let φ be (an externally specified) safety property for program P. We use
addr(φ) to denote all the memory addresses which φ reads (i.e., the addresses
of variables φ contains). To be able to distinguish between safe and error
states, the addresses addr(φ) have to be a (live) part of each program state
(even in cases the address is not read on any trace). Note that for many
common types of program errors, such as assertion violation, the addr(φ) =
∅, since the property is encoded in the program itself.

Live parts of state. The aforementioned definitions allow us to introduce
a function which omits dead (i.e., irrelevant) parts of program states. For
a full state T we define a function reduce stateT which reduces full states
w.r.t. the future behaviour of the state T .

Definition 5 (Reduced states) Let S ≡ (IPS,MemS) be a full state. The
reduce stateT (S) function is defined as follows:

reduce stateT (S) = (IPS,MemS�live addr(T )∪addr(φ))

The reduce state∗ functions eliminates dead addresses from the domain of
memory function MemS, while instruction pointers IPS are not modified.

An optimal state matching algorithm matches (currently reached) state
S with previously (fully) explored state S ′ if the future behaviours of S
are a subset of behaviours from S ′. In other words, the states should be
matched if (i) they both contain the same value of the instruction pointer
and (ii) equal on the data stored at the live addresses of S; formally if
reduce stateS(S ′) = reduce stateS(S).

This is however hard to implement efficiently, especially if just hashes
of the visited states are stored. At the time when state S ′ was reached, it
was not known which states visited later on would be considered in the state
matching with S ′, thus the reduce stateS was unknown at that time. And
symmetrically at the time when S is reached, from the previously visited
state S ′ only the hash value (of the full state) is known and there is no easy
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way to get the hash value considering only the live parts of S ′, i.e., to obtain
reduce stateS(S ′).

Alternatively, it is possible to omit the checking for subsets and match
states with exactly the same future behaviour; formally expressed:

reduce stateS(S) = reduce stateS′(S ′)

This check is easier to implement, but the states whose future behaviour is
a proper subset of the other are considered different due to different domains
of their Mem functions. This matching approach should be comparable to
the optimal one since for programs, a state does not exhibit a subset of the
behaviours (i.e., traces) of another one; either the sets of traces are the same
or completely different.

Note that even this alternative way of state matching still needs to pre-
cisely know the future behaviour of the currently reached state S. To detect
whether state S has been already visited or not, it is not a good idea first to
explore the successors of S and then to compute the live addresses from the
observed behaviour; such an approach would eliminate one of the benefits
of DVA – reduction of the state space. In our hybrid analysis, an over-
approximation of the future behaviour origins from the static phase; so there
is no need to explore the successors. Our dynamic analysis utilizes the ob-
served behaviour to compute live addresses, however this is done only for
states which are known to be new (i.e., visited for the first time). During
state matching, the approach uses the live addresses of previously visited
states which are tested against those of S; this is possible due to Theorem 2
below.

Reduced state space. As stated above, for state matching it is possible
to consider states w.r.t. their own future behaviour. For a full state S ≡
(IPS,MemS) ∈ S, we define a reduced state R as R ≡ reduce stateS(S). We
use reduce state without subscript to denote reduction of the state w.r.t. its
own future behaviour. The symbol R is used to denote the set of all reduced
states. Upon the reduced states, it is possible to build a state space in a
similar way as for full states.

Definition 6 (Reduced state space) Let P be a program with the state
space AP = (S,4, Sinit). The reduced state space RP of P is tuple RP =
(R,4R ⊆ R×Guard ×Act×R, Rinit), where Rinit = reduce stateSinit (Sinit).

There is a transition (R,G,A,R′) ∈ 4R iff there exists a full state tran-
sition (S,G,A, S ′) ∈ 4 such that:

reduce stateS(S) = R and
reduce stateS′(S ′) = R′.
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We now justify the correctness of this definition. In the reduced state
space, it is easy to see that (1) there are no reads of the undefined values
from the memory, and (2) there are no undetermined values in the mem-
ory. For a transition t ≡ ((IPR,MemR), G,A, (IPR′ ,MemR′)) ∈ 4R, (1)
can be formally expressed as read addr(t) ∈ dom(MemR), while (2) can be
expressed as dom(Mem ′R) ⊆ dom(MemR) ∪ write addr(t).

As to (1), for any transition (R,G,A,R′) ∈ 4R if some memory ad-
dress is read by guard G and/or action A, then from the definition of the
read addr function (using the trace containing only this single transition)
these addresses are preserved in the reduced state. So, both G and A read
defined values. Note that the potential memory write of A can be performed
to an irrelevant address. In such a case the write is ignored, and the state
of the memory is unchanged. This happens if the given memory address is
dead w.r.t. the property being verified and if the address is not read later in
the program.

As to (2), for any transition (R,G,A,R′) ∈ 4R, all values (in the mem-
ory) of state R′ have to be computed from the values in predecessor state
R. For any address a ∈ dom(MemR′), there are three options: either (i) a
is read by the property φ (i.e., a ∈ addr(φ)) and thus the address is in the
domain of Mem for all reduced states, in particular MemR, or (ii) a is written
by action A, thus the value is determined in R′, or (iii) a is not written by
action A. From the definition of the reduced state space it follows that if
there is a reduced transition (R,G,A,R′) ∈ 4R, then there is a full transition
(S,G,A, S ′) ∈ 4 such that reduce state(S) = R and reduce state(S ′) = R′.
Then from the definition of live addr(S ′), there must be a trace p′ starting
at S ′ which (reads a and thus) causes a to be live in R′. This trace p′ can
be prefixed by the considered transition; and p = S G,A−−−→ p′ can be created.
Trace p shows that a is live in S and thus a ∈ dom(MemR).

First, we will show a lemma which formally expresses the above claim
transition-equivalent traces. Then, we will show one of the main results, the
Theorem 1, i.e., bisimulation between reduced and original (full) state space.

Lemma 1 (Trace-equivalent paths) Let S1 ≡ (IPS1 ,MemS1) ∈ S and
S ′1 ≡ (IPS′

1
,MemS′

1
) ∈ S be two states such that reduce stateS1(S1) =

reduce stateS1(S
′
1).

Then for any trace p = S1
A1,G1−−−−−→ S2 · · · · · ·Si Ai,Gi−−−−→ Si+1 · · · there

exists a transition-equivalent trace p′ = S ′1
A1,G1−−−−−→ S ′2 · · · such that IPSi

=
IPS′

i
for all i (i.e., the corresponding states along equivalent traces differ only

in the memory content).
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Proof sketch. We show here the main idea of the proof. The formal proof
is presented later in the appendix A.1.

The proof is constructive and inductive on the path length. The induc-
tion will iteratively append equivalent transitions to the end of path p′ and
preserve the following inductive invariant:

(1) reduce stateSi
(Si) = reduce stateSi

(S ′i) and
(2) IPSi

= IPS′
i

and
(3) the path p′ is transition equivalent to the prefix of p of length i.

The appended transition is taken from the path p. It can be appended
to p′ since it ends-up in the location as the corresponding part of the path p.
The first induction invariant holds because the guard and the action of the
action reads the same data on the transition of path p and p′ thus yielding the
same outcome. The second induction invariant holds from the construction
of p′ the added transition is from the same for both state (i.e., same thread,
guard, and action).

Such a path p′ satisfied all requirements of the lemma. �

Below, we show that in our case there is a bisimulation between the full
and reduced state spaces (as it is typically done for static DVA). To our best
knowledge this is the first proof for Dynamic DVA.

Theorem 1 (Bisimulation) For a program P and a property φ, transition
system AP = (S,4, Sinit) and corresponding reduced transition system RP =
(R,4R, R

init) are bisimilar.

Since reduced states and corresponding full states are equivalent w.r.t. φ,
it directly follows that the state space of the program is safe w.r.t. φ iff the
reduced state space is safe (and similarly for error traces). So, it is enough
to check the safety on the reduced state space. Bisimulation also preserves
liveness properties, so these can be safely checked just on reduced state space
as well [7].
Proof sketch. Here we sketch the idea of the proof, while a formal proof
is presented later in the appendix A.1. We will show that reduce state∗
functions define the relation among the states which is a bisimulation. We
assume states S ∈ S and R ∈ R to be in the relation iff reduce stateS
(S) = R.

The direction from full states to reduced states follows directly from the
definition. The only non-trivial step is the other direction. For a reduced
transition (R,G,A,R′) ∈ 4R executed by thread i and related full state S
we will show that there is full transition (S,G,A, S ′) ∈ 4 such that full state
S ′ reduces to R′.
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From Def. 6 we obtain a base full transition (Sb, G,A, S
′
b) ∈ 4. Using

this transition we show that there is also a transition (S,G,A, S ′) ∈ 4 since
S and Sb equal on all values that G and A use.

We will show that S ′ and S ′b have the same live addresses: Since S and
Sb reduce to the same state R, they have (pair-wise) transition-equivalent
sets of outgoing traces. Hence, the sets of traces via S ′ or S ′b are transition-
equivalent as well. It directly follows that S ′ and S ′b have the same live
addresses and, in turn, S ′b and S ′ reduce to the same reduced state (R′). �

Guard restriction. While the bisimulation theorem guarantees soundness
of the approach, the definition of the reduce state function is not suitable
for efficient state matching. On-the-fly explicit state model checkers can get
a precise set of live addresses for a state, however they can be computed
only after the state is fully explored, which is too late to directly reduce
the state space. Below, we articulate Lemma 2, which permits us to use
live addr (i.e., the reduce state∗ function) of one state to safely reduce an-
other (still unexplored) one. The theorem, however, cannot be applied on
general guarded-action LTS. Hence, we first introduce a syntax restriction
for guards.

Definition 7 (Guard-restriction) The program P = (T1, ...Tn) satisfies
guard-restriction if for each thread Ti = (Li, T ri, l

init) and for each step
(li, G,A, lj) ∈ Tri such that guard G is non-trivial (i.e., different from True)
there exists also a step (li,¬G,A′, lk) ∈ Tri, (in the same thread t from the
same location li) with the complementary (negated) guard ¬G.

Both guards read the same data and in any case exactly one of the guards
is satisfied. The guard-restriction is inspired by the way source code is con-
verted into transition systems. The guards are used to encode conditions
(if-then-else) and synchronization primitives. The conditions are encoded
this way naturally. Synchronization primitives (such as synchronized blocks,
thread joins, and wait-notify) can also be easily modelled this way by adding
an (active-waiting) self-loop for the blocked state. This means that source
code (e.g., Java) yields guard-restricted transition systems.

Let us now focus on the purpose of the guard restriction. Without the
guard restriction, if two states C and V equal w.r.t. relevant addresses of V ,
we know that the future behaviours of C includes all the future behaviours
of V . They are in the subset relation, because there can exist a trace from
C which cannot be followed from V ; it means if the trace is followed from
V , the corresponding transition to follow the trace can be missing due to an
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unsatisfied guard. Note that unsatisfied guards do not contribute to relevant
addresses. It means that C and V do not behave equally w.r.t. (unsatisfied)
guards. Exactly this case is illustrated in examples from Figure 4.6, which
do not satisfy the guard restrictions. Guard restrictions, on the other hand,
eliminate this issue. Consequently, if two states C and V equal w.r.t. relevant
addresses of V , they have (pair-wise) transition-equivalent sets of traces and
also the same set of relevant addresses. This is formally expressed in the
following lemma:

Lemma 2 Let P be a program that satisfies guard restriction, and AP =
(S,4, Sinit) be its state space. Let C ∈ S and V ∈ S be two states such that
reduce stateV (C) = reduce stateV (V ). Then it holds that reduce stateC =
reduce stateV .

Proof sketch. We show that for each trace from C a transition-equivalent
trace with the same set of tr live addr from V exists and vice-versa; thus,
the states have the same set of live addresses and hence the reduce state
functions. The direction from V to transition-equivalent trace from C is
informally stated just below the definition of (trace) relevant addresses, being
exactly the claim of the Lemma 1. As to this part, the guard restriction is
not applied here.

The other direction, i.e., for any trace from C, a transition-equivalent
trace from V exists, is shown by contradiction. Assume that p is the shortest
trace from C, such that there is no transition-equivalent trace from state
V and that states C and V satisfy the requirements of the lemma. Since
p ≡ C G,A−−−→ C ′ is the shortest such a trace, it follows that the first transition
cannot be followed from V . In the opposite case, we could have moved along
the common prefix of traces p and p′ (thus finding shorter traces from states
Ci and Vi).

Now we exploit the guard restriction to show that trace p cannot exist.
Guard G cannot be trivial (in such a case transition G,A−−−→ would exist from
V ). Moreover, due to the guard restriction, there is a transition V ¬G,A′

−−−−→ V ′

thus all the addresses that ¬G (as well as G) reads are live in V . Because
C and V equal w.r.t. the relevant addresses of V (formally expressed as
reduce stateV (C) = reduce stateV (V )), and all the addresses that guard G
reads are relevant, it follows that in C guard G is not satisfied (in fact its
negation holds). Thus there is no transition C G,A−−−→ C ′ and trace p does
not exist. In turn, in the whole state space, there is no contradicting p (i.e.,
a trace without a transition-equivalent counterpart). �
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4.4 Implementation
We have developed two independent DVAs to identify live fields of the heap
instances and implemented them in Java PathFinder (Jpf). The analyses
differ in precision, computation complexity as well as in the way live addresses
are obtained. To make our approach clear, we present the algorithms in
pseudo-code below. To emphasize our extensions to classical model checking,
we present the standard algorithm we build upon in Alg. 1.

Algorithm 1 Common DFS model checking algorithm

1: procedure Main
2: ModelCheck(P, s init, [s init])

3: procedure ModelCheck(program P , state s, trace t)
4: if IsErrorState(s) then throw Unsafe(s, t)

5: if Visited(s) then return VISITED

6: SetVisited(s)
7: for transition alfa ∈ EnabledTransitionsIn(s) do
8: s succ ← alfa(s)
9: ModelCheck(P , s succ, t + (alfa, s succ))

10: return SAFE

Our Dynamic DVA tracks field reads and writes executed by the program.
The live addresses for a given program state are computed once all the future
behaviours of the program state are fully explored. Thus, our DDVA can
be used only with the default Depth-First Search (DFS) with no test-like
heuristics (those traversing only a part of the state space). The analysis is
exact for loop-less state space, it marks particular field as live if and only if
there exists a real trace from that state on which the value of the field is read
(before it is overwritten). On the other hand, the analysis requires additional
memory and has a bigger computational cost compared to our Hybrid DVA.
DDVA has to store the observed live addresses (i.e., reduce state function)
together with the program state (i.e., its state vector or its hash).

Our Hybrid DVA combines static analysis and dynamic information from
program states; hence its name. Static analysis provides an over-approxi-
mation of future program behaviour (in terms of field reads), thus the infor-
mation about live addresses is computed once the state is reached (before
its successors will be explored). So, the analysis can be safely used together
with various test-like heuristics and state space exploration strategies. It is
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less precise than our DDVA, however, it offers very low computational and
memory overhead; only small amount of memory is required to store the
results of static analysis.

In our work, we aim at identifying irrelevant content stored in the heap.
Note that we disregard irrelevant data stored in the local variables, which is
a subject of other analyses that can be combined with ours.

Heap of Java programs. Heap is typically formally modelled as an array
of values where references (pointers) are indexes into the array. While this
straightforward approach is generic and can express any usage of the heap, it
is too low-level for object-oriented languages. Jpf (as well as other explicit-
state model checkers) typically represent heap in a more complex way. This
helps to better express the semantics, and it makes various optimizations
(e.g., heap canonicalization) easier. It leads us not to represent the DVA
related information as addresses, but to follow a higher-level abstraction used
in model checkers. It also provides us with an easier integration into state
matching. Below, we describe how the elements of heap are represented;
such a representation is directly used in our DDVA. Our Hybrid DVA uses a
simpler representation, which is described later.

In object-oriented languages, the objects are allocated on the heap. In
Java, the objects are of two types – arrays and instances of classes. Instead of
addresses for referring to objects, we use pairs consisting of a unique object
ID (i.e., the representation of an address) and a field name (its index since
the name may not be unique) for class instances.

The class instances do not contain only fields, but also a type. The type
of each instance is stored in its headers. The type can be accessed via in-
trospection (reflection), by the instanceof Java operator, and indirectly via
virtual method calls. The instance cannot be marked as dead (i.e., com-
pletely ignored by state matching), even if no field is read from the instance,
if a virtual method is called on the instance; its type is live, since if another
instance with a different type had been used instead of the original one, the
program would behave differently; it will execute a different (virtual) method.
Thus, for each instance (i.e., unique instance ID), the analysis stores whether
its type is live or not.

In Java, monitors are other properties of instances; each instance has asso-
ciated a monitor (i.e., a lock), upon which the threads can synchronize. The
state of monitors (locked, unlocked, notified, etc.) is of course an important
part of the program state and thus has to be considered by state matching.
The monitors realize the synchronized blocks and methods; each monitor
needs to be accessed at the beginning and at the end of the corresponding
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synchronized section, and so each monitor is live. That is why our analysis
assumes all monitors to be live.

Arrays are other objects stored on the heap. They are handled in a similar
way as class instances (since, in Java, arrays are instances as well, but with
no fields and methods defined by user), however, instead of field names, we
store which particular indices in the array are live – we store pairs consisting
of a unique object ID and an index. The arrays are more difficult to handle
than normal instances, since they can vary in length. Instances of a single
class have a fixed set of fields and thus a fixed size. For arrays, we also store
whether their length has been accessed, in other words whether the length
attribute is live or dead. In rare cases, when an array is not accessed at all,
but still the instance is important (e.g., it is compared to another reference),
we even omit the size of the array in state matching. Of course, if any index
of the array is live, then the array length is live as well; if the length of
corresponding arrays differs, an attempt to access an index may result in
the IndexOutOfBoundsException only in one state with the shorter array.
In Java, the arrays are in fact objects, which however cannot have any user
defined methods and fields. It means that we also have to store the type of
each array as for a normal class instance.

Our analysis also handles static fields. In Jpf, static data are stored in
a (special) heap, where each class has its own instance. Because of that, we
handle the static fields in the same way as object instances; for each such a
field, we store a pair consisting of a unique class identifier and a field name for
identification. Note that a particular class can be loaded into JVM several
times (each time with a different defining classloader) and each such loading
results in a different and incompatible type, featuring its own static fields
(sharing the names). Even though these classes have the same name, we
support this in our approach, since Jpf assigns them different identifiers.

Analysis of JVM bytecode. Above, we focused on specific properties of
the heap. We need to track not only addresses, but also, e.g., types and array
lengths.

In the following paragraphs, we move from LTS to JVM bytecode. Our
analyses, as described, operate over LTS, however, the program is not exe-
cuted as guarded-action LTS. Java programs are represented by JVM byte-
code, which is directly executed by the Jpf model checker and observed
for purposes of our analyses. The mapping from LTS to bytecode is quite
straightforward; however, guards need special attention. Moreover, DDVA
requires a guard-restricted transition system; so below (1) we focus on guards
and show that JVM bytecode can express only guard-restricted transition
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systems. Later, we show (2) how to obtain read addr and write addr resp.
their counterparts for programs with heap.

In LTS, evaluation of guards influences which transitions the program may
take; if LTS encodes a source code, then guards are used to express condi-
tions and synchronization primitives. In JVM, there are no guards. Instead,
bytecode (assemblers) have compare instructions to evaluate conditions, and
conditional jump instructions, to take a particular branch (i.e., transition).
In particular, JVM bytecode contains the compare [D/F]CMP[G/F] instruc-
tions, and conditional jumps specialized for a specific condition (e.g., the
IF ICMPLE instruction which compares two top integer values on the stack
and jumps if the one-but-top value is less than or equal to the top one).

Let us focus on the guard restriction. The restriction has been introduced
to ensure that the reduced states behave in the same way w.r.t. both satisfied
and unsatisfied guards; in other words, the restriction makes the reads of
unsatisfied guards visible. Informally, in order to enable JVM to decide
whether a given transition can be taken, it first has to evaluate the condition
(i.e., the guard); thus, the reads of (satisfied as well as unsatisfied) guards
are visible. Therefore, for JVM bytecode, we can assume that it satisfies the
guard restriction.

Let us now focus on the conditions and synchronization primitives in
more detail. In case of conditions (e.g., if-then-else and loops), first, the
condition (i.e., the guard) is evaluated (so its reads are visible) and based
on the result, either the then or the else branch (i.e., the transition) is
taken. In case of synchronization primitives, in particular the MONITORENTER

and MONITOREXIT bytecode instructions, which correspond to the beginning
and end of synchronized sections, respectively, we always consider the corre-
sponding monitor to be live, as argued above. To focus more on the bytecode
level, independently of the fact whether the MONITORENTER would block the
thread or not, the execution of the instruction is started and thus the read of
the monitor can be observed in either case – (blocking the thread or acquiring
of the monitor) as needed for the guard restriction.

Below, we focus on extraction of relevant information for JVM bytecode.
First, we identify the bytecode instructions that need to be considered by
the analysis, later we focus on more specific JVM properties.

In Tab. 4.2, there is a list of bytecode instructions which manipulate
references and accesses the heap; for each instruction, we mark whether it
depends on or modifies values in the interesting parts of the heap mentioned
above. Not all instructions which manipulates with references are interesting
for DVA; e.g., aconst null, if[not]null, areturn, aload do not directly
access the heap, so they can be safely ignored by DVA.

Field accessing ([PUT/GET][field/static]) instructions do not make
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Table 4.2: Heap manipulating JVM bytecode instructions
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the type of the instance live. The particular field that is read or written is
determined during compilation; there is no dynamic-dispatch as in case of
virtual methods. Field accesses are thus independent of the actual runtime
type of the corresponding instance. Similarly, the *aload resp. *astore

instructions read resp. write data from/to arrays; the proper instruction is
determined at compile-time using static types; its behaviour is independent
of the actual runtime type (in case of aaload), thus these instructions do
not mark type information as live.

As to the invoke instructions, it is obvious that their behaviour does not
depend on the values of the fields. However, as mentioned above, since
the runtime type of the instance on which the method is invoked influ-
ences which particular method is executed, the dynamic dispatch is ap-
plied (invokeinterface, invokevirtual). Note that invokestatic and
invokespecial do not involve dynamic dispatch, the called method is de-
termined statically during compilation, thus runtime type information is not
used by them.

The athrow instruction throws an exception; its behaviour is indepen-
dent of the type of the exception, however, the exception handling, i.e., the
decision which exception handler matches the exception depends on the type
of the exception instance.

The invokedynamic instruction is the most complex; its purpose is to
support dynamic languages using JVM. Our implementation of the DVA
analyses do not consider this instruction, because the particular Jpf we used
does not support this instruction.

The behaviour of the locking instructions (as well as calls to synchronized
methods) has been described above. Jpf stores a state of all locked monitors
into the state vector; our DVR’s do not modify the way monitors are serial-
ized. Moreover, in order to lock/unlock the monitor, it needs to be accessed.
This guarantees that the monitor instance is live and thus not omitted from
program state.

The DVA does not have to consider the JVM instructions which create
new objects (i.e., new and ldc). The created objects do not exist in prede-
cessor states; so obviously these objects cannot be live in them.

Not only bytecode can manipulate with the heap content; native functions
(in Jpf realized by modelled functions) can access it as well. The most
obvious example is the introspection, which allows Jpf to read or modify
fields and call methods. Another example is the output to the console (i.e.,
System.out); the method print(String) is modelled in Jpf and its native
body reads the whole content of the provided string.

Furthermore, in addition to the types of non-determinism present during
normal Java programs execution, Jpf features methods for efficient mod-
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elling of the user or environment behaviour. These methods include, e.g.,
Verify.getBoolean(), Verify.getInt(). Jpf process these methods by
creating a temporal variable storing the selected value in them and creating
a choice for each possible one (i.e., branches in the state space). Even when
using these methods, the program satisfies the guard-restriction property.

4.4.1 Dynamic DVA

Our DDVA monitors interesting instructions described above and based on
their appearances, it computes live addresses for each state. The algorithm
of DDVA is listed in Alg. 2.

Algorithm 2 Dynamic DVR
11: procedure Main
12: ModelCheck(P , s init, [s init ])

13: procedure ModelCheck(program P , state s, trace t)
14: if is error state(s) then throw Unsafe(s, t)

15: (visited, live addrs)← IsVisited(s)
16: if visited then return (VISITED, live addrs)

17: if s ∈ trace then return (LOOP, {all addrs})
18: live addr s← {}
19: for transition alfa ∈ EnabledTransitionsIn(s) do
20: (s succ, heap accesses)← alfa(s)
21: ( , live addrs s succ)← ModelCheck(P , s succ, t + (alfa, s succ))
22: live addrs s alfa← update live addrs (live addrs s succ, heap accesses)
23: live addrs s← live addrs s ∪ live addrs s alfa

24: SetVisited(ReduceState((s, live addrs s), live addr))
25: map stacks2live addrs [s.threads.callStacks ] += live addrs s
26: return (SAFE, live addrs s)

27: procedure IsVisited(state s)
28: for live addrs v ∈ map stacks2live addrs[s.threads.callStacks] do
29: r s candidate← ReduceState(s, live addrs v)
30: if Visited(r s candidate, live addrs v) then return (TRUE, live addrs v)

31: return (FALSE, {})

Live addresses. While Jpf executes the program forwards, for each tran-
sition (i.e., each forward step) (line 19–23), the analysis records all relevant
instructions (line 20–21); to be more specific, the addresses (a part of the
heap) to mark resp. unmark as live. Jpf stops advancing forward once it
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reaches either the end of the program or a visited state (line 16). In the
former case, there are no live addresses, so no address is marked as live (this
corresponds to the empty set in our algorithm) (line 18). In the latter case,
the live addresses stored for the matched (previously visited) state are used
(line 15). When Jpf backtracks a transition (i.e., goes backwards along a
program trace), the analysis computes a union of live addresses for the target
state of the transition and the reads and writes recorded for the transition
itself (line 23); this way, live addresses for the source of the transition are
computed. To obtain live addresses for state s, the live addresses from the
beginning of all the outgoing transitions from s are merged; an address is live
at state s if and only if it is live at the beginning of (at least one) transition
starting in s.

Due to the DFS exploration strategy, all outgoing transitions are explored
before the state is backtracked from. Thus, the live addresses for state s (i.e.,
the reduce states function) as well as its reduced state rs can be computed
and stored for the state matching purposes after Jpf backtracks over s. The
only exception are cycles in the state space (not just in CFG). If a cycle
is detected after reaching (an already visited) state s, the live addresses for
it (being in the stack of unprocessed states) are not known. In order to
preserve correctness, we have to mark all addresses in s as live (line 17).
Note that it does not necessarily mean that the program has to loop forever;
after a few iteration of the cycle, a non-deterministic choice can be taken,
which will exit the loop. Alternatively, there is a more elaborated approach,
which does not lose precision. It is possible to postpone the computation
of live addresses for the cycle states. First, all the traces leading out of the
cycle (remaining non-deterministic choices in the states forming the cycle)
have to be explored, and later, after all of them are explored and their live
addresses are known, the sets of live addresses for the cycle states can be
computed – their live addresses are propagated along the states forming
the cycle to simulate any number of loop iterations. This way, the sets of
live addresses can be obtained even for state spaces with loops in a precise
way. Nonetheless, since the practical outcome of this approach is not clearly
visible, we postpone the experiments with it as future work.

State matching. After Jpf reaches a state (after a forward step), state
matching is initiated to decide whether the state has already been visited
or it is a new one (line 27–31). Java programs satisfy the guard-restriction
property, so Lemma 2 can be applied here; the state matching process at-
tempts to find (line 28) a state V and a corresponding function reduce stateV
(i.e., live addrs v) satisfying the requirements of the lemma (line 30).
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For the purpose of state matching, a helper map (map stacks2live addrs)
is maintained (line 28). For each call-stack, the map holds live addresses (in
other words reduce state functions) used to reduce the states with the par-
ticular call-stack. This map is used as an optimization reducing the number
of live addresses to be examined.

State matching proceeds as follows: First, the set of possible live addresses
(i.e., reduce state functions) is obtained using the call-stack of the current
state s (line 28). These live addresses are examined one-by-one whether their
live values are the same as in s (line 29–30). In other words, a candidate
reduced state is created using the current state s and its live addresses are
examined (formally reduce state v(s) is computed). Then, using the stan-
dard state matching function, the algorithm determines if a previously visited
state v exists such that reduce state v(s) = reduce state v(v) (line 30). If so,
due to Lemma 2, a state equivalent to s has been already visited (line 30); if
not, s is a new state (line 31).

4.4.2 Hybrid DVA

The other analysis of ours – Hybrid DVA – focuses on scalability instead of
precision. It is designed to be fast in presence of threads and to allow for
efficient state matching. The algorithm of our hybrid analysis is listed in
Alg. 3.

For each program state, it identifies the fields which can be read (on any
object of the given type) before the program terminates by any trace from
that state. In its nature, the analysis is similar to the analyses proposed
in [86], but we adapted it for the purpose of state matching. It consists of
two phases: (1) static data-flow analysis, whose results are combined with
(2) the (verification time) information from the currently reached state. The
first phase is done once before a Jpf run, while the second one is executed
on demand during state-space exploration just before state matching.

Static phase. Backward flow-sensitive context-insensitive data-flow analy-
sis over full inter-procedural control flow graph (ICFG) is used to obtain infor-
mation about future behaviour of the program (line 33). For a given location
(i.e., bytecode instruction) l, the analysis computes an over-approximation of
the set of all fields which may be read before returning from the method con-
taining l (including potential reads from the nested method calls and spawned
threads). The data flow facts are pairs ClassName.FieldName which unam-
biguously identify all program fields. In contrast to [86], the facts do not
include allocation sites of objects; even though potentially less precise, this
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Algorithm 3 Hybrid DVR
32: procedure Main
33: partial liveness ← HdvrComputePartialLiveFields(P )
34: ModelCheck(P , s init, [s init ])

35: procedure ModelCheck(program P , state s, trace t)
36: if IsErrorState(s) then throw Unsafe(s, t)

37: live fields ← HdvrComputeLiveFields(s.callstacks)
38: reduced s ← ReduceState(s, live fields)
39: if IsVisited(reduced s) then return VISITED

40: SetVisited(reduced s)
41: for transition alfa ∈ EnabledTransitionsIn(s) do
42: s succ ← alfa(s)
43: ModelCheck(P , s succ, t + (alfa, s succ))

44: return SAFE

45: procedure HdvrComputeLiveFields(state s)
46: live fields ← {}
47: for Thread t : s.threads do
48: for StackFrame f : t.callstack do
49: live fields ← live fields ∪ partial liveness [f.instruction pointer ]

50: return live fields

allows for fast state matching, used together with heap canonicalization.

The transfer functions are defined in Fig. 4.7. The result of the static
phase is the least fixpoint over the equations determined by these functions.
If static analysis encounters the field-read instruction, it adds the field into
the resulting set (see the second rule). Because the analysis summarizes all
instances into a single data-flow fact, it does not treat field writes in any
special way (the last rule applies).

The field reads are not propagated via exit-return edges (see the third
rule). This blocks propagation along infeasible paths in ICFG, in particu-

Instruction Transfer function
(branching point) after[`] =

⋃
`′∈succ(`) before[`′]

`: v = o.f before[`] = after[`] ∪ {ClassName(o).f}
`: return before[`] = ∅
`: call M before[`] = before[M.entry] ∪ after[`]
`: other instr. before[`] = after[`]

Figure 4.7: Transfer functions for the static phase of Hybrid DVA.
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lar those where a related call-entry edge starts and exit-return edge leads
to a different method. For a program state, the complete picture about fu-
ture reads is computed at the dynamic phase. This technique gets precision
of a context-sensitive analysis at the computational cost of a fast context-
insensitive analysis.

Dynamic phase. In the dynamic phase, the results from the static phase
are utilized to get complete information about future field reads, first for each
thread, then for a program state. The call-stack (of each thread) is processed
in the top-down manner (line 48). The static analysis result for the current
instruction on the top stack frame contains the possible field reads, before the
current method is exited. Going down the call-stack, for each stack frame,
the analysis joins (i.e., adds) the field reads computed in the static phase
for the instruction just after the call instruction (current instruction pointer
in the stack frame) (line 49). This way, future behaviour being considered
is extended to the end of the given stack frame. Once the entire call-stack
is processed, the result contains all the fields the thread can read before it
terminates. At the end, future reads of all threads are joined together to
obtain the future field reads for the program state (line 50).

State matching. Hybrid DVA provides us with an over-approximation of
live addresses. The dynamic phase depends only on information from the
call-stacks, thus for the same call-stacks the analysis yields the same live
addresses (irrespective of the content of the heap). So, there is no need for
complex state matching as in the case of aforementioned Dynamic DVR; put
simply, a reduced state (in a representation suitable for state matching) is
created, which contains only the live fields of object instances. For the state
matching purposes, only the reduce state is used. In contract to Dynamic
DVR, the live fields (i.e., a Hybrid-DVR equivalent of live addresses) does not
need to be stored in addition to reduced states; each reduced state already
contains all the information required to reconstruct the live fields.

We found that an efficient implementation is crucial in order to speed-up
the verification. We heavily employ bit-vectors and block-operations in our
hybrid DVR implementation.

4.5 Related work
In this section, we compare the presented DVRs to related approaches both
in general and showing the differences on our running example from Sect. 4.2.
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Dynamic DVA. Let us continue with the example after exploring the S3
state. After state S3 is fully processed, the model checker will backtrack
the transition S2 → S3. The dynamic analysis uses the records stored for
this transition and it adds TreeNode@5.value among live variables; because
this field is live in state S3 (i.e., in the target state of the transition) adding
it has no effect and at the beginning of transition S2 → S3, the live vari-
ables are the same as in S3, i.e., TreeNode@1.value, TreeNode@5.left, and
TreeNode@5.value. Because this is not the only outgoing transition from
S2, the model checker has to explore also the transitions where thread T2 is
scheduled before thread T1 – transition S2→ S5. Using the same approach
as before it discovers that only TreeNode@1.value, TreeNode@5.left, and
TreeNode@5.value are live at the beginning of transition S2 → S5. To
compute live variables for S2, our analysis merges the live variables at the
beginning of all outgoing transitions; the live variables again include the
TreeNode@1.value, TreeNode@5.left, and TreeNode@5.value. Since the
model checker has already explored all outgoing transitions from S2, it back-
tracks transition S2→ S1 to state S1 and our analysis computes that at the
beginning of the transition, the live variables are again TreeNode@1.value,
TreeNode@5.left, and TreeNode@5.value.

In [77], Lewis et al. introduce DVA, which uses dynamic information ob-
tained at runtime to improve the precision of static analysis. Their analysis
supports heap and interrupts; however, it lacks support for multi-threaded
programs. Once a state is reached, Lewis’s DVA spawns an additional for-
ward simulation to get a depth-limited knowledge about future behaviour
of the state. The results from the simulation are used in subsequent static
analysis. In particular, the information of the simulation is used for elim-
ination of the edges in CFG that cannot be taken. Our approach differs
from that of Lewis in three aspects: our DDVA (i) has full knowledge about
future behaviour, (ii) computes this information cheaply during state space
exploration, and (iii) is thus more precise. Consider Lewis’s DVA with a
bound of two transitions. In this case, the simulation also finds the trace
S1→ S2→ S5 where both threads stop at the read of TreeNode@5.value.
Hence, using this bound, the analysis is not able to block the path in CFG
that accesses the TreeNode.right fields. In turn, Lewis’s analysis will impre-
cisely mark TreeNode.right fields in S1 as live, in contrast to our dynamic
analysis which correctly identifies these fields as dead and ignores their val-
ues.

The DDVA introduced by Self and Mercer [99] is similar to our approach.
Live addresses are computed from observed reads and writes in the same way.
The approaches differ in the way non-determinism is handled; our DDVA
explores all possible future executions from a state (i.e., all outgoing traces)
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and then merges their live variables, while DDVA of [99] operates only on a
single trace. It lacks knowledge about reads and writes on other traces, hence,
at non-deterministic (branching) states, it marks all the variables as live. In
our running example, both analyses get the same result for S3, however in
S2, where a non-deterministic choice is present, DDVA of [99] marks all fields
as live in contrast to our analysis. The dynamic DVA in [99] seems to be more
reasonable for sequential programs, where it provides (some) dead variables
even for states which are not fully processed. However, our approach is better
suited for multi-threaded programs, where transitions are quite short (often
only a few instructions), and where DDVA of [99] becomes considerably less
precise.

In the case of programs without non-determinism both methods equal
and yield the DVA maximal reduction [99], while in the other case, our ap-
proach provides more precise results (as shown above). Moreover, for our
Dynamic DVR, we also proved bisimulation between the original transition
system and the transition system over reduced states (without dead vari-
ables). However, in [99], their definition permits additional transitions in
DVA abstract state space which do not have pre-image transitions in the full
state space. From this point of view, it is obvious that the original state
space and the corresponding reduced one cannot be bisimilar.

Hybrid DVA. Similar DVA focusing just on local variables is used in, e.g.,
the SPIN model checker [61], MURPHI [82, 109], and BANDERA [31]. To
obtain complete results for global variables and static fields, the effects of
other threads need to be considered; in [13], a control-graph – cross-product
of all locations of all threads is created and static DVA is done over this
structure; for programs, this can be a bottleneck. Each thread (its ICFG)
is composed of a large number of locations, thus their cross-product can be
potentially of the same size as the state space, e.g., if values of variables are
determined by the location as in the classical Dining Philosophers problem.
Moreover, the number of parallel threads can be unbounded, and in such
cases the approach of [13] cannot be used at all.

To our best knowledge, the analysis presented in [13] is the only (Static)
DVA, which supports concurrency and global variables. However, it does not
support heap (instances), since it was designed for verification of specification
languages. In contrast to our Hybrid DVA, which uses cheap ICFG analysis,
the analysis of [13] creates so called control graph – a cross-product of all
possible locations in all threads, whose size can be comparable to the one
of the corresponding (full) state space. The live addresses are computed by
static analysis over the control graph, i.e., as the least fixpoint using reads and
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Benchmark LOC Threads
AlarmClock 250 4
CLIF-BladeInsertAdapter 2780 3
Cache4J 600 3
CoCoME 3500 4
Deos 2160 3
Elevator 400 3
FTDemo 1300 3
LinkedList 291 3
Producer-Consumer 180 3
RepWorkers 630 3
Simple JBB 2300 3

Table 4.3: Sizes and numbers of threads for each benchmark.

writes of the actions. This implies that their analysis is expensive for multi-
threaded programs, which have thousands of locations (i.e., instructions) per
thread.

4.6 Evaluation

Implementation of both DVRs together with an experimental setup, and re-
lated data are accessible at http://d3s.mff.cuni.cz/software/jpf-psm/.

4.6.1 Benchmarks

We evaluated our DVRs on 11 benchmarks – CoCoME [21], FTDemo [1],
CLIF [39], the Cache4j and the Elevator (both from PJBench suite [89]),
Simple JBB, and a set of small benchmarks taken from the CTC reposi-
tory [36] (AlarmClock, LinkedList, Deos, Producer-Consumer, Replicated-
Workers). The information on LOC and number of threads created during
the programs’ runs are listed in Tab. 4.3. All the benchmarks are multi-
threaded, use heap, are error-free, and their state space (not the CFG) is
acyclic, thus the reported data are related to their complete state spaces.
The reason for not including the benchmarks with cyclic state spaces is that
our current implementation does not support them. However, there is no
principle obstacle – we just have not implemented the support for them so
far. The benchmarks were taken from [87]; we have chosen them for several
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reasons. We already knew they worked with Jpf, they generate a relatively
small yet non-trivial state space, and since we worked with them before, we
could compare the results with other techniques.

As to the default Jpf configuration, we disabled heap canonicalization,
because it is not compatible with our analyses. The reason is that in our
implementation, we rely on one-to-one mapping of unique ids to objects,
which does not exist if heap canonicalization is used. Theoretically, it is
possible to overcome this restriction of our analyses, but it would imply an
additional overhead for maintaining a one-to-one mapping by ourselves. On
the other hand, the following default optimizations were left turned on: final
fields filtering, live threads, and dynamic lock analysis.

Cache4j is a simple framework for in-memory caching of Java objects.
We use the configuration with LRU eviction algorithm and a blocking cache.
Usage of the cache is modelled by two parallel threads accessing it.

CLIF is an open-source stress-testing platform, which is able to generate
various kinds of traffics and measure resource usage for the system under
test. The core of CLIF is based on the Fractal component model [17]. Our
benchmark consists of one of its internal component, which is responsible for
adding measured blade servers, and a generated environment, which simu-
lates its usage. The environment was generated from a behaviour specifica-
tion using [70].

The CoCoME benchmark is a prototype of a cash-desk system for su-
permarkets. It consists of an inventory management sub-system (storing a
product database) and a cash-desk line formed by a set of cash desks. The
application consists of a test driver, which simulates two clients served in
parallel.

The Elevator benchmark is a simulator of elevators in a building. We use
the configuration with two elevators and four actions executed by a simulated
person.

FTDemo is a high-level component-based prototype of a software system
providing Wi-Fi internet access at airports. The demo consists of around
twenty software components, handling, e.g., user authentication, payment
for network access, and IP address allocation. We ran the system with two
simulated users in parallel.

Simple JBB is a simplified version of the SPEC JBB 2005 benchmark,
which is a model of an enterprise information system for concurrent process-
ing of clients’ requests. It models several databases (e.g., orders and stock)
and transactions that operate upon these databases. Some simplifications
were necessary to make the benchmark run inside Jpf and to reduce the size
of the state space to a reasonable level.
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4.6.2 Experimental objectives

The main question to answer by our experiments was whether and to which
extent the DVRs improve the performance of software model checking in
the case of Java PathFinder, both in terms of the runtime and memory
consumption. In particular, this involves both contribution to reduction of
the state vectors and the reduction of the number of explored states. We
were also interested in the overhead of our analyses, that is the memory
and time consumption of Dynamic DVR and the static part of Hybrid DVR
to see whether the analyses actually pay off. In other words, the aim was
to determine whether employing dead variable analyses of heap data can
broaden the set of Java programs that can be verified by Jpf.

4.6.3 Results

All the experiments were run on a Linux machine with an Intel(R) Xeon(R)
X5687 (3.60GHz) CPU and 192GB memory with the Jpf filtering serializer.
Tab. 4.4 and Tab. 4.5 summarize the results of the benchmarks.

In Tab. 4.4, the number of states and the running time (in hour:min:sec
format) for each type of DVR is reported for each benchmark. The per-
centages are related to the values obtained by original Jpf. We ran each
benchmark ten times and report the average run times. The standard devia-
tion of Jpf run times was negligible with the average of 0.67% and maximum
of 2.95%, which practically means few seconds in the case of the most com-
plex benchmarks. The information about memory (state space, vector sizes,
etc.) were constant across the runs. On average, Hybrid DVR yields a re-
duction of 12% in the verification time, while using Dynamic DVR results
in a 20% speed-up and a reduction of 30% in the number of states. Note
that the DeOS benchmark took in the case of Hybrid DVR five times longer
to complete than in the original Jpf settings. This is due to static analysis
performed at the beginning of the run, which, even though it reduced the
state space to 59%, did not pay off. Since the original state space consists of
625 states only, we do not consider this case an issue.

Tab. 4.5 lists the information on memory consumption of the state match-
ing using full state vectors. We report the memory consumed solely by state
matching 2 – we summed up the sizes of state vectors used (they are all ar-
rays of int). The default state matching in Jpf stores only hashes of state

2At the beginning, we used the -Xmx Java option to limit the maximal memory con-
sumption of the Java process to estimate the approximate amount of memory needed for
each benchmark.

78



4.6. EVALUATION

B
en

ch
m

ar
k

or
ig

in
al

J
P

F
J
P

F
w

it
h

H
y
b
ri

d
D

V
R

J
P

F
w

it
h

D
y
n
am

ic
D

V
R

st
at

es
ti

m
e

st
at

es
J
P

F
ti

m
e

+
S
A

ti
m

e
st

at
es

ti
m

e
A

la
rm

C
lo

ck
57

3
36

2
2:

15
57

3
36

2
10

0%
1:

58
+

0:
03

89
%

57
3

36
2

10
0%

2:
08

95
%

C
L

IF
50

62
7

0:
21

43
51

2
86

%
0:

14
+

0:
04

86
%

31
49

1
62

%
0:

47
22

4%
C

ac
h
e4

J
5

10
6

12
8

17
:5

3
5

10
5

48
2

10
0%

17
:0

3
+

0:
04

96
%

2
88

0
83

9
56

%
14

:1
8

80
%

C
oC

oM
E

2
21

3
00

5
23

:1
9

2
10

3
72

9
95

%
19

:4
4

+
0:

05
85

%
1

31
9

89
4

60
%

13
:3

6
58

%
D

eO
S

62
5

0:
01

37
0

59
%

0:
01

+
0:

04
50

0%
21

1
34

%
0:

01
10

0%
E

le
va

to
r

7
30

4
09

6
29

:3
4

7
25

6
40

7
99

%
27

:1
2

+
0:

03
92

%
6

94
7

52
7

95
%

33
:4

4
11

4%
F

T
D

em
o

59
35

4
0:

40
56

30
8

95
%

0:
31

+
0:

06
92

%
53

64
6

90
%

0:
35

88
%

L
in

ke
d
L

is
t

2
03

8
84

0
5:

51
2

03
8

84
0

10
0%

5:
10

+
0:

04
89

%
1

97
4

48
6

97
%

6:
15

10
7%

P
ro

d
C

on
su

m
er

6
07

4
08

5
19

:3
5

6
07

4
05

5
10

0%
16

:4
6

+
0:

04
86

%
1

23
7

45
7

20
%

3:
46

19
%

R
ep

W
or

ke
rs

15
36

3
22

3
56

:4
2

15
36

2
80

1
10

0%
48

:2
6

+
0:

05
86

%
12

05
2

30
1

78
%

50
:1

1
88

%
S
im

p
le

J
B

B
10

9
86

1
2:

30
85

65
5

78
%

1:
37

+
0:

05
68

%
60

22
2

55
%

1:
10

47
%

O
ve

ra
ll

38
89

3
20

6
2:

38
:4

2
38

70
0

52
1

10
0%

2:
18

:4
2

+
0:

47
88

%
27

13
1

43
6

70
%

2:
06

:3
1

80
%

Table 4.4: Experimental results – runtime and state space size. “JPF time”
represents the time spent by Jpf at runtime. The “SA time” is the time spent
in static analysis of HDVR. “Time” is the overall running time, if there is no
static-analysis phase.
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Table 4.5: Experimental results – memory consumption. The vector sizes
are averages over all vectors in a particular analysis. The “DVA memory” is
the memory used solely by the DVA analysis. The “DVA size” is the average
amount of bytes needed to store the DVA information for each state vector.
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vectors, thus its memory requirements are negligible. In the table, both the
absolute amount of memory and the percentage reduction in the case of our
analyses are presented. We also report reduction of the state vector size;
the reduction is smaller compared to reduction of the memory requirements,
however, it is still significant. It is caused by fewer program states being
visited. The reduction of the vector size is larger for Dynamic DVR than
Hybrid DVR, because dynamic DVR is more precise.

We consider the vector shrinking particularly interesting. In the case
of Hybrid DVR, memory consumption is reduced to one third on average,
both in terms of the total consumption and vector sizes, while the memory
consumption for Dynamic DVR is an order of magnitude lower.

An interesting example is the Alarm clock benchmark, where neither
Hybrid nor Dynamic DVR reduce the number of states, but the verification
is faster (cf. Tab. 4.4). This shows that the overhead of our DVAs is low; the
analyses identify dead parts of program states faster than the state matching
processes these dead parts (e.g., compute state hashes). In this particular
case, the state vectors reduce to 20 and 12 per cent of the original size for
Hybrid and Dynamic DVR, respectively (cf. Tab 4.5). The main source of
dead variables is the System.properties object.

Hybrid DVR. In the case of Hybrid DVR, we present both the Jpf run-
time and the static phase duration. Typically, static analysis of live field
takes less than five seconds (with a maximum of six seconds). If the Java
standard library uses introspection to create class instances of a dynamic
class (i.e., it calls Class.forName(*).newInstance()), it has a major im-
pact on the static-analysis runtime. This is due to processing a large number
of classes from standard libraries. Since static analysis considers also the
used standard Java libraries, the whose size of processed Java bytecode is
considerably larger than the size of the verified benchmarks, this phase does
not represent a bottleneck of our approach.

Dynamic DVR. Our dynamic analysis needs an additional amount of
memory to store live addresses of program states. This additional amount
of memory is always required, independently of whether full state vectors
or only their hashes are used in state matching. In Tab. 4.5, we report
the memory used to store live addresses in the DVA memory column. On
average, a single set of live addresses takes 910 bytes; the consumed memory
ranges from 256KB for DeOS, to 2.3GB for CoCoME. Since multiple states
often have the same set of live addresses (and differ only in the values at
these addresses), the amount of memory required to store them is one to
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two orders of magnitude less than the memory needed to store and match
full program states (instead of their hashes – JPF default). In Tab. 4.5, the
column DVA size reports how much additional memory per program state is
needed to store DVA information; due to sharing of the live addresses, the
size is smaller than the average of 910 bytes.

4.6.4 Summary

The results of the benchmarks demonstrate that the contribution to perfor-
mance in both the Hybrid and Dynamic DVR cases is significant. Moreover,
according to our experience with software model checking, the most frequent
reason why model checking fails is an insufficient amount of memory avail-
able, whereas the runtime is usually acceptable (even though it can take
up to several hours). Regarding this, we consider the reduction in memory
consumption when using our DVRs especially valuable.

Let us have a look at the aspects influencing the decision which analysis
to choose for model checking of a particular input. In general, Hybrid DVR
usually pays off if the benchmark runtime takes just several minutes. In this
case, the speed up of the entire process is higher than the time required for the
static analysis phase. The only situations when HDVR would not be suitable
(from the practical point of view) is when many new (not implemented inside
Jpf) native methods are used. This requires creating models for them in Jpf
first (this is not DVR specific) and then create models for static analysis itself
(HDVR specific), which represents a significant additional amount of work.
The usefulness of dynamic DVR is hard to predict in general, but we foresee
some heuristics based on random state space search and sampling the stack
traces, which would provide an insight as to the DDVR benefits for a specific
Java program (without model checking it). In particular, the size the set
of live addresses at particular stack-trace influences the overall runtime in
terms of number of comparisons when searching for an equivalent state.

It would be also useful to see the results if our techniques are combined
with DVRs for local variables. We have not implemented a combined analysis
mainly for the following reasons: The corresponding techniques are already
known, so there would not be a scientific contribution in that. Next, the
local DVRs only reduce the state space, not the state vectors. Finally, it
would not be clear what is the effect of the local DVRs and what is the effect
of the global (heap) ones’ reduction (turning on and off each of them would
not give a clear insight), but, on the other hand, we agree that it would show
the practical contribution.

The selected benchmarks share some properties that, in general, might
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slightly bias the final observation about their results. First of all, all of them
are multi-threaded. Even though this seems to be more general than includ-
ing also single-threaded benchmarks, the (data) non-determinism appearing
in single-threaded programs may cause the reductions to work slightly worse
or better. Another aspect of the benchmarks is that their state spaces do
not contain cycles. Unlike in the previous case, we do not expect programs
with cyclic state space to have significant impact on reduction, regardless
of the way it is handled, i.e., simplified or precise (see Sect. 4.4.1). Last
aspect we would like to mention here is that we restricted ourselves, due to
implementation platform, to explicit model checking. In principle, there is
no obstacle in applying our reductions also in the context of symbolic model
checking, but it is worth mentioning that a number of technical details have
to be addressed there.
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5
PVA Interpolants

As we have shown in the background chapter, Craig interpolants are heavily
applied in symbolic model checking techniques. They are typically used as
a means of abstraction and to refine the abstraction. The techniques differ
in a way the interpolants are utilized as well as in additional properties the
interpolants have to satisfy, e.g., path interpolation property, state-transition
interpolation property, tree-interpolation property. These properties are es-
sential for the safety of the corresponding approaches. The size and the
logical strength of interpolants are other important attributes [24, 93], which
are orthogonal to the aforementioned ones. Below, we present a technique
to reduce the size of interpolants while preserving the ability to control their
logical strength.

We have observed that in many cases, the techniques permit to compute
interpolants under assumption and that the assumptions can be expressed
in form of variable assignments (i.e., by focusing only to particular models
of the formula).

For example, let consider Abstract Reachability Graphs (ARG). For each
node in ARG, the label holds an (over)-approximation of reachable program
states at that node; the over-approximation needs to be strong enough to
block all the traces via given node to the faulty states. If Craig interpolants
are used to compute these over-approximations (i.e., the current approach),
the interpolant over-approximates the states reachable at any ARG node at
the boundary between A and B parts. Depending on the structure of the
ARG, the boundary could include not only the considered node but also
many additional ones. Moreover, these additional nodes could introduce
shared variables which do not exist at the considered node. Such variables
could occur in the Craig interpolant and need to be subsequently eliminated.
Based on the way the ARG is encoded into a formula, the variable assignment
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can be used to block paths via particular ARG node. This permits us to
create an assignment which blocks all paths in the ARG that do not go via
selected node, such paths in ARG cannot influence the reachable states at
that node. Effectively such assignment reduces the boundary between A and
B parts to a single ARG node (via which all the considered paths go). The
assignment is then used as an assumption under which the interpolant (i.e.,
an over-approximation of reachable states) for given node is computed. This
process and the way assignments are generated is described in more details
in section 5.1.

Very similar idea can be applied to function summaries (e.g., in Fun-
Frog). Function summary is a formula over input and output variables
of the function such that the formula holds if the summarized function for
given input values can return the specified output. Function summaries in
FunFrog are computed as follows: first the BMC formula which encodes all
possible (bounded) executions of the program is created. The BMC formula
is given to the SAT solver; if the formula is unsatisfiable, the program is
safe (w.r.t. considered assertions) and function summaries are computed as
Craig interpolants from the resolution proof of unsatisfiability. To compute
the summary for the function f , the BMC formula is partitioned such that
the body of summarized function f and bodies of all transitively called func-
tions (resp. their representation in BMC formula) belongs to the A partition.
The rest of the BMC formula belongs to B partition. Based on the way BMC
formula is created, the assignment could be used to eliminate all the traces in
the B partition which do not call the summarized function. The assignment
can be assumed when the summary is computed.

In the background chapter, we have introduced other techniques used to
reduce size of interpolants. These techniques have in common that they ei-
ther (i) reduce the size of the refutation proofs from which the interpolants
are computed, or (ii) size of the interpolant formula. The former techniques
identify common inefficiencies present in the refutation. They are applied
once the refutation proof is constructed and before the interpolant compu-
tation; the interpolants are computed from reduced refutation proof. These
techniques cannot be targeted to a specific interpolant or to a specific verifica-
tion problem. The similar holds for the latter techniques (ii) which operation
on the interpolant formula; in general, these techniques have to preserve a
logical strength of interpolant. In the opposite case, the interpolants would
lose additional properties required by the verification techniques.

In contrast to this, our technique is aware of the interpolation problem and
it utilizes this information to reduce the interpolant size; in particular, the
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variable assignment is used to identify part of the refutation proof unimpor-
tant for given sub-problem. So, compared to the aforementioned techniques,
we utilize different and goal specific inefficiencies, i.e., these techniques should
be orthogonal and should complement each other.

The related techniques in general do not require additional inputs. In
contrast to them, our technique depends on properly created assignments
which limits applicability of the approach.

In this chapter, we introduce Partial Variable Assignment Interpolants
(PVAI) – a generalization of Craig interpolants – which, in addition to the
standard subdivision of an unsatisfiable formula (the interpolation problem)
into A and B parts, is parametric in a partial variable assignment (PVA) –
an assumption. A PVA defines a sub-problem on which a PVAI is focused.
A sub-problem is obtained from the interpolation problem by removing the
clauses (constraints) satisfied by the assignment. Due to this specialization,
(1) the interpolants for the sub-problem can be of smaller size, compared to
Craig interpolants computed for the interpolation problem. Moreover, since
the satisfied constraints (those not occurring in the sub-problem) need not
to be considered by interpolation, (2) it is possible to restrict the variables
occurring in an interpolant to those relevant to the sub-problem, i.e. those
shared between the A and B parts of the sub-problem.

We also propose the new framework of Labeled Partial Assignment Inter-
polation Systems (LPAIS) – a generalization of LIS, which computes PVAIs
for propositional logic. We define the notion of logical strength for LPAISs
and show how introducing a partial order over LPAISs allows to system-
atically compare the strength of the computed interpolants (a feature in-
tuitively relevant to verification since it affects the coarseness of the over-
approximations realized by interpolants [93]). We also show how LPAISs
can be used to generate collections of interpolants which enjoy the path in-
terpolation property. We evaluated our approach on a set of unsatisfiable
benchmarks from SAT competition to see, how the assignments (and in par-
ticular LPAIS) can be used to reduce the size of interpolants.

5.1 Motivation

[68]In the following, we illustrate a possible application of PVAIs; nonetheless,
the proposed PVAIs are not limited to this context. As an example, consider
the source code in Figure 5.1 and the corresponding ARG in Figure 5.2. Node
i is associated with location i in the program. Node 1 is the initial node,

87



CHAPTER 5. PVA INTERPOLANTS

1: int max(int i, int j) {

2: if (i > j)

3: return i;

else
4: return j;

5: }

// The main function

6: assert(max(random(), 0) >= 0);

Figure 5.1: Motivating example

2

1

3 4

5

6

τ12 ≡ j = 0
τ23 ≡ i > j τ24 ≡ ¬(i > j)

τ35 ≡ result = i τ45 ≡ result = j
τ56 ≡ ¬(result >= 0)

Figure 5.2: Abstract reachablity graph

while node 6 is the node representing an error location. The edge constraints
τij encode the semantics of the corresponding program statements. Note that
τ12 originates from the call to the max function in main, on line 6. Further, in
node 3, the parameter i is the only in-scope variable; similarly, in node 4 the
parameter j is the only in-scope variable. A variable is in-scope at a given
node, if there is a path through the node where the variable is used before
as well as after the node.

In the context of software verification, an important question is whether

µ1 ≡ (n1 ⇒ n2) ∧ ((n1 ∧ n2)⇒ τ12)
µ2 ≡ (n2 ⇒ (n3 ∨ n4)) ∧ ((n2 ∧ n3)⇒ τ23)∧

∧ ((n2 ∧ n4)⇒ τ24)
µ3 ≡ (n3 ⇒ n5) ∧ ((n3 ∧ n5)⇒ τ35)
µ4 ≡ (n4 ⇒ n5) ∧ ((n4 ∧ n5)⇒ τ45)
µ5 ≡ (n5 ⇒ n6) ∧ ((n5 ∧ n6)⇒ τ56)

Cond ≡ n1 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 ∧ µ5

Figure 5.3: The Cond formula
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an error location is actually reachable from the initial location of a program
– this is known as the reachability problem. The question can be answered
by computing, for each node i, the set of states reachable at i via paths
in the program ARG [5, 80]. Typically, it is enough to compute an over-
approximation of these states, i.e. a node interpolant. To this end, the ARG
is converted into a Cond formula, which represents all execution paths in the
ARG. The Cond have the same meaning as ArgCond in [3]. An auxiliary
structure-encoding Boolean variable ni is introduced for each node i in the
ARG; for each i (except for the error node), a node formula µi is created,
which encodes the labels on the outgoing edges (Figure 5.3).

For illustration, we describe the meaning of µ2. The first conjunct n2 ⇒
(n3 ∨ n4) expresses that after reaching node 2, a path has to proceed to a
successor node (3 or 4). The second conjunct (n2 ∧ n3) ⇒ τ23 guarantees
that if a path goes via the edge 2→ 3, the semantics of the edge is preserved
(i.e., the constraint τ23 is satisfied). Similarly, the third conjunct enforces
the semantics of the edge 2→ 4.

The Cond formula is satisfiable if and only if a feasible path exists that
leads from node 1 to node 6 in the ARG. Suppose now that Cond is unsatis-
fiable; then a node interpolant for each node i can be computed. First, the
ARG needs to be partitioned into A and B – so that A corresponds to the
antecedents of i, B to all the other nodes in the ARG – and then a Craig
interpolant I is generated as an over-approximation of the states reachable at
i. For instance, in the case of node 3, A would be set to n1∧µ1∧µ2 and B to
µ3 ∧ µ4 ∧ µ5. However, employing standard Craig interpolation in this man-
ner to compute a node interpolant I is not sufficient; out-of-scope variables
might in fact belong to both A and B, they could therefore appear in I, and
should be consequently eliminated. Variable j, in particular, could appear
in the interpolant for node 3. Even though out-of-scope variables can be
eliminated by resorting to quantification followed by a quantifier-elimination
phase, this phase is a well-known bottleneck in verification [102].

Computing node interpolants using PVAIs effectively solves the problem
of out-of-scope program variables. Assume that a node interpolant is to
be computed for a node k; a suitable PVA assigns False to all the structure-
encoding variables corresponding to the nodes not lying on the paths through
k. By setting a variable nj to False, the paths via node j are blocked; more-
over, the whole node formula µj is satisfied and thus µj is not a part of
the sub-problem for node k. On the other hand, the PVA can assign nk to
True to express that each considered path has to pass through k (the node for
which the interpolant is computed). In particular, to compute an interpolant
for node 3, consider Fig. 5.4; we assign n3 to True and n4 to False to block
the path through node 4 (π3); the rest of variables remain unassigned. This
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π3 ≡ n3 ∧ n4
A3 ≡ n1∧

(n1 ⇒ n2) ∧ ((n1 ∧ n2)⇒ j = 0)∧
∧ ((n2 ∧ n3)⇒ i > j)

B3 ≡ (n3 ⇒ n5) ∧ ((n3 ∧ n5)⇒ result = i)∧
(n5 ⇒ n6) ∧ ((n5 ∧ n6)⇒ ¬(result >= 0))

Figure 5.4: The A and B parts of the sub-problem for node 3

assignment satisfies (and thus removes) n2 ⇒ (n3 ∨ n4), (n2 ∧ n4)⇒ τ24 and
µ4 (Fig. 5.3) from the sub-problem (see Fig. 5.4). In the A part, the sub-
problem for node 3 contains the edge labels (and consequently the program
state variables) related to the path from node 1 to node 3, and in the B part,
information related to the path from node 3 to node 6. The program state
variables shared by the A and B parts of the sub-problem are the in-scope
variables, which are exactly those that may appear in PVA interpolants.

5.2 Preliminaries

Let us recall the most important notation from the background section.

Resolution proof R for a CNF formula Φ is a tuple (V,E, cl, piv, s), where
V is a set of vertices in the proof, E ⊂ V × V is a set of edges forming a full
binary DAG (i.e., all the vertices except for the leaves have the in-degree 2).
The sink vertex has the out-degree 0. Each vertex v ∈ V is associated to a
vertex-clause specified by cl(v) function. Each vertex clause of a leaf vertex
v corresponds to a clause from input formula Φ (i.e., cl(v) ∈ Φ). Each inner
vertex v represents resolution of its antecedent vertex-clauses (specified by
cl) using the pivot piv(v); formally, for each inner vertex v there exist edges
(v1, v), (v2, v) ∈ E such that cl(v) = Res(cl(v1), cl(v2), piv(v)). A refutation
derives the empty clause in the sink vertex s; formally cl(s) = ⊥.

Since the resolution proofs take the set of clauses as input, the input
formula is first converted into a conjunction of clauses. Therefore, in the
following we use the terms formula and set of clauses interchangeably.

Craig Interpolants Let us briefly recall the definition of Craig interpolant
and interpolant sequence from the background section. Given an unsatisfiable
formula Φ and its (A,B)-partitioning into A∧B parts, a Craig interpolant [35]
is a formula I such that (1) A ⇒ I, (2) B ∧ I ⇒ ⊥, and (3) Var(I) ⊆
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⊥
〈l1〉 〈l1〉

〈l1 ∨ l6〉 〈l1 ∨ l2〉 〈l1 ∨ l2〉

〈l1 ∨ l6〉 〈l1 ∨ l2〉 〈l2 ∨ l6〉 〈l2 ∨ l4〉 〈l1 ∨ l4〉

〈l1 ∨ l3〉 〈l3 ∨ l6〉 〈l1 ∨ l5〉 〈l4 ∨ l5〉

Figure 5.5: Refutation resolution proof;
the clauses from A-part and B-part are
in dashed and full boxes, respectively.

∧
∧ ∧

∧ [>] ∧

∧ [l1 ∨ l2] [>] [>] ∧

[>] [l3 ∨ l6] [l1 ∨ l5] [>]

Figure 5.6: Derivation of McMil-
lan’s interpolant (l1∨ l2)∧(l3∨ l6)∧
(l1 ∨ l5).

Var(A) ∩ Var(B).

An interpolant sequence for the unsatisfiable formula A1 ∧A2 ∧ ...∧An is
a tuple of formulas (I0, I1, ....In), where Ii is an interpolant for partitioning
(A1 ∧ ... ∧ Ai, Ai+1 ∧ ... ∧ An). If for all i, Ii ∧ Ai ⇒ Ii+1, then (I0, I1, ....In)
is said to satisfy the path interpolation (PI) property. In [54], it was proved
that the path interpolation property holds for any LISs, including the well-
known McMillan’s and Pudlák’s systems, whenever the interpolant sequence
is computed from the same proof.

D’Silva et al. introduced the labeled interpolation systems (LIS) [41],
which allows constructing interpolants of different logical strengths. The
system is parametrized by a labeling function assigning a label (color) to each
node of the refutation tree; the label of the pivot variable in particular nodes
then defines the rule used to compute the corresponding partial interpolant.
We build upon their system, using an additional parameter in the form of a
partial variable assignment.

[65]Example 1: Figure 5.5 shows a resolution refutation proof for formula Φ =
〈l1 ∨ l2〉∧〈l̄1 ∨ l5〉∧〈l̄3 ∨ l6〉∧〈l1 ∨ l3〉∧ 〈l̄2 ∨ l̄6〉∧〈l̄4 ∨ l̄5〉∧〈l̄2 ∨ l4〉∧〈l̄1 ∨ l2〉.
Assume an (A,B)-partitioning with A consisting of the conjunction of the
first free clauses and B of the remaining five clauses. There might not be
just a single interpolant for an unsatisfiable formula; many different ones of
various strengths can exist. Figure 5.6 shows how McMillan’s interpolant
I1 ≡ (l1 ∨ l2)∧ (l3 ∨ l6)∧ (l1 ∨ l5) can be derived (after constant propagation)
from the proof in Figure 5.5, e.g., by LIS. Note that for convenience we
write the partial interpolant associated to a particular node of the proof into
brackets. Formula I2 ≡ (l1∨[(l6∨l3)∧(l6∨l2)])∧(l1∨l5) is another interpolant
which can be computed by LIS from the proof; Figure 5.9 shows the labels
used to compute I2 (minimal labeling).
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Variable assignments. Let A be a set of clauses. A variable assignment
assigns either True (>) or False (⊥) to each variable in the Var(A) set. The
variable assignment can be seen as a conjunction of literals. A partial variable
assignment (PVA) π assigns values only to a subset of variables in Var(A).
A PVA π can be used as an assumption w.r.t. A (i.e., π |= A) to restrict the
set of models of A to those compatible with π.

Definition 8 (Clauses under assignment) Let A be a set of clauses and
π be a PVA over Var(A). We define the sets of

satisfied clauses Aπ = {〈Θ〉|〈Θ〉 ∈ A and π |= 〈Θ〉} and
unsatisfied clauses Aπ = {〈Θ〉|〈Θ〉 ∈ A and π 6|= 〈Θ〉}.

Satisfied clauses contain at least one literal evaluated to > under π, while,
for unsatisfied clauses, every literal is either unassigned or falsified. The
unsatisfied clauses Aπ determine the sub-problem. We use π |= l to express
that a literal l evaluates to > in a given PVAπ.

[65] Example 1 (cont.): Let us assume assignment π ≡ l2 (i.e., assigning
False to variable l2) and the set of clauses from our previous example. Given
the assignment, B can be split into Bπ ≡ 〈l2 ∨ l6〉 ∧ 〈l2 ∨ l4〉 and Bπ ≡
〈l1 ∨ l3〉 ∧ 〈l4 ∨ l5〉 ∧ 〈l1 ∨ l2〉. Aπ is empty thus Aπ ≡ > and Aπ ≡ A.

5.3 Partial Variable Assignment
Interpolants

[68] In this section, we formally define Partial Variable Assignment Interpolation,
which, in addition to the division of an unsatisfiable formula into A and B
parts, requires specification of a PVA.

Definition 9 (PVA Interpolant) Let R be a refutation of formula A ∧B
and π be a partial variable assignment over Var(A ∧ B). A partial variable
assignment interpolant (PVAI) is a formula I such that:

(D9.1) π |= A⇒ I

(D9.2) π |= B ∧ I ⇒ ⊥

(D9.3) Var(I) ⊆ Var(Aπ) ∩ Var(Bπ)
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(D9.4) Var(I) ∩ Var(π) = ∅

In the following, we use (A,B, π) to denote a refutation of formula A∧B
and partial variable assignment π. that a PVAI is computed using (A,B)-
partitioning and the partial assignment π.

Since for any set of clauses X, π |= (X ⇔ Xπ), D9.1 and D9.2 can be
equivalently rewritten as π |= Aπ ⇒ I and π |= Bπ ∧ I ⇒ ⊥, respectively; in
other words, I is a Craig interpolant for the sub-problem, i.e., for Aπ ∧ Bπ,
which is formed by removing the literals falsified by the assignment π from
A∧B. Note that even after removing (the satisfied) clauses, the sub-problem
remains unsatisfiable (assuming π).

On the other hand, a PVAI cannot be obtained from standard interpolants
by application of a partial assignment (denoted by I[π]). The reason is that,
in addition to assigned variables (disallowed by D9.4), rule D9.3 excludes
from the PVAI also all unassigned (out-of-scope) variables that occur in
satisfied clauses only, which can still appear in I[π].

Example 1 (cont.): Craig and PVA interpolants differ in the variables
which can occur in the interpolant. The shared variables between A and
B (i.e., those that can appear in a Craig interpolant) are l1, l2, l3, l5, and
l6. Since PVAI considers (for the shared variables) only unsatisfied parts of
A resp. B (i.e., Aπ and Bπ), fewer variables are shared; in our example,
assuming π ≡ l2, only l1, l3, and l5 can appear in a PVA interpolant, which
are those that can appear in a Craig interpolant for the sub-problem.

Given an assignment (π ≡ l2) and a Craig interpolant, an alternative
way to reduce the interpolant size is to assign the values inside the inter-
polant formula and propagate the Boolean constants. In this case, the in-
terpolants from the example above result in I1[π] ≡ l1 ∧ (l3 ∨ l6) ∧ (l1 ∨ l5)
and I2[π] ≡ (l1 ∨ [(l6 ∨ l3) ∧ l6]) ∧ (l1 ∨ l5). None of them is a PVA in-
terpolant since each one contains variable l6. Both of them can be further
simplified (i.e., equivalently rewritten) as Is1 [π] ≡ l1 ∧ l5 ∧ (l3 ∨ l6) resp.
Is2 [π] ≡ l1 ∨ (l3 ∧ l6) ∧ (l1 ∨ l5). In general, such a transformation requires a
complex analysis and sometimes the out-of-scope variables can be eliminated
from the interpolant by this technique. However, as we shown above, variable
l6 cannot be eliminated from the interpolants by these transformations. This
means that the aforementioned techniques can be used to reduce the size
of the formula, but it cannot guarantee producing interpolants without the
variables appearing just in satisfied clauses – the information is not present
in the interpolant formula.

[68]Calls of a solver are resource demanding. A refutation is independent of
PVAs; this important fact allows us to call the solver only once on the overall
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problem Φ, and, later, to compute various PVAs (representing relevant sub-
problems) for which the PVAI can be efficiently computed. This follows
the idea of having a refutation and several partitionings, for which several
(related) interpolants are computed.

Although Craig interpolation has many applications in program verifi-
cation, verification tools often require interpolation sequences with specific
properties [54]. The PVAI for all the sub-problems are computed from the
same proof, thus they are related to each other. The existence of a single
proof permits the application of a standard proving technique in the area of
interpolation – structural induction over a refutation – to show various prop-
erties of PVA interpolant sequences. All the techniques where interpolants
for different sub-problems are computed using different proofs (e.g., applying
a solver directly on each sub-problem, or incremental solving with assump-
tions) do not, per se, guarantee any properties of their sequences. The price
to pay is an additional assumption in the form of a partial assignment.

5.4 Labeled Partial Assignment
Interpolation System
To show that PVAIs are not just a theoretical concept, we present the frame-
work of Labeled Partial Assignment Interpolation Systems, a generalization of
LISs [41], which computes PVAIs for propositional logic, and prove its sound-
ness. Next, in order to prove the path interpolation property, we introduce
the concept of logical strength on LPAISs, which allows one to systematically
compare the strength of the generated interpolants.

In order to define LPAISs, first we have to extend the definitions of la-
beling functions and locality from LISs to take variable assignments into
account. Note that if no variable is assigned, LPAISs are equivalent to LISs.

A labeling function assigns labels to literals in a refutation tree; the label-
ing drives the computation of an interpolant from the proof and determines
its strength (Fig. 5.7). Note that in the following, if not stated otherwise,
we assume just a single refutation being re-used for computing many inter-
polants.

Definition 10 (Labeling function) Let L = (S,v,u,t) be the lattice in
Figure 5.7, where S = {⊥, a, b, ab, d+} and ⊥ is the least element, and let
R = (V,E, cl, piv, s) be a resolution proof over a set of literals Lit. Function
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LabR,L : V × Lit → S is called labeling function for refutation R iff ∀v ∈ V
and ∀l ∈ Lit, LabR,L satisfies the following conditions:

(D10.1) LabR,L(v, l) = ⊥ if and only if l /∈ cl(v), and

(D10.2) LabR,L(v, l) = LabR,L(v1, l) t LabR,L(v2, l), where v1, v2 are the
antecedent vertices.

ab

d+

a b

⊥

Figure 5.7: Lattice of
labels (t)

From condition D10.2 it follows that the labeling
function is fully determined once the labels in the
leaves have been specified. We omit subscripts R
and L if clear from the context.

Naming conventions. Let us assume a pair of
sets of clauses (A,B) and a PVA π. The clause sets
are split into four groups, the unsatisfied clauses Aπ
and Bπ which specify the sub-problem and are taken
into account during interpolation, and the satisfied
clauses Aπ and Bπ, which are disregarded.

We distinguish among the following kinds of variables, depending on the
standard notions of locality and sharedness, as well as on where the variables
appear in the four groups of clauses. We say that a variable k is unassigned
if k 6∈ Var(π). An unassigned variable k is:

Aπ-local if k ∈ Var(Aπ) and k 6∈ Var(Bπ)
Bπ-local if k 6∈ Var(Aπ) and k ∈ Var(Bπ)
AπBπ-shared if k ∈ Var(Aπ) and k ∈ Var(Bπ)
AπBπ-clean if k 6∈ Var(Aπ) and k 6∈ Var(Bπ)

The properties above are independent of the occurrence of k in Var(Aπ)
and Var(Bπ). The “clean” variables occur only in the satisfied clauses, thus
are out-of-scope and cannot appear in PVA interpolants.

Definition 11 We say that variable k is McMillan-labeled if, whenever k is
AπBπ-shared or AπBπ-clean, it is labeled b.

Note that the labels of the other variables are not limited to b. If all variables
are McMillan-labeled, LIS reduces to McMillan’s interpolation system [41],
which yields the strongest interpolant that LISs (and LPAISs) can produce
from a given refutation.
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⊥
〈l b1 〉 〈l̄ b1 〉

〈l b1 ∨ l̄
a
6 〉 〈l̄ b1 ∨ l

b
2 〉 〈l̄ b1 ∨ l̄

d+
2 〉

〈l b1 ∨ l
a
6 〉 〈l

b
1 ∨ l

b
2 〉 〈l̄ d

+

2 ∨ l̄ a6 〉 〈l̄
d+
2 ∨ l b4 〉 〈l̄

b
1 ∨ l̄

b
4 〉

〈l b1 ∨ l
b
3 〉 〈l̄

b
3 ∨ l

a
6 〉 〈l̄ b1 ∨ l

b
5 〉 〈l̄ b4 ∨ l̄

b
5 〉

Figure 5.8: McMillan’s labeling for (A,B, π).

⊥
〈l ab1 〉 〈l̄ ab1 〉

〈l a1 ∨ l̄
b
6 〉 〈l̄ b1 ∨ l

b
2 〉 〈l̄ a1 ∨ l̄

b
2 〉

〈l b1 ∨ l
a
6 〉 〈l

a
1 ∨ l

a
2 〉 〈l̄ b2 ∨ l̄

b
6 〉 〈l̄ b2 ∨ l

b
4 〉 〈l̄

a
1 ∨ l̄

b
4 〉

〈l b1 ∨ l
b
3 〉 〈l̄

a
3 ∨ l

a
6 〉 〈l̄ a1 ∨ l

a
5 〉 〈l̄ b4 ∨ l̄

b
5 〉

Figure 5.9: Minimal labeling for (A,B) and empty assignment.

Definition 12 Variable k is labeled consistently if all occurrences of k in a
refutation have the same label:
∀x, x′ ∈ V, l ∈ cl(x), l′ ∈ cl(x′) : Var(l) = Var(l′)⇒ Lab(v, l) = Lab(v′, l′).

Example 1 (cont.): Figure 5.8 shows how a labeling function assigns la-
bels to literals; the label of a literal is shown in superscript. We choose the
strongest possible labeling (which for an empty assignment would produce
McMillan’s interpolant I1); in particular AπBπ-shared and AπBπ-clean vari-
ables are labeled b. Note that variable l6 is Aπ-local and thus has to be labeled
a, the AπBπ-shared variables are l1, l3, and l5, no variable is AπBπ-clean, and
variable l4 is Bπ-local. Figure 5.9 shows another example of labeling; note
clauses 〈l1〉 and 〈l1〉 which illustrate how the labels are merged from the
labels in antecedents.
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Not all labeling functions can be used to generate interpolants; in LPAIS,
interpolants are computed if a locality preserving labeling is used.

Definition 13 Let R be a refutation of formula A ∧ B and π be a PVA.
Labeling function Lab for refutation R is locality preserving iff ∀v ∈ V,∀l ∈
cl(v) all the following locality constraints are satisfied:

(D13.1) Lab(v, l) = d+ ⇔ π |= l

(D13.2) Var(l) is unassigned and Aπ-local ⇒ Lab(v, l) = a

(D13.3) Var(l) is unassigned and Bπ-local ⇒ Lab(v, l) = b

(D13.4) Var(l) is unassigned and AπBπ-clean ⇒ it is consistently labeled
a or b.

Locality constraints provide freedom in labeling AπBπ-shared and AπBπ-
clean variables; the choice of labels directly affects the strength of the com-
puted interpolants. The label of AπBπ-shared variables can be set freely to
a, b, or ab. The same holds for falsified literals; their labels are irrelevant
since they are removed by the assignment filter (defined below).

D13.2 and D13.3 are equivalent to the locality requirements of LIS, where
A-local and B-local variables must be labeled a and b, respectively. D13.1
concerns the satisfied literals. Label d+ is used in the interpolation process
to identify resolutions with an assigned pivot and parts of the proof which
are not relevant to the sub-problem. D13.4 is specific to PVAI and deals with
variables which occur in the satisfied clauses only. The requirement guaran-
tees that such variables do not occur in the interpolant, because Res-ab (see
Tab. 5.1) cannot be applied. Further, note that for the empty assignment,
the locality constraints reduce to those of LISs, since D13.1 and D13.4 do
not apply to any literal.

Filters. For a clause 〈Θ〉, a labeling function Lab, a resolution-proof vertex
v ∈ V, and a label c, we define the match filter |, which preserves only the
literals with the specified label, as follows:

〈Θ〉|c,v,Lab = {l ∈ 〈Θ〉 | c = Lab(v, l)}
Similarly, we define the upward filter �, which preserves the literals with

labels greater than c (Fig. 5.7), as:

〈Θ〉�c,v,Lab= {l ∈ 〈Θ〉 | c v Lab(v, l)}
The subscripts Lab, v are omitted if clear from the context. Given a

partial assignment π and a clause 〈Θ〉, we also define the assignment filter,
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Leaf v: 〈Θ〉, [I]

I =


〈Θ〉[π]|b,v,Lab if 〈Θ〉 ∈ Aπ Hyp-Aπ
¬〈Θ〉[π]|a,v,Lab if 〈Θ〉 ∈ Bπ Hyp-Bπ

> if 〈Θ〉 ∈ Aπ ∪Bπ Hyp-Aπ, Hyp-Bπ

Inner vertex v:
v1 : 〈p,Θ1〉, [I1] v2 : 〈p̄,Θ2〉, [I2]

〈Θ1,Θ2〉, [I]

I =


I1 ∨ I2 if Lab(v1, p) t Lab(v2, p) = a Res-a
I1 ∧ I2 if Lab(v1, p) t Lab(v2, p) = b Res-b
(I1 ∨ p)∧ (I2 ∨ p) if Lab(v1, p) t Lab(v2, p) = ab Res-ab
I2 if Lab(v1, p) = d+ Res-d+

I1 if Lab(v2, p) = d+ Res-d+

Table 5.1: Hypothesis and resolution rules for Labeled Partial Variable As-
signment Interpolation System

which removes all the assigned literals (satisfied and falsified ones), as follows:

〈Θ〉[π] = {l ∈ 〈Θ〉 | Var(l) 6∈ Var(π))}

Moreover, in our notation, we assume that filters have a higher precedence
than negation. E.g., ¬〈Θ〉[π]�a can be equivalently rewritten as ¬((〈Θ〉[π])�a).

Interpolation system. An interpolation system is a procedure for com-
puting an interpolant given a refutation. It assigns partial vertex-interpolant
to each vertex of the refutation, yielding the final interpolant at the sink
vertex.

Definition 14 Let R be a refutation of A ∧ B, π be a PVA, and Lab be a
corresponding locality preserving labeling function. Then, Tab. 5.1 defines the
Labeled Partial Assignment Interpolation System LpaItp(Lab, R,A,B, π).

LPAIS produces interpolants in the following way: First, the vertex-
interpolants for leaves of the refutation are computed using the rules in the
upper part of Table 5.1 (Hypothesis rules). Depending on the occurrence of
the vertex-clause 〈Θ〉 in the A or B sets, the corresponding rule describes
the transformation of the vertex-clause into a partial vertex-interpolant.
Later, going down through the proof from the leaves to the sink, the vertex-
interpolants for inner vertices are computed using the resolution rules in the
lower part of Table 5.1. The labels assigned to the pivots determine how
vertex-interpolants of both antecedents are combined. This process ends at
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⊥
Res-b〈l b1 〉

Res-a
〈l̄ b1 〉

Res-d+

〈l b1 ∨ l̄
a
6 〉
Res-d+

〈l̄ b1 ∨ l
b
2 〉

Hyp-Bπ

〈l̄ b1 ∨ l̄
d+
2 〉
Res-b

〈l b1 ∨ l
a
6 〉

Res-b

〈l b1 ∨ l
b
2 〉

Hyp-Aπ

〈l̄ d
+

2 ∨ l̄ a6 〉
Hyp-Bπ

〈l̄ d
+

2 ∨ l b4 〉
Hyp-Bπ

〈l̄ b1 ∨ l̄
b
4 〉
Res-b

〈l b1 ∨ l
b
3 〉

Hyp-Bπ

〈l̄ b3 ∨ l
a
6 〉

Hyp-Aπ

〈l̄ b1 ∨ l
b
5 〉

Hyp-Aπ

〈l̄ b4 ∨ l̄
b
5 〉

Hyp-Bπ

Figure 5.10: Rules applied at proof vertices if McMillan’s labeling of Fig-
ure 5.8 is used.

the sink vertex where the PVAI is derived. The interpolants are computed
in time linear to the size of the proof.

The main difference compared to LISs are the additional d+ rules. For
instance, consider the last rule Lab(v2, p) = d+ in Table 5.1. In contrast
to the original LIS rules, the partial vertex-interpolant is simpler, because
it does not contain I2, omitted due to the variable assignment. Generally,
these rules cut out the satisfied sub-tree of the proof. Usually, the later in
the refutation the assigned variable is resolved, the larger sub-tree is pruned
and the smaller the resulting interpolant is.

The differences between LPAISs and LISs are motivated by the way vari-
able assignments work. The new d+ rules can be seen as a specialization of
the ab resolution rule if PVA π is assumed. A similar relationship holds for
the hypothesis rules in the leaves of a refutation. These rules are equivalent
to LIS hypothesis rules if applied on a clause under the assumed assignment.
The changes we introduce w.r.t. LISs are of two kinds: (i) those in LPAIS
rules force specialization of the interpolant on a sub-problem, and (ii) the
changes in the locality constraints remove unassigned out-of-scope variables
from the interpolant.

Example 1 (cont.): Figures 5.10 and 5.11 show the rules, which applies
to a vertex; the labels are taken from Figures 5.8 resp. 5.9.

[65]Figure 5.12 shows how LPAIS produces interpolant Iπ ≡ l1 ∨ l3 for our
example using labeling of Figure 5.10. Note the dotted arrows at vertices
corresponding to Res-d+ resolutions; they highlight the antecedents whose
partial vertex-interpolants are ignored and their sub-trees do not contribute
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⊥
Res-ab〈l ab1 〉

Res-ab
〈l̄ ab1 〉

Res-b

〈l a1 ∨ l̄
b
6 〉
Res-ab

〈l̄ b1 ∨ l
b
2 〉

Hyp-Bπ

〈l̄ a1 ∨ l̄
b
2 〉
Res-b

〈l b1 ∨ l
a
6 〉

Res-ab

〈l a1 ∨ l
a
2 〉

Hyp-Aπ

〈l̄ b2 ∨ l̄
b
6 〉

Hyp-Bπ

〈l̄ b2 ∨ l
b
4 〉

Hyp-Bπ

〈l̄ a1 ∨ l̄
b
4 〉
Res-ab

〈l b1 ∨ l
b
3 〉

Hyp-Bπ

〈l̄ a3 ∨ l
a
6 〉

Hyp-Aπ
〈l̄ a1 ∨ l

a
5 〉

Hyp-Aπ

〈l̄ b4 ∨ l̄
b
5 〉

Hyp-Bπ

Figure 5.11: Rules applied at proof vertices if minimal labeling of Figure 5.9
is used.

to final PVA interpolant. Also note that the PVA interpolant Iπ is smaller
compared to both I1[π] and I2[π] from examples above.

Assignment applied onto (interpolant) formula (i.e., if I[π] is computed)
can reduce the size of the formula only if the assigned variable appears in
the formula (i.e., the variable has to be shared). However, LPAIS reduce the
size of the interpolants even if the assigned variable does not appear in the
interpolant, since the reduction is done as a part of interpolant computation
and not as a post-processing step.

5.4.1 Correctness

∧
∨ [I3]

[I4] [>] ∧

∧ [l1] [>] [>] ∧

[>] [l3] [l1 ∨ l5] [>]

I3 ≡ >
I4 ≡ l1

Figure 5.12: PVA interpolant Iπ ≡ l1 ∨ l3, using labeling of Figure 5.10.
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b

ab = d+

a

⊥

Figure 5.13: Strength ordering (�)

Theorem 2 (Correctness) Let R be a refutation of A∧B, π be a PVA, and
Lab be a locality preserving labeling function. Then, LpaItp(Lab, R,A,B, π)
generates a partial variable assignment interpolant at the sink vertex s.

Proof sketch. For clarity of presentation highlight the overall idea of the
proof here. The complete proof can be found in the appendix of the thesis.

By structural induction over R we show that for each vertex v of a reso-
lution proof the following invariants hold:

π |= A ∧ ¬〈Θ〉�a,v,Lab⇒ Iv

π |= B ∧ ¬〈Θ〉�b,v,Lab⇒ ¬Iv

Iv is the partial vertex-interpolant and 〈Θ〉 is a vertex-clause of v (cl(v) =
〈Θ〉). These invariants yield the PVAI constraints (D9.1, D9.2) at the sink
vertex, where ¬〈Θ〉 = >. �

Symmetry. Notice that the locality constraints, as well as the way LPAISs
compute interpolants, are symmetric in terms of presence formulas in the
Aπ and Bπ sets of satisfied clauses. It reflects the fact that these clauses
are not a part of the sub-problem under consideration, thus irrelevant for
PVAI interpolants. Given a fixed π, the satisfied clauses can be moved freely
between the A and B sets; both computed interpolants and locality of the
labeling functions are not affected if satisfied clauses are moved. This fact
allows us to articulate the strength theorem in an elegant way.

5.4.2 Interpolant strength

Interpolation systems based on labeling provide some freedom in the choice of
labels (e.g., for shared variables); this choice affects the resulting interpolants,
in particular their logical strength. In the following, we investigate this
relationship in more detail.
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Definition 15 (Strength order) Let � be a pre-order relation defined over
set of labels S = {⊥, a, b, ab, d+} as: b � ab = d+ � a � ⊥ (Figure 5.13).
Let Lab and Lab′ be labeling functions for a refutation R. We say Lab is
stronger than Lab′, denoted as Lab � Lab′, if for all vertices v ∈ V and for
all literals l ∈ cl(v) it holds that Lab(v, l) � Lab′(v, l).

Note that labels ab and d+ are of the same strength and can be exchanged
if the locality requirements permit it; b is the strongest label, while a is
the weakest one a literal can get. The following theorem states that the
introduced strength order on labeling functions also induces ordering of the
produced interpolants by logical strength.

Theorem 3 (Interpolant strength) Let R be a refutation of A ∧ B, π
and π′ be partial variable assignments, and Lab and Lab′ be corresponding
locality preserving labeling functions. Let I be a partial variable assign-
ment interpolant for LpaItp(Lab, R,A,B, π) and I ′ be a PVA interpolant for
LpaItp(Lab′, R,A,B, π′).

If Lab � Lab′ then π, π′ |= I ⇒ I ′.

Note that if π and π′ are empty assignments, we obtain exactly the the-
orem on interpolant strength from [41]. Also note that the theorem permits
different variable assignments for the interpolants. Thus, it relates the inter-
polants generated for different sub-problems (e.g., interpolants considering
different sets of paths through a given ARG node). Since both π and π′ are
assumptions of the formula I ⇒ I ′, the theorem applies to cases common to
both sub-problems (i.e., to the shared paths). Both interpolants (I and I ′)
have to be computed using the same A,B partitioning, thus interpolants for
different ARG nodes cannot be compared using this theorem; we present a
generalization in this direction later.

Weakened-labels filter. To be able to relate interpolants computed using
different labeling functions (as in the above Theorem), we need to introduce
a new type of filter, which preserves the literals whose label is weaker in Lab′

than in Lab. Let Lab and Lab′ be labeling functions. Let v ∈ V be a vertex,
〈Θ〉 be a clause and C1, C2 ⊆ L be sets of labels. The label change filter || is
defined as follows:

〈Θ〉||Lab,Lab
′

v,C1⇒C2
= {l ∈ Θ | Lab(v, l) ∈ C1 and Lab′(v, l) ∈ C2}

For a preserved literal, set C1 specifies permitted labels for Lab and set C2

specifies permitted labels for labeling function Lab′.
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We define weakened-labels filter |�Lab,Labv as follows:

|�Lab,Lab
′

v = ||Lab,Lab
′

v,{b,ab,d+}⇒{ab,d+,a}
It preserves all the literals whose label is weaker in the primed labeling

function according to the strength ordering �. Note that from technical
reasons the weakened-labels filter also preserves some equally strong literals,
i.e., those labeled ab or d+ by both labeling functions. E.g., the filter preserves
a literal l if the strongest labels b (i.e., Lab(v, l) = b) is weakened into label
a or ab in Lab′(v, l), while it filters-out a literal if both functions assign label
a to it. The vertex resp. labeling functions are omitted if clear from the
context.

In [68] we prove above theorem using the invariant shown in the proof
sketch below. In this thesis, we choose a different approach; we only show
the main idea of the Theorem 3 proof. In next section, we show stronger
Theorem 4. Theorem 3 directly follows from Theorem 4 (using empty set of
clauses S).

Proof sketch (Theorem 3). By structural induction over R, we show that
for each vertex v of the resolution proof, the following invariant holds:

π, π′ |= Iv ∧ ¬〈Θ〉|�v⇒ I ′v

〈Θ〉 is the vertex-clause of v (i.e., cl(v) = 〈Θ〉), Iv and I ′v are the partial
vertex-interpolants for the vertex v as generated by LPAIS using the labeling
functions Lab and Lab′, respectively. In the proof, we show that the invariant
holds for all possible combinations of the rules that can be used to define the
partial vertex-interpolants Iv and I ′v. �

As in LISs, for a fixed variable assignment there is a lattice of LPAISs
ordered according to the strength of labeling functions. The top element of
the lattice involves the strongest labeling function, which assigns label b to
AπBπ-shared and AπBπ-clean variables, while the labeling function of the
bottom element assigns label a to them. Theorem 3 claims that LPAISs
produce interpolants ordered by strength according to the lattice.

5.4.3 Path interpolation property

Several verification approaches such as [3, 80, 107] depend on the path inter-
polation property (PI). In [96], the authors show that LISs can be employed
to generate path interpolants by providing a sequence of labeling functions
that are decreasing in terms of strength. In this subsection, we generalize this
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property for LPAIS. We study conditions that the labeling functions have to
satisfy in order to obtain a sequence of interpolants with the PI property.

The following theorem states the main result:

Theorem 4 (PI property) Let Lab and Lab′ be locality preserving labeling
functions, let R be a refutation of A ∧ S ∧ B, and π and π′ be PVAs. Let
I = LpaItp(Lab, R,A, S ∪B, π) and I ′ = LpaItp(Lab′, R,A ∪ S,B, π′).

If Lab � Lab′ then π, π′ |= I ∧ S ⇒ I ′.

Proof sketch (Theorem 4). By structural induction over refutation R we
show that for each vertex v ∈ V of the refutation, the following invariant
holds:

π, π′ |= Iv ∧ S ∧ ¬〈Θ〉|�v⇒ I ′v

where cl(v) = 〈Θ〉 is the vertex clause and Iv and I ′v are the partial vertex-
interpolants for vertex v as generated by LPAIS using labeling functions
Lab and Lab′, respectively. In the proof, we show that the invariant holds
for all possible combinations of the rules that can be used to define partial
vertex-interpolants Iv and I ′v.

The full proof can be found in the appendix of the thesis. �

A tentative reader may ask whether it exists locality preserving labeling
satisfying the requirements of the above theorem. The answer to this question
can be found in our paper [68] where we stated and proved weaker version of
the above theorem; the proof of the theorem is based construction a strongest
possible labeling Lab′ from Lab that satisfies requirements of the theorem;
i.e., is a locality preserving and weaker then Lab.

5.5 Evaluation
We implemented LPAIS in a tool called Partial Variable Assignment Inter-
polatoR (PVAIR). It is built on top of the open-source tool PeRIPLO [93]
which provides resolution proofs and is able to optimize the proofs for in-
terpolation through transformations. PeRIPLO has been used in various
verification projects, including function summarization in eVolCheck [44]
and FunFrog [100], both as an interpolation engine and as a SAT solver.

[65] The PVAIR architecture is shown in Figure 5.14. It takes a propositional
formula Φ, its (A,B)-partitioning, and a partial variable assignment π as
input and produces PVA interpolant if the input formula is unsatisfiable.
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Figure 5.14: PVAIR architecture.

The input can be provided either in a file in the SMT-LIB 2.0 [9] format or
via a C++ API.

The workflow of the PVAIR tool is as follows. First, the input formula is
passed to the PeRIPLO-based preprocessing module. Since the formula can
be in arbitrary form, it is transformed into CNF (the top box in Figure 5.14)
using an efficient, structure-sharing version of the Tseitin encoding [103]. Its
satisfiability is then determined using the MiniSAT 2.2.0 solver [43].

In the case of an unsatisfiable input, an initial refutation is extracted from
the solver in the compact MiniSAT internal proof format. The format is then
transformed into a resolution DAG to allow more efficient handling of the
proof (ProofConstruction). In particular, using the resolution DAG form,
the proof can be compressed using well-known proof reduction techniques
such as structural hashing or pivot recycling [95, 92] available in PeRIPLO
(ProofReduction). The proof reduction techniques can be enabled/disabled
via a configuration file or API.

Once the resolution proof R is computed, it is passed together with the
partitionings and variable assignments to the interpolation engine (the bot-
tom box in Figure 5.14). From this point on, any number of partial variable
assignments πi and partitionings Pi (into Ai ∧ Bi) can be given as input to
the tool and used to construct the corresponding interpolants Ii. Note that
in any case only one SAT-solver call will be made during the entire execu-
tion. Then the proof is labeled; the labels are assigned to literals in the
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proof based on the partitioning and the assignment and selected LIS-based
interpolation algorithm (which can be chosen in the configuration file or via
API). When the labeling is complete, it is used together with the partitioning
and resolution proof R to compute interpolants (InterpolantConstruction).

The construction starts by computing partial vertex-interpolants (accord-
ing to the upper part of Table 5.1) for the leaf nodes of the refutation. The
computation then proceeds from the leaves to the root node. During the
interpolant construction, partial interpolants are optimized using Boolean
constant propagation and structural sharing (hashing). The final interpolant
is computed in the root node.

In symbolic model checking Craig interpolants are used as a tool to com-
pute sets of program states with required properties; their usage varies a
lot among verification techniques. Thus, we decided to choose unsatisfiable
benchmarks from SAT Competition [97]. They provide us with large and
heterogeneous kinds of benchmarks. An alternative approach would be inte-
gration into a particular verification technique; on one hand, this would get
results tightly related to verification, on the other hand the results would be
more influenced by the chosen technique and the way assignment is gener-
ated. Such an evaluation would also require deep analysis of the technique
in order to introduce assignments preserving the safety of the approach.

We also employed the PVAIR tool in software verification process; we
applied it on computational problems generated by the eVolCheck tool
during verification procedure. To demonstrate the tool performance, we mea-
sured the size of produced interpolants and its effect on the total verification
time. These experiments can be found in [65].

SAT competition. We used 47 unsatisfiable benchmarks from the SAT
Competition from all categories – 12 from the Application (APP), 11 from the
Crafted (CRF), and 24 from the Random (RND) sets. Since the benchmarks
are not partitioned, we generated six partitionings for each benchmark; we
simulated the typical way the path interpolants are computed, i.e., we ran-
domly choose n, first n clauses of the benchmark belong to the A part, the
remaining clauses to the B part. No partition is empty. No assignment is
given by authors of the benchmarks, thus for each partitioning, we generate
five random variable assignments consisting of a single, five, resp. twenty
assigned variables. Assignments of various sizes indicate how the reduction
scales w.r.t. the number of assigned variables.

For comparison, we use McMillan’s interpolants – a widely used approach.
Experiments were run on a Linux server with Intel Xeon X5687 CPU using
the timeout of 60 minutes and the memory limit of 20GB using the GNU
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Table 5.2: Comparison of interpolant sizes computed without variable assign-
ment [x] and with one variable assigned [y] (left) and five variables assigned
(right).

Parallel environment [101]. The proof reduction techniques were disabled;
we used the default PeRIPLO settings.

Table 5.2 compares the sizes of the computed interpolants. Each point in
the graph corresponds to a single partitioning of a benchmark; the x-axis rep-
resents the interpolant size if no assignment is provided (Craig interpolant),
while the y-axis represents the size of the PVA interpolant with a single (resp.
five) assigned variable(s). For presentation clarity, the y-axis is the average
size of all five random assignments generated for a given partitioning. The
values on axes represent millions of nodes if an interpolant is represented
as DAG (counting literals and Boolean operators). The orange dashed line
shows the average size of Craig interpolants for sub-problems; i.e., if all satis-
fied clauses and falsified literal are removed from input formula and then SAT
solver is called on this simplified input and standard Craig interpolant are
computed from new refutation proof. This illustrates what price is paid by
PVA interpolants for the path interpolation property and a single SAT solver
call. All graphs show interesting reduction in the size for PVA interpolants as
well as substantially larger reduction in case of five assigned variables. In all
graphs, the same partition of the same benchmark shares the same x-value,
thus it is possible, especially for the larger ones, to compare their reductions.

Table 5.3 summarizes the results shown in the graphs, reporting precise
numbers. The first table compares the sizes of PVA interpolants to Craig
interpolants. The No assignment row shows the average size of Craig inter-
polants for a given benchmark type. The remaining rows show the relative
sizes of PVA interpolants w.r.t. the No assignment row. The application
benchmarks exhibit a smaller reduction compared to the other types, and
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PVA Itp. APP RND CRF All
No Assignment 344 298.7 1 308 750.1 489 469.1 776 573.9
1 var 92.8 % 83.0 % 78.1 % 83.7 %
5 vars 76.2 % 45.2 % 31.5 % 47.6 %
20 vars 48.3 % 10.1 % 4.8 % 15.0 %

Itp. from
sub-prob.

APP RND CRF All

No Assignment 344 298.7 1 308 750.1 489 469.1 776 573.9
1 var 69.5 % 55.0 % 65.5 % 58.8 %
5 vars 24.4 % 5.7 % 9.7 % 9.1 %
20 vars 0.12 % 0.01% 0.39% 0.09%

Table 5.3: Average interpolant sizes by category and number of assigned
variables.

even for twenty assigned variables, the interpolants are half in the size of the
Craig interpolants.

As we have mentioned, a PVA interpolants can be seen as Craig inter-
polants for the corresponding sub-problem. The second table compares the
sizes of Craig interpolants to Craig interpolants for the corresponding sub-
problem. For each pair of partitioning and assignment, we created the sub-
problem instance and used PVAIR to compute the standard Craig inter-
polant for it without assignment; in this case the assignment is used only
during construction of the sub-problem. Sub-problems are simpler compared
to the benchmark from which they were generated; the satisfied clauses and
falsified literals are removed, so interpolants for sub-problems are typically
smaller compared to Craig interpolants of the benchmark. However, the in-
terpolant for each sub-problem is computed from a different refutation; in
contrast to PVA interpolants which, for a particular benchmark, are all com-
puted from the same proof. This means that the sequence of interpolants for
sub-problems may not have the path interpolation property [107].

As to the interpretation of the results: The No assignment reflects the
state-of-the-art approaches, where Craig interpolants are used directly. PVA
interpolants (the first table) show how the size of the interpolants can be
reduced if the model checker (i.e., a tool generation the input) provides a
reasonable assignment together with a partitioning. The interpolants for a
sub-problem (the second table) can be seen as an alternative to PVAinter-
polants because of their similar meaning, however these interpolants lack the
properties of the PVA ones.

Time and memory demands are crucial properties of each interpolation
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tool. The reduction in overall running time and required memory roughly
correspond to the reduction of interpolant sizes; e.g., on average PVAIR is
11% faster and requires 9% less memory if a single variable is assigned. The
time and memory savings occur during the interpolant computation phase
due to smaller interpolants being handled.
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6
Conclusion

In the thesis, we presented techniques to eliminate irrelevant information
from program state representations. These techniques reduce the size of the
representation used by the verification tools. First, we sum-up our contribu-
tion related to explicit representation of program states. Later, we focus on
symbolic representation and our interpolation method, which can be used to
compute smaller interpolants.

In chapter 4, we focused on goals G1a and G1b. We have introduced two
novel dead variable analyses – hybrid dead variable analysis and the dynamic
one. Both analyses focus on heap of multi-threaded programs. The hybrid
DVA is fast; it can be combined with various heuristic search strategies. On
the other hand, it does not distinguish among different heap instances, which
negatively influence its precision. The dynamic DVA requires a complete
depth-first-search to work as it observes the reads and writes of the program
to identify dead variables. The analysis aims at precise detection of dead
variables; it distinguishes among object instances. We formally described our
DVA over labeled transition systems and proved its soundness in Theorem 1.

Based on the above analyses, we designed two dead variable reduction
techniques. We created a custom state matching technique to preserve the
safety of the dynamic DVR. The DVR takes into account a set of live ad-
dresses together with live values. The state matching is based on Lemma 2.
In case of the hybrid DVR, we could use classical state matching.

We developed a prototype implementation in Java PathFinder [106] and
evaluated it on set of benchmarks. In the case of hybrid DVR, the state
vector size is reduced to one third on average, while in case of dynamic DVR
it is an order of magnitude smaller. This leads to reduction of 12% in the
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verification time in case of hybrid DVR, while using Dynamic DVR results in
a 20% speed-up and a reduction of 30% in the number of states on average.

In chapter 5, we described a novel interpolation technique. First, we in-
troduced a notion of Partial Variable Assignment Interpolants, which use
variable assignment to specify a sub-problem. The sub-problem defines the
important parts of the input formula, while remaining parts of the input
formula can be ignored during interpolant computation.

Later, we introduced a technique to compute PVA interpolants for predi-
cate logic – Labeled Partial Assignment Interpolation System – an extension
of Labeled Interpolation System [41]. LPAIS computes interpolants from a
refutation proof, while using assignment to omit unimportant parts of the
proof. This way the size of the interpolant is reduced.

In Theorem 4, we showed that LPAIS yields interpolants with the path
interpolation property – a property especially useful for verification.

We created tool PVAIR, which implements LPAIS, and evaluated it on
a set of benchmarks from the SAT Competition. For assignments with 5
variables, the interpolant size was reduced by one half on average.

6.1 Future work

The most obvious future work in case of explicit state representation is a
combination of our heap analysis with DVR for local variables. This should
further reduce the size of state spaces.

In case of dynamic DVR, we observed that the run-time is more than
twice as long compared to standard Jpf in the CLIF benchmark despite
nearly 40% reduction of the program state. This is caused by the state
matching, which have to try large number of possible sets of live addresses.
In the future, we would like to introduce a new heuristic selecting a subset
of live addresses to be tried. It will result into larger state space; however,
the model checker will explore the state space faster.

We also envision a possibility beyond the dead variable analysis; it lies
in introducing a property-driven definition of important (i.e., live) values
that should be considered during state matching. The dead variable analysis
(from its definition) considers all the reads of a program, but not all reads
can influence the properties being verified. If the value is not used in an
expression which can (indirectly) influence (i) validity of an assertion and
(ii) conditions in the program, its value is unimportant for the verification.
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The dynamic analysis should be able to track usage of the values in a similar
way as our dynamic analysis tracks their reads.

In case of symbolic representation, we plan to focus on proving other inter-
polations properties, especially the tree-interpolation property. That would
permit to use PVAI in more verification tools, for example, eVolCheck.

We would like to extend our interpolation method to support various
theories in first order logic, especially linear arithmetic, which is commonly
used in verification. However, that would require using a different approach;
the labeled interpolation system, a base upon which our method is built,
works only for the propositional logic.
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A
Proofs

A.1 Dead variable reduction

[67]Lemma 1 (Trace-equivalent paths) Let S1 ≡ (IPS1 ,MemS1) ∈ S and
S ′1 ≡ (IPS′

1
,MemS′

1
) ∈ S be two states such that reduce stateS1(S1) =

reduce stateS1(S
′
1).

Then for any trace p = S1
A1,G1−−−−→ S2 · · · · · ·Si Ai,Gi−−−−→ Si+1 · · · there ex-

ists a transition-equivalent trace p′ = S ′1
A1,G1−−−−→ S ′2 · · · such that IPSi

=
IPS′

i
for all i (i.e., the corresponding states along equivalent traces differ

only in the memory content).

Proof (Lemma 1 – Trace-equivalent paths). he proof is constructive and
inductive on the trace length. The induction will iteratively append an
equivalent transition to the end of trace p′ and preserve the following in-
ductive invariant: reduce stateSi

(Si) = reduce stateSi
(S ′i) and IPSi

= IPS′
i

and there is a trace p′i which is transition equivalent to the prefix of p of
length i.

The base case (traces with no transitions): In such a case, trace p con-
tains just one state: p = S1 (i.e., the trace of length 0 starting at S1). A
transition-equivalent trace p′ = S ′1 (a trace staring in S ′1 with no transi-
tion) exists trivially. Moreover IPS1 = IPS′

1
, because reduce stateS1(S1) =

reduce stateS1(S
′
1) and the fact that reduce state functions do not modify

the instruction pointer (IP ).

Inductive step: First, for the initial states S1 and S ′1 the inductive in-
variant holds. Let the inductive invariant hold for a trace p of length i. If
p is of length i, the inductive invariant is exactly the claim of the lemma.
So, let us assume trace p to be longer. The inductive invariant gives us
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transition-equivalent trace p′i = S ′1 −→ · · ·S ′i such that reduce stateSi
(Si) =

reduce stateSi
(S ′i) and IPSi

= IPS′
i
. Moreover, there is a transition p =

· · ·Si Gi,Ai−−−−→ Si+1 · · · (i.e., (Si, Gi, Ai, Si+1)); we show that p′i can be ex-
tended with this transition.

Let S ′i+1 = (IPSi+1
,MemS′

i
[Ai]). First, we show that there is a transition

(S ′i, Gi, Ai, S
′
i+1) ∈ 4 that can be appended to p′i to form p′i+1. The first

requirement of Def. 1 is satisfied since IPSi
= IPS′

i
(from the induction

invariant) and IPSi+1
= IPS′

i+1
(from the definition of S ′i+1), thus the step

showing the existence of the transition (Si, Gi, Ai, Si+1) satisfies the condition
for transition (S ′i, Gi, Ai, S

′
i+1) as well. The second condition (i.e., guard Gi

holds in S ′i) is satisfied, because Gi holds in state Si and Si and S ′i equal on
live addresses (reduce stateSi

(Si) = reduce stateSi
(S ′i) from the induction

invariant). Due to trace pGi
= Si

Gi,Ai−−−−→ Si+1 (i.e., a trace with a single
transition), all the addresses on which Gi depends are live in Si. The last
condition is satisfied directly by the definition of S ′i+1.

Now we show that reduce stateSi+1
(Si+1) = reduce stateSi+1

(S ′i+1) (i.e.,
the states Si+1 and S ′i+1 equal on live addresses). From the definition of S ′i+1

we know that IPSi+1
= IPS′

i+1
. Let us look at the memory. In the following,

we use MemRi+1
to denote the memory of state reduce stateSi+1

(Si+1) (which
is exactly the memory of the reduced state for full state Si+1) and MemR′

i+1

to denote the memory of state reduce stateSi+1
(S ′i+1) (i.e., the memory of

states S ′i+1 reduced w.r.t. future behaviour of Si+1). We show that the above
memory functions are the same (i.e., MemRi+1

= MemR′
i+1

); in other words,
these functions have (i) the same domain and (ii) they evaluate to the same
values for any address from their domain. As to (i), because the function
reduce stateSi+1

is used to create both memory functions, their domains are
the same (i.e., dom(MemRi+1

) = dom(MemR′
i+1

)).
Now we show (ii) i.e., ∀a ∈ dom(MemRi+1

) it holds that MemRi+1
(a) =

MemR′
i+1

(a). Let us pick an address a ∈ dom(MemRi+1
); this address can

be either assigned (written) by action Ai or not. In the former case the
values equal (i.e., MemRi+1

(a) = MemR′
i+1

(a)), because in both cases they
are computed by the same action Ai using the same values; the trace pGi

=
Si

Gi,Ai−−−−→ Si+1 shows that all the addresses read by action Ai are live and
thus preserved by reduce stateSi+1

and the induction invariant gives us that
MemSi

and MemS′
i

equal on these addresses.
Let us focus on the latter case, i.e., when address a is not written by

action Ai and its value is taken from the predecessor. Formally, it holds
that MemRi+1

(a) = MemSi
(a) and MemR′

i+1
(a) = MemS′

i
(a). Address a is

preserved by the reduce stateSi+1
function, thus either a ∈ addr(φ) or a ∈

live addr(Si+1). In both cases address a is preserved by reduce stateSi
; in

the first case, the reason comes from the definition of reduce state – addr(φ)
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addresses are always a part of reduced state. In the second case, the definition
of reduce state gives us a trace p′a from state Si+1 which demonstrates that
address a is live. Let trace pa be p′a prefixed by (Si, Gi, Ai, Si+1) (i.e. pa ≡
Si

Gi,Ai−−−−→ p′a), because Ai does not write to address a, the trace pa shows
that the address a is live in Si and thus preserved by reduce stateSi

. We
know that MemRi+1

(a) = MemSi
(a) and MemR′

i+1
(a) = MemS′

i
(a), and the

inductive invariant gives us that MemSi
(a) = MemS′

i
(a); thus, we have shown

that MemRi+1
(a) = MemR′

i+1
(a).

Put together, we have proved that:
reduce stateSi+1

(Si+1) = reduce stateSi+1
(S ′i+1) – the inductive in-

variant for i+ 1.

Theorem 1 (Bisimulation) For a program P and a property φ, transition
system AP = (S,4, Sinit) and corresponding reduced transition system RP =
(R,4R, R

init) are bisimilar.

Proof (Theorem 1 – Bisimulation). Let reduce state be a relation among
the full and reduced states, such that full state S and reduced state R are
in the relation iff reduce stateS(S) = R. We show that reduce state is a
bisimulation, i.e., reduce state satisfies the following three conditions:

(1) The initial states Sinit and Rinit are in the relation (which comes
directly from the definition).

(2) Let there is a full transition (S,G,A, S ′) ∈ 4, and let state R be
in the relation with S, i.e., R = reduce stateS(S). Then there has to be
a reduced transition (R,G,A,R′) ∈ 4R such that R′ = reduce stateS′(S ′).
This comes also trivially from the definition of the reduced state space.

(3) Let there is a reduced transition (R,G,A,R′) ∈ 4R executed by a
thread i. Then for any full state S such that reduce stateS(S) = R (a pre-
image of reduced state R), there exists a full transition (S,G,A, S ′) ∈ 4
such that reduce stateS′(S ′) = R′.

The only condition remaining to be proved is (3). From the definition
of reduced state there exists a base full transition (Sb, G,A, S

′
b) ∈ 4 due

to which the reduced transition (R,G,A,R′) exists. From the definition of
reduce state it follows that it does not modify the instruction pointer, thus
IPS = IPSb

= IPR (i.e., the corresponding states S, Sb, and R point to
the same program location) and IPS′

b
= IPR′ (i.e., the base transition is

executed by the same thread i as the reduced transition). Moreover the
trace pb ≡ Sb

G,A−−−→ S ′b (i.e., the trace of length 1 consisting exactly of the
base transition) guarantees that all the addresses that guard G and action
A read are live and thus preserved by reduce stateSb

. States S and Sb are
both reduced to state R thus, first, reduce stateSb

= reduce stateS (i.e., the
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reduce state functions for both states are the same and both states have the
same live addresses) and second, the values at the live addresses are the same
in both states (i.e., ∀a ∈ dom(MemR) : MemS(a) = MemSb

(a)).
Def. 1 gives us that (i) there is step (li, A,G, l

′
i) ∈ Li of thread i such that

IPSb
(i) = li and IPS′

b
= IPSb

[i := l′i] and (ii) guard G holds in Sb.
Let S ′ ≡ (IPS′

b
,MemS[A]) be a full state, i.e., it is created from state S by

a step of thread i into the same program location as the base (and reduced)
transition by executing action A. In order to prove the theorem, we need to
show that there is a transition (S,G,A, S ′) ∈ 4 and that S ′ reduces into R′.

According to Def. 1, there exists transition (S,G,A, S ′) ∈ 4, because
IPS = IPSb

, IPS′ = IPS′
b

so (i) satisfies the first requirement of Def. 1 and
guard G holds in S (due to (ii) and because Sb and S equal on all the values
that guard G reads). The last requirement of Def. 1 follows directly from the
definition of state S ′.

We now show that S ′ reduces to R′ (i.e., reduce stateS′(S ′) = R′); first
we show that (iii) states S ′ and S ′b have the same live addresses

(i.e., reduce stateS′ = reduce stateS′
b
, in other words the functions

are the same) and then that (iv) these states have the same values at the live
addresses.

Before moving to (iii), we first show that (v) S ′ and S ′b have (pair-wise)
transition-equivalent sets of traces (using Lemma 1). Let pS′ be a trace from
state S ′ (i.e., pS′ = S ′ ∗−−→ · · · ). Then there is also a trace p which is formed
by pS′ prefixed by transition (S,G,A, S ′) (i.e., p ≡ S G,A−−−→ S ′ ∗−−→ · · · ).
Then reduce stateS(S) = reduce stateS(Sb) = R, because from assumption
of the condition it holds that reduce stateS(S) = R, and reduce stateS =
reduce stateSb

, which was shown above, and reduce stateSb
(Sb) = R (from

definition of Sb). Lemma 1 can now be applied on states S and Sb and trace
p resulting in a transition-equivalent trace p′ = Sb

G,A−−−→ Sx
∗−−→ · · · such

that IPx = IPS′ . Now we show that Sx = S ′b; the actions are determinis-
tic, so Memx = MemS′

b
(more rigorously by the definitions, both equal to

MemSb
[A]). Since IPx = IPS′

b
(via IPS′), we have shown that the states Sx

and S ′b are the same (i.e., Sx = Sb). Thus, we can remove the first transition
of p′ to obtain pS′

b
from S ′b, which is transition equivalent to pS′ . Exactly the

same reasoning can be used to show that for any trace from S ′b there is a
transition-equivalent trace from S ′.

As to (iii), it remains to show that the function reduce stateS′ and the
fucntion reduce stateS′

b
are the same. From the definition of the reduce state

functions it follows that they modify only the Mem part of the program state
by restricting its domain. Assume that reduce stateS′ preserves an address
a ∈ dom(MemS′); then it holds either a ∈ addr(φ) or a ∈ live addr(S ′). In
the former case, the address a is also preserved by reduce stateS′

b
from the
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same reason (the safety property φ is the same for the whole program). In
the latter case, we use the definition of live addr, which gives us a trace pS′

– a witness why a is a live address (i.e., a ∈ tr live addr(pS′)). Above we
have shown that there is a trace pS′

b
transition equivalent to pS′ (see (v)).

Trace pS′
b

(having the same live addresses as pS′ , since the traces equal on
tr live addr in their initial states) is a witness that address a is live in S ′b (i.e.,
a ∈ LA(S ′b)). Thus a is also preserved by reduce stateS′

b
. The same reasoning

can be applied to show that all addresses preserved by reduce stateS′
b

are also
preserved by reduce stateS′ , which together gives us that reduce stateS′ =
reduce stateS′

b
.

The only remaining part is (iv). IPS′ and IPR′ equal, because we know
that IPR′ = IPS′

b
and IPS′ = IPS′

b
from the definition. Let us focus on the

memory parts; we show that for any address a preserved by reduce stateS′ ,
the states S ′ and S ′b have the same value (i.e., MemS′(a) = MemS′

b
(a)).

Address a can be either written by action A (taken from the transition
(S,G,A, S ′)) or not. In the former case, the value written by A is the same
in MemS′ and MemS′

b
, because the outcome of the actions is deterministic

and the values used by action A to compute its result are the same (S and
Sb both reduce into R thus equal on live addresses and due to the single
transition trace G,A−−−→ , the addresses read by A are live in these states).
Let us focus on the latter case in which address a is not modified by A
and thus the values (in states S ′ and S ′b) are the same as in their predeces-
sor (in states S and Sb respectively); formally MemS′(a) = MemS(a) and
MemS′

b
(a) = MemSb

(a). The predecessors have the same value at this ad-
dress (i.e., MemS(a) = MemSb

(a)); because S and Sb both reduce into R
and thus equal on live addresses and a is live in both S and Sb. Address a is
live in S, because it is live address in S ′; so there exists a trace p′ – witness
that the address is live. The trace p = S G,A−−−→ p′ (i.e., prefixed by transition
(S,G,A, S ′)) shows that the address is also live in S as we need.

We have shown (iii) and thus reduce state(S ′) = R. It means we have
created state S ′ such that there exists a transition (S,G,A, S ′) and moreover
reduce state(S ′) = R. Thus, we have shown (3). This proves the bisimula-
tion theorem.

A.2 LPAIS

A.2.1 Correctness

Theorem 2 (Correctness) Let R be a refutation of A∧B, π be a PVA, and
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Lab be a locality preserving labeling function. Then, LpaItp(Lab, R,A,B, π)
generates a partial variable assignment interpolant at the sink vertex s.

Proof (Theorem 2 – Correctness). In the proof, we follow the proof idea of
LIS. By structural induction, we show that for each vertex v of a resolution
proof the following invariants hold:

(T2.Inv1) π |= A ∧ ¬〈Θ〉�a,v,Lab⇒ I

(T2.Inv2) π |= B ∧ ¬〈Θ〉�b,v,Lab⇒ ¬I

(T2.Inv3) Var(I) ⊆ Var(Aπ) ∩ Var(Bπ)

where I is the partial interpolant of vertex v and cl(v) = 〈Θ〉.
These invariants are equivalent to the PVAI constraints for the sink node

(where the ¬〈Θ〉 = >). We omit the labeling function Lab from subscripts
(since it is unique in the proof) and the vertex if clear.

Base cases. The base cases apply to the leaf vertices of the proof where
the hypotheses operations are applied.

Hyp-Aπ: 〈Θ〉 ∈ Aπ so I = 〈Θ〉[π]|b

(T2.Inv1) π |= A ∧ ¬〈Θ〉�a⇒ 〈Θ〉[π]|b holds because A ⇒ 〈Θ〉 and 〈Θ〉 ⇔
(〈Θ〉�a ∨〈Θ〉|b), so 〈Θ〉 ∧ ¬〈Θ〉�a⇒ 〈Θ〉|b. Moreover, it holds that π |=
〈Θ〉|b ⇔ 〈Θ〉[π]|b because the clause 〈Θ〉 (thus even 〈Θ〉|b) is not satis-
fied by the partial assignment π, so all the assigned literals (i.e., those
removed by the filter [π]) evaluate to ⊥.

(T2.Inv2) π |= B∧¬〈Θ〉�b⇒ ¬〈Θ〉[π]|b holds because ¬〈Θ〉�b⇒ ¬〈Θ〉|b. More-
over, it holds that π |= ¬〈Θ〉|b ⇔ 〈Θ〉[π]|b; the reason is the same as
above, all the assigned literals evaluate to ⊥.

(T2.Inv3) Var(〈Θ〉[π]|b) ⊆ Var(Aπ)∩Var(Bπ). Label b implies that such vari-
ables are AπBπ-shared. Otherwise, the locality-preserving requirement
D13.2 is violated. Moreover, the assignment filter is applied, so the par-
tial vertex-interpolant does not contain any assigned variable.

Hyp-Bπ: 〈Θ〉 ∈ Bπ so I = ¬〈Θ〉[π]|a. The situation is symmetric to Hyp-
Aπ case.

(T2.Inv1) π |= A ∧ ¬〈Θ〉�a⇒ ¬〈Θ〉|a holds because ¬〈Θ〉�a⇒ ¬〈Θ〉|a. More-
over, π |= 〈Θ〉|a ⇔ 〈Θ〉[π]|a, because all the assigned literals in the clause
〈Θ〉 evaluate to ⊥ under the assignment π.
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(T2.Inv2) π |= B ∧ ¬〈Θ〉�b⇒ 〈Θ〉|a holds because B ⇒ 〈Θ〉 and 〈Θ〉 ⇔
(〈Θ〉�b ∨〈Θ〉|a) so 〈Θ〉 ∧ ¬〈Θ〉�b⇒ 〈Θ〉|a. Moreover, as shown above,
π |= 〈Θ〉|a ⇔ 〈Θ〉[π]|a.

(T2.Inv3) Var(¬〈Θ〉[π]|a) ⊆ Var(Aπ) ∩ Var(Bπ). The label a implies that
these variables are AπBπ-shared. Otherwise, the locality preserving re-
quirements D13.3 is violated. Moreover, the assignment filter is applied,
so the partial vertex-interpolant does not contain any assigned variable.

Hyp-Aπ, Hyp-Bπ: 〈Θ〉 ∈ Aπ ∪Bπ so I = >.

(T2.Inv1) π |= A ∧ ¬〈Θ〉�a⇒ > holds trivially.

(T2.Inv2) π |= B ∧ ¬〈Θ〉�b⇒ ⊥.

We show that the antecedents of the implication are unsatisfied. The
reason is that ¬〈Θ〉�b evaluates (is equivalent) to ⊥ under assignment π.

From 〈Θ〉 ∈ Aπ (resp. 〈Θ〉 ∈ Bπ) it follows that exists literal l ∈ Θ such
that π |= l; the literal l makes the clause 〈Θ〉 satisfied under π. The label
of l is d+ (locality of labeling function – D13.1) so the literal is preserved
by the upward-filter �b.

Thus π |= ¬〈Θ〉�b⇔ ⊥.

(T2.Inv3) Var(>) ⊆ Var(A) ∩ Var(B) holds trivially.

Before the proof of Theorem 2 continues (i.e., moves from leaves to inner
vertices), we introduce auxiliary lemmas. The first one introduces upward-
filter for pivot variables. The second lemma connects the antecedents of the
invariant implications of the current vertex and the antecedent vertices.

Lemma 3 (Introducing upward-filters) Let p be a variable, v be a ver-
tex, and c be a label (c ∈ L). It holds:

|= p⇒ ¬〈p〉�c,v and |= p⇒ ¬〈p〉�c,v

Proof (Lemma 3). The upward-filter�c,v can either preserve the literal p or
filter it out. In the first case, the filter evaluates to ¬〈p〉 which is equivalent
to p and the implication |= p⇒ p holds trivially. In the second case, the filter
evaluates to the empty clause, i.e., False and the implication |= p ⇒ ¬False
holds trivially.

The same reasoning applies to the second formula. �
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Lemma 4 (Filters in antecedent vertices) Let R ≡ (V,E, cl, piv, s) be
a resolution proof and LabR,L be a labeling function for proof R. Let v ∈ V
be inner vertex of the proof with vertex clause cl(v) = 〈Θ1,Θ2〉. Let vertices
v1 and v2 be the antecedents of vertex v and their vertex clauses be cl(v1) =
〈p,Θ1〉 resp. cl(v2) = 〈p,Θ2〉. Let c be a label (c ∈ L). Then it holds:

¬〈p〉�c,v1 ∧¬〈Θ1,Θ2〉�c,v⇒ ¬〈p,Θ1〉�c,v1 and

¬〈p〉�c,v2 ∧¬〈Θ1,Θ2〉�c,v⇒ ¬〈p,Θ2〉�c,v2

Proof (Lemma 4). The upward-filter � preserves all the literals whose la-
bel equals to or is greater than the given label (e.g., �a preserves literals
with labels a, ab, d+). From the definition of labeling function (in partic-
ular from the conditions D10.1 and D10.2) it follows that ∀l ∈ 〈Θ1,Θ2〉 :
Lab(v1, l) v Lab(v, l). So, the literals preserved by the upward filter in the
vertex v1 (excluding the pivot) are also preserved by the upward filter in the
successor vertex v. Thus, it follows that 〈Θ1,Θ2〉�c,v1⇒ 〈Θ1,Θ2〉�c,v, which
can be equivalently rewritten into contrapositive implication ¬〈Θ1,Θ2〉�c,v⇒
¬〈Θ1,Θ2〉�c,v1⇒ ¬〈Θ1〉�c,v1 .

The implication ¬〈p〉�c,v1 ∧¬〈Θ1,Θ2〉�c,v⇒ ¬〈p,Θ1〉�c,v1 holds, because the
same filter is applied onto literal p (it is either filtered out or preserved by
both filters).

The same reasoning applies to the second formula. �

Proof (Theorem 2 – Correctness – cont.).
Induction hypothesis. Now, we will focus on the inductive step. Let v be
an inner vertex of the proof and let variable p be the pivot of the resolution
at vertex v (i.e., p = piv(v)). Let vertex v1 be the antecedent of v with the
vertex-clause containing the pivot positively (i.e., cl(v1) = 〈p,Θ1〉) and let
vertex v2 be the antecedent of v having negated pivot in its vertex-clause
(i.e., cl(v2) = 〈p,Θ2〉). From the induction hypothesis, we know that for the
antecedent vertices, the following invariants hold:

π |= A ∧ ¬〈p,Θ1〉�a,v1⇒ I1 and π |= B ∧ ¬〈p,Θ1〉�b,v1⇒ ¬I1 and
π |= A ∧ ¬〈p,Θ2〉�a,v2⇒ I2 and π |= B ∧ ¬〈p,Θ2〉�b,v2⇒ ¬I2

(IH)

For each type of the resolution, we establish the induction invariants for
vertex v.

Res-a: Lab(v1, p) t Lab(v2, p) = a so I = I1 ∨ I2.
In this case the pivot variable p has the label a in both antecedents v1 and
v2.
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(T2.Inv1) It follows that:

π |= p ∧ A ∧ ¬〈Θ1,Θ2〉�a,v
(L3)⇒ ¬〈p〉�a,v1 ∧A ∧ ¬〈Θ1,Θ2〉�a,v

(L4)⇒

⇒ A ∧ ¬〈p,Θ1〉�a,v1
(IH)⇒ I1

π |= p ∧ A ∧ ¬〈Θ1,Θ2〉�a,v
(L3)⇒ ¬〈p〉�a,v2 ∧A ∧ ¬〈Θ1,Θ2〉�a,v

(L4)⇒

⇒ A ∧ ¬〈p,Θ2〉�a,v2
(IH)⇒ I2

The first implication is application of Lemma 3. The second implication
is application of Lemma 4 and the last one is the induction hypothesis.

From the previous implications, it directly follows that:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇔ (p ∨ p) ∧ A ∧ ¬〈Θ1,Θ2〉�a,v⇒ (I1 ∨ I2)

The first equivalence is a simple logical consequence of p ∨ p⇔ >. The
second implication follows from the two equations above.

(T2.Inv2) Because the label of the pivot in the antecedents is a, it follows
that ¬〈p〉�b,v1⇔ ¬〈p〉�b,v2⇔ >. Thus, Lemma 4 can be applied directly
without any additional assumptions:

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇔ ¬〈p〉�b,v1 ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L4)⇒

⇒ B ∧ ¬〈p,Θ1〉�b,v1
(IH)⇒ ¬I1

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇔ ¬〈p〉�b,v2 ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L4)⇒

⇒ B ∧ ¬〈p,Θ2〉�b,v2
(IH)⇒ ¬I2

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇒ (¬I1 ∧ ¬I2)⇔ ¬(I2 ∨ I2)

The first implication follows from the two equations above. The second
equivalence is factoring out the negation.

(T2.Inv3) The third requirement (shared variables only) holds trivially. No
new variable is added into the partial vertex-interpolant.
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Res-b: Lab(v1, p) t Lab(v2, p) = b so I = I1 ∧ I2.
The proof is symmetric to the Res-a case. In this case the pivot variable has
the label b in both antecedents v1 and v2.

(T2.Inv1) The label of the pivot in the antecedents is b so it holds:
¬〈p〉�a,v1⇔ ¬〈p〉�a,v2⇔ >.

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇔ ¬〈p〉�a,v1 ∧A ∧ ¬〈Θ1,Θ2〉�a,v
(L4)⇒

⇒ A ∧ ¬〈p,Θ1〉�a,v1
(IH)⇒ I1

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇔ ¬〈p〉�a,v2 ∧A ∧ ¬〈Θ1,Θ2〉�a,v
(L4)⇒

⇒ A ∧ ¬〈p,Θ2〉�a,v2
(IH)⇒ I2

The equations above directly yield the result:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇒ (I1 ∧ I2)

(T2.Inv2) It follows that:

π |= p ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L3)⇒ ¬〈p〉�b,v1 ∧B ∧ ¬〈Θ1,Θ2〉�b,v

(L4)⇒

⇒ B ∧ ¬〈p,Θ1〉�b,v1
(IH)⇒ ¬I1

π |= p ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L3)⇒ ¬〈p〉�b,v2 ∧B ∧ ¬〈Θ1,Θ2〉�b,v

(L4)⇒

⇒ B ∧ ¬〈p,Θ2〉�b,v2
(IH)⇒ ¬I2

From the previous implications, it directly follows that:

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇔ (p ∨ p) ∧B ∧ ¬〈Θ1,Θ2〉�b,v⇒
⇒ (¬I1 ∨ ¬I2)⇔ ¬(I1 ∧ I2)

The first equivalence is a simple logical consequence of p ∨ p⇔ >. The
second implication follows from the two equations above, while the last
equivalence factors out the negation.

(T2.Inv3) The third requirement (shared variables only) holds trivially as no
new variable is added into the partial vertex-interpolant.
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Res-ab: Lab(v1, p) t Lab(v2, p) = ab, so I = (p ∨ I1) ∧ (p ∨ I2).

(T2.Inv1) It follows that:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇒ p ∨ (p ∧ A ∧ ¬〈Θ1,Θ2〉�a,v)
(L3)⇒

⇒ p ∨ (¬〈p〉�a,v1 ∧A ∧ ¬〈Θ1,Θ2〉�a,v)
(L4)⇒

⇒ p ∨ (A ∧ ¬〈p,Θ1〉�a,v1)
(IH)⇒ (p ∨ I1)

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇒ p ∨ (p ∧ A ∧ ¬〈Θ1,Θ2〉�a,v)
(L3)⇒

⇒ p ∨ (¬〈p〉�a,v2 ∧A ∧ ¬〈Θ1,Θ2〉�a,v)
(L4)⇒

⇒ p ∨ (A ∧ ¬〈p,Θ2〉�a,v2)
(IH)⇒ (p ∨ I2)

The first implication is a logical consequence of p ∨ p⇔ >. The second
implication is application of Lemma 3. The third implication is applica-
tion of Lemma 4 and the last one is the induction hypothesis. From the
implications above, it directly follows that:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v)⇒ (p ∨ I1) ∧ (p ∨ I2)

(T2.Inv2) Similarly to the previous case:

π |= p ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L3)⇒ p ∧ (¬〈p〉�b,v1 ∧B ∧ ¬〈Θ1,Θ2〉�b,v)

(L4)⇒

⇒ p ∧ (B ∧ ¬〈p,Θ1〉�b,v1)
(IH)⇒

⇒ p ∧ (¬I1)⇔ ¬(p ∨ I1)

π |= p ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L3)⇒ p ∧ (¬〈p〉�b,v2 ∧B ∧ ¬〈Θ1,Θ2〉�b,v)

(L4)⇒

⇒ p ∧ (B ∧ ¬〈p,Θ2〉�b,v2)
(IH)⇒

⇒ p ∧ (¬I2)⇔ ¬(p ∨ I2)

In the first implication, the conjunct p is duplicated and then, Lemma 3
is applied. The last implication is simple logical equality.

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇔ (p ∨ p) ∧B ∧ ¬〈Θ1,Θ2〉�b,v⇒
⇒ ¬(p ∨ I1) ∨ ¬(p ∨ I2)⇔ ¬((p ∨ I1) ∧ (p ∨ I2))

The same reasoning as in the Res-a (T2.Inv1) case is used. The first
equivalence is a simple logical consequence of p ∨ p ⇔ >. The second
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implication follows from the two equations above. The last equivalence
just factors out the negation.

(T2.Inv3) Variable p is the only new variable added into the interpolant.
Variable p is shared (because of its label ab), thus the requirements are
met. Moreover, variable p is not assigned. If it would be assigned, it
would be labeled d+ in one of the antecedents, which would lead to the
Res-d resolution.

Res-d: Lab(v1, p) t Lab(v2, p) = d+ so I = I1 resp. I = I2.
In this case, the pivot variable is assigned by PVA π. Labeling function

Lab is locality preserving and constraint D13.1 give us that there is exactly
one antecedent where the pivot is labeled d+. Assume that Lab(v1, p) = d+,
so it holds that π |= p; the case Lab(v2, p) = d+ is symmetric.

(T2.Inv1) It follows that:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇔ ¬〈p〉�a,v2 ∧A ∧ ¬〈Θ1,Θ2〉�a,v
(L4)⇒

⇒ A ∧ ¬〈p,Θ2〉�a,v2
(IH)⇒ I2

The first equivalence holds because π |= ¬〈p〉�a,v2 ; the ¬〈p〉�a,v2 is either
directly > if the p literal is not preserved by the upward-filter or it is p if
the p literal is preserved by the filter�a,v2 . In the latter case, p is satisfied
under π.

(T2.Inv2) Similarly to the previous case, it holds:

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇔ ¬〈p〉�b,v2 ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L4)⇒

⇒ B ∧ ¬〈p,Θ2〉�b,v2
(IH)⇒ ¬I2

(T2.Inv3) This condition holds trivially from the induction hypothesis.

To sum-up, we have shown that all the resolutions and hypotheses es-
tablish the inductive invariant for its partial vertex-interpolant. Thus, the
inductive invariant also holds for the sink vertex s, where cl(s) = 〈∅〉 = ⊥;
the inductive invariant establishes Theorem 2 for the sink vertex. �
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A.2.2 Path interpolation property

Theorem 4 (Path interpolation property) Let Lab and Lab′ be locality
preserving labeling functions, let R be a refutation of A ∧ S ∧B, and π and
π′ be PVAs. Let I = LpaItp(Lab, R,A, S ∪B, π) and I ′ = LpaItp(Lab′, R,A∪
S,B, π′).

If Lab � Lab′ then π, π′ |= I ∧ S ⇒ I ′.

Before we prove Theorem 4, we introduce auxiliary lemmas; the lemmas
are of similar purpose as lemmas used in the proof of the correctness (i.e., the
proof of Theorem 2). Lemma 5 about the weakened-labels filters is similar
to Lemma 4. The latter one is used to introduce assignment filters.

Lemma 5 (Weakened-labels filters in antecedent vertices) Let R ≡
(V,E, cl, piv, s) be a resolution proof and let Lab and Lab′ be labeling functions
for proof R. Let v ∈ V be an inner vertex of the proof with vertex clause
cl(v) = 〈Θ1,Θ2〉. Let vertices v1 and v2 be the antecedents of vertex v and
their vertex clauses be cl(v1) = 〈p,Θ1〉 resp. cl(v2) = 〈p,Θ2〉. Then it holds:

¬〈p〉|�v1 ∧¬〈Θ1,Θ2〉|�v⇒ ¬〈p,Θ1〉|�v1 and

¬〈p〉|�v2 ∧¬〈Θ1,Θ2〉|�v⇒ ¬〈p,Θ2〉|�v2

Proof (Lemma 5). First, we show that if a literal l ∈ 〈Θ1,Θ2〉 is preserved
by the weakened-labels filter in antecedent vertex v1, then it is also preserved
by the weakened-labels filter in vertex v where its label is a result of the join
(i.e., t) operation (see D10.2). The sets used by the filter |�, in particu-
lar {b, ab, d+} and {ab, d+, a}, are closed under the join operation (i.e., t);
formally, ∀c ∈ L and ∀c′ ∈ {b, ab, d+} it holds that c t c′ ∈ {b, ab, d+}.

If literal l is preserved by the weakened-labels filter in vertex v1, the
first labeling function assigns to literal l a label from set {b, ab, d+} (for-
mally, Lab(v1, l) ∈ {b, ab, d+}); for the other labeling function, it holds that
Lab′(v1, l) ∈ {ab, d+, a}. Because these sets are closed under the join oper-
ation (which is used to compute the labels at vertex v from the labels at
vertex v1), the same holds even in vertex v (formally Lab(v, l) ∈ {b, ab, d+}
and Lab′(v, l) ∈ {ab, d+, a}). It means that literal l is also preserved by the
weakened-labels filter in vertex v.

It follows that 〈Θ1,Θ2〉|�v1⇒ 〈Θ1,Θ2〉|�v; the implication can be equiva-
lently rewritten into the contrapositive form:

¬〈Θ1,Θ2〉|�v⇒ ¬〈Θ1,Θ2〉|�v1⇒ ¬〈Θ1〉|�v1
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The claim of the lemma directly follows from the above implication:

¬〈p〉|�v1 ∧¬〈Θ1,Θ2〉|�v⇒ ¬〈p,Θ1〉|�v1

Note that the same filter is applied on pivot p; the pivot is either filtered
or preserved in both cases. The same reasoning applies to the second for-
mula. �

Lemma 6 (Introducing assignment filter) Let π be a partial variable
assignment and 〈Θ〉 be a clause not satisfied by the partial assignment, i.e.,
π 6|= 〈Θ〉.

Then it holds: π |= 〈Θ〉 ⇔ 〈Θ〉[π].

Proof (Lemma 6). It is possible to split the set of literals Θ into two disjoint
sets; set of literals Θ1 containing the literals over the assigned variables (these
literals will be filtered-out by the assignment filter) and set Θ2 containing
the remaining literals over the non-assigned variables. So 〈Θ〉 ⇔ 〈Θ1〉∨〈Θ2〉.

From the assumption that π 6|= 〈Θ〉, it follows that all the literals over
assigned variables evaluate to ⊥ under the assignment π, thus: π |= 〈Θ1〉 ⇔
⊥. From the definition of the assignment filter, it directly follows that 〈Θ2〉 ≡
〈Θ2〉[π] and 〈Θ1〉[π] ≡ 〈∅〉 ⇔ ⊥. So, it holds:

π |= 〈Θ〉 ⇔ 〈Θ1〉 ∨ 〈Θ2〉 ⇔ ⊥ ∨ 〈Θ2〉 ⇔ 〈Θ1〉[π] ∨ 〈Θ2〉[π]⇔ 〈Θ〉[π]

�

Note that the claim of Lemma 6 is trivial; we formulate the claim as a
lemma to be able to refer to it in the proofs.

Proof (Theorem 4 – Path interpolation property). By structural induction
over refutation R we show that for each vertex v ∈ V of the refutation, the
following invariant holds:

π, π′ |= Iv ∧ S ∧ ¬〈Θ〉|�v⇒ I ′v

where cl(v) = 〈Θ〉 is the vertex clause and Iv and I ′v are the partial vertex-
interpolants for vertex v as generated by LPAIS using labeling functions
Lab and Lab′, respectively. In the proof, we show that the invariant holds
for all possible combinations of the rules that can be used to define partial
vertex-interpolants Iv and I ′v.
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Bases cases. The base cases correspond to the leaves of the proof where
the hypotheses operations are applied. Theoretically, there are 16 possible
combinations of hypotheses, however, not all of them are possible due to the
assumptions of the theorem; below we discuss each of the combinations in
more detail. As to the naming conventions, we call each case either as Hyp or
Res, followed by the kind of the rule used to compute the first partial vertex-
interpolant I and by the kind of the rule used to compute the second partial
vertex-interpolant I ′. Note that for the first interpolant, the partitioning is
(A, S ∪ B), while for the second interpolant the partitioning is (A ∪ S,B);
we use these names of partitions in names of the Hyp rules.

Hyp-Aπ-(Aπ′ ∪ Sπ′): Iv = 〈Θ〉[π]|b,v,Lab and I ′v = 〈Θ〉[π′]|b,v,Lab′ .
First, we show the following:

〈Θ〉|b,v,Lab ∧ ¬〈Θ〉|�v⇒ 〈Θ〉|b,v,Lab′

Let literal l be labeled b by labeling function Lab (i.e., it is preserved
by the match filter |b,v,Lab). It can either get a label b by labeling function
Lab′, thus l is preserved by the match filter |b,v,Lab′ in the consequent of the
implication, or it gets a different label, which is necessarily weaker then b.
In the latter case, the literal is preserved by the weakened-labels filter |�v,
which is negated in the antecedent of the implication above. This means
that if clause 〈Θ〉|b,v,Lab is satisfied due to literal l, then either the consequent
of the implication is satisfied (the former case) and the implication holds,
or the negation of the literal is in the antecedent of the implication (due to
weakened-labels filter), so the antecedent of the implication is not satisfied
(and the whole implication holds).

We can add the assignments as assumptions. Then it holds:

π, π′ |= 〈Θ〉|b,v,Lab ∧ ¬〈Θ〉|�v⇒ 〈Θ〉|b,v,Lab′

Clause 〈Θ〉 is neither satisfied by π nor by π′, so Lemma 6 can by used to
remove the falsified literals. Then it holds:

π, π′ |= 〈Θ〉[π]|b,v,Lab ∧ ¬〈Θ〉|�v⇒〈Θ〉[π′]|b,v,Lab′

π, π′ |= Iv ∧ S ∧ ¬〈Θ〉|�v⇔
〈Θ〉[π]|b,v,Lab ∧ S ∧ ¬〈Θ〉|�v⇒〈Θ〉[π′]|b,v,Lab′ ⇔ I ′v

Hyp-Aπ-(Aπ′ ∪ Sπ′): Iv = 〈Θ〉[π]|b,v,Lab and I ′v = >.
Note that in contrast to the previous case, vertex clause 〈Θ〉 is satisfied

under assignment π′. In this case, the invariant holds trivially, since anything
implies >.
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Hyp-Aπ-Bπ′: Iv = 〈Θ〉[π]|b,v,Lab and I ′v = 〈Θ〉[π′]|a,v,Lab′ .
This combination is impossible due to our partitionings; it would require

clause 〈Θ〉 to move from the A-part of the first partitioning into the B-part
of the second partitioning. However, the partitionings permit only moves of
clauses from the B-part of the first partitioning into the A-part of the second
partitioning; the moved clauses are those forming S.

Hyp-Aπ-Bπ′: Iv = 〈Θ〉[π]|b,v,Lab and I ′v = >. The same reasoning as above
applies; such combination is impossible due to our partitionings. Note that
the reasoning above is independent of the assignment.

Hyp-(Bπ ∪ Sπ)-(Aπ′ ∪ Sπ′): Iv = ¬〈Θ〉[π]|a,v,Lab and I ′v = 〈Θ〉[π′]|b,v,Lab′ . In
this case, clause 〈Θ〉 is moved from the B-part of the first partitioning into
the A-part of the second partitioning; it means the clause belongs to the set
of clauses S (〈Θ〉 ∈ S). First, we show that in this case, the following holds:

〈Θ〉 ⇔ 〈Θ〉|a,v,Lab ∨ 〈Θ〉|b,v,Lab′ ∨ 〈Θ〉|�v

The direction from right to left (i.e., the implication⇐ ) is trivial, since filters
only remove literals. So, if the right-hand side of the equivalence holds, the
unfiltered clause 〈Θ〉 must also hold. The direction from left to right (i.e., the
implication ⇒) is shown below. We consider all the combinations of labels
the literal l ∈ 〈Θ〉 can get by labeling functions Lab and Lab′.

• If Lab(v, l) = a then the match filter |a,v,Lab preserves the literal l.

• If Lab(v, l) ∈ {ab, d+} and Lab′(v, l) 6= b then the weakened-label filter
|�v preserves the literal l.

• If Lab(v, l) ∈ {ab, d+} and Lab′(v, l) = b then the assumption Lab �
Lab′ is violated.

• If Lab(v, l) = b and Lab′(v, l) = b then the match filter |b,v,Lab′ preserves
the literal l.

• If Lab(v, l) = b and Lab′(v, l) 6= b then the weakened-label filter |�v
preserves the literal l.

The clause 〈Θ〉 is satisfied neither by π nor by π′ so Lemma 6 can be used
to remove the falsified literals. Then it holds:

π, π′ |= 〈Θ〉 ⇔ 〈Θ〉[π]|a,v,Lab ∨ 〈Θ〉[π′]|b,v,Lab′ ∨ 〈Θ〉|�v
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The invariant is shown by the following:

π, π′ |= Iv ∧ S ∧ ¬〈Θ〉|�v≡
≡ ¬〈Θ〉[π]|a,v,Lab∧ S ∧ ¬〈Θ〉|�v⇒
⇒¬〈Θ〉[π]|a,v,Lab∧ 〈Θ〉 ∧ ¬〈Θ〉|�v⇔
⇔¬〈Θ〉[π]|a,v,Lab∧ (〈Θ〉[π]|a,v,Lab∨〈Θ〉[π′]|b,v,Lab′ ∨〈Θ〉|�v) ∧ ¬〈Θ〉|�v⇔
⇔¬〈Θ〉[π]|a,v,Lab∧ 〈Θ〉[π′]|b,v,Lab′ ∧ ¬〈Θ〉|�v⇒

⇒〈Θ〉[π′]|b,v,Lab′ ≡ I ′v

The first implication follows from the fact that 〈Θ〉 ∈ S and S is a
conjunction (or equivalently a set) of clauses, so S ⇒ 〈Θ〉. The second
equivalence is shown above. The third equivalence is a logical consequence.
The following pattern is used twice: ¬A∧ (A∨B)⇔ (¬A∧A)∨ (¬A∧B)⇔
¬A ∧ B, where we use A ≡ ¬〈Θ〉[π]|a,v,Lab resp. A ≡ ¬〈Θ〉| �v. The last
implication is a trivial logical consequence.

Hyp-(Bπ ∪ Sπ)-(A′π ∪ Sπ′): Iv = ¬〈Θ〉[π]|a,v,Lab and I ′v = >.

As in all the other cases where the vertex clause is satisfied by the second
assignment π′, the invariant holds trivially, because anything implies I ′v ≡ >.

Hyp-(Bπ ∪ Sπ)-Bπ′: Iv = ¬〈Θ〉[π]|a,v,Lab and I ′v = ¬〈Θ〉[π′]|a,v,Lab′ .
This case is similar to the Hyp-Aπ-(Aπ′ ∪ Sπ′) case. First, we show that:

¬〈Θ〉|a,v,Lab ∧ ¬〈Θ〉|�v⇒ ¬〈Θ〉|a,v,Lab′

Let literal l be labeled a by labeling Lab′ (so it is preserved by the match
filter |a,v,Lab′). The literal is either labeled a by labeling Lab or not (in which
case its label can be b or ab). In the former case, the literal is preserved
by the match filter |a,v,Lab . In the latter case, the literal is preserved by the
weakened-labels filter |�v. To sum it up, all the literals in the consequent of
the implication occur even in the antecedent of the implication; this shows
that the implication holds.

Clause 〈Θ〉 is neither satisfied by π nor by π′, so Lemma 6 can be used
to remove the falsified literals. Then it holds:

π, π′ |= ¬〈Θ〉[π]|a,v,Lab ∧ ¬〈Θ〉|�v⇒ ¬〈Θ〉[π′]|a,v,Lab′

The implication above is even stronger than the invariant; it does not require
S to be a part of the antecedent of the implication.
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Hyp-(Bπ ∪ Sπ)-Bπ′: Iv = ¬〈Θ〉[π]|a,v,Lab and I ′v = >.

As in all the other cases where the vertex clause is satisfied by the second
assignment π′ the invariant holds trivially, because anything implies I ′v ≡ >.

Hyp-Aπ-(Aπ′ ∪ Sπ′): Iv = > and I ′v = 〈Θ〉[π′]|b,v,Lab′ .
Vertex clause 〈Θ〉 is satisfied under π, thus there exists literal l ∈ Θ such

that Lab(v, l) = d+; literal l makes the clause satisfied under π. From the
assumption (of the theorem that) Lab � Lab′, it follows that Lab′(v, l) 6= b;
thus literal l is preserved by weakened-labels filter |�v. It means that π, π′ |=
¬〈Θ〉|�v⇔ ⊥, so the antecedent of the invariant implication is falsified by the
assumed assignments and the whole invariant implication holds.

Exactly the same reasoning applies to all the remaining hypotheses where
the assignment π satisfies the vertex clause; in particular, to the Hyp-Aπ-
(Aπ′ ∪Sπ′), Hyp-Aπ-Bπ′ , Hyp-Aπ-Bπ′ , Hyp-(Bπ ∪Sπ)-(Aπ′ ∪Sπ′), Hyp-(Bπ ∪
Sπ)-(Aπ′ ∪ Sπ′), Hyp-(Bπ ∪ Sπ)-Bπ′ , and Hyp-(Bπ ∪ Sπ)-Bπ′ .

Induction hypothesis. Now, we will focus on the inductive step. Let v be
an inner vertex of the proof and let variable p be the pivot of the refutation
at vertex v (i.e., p = piv(v)). Let vertex v1 be the antecedent of v with the
vertex-clause containing the pivot positively (i.e., cl(v1) = 〈p,Θ1〉) and let
vertex v2 be the antecedent of v having negated pivot in its vertex-clause
(i.e., cl(v2) = 〈p,Θ2〉). From the induction hypothesis, we know that for the
antecedent vertices the following invariants hold:

π, π′ |= Iv1 ∧ S ∧ ¬〈Θ〉|�v⇒ I ′v1 (PIH)

π, π′ |= Iv2 ∧ S ∧ ¬〈Θ〉|�v⇒ I ′v2

For each possible combination of the resolutions we establish the induction
invariant for the vertex v. Theoretically, there are 16 possible combinations
of resolutions, however, not all of them are possible due to the assumptions
of the theorem; below we discuss each of the combinations in more detail.

Res-a-a′: Lab(v1, p) t Lab(v2, p) = a and Lab′(v1, p) t Lab′(v2, p) = a. It
means that Iv ≡ Iv1 ∨ Iv2 and I ′v ≡ I ′v1 ∨ I

′
v2

.

The label of pivot p in both antecedent vertices v1 resp. v2 must be a (in
both labeling functions), so it is not preserved by the weakened-labels filters
|�v1 and |�v2 ; thus, it holds ¬〈p〉|�v1⇔ >.
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It holds that:

π, π′ |= Iv1 ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇔ ¬〈p〉|�v1 ∧Iv1 ∧ S ∧ ¬〈Θ1,Θ2〉|�v
L5⇒

⇒ Iv1 ∧ S ∧ ¬〈p,Θ1〉|�v1
PIH⇒ I ′v1

π, π′ |= Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇔ ¬〈p〉|�v2 ∧Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v
L5⇒

⇒ Iv2 ∧ S ∧ ¬〈p,Θ2〉|�v2
PIH⇒ I ′v2

From the implications above, the invariant for vertex v directly follows:

π, π′ |= ((Iv1 ∨ Iv2)) ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇒ (I ′v1 ∨ I
′
v2

)

Res-a-ab′, Res-a-d+
′
and Res-a-b′: All these cases violate the assumption

of the theorem that Lab � Lab′. Pivot p gets a stronger label than a by Lab′

in at least one of the antecedent vertices (i.e., v1 and v2); otherwise, this will
become the previous Res-a-a′ case. Variable p, at that vertex, is the witness
that assumption Lab � Lab′ is violated.

Res-ab-ab′: Lab(v1, p) t Lab(v2, p) = ab and Lab′(v1, p) t Lab′(v2, p) = ab.
It means that Iv ≡ (p ∨ Iv1) ∧ (p ∨ Iv2) and I ′v ≡ (p ∨ I ′v1) ∧ (p ∨ I ′v2).

Note that in this case, the proof is independent of the labels of the pivot
variable. Also note that the proof works regardless of whether p is assigned
by assignment π (resp. π′) or not. So, it can be safely used to show other
cases, such as Res-ab-a′, as well.

We have to show the following:

π, π′ |= (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)

First, we introduce two auxiliary implications. The following holds:

π, π′ |= Iv1 ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇒ p ∨ (p ∧ Iv1 ∧ S ∧ ¬〈Θ1,Θ2〉|�v)⇒

⇒ p ∨ (¬〈p〉|�v1 ∧Iv1 ∧ S ∧ ¬〈Θ1,Θ2〉|�v)
L5⇒

⇒ p ∨ (Iv1 ∧ S ∧ ¬〈p,Θ1〉|�v1)
PIH⇒ p ∨ I ′v1

π, π′ |= Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇒ p ∨ (p ∧ Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v)⇒

⇒ p ∨ (¬〈p〉|�v2 ∧Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v)
L5⇒

⇒ p ∨ (Iv2 ∧ S ∧ ¬〈p,Θ1〉|�v2)
PIH⇒ p ∨ I ′v2

The first implication stems from the fact that p ∨ p ⇔ >. The second
implication holds because p⇒ ¬〈p〉|�v1 ; either the literal p is preserved by the
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filter |�v1 and then it holds that p⇔ ¬〈p〉|�v1 , or the literal p is not preserved
by the weakened-labels filter and then it holds that ¬〈p〉|�v1⇔ >.

The proof can be split into two cases. It holds that:

(p ∨ Iv1) ∧ (p ∨ Iv2)⇔ (p ∧ Iv2) ∨ (p ∧ Iv1))

We show that each of the two cases above leads to (p ∨ I ′v1) ∧ (p ∨ I ′v2).

π, π′ |= (p ∧ Iv1) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒p ∧ (p ∨ I ′v1) ⇒(p ∨ I ′v1) ∧ (p ∨ I ′v2)
π, π′ |= (p ∧ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒p ∧ (p ∨ I ′v2) ⇒(p ∨ I ′v1) ∧ (p ∨ I ′v2)

The first implication comes from the auxiliary implications above. The
second implication is a simple logical consequence.

We have shown that:

π, π′ |= (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)

Res-ab-a′: Lab(v1, p) t Lab(v2, p) = ab and Lab′(v1, p) t Lab′(v2, p) = a. It
means that Iv ≡ (p ∨ Iv1) ∧ (p ∨ Iv2) and I ′v ≡ I ′v1 ∨ I

′
v2

.

It holds that:

π, π′ |= (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒
⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)⇒ I ′v1 ∨ I

′
v2

The first implication comes from Res-ab-ab′. The second one is a trivial
logical consequence.

Res-ab-d+
′
: Lab(v1, p) t Lab(v2, p) = ab and Lab′(v1, p) t Lab′(v2, p) = d+.

So, partial vertex-interpolant Iv is defined as follows: Iv ≡ (p∨Iv1)∧(p∨Iv2).
Assume that Lab′(v1, p) = d+ thus I ′v ≡ I ′v2 . The situation is symmetric if
Lab′(v2, p) = d+.

It holds that:

π, π′ |= (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)⇔ I ′v2

The first implication comes from Res-ab-ab′. It holds that π′ |= p (the
locality constraint D13.1 and Lab′(v1, p) = d+); the second equivalence is a
trivial logical consequence of the fact that variable p is assigned > by π′.
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Res-ab-b′: This case violates the assumption of the theorem that Lab �
Lab′. The pivot variable p gets the strongest label b by Lab′ in both antecedent
vertices (i.e., v1 and v2). However, the first labeling function Lab have to
assign a weaker label a resp. ab to the pivot variable in at least one of the
antecedent vertices; otherwise this case will become Res-b-b′. Variable p, at
that vertex, is the witness that the assumption Lab � Lab′ is violated.

Res-b-a′: Lab(v1, p) t Lab(v2, p) = b and Lab′(v1, p) t Lab′(v2, p) = a. It
means that Iv ≡ Iv1 ∧ Iv2 and I ′v ≡ I ′v1 ∨ I

′
v2

.
It holds that:

π, π′ |= (Iv1 ∧ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒
⇒ (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒

⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)⇒ I ′v1 ∨ I
′
v2

The first and third implications are simple logical consequences. The
second implication comes from Res-ab-ab′.

Res-b-ab′: Lab(v1, p) t Lab(v2, p) = b and Lab′(v1, p) t Lab′(v2, p) = ab. It
means that Iv ≡ Iv1 ∧ Iv2 and I ′v ≡ (p ∨ I ′v1) ∧ (p ∨ I ′v2).

It holds that:

π, π′ |= (Iv1 ∧ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒
⇒ (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)

The first implication is simple logical consequence. The second implica-
tion comes from Res-ab-ab′.

Res-b-d+
′
: Lab(v1, p) t Lab(v2, p) = b and Lab′(v1, p) t Lab′(v2, p) = d+.

So, partial vertex-interpolant Iv is defined as Iv ≡ Iv1 ∧ Iv2 . Assume that
Lab′(v1, p) = d+, thus I ′v ≡ I ′v2 . The situation is symmetric if Lab′(v2, p) = d+.
We will use Res-ab-ab′ in the same way as in the above cases.

It holds that:

π, π′ |= (Iv1 ∧ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒
⇒ (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒

⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)⇔ I ′v2

The first implication is a simple logical consequence. The second im-
plication comes from Res-ab-ab′. It holds that π′ |= p (the locality con-
straint D13.1 and Lab′(v1, p) = d+); the second equivalence is a trivial logical
consequence of the fact that variable p is assigned > by π′.
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Res-b-b′: Lab(v1, p) t Lab(v2, p) = b and Lab′(v1, p) t Lab′(v2, p) = b. It
means that Iv ≡ Iv1 ∧ Iv2 and I ′v ≡ I ′v1 ∧ I

′
v2

.

The label of pivot p in both antecedent vertices v1 and v2 must be b (in
both labeling functions), so it is not preserved by the weakened-labels filters
|�v1 and |�v2 ; thus, it holds ¬〈p〉|�v1⇔ >.

The same auxiliary implications as in the previous Res-a-a′ case hold:

π, π′ |= Iv1 ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇔ ¬〈p〉|�v1 ∧Iv1 ∧ S ∧ ¬〈Θ1,Θ2〉|�v
L5⇒

⇒ Iv1 ∧ S ∧ ¬〈p,Θ1〉|�v1
PIH⇒ I ′v1

π, π′ |= Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇔ ¬〈p〉|�v2 ∧Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v
L5⇒

⇒ Iv2 ∧ S ∧ ¬〈p,Θ2〉|�v2
PIH⇒ I ′v2

The first equivalence is shown above. The following implication is appli-
cation of Lemma 5, while the last one is the induction hypothesis.

From the previous implications, the invariant for the vertex v directly
follows:

π, π′ |= (Iv1 ∧ Iv2) ∧ ¬〈Θ1,Θ2〉|�v⇒ (I ′v1 ∧ I
′
v2

)

Res-d+-a′: Lab(v1, p)t Lab(v2, p) = d+ and Lab′(v1, p)t Lab′(v2, p) = a. It
means that partial vertex-interpolant I ′v is defined as follows: I ′v ≡ I ′v1 ∨ I

′
v2

.
Assume that Lab(v1, p) = d+, thus Iv ≡ Iv2 . The situation is symmetric if
Lab(v2, p) = d+.

It holds that π |= p (the locality constraint D13.1 and Lab(v1, p) = d+);
thus, the following equivalence holds: π |= Iv2 ⇔ (p∨ Iv1)∧ (p∨ Iv2). So, the
invariant for vertex v can be established using the Res-ab-ab resolution:

π, π′ |= Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇔
⇔ (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒

⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)⇒ I ′v1 ∨ I
′
v2

Res-d+-ab′: Lab(v1, p) t Lab(v2, p) = d+ and Lab′(v1, p) t Lab′(v2, p) = ab.
It means that partial vertex-interpolant I ′v is defined as follows: I ′v ≡ (p ∨
I ′v1)∧ (p∨ I ′v2). Assume that Lab(v1, p) = d+, thus Iv ≡ Iv2 . The situation is
symmetric if Lab(v2, p) = d+.

It holds that π |= p (the locality constraint D13.1 and Lab(v1, p) = d+);
thus the following equivalence holds: π |= Iv2 ⇔ (p ∨ Iv1) ∧ (p ∨ Iv2).
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The invariant for vertex v can be established using the Res-ab-ab resolu-
tion:

π, π′ |= Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇔
⇔ (p ∨ Iv1) ∧ (p ∨ Iv2) ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇒ (p ∨ I ′v1) ∧ (p ∨ I ′v2)

Res-d+-d+
′
: Lab(v1, p)t Lab(v2, p) = d+ and Lab′(v1, p)t Lab′(v2, p) = d+.

This rule splits into two different sub-cases; the pivot variable gets as-
signed either the same value by π and π′ or one assignment assigns >, while
the other assignment assigns ⊥ to variable p.

In the latter case, the invariant for vertex v holds trivially. The assump-
tions (i.e., assignments) contradict, so any formula, e.g., the invariant, holds.
Let us focus on the former case. Assume that Lab(v1, p) = d+, thus it holds
that Lab′(v1, p) = d+ and Iv ≡ Iv2 , I

′
v ≡ I ′v2 . The situation is symmetric if

Lab(v2, p) = d+.
The invariant for vertex v can be established from the invariant of vertex

v2:

π, π′ |= Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v⇔ p ∧ Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v ⇔

⇒ ¬〈p〉|�v2 ∧Iv2 ∧ S ∧ ¬〈Θ1,Θ2〉|�v
L5⇒

⇒ Iv2 ∧ S ∧ ¬〈p,Θ1〉|�v2
PIH⇒ I ′v2

It holds that π |= p (the locality constraint D13.1 and Lab(v1, p) = d+);
this shows the first equivalence. It holds that π |= ¬〈p〉|�v2 ; either the filter
preserves the literal p, which means that due to the assignment ¬p ≡ p
evaluates to > or the filter removes the literal and the negated empty clause
is equivalent to > without any assumptions. The above reasoning shows the
second equivalence.

Note that alternatively, this case can be shown via Res-ab-ab resolution
as well.

Res-d+-b′: This case violates the assumption of the theorem that Lab �
Lab′. Pivot p gets the strongest label b by Lab′ in both antecedent vertices
(i.e., v1 and v2). However, the first labeling function Lab has to assign a
weaker label d+ to the pivot variable in one of the antecedent vertex. Variable
p, at that vertex, is the witness that assumption Lab � Lab′ is violated. �
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[67] Pavel Janč́ık and Jan Kofroň. On Partial State Matching. Formal
Aspects of Computing, pages 1–27, 2017.

145



REFERENCES

[68] Pavel Jancik, Jan Kofron, Simone Fulvio Rollini, and Natasha Shary-
gina. On Interpolants and Variable Assignments. In Formal Methods
in Computer-Aided Design, FMCAD, pages 123–130, 2014.
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