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Introduction
Advances in optical manipulation with ultracold atoms have led to the invention
of optical lattices. An optical lattice is a device that uses a periodic potential,
created by laser light, to confine neutral ultracold atoms in a periodic structure.
All parameters of a lattice can be easily controlled by changing laser parameters.
It provides a clean environment to study many-body quantum physics [1–4].
In a sense, atoms in an optical lattice resemble electrons in a crystal lattice.
The geometry of an optical lattice can be easily designed to confine the system
dynamics to two or one dimensions. They are therefore an excellent environment
to study low-dimensional many-body quantum physics [5, 6].

Atoms in a lattice could be either fermionic or bosonic particles. The simplest
nontrivial model that describes fermionic particles is the Hubbard model, and
the simplest model for bosonic particles is the Bose–Hubbard model [7, 8]. Both
models have two main parts. The first part describes the motion of particles in the
lattice. The second part corresponds to interactions between multiple particles
located at a single lattice site. An optional third term can account for an external
potential.

Even though these models are fairly simple, they exhibit nontrivial properties.
The Bose–Hubbard model, for example, has two distinct ground states based on
its parameters. One is the Mott insulator with localized and strongly interacting
particles, and the other one is the superfluid state with delocalized and weakly
interacting particles. The quantum phase transition between these two regimes
was predicted [9, 10] and then observed in early experiments with ultracold atoms
in optical lattices [5, 11].

One of the fundamental problems in modern physics is the analysis of in-
teracting many-body systems. Their microscopic properties are often known
well enough, but predictions about energy levels or dynamics of a system are
rarely available when it consists of a moderate number of particles. Analytic and
numerical investigation is often restricted to small systems, or to limiting cases
of weak or strong interactions. Both the Hubbard and the Bose–Hubbard are
difficult to solve in a general case. Exact solutions are valid for static particles or
for noninteracting particles only. Numerical studies are limited to one-dimensional
systems [10] or to very small systems.

There has been a consistent effort to develop new methods of solving strongly
interacting quantum systems in the last 25 years. The density matrix renormal-
ization group method (DMRG) [12–15] provided a way to find ground states of
one-dimensional lattice models. Among its early successes was the confirmation
of the Haldane gap in the spin-1 Heisenberg model [13]. It was later discovered
that DMRG is a variational method over a class of quantum states known as
matrix product states (MPS) [16]. Expressing DMRG in the language of MPS
provided a solid foundation for its generalizations. At the same time, time-evolving
block decimation method (TEBD) [17, 18] emerged in the field of quantum in-
formation science. It provided a simple algorithm to simulate time evolution
of one-dimensional lattice models on a classical computer. Both methods were
later unified into time-dependent DMRG (tDMRG) [19, 20]. The infinite TEBD
method (iTEBD) generalized the idea to translationally invariant systems [21].

These methods have been successfully applied to studies of one-dimensional
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lattice models. They have confirmed experimental results and predicted new
phenomena. Nowadays, methods based on MPS are routinely used to investigate
properties of systems composed of tens or even hundreds of particles. Although
there are some drawbacks in specific cases [22], one-dimensional many-body prob-
lem can be considered a solved problem for all practical purposes [23]. Naturally,
the majority of physical systems reside in a three-dimensional space. There are
also important systems that behave quite unusually when their dynamics is re-
stricted to two dimensions. Examples are the famous quantum Hall effect or the
high-temperature superconductivity. Unfortunately, the application of MPS-based
methods to three-dimensional and two-dimensional systems has not been very
successful yet.

One reason for the inefficiency of these methods in multidimensional settings is
the so-called area law [24]. It predicts that for many systems in the ground state,
entanglement between system parts grows with the size of the boundary that
separates the parts. In particular, the entanglement entropy scales as S ∝ LD−1,
where L is the system size and D is its dimension. In one dimension, the boundary
is just a point, and S does not increase with the system size. In two dimensions,
the boundary scales linearly with the system size, and in three dimensions, it scales
quadratically. The area law therefore restricts the applicability of MPS-based
methods in two-dimensional and three-dimensional problems, because the problem
complexity rapidly increases with the problem size.

There have been, however, several attempts to overcome this issue. A progress
has been made by recasting matrices in MPS as tensors, which can be generalized
to multidimensional systems. Projected entangled pair states (PEPS) [25, 26]
represent one such generalization to two dimensions. The method assigns a tensor
to each lattice site, and takes into account correlations between all neighbouring
sites. There has been a lot of improvement in PEPS theory in recent years.
Unfortunately, some physical properties are very hard to calculate for a system
state in this representation. The applicability of PEPS is therefore limited to
small systems with small amount of entanglement currently.

PEPS are instances of tensor networks. Tensor networks can represent many
states of practical importance effectively [27, 28]. Another approach based on
tensor networks is the tree tensor network states method (TTNS) [29–31]. In
contrast to PEPS, TTNS do not contain any network cycles. This makes them
better suited as a generalization of MPS. The absence of cycles makes it possible
to orthogonalize tensors in a prescribed way, which substantially simplifies the
resulting equations. Yet another generalization is the multi-scale entanglement
renormalization ansatz (MERA) [32, 33] that takes into account the coarse-graining
corresponding to different length scales.

In this work, I report on TTNS-based methods of modelling ultracold atoms
in multidimensional optical lattices. In the first part, I introduce optical lattices
and review the Bose–Hubbard model which describes bosonic particles in a lattice.
Then I define tensors and discuss their properties, because the method of choice is
based on TTNS. Next chapter briefly explains MPS for modelling one-dimensional
systems. A generalization to PEPS is introduced, and I discuss its advantages
and disadvantages. Another generalization are TTNS, which better suit my goal
of simulating ultracold atoms in two dimensions. I discuss the differences between
PEPS and TTNS, and present an algorithm to simulate time evolution in the
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two-dimensional Bose–Hubbard model with TTNS.
The second part discusses several physical problems. I first report on the

results obtained with the one-dimensional algorithm. It is a study of a binary
mixture of atoms in an optical lattice. Then I review performance scaling of the
parallel one-dimensional algorithm. Later chapters deal with two-dimensional
systems. I first compare the results obtained with my approach and with the
exact diagonalization to analyze their accuracy. Then I introduce three interesting
two-dimensional problems.

The first one is a study of quasimomentum revivals in a two-dimensional optical
lattice. Quasimomentum revivals represent an accessible experiment that has
been performed in early days of the field [34, 35]. It has been used to distinguish
between the Mott insulator and the superfluid phase. In two dimensions, I studied
the dependence of the revivals on the difference in tunnelling strength in the x
direction and in the y direction.

The next study examines an expansion of a cloud of bosonic atoms in a two-
dimensional optical lattice. It has been found that its dynamics differs substantially
in a one-dimensional and in a two-dimensional lattice [36]. In one dimension, the
expansion is ballistic for strongly interacting atoms. However, the interactions
suppress the expansion in two dimensions. The core of the atomic cloud stays
located in the lattice centre even after long evolution times.

The last studied problem is the many-body localization in two dimensions.
Most of the physical systems thermalize, that is they reach thermal equilibrium
after evolving for some time [37–39]. It has been found that some interacting
systems do not exhibit this behaviour. They stay in a quasi-steady state that
keeps a memory of the initial state. This typically happens in systems influenced
by strong disorder potentials. An experiment in two-dimensional optical lattice
confirmed the onset of localization at a critical disorder strength [40]. The lack
of usable simulation algorithms for two-dimensional models made it difficult to
compare the experimental findings with theory. With a simulation of a smaller,
but similar system, I was able to confirm the onset of many-body localization
numerically.

The last chapter briefly discusses three-dimensional systems and systems with
nontrivial topologies. A detailed example of MPS compression and implementation
details about TEBDOL are in Appendices.

The main output of my research is TEBDOL [41], a software package for
simulating time evolution in optical lattices. It is based on tensor networks and
supports both one-dimensional and two-dimensional models. It uses a generalized
TEBD algorithm to calculate the evolution of a system state. TEBDOL takes
into account particle number conservation to reduce the problem complexity. It
shows good performance on hard problems.

Numerical results presented in this work were calculated on supercomputers
Anselm and Salomon operated by IT4Innovations [42]. This work was supported
by The Ministry of Education, Youth, and Sports from the Large Infrastructures
for Research, Experimental Development, and Innovations project “IT4Innovations
National Supercomputing Center – LM2015070”. I further acknowledge support
of the Czech Science Foundation – GAČR (Grant No. P209/15-10267S).
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1. Optical lattices
Optical lattices are devices that use laser light to trap atoms in a periodic structure.
They employ the AC-Stark effect, that is the influence of alternating electric field
on energy levels of a neutral atom. The effective potential depends on the frequency
of electric field oscillations. If the frequency is close but not equal to the transition
frequency between the ground state and the excited state ωeg in the two-level
atomic model, the optical potential is given by [3, 43]

V0 = 3πc2Γeg

2ω3
eg

I

∆ , (1.1)

where c is the speed of light, Γeg is the natural linewidth of the transition line,
∆ = ω − ωeg is the detuning of the laser frequency ω and the transition frequency
ωeg, and I is the electric field intensity. The model assumes |∆| ≪ ω0 and
|∆| ≫ Γ. For a given atomic transition, the optical potential V0 is proportional to
the intensity I and inversely proportional to the detuning ∆. It is attractive for
red detuning (∆ < 0) and repulsive for blue detuning (∆ > 0).

A scheme of optical lattice operation is shown in Figure 1.1 [4, 44]. A laser beam
with a frequency ω is reflected from a mirror. The two counter-propagating beams
interfere and create a standing electromagnetic wave. The spatial dependency of
the electric field is of the form

ε(x) = ε0 sin(kx), (1.2)

with k = 2π/λ, and λ being the laser wavelength. The corresponding light
intensity is then

I(x) = I0 sin2(kx). (1.3)
This setup leads to a potential (1.1) given by

V (x) = V0 sin2(kx). (1.4)

The optical potential V (x) therefore depends on the position in space. Atoms stay
close to the potential minima if the potential is strong enough. By using lasers in
all three spatial directions, a three-dimensional optical lattice can be created.

An important property of optical lattices is a possibility to create low dimen-
sional systems. All lasers can be controlled independently, therefore the depth
of potential wells can be different in the x, y and z direction. If the potential is
very strong in the y and z directions and weak in the x direction, the movement
of atoms in the y and z directions is restricted. Such setup results in atoms
confined to parallel one-dimensional cylinders. Each cylinder is effectively an
independent one-dimensional optical lattice. Similarly, if the potential is strong in
the z direction and weak in the x and the y direction, the movement of atoms in
the z direction is suppressed.

Experiments in optical lattices are usually performed with alkali atoms. Their
transition frequencies are conveniently located in the frequency range of contem-
porary lasers. An atom is composed of protons, neutrons, and electrons. They
are all spin-1/2 particles. A neutral atom is characterized by the numbers of its
protons Z and by the number of its neutrons N . If there is an even number of
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Figure 1.1: Operation of an optical lattice. A standing electromagnetic wave
created by two counter-propagating laser beams gives rise to a periodic optical
potential for neutral atoms. Atoms are forced to occupy sites at potential minima
if the potential is strong enough.

Laser

Lattice site

Optical potential Neutral atom

Standing electromagnetic wave Mirror

constituent particles, the atom has an integer total spin, and it subsequently acts
as a boson. Otherwise, it acts as a fermion. Because a neutral atom contains the
same number of protons and electrons, the difference between these two cases is
determined by N . Atoms with an even N are bosonic particles, and atoms with
an odd N are fermionic particles. Examples of bosonic species are 7Li, 23Na, 39K,
41K, 85Rb, 87Rb, and 133Cs. Fermionic species include 6Li and 40K.

Ultracold atoms confined to optical lattices resemble in many ways electrons
confined to crystal lattices in solids. The differences are that optical lattices
have larger spacing, they are almost defects-free, and all their parameters can be
controlled by changing laser parameters. The experimental progress has led to
possibility of addressing even single atoms in optical lattices [45]. They serve as
advanced devices for studying strongly interacting many-body quantum systems
in a controlled environment.

1.1 Bose–Hubbard model
A system of bosonic atoms in an optical lattice can be described by the Bose–
Hubbard model [7, 8]. It is a conceptually simple model that in most cases explains
observed behaviour very well. Atoms in a lattice exhibit two main phenomena —
they tunnel between sites and they interact with each other.

Atoms are confined to potential wells, but they can tunnel between them.
The tunnelling probability decreases with increasing lattice depth. It is strongest
between adjacent sites and decreases quickly with distance. The Bose–Hubbard
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model takes into account tunnelling between nearest-neighbouring sites only.
Neutral atoms interact with each other. The distinctive feature of optical

lattices is that the particle separation is much larger than their interaction range.
The two-body interactions become dominant in this regime. Particles interact
mostly due to the van der Waals forces. Dominant interactions are interactions
between atoms occupying the same site. Atomic gas temperature is typically
in the nanokelvin range [46], thus the kinetic energy of atoms is very low. It is
therefore sufficient to consider only s-wave scattering under these conditions. The
scattering length can be increased by employing Feshbach resonances [4].

The last considered effect is that atoms can be influenced by another potential
besides the periodic optical potential. A typical example is a harmonic confining
potential due to an optical trap. Another example is a random disorder potential
used in certain experiments.

Taking into account all these effects leads to the Bose–Hubbard model. Its
Hamiltonian is given by

Ĥ = −J
∑

⟨i,j⟩
â†

i âj + U

2
∑

i
n̂i (n̂i − 1) +

∑

i
Vin̂i, (1.5)

where â†
i is the creation operator at the site with coordinates i = (ix, iy, iz), âi

is the annihilation operator at i, n̂i = â†
i âi is the particle number operator at

i, J is the tunnelling strength, U is the on-site interaction strength, and Vi is
the external potential. Angle brackets denote sum over each pair of adjacent
sites. The first part of the Hamiltonian corresponds to particle tunnelling, the
second part corresponds to particle interactions, and the third part describes the
external potential. The model assumes bosonic particles, therefore the creation
and annihilation operators satisfy bosonic commutation relations

[âi, âj] =
[
â†

i , â
†
j

]
= 0,

[
âi, â

†
j

]
= δij.

(1.6)

The parameters J , U , and Vi can be calculated given the particle species and the
lattice depth [3, 4, 44]. The calculation takes into account the band structure
of the lattice, the corresponding Bloch functions, and a transformation of Bloch
functions into Wannier functions. Wannier functions are a convenient set of
orthogonal functions corresponding to individual lattice sites.

This work investigates mainly the two-dimensional Bose–Hubbard model.
Lattice tunnelling can be set independently in the x and in the y direction in this
model. Its Hamiltonian is then given by

Ĥ = − Jx

∑

⟨ix,i′
x⟩

∑

iy

â†
ix,iy

âi′
x,iy − Jy

∑

ix

∑

⟨iy ,i′
y⟩
â†

ix,iy
âix,i′

y

+ U

2
∑

ix

∑

iy

n̂ix,iy

(
n̂ix,iy − 1

)
+
∑

ix

∑

iy

Vix,iy n̂ix,iy ,
(1.7)

where Jx and Jy are the tunnelling strengths in the x and in the y direction,
respectively. The angle brackets denote again a sum over adjacent sites. When
Jx = 0 or Jy = 0, the model becomes effectively one-dimensional.
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The Bose–Hubbard model has two quantum phases [4, 9, 11, 47]. In the limit
J ≪ U , the lattice tunnelling is suppressed, and the system is dominated by the
interactions. They force atoms to occupy distinct sites. The ground state is a
Mott insulator with an integer number of atoms per site n. It is a product state
of localized atoms represented by a wavefunction

|ψMI⟩ ∝
∏

i

(
â†

i

)n |0⟩, (1.8)

where |0⟩ = ⨂
i|0⟩i is the vacuum state with no particles in the lattice. The

opposite limit J ≫ U corresponds to strong tunnelling and weak interactions.
The ground state of the model is a superfluid state with each atom delocalized
over the entire lattice. Its wavefunction is given by

|ψSF⟩ ∝
(∑

i
â†

i

)N

|0⟩, (1.9)

where N is the total number of particles.

1.2 Methods of solution
There exist both analytic and numerical methods to extract information about
the Bose–Hubbard model. They are often limited to systems with weak or strong
interactions, or to one-dimensional systems. There is no known approach that
works well in all cases. In this section I list several popular approaches [4].

Analytic methods usually differentiate between weakly and strongly interacting
particles. Bogoliubov approach is a mean-field method that can be used to solve
the model in the weakly interacting limit. The strong-coupling expansion is a
perturbative method to solve the model in the strongly interacting limit. Other
analytic methods include perturbative mean-field method and Gutzwiller mean-field
method. There are also several approaches limited to one-dimensional systems —
Jordan–Wigner transformation, bosonization, and Bethe ansatz.

Examples of numerical methods are exact diagonalization which is limited to
small systems, quantum Monte Carlo to study systems in equilibrium, and phase
space methods that are closer to classical physics. Finally, there are methods based
on tensor networks. These represent the approach explored in this work.
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2. Tensors
A tensor is a multidimensional array of complex numbers. It is characterized by
its rank, which is a number of its dimensions. Tensors are a generalization of
scalars, vectors, and matrices. A rank-zero tensor is a complex number, a rank-one
tensor is a vector, and a rank-two tensor is a matrix. Each tensor element is
denoted by its indices, which give its position in the array.

Two kinds of important tensors are recognized in this work — dense tensors
and symmetric tensors. Dense tensors are arrays that contain all tensor elements.
Symmetric tensors take advantage of symmetries of the physical system to reduce
the number of elements that are required to store. They only include blocks that
can contain nonzero elements. I first present an overview of dense tensors and
later of symmetric tensors.

A tensor index of a dense tensor is an integer variable α ∈ {1, . . . , Dα}, where
Dα is the size of the respective dimension. A tensor can have an arbitrary number
of indices. Its number of elements is the product of sizes of all its indices. Figure
2.1 shows a graphical representation of a tensor as a ball with several lines emerging
from it. Each such line represents an index. Joined lines of two tensors represent
a tensor contraction defined later. Several additional terms used in this work are
defined as follows:

• Conjugate index α† of a tensor V is an index that allows contraction with
an index α of a tensor U . There is no difference between an index and its
conjugate index for dense tensors, because both of them are just the same
sets of integers. However, there is a difference in the case of symmetric
tensors described later. I therefore distinguish between indices and their
conjugate indices for all tensor.

• Conjugate tensor T † contains complex conjugates of all elements of a tensor
T . Its indices are the conjugate indices of T .

• Identity tensor I is a rank-two tensor that carries a pair of conjugate indices
α and α†, and its elements are Iαα† = δαα† , where δαα† is the Kronecker
delta. It is equivalent to an identity matrix.

Figure 2.1: A tensor T with five indices α, β, γ, δ, and ϵ.

T

α

β

γ
δ

ϵ
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2.1 Tensor operations
This section explains several important tensor operations. Figure 2.2 describes
these operations graphically. They are described for dense tensors. Although the
details are different for symmetric tensors, the abstract notation is equivalent for
both tensor types.

2.1.1 Index permutation
Index permutation changes the order of tensor indices. This operation takes a
tensor and a permutation as inputs. It outputs a new tensor with correspondingly
reordered indices. The tensor elements are reordered as well. Index permutation
is analogous to matrix transposition.

2.1.2 Index fusion
Index fusion combines several indices into one. It produces a new tensor with
a changed set of indices. The selected indices are fused into a single index, and
all other indices are copied from the original tensor unaltered. The size of the
fused index is a product of the sizes of all its constituent indices. The elements
of the new tensor are rearranged elements of the original tensor. Index fusion is
analogous to reshaping a matrix into a vector.

2.1.3 Index split
Index split is a reverse operation to index fusion. A split is not unique, as there
are several ways how to factorize an index size. TEBDOL [41] uses this operation
internally for tensor decomposition and tensor contraction. Index split is analogous
to reshaping a vector into a matrix.

2.1.4 Decomposition
Tensor decomposition is an operation that takes a single tensor T and a partial
list of its indices I and decomposes it into tensors U and V . It is analogous to
the singular value decomposition (SVD) for matrices [48]. I lists all indices that
will be transferred to U . All other indices of T are denoted J . There are two
variants of the algorithm based on the unitarity requirements. The outline of the
algorithm is as follows:

1. If the leftmost indices of T are not exactly the indices in I, then permute
the indices of T to make them such.

2. Reshape T into a matrix T̃ , where all indices in I combined form the row
index of T̃ and all indices in J combined form the column index of T̃ .

3. Calculate the SVD of T̃ to obtain matrices Ũ , S̃, Ṽ †.

4. Depending on the unitarity requirements, multiply Ũ with S̃ and keep Ṽ †

unaltered, or keep Ũ unaltered and multiply S̃ with Ṽ †. The resulting pair
of matrices is denoted Ū and V̄ †. In the first case, the matrix V̄ † is a unitary
matrix. In the second case, the matrix Ū is a unitary matrix.
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5. Reshape Ū into a tensor U so that the row index of Ū splits into indices in
I. Column index of Ū becomes the last index of U .

6. Reshape V̄ † into a tensor V so that the row index of V̄ † splits into indices
in J . Column index of V̄ † becomes the first index of V .

2.1.5 Contraction
Tensor contraction is an operation that combines tensors U and V into a tensor
T . It is a generalization of matrix multiplication. It takes a list of indices IU of
U and a list of indices IV of V as an argument. Both lists must have the same
length, and it is required that each index in IU is a conjugate of a corresponding
index in IV . The contraction is performed over each pair of conjugate indices in
IU and IV . Let JU be all indices of U not included in IU , and let JV be all indices
of V not included in IV . The outline of the algorithm is as follows:

1. If the rightmost indices of U are not exactly the indices in IU , then permute
the indices of U to make them such.

2. If the leftmost indices of V are not exactly the indices in IV , then permute
the indices of V to make them such.

3. Reshape U into a matrix Ũ , where all indices in IU combined form the
column index of Ũ and all indices in JU combined form the row index of Ũ .

4. Reshape V into a matrix Ṽ , where all indices in IV combined form the row
index of Ṽ and all indices in JV combined form the column index of Ṽ .

5. Multiply the matrices Ũ and Ṽ to obtain a matrix T̃ .

6. Reshape T̃ into a tensor. Split the row index into indices in JU and split
the column index into indices in JV to obtain a tensor T .

2.2 Symmetric tensors
The Bose–Hubbard Hamiltonian is invariant under a global U(1) transformation.
This symmetry results in the conservation of the total number of particles in the
system. TEBDOL takes advantage of it by using a symmetric tensor represen-
tation [16, 49–51]. Symmetric tensors ensure conservation of the total number
of particles in the system and reduce computational costs. This representation
differs from the dense tensors described earlier in the following aspects:

• A symmetric tensor is composed of blocks characterized by a list of particle
numbers corresponding to all its indices.

• If the sum of particle numbers characterizing a block is nonzero, all tensor
elements in the block vanish.

• TEBDOL stores only those blocks that can contain nonzero elements, that
is only the blocks for which the sum of their particle numbers is zero.

12



Figure 2.2: Tensor operations.

T

α

β

δ
U

β

α

δ

(a) (Index permutation) A new tensor U has the same elements and indices as the
original tensor T , but the order of its indices is permuted.

T

α

β

δ

U

γ δ

(b) (Index fusion) Indices α and β of a tensor T are fused together to create an
index γ of a new tensor U . The size of γ is a product of the sizes of α and β.

U

γ δ
T

α

β

δ

(c) (Index split) Index γ of a tensor U is split into indices α and β of a new tensor
T . A split is not unique. Generally, this operation is performed only on indices
obtained from an index fusion to restore the original indices.

T

α

β

γ
δ

ϵ
U

α

β

γ

V

δ

ϵ

µ† µ

(d) (Tensor decomposition) A tensor T with indices α, β, γ, δ, and ϵ is decomposed
into two new tensors U and V . The partition of the original set of indices between
U and V can be arbitrary. U and V are connected by a new pair of conjugate
indices µ† and µ.

U

α

β

γ

V

δ

ϵ

µ† µ

T

α

β

γ
δ

ϵ

(e) (Tensor contraction) Two tensors U and V are contracted into a new tensor T .
The contracting indices µ† and µ must be a pair of conjugate indices. All other
indices of U and V are preserved in T .

13



• A tensor index is a compound structure for symmetric tensors. It is a list of
segments, where each segment consists of a particle number and a dimension.

• Each nonvanishing block is given by a list of segments corresponding to the
tensor indices. The sum of the particle numbers in these segments must be
zero. The dimensions of the block are the dimensions of the segments. A
block is represented by a dense tensor.

• Index conjugation changes the signs of the particle numbers of each segment
but preserves the segment dimensions. An index and its conjugate index
can be contracted with each other.

• Tensor operations operate on blocks. Each block is treated separately to
obtain the desired result.
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3. Matrix product states
Study of strongly correlated many-body systems is hard because dimensions of
their Hilbert spaces are huge. Only a few models can be solved analytically,
and exact numerical solutions are typically restricted to small system sizes and
small numbers of particles. Several methods have been therefore developed to
obtain approximate solutions. One of the most successful methods, especially for
one-dimensional systems, is the density matrix renormalization group method
(DMRG) [12, 13, 15]. Its original goal was to find ground states of quantum chains.
Later, it was extended to simulate time evolution (tDMRG) [19, 20], as well as
to model other quantum systems. It is based on approximating reduced density
matrices of system parts. The algorithm truncates the density matrices, and it
retains only the most relevant states of the system.

Matrix product states (MPS) [16, 52, 53] are a class of quantum states originally
developed for analytic description of quantum systems. It was found that DMRG
can be conveniently formulated in the language of MPS [54, 55]. In fact, DMRG
variationally optimizes the wave function in the MPS form. The decomposition
into the MPS form is sometimes referred to as the tensor-train decomposition
(TT) in mathematics [56].

In this section, I will introduce basic ideas of MPS for simulating time evolution
in one-dimensional optical lattices. MPS is inherently a one-dimensional method.
It has been applied to multidimensional systems as well, in a sense that a system
had been first mapped to one dimension and then solved with the already well-
understood algorithm [57, 58]. However, this approach was less successful for
multidimensional problems. In later chapters, I will discuss extensions of MPS to
higher-dimensional systems that better exploit system geometries.

I assume a model of a quantum lattice with open boundary conditions, for
example a one-dimensional Bose–Hubbard model. The lattice is composed of L
sites indexed by i, with i ∈ {1, . . . , L}. There are nearest-neighbour interactions
only, that means that a site i interacts with sites i − 1 and i + 1. Local basis
states of the Hilbert space at a site i are denoted by |σi⟩, with σi ∈ {1, . . . , P}
and P being the physical dimension. In principle, there can be a different P at
each site, but I assume that the physical dimension is identical everywhere. The
wavefunction of the full system is given by

|ψ⟩ =
∑

σ1,...,σL

cσ1,...,σL
|σ1, . . . , σL⟩, (3.1)

where |σ1, . . . , σL⟩ are the vectors of the product basis, and cσ1,...,σL
are the state

coefficients. The number of coefficient cσ1,...,σL
grows exponentially with L. Even

for lattices with tens of sites, the problem of storing and working with this many
coefficients becomes quickly intractable. The goal is therefore to find a method
to reduce the number of working parameters, and still be able to extract good
approximations of all coefficients cσ1,...,σL

.
It helps to consider all coefficients cσ1,...,σL

as a single complex tensor with L
indices. The basic idea of MPS is to decompose this tensor into a set of tensors
Mσi

αi−1,αi
, so that there is one tensor for each site (Figure 3.1). Each tensor Mσi

αi−1,αi

has three indices, a physical index σi, and virtual indices αi−1 and αi. Additionally,
I consider each tensor Mσi

αi−1,αi
as a set of matrices, where αi−1 is the column index
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Figure 3.1: Decomposition of a tensor cσ1,...,σL
into a set of tensors Mσi

αi−1,αi

corresponding to each lattice site. Each tensor is represented by a geometric shape.
Lines emerging from a shape represent tensor indices. Lines connecting tensors
represent tensor contractions. Note that the dimension of indices α0 and αL is
one, because they are at the edges of the lattice. They are omitted from the figure.
In the matrix notation, Mσ1

α0,α1 is a row vectors for each σ1, and MσL
αL−1,αL

is a
column vector for each σL.

σ1 σ2 σL−1 σL

cσ1,...,σL

. . .

Mσ1
α0,α1 Mσ2

α1,α2 MσL−1
αL−2,αL−1

MσL
αL−1,αL

σ1 σ2 σL−1 σL

α1 α2 αL−2 αL−1. . .

and αi is the row index of a matrix Mσi . In the following, the virtual indices are
dropped to simplify the notation.

The coefficients cσ1,...,σL
are obtained by contracting the decomposition. In the

present case, a contraction is equivalent to multiplication of all matrices Mσi ,

cσ1,...,σL
= Mσ1Mσ2 . . .MσL−1MσL . (3.2)

This also explains the origin of the name “matrix product states”.
I am not going to describe the details of the procedure for obtaining the

decomposition, as it has been discussed extensively, see for example [16]. The idea
is to reshape the tensor cσ1,...,σL

into a matrix and to decompose the matrix using
the singular value decomposition (SVD) [48]. The important point is that to obtain
the exact decomposition of cσ1,...,σL

, the dimensions of indices αi grow exponentially
with L. Such decomposition would not help in reducing the complexity of the
problem. Therefore, the procedure truncates the maximum dimension of αi to
D. It turns out that for many states of practical importance, such as the ground
states of systems with gapped Hamiltonians, a decomposition into an MPS with
a fixed D can be a very good approximation of the exact decomposition [59].
The total number of elements in cσ1,...,σL

is PL. In contrast, the total number of
elements in an MPS is bounded by LPD2, which is linear in L and P .

To find a ground state of a Hamiltonian, one typically starts with a random
MPS with a fixed D. Its tensor elements are variationally optimized until the
convergence is reached. The method is not guaranteed to find the true global
minimum, but works very well in practice (see also Appendix A). To calculate the
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Figure 3.2: Decomposition of an operator Oσ′
1,...,σ′

L
σ1,...,σL into a set of tensors W σi,σ

′
i

αi−1,αi

corresponding to each lattice site.

σ′
1 σ′

2 σ′
L−1 σ′

L

σ1 σ2 σL−1 σL

O
σ′

1,...,σ′
L

σ1,...,σL

. . .

. . .

W
σ1,σ′

1
α0,α1 W

σ2,σ′
2

α1,α2 W
σL−1,σ′

L−1
αL−2,αL−1 W

σL,σ′
L

αL−1,αL

σ′
1 σ′

2 σ′
L−1 σ′

L

σ1 σ2 σL−1 σL

α1 α2 αL−2 αL−1. . .

time evolution of a state, one typically starts from a simple product state that
can be easily decomposed into an MPS. If the MPS is a good approximation of
cσ1,...,σL

, the problem becomes manageable at least for a short evolution interval.
Similarly to the decomposition of a wavefunction into an MPS, an operator

can be decomposed into a matrix product operator (MPO) [16, 52, 60–62]. In
this case, each site tensor has two physical indices (Figure 3.2). In contrast to
the decomposition of a state into an MPS, the operators are usually constructed
explicitly in the MPO form. In order to calculate the expectation value of an
MPO Ô for an MPS ψ, one contracts ψ with Ô and with the complex conjugate
of ψ (Figure 3.3).

Figure 3.3: Calculation of the expectation value of an operator Ô in the MPO
form for a state ψ in the MPS form.

. . .

. . .

. . .

ψ†

Ô

ψ
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Figure 3.4: One time step of the second-order time-evolution algorithm for MPS.
Operators exp(−iF̂ δt/2) and exp(−iĜδt/2) are products of single-site and double-
site commuting exponential operators, so the terms in each of them can be applied
sequentially. After application of each term, the resulting tensor is decomposed
into an MPS with a fixed bond dimension D.

e−iF̂ δt/2

e−iĜδt

e−iF̂ δt/2

ψ

. . .

. . .

. . .

. . .

3.1 Time evolution
I focus on simulation of nonequilibrium dynamics in this work. My method is
based on the Suzuki–Trotter decomposition of the propagator [16]. The terms in
the Hamiltonian of a model with nearest-neighbour interactions can be separated
into two groups, Ĥ = F̂ + Ĝ, such that all terms in F̂ commute with each
other, and all terms in Ĝ commute with each other as well. The Suzuki–Trotter
decomposition [63–68] then gives an approximation of the system propagator. The
first-order approximation is given by

e−iĤδt = e−iF̂ δte−iĜδt + O(δt2), (3.3)
and the second-order approximation is given by

e−iĤδt = e−iF̂ δt/2e−iĜδte−iF̂ δt/2 + O(δt3), (3.4)
where δt is a small time step. The evolution is calculated by sequentially applying
the expansion on the right-hand side to an MPS. The total error can be controlled
by choosing a sufficiently small δt. Individual terms in F̂ and Ĝ are either single-
site operators or double-site operators [18]. Because the individual terms commute
with each other, the exponential operator is a product of exponentials of individual
terms. The procedure for one time step is illustrated in Figure 3.4.

In summary, MPS is a representation of a quantum state that reduces the
complexity of finding the ground state of a lattice Hamiltonian or simulating its
time evolution. In the latter case, the propagator is approximated by sets of
single-site and two-site exponential operators. In contrast to the full propagator,
these individual operators can be calculated easily. The operators are applied
in a prescribed way. Resulting tensors are decomposed into single-site tensors
in each step, so the MPS form is maintained during the whole calculation. The
application of exponential operators leads to an increase of bond dimensions. The
virtual indices are therefore truncated to a fixed dimension D.
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4. Projected entangled pair states
Projected entangled pair states (PEPS) [25, 26] are a class of tensor networks
designed to represent a pure state of a two-dimensional system. They are a
generalization of MPS to two dimensions. Each site is represented by a single
tensor. The distinguishing property of PEPS is that each site is connected to all
its adjacent sites in the network. PEPS are important for theoretical description of
two-dimensional systems, but it is difficult to obtain a good numerical performance
with them. Additionally, certain assumptions that simplify working with MPS are
not valid for PEPS. I therefore did not use PEPS for calculations and instead used
tree tensor networks described later. This chapter serves as a short review of PEPS
with emphasis on their properties that increase the computational complexity of
operations on PEPS.

I consider a system of M lattice sites. Each site is equipped with a P -
dimensional local Hilbert space and spanned by orthonormal basis vectors {|σi⟩},
with σi ∈ {1, . . . , d}. The tensor network consists of a set of tensors with one
tensor corresponding to each lattice site. Each tensor carries a physical index σi,
which enumerates basis states |σi⟩, and several virtual indices that describe its
relations to its neighbouring sites. The number of virtual indices varies with the
lattice geometry and with the tensor position in the lattice. A coordination number
c denotes the number of sites neighbouring a particular site. The coordination
number in the bulk of a rectangular lattice is four. Each bulk tensor therefore
carries four virtual indices. The coordination number is smaller for sites at lattice
boundaries. Boundary tensors therefore carry fewer indices than tensors in the
bulk. I consider rectangular lattices with open boundary conditions, so tensors in
the bulk have four virtual indices, tensors at the lattice boundary that are not in
the lattice corners have three virtual indices, and tensors corresponding to lattice
corners have two virtual indices.

An example of a PEPS network is depicted in Figure 4.1. The maximum
dimension of all virtual indices is called the bond dimension D. The number of
elements of each tensor is bounded by dDc. Tensor networks with higher bond
dimensions could represent a physical system more faithfully at a cost of higher
number of variational parameters of each tensor. Similarly to MPS, D has to be
exponentially large in the system size to cover the full Hilbert space of the system.
This is usually not necessary, because a good approximation of a state can be
obtained with a relatively small D.

The state vector in the product basis is given by

|ψ⟩ =
∑

σ1,...,σM

cσ1,...,σM
|σ1, . . . , σM⟩, (4.1)

with coefficients [25]
cσ1,...,σM

= F(T σ1
1 , . . . , T σM

M ). (4.2)
where T σi

i are lattice tensors, and F(T σ1
1 , . . . , T σn

n ) represents a contraction of all
virtual indices of the network for a fixed set of physical indices {σ1, . . . , σn}.
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Figure 4.1: A rectangular 4 × 4 PEPS with open boundary conditions. A ball
represents a tensor, lines emerging from a tensor represent tensor indices, and
connections represent a contractions of tensors over the respective indices. Physical
indices are represented by dots, that is they are lines perpendicular to the lattice
plane.

4.1 Contractions
A calculation of the norm or a calculation of the expectation value of an observable
for a network in the PEPS form requires to evaluate a scalar product of two
networks. The scalar product is a contraction of two PEPS with connected
physical indices (Figure 4.2). In contrast to MPS, the contraction of the whole
tensor network of a scalar product is a #P-Hard problem [69]. The time required
to perform this calculation scales exponentially with the number of the lattice
sites for any order in which the contractions are performed. There are no known
classical or quantum algorithms for solving this problem utilizing resources that
scale polynomially in the number of sites.

While the exact calculation of a scalar product is often unfeasible, there exist
faster approximate methods to obtain the results with a good accuracy. In the
following, I review several of them.

4.1.1 Sandwich contraction
Sandwich contraction [25] is an algorithm to approximate network contractions
required to calculate the norm ∥ψ∥ of a state ψ or the expectation value of an
operator O. A boundary row of the state and operator tensors is identified with
an MPS. The neighbouring row is identified with an MPO. The contraction then
proceeds as a one-dimensional contraction of the MPS with the MPO. The bonds
of the resulting MPS are truncated and the result is used as a starting MPS for
the contraction with the next row of tensors. The same procedure is performed
for the opposite row of tensors. The algorithm consecutively contracts rows from
both sides. Finally, a pair of MPS from both sides are contracted with each other.
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Figure 4.2: A scalar product of two 4 × 4 PEPS networks. The physical indices of
tensors corresponding to a single site are contracted with each other. Finally, all
virtual indices are contracted to obtain a scalar.

Figure 4.3: Sandwich contraction for calculating a scalar product of two PEPS
networks. Each pair of tensors corresponding to a single site is considered a
single tensor in an MPS or an MPO. The first row of tensors is identified with
an MPS and the next row is identified with an MPO. The contraction proceeds
as a contraction of an MPS and an MPO. It is necessary to truncate the bond
dimension of the resulting MPS. The contraction proceeds both from the first row
and from the last row. Finally, a scalar product is obtained as a contraction of
two MPS networks.

MPO

MPS
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4.1.2 Simple update
Simple update [70, 71] is a method to update a pair of site tensors in a PEPS
network during a time-evolution simulation. It is a generalization of the TEBD
algorithm from MPS to PEPS. A state is represented by Γ-tensors corresponding
to lattice sites and connected by diagonal λ-matrices. A pair of sites being updated
is called a system and the rest of the network is called its environment. Generally,
it is necessary to fully contract the environment to correctly truncate the bond
in the system after applying an operator to a tensor pair. Instead of exactly
calculating or approximating the environment of a site, this method assumes that
the environment is orthogonal, that is similar to a canonical form of an MPS. In
the case of MPS, a canonical form has convenient orthogonality properties [16].
In the case of PEPS, no such properties are guaranteed. It is thus unexpected
that this method could produce good results. Its advantages are its simplicity and
great performance. Networks with large bond dimensions D can be analyzed easily.
However, its theoretical shortcomings make it unsuitable for proper calculations.

4.1.3 Single layer
Single layer [71, 72] is a method similar to sandwich contraction with the difference
that the contractions are performed only in a single layer of the sandwich tensor
network. After every step, the physical indices must be traced out to create a
purification MPO [60]. The aggregate dimension of physical indices would grow
exponentially without this step. Single layer contraction has a better scaling than
sandwich contraction, but it is less precise.

4.1.4 Cluster contraction
This method of calculating PEPS environment interpolates between sandwich
contraction and simple update [71, 73]. Simple update assumes separable and
local environment. Cluster contraction assumes that the environment correlations
decay quickly with distance. Only a limited number of rows is taken into account
to approximate the environment. The number of rows can be chosen arbitrarily.
If no rows are chosen, the method resembles simple update. If all rows are chosen,
the method resembles sandwich contraction.

4.2 Practical aspects
The contraction methods above are either inaccurate or computationally hard. If
there are large correlations between distant sites, the whole environment should
be taken into account in calculating any expectation values. Only sandwich
contraction provides a correct method to do this. The bond dimension in PEPS
is quite limited by this requirement. In contrast to MPS, where bond dimensions
are typically in the order of 103, bond dimensions in PEPS are mostly in the order
of 101. Additionally, a contraction is required not only for calculating a scalar
product of two networks, but also for performing every bond truncations during
time-evolution steps. The corresponding equations do not simplify as in the case
of MPS. This makes PEPS a very complicated representation to work with.
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I implemented sandwich contraction but the achieved bond dimensions and
performance were very low. Further investigation revealed that the problem was
the nonexistence of states similar to canonical states in MPS. Canonical states
are tensor networks with prescribed orthonormalization conditions [16]. The
impossibility to construct such states in PEPS is caused by cycles in the network,
that is by multiple paths between any pair of tensors. I therefore decided to use
tree tensor networks states described in the next chapter instead. In contrast to
PEPS, they do not contain any cycles, and it is possible to orthonormalize them
in a similar way as MPS.
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5. Tree tensor network states
Tree tensor network states (TTNS) [29–31] are another generalization of MPS that
is different from PEPS. Every bulk tensor in an MPS carries one physical index
and two virtual indices. A boundary tensor in an MPS carries one physical index
and one virtual index. In contrast, a tensor in a TTNS can have any number
of virtual indices. Tensors are interconnected and form a graph. There can be
multiple paths between a pair of tensors in a general tensor network. In that
case the network contains a cycle. A condition that distinguishes TTNS from
other tensor networks is that TTNS do not contain any cycles (Figure 5.1). The
nonexistence of cycles brings an important advantage over PEPS. Similarly to
MPS, it is then possible to orthogonalize tensors in a TTNS in order to obtain a
canonical form, which will be defined in Section 5.1.

The number of elements in a dense tensor T is a product of all its index
dimensions,

NT =
∏

α∈A

Dα, (5.1)

where A is the set of its indices and Dα is the dimension of an index α. It grows
exponentially with the number of indices for fixed index dimensions. Although
there are fewer elements in symmetric tensors compared to dense tensors, the
scaling of the total tensor size is similar. It is therefore advantageous to keep
the number of virtual indices limited. A tensor network with at most two virtual
indices is a one-dimensional MPS. TEBDOL [41] uses at most three virtual indices
in the two-dimensional algorithm. I have also tested a version with at most four
virtual indices, but it is very computationally challenging to perform operations
on large tensors with four virtual indices. The number of virtual indices was
therefore limited to three.

Figure 5.1: A TTNS is an interconnected set of tensors that does not contain any
cycles. Each tensor carries a physical index denoted by a black dot and virtual
indices connecting it to other tensors.
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5.1 Canonical states
An important property of MPS is the existence of canonical states. A canonical
state is a tensor network with well-defined orthogonalization of its tensors. Certain
network operations are substantially simpler for a network in a canonical state.
In particular, truncation of tensor dimensions, application of local operators,
and calculation of expectation values of local observables are all straightforward
operations if a network is in a canonical state.

Its definition starts with the definition of a semi-unitary tensor. Let α be an
index of a tensor T and βj , where j ∈ {1, . . . , n}, all its other indices. A tensor is
semi-unitary if

∑

{β1,β†
1},...,{βn,β†

n}
T †

α†,β†
1,...,β†

n
Tα,β1,...,βn

= Iα†,α, (5.2)

where T † is the conjugate tensor of T , I is a unit tensor, and {β1, β
†
1} denotes a

contraction over a pair of conjugated indices βj and β†
j . A semi-unitary tensor is

analogous to a semi-unitary matrix. The contraction runs over multiple indices
instead of a single index in the case of matrix multiplication. Semi-unitary tensors
can be obtained from a tensor decomposition (Figure 5.2).

A tensor in a TTNS contains a single physical index and multiple virtual
indices. A leaf is a tensor that carries only a single virtual index. A branch
is a subset of TTNS that is connected to the rest of the TTNS with a single
virtual index, that is all its other virtual indices are connected to tensors inside
the branch (Figure 5.3). A leaf is also a branch. For models with open boundary
conditions, a tensor can carry one, two or three virtual indices. Leaves have one
virtual index, tensors in a branch that are not leaves have two virtual indices,
and tensors connecting branches have three virtual indices. A conjugate branch
is a branch composed of conjugate tensors of the original branch and with the
identical connection structure.

A branch is in the canonical form, if the contraction of this branch with its
conjugate over all corresponding physical indices gives an identity tensor (Figure
5.4). To bring a leaf tensor T into the canonical form, T is first decomposed
into U and Ṽ †, where U is a semi-unitary tensor. Then Ṽ † is contracted to the
neighbouring tensor N , and N is replaced with the resulting tensor (Figure 5.5).

A branch is transformed into the canonical form recursively (Figure 5.6). Let
T be the tensor that is connected to the rest of the network. First, all other
branches connected to T are brought into their canonical forms. The procedure is
then similar as with leaf tensors — T is decomposed into U and Ṽ †, and Ṽ † is
contracted to the neighbouring tensor.

The transformation into a canonical form therefore starts from leaf tensors and
brings all tensors in the branch into semi-unitary tensors. The semi-unitarity of
branch tensors leads to the required condition that the contraction of the tensors
with their conjugates over their physical indices gives an identity tensor.

Tensors in any TTNS can be divided into two sets called a system S a an
environment E. What tensors form S or what tensors form E varies during the
calculation. Generally, S is a part of the TTNS being operated on. The definition
of a system is further restricted to ensure its compactness. It is required that
there exists a path connecting any two tensors in S, and all tensors in this path
also belong to S.
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Figure 5.2: A tensor T can be decomposed into two or three new tensors. The
resulting tensors have orthogonalization properties similar to the properties of
semi-unitary matrices obtained in a compact matrix SVD.

T

α

β

γ
δ

ϵ

(a) First, the indices of T are separated
into two groups. In this example, in-
dices α, β, and γ belong to the first
group, and indices δ and ϵ to the sec-
ond group. All indices in a group be-
come a part of a single tensor after the
decomposition.

U

α

β

γ

S V †

δ

ϵ

µ†

µ

µ†

µ

(b) T is decomposed into tensors U , S,
and V †. This operation is analogous
to SVD. The indices in the first group
and in the second group belong to U
and V †, respectively. Indices µ and µ†

connect the tensors together.

U

α

β

γ

Ṽ †

δ

ϵ

µ†

µ

(c) Contracting S and V † into a tensor
Ṽ † produces a decomposition of T into
a semi-unitary tensor U and a tensor
Ṽ †.

Ũ

α

β

γ

V †

δ

ϵ

µ†

µ

(d) Contracting U and S into a tensor
Ũ produces a decomposition of T into a
tensor Ũ and a semi-unitary tensor V †.

U †

µ
U

µ†

α† α

β†

β

γ† γ

I

µ µ†

V †

µ
V

µ†
ϵ ϵ†

δ δ†

I

µ µ†

(e) Contracting semi-unitary tensors with their conjugates over the original indices
results in identity tensors.
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Figure 5.3: A leaf and a branch of a TTNS.

σ

α

(a) A leaf tensor carries a single physical
index σ and a single virtual index α.

α

(b) A branch is connected to the rest of
a network with a single virtual index α.

Figure 5.4: Contraction of a canonical branch with its conjugate produces an
identity tensor.

α

α†

I

α α†

Figure 5.5: Transformation of a leaf T into the canonical form. N is a neighbouring
tensor, U and Ṽ † come from the decomposition of T , and Ñ is the product of
contracting Ṽ † with N . U is a semi-unitary tensor.

T N

U Ṽ † N

U Ñ
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Figure 5.6: Transformation of a branch into the canonical form.

T

N

α

(a) A branch is connected by an index
α to the rest of the system. α belongs
to a branch tensor T . A neighbouring
tensor N is not a part of the branch.

T

N

α

(b) First, all other branches connected
to T are transformed into their canoni-
cal forms using the procedure described
here recursively.

U

Ṽ †

N

µ

µ†

α

(c) T is decomposed into U and Ṽ †,
where U is a semi-unitary tensor.

U

Ñ

µ

(d) Ṽ † is contracted to the neighbouring
tensor N obtaining a new tensor Ñ . All
branch tensors are now semi-unitary
and the branch is in the canonical form.
The branch is connected to the rest of
the network by the index µ.
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Figure 5.7: A TTNS in a canonical state. The environment consists of three
branches connected to a single system tensor T by indices α, β, and γ. All three
branches are in their canonical forms.

T

α
β

γ

S and E are connected with a set of contractions C. TTNS do not contain
any cycles, so each contraction in C connects a separate branch of E. A TTNS
is in a canonical state, if all branches of the environment are in their canonical
forms (Figure 5.7). Each branch has exactly one canonical form, but a canonical
state of the whole TTNS depends on its separation into S and E.

It is natural to generalize canonical states from MPS to multidimensional
tensor networks. However, canonical states cannot be defined for networks that
contain cycles, for example for PEPS. Nonexistence of canonical states makes
local operations challenging. Even a calculation of the expectation value of a local
observable requires the contraction of the full network. This is known to be a
hard operation for PEPS [69]. The existence of canonical states in TTNS is the
main argument in favour of TTNS over PEPS.

5.2 Network topology
Tree tensor networks are instances of graphs. A network topology is the graph
structure of a TTNS. Besides the requirement that TTNS do not contain any
cycles, their topologies can be arbitrary. The default topology is a prescribed initial
topology with the following structure. Tensors in each column are interconnected
and the columns are connected through the tensors in the bottom row (Figure 5.8).
The left-bottom tensor is considered as a system S and the rest of the network
as an environment E. It is further required that the network is in the canonical
state.

To define the default topology more precisely, I consider a rectangular two-
dimensional lattice with Lx sites in x direction and Ly sites in y direction. Let
(ix, iy), where ix ∈ {1, . . . , Lx} and iy ∈ {1, . . . , Ly}, be coordinates of a single
lattice site. Each lattice site corresponds to a single tensor in a tensor network.
The tensors carry one physical index and one to three virtual indices. All tensors
are connected in the y direction. A tensor at (ix, iy) is connected to a tensor at
(ix, iy −1) if iy > 1, and to a tensor at (ix, iy +1) if iy < Ly. Additionally, tensor in
the bottom row are connected in the x direction. A tensor at (ix, 1) is connected
to a tensor at (ix − 1, 1) if ix > 1 and to a tensor at (ix + 1, 1) if ix < Lx.
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Figure 5.8: Default topology of a TTNS. The network is in the canonical form
with respect to the left-bottom tensor.

Figure 5.9: Each tensor in a TTNO has two physical indices and up to three
virtual indices. All TTNO have the default topology.

The advantage of the default network topology is that the network distance
between any two sites is less than Lx + 2Ly − 3. Such TTNS can better capture
correlations between distant sites.

5.3 Observables
Observables are represented by tree tensor network operators (TTNO). They have
a similar structure as TTNS, but they carry two physical indices instead of a
single physical index. TTNO in TEBDOL are constructed explicitly and have
the default topology. All tensors are connected in the y directions and the tensor
columns are connected in the first row (Figure 5.9). Expectation value of an
observable O is obtained by contracting a TTNS ψ, a TTNO Ô, and a conjugate
of ψ (Figure 5.10).

For local operators acting on the system S only, all tensors that correspond to
the environment are identity tensors. It is thus easy to calculate the expectation
value of a local operator if a TTNS is in the canonical state with respect to S.
Identity tensors in the TTNO lead to a contraction of the TTNS with its conjugate
in the environment. This gives an identity tensor for each environment branch
because these branches are in the canonical form. The contraction of the full
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Figure 5.10: To calculate the expectation value of a TTNO Ô for a TTNS ψ, Ô is
inserted between ψ and its conjugate ψ†, and the network is contracted. ψ, Ô,
and ψ† have the default topology. To achieve good performance, the contraction
should start from the leaves.

ψ Ô

ψ†

network therefore simplifies to a contraction of the system tensors only (Figure
5.11).

5.4 Index shifting
Not all neighbouring sites are connected directly in a tree tensor network. It
is then unclear how to apply a two-site operator to a pair of such sites. The
method used in TEBDOL rearranges the network into a new topology in which
the respective sites are connected directly.

The basic operation to achieve this is to transfer an index from one tensor to
another tensor connected to it. Let TA and TB be two connected tensors. TA is
connected with its index α to TB. The task is to move an index γ from TA to
TB. First, TA is decomposed into tensors U and T ′

A. U includes indices α and γ,
and T ′

A includes all other indices of TA. TA is then replaced by T ′
A. The tensor U

is contracted with TB into T ′
B which replaces TB. The result is that the index γ

becomes a part of the tensor T ′
B corresponding to a different site. A shift of an

index of one tensor is typically accompanied by a shift of a corresponding index
of another connected tensor. This way it is possible to shift a connection from
one pair of tensors to another pair of tensors (Figure 5.12).

The orthonormalization condition in the decomposition of TA can be chosen so
that either T ′

A or U is semi-unitary. The choice depends on a canonical state one
wants to obtain. It is also possible to truncate the dimensions of the new indices
created in the decomposition. This may be necessary to keep index dimensions
bounded.
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Figure 5.11: Expectation value of a local operator is easy to calculate if the TTNS
is in the corresponding canonical state. A local TTNO consists of a local operator
acting on a system S and identity tensors acting on an environment E. If the
branches of the TTNS are in their canonical forms, the contraction of branches
produces identity tensors. The expectation value can be therefore calculated
without contracting the full network. Instead, only a contraction of the TTNS
tensors with the TTNO tensors and with the conjugate TTNS tensors that belong
to S is performed.

5.5 Suzuki–Trotter expansion
The Suzuki–Trotter expansion is a method to approximate the action of exponential
operators. In TEBDOL, it is used to approximate the action of a propagator.
The idea is to separate terms of the Hamiltonian into groups, so that operators in
each group commute among themselves. It is easy to calculate the exponential
of a sum of commuting operators because it is just a product of exponentials of
individual terms.

As shown in Chapter 3, the terms in one-dimensional Hamiltonians with
nearest-neighbour interactions can be separated into two groups [16, 18]. Similarly,
the terms of the two-dimensional Bose–Hubbard Hamiltonian can be separated
into four groups, two horizontal and two vertical sets of operators (Figure 5.13),
given by

Ĥ = D̂ + Ê + F̂ + Ĝ. (5.3)
These four operators include all hopping terms for the odd bonds in the x direction
(D̂), for the even bonds in the x direction (Ê), for the odd bonds in the y direction
(F̂ ), and for the even bonds in the y direction (Ĝ). Local terms acting on a single
site only can be included in any of them. Here, they are included in D̂ and Ê —
local terms associated with sites with odd x coordinates are included in D̂, and
local terms associated with sites with even x coordinates are included in Ê. Terms
in each group commute among themselves.

The full propagator for a small time step δt can be approximated by the
Suzuki–Trotter expansion of the first order,

e−iĤδt = e−iD̂δte−iÊδte−iF̂ δte−iĜδt + O(δt2). (5.4)

A better approximation is given by the second-order formula [74, 75]

e−iĤδt = e−iD̂δt/2e−iÊδt/2e−iF̂ δt/2e−iĜδt/2e−iĜδt/2e−iF̂ δt/2e−iÊδt/2e−iD̂δt/2 + O(δt3).
(5.5)
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Figure 5.12: Shifting indices in a TTNS.

TA TC

TB TD

γ

α

(a) Indices of TA are separated into a
group containing the virtual indices α
and γ and a group containing all other
indices. TA is then decomposed with
respect to this separation.

T ′
A TC

U

TB TD

µ

µ†
γ

α

(b) The decomposition produces tensors
U and T ′

A. The orthonormalization can
be chosen so that either U or T ′

A is a
semi-unitary tensor. If the TTNS is
in a canonical form, it is also possible
to truncate the dimensions of indices µ
and µ†.

T ′
A TC

T ′
B TD

µ

µ†
γ

(c) Contracting U to TB produces a ten-
sor T ′

B. This finalizes a shift of the index
γ between tensors at different sites.

T ′
A T ′

C

T ′
B T ′

D

γ

(d) The index can be shifted also from
TC to TD. Both shifts combined pro-
duce a TTNS with a connection be-
tween the different pair of neighbouring
tensors.
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Figure 5.13: Horizontal and vertical operators. Terms in a two-dimensional
Hamiltonian with nearest-neighbour interactions can be separated into four groups,
Ĥ = D̂ + Ê + F̂ + Ĝ. Terms in each group commute among themselves.

x

y

(a) Operator D̂ includes all terms corre-
sponding to the odd horizontal bonds.
Each two-site operator also includes lo-
cal terms corresponding to its left site.

x

y

(b) Operator Ê includes all terms corre-
sponding to the even horizontal bonds.
Again, each two-site operator also in-
cludes local terms corresponding to its
left site. Local terms at the edge of the
lattice are included in the single-site
operators.

x

y

(c) Operator F̂ includes all odd vertical
bonds.

x

y

(d) Operator Ĝ includes all even vertical
bonds.
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Each term on the right-hand side is an exponential of a sum of commuting
operators, X̂ = ∑

j X̂j, where X̂ = D̂, Ê, F̂ , or Ĝ, and X̂j are constituent terms
of X̂. Each term is therefore a product of exponentials,

e−iX̂δt/2 =
∏

j

e−iX̂jδt/2. (5.6)

In order to calculate the action of exp(−iX̂δt/2) on a TTNS, one applies all
operators exp(−iX̂jδt/2) to it. Each of them acts on a single site or on a pair of
adjacent sites. The product e−iĜδt/2e−iĜδt/2 can be further simplified to e−iĜδt.

5.6 Time evolution
Terms in operators D̂, Ê, F̂ , and Ĝ act on each pair of adjacent sites. Adjacent
sites are not necessarily connected in a TTNS. It is therefore necessary to introduce
a method to calculate the action of a two-site operator on any pair. The approach
used in TEBDOL is based on rearranging the network. Before operating on a pair,
indices are shifted through other tensors to create a connection between the pair.

5.6.1 Bonds in the y direction
Adjacent sites are connected in the y direction if a TTNS has the default topology.
It is therefore not required to rearrange the network in order to apply operators
exp(−iF̂ δt/2) and exp(−iĜδt/2). However, because the application of each two-
site operator involves a truncation of the corresponding virtual indices, it is
necessary to bring the TTNS into an appropriate canonical state in each step.
The algorithm consists of the following steps for each term in exp(−iF̂ δt/2) and
exp(−iĜδt/2):

1. Bring the TTNS into a canonical state, so the pair of adjacent tensors being
operated on represents a system S of the canonical state.

2. Apply a double-site operator to the pair.

3. Truncate the virtual indices connecting the tensors in the pair.

A TTNS has the default topology at the beginning of a calculation. During
each step it is necessary to bring it into a new canonical state. Some branches of
the TTNS are already in their canonical forms, therefore it is not necessary to
bring each tensor in the network into a canonical form again. Only the part that
represented a system S in the previous step has to be properly reorthogonalized.
This substantially decreases the task complexity.

5.6.2 Bonds in the x direction
The network has to be rearranged to apply all double-site operators in the x
direction. In the following, Lx is the width of the lattice, that is the total number
of sites in the x direction, and Ly is the height of the lattice, that is the total
number of sites in the y direction. Tix,iy denotes a tensor at a site with coordinates
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(ix, iy), where ix ∈ {1, . . . , Lx} and iy ∈ {1, . . . , Ly}. Furthermore, a right index is
the index connecting a tensor to the adjacent tensor with a greater ix coordinate,
and analogously a left index is the index connecting a tensor to the adjacent
tensor with a lower ix coordinate. A column is a set of all pairs of tensors Tix,iy

and Tix+1,iy for a given ix and for all iy.
The goal of the algorithm is to calculate the action of all operators included in

exp(−iD̂δt/2) and exp(−iÊδt/2), that is all two-site operators acting on bonds
in the x direction, to a TTNS. The operator exp(−iD̂δt/2) comprises operators
acting on the odd bonds, whereas exp(−iÊδt/2) comprises operators acting on
the even bonds. The algorithm is similar in both cases, so it is only described for
odd bonds here.

The operators are applied sequentially to columns (Figure 5.14). The procedure
starts with the first column and proceeds to the right until it reaches the last
column. Because the operators act on the odd bonds only, it proceeds from the
column at ix to the column at ix + 2. For each column, all operators are applied
while the network is being rearranged. The algorithm uses index shifting described
earlier. For all iy the following steps are performed:

1. Bring the TTNS into a canonical state in which tensors Tix,iy and Tix+1,iy

represent the system S of the canonical state. It is not necessary to reorthog-
onalize all tensors in the TTNS to do so. It is usually sufficient to bring
only the tensors that were modified in the last step into the canonical state.

2. Apply the respective operator to a pair of tensors Tix,iy and Tix+1,iy .

3. Truncate the virtual indices connecting Tix,iy and Tix+1,iy .

4. If iy < Ly, shift the right index of Tix,iy to Tix,iy+1 and truncate the virtual
indices connecting Tix,iy and Tix,iy+1.

5. If iy < Ly, shift the left index of Tix+1,iy to Tix+1,iy+1 and truncate the virtual
indices connecting Tix+1,iy and Tix+1,iy+1.

Again, each truncation step requires the TTNS to be in a canonical state. Other-
wise the retained states are not the states that have the highest weight in the full
density matrix of the system.

After applying operators to a column at ix, the tensors Tix+1,iy for all iy
are reorthogonalized. The procedure then continues with the column at ix +
2. After processing all odd columns, the program starts to apply operators
to the even columns. The procedure works analogously except the columns
are processed from right to left. The final network topology after applying all
operators in exp(−iD̂δt/2) and exp(−iÊδt/2) is a topology similar to the default
topology, except that columns are connected through top-row tensors with iy = Ly.
The horizontal operators are applied twice in the second-order Suzuki–Trotter
expansion. The second application starts from this topology and reaches the
default topology in the end.

After applying all operators corresponding to the odd bonds in the x direction
to a TTNS, the network topology becomes essentially one-dimensional with an
accompanied increase of the maximum distance between sites. During the devel-
opment of the method, I experimented with several other schemes of rearranging
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Figure 5.14: The scheme for applying time-evolution operators corresponding to
the odd bonds in the x direction to a TTNS.

(a) The TTNS has the default topol-
ogy initially. A double-site operator
is first applied to the pair of tensors
in the bottom-left corner of the lattice.
The connection between the pair is then
shifted upwards.

(b) An operator is applied to the next
pair of tensors and the connection is
shifted upwards again. The procedure
continues for all pairs in the column.

(c) The branch with applied operators
is transformed into the canonical form.
The procedure continues in the next
column two sites away.

(d) The network topology obtained after
applying all operators corresponding to
the odd bonds in the x direction. The
next step is to apply operators for the
even bonds. It proceeds from right to
left.
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the network. One scheme was to bring the network back into the default topology
after applying all operators to a single column. This would keep the graph distance
between any pair of tensors bounded. However, I obtained the best accuracy and
also the fastest calculation times with the method described above. TEBDOL
therefore uses the described method in the two-dimensional algorithm.
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6. One-dimensional systems
The main topic of this thesis is modelling of multidimensional systems. The work
naturally started with modelling of one-dimensional systems. They are simpler
to deal with and ideal for testing various algorithms and ideas. At the same
time, the physics of one-dimensional bosons is highly nontrivial [76]. I applied
the one-dimensional method to several interesting problems during the course
of the development. In this chapter, I report on two extensions of the usual
one-dimensional approach.

The first extension is the application of TEBDOL [41] to mixtures of atoms
in optical lattices. Instead of one particle species, I simulated the time evolution
of an interacting ultracold gas composed of two bosonic species [77]. The second
extension was the development of a parallel version of the algorithm that can be
run on computer clusters [41]. This is especially important for hard problems that
consume a lot of computing resources.

6.1 Binary mixtures
Two-component ultracold gases exhibit a rich set of interesting effects [78, 79].
The goal of this study was to simulate the time evolution of a binary mixture of
bosonic particles in a one-dimensional optical lattice. In particular, I investigated
the influence of the second species on the phase collapse and revivals of the first
species. Revivals of the phase coherence [34, 80] represent a well-known effect in
the Bose–Hubbard model. I specifically investigated the case of noninteracting
species A. In the absence of species B, this would lead to perfect revivals. By
turning on interaction between A and B, the revivals of A are influenced by the
dynamics of B [44, 77].

The Hamiltonian of the binary Bose–Hubbard model is given by

Ĥ = − JA

∑

⟨j,k⟩
â†

j âk + UAA

2
∑

j

n̂A
j

(
n̂A

j − 1
)

− JB

∑

⟨j,k⟩
b̂†

j b̂k + UBB

2
∑

j

n̂B
j

(
n̂B

j − 1
)

+ UAB

∑

j

n̂A
j n̂

B
j ,

(6.1)

where at a site j, â†
j and b̂†

j are the creation operators, âj and b̂j are the annihilation
operators, and n̂A

j = â†
j âj and n̂B

j = b̂†
j b̂j are the particle number operators for

particle species A and B, respectively. The parameter JX denotes the amount of
tunnelling for species X, and the parameter UXY denotes the intensity of on-site
repulsion between species X and Y . Only the nearest-neighbour tunnelling is
considered, therefore the angle brackets denote sum over adjacent sites. The
energy scale is fixed by setting h̄ ≡ 1.

Phase collapse and revivals in optical lattices are a result of a sudden change
in lattice parameters from JX ≫ UXX to JX ≪ UXX . Initially, the system is
assumed to be in the ground state of the Hamiltonian (6.1) with parameters
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JA = JB ̸= 0 and UAA = UBB = UAB = 0. This ground state is given by [77, 80]

|ψ⟩ = 1√
NA!NNA

A NB!NNB
B

⎛
⎝

L∑

j=1
αj â

†
j

⎞
⎠

NA
⎛
⎝

L∑

j=1
βj b̂

†
j

⎞
⎠

NB

|0⟩, (6.2)

where L is the number of lattice sites, |0⟩ is the vacuum state, and NA and NB

are the total particle numbers for species A and B, respectively. For a lattice with
open boundary conditions, the amplitudes are given by [77, 80]

αj =
√

2NA

L+ 1 sin
(

π

L+ 1j
)
,

βj =
√

2NB

L+ 1 sin
(

π

L+ 1j
)
.

(6.3)

At time t = 0, the parameters of the Hamiltonian (6.1) corresponding to
particle species A suddenly change to the opposite set of parameters JA = 0 and
UAA ̸= 0. If there are no interactions between species, the quench leads to the
perfect revivals for species A. Otherwise, the revivals of A are affected by the
dynamics of B.

The physical quantity observed in this kind of experiments is the mean number
of particles with zero quasimomentum. It can by directly measured as the intensity
of the central peak in time-of-flight images [34]. The density of particles with zero
quasimomentum for species A is given by [80]

n(t) ≡ 1
L

L∑

j=1

L∑

k=1
⟨â†

j âk⟩t, (6.4)

where ⟨â†
j âk⟩t are the single-particle density matrix elements

⟨â†
j âk⟩t = ⟨ψ|eiĤtâ†

j âke
−iĤt|ψ⟩. (6.5)

A normalized particle density, useful for comparing systems with unequal numbers
of particles, is given by

ñ(t) = n(t)
n(0) . (6.6)

I investigated the behaviour of the model for vanishing JA and a small nonva-
nishing JB. The system was initially in the superfluid state (6.2) with the given
amplitudes (6.3). The lattice had L = 51 sites, NA = 25 particles of species A, and
NB = 25 particles of species B. The simulation was performed for several sets of
parameters UAB and UBB. The maximum bond dimension during the calculation
was D = 600. Figure 6.1 shows dependence of ñ on time for interspecies interaction
strength UAB = UAA and for several intraspecies interaction strengths UBB. The
revival peaks are in same positions as they would be without species B present.
However, intraspecies interactions attenuate the revivals. The attenuation is the
strongest for vanishing UBB, and the revivals are intensified with increasing UBB.

Figure 6.2 shows the dependence of the attenuation of the first and the second
peak on UBB. The behaviour depends on UAB. For weak interspecies interactions,
that is for small UAB, the attenuation slightly increases for large UBB. For strong
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Figure 6.1: Normalized quasimomentum revivals for particle species A on a
lattice with L = 51 sites and NA = NB = 25 particles for the interspecies
interaction strength UAB = UAA and for the intraspecies interaction strengths
UBB = 0UAA, 1/8UAA, 1UAA, and 8UAA. Hopping parameters were JA = 0UAA

and JB = 1/16UAA.
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Figure 6.2: Dependence of ñ at its peaks on UBB. Attenuation is defined as the
decrease of ñ at the top of a peak in comparison with its initial value.
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interspecies interactions, the attenuation decreases with increasing UBB. There
is also a dip in the second-peak values for UAB = UAA. It is a sign of a complex
dynamics with a resonance for close values of the interaction parameters.

This section briefly summarized an investigation of a binary mixture of particles
in an optical lattice. Further details are presented in article [77]. Binary Bose–
Hubbard model (6.1) is a simple extension of the standard Bose–Hubbard model.
Interactions between particles influence the dynamics of both species in a nontrivial
way. The damping of revivals is the largest with a large interspecies interaction
UAB strength and a small intraspecies interaction strength UBB. In this case,
particles B do not repel each other and easily move in the lattice. They act as a
coupling between particles A, which causes a coherence loss.

6.2 Parallelization
I implemented a parallel version of the algorithm for one-dimensional models.
This section briefly summarizes my approach and presents the scaling performance
of the algorithm. Full details are explained in article [41]. The parallel algorithm
exhibits remarkable scalability, and allows to simulate complicated models with
large bond dimensions. Its trade-off is that the accuracy of results diminishes if
there are substantial truncations of virtual indices.

The basic idea is to divide the lattice into blocks, distribute the blocks among
compute nodes, and perform calculations on each block separately. Each node
keeps tensors that correspond to the assigned block only. The nodes holding
adjacent blocks exchange tensors corresponding to block boundaries as necessary.
The fundamental time-evolution operator is a two-site operator, so the minimum
size of a block is two sites.

The algorithm uses a representation from the original formulation of the TEBD
algorithm [17, 18]. A system state is decomposed into a set of tensors Γ carrying
one physical index σ and two virtual indices, and a set of diagonal tensors Λ
carrying two virtual indices. A wavefunction of the system takes the form [16]

|ψ⟩ =
∑

σ1,...,σL

Γσ1
1 Λ1Γσ2

2 Λ2 . . .ΛL−1ΓσL
L |σ1, . . . , σL⟩, (6.7)

where L is the length of the lattice, Γσi
i are tensors associated with the lattice

site i, and Λi are tensors associated with the bond between sites i and i+ 1. The
tensors utilize a matrix notation, so every Γσi

i and Λi is a matrix. The virtual
indices of Γσi

i correspond to its matrix indices and the physical index is denoted
by σi. Similarly, the virtual indices of Λi are identified with its matrix indices. A
multiplication of adjacent matrices denotes a tensor contraction over the respective
virtual indices of adjacent tensors.

The advantage of this representation is that the density matrix at a site i can
be obtained just from the site tensor Γσi

i and the diagonal bond tensors Λi−1 and
Λi. In each time-evolution step, a two-site operator is applied to a pair of adjacent
tensors, and the virtual indices connecting the pair are truncated [16–18, 81]. The
chosen representation makes it possible to do this independently for each pair of
lattice sites. If a pair of sites is separated by a boundary between blocks, one of
the tensors is first transferred to the adjacent compute node, the calculation is
performed on that node, and then the tensor is transferred back to the original
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node. The calculation of time evolution, which is the most time-consuming part
of the algorithm, is therefore performed in parallel.

To calculate the expectation value of a local operator, it is again sufficient to
work with local tensors only. For nonlocal operators, as is the quasimomentum
operator discussed in the previous section, it is necessary to sequentially contract
the full tensor network. The contraction starts on the node that keeps the block
corresponding to one lattice edge. The block tensors are contracted, and the
resulting tensor is transferred to the next node. The contraction then continues
on each node sequentially. The last node produces the final results. The process
is therefore serial and there is no parallel speedup. This part of the algorithm is
however substantially faster than the time-evolution calculation and represents
only a little hit on the total performance.

The parallel scaling is characterized by two measures — the strong and the
weak scaling. Strong scaling describes dependence of the calculation time on the
number of parallel processes for a fixed problem size. On the other hand, weak
scaling describes dependence of the calculation time on the number of parallel
processes when the problem size increases with the number of processes. Strong
scaling therefore shows what speedup can be achieved for a given problem, and
weak scaling shows how large problems can be solved with increased resources.

The measured scaling performance is shown in Figure 6.3. The calculation
involved a simulation of time evolution of the Bose–Hubbard model after a quench
that produced a quasimomentum collapse and its subsequent revivals. The strong
scaling benchmark was performed for two models with L = 65 and with L =
513 lattice sites. The obtained scaling is approximately linear with a factor of
about one-half of the perfect scaling. The weak scaling benchmark shows that
the calculation time stays constant if the lattice size and the number of compute
nodes are increased by the same factor simultaneously.

It was assumed that truncations of virtual indices can be performed for
each block independently. However, this assumption is invalid if the weights
of truncated states in the density matrix are too large [41, 82]. An accurate
truncation has to take into account all sites in the system. In the serial version of
the algorithm this is achieved by keeping the tensor network in a canonical state
and by reorthogonalizing the tensors sequentially. With parallel truncations and
without reorthogonalizing the tensors after each step, the truncations gradually
become less accurate. This is not a problem if the truncations are small. If
they are not, it is necessary to reorthogonalize the tensors after each step. This
effectively cancels the parallel speedup. This point has to be taken into account
if one wishes to use the parallel code. It is one of the reasons I implemented
the parallel version for one-dimensional models only. However, even the serial
calculation is inherently not accurate with large truncations. Therefore both the
serial and the parallel version of the algorithm are valid only in the case of limited
truncations.

The parallel TEBDOL uses Message Passing Interface (MPI) for communication
between nodes. It has been tested on several supercomputing clusters with various
MPI libraries. The code is optimized, and it could be easily extended to other
quantum models besides the Bose–Hubbard model. Further details about MPS
truncation and about the implementation are in Appendices A and B.
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Figure 6.3: Scaling benchmarks for the parallel TEBDOL.
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(a) Strong scaling benchmark for two models. Model A has L = 65 sites, N = 65
particles, and the hopping parameter of J = U/10. The calculation was performed
with bond dimensions up to D = 2000. Model B has L = 513 lattice sites,
N = 513 particles, the hopping parameter of J = U/25, and bond dimensions up
to D = 1000.
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(b) Weak scaling for three definitions of the problem size. The number of lattice
sizes L, the total number of particles N , and both parameters at the same time were
increased with the number of parallel processes M . The Bose–Hubbard hopping
parameter was J = 1/10, and the maximum bond dimension was D = 2000.
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7. Two-dimensional systems
This chapter presents an introduction to simulating the two-dimensional Bose–
Hubbard model with TTNS. I discuss the model properties and the important
calculation parameters. My program is called TEBDOL [41]. I also present a
comparison of time evolution of a small model obtained by exact diagonalization
and by TEBDOL. Several difficult systems are investigated in the following
chapters, in particular the phase revivals, boson expansion, and many-body
localization in two dimensions. The calculation in this chapter therefore serves as
an example.

7.1 Model
In this work I deal exclusively with the Bose–Hubbard model. The Hamiltonian
of a model with isotropic tunnelling (J = Jx = Jy) and with no external potential
is given by

Ĥ = −J
∑

⟨i,j⟩
â†

i âj + U

2
∑

i
n̂i (n̂i − 1) , (7.1)

where â†
i is the bosonic creation operator, âi is the bosonic annihilation operator,

n̂i = â†
i âi is the particle number operator, J is the hopping parameter, and U is

the on-site interaction parameter. The operators are indexed by the lattice site
i = (ix, iy). There are nearest-neighbour interactions only, so the angle brackets
denote sum over each pair of adjacent sites. The model assumes a square lattice
with open boundary conditions. In the following I set h̄ ≡ 1 to simplify the
discussion.

7.2 Parameters
Accuracy and performance of TEBDOL depend on a set of parameters. They
represent a trade-off between the calculation time and results accuracy. They are
also limited by the available computer resources such as the computer memory.
By choosing a suitable set of parameters, a calculation can finish in a reasonable
time and achieve a good approximation to the exact result.

The number of particles at a single site is unlimited due to the bosonic
commutation relations between âi and â†

i . It is necessary to limit this number in a
calculation. TEBDOL uses a parameter called physical dimension P that specifies
the local dimension. The possible number of particles is then 0, . . . , P − 1. If the
total number of particles N in the system is a small number, it is possible to set
P = N + 1 to cover all states. If the number of particles is large and U > 0, it is
sufficient to set P to a suitably large number because states with many particles
at a single site have very high energy and therefore low weight in the system
density matrix. This was the case in all performed calculations.

The next important parameter is the time step δt. It should satisfy δt ≪ J−1,
so the simulation can precisely capture the evolution during a single tunnelling
time. Also, the accuracy of the Suzuki–Trotter decomposition increases with
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decreasing time step. On the other hand, a small time step leads to an increase in
the total calculation time and to more truncations of the tensor network.

The TTNS algorithm is based on truncating off state components that do
not contribute substantially to the full state, that is they have low weight in the
density matrix. The truncation takes place after each application of a two-site
operator and also in the process of rearranging the network. In a tensor decom-
position, a tensor is reshaped into a matrix, and a singular value decomposition
is performed on this matrix. Let sk, k ∈ {1, . . . , Ds} be the singular values of a
particular decomposition. The singular values are real, nonnegative and sorted in
nonincreasing order, that is sk ≥ sk+1. TEBDOL uses two parameters to control
the truncation, ε and D. First, the smallest singular values are truncated off so
that the sum of squares of the truncated values is relatively smaller than ε. That
is, TEBDOL finds the smallest Dε for which the inequality

1 −
∑Dε

k=1 s
2
k∑Ds

k=1 s
2
k

≤ ε (7.2)

holds. If Dε is still larger than D, TEBDOL keeps only the first D singular
values. Parameter ε therefore controls the weight of truncated singular values,
and parameter D controls the number of truncated singular values. D is usually
called bond dimension.

TEBDOL does not normalize the singular values after a decomposition. This
leads to a decrease of the norm of a TTNS during the calculation. Therefore
each measured observable has to be divided by the norm squared. This division
is not explicitly stated in the expressions to keep them compact. A calculation
typically starts with a TTNS with a unit norm. The decrease of norm corresponds
to the weight of the states that were dropped from the full state description.
It therefore serves as a measure of the accuracy of the result. The results are
more accurate if the norm stays close to unity. If there is a lot of entanglement
generated during the time evolution, the norm tends to decrease and approach
zero quickly. The accuracy of the results is limited in this case. Parameter D
has the largest influence on the norm. If the norm is too small, it could help to
increase D. On the other hand, larger ε leads to significantly shorter calculation
times. It also influences the norm negatively but less than D.

The parameters should be set in the following order. A physical dimension P
depends on the problem being solved. A suitable time step δt is obtained from the
parameters of the Bose–Hubbard model. I typically use δt = 1/16 J−1. Truncation
limit ε should be set low enough to keep all important states in the TTNS, but
high enough to discard very small singular values. Small singular values are often
numerical artefacts, they significantly increase the calculation time, and introduce
numerical instabilities. I use values in the range 10−7 < ε < 10−6. Finally, D
should be set as large as possible considering the required computation time. I
use values in the range 512 ≤ D ≤ 1024 to finish a calculation in several days on
a single computer.

7.3 Comparison to exact diagonalization
Exact diagonalization is a method that gives accurate time evolution of a quantum
system limited only by the precision of a computing architecture. Its computation
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Figure 7.1: The initial state in the example calculation is a product state of
three particles located in the bottom left corner of the 5 × 5 lattice. The grid
represents lattice sites and the balls represent particles. The measured quantity is
the particle density n5,4(t) at the site with coordinates (5, 4).

n5,4(t)

complexity grows exponentially with the system size. It is therefore limited to
very small systems. I used exact diagonalization to calculate dynamics of the
Bose–Hubbard model with several particles on a small lattice and compared the
results to the results obtained with TEBDOL.

The system in question is the Bose–Hubbard model on a two-dimensional
lattice with 5 × 5 sites and with three particles. The hopping parameter of the
model is J = U . The particles are initially located at sites with coordinated (1, 1),
(2, 1), and (3, 1), and they are in a product state (Figure 7.1),

|ψ(t = 0)⟩ = â†
1,1â

†
2,1â

†
3,1|0⟩, (7.3)

where |0⟩ is the vacuum state with zero particles. The system then evolves in
time, and because both J and U are nonzero, this evolution is complicated. The
measured quantity is the expected particle number at a site with coordinates
(5, 4),

n(t) = ⟨ψ(t)|n̂5,4|ψ(t)⟩. (7.4)
I implemented a simple exact diagonalization procedure with particle number

conservation. The dimension of the corresponding Hilbert space is 2925, and
its Hamiltonian has 26625 nonzero elements. The numerical diagonalization is
a simple task that can be calculated in the order of seconds. The calculation
time for TEBDOL is very short as well. The model captures all important effects,
namely the particle hopping and the repulsive interactions between particles. It
serves as a good tool for establishing the correctness of the algorithm and to
investigate the role of the parameters in TEBDOL. The physical dimension was
P = 4, and there was no truncation threshold, that is ε = 0.

The following figures compare the results from exact diagonalization and
from TEBDOL. Figure 7.2 shows the particle density n5,4(t) obtained from exact
diagonalization and from TEBDOL for three values of D. Figure 7.3 presents
the same data as a difference between the TEBDOL results and the exact-
diagonalization results. As expected, the results become more accurate with
increasing D. However, the precise error dependence on D is complicated.
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Figure 7.2: Comparison of the results calculated with exact diagonalization (ED)
and with TEBDOL for three values of the maximum bond dimension D. Time
step in TEBDOL was δt = 1/16 J−1. The figure shows the particle density n5,4 at
the site with coordinates (5, 4). The accuracy of the results increases with D.
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Figure 7.4 shows the error dependence on a decreasing time step δt. Again,
the results become more accurate with decreasing time step. Figure 7.5 shows
the same data as error ratios. In contrast to the dependence on D, the error is
regular in time, that is the evolution of error has a similar shape for all three
values of δt but differs in magnitude. It is important to note that due to a large
value of D = 32, there are practically no truncations during the evolution. For a
complicated calculation with more truncations, the dependence on δt would be
less regular.

7.4 Convergence properties
The comparison above shows that the TEBDOL results converge to the exact
values with increasing bond dimension and with decreasing time step. The exact
dependence of the accuracy on the calculation parameters is complicated. It is
therefore necessary to check convergence by increasing D and decreasing δt. A
good measure of accuracy is the TTNS norm. If it is close to unity, then just a
small portion of the important part of a TTNS was truncated away.

After the convergence in D has been established, the next task is to check
convergence in δt. If the full simulated time interval is T , the number of required
time steps is M = T/δt. The error is obtained by considering the second-order
Suzuki–Trotter approximations at each time step,

e−iĤT =
(
e−iĤδt

)M
= [U(δt)]M + O(Mδt3) = [U(δt)]M + O(Tδt2), (7.5)
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Figure 7.3: Comparison of the results calculated with TEBDOL and with exact
diagonalization for three values of the maximum bond dimension. Time step in
TEBDOL was δt = 1/16J−1. Particle densities nT

5,4 and nE
5,4 are the densities at the

site with coordinates (5, 4) obtained from TEBDOL and from exact diagonalization,
respectively. Their difference decreases with the increasing bond dimension D. Its
absolute value is below 6 × 10−4 for D = 32.
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Figure 7.4: Comparison of results calculated with TEBDOL and with exact
diagonalization for three values of the time step. The maximum bond dimension
was D = 32 in the TEBDOL calculation. Particle densities nT

5,4 and nE
5,4 are the

densities at the site with coordinates (5, 4) obtained from TEBDOL and from
exact diagonalization, respectively. Their difference decreases with the decreasing
time step δt in TEBDOL. Its absolute value is below 4 × 10−5 for δt = 1/64 J−1.
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Figure 7.5: Ratio of the errors for three values of the time step. The maximum
bond dimension was D = 32. Particle densities nA

5,4 and nB
5,4 were obtained from

TEBDOL with time steps δtA and δtB, respectively. Particle density nE
5,4 was

obtained from exact diagonalization.
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where U(δt) is the exponential expansion. The error O(Tδt2) increases linearly
with the length of the simulated time interval and quadratically with the time
step. By doubling the time step, the error increases four times. This is the reason
that the error ratio in Figure 7.5 is close to four. Deviations from the value of
four are caused by the errors in the denominator being close to zero.

In summary, the convergence in δt for the second-order Suzuki–Trotter expan-
sion is of a quadratic nature. It is possible to repeat the calculation for several
decreasing values of τ and to use the quadratic dependence for τ → 0 in order to
obtain an accurate result. However, this approach assumes that D is sufficiently
large.
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8. Phase revivals
Periodic phase collapses and revivals represent a well-known effect that takes
place in a gas of ultracold atoms confined to an optical lattice [34, 77, 79, 80,
83–88]. The effect originates from a nonequilibrium evolution of the system after
performing a quantum quench. It is well accessible experimentally. In the chapter
on modelling one-dimensional systems, I discussed phase revivals in a binary
mixture of particles in one-dimensional optical lattices. This chapter deals with
single-species dynamics in a two-dimensional lattice.

8.1 Model
The system is described by the two-dimensional Bose–Hubbard model with open
boundary conditions on a square lattice. The model further assumes independent
hopping in the x and y directions. Its Hamiltonian is given by

Ĥ = − Jx

Lx−1∑

ix=1

Ly∑

iy=1

(
â†

ix,iy
âix+1,iy + â†

ix+1,iy
âix,iy

)

− Jy

Lx∑

ix=1

Ly−1∑

iy=1

(
â†

ix,iy
âix,iy+1 + â†

ix,iy+1âix,iy

)

+ U

2

Lx∑

ix=1

Ly∑

iy=1
n̂ix,iy

(
n̂ix,iy − 1

)
,

(8.1)

where Lx is the lattice width, Ly is the lattice height, â†
ix,iy

is the creation operator
at the site with coordinates (ix, iy), âix,iy is the annihilation operator at (ix, iy),
and n̂ix,iy is the particle number operator at (ix, iy). The model has two hopping
parameters Jx, Jy, and an on-site interaction parameter U . The energy scale is
defined by the parameter U and by setting h̄ ≡ 1.

Initially, the parameters of the Hamiltonian (8.1) are Jx ̸= 0, Jy ̸= 0, and
U = 0. The system is in the ground state of the Hamiltonian. The choice of
the parameters corresponds to the ground state being a superfluid state. Each
particle is delocalized across the lattice. The initial state is given by [80]

|ψ⟩ = 1√
N !NN

⎛
⎝

Lx∑

ix=1

Ly∑

iy=1
αix,iy â

†
ix,iy

⎞
⎠

N

|0⟩, (8.2)

where N is the total number of particles, and αix,iy is the amplitude associated
with the site (ix, iy). The model assumes open boundary conditions, which lead
to amplitudes given by [80]

αix,iy =
√

2N
(Lx + 1) (Ly + 1) sin

(
π

Lx + 1ix
)

sin
(

π

Ly + 1 iy
)
. (8.3)

Phase revivals are conveniently observed in the quasimomentum distribution.
The mean number of particles with quasimomentum (q, r) is given by [80]

n(q, r; t) = 1
LxLy

Lx∑

ix=1

Ly∑

iy=1

Lx∑

i′
x=1

Ly∑

i′
y=1

⟨â†
ix,iy

âi′
x,i′

y
⟩te

ialat[q(ix−i′
x)+r(iy−i′

y)], (8.4)
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where (ix, iy) and (i′x, i′y) are positions of lattice sites, alat is the lattice constant,
and ⟨â†

ix,iy
âi′

x,i′
y
⟩t are the single-particle density matrix elements given by

⟨â†
ix,iy

âi′
x,i′

y
⟩t = ⟨ψ|eiĤtâ†

ix,iy
âi′

x,i′
y
e−iĤt|ψ⟩. (8.5)

Similarly to the one-dimensional case, the particle density with quasimomentum
(q, r) = (0, 0) is defined by

n(t) ≡ n(0, 0; t) = 1
LxLy

Lx∑

ix=1

Lx∑

i′
x=1

Ly∑

iy=1

Ly∑

i′
y=1

⟨â†
ix,iy

âi′
x,i′

y
⟩t. (8.6)

The particle density n(t) corresponds to the height of the central peak in a two-
dimensional time-of-flight measurement data. It depends on the total number of
particles. To compare systems with unequal numbers of particles, it is convenient
to define the normalized particle number

ñ(t) = n(t)
n(0) . (8.7)

At the time t = 0, the parameters are suddenly changed to Jx, Jy and U ̸= 0.
Nonzero U leads to nonequilibrium time-evolution. If Jx = Jy = 0, the problem
can be solved analytically, and the model exhibits perfect oscillations of the
quasimomentum distribution. For nonzero Jx and Jy, the revivals are suppressed,
and dynamics becomes complicated. The aim is to investigate the dependence
of the revivals on Jx and Jy. Due to rapid entanglement growth in models with
strong tunnelling, the study is limited to small values of Jx and Jy [89].

8.2 Calculation
The model was simulated on a 5 × 5 lattice with N = 25 particles. The calculation
was performed for Jx = 0U , 1/32U , 1/16U , and 1/8U , and for the same values of
Jy. The case with Jx = Jy = 0 corresponds to the perfect revivals. The calculation
parameters were chosen as follows:

• Physical dimension was set to P = 16. Due to a large value of U compared
to Jx and Jy during the time evolution, the probability that many particles
occupy a single site is very low. This value of P is sufficient to cover the
most relevant part of the Hilbert space.

• The bond dimension was scaled dynamically with parameters ε = 232 ×εm ≈
4.77 × 10−7 and D = 512, where εm ≈ 1.11 × 10−16 is the double-precision
machine epsilon in the IEEE 754 standard. The smallest singular values,
whose sum was relatively smaller than ε, were truncated after each tensor
decomposition. When there remained more than D states, TEBDOL further
truncated the smallest values, so there were D singular values kept at most.

• The time step in the second-order Suzuki–Trotter approximation was set to
δt = 1/8U−1.

• The simulated time interval was T = 16U−1.
The accuracy of the results was measured by the TTNS norm. The norm at the
end of simulation was ∥ψ∥ ≈ 0.52 for the most difficult case with Jx = Jy = 1/8U .
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Figure 8.1: Normalized quasimomentum revivals on a two-dimensional 5 × 5
lattice with N = 25 particles, for horizontal hopping strength Jx = 0U , and for
vertical hopping strengths Jy = 0U , 1/32U , 1/16U , and 1/8U . The model with
Jx = Jy = 0U exhibits perfect revivals.
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8.3 Results
The evolution of the central peak of the quasimomentum distribution is shown
for Jx = 0U in Figure 8.1, for Jx = 1/32U in Figure 8.2, for Jx = 1/16U in
Figure 8.3, and for Jx = 1/8U in Figure 8.4. Comparing to perfect revivals with
Jx = Jy = 0, the revivals are attenuated for increasing values of Jx and Jy.

For values of both Jx and Jy below 1/16U , the revivals are clearly visible. All
peaks are in same positions as in the case of perfect revivals. For Jx = 1/8U ,
only the first peak is recognizable. The phase coherence is completely lost at later
evolution times.

8.4 Conclusions
I studied quantum-phase collapse and revivals in the two-dimensional Bose–
Hubbard model that occur after a quantum quench from the superfluid regime
to the Mott-insulator regime. The hopping parameters in the x and in the y
direction were chosen independently. The results show the influence of unequal
hopping on the system dynamics. I have found that the revivals are increasingly
attenuated with increasing hopping strength in both directions. The calculation
serves as an extension of a problem thoroughly studied in one-dimensional numer-
ical investigations to two-dimensional systems. Additionally, collapse and revival
experiments are easy to perform in optical lattices. The results can be useful
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Figure 8.2: Normalized quasimomentum revivals on a two-dimensional 5 × 5
lattice with N = 25 particles, for horizontal hopping strength Jx = 1/32U , and
for vertical hopping strengths Jy = 0U , 1/32U , 1/16U , and 1/8U .
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Figure 8.3: Normalized quasimomentum revivals on a two-dimensional 5 × 5
lattice with N = 25 particles, for horizontal hopping strength Jx = 1/16U , and
for vertical hopping strengths Jy = 0U , 1/32U , 1/16U , and 1/8U .
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Figure 8.4: Normalized quasimomentum revivals on a two-dimensional 5×5 lattice
with N = 25 particles, for horizontal hopping strength Jx = 1/8U , and for vertical
hopping strengths Jy = 0U , 1/32U , 1/16U , and 1/8U .
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for comparing experimental and numerical data, and possibly for extracting the
values of Jx/U and Jy/U from the experimental results.

A further improvement would be a model with 7 × 7 lattice sites and with 49
particles. Such calculation is currently achievable with TEBDOL. However, the
calculation time is substantially longer than for 5 × 5 lattice with 25 particles.
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9. Boson expansion
Boson expansion is a problem in quantum dynamics in which an initially localized
cloud of ultracold atoms expands in a homogeneous optical lattice [36, 90]. The
experiment starts with atoms localized in the lattice centre. There is a single atom
at each occupied site with no entanglement between sites. The lattice potential
is lowered, and particles start to move in the lattice. It has been observed that
the velocity of cloud expansion depends on the particle interaction strength and
surprisingly also on dimensionality of the system [36].

The one-dimensional problem was solved in both limiting cases, that is for
noninteracting particles and for hard-core bosons [76, 91, 92]. While the behaviour
for noninteracting particles in two dimensions is similar to the one-dimensional case,
the dynamics of strongly interacting bosons is very different. The experiment [36]
has shown that in one dimension, the expansion is ballistic, while in two dimensions
the expansion is suppressed and particles tend to stay in the lattice centre. The
problem therefore serves as a interesting system for studying a crossover from one
to two dimensions.

The system is described by the Bose–Hubbard model. In one dimension, the
expansion velocity is the largest for noninteracting particles with U = 0. Expansion
is suppressed with increasing interaction strength, both attractive and repulsive.
The minimal velocity is attained at about U ≈ 4 J . The expansion velocity then
increases, and for large U it approaches the same value as for vanishing U [36].

The behaviour differs in two-dimensional lattices. Again, the expansion velocity
is the largest for noninteracting particles. However, it decreases with growing
interaction strength. For large U the velocity approaches zero. It means that
the expansion of atomic cloud is severely suppressed. Atoms are localized in the
initial position for very long evolution times.

In this chapter I report on a study of boson expansion with TEBDOL [41].
The problem requires a fairly large lattice, therefore the calculation parameters
were optimized for a simulation with many sites. In particular, I followed the
approach from article [90] and assumed strongly interacting particles modelled
by hard-core bosons. The physical dimension of hard-core bosons is P = 2. This
value decreases the numerical complexity of the problem and leads to simulations
of larger lattices and to longer evolution times.

9.1 Model
The system is described by the two-dimensional Bose–Hubbard model on a square
lattice with open boundary conditions. The model assumes hard-core bosons, that
is there can be only zero or one particle at a single site. Its Hamiltonian is given
by

Ĥ = − Jx

Lx−1∑

ix=1

Ly∑

iy=1

(
â†

ix,iy
âix+1,iy + â†

ix+1,iy
âix,iy

)

− Jy

Lx∑

ix=1

Ly−1∑

iy=1

(
â†

ix,iy
âix,iy+1 + â†

ix,iy+1âix,iy

)
,

(9.1)
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Figure 9.1: The initial states in the experiment of bosonic expansion are atomic
clouds located in the lattice centre. The clouds are in product states with one
particle per site. The grid represents the sites of an optical lattice, and the balls
represent the particles in the lattice.

(a) The initial state in the one-dimensional expansion.

(b) The initial state in the two-dimensional expansion.

where Lx is the lattice width, Ly is the lattice height, â†
ix,iy

is the creation operator
at the site with coordinates (ix, iy), and âix,iy is the annihilation operator at (ix, iy).
The hopping is independent in the x and y directions and given by the parameters
Jx and Jy. The units are set by choosing the lattice constant alat ≡ 1 and the
reduced Planck constant h̄ ≡ 1.

The experiment proceeds as follows. Initially, an atomic cloud is prepared in
the centre of the lattice (Figure 9.1). The cloud is in a product state with one
particle per site,

|ψ(t = 0)⟩ =
∏

(ix,iy)∈I

â†
ix,iy

|0⟩, (9.2)

where I is a set of indices of initially occupied sites. The lattice depth is then
quickly reduced to introduce a hopping between adjacent sites. The resulting
quench represent a change from Jx = Jy = 0 to Jx ≥ 0 and Jy ≥ 0. The atomic
cloud then starts to expand.
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The radius of the cloud in the x and in the y direction is defined by [90]

Rx(t) =

√ 1
N

Lx∑

ix=1

Ly∑

iy=1
⟨n̂ix,iy(t)⟩(ix − i0x)2,

Ry(t) =

√ 1
N

Lx∑

ix=1

Ly∑

iy=1
⟨n̂ix,iy(t)⟩(iy − i0y)2,

(9.3)

where N is the total number of particles, ⟨n̂ix,iy(t)⟩ is the expectation value of the
particle density at the site with coordinates (ix, iy), i0x is the centre of mass in the
x direction, and i0y is the centre of mass in the y direction. To better extract the
velocity, the initial constant part is subtracted from the squared radius to obtain

R̃x(t) =
√
R2

x(t) −R2
x(0),

R̃y(t) =
√
R2

y(t) −R2
y(0).

(9.4)

The radial expansion velocities in the x and in the y direction are then defined by

vx = ∂R̃x(t)
∂t

,

vy = ∂R̃x(t)
∂t

.

(9.5)

9.2 Calculation
The model was simulated on a 16 × 16 lattice with an initial block of 6 × 6
particles. The calculation was performed for a set of values of Jy in the interval
0.0 Jx ≤ Jy ≤ 1.0 Jx. The case with Jy = 0.0 Jx is effectively a one-dimensional
model. The calculation parameters were chosen as follows:

• Physical dimension was set to P = 2. This value corresponds to hard-core
bosons with zero or one particle at a single site.

• The bond dimension was scaled dynamically with parameters ε = 232 ×εm ≈
4.77 × 10−7 and D = 512, where εm ≈ 1.11 × 10−16 is the double-precision
machine epsilon in the IEEE 754 standard. The smallest singular values,
whose sum was relatively smaller than ε, were truncated after each tensor
decomposition. When there remained more than D states, TEBDOL further
truncated the smallest values, so there were D singular values kept at most.

• The time step in the second-order Suzuki–Trotter approximation was set to
δt = 1/16 J−1

x .

• The simulated time interval was T = 1.5 J−1
x . Even though it was possible

to reach longer times, the accuracy of the results quickly decreased due
to the increased entanglement in the system and larger truncations of the
tensor network.

The accuracy of the results was measured by the TTNS norm. The norm at
t = 1.5 J−1

x was ∥ψ∥ ≈ 0.82 for the most difficult case with Jy = 1.0 Jx. The norm
decreased rapidly for longer times, for example ∥ψ∥ ≈ 0.45 for t = 2.0 J−1

x and
∥ψ∥ ≈ 0.20 for t = 2.5 J−1

x .
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Figure 9.2: Expansion of a 6 × 6 atomic cloud on a 16 × 16 lattice for Jy = 0.0 Jx.
The figure shows the particle density at three distinct times t. There is no hopping
in the y direction, therefore this case corresponds to the one-dimensional dynamics.

t = 0.0 J−1
x

0.0 0.2 0.4 0.6 0.8 1.0
Density n(ix, iy)
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x t = 1.5 J−1

x

9.3 Results
The numerical results for one-dimensional models were presented in [36]. In [90],
the numerical study was extended to small two-dimensional systems with initial
blocks with sizes 2 × 2, 3 × 3, and 4 × 4 in a 12 × 12 lattice. Furthermore, the
dynamics on cylinders and ladders was investigated in the latter article as well.

The results of a simulation with TEBDOL for a 6 × 6 block in a 16 × 16 lattice
are presented here. The evolution of particle density is shown for Jy = 0.0 Jx in
Figure 9.2, for Jy = 0.5 Jx in Figure 9.3, and for Jy = 1.0 Jx in Figure 9.4. The
figures show particle density at three distinct evolution times t = 0.0 J−1

x , 1.0 J−1
x ,

and 1.5 J−1
x .

The results confirm that a 16 × 16 lattice is large enough for a simulation up to
t = 1.5 J−1

x . The expanded cloud does not reach the lattice edges during this time
interval. The model with Jy = 0.0 Jx is effectively one-dimensional. Its dynamics
therefore does not depend on the y coordinate. The case with Jy = 0.5 Jx can
represent a crossover from the one-dimensional dynamics to the two-dimensional
dynamics. The last figure with Jy = 1.0 Jx represents a full two-dimensional model
with equal hopping in both directions.

The dependence of the expansion velocities vx and vy on the hopping strength
Jy is shown in Figure 9.5. The velocity in the one-dimensional model, obtained
from an analytic solution, is given by vx =

√
2 Jx [36]. The expansion in the x

direction is suppressed with increasing Jy. The exact values of the velocities are
time dependent. The results therefore change slightly if a different time interval
is used for the linear velocity fit. I followed the article [90] and used the interval
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Figure 9.3: Expansion of a 6 × 6 atomic cloud on a 16 × 16 lattice for Jy =
0.5 Jx. The figure shows the particle density at three distinct times t. This
case corresponds to a crossover from the one-dimensional to the two-dimensional
dynamics.
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Figure 9.4: Expansion of a 6 × 6 atomic cloud on a 16 × 16 lattice for Jy =
1.0 Jx. The figure shows the particle density at three distinct times t. This case
corresponds to the isotropic two-dimensional dynamics.
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Figure 9.5: The dependence of the expansion velocities vx and vy on the hopping
strength Jy. The case with vanishing Jy corresponds to the one-dimensional
dynamics, where the analytic solution leads to the velocity vx =

√
2 Jx [36].
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x for the fit. The results can be therefore directly compared
to the results published previously [90]. The expansion is more suppressed for a
6 × 6 block than for smaller blocks.

9.4 Conclusions
In this chapter I investigated the expansion of a bosonic atomic cloud in a
two-dimensional optical lattice. The model assumed a large on-site interaction
strength with particles represented by hard-core bosons. I studied the dependence
of the cloud expansion velocity in the x and in the y direction on the hopping
strength in the y direction. The results describe a continuous crossover from the
one-dimensional to the two-dimensional dynamics for small Jx and Jy.

I have found that the expansion velocity was suppressed in the x direction
and enhanced in the y direction with increasing hopping strength Jy. The final
velocity in both directions for Jx = Jy was less than 70% of the velocity in the x
direction for vanishing Jy. The results confirm that the suppression takes place in
the two-dimensional Bose–Hubbard model with hard-core bosons.

This effect was already observed in a calculation with a block of 4 × 4 particles
on a 12 × 12 lattice [90]. I improved the calculation to a 6 × 6 block on a 16 × 16
lattice. A further improvement would be to model a block of 7×7 or 8×8 particles.
It is expected that the expansion velocity would be suppressed even more in these
cases, especially considering that the number of particles in the cloud bulk would
be significantly larger than the number of particles at its boundary.
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10. Many-body localization
Interacting physical systems tend to thermalize. They usually reach thermal
equilibrium after evolving for a period of time. The properties of a system in
thermal equilibrium can be described by a few physical parameters like its volume
and temperature. However, not all physical systems thermalize. For example,
integrable systems represent one category of systems that do not exhibit this
behaviour [93].

Recently, it has been observed that some interacting systems with random
disorder potential do not thermalize. This effect is similar to Anderson localiza-
tion [94], but it happens in many-body systems. The term many-body localization
(MBL) encompasses all phenomena in which a system does not thermalize due to
interactions between its particles [95, 96].

Advanced experimental control of ultracold atoms has led to investigation of
MBL in optical lattices [40]. They have shown that MBL indeed takes places here.
For example, authors of the experiment [40] observed MBL in a two-dimensional
optical lattice. They found a critical strength of the disorder potential that
separates the system behaviour into thermalization and localization. The limited
applicability of analytic and numerical methods to two-dimensional systems makes
it hard to corroborate their findings. Additionally, the precise range of parameters
that lead to localization is largely unknown.

In this section I present the results of investigation of MBL numerically using
TEBDOL [41]. I have tried to reproduce results from the experiment [40], so the
setup closely follows the experimental setup where applicable.

10.1 Experimental setup
The authors prepared a two-dimensional optical lattice with a lattice constant
alat = 532 nm. The harmonic potential constrained the lattice size to about 31×31
sites. They created a Mott insulator of bosonic 87Rb atoms in the shape of a circle
located in the centre of the trap with approximately one particle per occupied
site. Right half of the atoms located at x > 0 was then removed using a light
modulator based on a digital-mirror device (DMD). The initial state was therefore
a product state of about N = 125 atoms localized in the left half of the lattice.

Next, the authors projected a random disorder potential onto the lattice.
A new potential was generated for each of about 50 experimental realizations.
Optical properties of the experiment caused that the disorder strength was not
statistically independent at different sites. The authors measured a finite disorder
correlation length of 0.6 alat. Additionally, the measured disorder distribution was
not symmetric with respect to the distribution mean.

The initial domain wall was then lowered by decreasing the lattice depth from
40Er to 12Er, where Er = h2/8ma2

lat is the recoil energy, h is the Planck constant,
and m is the atomic mass of 87Rb. The system evolved for a time t = 187 τ ,
where τ = h̄/J is the tunnelling time and J is the nearest-neighbour hopping
strength in the Bose–Hubbard model. Afterwards, a single-site–resolved local
density was measured. The measurement was parity-projected, so there was no
difference between zero and two particles in the density measurement. However,
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the authors expected that the occupation numbers of three or more particles are
negligible. They estimated the number of doubly-occupied sites to about 2% for
weak disorder and to about 9% for strong disorder.

The authors then analyzed the asymmetry in the x direction of the measured
particle density. They found that for small disorder, the system evolved into a
symmetric state that corresponds to thermal equilibrium. For large disorder, the
particle density stayed asymmetric even for large evolution time t. Using simple
double-linear fitting, the authors were able to determine the critical disorder that
separates the two outcomes. The system thermalizes for smaller disorder strengths
and stays localized for larger disorder strengths.

10.2 Model
The system of atoms in an optical lattice corresponding to the experiment [40] is
described by a Hamiltonian

Ĥ = −J
∑

⟨i,j⟩
â†

i âj + U

2
∑

i
n̂i (n̂i − 1) +

∑

i
(Vi + δi) n̂i, (10.1)

where â†
i is the bosonic creation operator, âi is the bosonic annihilation operator,

n̂i = â†
i âi is the particle number operator, J is the hopping parameter, U is the

on-site interaction parameter, Vi is the harmonic trapping potential, and δi is
the random disorder potential. The operators and the potentials are indexed
by the lattice site i = (ix, iy). The sites form a two-dimensional rectangular
lattice with Lx sites in the x direction and Ly sites in the y direction. There
are nearest-neighbour interactions only, so the angle brackets denote each pair
of adjacent sites. Each site in the bulk of the lattice has four adjacent sites, and
sites at the lattice boundary have three or two adjacent sites due to the open
boundary conditions.

The lattice size with Lx = Ly = 31 and N = 125 particles is way too large
for numerical investigation. I therefore investigated smaller lattices with fewer
particles, but kept other parameters as close to the experiment as possible.

10.3 Trapping potential
The harmonic potential in the experiment [40] is given by

Vi = malat

2
(
ω2

xi
2
x + ω2

yi
2
y

)
, (10.2)

where ωx = 2π × 54 Hz and ωy = 2π × 60 Hz. The origin of the coordinate system
is in the lattice centre. The strength of the potential determines the average
energy per particle EA = E0/N , where E0 is the energy of the initial state. EA

encompasses both thermal and potential energy. The authors measured that
EA = 0.28(3)U in the experiment.

Because I modelled a smaller lattice with fewer particles, the original ωx and
ωy were too small to keep the atoms confined in the trap. On the other hand, the
average energy per particle serves as a good measure of the potential strength. I
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therefore fixed EA for the initial distribution of particles and calculated ωx and ωy

from EA. Additionally, the same potential strength was used in both directions,
that is ω = ωx = ωy. In contrast to the experiment, I did not consider any thermal
contribution to the energy of the initial state.

The particles were initially in a product state. They formed an approximate
half-circle. There was either no particle at a site or a single particle at a site. I
first calculated the dimensionless quantity

Ẽ0 =
∑

ix,iy

nix,iy

(
i2x + i2y

)
, (10.3)

where nix,iy is the number of particles at a site with coordinates (ix, iy). The
harmonic potential strength for a fixed EA was then given by

malatω
2

2 = NEA

Ẽ0
. (10.4)

I used two values of EA in the calculations, the original value from the experiment,
EA = 0.28U , and one half of it, EA = 0.14U . Due to the open boundary conditions,
the particles were also confined by the infinite potential walls represented by the
lattice edges.

10.4 Disorder potential
The random disorder potential in the MBL experiment [97] was created by a
DMD, which converted a Gaussian laser intensity profile into a two-dimensional
random intensity distribution. The authors observed correlations of the intensities
at different sites. They presented a method to obtain a comparable random
intensity distribution numerically [97]. First, they squared every element of a two-
dimensional array of random numbers between zero and one, and then convolved
the array with a normalized Gaussian. The distribution the original random
numbers were taken from was not specified. I denote this distribution by R.

The authors noted that in their numerical simulation of a noninteracting
system the observables depended only slightly on the exact distribution of the
potential when they fixed the spatial correlations of the pattern. Additionally, they
found little difference when replacing the distribution with a symmetric Gaussian.
On the other hand, I wanted to create a random disorder potential as close to the
potential realized in the experiment as possible. This way all possible influences
of the potential correlations and the potential distribution on the dynamics of the
system could be modelled. I first tried to reproduce the measured distribution
by using the uniform distribution as R, but this unfortunately did not yield the
expected results. I therefore analyzed the experimental setup in more detail.

The authors created the disorder potential by a DMD with 1024 × 768 binary
pixels. They focused about 7 × 7 pixels on a single site. If a pixel in the DMD has
equal probability of being on and off, the sum of values of 7 × 7 pixels corresponds
to the binomial distribution

f(k;n, p) =
(
n

k

)
pk(1 − p)(n−k), (10.5)
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Figure 10.1: Distribution of the random disorder potential generated by the
algorithm described in the text. The final distribution is obtained for two initial
distributions R, the binomial distribution and the uniform distribution. When R
is the binomial distribution, the final distribution models the measured disorder
better. Both distributions are rescaled so that their full-width at half-maximum
∆ equals one.
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with n = 49 and p = 1/2. The range of the binomial distribution is a set {0, . . . , n},
and the probability of obtaining a sample k is f(k;n, p). I rescaled the samples
by dividing them by n. The resulting numbers are therefore in the expected
range between zero and one. Using the binomial distribution as R gives the final
disorder distribution that better models distribution presented in the article [40].
Figure 10.1 compares the final distributions when R is the uniform distribution
and when R is the binomial distribution. The exact algorithm used to create the
random disorder potential is as follows:

1. Create a two-dimensional array A with dimensions Lx+Lg−1 and Ly+Lg−1,
where Lg is the size of discrete Gaussian kernel. I used Lg = 9.

2. Assign each element of A a random number (s/49)2, where s is a random
sample taken from the binomial distribution f(k; 49, 1/2).

3. Convolve A with a normalized two-dimensional Gaussian kernel of size
Lg × Lg with a standard deviation of 0.5 alat to create an array B with the
disorder potential [97]. The dimensions of B are Lx and Ly.
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10.5 Numerical setup
The lattice size of 31 × 31 sites with 125 particles is too large for numerical
calculations. I therefore decided to investigate MBL in a smaller system. The
simulated lattice size was 6 × 6 sites with 6 particles. Naturally, the amount of
entanglement between particles created during the time evolution in this system
is limited. However, the dynamics is similar to the original system.

The initial state is a product state

|ψ(t = 0)⟩ =
∏

i∈I

a†
i |0⟩, (10.6)

where I = {(2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (3, 5)} is a set of initially filled site
coordinates, and the coordinate (1, 1) corresponds to the site in the bottom left
corner of the lattice. There is a single particle at each site in I. Figure 10.2a
shows the distribution of particles in the initial state.

The time evolution is governed by the Hamiltonian (10.1). The energy scale
is determined by J , and the hopping parameter is U = 24.4 J . The harmonic
potential Vi is specified by the energy per particle EA as described earlier. The
disorder distribution is rescaled so that its full-width at half-maximum (FWHM)
is ∆. For ∆ = 0 J there is no disorder and the dynamics is constrained by the
trapping potential only. In accordance with the experiment, ∆ was varied from
∆ = 0 J to ∆ = 18 J . The expected behaviour is that for small ∆ the system
thermalizes, atoms delocalize in the trap, and the final state is spatially symmetric
(Figure 10.2b). For large ∆, the evolution is restricted, and there are still traces
of the original asymmetry even after long evolution times (Figure 10.2c).

There are several measures of the density asymmetry. To follow the experiment,
I examined the density imbalance I and the density deviation δn. Density
imbalance is a normalized difference between the total density in the left and the
right part of the lattice. Density deviation is a difference between the density
distribution and a thermalized density distribution.

To define the density imbalance, the particle density in the left part of the
lattice, NL, and the particle density in the right part of the lattice, NR, are first
defined by

NL =
∑

i∈L

⟨ψ(t)|n̂i|ψ(t)⟩,

NR =
∑

i∈R

⟨ψ(t)|n̂i|ψ(t)⟩,
(10.7)

where L and R are the sets of site coordinates for the left part and for the right
part of the lattice, respectively. The density imbalance is then given by [40]

I(L,R) = NL −NR

NR +NR

. (10.8)

The set of sites used for calculating the imbalance was restricted in the experiment,
where the authors took into account only a central five-sites-wide strip in the y
direction. I take into account a two-site-wide strip,

L2 = {(x, y) | x = {1, 2, 3}, y = {3, 4}} ,
R2 = {(x, y) | x = {4, 5, 6}, y = {3, 4}} , (10.9)
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Figure 10.2: An outline of the MBL calculation in a 6 × 6 lattice with N = 6
particles. The lattice potential is a sum of a harmonic trapping potential and a
random disorder potential.

(a) The initial state is a product state of
6 particles in a shape of an approximate
half-circle. There is one particle at each
occupied site.

(b) If the particle density distribu-
tion evolves into a circularly symmetric
shape, it is assumed that the system
has thermalized.

(c) If the particle density distribution
shows traces of asymmetry even for
large evolution times, it is assumed that
the system has not thermalized.

(d) Asymmetry measures are calculated
either by taking into account all sites
in the y direction or just the central
two-site-wide strip.

69



and define the density I2 = I(L2, R2). I also analyze the asymmetry calculated
from a full width of six sites,

L6 = {(x, y) | x = {1, 2, 3}, y = {1, . . . , 6}} ,
R6 = {(x, y) | x = {4, 5, 6}, y = {1, . . . , 6}} , (10.10)

and define the imbalance I6 = I(L6, R6). The two sets of sites are shown in Figure
10.2d).

The density deviation is given by [40]

δn(Y ) =
√∑

ix

[nix(0;Y ) − nix(∆;Y )]2, (10.11)

where
nix(∆;Y ) = 1

|Y |
∑

iy∈Y

nix,iy(∆) (10.12)

is the averaged density profile. Here, nix,iy is the particle density at the site with
coordinates (ix, iy), and |Y | is the number of elements in a set Y . Again, I present
density deviation δn2 = δn(Y2) obtained from a central strip with the width of two
sites in the y direction, corresponding to Y2 = {3, 4}, and δn6 = δn(Y6) obtained
from full width of six sites in the y direction, corresponding to Y6 = {1, . . . , 6}.

The system was evolved for a time interval t = 187 τ . The final asymmetry
depends on the disorder strength ∆ and also on the particular realization of the
disorder potential. The calculation was repeated for M = 100 different potential
realizations for each parameter set, and the results were statistically averaged.
Each measured observable X corresponds to an averaged observable

X̄ = 1
M

M∑

i=1
Xi, (10.13)

where Xi are individual samples. The standard error of its mean is

σX̄ = σX√
M
, (10.14)

where

σX =

√ 1
M − 1

M∑

i=1

(
Xi − X̄i

)2
(10.15)

is the sample standard deviation. σX is nonzero generally, but σX̄ becomes smaller
with the increasing number of samples.

10.6 Calculation
For the simulation of MBL I used the TTNS algorithm described in the previous
chapters with the following parameters:

• The performance of TEBDOL does not depend strongly on the size of
the physical dimension. As there are N = 6 particles, I set the physical
dimension to P = N + 1 = 7. All states in the Hilbert space of the model
are therefore accessible during the time evolution.
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• The bond dimension was scaled dynamically with parameters ε = 233
m ≈

9.54 × 10−7 and D = 512, where εm ≈ 1.11 × 10−16 is the double-precision
machine epsilon in the IEEE 754 standard. The smallest singular values,
whose sum is relatively smaller than ε are truncated after each tensor
decomposition. If there remain more than D states, TEBDOL further
truncates the smallest values, so there are D values kept at most.

• The time step in the second-order Suzuki–Trotter decomposition was δt =
1/16 τ .

• Full simulated time interval was T = 256 τ .
The above parameters ensured that a calculation with a single potential realization
finished in reasonable time and also that the results had reasonable accuracy. The
accuracy of the results was measured by the TTNS norm. At t = 187 τ , the lowest
norm was ∥ψ∥ ≈ 0.65.

10.7 Results
The first calculation was performed for the average potential energy EA = 0.28U .
This is the same energy as in the experiment [40]. The experimental value of EA

includes both potential and thermal energy, and additional energy was present due
to the heating of the atomic cloud. In contrast, there is no thermal contribution
or heating effect present in my calculation.

Both imbalance I and density deviation δn were calculated. The results were
obtained from a two-site-wide strip and from a six-site-wide strip. Each data
point is an average over 100 random potential realizations. The corresponding
standard errors of the mean for the average quantities are present in the following
figures as well.

The first set of figures shows the results for EA = 0.28U . The imbalances Ī2
and Ī6 are shown in Figure 10.3 and Figure 10.4, and density deviations δ̄n2 and
δ̄n6 are shown in Figure 10.5 and Figure 10.6, respectively.

The results for EA = 0.28U do not show any transition from a thermalized to
a localized phase. Both imbalance and density deviation grow with increasing ∆.
Further investigation showed that the trapping potential was too strong for a 6×6
lattice. The dynamics was mostly confined to its central 4 × 4 region. I therefore
decided to decrease the strength of the initial average energy to EA = 0.14U , that
is to decrease the strength of the harmonic potential. The following figures show
the results for this case.

The calculated average imbalances Ī2 and Ī6 for EA = 0.14U are shown in
Figure 10.7 and Figure 10.8. Both figures exhibit a clear distinction between a
thermalized and a localized phase. The corresponding average density deviations
δ̄n2 and δ̄n6 are shown in Figure 10.9 and Figure 10.10.

The results for EA = 0.14U support the hypothesis that there is a critical
strength of the disorder potential that changes the dynamics of the system from
thermalization to localization. Both imbalance figures show that for weak disorder
the systems thermalize. The critical disorder strength was obtained from a simple
double-linear fit [40]

Ī(∆) = A+B × max
[
(∆ − ∆c,Ī), 0

]
, (10.16)
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Figure 10.3: Dependence of the average imbalance on the disorder strength in a
central strip with the width of two sites for EA = 0.28U .

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16 18

Im
ba

la
nc

e
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Figure 10.4: Dependence of the average imbalance on the disorder strength in a
full strip with the width of six sites for EA = 0.28U .
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Figure 10.5: Dependence of the average density deviation on the disorder strength
in a central strip with the width of two sites for EA = 0.28U .
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Figure 10.6: Dependence of the average density deviation on the disorder strength
in a full strip with the width of six sites for EA = 0.28U .
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Figure 10.7: Average imbalance calculated from a strip of two sites for EA = 0.14U .
The critical disorder strength obtained from a double-linear fit is ∆ = 4.3(3) J
with A = 0.030(7) and B = 0.040(2).
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Figure 10.8: Average imbalance calculated from a strip of six sites for EA = 0.14U .
The critical disorder strength obtained from a double-linear fit is ∆ = 3.9(3) J
with A = 0.025(7) and B = 0.036(2).
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Figure 10.9: Average density deviation calculated from a strip of two sites for
EA = 0.14U . The critical disorder strength obtained from a double-linear fit is
∆ = 2.9(2) J with C = 0.005(3) and D = 0.0230(4).
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Figure 10.10: Average density deviation calculated from a strip of six sites for
EA = 0.14U . The critical disorder strength obtained from a double-linear fit is
∆ = 4.4(2) J with C = 0.0021(9) and D = 0.0058(2).
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Figure 10.11: Evolution of the imbalance I6 for ∆ = 1 J in a model with EA =
0.14U . The figure shows the imbalance for four random potential realizations.
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where ∆c,Ī is the critical disorder strength. In contrast to the article [40], where
the fit was performed in the interval ∆/J ∈ [0, 8], I performed the fit taking into
account all calculated values in the interval ∆/J ∈ [0, 18]. The reason is that
there is no apparent deviation from linearity for large ∆ in the calculated results.
The critical disorders are ∆c,Ī2 = 4.3(3) J for Ī2 and ∆c,Ī6 = 3.9(3) J for Ī6. The
critical disorder obtained in the experiment [40] was ∆c,I = 5.5(4) J .

The results for the density deviation are less clear. Figures 10.9 and 10.10
show that the density deviation slowly increases with ∆ until is becomes linear for
large ∆. To follow the experiment, I again fitted the data with a double-linear fit

δ̄n(∆) = C +D × max
[
(∆ − ∆c,δ̄n), 0

]
. (10.17)

The extracted critical disorders are ∆c,δ̄n2 = 2.9(2) J for δ̄n2 and ∆c,δ̄n6 = 4.4(2) J
for δ̄n6. The critical disorder obtained in the experiment was ∆c,δn = 5.3(2) J .

All above results corresponds to averaged quantities. The dynamics can differ
substantially for a particular potential realization. To better understand the
results, the following figures show the evolution of I6 for four potentials taken out
of the 100 realizations in each case. Figure 10.11 show the imbalance for ∆ = 1 J ,
Figure 10.12 for ∆ = 4 J , and Figure 10.13 for ∆ = 12 J . The differences in
the imbalances are small for small ∆, but they become prominent for large ∆.
Figure 10.14 shows the average imbalance Ī6 for four values of ∆. The average
imbalance is very regular compared to individual samples.
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Figure 10.12: Evolution of the imbalance I6 for ∆ = 4 J in a model with EA =
0.14U . The figure shows the imbalance for four random potential realizations.
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Figure 10.13: Evolution of the imbalance I6 for ∆ = 12 J in a model with EA =
0.14U . The figure shows the imbalance for four random potential realizations.
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Figure 10.14: Evolution of the average imbalance Ī6 for ∆ = 1 J , ∆ = 4 J ,
∆ = 8 J , and ∆ = 12 J in a model with EA = 0.14U . Each average imbalance
was calculated from 100 random potential realizations. Error bars represent the
standard error of the mean.
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10.8 Conclusions
Simulating MBL in a two-dimensional lattice confirmed that there are two regimes
of system dynamics for EA = 0.14U . The particle density becomes symmetric for
small ∆, but stays asymmetric for large ∆. The critical disorder separating these
two regimes is not as clear as in the experimental data. The values of Ī6 and δ̄n6
obtained when taking into account full strip of six sites are fairly close to each
other and also to the values obtained in the experiment. It can be also seen from
the figures above that the data become slightly irregular near the point ∆ = 4 J .
It can be a sign of a complicated dynamics in this region. Further investigation in
this region could reveal the reason behind the observed behaviour.

There are several reasons for blurred critical disorder. The most important
two are the small system size and the small number of particles. I expect that the
transition becomes clearer with increasing number of particle. Another reason is
the statistical nature of the calculations. The differences in dynamics for different
potential realization are substantial. Again, I expect that the influence of a
particular potential realization becomes smaller in larger lattices. The future
calculations should therefore focus on increasing both the lattice size and the
number of particles.
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11. Multidimensional systems
There are many ways how to further extend the presented two-dimensional al-
gorithm. This chapter outlines several ideas about multidimensional systems in
general.

A natural extension is to use tensor networks to model three-dimensional
systems. One approach is to generalize PEPS topology to three dimensions,
that is to assign a tensor to each lattice site, and to connect each tensor to its
closest neighbours. Another approach, more aligned with the present work, is to
represent a system state as a three-dimensional TTNS (Figure 11.1). The network
is composed of layers in the z direction. Each layer is a two-dimensional tree tensor
network connected to neighbouring layers through a corner site. The calculation
complexity increases with the number of tensor indices. The two-dimensional
algorithm rearranges a network in a such way that each tensor carries at most
three indices at any given moment. In this generalization to three dimensions,
each tensor carries at most four indices. The algorithm for time evolution can
work in a similar fashion as in two dimensions. The connections in the network
can be rearranged so that each pair of neighbouring sites is eventually connected.
TTNO can be constructed analogously to TTNS.

Another extension is to model systems with nontrivial topologies. A funda-
mental one-dimensional example is a ring of lattice sites. It differs from ordinary
one-dimensional lattices by a tunnelling term between the first and the last site.
This is equivalent to replacing the open boundary conditions with periodic bound-
ary conditions. The ring topology presents a problem for the current method,
because the corresponding tensor network contains a cycle. Canonical states
therefore cannot be defined for ring tensor networks. Two-dimensional models
with nontrivial topology include a cylinder or a torus. The Bose–Hubbard model
on a cylinder has been investigated [90], as well as the quantum Ising model on a
torus [30]. Lattice models on a torus are also important for studying topological
phases of matter. Additionally, large systems with periodic boundary conditions
are appropriate models of infinite lattices in the thermodynamic limit.

In this work, the TTNS topology was explicitly specified. The topology
is also prescribed for PEPS, where each bulk tensor is connected to its four
nearest neighbours. A question then arises whether a particular set of connections
is an optimal network topology. In one dimension, it is natural to connect
neighbouring sites only. It is unclear what should be an appropriate topology in
higher dimensions. A basic idea is to connect only strongly correlated sites directly.
It would also be beneficial to optimize the network structure automatically, as
the optimal topology could be different at each time step.

There has been some progress in this area [31, 98, 99]. An idea coming from
application of DMRG to quantum chemistry is to calculate the mutual information
between each pair of sites, and connect sites with high mutual information directly.
In particular, a suitable one-dimensional ordering can be found by minimizing the
entanglement distance given by [98]

Idist =
∑

i,j
Ii,j∥i − j∥η, (11.1)

where Ii,j is the mutual information between sites i and j, and η is a constant,
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Figure 11.1: A three-dimensional TTNS. Each ball represents a tensor corre-
sponding to a single lattice site. Open lines represent physical indices, and lines
connecting the balls represent tensor contractions.

x

y

z

for example η = 1 or η = 2. Idist is used to sort sites so that sites with large
mutual information are close to each other. A similar approach could be used for
multidimensional systems. The first step is to perform a calculation with small
bond dimension D. The aim is to obtain approximate mutual information for
each pair of sites. Then a suitable network topology with a small Idist can be
constructed. The subsequent calculation with a large D uses a TTNS with this
topology.

Extensions of current methods to three-dimensional systems and to systems
with nontrivial topologies present several challenges, both conceptually and com-
putationally. Hopefully, the advances in tensor networks theory will lead to studies
of large multidimensional systems in future. New insights would be beneficial to
simulations of one-dimensional and two-dimensional models as well.
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Conclusions
This thesis has summarized my research in modelling of ultracold atoms in multi-
dimensional optical lattices. Physics of bosonic atoms moving and interacting in a
lattice can be described by the Bose–Hubbard model. There exist several analytic
and computational methods to investigate this model. I have focused exclusively
on numerical methods based on tensor networks. The model can be investigated
for the full range of its parameters with this approach. Additionally, I have
focused only on its time evolution and especially on the resulting nonequilibrium
dynamics.

The work has involved extending methods for modelling one-dimensional quan-
tum systems to two dimensions, developing numerical software, and calculating
the time evolution of interesting physical systems. I have considered several
algorithms for solving the two-dimensional problem. My approach was to create a
working implementation that can be applied to realistic models that follow current
experiments. I have found that some methods, for example PEPS, have sound
theoretical foundations, but is it difficult to achieve good performance with them.
My final approach was to use the TTNS representation. The decisive argument
in favour of TTNS was that the notion of canonical states can be extended from
one-dimensional MPS to multidimensional TTNS. The existence of canonical
states considerably simplifies the complexity of the algorithm.

The primary output of my work is TEBDOL. It is a program for simulating
time evolution in one-dimensional and two-dimensional lattice models. Its main
method is a generalization of the TEBD algorithm to TTNS. It has been tested
thoroughly and provides good performance on realistic problems. Another useful
output is the tensor library that underlies TEBDOL.

I used TEBDOL to study three phenomena in two-dimensional optical lattices
— phase revivals, boson expansion, and many-body localization. All three have
already been observed in experiments. Limited applicability of theoretical methods
to two-dimensional models makes it hard to analyze the experimental findings
in detail. The first study explored the role of two-dimensional tunnelling on the
attenuation of phase revivals. In the simulation of boson expansion, I improved
published theoretical results by investigating a larger system. I am not aware of
any numerical studies of many-body localization in a two-dimensional lattice, so
the last part of this work represents an original result. The study has confirmed
that the transition from thermalization to many-body localization takes places in
the model. I have also found a critical disorder strength comparable to the value
measured in the experiment.

Studying time evolution with tensor networks presents several challenges.
Accessible system sizes are limited by available computing resources. In particular,
the system size and the accuracy of results are bounded by the amount of available
memory. The maximum simulated time interval is bounded by the CPU power.
Presented results correspond to the largest models I could simulate with reasonable
resources. The calculations can be extended to even larger systems and longer
time intervals by using better hardware in future.

There are several ways how to extend the present work. A natural direction
is to develop a similar method for three-dimensional systems. However, the
experience with the two-dimensional algorithm suggests that modelling three-
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dimensional system is going to be a very computationally intensive task. It would
be nonetheless interesting to determine how large three-dimensional systems are
accessible to simulations with tensor networks on current computers. A similar
area is to study models with other geometries, and to implement support for
periodic boundary conditions. They are also important for investigations of infinite
systems in the thermodynamic limit.

A useful research idea is to parallelize the program. I have already parallelized
the one-dimensional algorithm. There is a trade-off that results become slightly
inaccurate after performing large truncations of the tensor network. Truncations
in two-dimensional systems are generally more prominent than in one-dimensional
systems, so it is problematic to obtain robust parallelization in this case. In a
sense, a correct truncation of any virtual index in a tensor network is a global
operation, so it is not well-suited for parallelization. A thorough theoretical
analysis is required to develop an appropriate parallelization strategy.

Another direction is to study fermions in optical lattices. Their physics is
closely related to the physics of electrons in crystal lattices. The fermionic anti-
commutation relations make it necessary to use a slightly different representation.
Fermionic models have been investigated with MPS, therefore it should be possible
to generalize existing ideas to TTNS and to two-dimensional lattices. A closely
related area are particles with anyonic statistics in two dimensions.

Ultimately, the simulation of quantum systems on a classical computer is a
formidable task. The dimensions of Hilbert spaces for systems with moderate
numbers of particles are huge. If the amount of entanglement is low, current
methods provide a way to extract useful information about a system. Generally,
the amount of entanglement grows quickly, especially after quantum quenches.
The time interval accessible in simulations is therefore rather short.

It has been known for some time that one way to overcome these obstacles
is to implement and solve quantum models on quantum computers. In fact, an
optical lattice is an analogue quantum computer that can simulate, for instance,
the evolution of the Bose–Hubbard model. The model can be implemented on
a digital quantum computer that can be programmed to perform any quantum
calculations in future. There has been a substantial progress in this area in recent
years.

I hope the present work contributes to understanding time evolution in multi-
dimensional quantum systems. It shows that even the simplest models exhibit
complicated dynamics. Solving a model numerically and comparing the obtained
results to experimental observations not only confirms that the model describes
reality well enough, but also allows one to predict its behaviour under altered
circumstances.
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Appendix A. Matrix product states
compression
An important part of several tensor-network algorithms is an approximation of
an MPS with an MPS with smaller bond dimensions. The operation is called
MPS compression, but similar operation is also performed in a search for the
ground state of a lattice model. There exist two approaches, compression with
SVD and variational compression. Both have advantages and disadvantages. SVD
compression is not optimal, its result depends on the order of decompositions, and
it is slow. Variational compression is fast for large compressions with D′ ≪ D,
where D and D′ are the maximum bond dimensions of the original and of the
compressed MPS, respectively. It is also better at finding the optimal result, but
can stuck in a local minimum.

This appendix explains the details of SVD compression using a simple example.
It is helpful in getting a better understanding of MPS. It also discusses why the
parallel algorithm loses accuracy with large truncations. The notation closely
follows article [16].

Compression with singular value decomposition
A simple method to compress an MPS is based on singular value decomposition.
The procedure starts from a left-canonical form

cσ1,...,σL
= Aσ1

1 A
σ2
2 . . . A

σL−1
L−1 A

σL
L , (11.2)

where Aσi
i are left-normalized tensors. Left-normalized tensors Aσi

i and right-
normalized tensors Bσi

i obey the conditions
∑

σi

Aσi†
i Aσi

i = IA
i ,

∑

σi

Bσi
i B

σi†
i = IB

i ,
(11.3)

where IA
i and IB

i are unit matrices. The tensors in (11.2) are consecutively
decomposed and truncated from the right-hand side. First, the tensor AσL

L is
decomposed using SVD into AσL

L = Mα,σLβ = Uα,γSγ,γ′V †
γ′,σLβ. The decomposed

matrices are truncated to contain only D′ singular values. This means S is
replaced by a D′ ×D′ matrix S ′ that has only the singular values with the largest
absolute value on the diagonal. Similarly, matrices U and V † are replaced by
matrices U ′ and V ′† that contain only the D′ corresponding columns and rows,
respectively. The matrix V ′† can be identified with a right-normalized tensor BσL

L .
The truncated decomposition is then given by

cσ1,...,σL
= Aσ1

1 A
σ2
2 . . . A

σL−2
L−2 A

σL−1
L−1 U

′S ′V ′† = Aσ1
1 A

σ2
2 . . . A

σL−2
L−2 M

σL−1
L−1 B

σL
L , (11.4)

where MσL−1
L−1 = A

σL−1
L−1 U

′S ′. The compression then continues with the decomposi-
tion of MσL−1

L−1 .
Tensors in a compressed MPS depend on the compression direction in the chain.

If the compression starts from a left-canonical MPS and truncations proceed from
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the right-hand side to the left-hand side, one obtains a different MPS than if the
compression starts from the right-canonical MPS and truncations proceed in the
opposite direction. Each truncation creates essentially a new MPS. Additionally,
each truncation breaks the normalization conditions, and the MPS ceases to be in
a canonical form afterwards. The final MPS depends on the order in which the
bonds are truncated.

The computational cost of calculating the SVD of an m×n matrix with m ≥ n
is O(mn2). The matrix corresponding to the tensor Mσi

i above has dimensions
D × dD′, where d is the physical dimension. The SVD cost is therefore either
O(dD2D′) or O(d2DD′2). The matrix multiplication following the decomposition
costs O(dD2D′). In practice, D′ is usually proportional to D, so the complexity
of the SVD compression scales as O(D3). This is also the cost of bringing an MPS
into a canonical state which is a required initial state in many algorithms.

Example
To see why a compressed MPS depends on the order of truncations, it is instruc-
tional to consider a chain of three qubits as an example. The goal is to compress
a state

|ψ⟩ = c1|100⟩ + c2|010⟩ + c3|001⟩. (11.5)
Its Schmidt decomposition [16] at the first bond is given by

r∑

i=1
αi|ui⟩ ⊗ |vi⟩, (11.6)

where r is its Schmidt rank, αi are its Schmidt coefficients, |ui⟩ are orthonormal
vectors from the Hilbert space of the first qubit, and |vi⟩ are orthonormal vectors
from the Hilbert space of the second and third qubits combined. The rank is r = 2
for the state (11.5), and the decomposition coefficients and vectors are given by

α1 = |c1|, u1 = |1⟩, v1 = c1

|c1|
|00⟩,

α2 =
√

|c2|2 + |c3|2, u2 = |0⟩, v2 = 1√
|c2|2 + |c3|2

(c2|10⟩ + c3|01⟩) .
(11.7)

Similarly, the Schmidt decomposition at the second bond reads
s∑

i=1
βi|wi⟩ ⊗ |zi⟩, (11.8)

where s is its Schmidt rank, βi are its Schmidt coefficients, |wi⟩ are orthonormal
vectors from the Hilbert space of the first and second qubits combined, and |zi⟩
are orthonormal vectors from the Hilbert space of the third qubit. Again, for the
state (11.5) the rank is s = 2, and the decomposition coefficients and vectors are
given by

β1 =
√

|c1|2 + |c2|2, w1 = 1√
|c1|2 + |c2|2

(c1|10⟩ + c2|01⟩) , z1 = |0⟩,

β2 = |c3|, w2 = c3

|c3|
|00⟩, z2 = |1⟩.

(11.9)
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If all coefficients ci are nonzero, all Schmidt coefficients αi and βi are nonzero
as well. The bond dimension of an MPS decomposition into Mσ1

1 Mσ2
2 Mσ3

3 is
therefore D = 2. In this example, the goal is to compress |ψ⟩ into |ψ′⟩ with a
bond dimension D′ = 1.

Let c1 = 4/
√

77, c2 = 5/
√

77, and c3 = 6/
√

77. If the compression starts
from the right-canonical state Bσ1

1 Bσ2
2 Bσ3

3 , a decomposition Aσ1
1 S1V

†
1 B

σ2
2 Bσ3

3 is
obtained in the first step. The singular values of S1 are the Schmidt coefficients
α1 = |c1| = 4/

√
77 and α2 =

√
|c2|2 + |c3|2 =

√
61/77. The truncation retains

only the vectors corresponding to the largest Schmidt coefficient α2, and results
in a state

|ψT
L⟩ = c2|010⟩ + c3|001⟩ = 5√

77
|010⟩ + 6√

77
|001⟩. (11.10)

The decomposition in the second step is given by Aσ1
1 A

σ2
2 S2V

†
2 B

σ3
3 , where the

singular values in S2 correspond to the Schmidt coefficients of a decomposition
at the second bond. However, the decomposition is performed on the truncated
vector (11.10) now, and it reads

β1 = |c2| = 5√
77
, w1 = c2

|c2|
|01⟩, z1 = |0⟩,

β2 = |c3| = 6√
77
, w2 = c3

|c3|
|00⟩, z2 = |1⟩.

(11.11)

Again, the truncation retains only vectors corresponding to the largest Schmidt
coefficient β2. The final compressed state is therefore

|ψ′
L⟩ = c3|001⟩ = 6√

77
|001⟩. (11.12)

If the compression starts from the left-canonical state Aσ1
1 A

σ2
2 A

σ3
3 , a decom-

position Aσ1
1 A

σ2
2 U3S3B

σ3
3 is obtained, where the matrix S3 contains the singular

values (11.9). They are β1 =
√

|c1|2 + |c2|2 =
√

41/77 and β2 = |c3| = 6/
√

77.
Only the largest singular value is retained, which gives a truncated state

|ψT
R⟩ = c1|100⟩ + c2|010⟩ = 4√

77
|100⟩ + 5√

77
|010⟩. (11.13)

The second decomposition into Aσ1
1 U2S2B

σ2
2 and the following truncation produces

a state
|ψ′

R⟩ = c2|010⟩ = 5√
77

|010⟩. (11.14)

Vector (11.14) differs from vector (11.12), therefore the compression result depends
on the order of truncations.

An alternative idea is to truncate the tensors without performing any SVD.
This method keeps only D′ pairs of Schmidt vectors at each bond. The resulting
state is a projection of the original vector onto the subspaces spanned by all
preserved Schmidt vectors. In the above example, it would keep the vector
|ψT

L⟩ = c2|010⟩ + c3|001⟩ at the first bond and the vector |ψT
R⟩ = c1|100⟩ + c2|010⟩

at the second bond. Truncation of all tensors without performing the SVD leads
to a state ψ′

N = c2|010⟩ = 5√
77 which is again not the optimal outcome. This

method generally gives worse results than the SVD compression because it always
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picks the common vector c2|010⟩ without any regards to c1 or c3. It is also what
happens in the parallel one-dimensional algorithms with independent truncations.

SVD compression can be understood as sequential projections of a vector.
Each neglected part depends on the bond the decomposition is performed on. The
final state therefore depends on the order in which the bonds are selected.

Variational compression
Let ψ be an MPS with bond dimension D. The goal is to find an MPS ψ′ with
a fixed bond dimension D′ that minimizes ∥ψ − ψ′∥2. Variational compression
starts from an initial guess ψ′

0 and optimizes all its tensors. ψ′
0 can be a randomly

generated MPS or an MPS obtained from the SVD compression. It is difficult
to optimize all tensors at the same time, because it is a nonlinear optimization
problem. The algorithm therefore sweeps through the chain and optimizes one
tensor at the time while keeping all other tensors fixed. This approach is also
called the alternating least squares method (ALS). It does not guarantee finding
the global minimum but works well in practice. It is also similar to the DMRG
algorithm for finding ground states and to its improvement called the alternating
minimal energy method (AME) [100, 101].
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Appendix B. Implementation notes
TEBDOL [41] is implemented in Common Lisp. It is a language rarely used
in high-performance computing nowadays, despite its many benefits. Common
Lisp is a very high-level language that makes it possible to define and work
with sophisticated data structures easily. It also provides high numerical perfor-
mance [102, 103]. TEBDOL uses open-source implementation Steel Bank Common
Lisp (SBCL) [104]. The goal of the work has been to develop high-level and fast
code. Implementation in Common Lisp achieved both [105].

The basic layer of TEBDOL is a library for tensor manipulation. There is
a distinction between dense tensors called arrays and symmetric tensors called
simply tensors. Symmetric tensors use arrays for storing their nonzero blocks.

Arrays are implemented as ordinary Common Lisp arrays, and are stored
as contiguous blocks of complex double-precision floating-point numbers. Basic
operations on arrays are performed using Common Lisp functions. Additionally,
TEBDOL uses BLAS [106] and LAPACK [107] to perform linear algebra operations
on arrays. Arrays are first reshaped into matrices, and external routines are called
to perform the requested operations. The obtained matrices are then reshaped
back into arrays. TEBDOL attempts to minimize the amount of reshaping. If
array indices are already in the correct order, it directly calls the external routine.
Array operations performed by external routines are array contraction, array
decomposition, and diagonalization of a Hermitean matrix. The last operation is
used to calculate time-evolution operators.

Array permutation and array contraction are operations that take advantage
of the Common Lisp macro system. They support arrays of arbitrary rank. A
naive implementation of permutations and contractions for general arrays was
slow. TEBDOL therefore uses a different method. It generates a specific function
for any combinations of array ranks and indices. The functions are created and
compiled during runtime. This approach ensures good runtime performance of
both operations.

TEBDOL uses matrix SVD to decompose arrays. There are several LAPACK
routines to calculate a SVD. Routine ZGESVD uses the standard approach while
routine ZGESDD uses a divide and conquer algorithm, which is much faster
for large matrices. I have found that ZGESDD is numerically unstable in all
tested versions of LAPACK. For certain matrices, ZGESDD fails to converge, or
crashes due to a floating-point error. TEBDOL therefore falls back to ZGESVD
if it detects a problem in ZGESDD for a particular matrix. I have not observed
any numerical instabilities in ZGESVD. This way TEBDOL achieves a good
performance of SVD without any instabilities.

Tensors are built on top of arrays. Each tensor has a list of indices and a list
of blocks. The blocks are represented by arrays. Tensor operations include index
fusion, tensor conjugation, tensor permutation, tensor contraction, and tensor
decomposition. TEBDOL also supports a calculation of tensor exponential for a
special class of tensors that are analogous to Hermitean matrices. The operations
are fairly complicated, as TEBDOL must determine which blocks contribute to
the resulting tensor. Operations on blocks are performed using array routines
described above.

TTNS and TTNO are constructed from tensors. Quantum operators discussed
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in this work are implemented as TTNO, which are a generalization of MPO [16,
41]. Because each operator has a distinct structure, they are implemented inde-
pendently.

Parallel version for one-dimensional models uses MPI for communication
between compute nodes. A tensor is a structure that consists of multiple data
types on several levels. It is necessary to exchange tensors between the nodes
during a calculation. TEBDOL uses its own serialization and deserialization
routines. They can convert a tensor to a block of bytes and such a block back
to a tensor. They are used for exchanging tensors between nodes. TEBDOL
supports both OpenMPI and MPICH libraries. It has been run with up to 256
MPI processes on 64 nodes.

The two-dimensional version does not use MPI parallelization. However,
TEBDOL uses BLAS and LAPACK for linear algebra operations. Most of
implementations of these libraries are parallel on multi-core systems. TEBDOL
can therefore utilize all CPU cores on a single node. Exact parallel scaling depends
on the problem size.

The program performance depends on all calculation parameters, including
the model parameters, the lattice size, the total number of particles, the time
step, and the simulated time interval. Generally, the complexity of a calculation
depends mostly on the number of particles, because particle interactions lead to an
increase of the entanglement entropy in the system. The calculation parameters
discussed in this thesis were chosen so that a single run could finish in a day or two.
This typically led to a bond dimension of about 500–1000 for two-dimensional
models. The calculations required about 10–30 GiB of available memory. The
memory requirements and calculation time grows substantially with increasing
maximum bond dimension D.

There are several other open-source packages for quantum calculations using
tensor networks [108–126]. Advantages of TEBDOL are a parallel version of the
one-dimensional algorithm and the focus on two-dimensional problems.
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