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The impact of renewable resources on price

volatility in the European power markets

Bachelor thesis

Prague 2017



Author: Kataŕına Ĺı̌sková
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Abstract

Integration of renewable energy sources impacts electricity spot price and its

variation. Remaining open question is, in which direction. Volatility fluc-

tuations threaten security of electricity supply, influence trading strategies

and create uncertainty in optimal installed capacity planning. In this thesis,

drivers of price volatility in Czech and German day-ahead power market

are analysed with an emphasis on penetration of renewable energy sources.

To the best of our knowledge, this is the first study focused on this issue in

Czech electricity market. We apply recently developed approach of quadratic

variation theory with an adjustment for electricity prices. Realised volatility

is divided into its continuous and jump component. The continuous part is

modelled by three heterogeneous autoregressive models, differing in complex-

ity and inclusion of market-specific fundamental variables. Amendments to

each model for the particular market are proposed and the models are eval-

uated both in-sample and out-of-sample. Addition of exogenous variables −

commodity prices, weather conditions and seasonal variables − to simpler

heterogeneous autoregressive model is found to improve volatility forecast

accuracy. The results suggest higher continuous volatility due to increased

penetration of power from wind generators in German market. The effect of

photovoltaic penetration on continuous volatility in both studied markets is

not significantly different from zero.

Keywords

electricity spot market, price volatility, renewable energy sources, quadratic

variation, continuous volatility, heterogeneous autoregressive model
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Abstrakt

Integrácia obnovitel’ných zdrojov energie ovplyvňuje spotovú cenu elektriny

a jej odchýl’ku. Otvorenou otázkou zostáva, akým smerom. Fluktuácie volat-

ility ohrozujú stabilitu dodávky elektriny, ovplyvňujú obchodné stratégie a

vytvárajú neistotu v plánovańı optimálneho inštalovaného výkonu. V te-

jto práci sú skúmané faktory ovplyvňujúce cenovú volatilitu na českom a

nemeckom dennom trhu elektriny, s dôrazom na penetráciu obnovitel’ných

zdrojov energie. Pokial’ je nám známe, ide o prvú štúdiu zameranú na túto

problematiku na českom trhu s elektrinou. Je aplikovaná nedávno zavedená

metóda kvadratickej variácie s úpravou pre ceny elektriny. Realizovaná volat-

ilita je rozdelená na spojitý a skokový komponent. Spojitá čast’ je mod-

elovaná pomocou trojice heterogénnych autoregreśıvnych modelov, ktoré

sa ĺı̌sia zložitost’ou a zahrnut́ım fundamentálnych trhových špecif́ık. Je

navrhnutá úprava každého modelu pre špecifický trh a modely sú porovnané

“in-sample” aj “out-of-sample”. Pridanie exogénnych premenných − ceny

komod́ıt, poveternostné podmienky a sezónne premenné− do jednoduchšieho

heterogénneho autoregreśıvneho modelu zlepšuje presnost’ predpovede volat-

ility. Výsledky naznačujú vyššiu spojitú volatilitu na nemeckom trhu v

dôsledku zvýšenéj penetrácie energie z vetra. Pre oba študované trhy sa

vplyv fotovoltaickej penetrácie na spojitú volatilitu významne neĺı̌si od nuly.

Kl’́učové slová

spotová cena elektriny, cenová volatilita, obnovitel’né zdroje energie, kvad-

ratická variácia, spojitá volatilita, heterogénny autoregreśıvny model
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Research question and motivation

The energy market has been substantially influenced by increasing produc-

tion of renewable energy in recent years, which is now driving the market of

energy commodities. Environmental trends supported by governments and

the goals of the European Union are in favour of implementing more renew-

able sources of energy in the upcoming decades. However, these sources are

weather sensitive and unpredictable, and therefore might cause instabilit-

ies in the grid and higher volatility of prices in the market. The prevailing

view of current literature is that it drives prices down and causes higher

variance on spot markets for electricity. Many researchers expect a surge in

price volatility due to intermittent energy sources, however opinions differ in

various works. Some claim a negative change in price variability in relation

to the amount of renewable energy produced. The research question will

be to further analyse the impact of renewable resources on price volatility,

focusing on the European energy markets.

Contribution

One of the biggest risks for investors and energy companies in the energy

market is high price volatility. The thesis will focus on European markets,

where usage of renewables is expected to increase in the future due to gov-

ernmental interventions. Therefore, the contribution of the thesis will be

answering the question of whether surging price variation may be caused by

the increased usage of intermittent energy sources.

Methodology

Primarily, time series data on renewable energies production and prices of en-

ergy commodities will be used. For the Czech Republic, this data is available



from ENTSOE-Transparency and OTE. Hourly data for German electricity

prices can be gathered from the European Energy Exchange. A regres-
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1 Introduction

Electricity price dynamics is significantly influenced by unique character-

istics of the commodity, such as non-storability and need for real-time ad-

justments in balancing of supply and demand. Before the deregulation of

electricity industry, the prices were fixed and calculated directly from the

costs associated with the whole energy supply process. While there was no

need to hedge electricity prices, utilities were vertically-integrated, market

entry was inhibited, and investments were largely based only on demand

forecasts. However, since 1990s, when the restructuring process took place,

prices have been determined by trading electricity in the wholesale market.

As the history of this market is rather short and quickly emerging, agents’

understanding of the dynamic pricing process is not profound and studies

focusing on these issues can lead to important findings that can be directly

used by regulators, investors, traders, and other market participants.

The importance of renewable energy sources in the electricity genera-

tion has risen substantially over the last decades. By 2020, the European

Union (EU) aims to meet its target of 20% share of renewable energy in the

consumption mix 1. The EU specified the target of more than 27% share by

2030 (European Comission, 2015). As observed in various studies, the volat-

ility of spot prices is influenced by the introduction of intermittent energy

sources, however the direction of the change is region-specific (Rintamäki

et al., 2017). Therefore, it is important to look at each country separately

because the results cannot be generalised.

Volatility analysis of electricity prices is important for all market par-

ticipants because price variation influences the risk and potential returns.

It complicates hedging strategies and threatens security of supply, however,

those who understand the volatility processes can design financially reward-

ing strategies. Since price fluctuations are the source of uncertainty about

profits for the producers and suppliers, it is in their interest to understand

the price development when planning the optimal installed capacity and
1Consumption mix is defined as country’s production adjusted for imports and exports.
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designing trading and pricing strategies.

The aim of this thesis is to study the drivers of volatility changes in

Germany in more detail and to provide insights for agents interested in the

Czech market. The analysis is conducted using data for German and Czech

day-ahead electricity market, relevant commodity prices, forecasts of renew-

able generation, and weather conditions. Germany is the leading Europe’s

country in implementation of renewable resources and its market volatility

has been studied extensively. However, to the best of our knowledge, Czech

market’s volatility has not been studied yet and therefore, we aim to fill

this gap in the literature. Recently introduced theory of quadratic vari-

ation with modification to electricity prices is used to separate continuous

and jump component of realised variation. By applying the same methodo-

logy for modelling continuous spot price volatility for both countries, we get

comparable results that can be related to country’s individual specifics.

Results obtained from heterogeneous autoregressive model with exogen-

ous variables suggest higher continuous volatility due to increased penetra-

tion of power from wind generators in German market. The effect of photo-

voltaic penetration on continuous volatility in both studied markets is not

significantly different from zero. These market differences are extensively

discussed throughout the work.

This bachelor thesis is organised as follows. In Section 2, important

features of electricity market, with specific focus on Germany and the Czech

republic, are summarised. In Section 3, review of the literature concerning

electricity market is provided, focusing on volatility analysis and studies

of renewable energy sources in particular. Data used in the analysis are

commented in Section 4. Methodology for the analysis is described in Section

5. In Section 6, we summarise the results for estimation of drift in price

changes, quadratic variation components, exogenous variables and results

and evaluation of all model modifications. In the last section, we summarise

the results and conclude by suggesting improvements that can be used in

later research.
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2 Price Dynamics in the Deregulated Power Markets

Electricity as a traded commodity emerged during the restructuring of Euro-

pean public utilities, that began in the The United Kingdom (UK) and

Scandinavia in early 1990s and has spread to many countries by now. In

the deregulated electricity market, there is an introduced competition at the

level of production and retail. In this section, the main characteristics of the

deregulated electricity prices are highlighted.

Electricity is a flow commodity and calls for immediate reaction of de-

mand and supply in order to avoid grid instabilities. The demand for elec-

tricity shows strong cyclical patterns following population’s daily activities

and operation of the industries (Simonsen et al., 2004). Due to absence of

effective storage of electricity, the market is characterised by high volatility

of prices that cannot be smoothed out by sufficient adjustments in any of

the market sides (Escribano et al., 2011). In the periods of low demand and

extremely high supply, strengthened by hardly controllable generation from

RES, it is possible to ask negative prices for the excess power (e.g., Knittel

and Roberts’ study of Californian prices (2005); Paraschiv et al. (2014) links

negative prices to period of high wind in-feed). High supply cannot always

be adjusted quickly because of high capital costs of base-load generators.

Therefore, those are for certain amount of time willing to accept negative

prices if the losses from this behaviour do not exceed costs associated with

temporal shut down and consequent ramping up of the power plant. These

costs are generally very high for nuclear power plants that also need state’s

approval to restart (Keles et al., 2012).

The price setting in the electricity markets is significantly affected by

technical constraints that define the maximum capacity of the supply, which

together with instantaneous dispatch make the supply curve inelastic. Simil-

arly, the short-term inelasticity of the demand curve is given by the import-

ance of the commodity (Escribano et al., 2011). The electricity dispatch is

based on the short-run marginal costs of each power plant and is organised

in a way of minimizing the overall costs of production (Moreno et al., 2012).
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By the nature of cost differences between power plants structured in the

merit order, the supply curve is reasonably flat during base load hours, how-

ever, soars in the time of peak hours (Kanamura and Ohashi, 2007; Weigt,

2009). Such behaviour motivates the usage of regime-switching models to

model electricity price.

Given the steepness of both curves during hours with high load, even small

movements lead to extreme positive jumps and excess volatility. Unexpec-

ted events, such as plant outages and short-term congestion in important

transmission lines, cause negative supply shocks while unexpected increases

in demand cause positive demand shocks, both leading to steep jumps of the

prices that are reverting back almost immediately due to temporary nature

of these shocks.

As suggested by Bessembinder and Lemmon (2002) and confirmed later

by the analysis of Knittel and Roberts (2005), higher volatility is associated

with intervals of strong demand. Guthrie and Videbeck (2007) model half-

hourly New Zealand electricity spot prices using periodic autoregression and

show the existence of more severe shocks in line with rising demand. Com-

pared to lower load2 periods, these shocks are less persistent, however they

reappear once the demand rises during peak-hours.

2.1 German Electricity Market

In this section we review the most important characteristics of the German

electricity market with connection to the topic of renewable power genera-

tion and day-ahead market. In connection to historical changes in energy

mix, we briefly comment on the most important regulatory amendments.

Dynamics of the electricity day-ahead market is explained since it serves as

a reference for decisions in the further analysis. Since the thesis focus on

day-ahead price, we focus solely on the spot market. For more detailed ex-

planation of the German power market we suggest Paraschiv et al. (2014),
2Some authors refer to demand and load interchangeably assuming there are no blackouts (Becker

et al., 2007). Generally, load is referred to be the electricity supplied to the grid while demand the elec-

tricity consumed by the customers. Therefore in the later sections we refer to these terms interchangeably.
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who emphasises the need for investments into power grid expansions in order

to integrate intermittent energy sources effectively.

Germany’s electricity sector was fully liberalised in 1998 following Na-

tional Energy Act (Brandt, 2006). It is the largest electricity market in

Europe with almost 200 GW of net installed generation capacity (Energy

Charts, 2017). The market is operated by European Energy Exchange

(EEX) and as a joint-venture with Powernext, electricity spot market (EPEX

SPOT) was established. According to EEX Group’s Annual reports the spot

market volume was 342 TWh and 382 TWh in 2013 and 2014, respectively.

In 2016, power spot market volume was 535 TWh, 2% up from 524 in 2015

(EEX Group, 2017). The most significant year to year volume change of

37% was between 2014 and 2015.

The transactions at the spot market are physically settled up to two days

after the conclusion of the trade. The day-ahead market is part of the spot

market and its products can be traded up until one day before delivery. The

day-ahead price can be regarded as the reference price for different contracts

and therefore can be taken as the main marketplace (Möller, 2010). There-

fore, whenever we refer to electricity price (or alternatively, spot price) or

spot market, we mean day-ahead electricity price and day-ahead electricity

market.

The day-ahead price is determined in an auction that takes place on all

days of the week, including statutory holidays. The order book gate closure

is set at 12 p.m. The price has to be within bounds of -500 EUR/MWh and

3000 EUR/MWh, while negative prices on the German/Austrian day-ahead

market were first introduced in 2008 (EPEX SPOT, 2017b). The electricity

is traded for 24 individual hours with minimum price tick of 0.1 EUR/MWh

and minimum volume increment of 0.1 MW. With change to winter time, the

specific delivery day in October is determined to have 25 hours, while there

is a day in March consisting of only 23 delivery hours associated with the

change to summer time. Contracts can be traded for Off-Peak 1 (midnight

to 8 a.m.), Peakload (8 a.m. to 8 p.m.) and Off-Peak 2 (8 p.m. until
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midnight) block periods (EPEX SPOT, 2017a).

Germany is Europe’s leading market in implementation of renewable en-

ergy policies (Cherp et al., 2016). Since 2000, the figures reported by AGEB

(2016), Energy Balances Group, has been showing deeper implementation

of Renewable Resources (RES) into the power grid, rising from 6.6% in 2000

to 27.4% share in gross electricity consumption in 2014. By 2025, RES are

to have a share of at least 40% in electricity consumption, 55-60% share by

2035 and more than 80% by 2050 (Pescia, 2016).

The main driver of intensive implementation of renewable energy sources

into the electricity production are feed-in-tariffs introduced in 1991 (Para-

schiv et al., 2014). In the later years, Energiewende, the German Energy

Transition, transformed the power system significantly. Regulatory change

in 2010 changed how the renewable energy is traded in the market. Since

then, Transmission System Operators (TSOs) forecast the amount of renew-

able energy produced from particular source one day-ahead and directly sell

this electricity in the day-ahead market. Since the forecasts are understand-

ably more precise than previously used month-ahead forecasts, the increasing

effect on variance decreased, however still persists (Ketterer, 2014).

In 2011, following nuclear accident in Fukushima (Japan), German gov-

ernment decided to phase out nuclear power plants by 2022 (RAP, 2015).

In 2011, installed nuclear capacity almost halved to 12.07 GW compared to

20.43 GW in 2010. In 2015 it was 10.80 GW and remained stable until now

(Energy Charts, 2017). Due to the changes in energy mix while sticking to

the 2020 CO2 emission target (reduction of 40% compared to 1990 levels

of greenhouse gas produced), Germany will have to compensate relatively

clean nuclear energy by introducing even more RES.

Table 1 provides visual overview of the energy inputs used in the electri-

city generation. Increasing trend in the usage of renewable energy is evident,

while consumption of natural gas and petroleum is slightly decreasing. As a

result of governmental decision on shut-down of several nuclear power plants,

nuclear energy accounted for 22.7% of electricity generation in 2011, 5.1%
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less than in the previous year. The share of nuclear energy on the electricity

generation is expected to decrease even more as the complete phase-out,

which is planned for 2022, approaches.

Table 1: Share of energy inputs for electricity generation in Germany

Energy input 2009 2010 2011 2012 2013 2014

Renewable energy 12.6% 13.2% 16.0% 14.2% 15.0% 16.3%

Other energy carriers 3 1.7% 1.8% 1.6% 1.6% 1.6% 1.8%

Lignite 26.1% 24.8% 27.2% 29.5% 28.8% 28.6%

Hard coal 17.9% 18.4% 18.5% 19.9% 21.8% 20.8%

Natural gas 10.3% 10.4% 10.4% 9.7% 8.4% 7.8%

Other gases 4 1.2% 1.9% 1.8% 1.9% 2.0% 1.9%

Petroleum 1.7% 1.3% 1.2% 1.1% 1.2% 1.2%

Electricity (pump energy) 0.5% 0.6% 0.5% 0.6% 0.5% 0.6%

Nuclear energy 28.0% 27.8% 22.7% 21.4% 20.7% 21.1%

Source: AGEB (2016)

Germany’s aggressive renewable implementation policy has been criti-

cised for being too costly. The 2017 Renewable Energy Sources Act advances

market auction schemes for determination of renewable support starting

January 1, 2017 (BMWi, 2016). The main goal of the amendment is to

make RES more competitive and decrease the costs of financial support.

The policy can have implications for the pace of installment of renewable

generators.

The results presented later in the literature overview are very important

for proper construction of policies and maximization of the financial benefit

for market agents. The aim of our analysis is to determine in more detail

the factors driving volatility and to potentially advise on proper allocation

of investments and regulation.
3Non-renewable waste, heat
4Coke oven and town gas, Blast furnace and converter gas, Petroleum gas, Mine gas
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2.2 Czech Electricity Market

Following the deregulation process in other countries, Parliament of the

Czech Republic (2000) published Energy Act No. 458/2000 establishing

the rules for newly created competitive electricity service industry. ČEPS

is entitled to license issued under the Energy Act and is the only Czech

TSO. In 2001, Czech Electricity and Gas Market Operator (OTE) was es-

tablished. Firstly, Czech day-ahead market had been organised by both OTE

and Power Exchange Central Europe (PXE). However in April 2009, PXE

joined spot market of OTE (PXE, 2010) and it was coupled through implicit

auctions with Slovak and Hungarian electricity market in September 2009

and September 2012, respectively (OTE, a.s., 2009b, 2012a). In November

2014, coupling with Romanian day-ahead electricity market was successful

(OTE, a.s., 2014). It allows for higher liquidity, lower price variation and

more efficient capacity allocation, aiming to at least partially eliminate price

impacts of intermittent energy.

OTE is also responsible for the National Register of Greenhouse Gas

Emissions and operates gas day-ahead market and electricity intraday mar-

ket since 2010. Apart from that, block market is also available as a spot

sub-market. OTE, a.s. (2017b) divides trading hours during working days

between peak (8 a.m. to 8 p.m.) and off-peak hours (the rest of trading

hours). Base load is defined for the whole trading day (i.e., also during the

weekend). Since the primary purpose of the thesis is not the description

of the market in detail, please refer to work by Krejčová (2012) for more

information regarding other types of contracts.

The dynamics of the day-ahead market influence later analysis heavily.

Firstly, all bids for particular hour for the next day need to be submitted

before 11 a.m. one day before the delivery day (OTE, a.s., 2017a). This

holds for all days as the Czech spot market is open during the weekends

and holidays as well. As of delivery day February 1, 2009, all bids for day-

ahead market are accepted in EUR and for settlement in CZK, OTE bank

exchange rate is used. Starting February 2012, negative prices were allowed
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for (at that time) CZ-SR coupled spot market (OTE, a.s., 2011).

Market participants can trade from minimum 1 MWh of volume up to 99

999 MWh while traded period is one hour. The buy or sell orders have to be

within price range of -500 EUR/MWh and 3000 EUR/MWh. Afterwards,

usually around noon or at 2:30 p.m. at the latest, one spot electricity price

for each hour of the delivery day is published (OTE, a.s., 2016c).

According to OTE, a.s. (2016b), the energy mix in 2015 mostly consisted

of fossil fuels which represented more than half of the primary resources.

While nuclear power decreased from 36.67% to 33.12%, RES surged from

less than 6% in 2013 to 11.77% in 2015. From RES, solar, hydroelectric

power and biomass were the most significant, having 2.88%, 2.67% and

2.34% share, respectively. Even though there is significantly increasing trend

in installation of renewable power generators, wind energy accounted only

for 0.71% of the national energy mix in 2015. This discrepancy is also a

result of the support scheme which was skewed towards solar installations

(Luňáčková et al., 2017). Most of the solar power plants operate since 2009

and 2010 when there was a boom in installation of solar generators. That

was because of the decrease in payback period due to lower prices of solar

panels and continuing validity of 180 ACT of 31 March 2005 (ERÚ, 2008) on

the promotion of electricity production from renewable energy sources and

its article 6 regarding maximum year-to-year decrease in purchase prices of

5%. The summary of evolution of the energy mix in the Czech Republic can

be found in Table 2.

OTE elaborates on different scenarios for the future energy situation in

the Czech Republic. The Conceptual variant, which is the closest to the

current “State Energy Policy”, expects an increasing trend in utilization

of RES (OTE, a.s., 2016a) and decentralization of production, which also

follows from the Directive 2009/28/EC the European Parliament and of the

Council of April 23, 2009 (European Parliament, 2009) and Paris Agreement.

Generally, in the medium-term, OTE anticipates a partial substitution

of coal-fired power plants by gas-fired ones, supported by further increase
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Table 2: Evolution of energy mix in the Czech Republic

Energy sources 2013 2014 2015

Renewable sources - total 5.68% 10.95% 11.77%

Solar 1.96% 2.63% 2.88%

Wind 0.47% 0.57% 0.71%

Hydro 1.93% 2.56% 2.67%

Geothermal 0.00% 0.00% 0.00%

Biomass 1.33% 2.19% 2.34%

Others 0.00% 2.99% 3.17%

Fossil fuel sources - total 57.65% 52.77% 55.10%

Lignite 40.71% 41.27% 42.15%

Hard coal 6.11% 5.78% 6.31%

Natural gas 8.30% 5.52% 6.41%

Crude oil and oil products 0.01% 0.06% 0.05%

Secondary sources and others 2.52% 0.14% 0.18%

Nuclear sources - total 36.67% 36.28% 33.13%

Source: OTE, a.s. (2016b)

in photovoltaics and wind turbines. Czech republic’s energy policies are

strongly influenced by the decisions of the EU. Therefore targets are similar

to the ones in other member countries.
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3 Literature Review

Electricity is a very special commodity with price dynamics not spotted in

any other market. Specifications of power time series make analyses more

complicated and call for complex models. This section reviews the most

important peculiarities that have implications on research conducted in the

thesis (3.1) and also summarises results presented in the literature. These

are divided into two parts. The first one focuses on the study of merit order

effect (3.2) which is connected with impacts on price volatility explained

in the second part (3.3). Throughout the whole text, more references are

provided, where appropriate.

3.1 Specifications of Electricity Prices

Despite few similarities to stock prices, electricity prices have unique charac-

teristics and even differ from other commodity prices. Their salient distinct

features have been studied extensively by researchers on various datasets

and most of them stem from the fact that power is non-storable. This fea-

ture persists even though there are limited possibilities to store potential

energy in the form of hydro reservoirs, hydroelectric resources and stocks

of fuel. However, as the number of these types of power generators is in-

sufficient and also depends on the region, arbitrage possibilities are limited

(Bessembinder and Lemmon, 2002; Knittel and Roberts, 2005). Since spec-

ulative behaviour can still be applied to electricity markets, Boogert and

Dupont (2005) focus on anti-gaming policy implemented by Dutch Inde-

pendent System Operator to minimise speculative profit seeking strategies

in day-ahead and subsequent opposite transactions in imbalance (real-time)

market. Regulators implement incentive strategies to discourage such be-

haviour and minimise imbalance traded volumes and speculative bidding in

the day-ahead market.

Intra-day, day-of-the-week and monthly patterns that can be explained

by the influence of weather conditions and business cycles are, besides oth-

ers, observed by Knittel and Roberts (2005), Escribano et al. (2011) and



12

Krǐstoufek and Luňáčková (2013). While Li and Flynn (2004) find peri-

odicity in British power prices, in Californian data they find it only for

volatility. Koopman et al. (2007) emphasise the importance of day-of-the-

week seasonality in the autocovariance function. Besides that, they conclude

differences between markets (EEX- Germany, Powernext - France, APX -

the Netherlands, Nord Pool - Norway) that stem from non-identical share

of primary generation sources. Regarding the yearly seasonality, peaking

months differ by geographical location of the country. While in the north

of Europe the highest demand is during winter months, in the southern

European countries we can observe this trend in the summer when air-

conditioning demands high amount of energy (Zachmann, 2008). Even

though these cyclical patterns are quite well-known by now and weather

forecasts can eliminate much of the surprise in energy consumption as well

as production from intermittent renewable sources such as solar and wind,

electricity prices tend to be much more volatile than that of financial com-

modities (Asbury, 1975).

Widely discussed feature of electricity price series is its reversion to the

mean. Huisman et al. (2007) apply panel data model to hourly day-ahead

power price data for 3 different wholesale markets (APX - the Netherlands,

acEEX - Germany and PPX - France) and come up with interesting res-

ults. According to their analysis, day-ahead prices mean-revert towards

hourly specific price but the speed of mean-reversion differs within the day

(strongly lower during peak-hours). According to Krǐstoufek and Luňáčková

(2013), electricity price time series differ from other financial assets by strong

mean-reversion in contrast to unit root process often observed for financial

time series. Mean-reversion is a consequence of electricity’s nature, price

incentives for generators and demand drivers such as weather.

Escribano et al. (2011) estimate a flexible model for spot prices applied

to 8 power markets with different market composition and price dynamics.

They conclude that volatility clustering, mean reversion, seasonality and

spikes are all very essential to be included in electricity pricing models sim-
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ultaneously. Knittel and Roberts (2005) analyse restructured power prices

using asset-pricing inspired model. They observe higher order statistically

significant autocorrelation even beyond 1000 lags for price levels and beyond

several hundred lags for squared prices. The study presents several models

estimated by conditional maximum likelihood incorporating unique charac-

teristics of data one by one and compares their forecasting performance. In

order to account for leptokurtosis in electricity prices they develop jump-

diffusion process with time-varying jump intensity parameter which clearly

shows that the likelihood of a spike grows during peak hours and falls in the

winter/spring period and during the weekends.

Similar conclusions about jump occurence can be found in Simonsen et al.

(2004) while the season with higher spikes occurence is regional-specific.

As suggested by Bessembinder and Lemmon (2002) and confirmed later by

Knittel and Roberts (2005), spot prices have greater positive skew during

the period of higher demand variability. Deng (1998) captures the stochastic

volatility, various jumps and regime-switching feature in his analysis and

develops tools to value derivatives using Fourier transform.

3.2 Merit Order Effect and Implications for Volatility

There has been numerous studies focusing on elasticity of electricity prices

to supply from renewable generators. Some of them focus solely on wind or

solar power, which are the two most significant RES and are intermittent

at the same time, others combine all RES together. Interesting results have

been presented, showing regional differences and conclusions sensitive to

shares in the energy production mix.

Deng (1998) applies mean-reversion jump-diffusion models with regime-

switching and non-constant volatility to study power prices observed on the

spot market. The analysis is conducted on the price data from the The

United States of America (USA) that range from 0 $/MWh to 7000 $/MWh

in the Midwest region in 1998. He develops pricing model for energy de-

rivatives using Fourier transform. Weigt (2009) analyses German electricity
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market between 2006 and mid-2008, focusing on the effect of wind feed-in

which shows to decrease the market price during peak hours predominantly,

by 10 EUR/MWh on average.

Sensfuss et al. (2008) look not only at the Merit Order Effect (MOE)

itself, but also at sensitivity analysis of MOE towards prices of primary en-

ergy sources and CO2. Their analysis performed by agent-based simulation

platform shows considerable reduction in prices, which more than offsets the

amount of net support payments in 2006. Besides that, the MOE is posit-

ively correlated with load, which leads to higher reduction in price during

peak hours and therefore lower variance of the prices on the spot market. It

is shown that higher volumes of RES in the generation mix affect the value

of MOE almost linearly. According to Sensfuss et al. (2008), the gas price

has the most significant impact on the level of MOE. Change of 20% leads

to as high as 30% change in the MOE in the same direction. Since gas-fired

power plants are considered to be peaking generators, they set the price in

most of the cases of high demand. In contrast, 20% increase of the price

of the hard coal causes 10% reduction of the MOE. The authors emphasise

that the ratio of gas and coal prices is a significant factor. When prices of

coal are high and prices of gas are lower, the slope of the merit order curve is

reduced, thus reducing the MOE. Increase of CO2 prices leads to decreased

MOE as well.

Another paper by Frantzen and Hauser (2012), focused on solar power

generation, determines an average decrease of 4.2 - 6.8 EUR/MWh in peak

price on the EEX. They investigate data from 2002 to 2011 and find dif-

ferent results for specific amounts of solar energy integrated into the grid.

For higher shares of solar electricity generation, the peak price was just 11%

higher than base price compared to 20-25% difference in the low RES scen-

ario. Despite the fact that the results are in line with literature, authors do

not isolate the effects of other factors such as fuel prices or load changes. It is

important to note that MOE focuses on the wholesale price elasticity to the

changes in supply of renewable electricity, however it does not say anything
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about the price for the end customer to whom other additional fees (e.g.

renewable support, grid improvements contribution (Ketterer, 2014)) apply.

Moreno et al. (2012) claim that the deployment of RES has an increasing

effect on household electricity prices in the market. Their study covers panel

data for the years 1998-2009 from 27 EU member countries. The empirical

analysis elaborates on the relations between variables connected to the RES

and the competition in the market and takes into account both effects on the

wholesale price and tariffs financed by final customers. Similar conclusion

is stated by Frondel et al. (2010). Tveten et al. (2013) also inspect MOE

of solar energy in Germany with a result of 13% and 23% decrease in aver-

age retail price (price charged to end customers) and daily price variation,

respectively.

Paraschiv et al. (2014), similarly as us, focus on the German electricity

spot market, however they do not model price volatility but only the price

level. They distinguish between peak and off-peak hourly blocks which is

essential in order to account for different load and production design. They

also observe price adaptation and stress importance of linking power prices

to fundamentals.

With regards to Czech electricity market, recent study by Luňáčková

et al. (2017) analyzes MOE of RES using data for years 2010-2015. By di-

viding the dataset into solar and other RES, they show noticeable difference

between the two subsets. Their results contradict widely used approaches

that prefer solar generators as the elasticity of spot price to increased power

from these sources is positive, therefore creating double burden on end cus-

tomers, who are also charged premium for renewable support.

3.3 Volatility Modelling

Literature studying electricity markets emerged just after the deregulation

process took place. Therefore the research is not that wide, compared to the

one focusing on financial markets. Electricity price modelling is to some ex-

tent complicated due to the unique characteristics of the time series. Com-
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plex models have to be developed in order to account for cyclical trends,

mean reversion, clustering volatility and steep jumps momentarily followed

by smoother opposite movements in energy prices (Keppler et al., 2007).

Except that, Knittel and Roberts (2005) also mention other peculiarities

such as negative values and right censoring. In their work, seasonality and

volatility clustering are found in the data constructed of 21 216 observations

of hourly data from California, collected since the opening of the market

on April 1st, 1998. As demand reaches or exceeds the maximum capacity,

clustered spikes in the prices occur. They emphasise an “inverse leverage

effect”, which relates to asymmetric reaction of volatility to positive and

negative demand shocks.

When modelling volatility time series, possible practise is to contruct a

jump-diffusion model, where realised volatility is defined as sum of its con-

tinuous and jump component. From econometric point of view, this estim-

ation is rather difficult. Therefore several studies propose to use theory of

Quadratic Variation (QVar) as a non-parametrical method to separate these

two components (the most recent ones being Chan et al. (2008); Haugom

et al. (2011); Haugom and Ullrich (2012)).

An influential article by Corsi (2004) proposes Heterogenous Autoregress-

ive Model of Realised Volatility (HAR-RV), that takes autoregressive terms

over different time horizons as regressors and can be used for forecasting

realised volatility. Chan et al. (2008) develops this model and constructs

HAR-CV-JV model applied to half-hourly prices for Australian electricity

market. They find intra-day and seasonal fluctuations in prices and therefore

apply modification to standard method of QVar, which includes estimation

of the drift in price changes. Besides that, they compare the forecasting

performance of HAR-type models (HAR-RV and HAR-CV-JV) with Expo-

nential General Autoregressive Conditional Heteroskedasticity (EGARCH)

and do not find reliable evidence for preference of any of these models.

Haugom et al. (2011) further elaborate on their work and include exogenous

variables in explaining the realised volatility. They construct the average
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realised volatility over previous five days, instead of seven days, as origin-

ally, due to Nord Pool market closure during the weekend. Since this is

not the case for any of the markets studied in this thesis, original length

for computing average historical volatility is used when dealing with HAR

models.

Various studies focusing on impact of renewable generation on volatil-

ity of electricity prices have been conducted. Some of them are focusing

solely on effects of wind power generation. Traditional time series models

are also widely used. Different types of autoregressive moving average mod-

els, often with exogenous variables (Knittel and Roberts, 2005) or seasonal

components are employed. For example, Mauritzen (2010) applies Seasonal

Autoregressive Moving Average model to study daily wholesale price vari-

ability on the Danish spot market with the result of negative elasticity. An

important factor influencing the direction of the change is a large number

of flexible hydro-power reservoirs that are helping to balance the market in

case of discrepancies between supply and demand. Various researchers pro-

pose EGARCH as the best model for volatility of energy prices. Ketterer

(2014) implements GARCH model and concludes increased daily volatility

(but decreased price) on the German spot market between 2006 and 2011

even after the regulatory change in 2010 which obliges TSOs to reveal day-

ahead forecasts for RES generation.

Green and Vasilakos (2010) study expected price behaviour in the British

market in 2020, when the 20% renewable energy target is to be met, project-

ing demand and wind generation capacity. They find increased volatility in

case of fluctuating wind output and inelastic supply curve. This behaviour

has implications for profitability of conventional power plants and future

investments. Unlike in the situation without renewable generation, plants

with lower fixed costs but higher marginal costs will be preferred in order

to balance fluctuating supply (Green and Vasilakos, 2011). Country-specific

results imply the need to further analyze different datasets and construct

policies individually.
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Recent paper by Rintamäki et al. (2017), studying German and Danish

data, employs distributed lag models to separate effect of wind and solar

power and concludes opposite effects of each source on the volatility in Ger-

man power market. While solar power flattens hourly price profile, wind

energy that is produced also during off-peak hours causes increased volatil-

ity. In contrast, daily variation in Denmark is decreased as a result of each

renewable source. Nevertheless weekly volatility soars in both areas as a

result of intermittent character of the resources.

To conclude, the research concentrated on price volatility, either in finan-

cial or electricity markets, has various streams. The importance of linking

renewable generation to changes in price volatility emerges, as its integration

into the power grid advances, forced by laws and regulations. The results

often differ, probably driven by distinct methods used and periods that are

studied. What is important, the results are country-specific and cannot be

generalised. Therefore, further research is needed in terms of expanding

number of countries studied and employing different methods to better un-

derstand the volatility process. To the best of our knowledge, no analysis

studying renewable sources and price volatility has been done for the Czech

Republic. This thesis aims to fill this gap, by proposing volatility models

with exogenous variables, that, besides other findings, explain impacts of

renewable resources. Moreover, two distinct electricity markets (Czech and

German) are compared and its individual characteristics are highlighted.
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4 Data Description

In this section we describe the data used in the later econometric analysis5,

their nature, frequency, source and reasons for choosing particular sample

periods. Firstly, variables that are common for both countries’ regressions

are described and later on, we individually focus on country specific differ-

ences in the datasets.

In order to match the day-ahead horizon of electricity prices (from which

the dependent variable is constructed), we have to use appropriate independ-

ent variables as well. Therefore, whenever possible, we work with day-ahead

forecasts of explanatory variables instead of their realised values. The reason

is that at the time of submitting their bids, market participants do not have

perfect information (just the forecasts) and their bidding strategy might have

been different under the presence of more precise information. Therefore,

volatility arising from their decisions under uncertainty have to be taken

into account. In the dataset containing forecasted variables, values for some

of the days are missing. Following the approach of Rintamäki et al. (2017),

we use realised measures for those observations.

Relatively high number of exogenous variables is used in order to capture

all important electricity price and volatility-influencing variables. Many of

them are included based on suggestions from previous works and general

understanding of power price drivers. For example, Bunn et al. (2013) use

prices of gas, coal, CO2, forecasts of demand and price volatility in explaining

electricity price quantiles. Sensfuss et al. (2008) state that fuel and carbon

prices influence the level of bids placed by market participants. Even though

oil is not directly used for electricity production, it has an impact on trans-

portation costs. We follow the variables selection proposed by Paraschiv

et al. (2014) (except expected power plant availability, which is not freely

accessible) and use the same approach regarding the determination of coal

spot price. Data on coal futures prices and prices of EEX Carbon Index

(ECarbix) were generously provided by EEX Market Data. Since coal and
5For the econometric analysis, we use R, free software for statistical computing and graphics.
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oil prices are available in USD, daily exchange rate is downloaded from Fed-

eral Reserve (2017) and used for conversion to EUR. For days with missing

exchange rate, we use the most recent known value.

Publication of the data on ENTSO-E Transparency (2017) Platform, that

we work with, is thanks to EU Regulation No. 543/2013 of 14 June, 2013

on submission and publication of data in electricity markets (European Co-

mission, 2013). TSOs reveal information about the forecasts of renewable

energy generation, that are published no later than 6 p.m. CET on the trad-

ing day and an update is published at 8 a.m. CET of the delivery day at

the latest (European Comission, 2013). Even though the order book closure

for both countries is sooner than 6 p.m. and therefore the renewable energy

forecasts may not be known to the bidders at the time of submitting their

orders, due to the non-existence of more suitable data, we assume that it

is not the case. We presuppose that all the market participants do have

the information about renewable energy forecasts for the delivery day when

deciding about their bids.

It is important to scale the RES feed-in by demand (load) because the ef-

fect of the same amount of RES feed-in might be different for various levels

of demand. When there are no blackouts, load and demand match and

therefore can be used interchangeably (Becker et al., 2007). Due to data

availability and comparability of results, total load forecasts published by

ENTSO-E Transparency (2017) are used for both Germany and the Czech

Republic. The selection of total load as demand proxy is supported by Ket-

terer (2014). Jónsson et al. (2010) use wind penetration (wind feed-in/total

load) as an independent variable. RES generation forecasts divided by total

load are referred to as RES penetration and are reported in percentage val-

ues.

Various weather conditions (temperature, wind speed, precipitation) and

seasonal dummy variables are included in the regression. Since there are

various weather forecasts providers, that publish the data free-of-charge, it

seems reasonable to assume that this information is available to all bid-
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ders on the trading day. To the best of our knowledge, download of such

weather data is not freely accessible, however the data can be downloaded

in R using packages6 that rely on web scrapping from Weather Underground

(2017). Nonetheless, due to non-availability of historical day-ahead weather

forecasts, similarly to Weron and Misiorek (2008), we use actual weather

conditions observed on the delivery day instead of the forecasts available on

the trading day.

By including the most important weather variables, we can account for

not only demand influencing conditions, but also those that influence supply.

Given the geographical variability, it is difficult to estimate the weather

for the whole country areas. Since increased demand of electricity can be

expected in the cities with higher population and industry concentration,

we focus on the most populated towns from each country and then take

population-weighted average of the desired variables. In the Czech Republic,

towns with more than 50,000 inhabitants are selected (18 towns in total

according to Czech Statistical Office (2017)), whose population represents

around 30% of the whole country. For Germany, we select 27 biggest towns

(based on Federal Statistical Office of Germany (2016), treshold for selection

is set at 250,000 inhabitants) representing 22% of country’s population. In

the later text, we always refer to population-weighted average as the base

variable for weather conditions.

Significantly high or low temperatures lead to increased electricity de-

mand due to cooling and heating, which can therefore influence the price

and its variation as noted earlier. Due to climatic nature of Germany and

the Czech Republic and demand peaking both in the summer and winter, we

have to take into account both Heating and Cooling Degree Days (CDD) as

an indication of potential impact of temperature and capacity constraints.

Similarly to Paraschiv et al. (2014), we consider comfort temperature to be

18.3 ◦C. As shown by Pardo et al. (2002), at comfort temperature, demand

is inelastic to the temperature changes. Since Heating Degree Days and
6Notably recently developed package ’weatherICAO’ (Michal Kubista, 2017) with improved localisa-

tion matching functionality as an addition to ’weatherData’ package (Narasimhan, 2017).
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CDD have high correlation with each other, we only include the latter in the

regression. Refer to the equation below for calculation of CDD:

CDDt = max(Temperaturet − 18.3, 0) (1)

It is important to note that trend analysis has been done on all exogen-

ous variables and if any time trend was found, data-series were de-trended

following approach in Wooldridge (2015) of saving residuals of regression on

time trend and treating these measures as de-trended time series. We do

not provide results of these estimations but they are available upon request.

4.1 Czech Republic

In this section, we only explain the selection of variables that are specific

for regressions on Czech data. Sample period of 2 years (from July 2015

to June 2017) is used, while data for the last 3 months are preserved for

out-of-sample evaluation. The beginning of the sample period is determined

by availability of gas spot price on PXE.

OTE has been publishing Yearly Market Report since 2002 (OTE, a.s.,

2017b) and became the sole spot market operator in the Czech Republic on

April 1, 2009 (OTE, a.s., 2009a). For this thesis, data starting from July

2015 are used and therefore all changes (EUR as a trading currency and

allowance of negative prices) stated in Subsection 2.2 are already implemen-

ted. First, we work with hourly spot prices from which we construct daily

realised volatility7. OTE, a.s. (2017b) divides trading hours during working

days between peak (8 a.m. to 8 p.m.) and off-peak hours (the rest of the

trading hours). Base load is defined for the whole trading day (i.e., also dur-

ing the weekend). Because we deal with hourly data, the change to Central

European Summer Time that occurs yearly at the end of March results in

the trading day having only 23 hours (OTE, a.s., 2012b). In contrast, when

changing back to Central European time in October, the corresponding day

has 25 trading hours (OTE, a.s., 2012c). Since the observations for the 25th
7The concept of realised volatility will be presented in the later sections.
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delivery hour were missing for some of the years, they were removed accord-

ingly. Year 2016, which is part of the sample period, was a leap year and

therefore 24 more hourly observations are assigned to February 29, 2016. In

total, daily volatilities consist of 731 observations.

Since the Czech Republic’s wind feed-in is less than 1% of power genera-

tion per year, it is not obligatory to submit the forecasts for expected wind

generation (European Comission, 2013). Therefore, only day-ahead fore-

casts of solar power production are available, starting from the year 2015

(ENTSO-E Transparency, 2017).

For summary of used data and their sources, please refer to Table 3. The

table contains both country specific data and data that are in common with

the models for Germany. Please refer to Section 4 regarding the description

of other data mentioned in Table 3.
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Table 3: Overview of data for the Czech Republic

Variable Description Unit Source

p Hourly day-ahead electricity price EUR/MWh OTE, a.s.

D Hourly total load forecast MW
ENTSO-E

Transparency

PVgen Solar forecasts for net generation MW
ENTSO-E

Transparency

Temperature
Daily mean temperature used for

calculation of CDD
◦C

Weather Under-

ground

Windspeed
Mean daily wind speed on the deliv-

ery day
km/h

Weather Under-

ground

Precipitation
Daily precipitation on the delivery

day
mm

Weather Under-

ground

Gas Gas Spot Reference Price EUR/MWh PXE

Oil Daily Europe Brent spot price FOB EUR/barrel EIA

Coal

Latest available price (daily auc-

tioned) of the front month Amster-

dam Rotterdam Antwerp (ARA) fu-

tures contract before the electricity

price auction takes place

EUR/t EEX

ECarbix

Latest price of the EEX Carbon In-

dex (Ecarbix), daily auctioned at

10:30 a.m.

EUR/tCO2 EEX

4.2 Germany

Similarly as in the previous section, we comment on the specific variables

used in regression on German data. Refer to Data Description for explana-

tions of all dataseries.

In Germany, there are four Transmission System Operators (Amprion

GmbH, Tennet TSO GmbH, 50Hertz Transmission GmbH, TransnetBW

GmbH). These have been publishing solar and wind day-ahead forecasts for

different time horizons, however since 2011 those are available for all market
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areas. Therefore the forecasts for each 15-minute interval are combined and

aggregated and finally represent day-ahead renewable energy forecast for the

whole country. Since 2015, this quantity is also available at the web-site of

ENTSO-E Transparency Transparency Platform.

Data on day-ahead spot electricity prices and gas spot prices were ob-

tained from EEX Market Data. For determination of gas spot price, we

obtained gas spot reference prices for individual market areas (GPL, NCG)

applicable to German area and computed respective traded volumes for each

of them. Then, volume-weighted average price was used as the reference

price for particular delivery day. It is important to note that there is dif-

ference in publishing daily reference price on the EEX website for different

trading and delivery days8, even though the information is always published

around 10 a.m. (i.e. before the electricity spot order book closure). This

is taken into account in the regressions, where we always refer to gas spot

price known at the time of submitting the bids for power spot market. For

more details on the adjustment rationale, please refer to EEX (2014).

Regarding the total load forecast, ENTSO-E Transparency publishes con-

cise data since 2015, however in the archive we could find total load forecasts

since 2012. Nevertheless, due to significant number of missing observations

(∼ 75% for the year 2012), we decided to restrict the sample period. In 2013,

around 2.21% of the data points were missing day-ahead forecasts while only

0.02% were missing both day-ahead forecasts and realised values. Since this

is not significant number, it should not influence the regressions negatively

given the positive impact of increased sample size.

8For delivery days from Tuesday to Thursday, the reference price for the preceding day is known to

the trader, while for Saturday, Sunday and Monday delivery days, Friday’s reference price is known. For

delivery days after National German holiday, reference price from the day preceding the holiday period

is used as the last known spot price.
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Table 4: Overview of data for Germany

Variable Description Unit Source

p Hourly day-ahead electricity price EUR/MWh EEX

D Hourly total load forecast MW
ENTSO-E

Transparency

PVgen

Solar day-ahead forecasts for net

generation
MW German TSOs

Windgen
Wind day-ahead forecasts for net

generation
MW German TSOs

Temperature
Daily mean temperature used for

calculation of CDD
◦C

Weather Under-

ground

Windspeed
Mean daily wind speed on the deliv-

ery day
km/h

Weather Under-

ground

Precipitation
Daily precipitation on the delivery

day
mm

Weather Under-

ground

Gas

Volume-weighted average of daily

reference prices for SPOT NCG &

GASPOOL

EUR/MWh EEX

Oil Daily Europe Brent spot price FOB EUR/barrel EIA

Coal

Latest available price (daily auc-

tioned) of the front month Amster-

dam Rotterdam Antwerp (ARA) fu-

tures contract before the electricity

price auction takes place

EUR/t EEX

ECarbix

Latest price of the EEX Carbon In-

dex (Ecarbix), daily auctioned at

10:30 a.m.

EUR/tCO2 EEX
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5 Methodology

In this section, we first briefly review the theory of quadratic variation, real-

ised variance and the concept of bipower variation as a way to decompose

quadratic variation into its continuous and jump component. Then we in-

troduce econometric test to detect jumps in the time series process based

on their significance. After that, we explain modification to the standard

theory of quadratic variation that is more suitable for power price series and

suggest country-specific models to estimate the non-zero drift.

5.1 Quadratic Variation and Realised Variance

We briefly introduce the theory of quadratic variation and its separation

into continuous and jump component. However, for more detailed explana-

tion, please refer to the original works of Protter (1990), Barndorff-Nielsen

(2002), Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and Shep-

hard (2006) and Andersen et al. (2007) .

While the conditional variance is not directly observable, various models

have been developed in order to estimate it. In one branch of the literat-

ure, Autoregressive Conditional Heteroskedasticity (ARCH) and General-

ised Autoregressive Conditional Heteroskedasticity (GARCH) family mod-

els are widely used (Engle, 1982; Bollerslev, 1986). For an extensive over-

view of GARCH family models applied to electricity markets, see Higgs

and Worthington (2008). The other branch of the literature proposes a

non-parametric approach. According to Merton (1980), the sum of squared

returns can be used as an accurate measure for estimating conditional volat-

ility of financial assets. Andersen and Bollerslev (1998b) suggest, that us-

ing higher frequency data and the sum of intra-day absolute returns (i.e.,

cumulative absolute returns) as a measure of daily volatility incorporates

important information. Even though Andersen and Bollerslev (1998a) con-

firm the forecasting results of previously developed GARCH models using

the so-called realised volatility method, it has been shown in various studies

that forecasts using realised volatility perform better than GARCH models
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(Andersen et al., 2003; Martens and Zein, 2004). The theory of realised

volatility method for estimating conditional variance follows.

Jump-diffusion models are often used to model asset and commodity

prices (Andersen et al., 2002; Weron et al., 2004). However, difficult sep-

aration of the continuous and jump component makes the model hard to

estimate from econometric point of view. The continuous-time semimartin-

gale jump-diffusion process for the price of an asset in time t is defined as:

pt =

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s) +
q(t)∑

j=1

κ(sj), (2)

or differently, in differential form:

dpt = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t), (3)

where µ(t) is the continuous drift with finite variation, σ(t) is the càdlàg

(continuous from the right, has limit from the left) instantaneous volatility,

W (t) is a standard Brownian motion, and finally an independent compound

Poisson process q(t) is the contribution of jump counting process such that

κ(t)dq(t) is the contribution of jump process to the log-price process (Chan

et al., 2008; Haugom et al., 2011). If there is a jump at time t, dq(t) = 1 and

κ(t) stands for the jump size. Regarding the drift, there may be differences

between electricity spot prices and prices of other financial assets. While for

the financial assets and higher sampling frequency M we can assume that

drift is negligible, as noted by Chan et al. (2008), we cannot ignore it in case

of power spot prices.

Even though the logic behind jump-diffusion model suggests that it is

composed of diffusion volatility component and jumps, it is not easy to

differentiate it econometrically (Haugom et al., 2011). Another option to

differentiate between jump and non-jump component non-parametrically is

using the theory of quadratic variation. The quadratic variation (QVar) of

Eq. (2) can be expressed as:

QVart =

∫ t

0

σ2(s)ds+
q(t)∑

j=1

κ2(sj), (4)



29

where the quadratic variation is equal to sum of the integrated variance

(IVart) and the sum of squared jumps. In the pure diffusion process, q(t)

is zero and therefore QVart is directly equal to integrated variation (IVart)

of the continuous sample path process. Under the assumption of no mi-

crostructure noise, caused by different time of price record, bid-ask bounce,

irregular trading etc. (see, e.g. Bai (2000)), Andersen et al. (2003) show

that

RVarallt
p−→ IVart. (5)

RVarallt stands for the realised variance determined using all available data

and is said to be a consistent estimator under the above stated assumption

of no measurement error. The IVart is known to be the measure of true

volatility (McAleer and Medeiros, 2008). Because of the price determination

by exchanges, no microstructure noise arises in case of day-ahead prices.

To determine intra-day returns9, assume a sample period of T days where

t ∈ {1, 2, ..., T} and prices are sampled M times per day at equidistant

intervals. Then the j-th within t-day return is defined as:

rt,j = pt,j − pt,j−1, j = 1, ...,M, t = 1, ..., T (6)

and as in Andersen and Bollerslev (1998b), the realised variance for day t

(RVart) 10 can be calculated as following:

RVart =
M∑

j=1

r2t,j t = 1, ..., T. (7)

In theory, when M −→ ∞, RVart stands for an ex-post measure of the

price variation. Specifically, RV art is a consistent estimator of the daily

addition of the quadratic variation.

RVart −→
∫ t

t−1

σ2(s)ds+
q(t)∑

j=q(t−1)+1

κ2(sj). (8)

9Even though we refer to price changes pt,j − pt,j−1 as intra-day returns, it is important to note that

since electricity is a non-storable good, they do not represents returns in a traditional sense (Chan et al.,

2008).
10While day-ahead electricity prices have hourly granularity, as the realised variance is computed as

the aggregation of intra-day price changes, we only refer to daily volatility.
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Any extreme value will be squared and therefore has higher impact on the

realised variance. In our case, M = 2411 since we use hourly data. Since the

electricity market differs from the stock market and the return for first hour

of the day is not an overnight return, we do not need to drop any observations

as e.g. in the article by Haugom and Ullrich (2012) who calculate forward

realised volatility. Even though in theory, we should always aim for the

highest sampling frequency possible (M −→ ∞), in practice, it is always

the question of market liquidity while we have to be aware of microstructure

noise when utilising high-frequency data (Gençay et al., 2001). Due to the

usage of hourly data calculated by the exchange, we do not consider any

problems arising from microstructure noise.

Since the realised volatility has been developed as an ex-post non-parametric

quadratic variation measure, it can be modeled applying usual time-series

methods.

Barndorff-Nielsen and Shephard (2005) focus on theoretical foundation

of variation measures in financial markets and on the ways to deal with mar-

ket frictions and jumps. These specifications are typical for power prices,

therefore their work can be applied beyond financial markets. McAleer

and Medeiros (2008) provide an extensive discussion and critical assessment

of approaches to modelling realised volatilities in simple and multivariate

framework. They focus on various sampling techniques and mainly on the

effects of microstructure noise (both dependent and independent noise pro-

cesses) on the estimators’ properties. Authors draw conclusions for prac-

titioners regarding modelling and forecasting daily realised volatilies. Non-

etheless, they exclude the review of jumps which are already broadly studied

by Barndorff-Nielsen and Shephard (2004, 2005).

Barndorff-Nielsen and Shephard (2006) emphasise the importance of vari-

ance decomposition into jump and continuous path in the financial eco-

nometrics. Both Huang and Tauchen (2005) and Andersen et al. (2007)
11Due to changes to Central European Summer time, we have days consisting of 25 trading hours as

explained in the previous sections. However, as suggested by Haugom et al. (2011) and Haugom and

Ullrich (2012), we only use M=24.
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conclude that the contribution of jumps to the total daily variation is sub-

stantial. Work directly focusing on the Czech electricity market recently

proposed by Hortová (2016) emphasises the significance of jumps in day-

ahead prices.

Barndorff-Nielsen and Shephard (2004) conclude that unless we make

strong parametric assumptions (see, e.g., Eraker et al. (2003)) about log-

price, alternative aggregate volatility statistics have to be used to differen-

tiate between individual contributions of continuous and jump parts. They

introduced bipower variation (BV) as the first model-free method to differ-

entiate between continuous and jump component in the calculation of quad-

ratic variation. In specific cases 12, realised bipower variation is an asymp-

totically unbiased estimator of integrated variance in SV models, which is

moreover robust to rare (i.e., the probability of two continuous jumps goes to

zero) but significant jumps typical for power prices as long as the maximum

of powers is less than two (Barndorff-Nielsen and Shephard, 2004).

Barndorff-Nielsen and Shephard (2004) define (first-lag) bipower vari-

ation as

BVart =
π

2

M∑

j=2

|rt,j||rt,j−1|, t = 1, ..., T (9)

and show that for M −→ ∞, the BV becomes robust to jumps and the

following holds:

BVart
p−→

∫ t

t−1

σ2ds. t = 1, ..., T (10)

The logic behind this specification of BV lies in the fact that for large values

of M , we can assume that there is at most one jump in two adjoining periods

which implies that even though there is a jump in one period, it will be

multiplied by smaller return from the adjacent period and therefore there

will not be large impact on the variation. According to Ullrich (2012), a lot

of jumps does not automatically lead to higher volatility.

However due to volatility clustering of spot price variance it is possible

that more than one jump occur in two adjacent period. Huang and Tauchen

(2005) proposed alternative to standard first-lag bipower variation, called
12Detailed description of all the cases is beyond the scope of the thesis
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second-lag bipower variation:

BVart = µ−2
1

M

(M − 2)

M∑

j=3

|rt,j||rt,j−2|, t = 1, ..., T (11)

where µ1 = E(|Z|) ≡
√

2/π ≈ 0.79788456 and Z refers to a standard normal

random variable.

The concept of bipower variation became popular not only in application

to high-frequency financial data (see e.g., Corsi et al. (2008); Patton and

Sheppard (2009)) but due to its nature it has been used in energy economics’

research (see e.g., Chan et al. (2008); Wang et al. (2008); Ullrich (2012)).

In their work, Chan et al. (2008) model jump component of electricity spot

price volatility following second-lag bipower variation. Later, Ullrich (2012)

further elaborates on the previous work of Chan et al. (2008) and makes

important remarks regarding the methodology when applied to electricity

spot prices.

Barndorff-Nielsen and Shephard (2004) suggest that the quadratic vari-

ation of the jump component can be calculated as the difference between

realised variance and BV estimate. Formally,

RVart − BVart −→ QVart − IVart, (12)

and therefore similarly to Bollerslev et al. (2009) we can define

JVart = RVart − BVart, (13)

where JVart is the jump component. In theory, JV art ≥ 0, however if we

have finite values of M it can happen that JV ar < 0.

Another approach is to directly test for jumps and afterwards directly

calculate JVart. In our analysis we use categorization based on results of

the Z-test:

Zt =
√
M

(RVart − BVart)/RVart√
(µ1

−4 + 2µ1
−2 − 5)max(TQt/BVart

2, 1),
(14)

where µ1 = E(|Z|) ≡
√

2/π ≈ 0.79788456 and Z refers to a standard

normal random variable. The numerator measures the contribution of jumps
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to the total price variation for day t while the denominator is a sample estim-

ate of the integrated quarticity. This estimator is proposed by Huang and

Tauchen (2005) as the most robust to sampling frequency with rejection rate

close to 1%. For other possibilities of jump detection, please see Barndorff-

Nielsen and Shephard (2004); Chan et al. (2008); Christensen et al. (2012).

Haugom et al. (2011) propose a way how to estimate integrated quarticity

by tripower quarticity (TQt):

TQt ≡ µ4/3
−3

(
M2

M − 4

) M∑

j=5

|rt,j|4/3|rt,j−2|4/3|rt,j−4|4/3, (15)

where µ4/3 = (E|Z|4/3) ≡ 22/3Γ(7/6)Γ(1/2) ≈ 0.8308609.

For M −→ ∞, Z converges in distribution to standard normal variable

(according to asymptotic distribution theory advanced by Barndorff-Nielsen

and Shephard (2004)). Therefore we can choose the desired level of signi-

ficance, compute Zt for each day t and conclude the occurence of jump if

Zt overreach the critical value Φ1−α of the standard normal distribution.

Finally, to obtain the jump component of variation for day t, we simply

define:

JVart = I{Zt>Φ1−α}(RVart − BVart), (16)

where I{Zt>Φ1−α} is the indicator function obtaining value 1 if there is a

jump detected based on the value of the test and zero otherwise. Individual

specifications of the power market determine the choice of the percentile.

That means that in the presence of jump, JVart will be calculated as the

difference between realised variance (Eq. (7)) and bipower variation (Eq.

(11)) as shown in Eq. (13).

The most important implication for our work is the calculation of con-

tinuous part of variance defined as:

CVart = RVart − JVart, (17)

which we will use as dependent variable in upcoming parts of the thesis.

Sometimes the terms realised variance and realised volatility are used

interchangeably in the literature. We stick to the traditional notation from
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the financial literature and in order to be concise, we use notation “realised

variance” for the measure from Eq. (7). By “realised volatility” (RVt) we

simply mean the square root of RV art (Barndorff-Nielsen and Shephard,

2002).

For the later analysis, it is important to note that we will use square

root of CVart from Eq. (17) and we will call it Continuous Volatility (CVt).

Similarly, square roots of JVart and RVart will be called Jump Volatility

(JVt) and Realised Volatility (RVt), respectively. Using the separated dif-

fusion part may provide better understanding of the real volatility process

netted of jumps, since those are stochastic Poisson process and are highly

unpredictable.

5.2 Modification for Electricity Prices

Quadratic variation theory is widely used in the financial literature, where,

providing high sampling frequency, it is generally assumed that the drift µ(t)

from Eq. (3) is close to zero (i.e., price changes are mean-zero). Following

that, for example, Huang and Tauchen (2005) use directly computed five-

minute returns on the S&P index in identifying the contribution of jumps

to the price variance. In contrast to financial time series, the drift is not

negligible for electricity price time series (Chan et al., 2008). Refer to Fig-

ure 1 to visually check, that power spot prices follow seasonal fluctuations

and are subject to distinct features (mean-reversion, intra-day and daily

seasonality). Following Knittel and Roberts (2005) and Chan et al. (2008),

we adjust the returns for non-zero drift and obtain the so-called de-meaned

price changes.

Looking at Figure 1, where mean prices and returns are depicted for each

hour of the day, intra-day and intra-week pattern is evident. Price series

for both markets are peaking around 9 a.m. and 8 p.m., but weekend price

levels are significantly lower, mostly during peak-hours. The dynamics of

price changes are quite similar, with slightly more volatile weekend returns

in German market.
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dummy variables Springt, Summert and Autumnt, while omitting binary

variable Wintert to avoid multicollinearity problem. Market clearing price

for the same hour of the last delivery day is also included following Paraschiv

et al. (2014) to account for autocorrelation. Coefficient β7 determines the

rate of mean reversion.

We amend the Eq. (18) for German power price dataseries according to

the classification of peak, off-peak 1 and off-peak 2 trading blocks throughout

the day. For details on trading blocks on spot market, refer to Section 2.1.

Moreover, on the EPEX SPOT market, the peak load is defined also for the

weekend. Therefore, for the German market, we can model price for j-th

hour on day t as:

pt,j = β0 + β1OffPeak1j + β2OffPeak2j + β3Weekendt + β4Springt+

+ β5Summert + β6Autumnt + β7pt,j−1 + β8pt−1,j + ϵt,j,
(19)

The intercept β0 captures the scenario when t is a weekday during winter

season and j lies between 9 a.m. and 8 p.m. (i.e., peak hours as defined for

German spot market). The independent variables have the same explanation

as for Eq. (18).

The calculation of drift in price changes follows from Eq. (18) and (19).

According to Knittel and Roberts (2005), residuals from the equations can

be viewed as the drift of price changes in Czech and German electricity

market. Therefore µ̂(t, j) ≡ ϵ̂t,j.

In order to adjust the intra-day returns for their predictable component,

we simply use the following calculation to obtain de-meaned returns 13:

r∗t,j = rt,j − µ̂(t, j), j = 1, ...,M t = 1, ..., T (20)

where notation j is used to emphasise hourly granularity and rt,j refers to

price change computed as in Eq. (6). De-meaning of returns allows to avoid

classifying higher seasonal fluctuations in price changes as jumps and, by

construction, leads to lower number of jump days identified.
13Given the complexity of drift estimation in electricity price changes, possible misspecification could

lead to imprecise results and therefore later calculations of RVart, BVart and TQ should be viewed as

approximations only.
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Finally, we apply the theory of quadratic variation as explained in Sub-

section 5.1. That means that rt,j is replaced14 by r∗t,j in Eq. (7), (9), (11)

and (15), respectively.

14Therefore in the volatility analysis, we always think of variation defined by de-meaned price changes.
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6 Empirical Results

6.1 Electricity Spot Price

Electricity price is the most important variable, as it is an input to calcu-

lations of realised volatility and its components. Descriptive statistics with

results of statistical tests for both price levels and changes are provided. We

also formally determine seasonal fluctuations, that result in estimation of

non-zero mean drift in price changes as modification to standard quadratic

variation theory.

Figures 3 and 4 depict levels of prices in both markets. Note that for

better visibility and comparability, German power prices are depicted only

for restricted period, which coincides with sample period for the the Czech

Republic. Graph for the whole sample period can be found in Appendix

(Figure 11). From the plots of hourly price series, the occurrence of jumps

is already evident. Negative bids are allowed in both markets, therefore

the prices are limited only by order constraints posed by particular market

operator (for details, see Sections 2.1 and 2.2). For 1% of hourly observa-

tions in German market, the prices are below zero. Most of them occur

during winter, followed by spring, autumn and summer as the season with

least number of negative prices. For comparison, 186 hourly observations

are negative in winter and 137 in spring, while only 44 and 25 in autumn

and summer, respectively. In the Czech Republic, 0.7% of observations are

negative, out of which 52 occur in winter, 39 in spring, 19 in summer and

only 6 in autumn. These differences can be attributed to demand patterns,

seasonal fluctuations in weather conditions and individual characteristics of

the country. More than 60% of negative prices occurred during the week-

end. Negative prices are rather common finding in power markets and its

rationale can be found in Section 2, where pecularities in deregulated elec-

tricity markets are discussed.

Descriptive statistics for both country’s spot price and price changes are

summarised in Table 5. The calculations are made for the whole sample

period, consisting of 17,542 and 39,403 observations for the Czech Republic
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Table 5: Descriptive statistics for electricity prices and price changes

CZ DE

Spot price Return Spot price Return

N 17,542 17,541 39,403 39,402

Mean 33.52 0.00005 33.09 0.0005

Std dev 14.47 4.76 14.55 5.34

Skewness 1.12 0.64 0.27 0.37

Kurtosis 4.67 10.01 5.94 13.42

Min −25.0 −42.58 −130.09 −71.03

Max 141.04 48.76 163.52 75.4

25% percentile 24.9 −2.11 25.11 −2.3

Median 32.16 −0.30 31.91 −0.23

75% percentile 40.22 1.84 40.05 1.97

Jarque-Bera test 19,633 74,397 58,443 296,620

(<0.01) (<0.01) (<0.01) (<0.01)

Dickey-Fuller test −13.481 −26.063 −20.307 −40.055

(<0.01) (<0.01) (<0.01) (<0.01)

KPSS test 2.057 0.0012 1.4525 0.0015

(<0.01) (>0.1) (<0.01) (>0.1)

Note: Spot price refers to hourly day-ahead price and first differences of prices are

referred to as returns. p-values for the corresponding test are included in parenthesis.

Source: Author’s computation.

standard deviation to mean price. Maximum price is 163.52 EUR/MWh,

while in the Czech Republic, it is only 141.04 EUR/MWh.

Interquartile range and mean spot price can be taken as indication of

“normal” trading conditions. These are very similar and range from around

25 to 40 EUR/MWh. Mean is higher than median, which suggests positive

skewness and occurrence of fewer observations above the mean. The mean

is higher due to few extreme observations, that are more likely to occur in

particular seasons for each country. In the Czech Republic, for example,

41% of hourly prices in forth quartile occur in autumn, 27% in winter and

only 11% in spring. In Germany, the pattern is similar, with 32% of extreme
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observations occuring in autumn, 31% in winter and 17% in spring. Given

previous remarks, winter seems as the most volatile period in terms of the

extreme observations.

Standard deviations for both prices and returns are high compared to

mean values. There are some extreme observations, that deviate significantly

from the mean value, which is close to zero. For example, maximum absolute

hourly price change for the Czech market is 48.76 EUR/MWh while being

50% more for German spot price.

Skewness and kurtosis indicate deviations from normal distribution. Both

spot prices and returns exhibit positive skewness, which is in line with the

literature (see, e.g. Ullrich (2012)) and are leptokurtic, resulting in fat-

tailed distributions. This suggests that extreme values are more likely to

occur compared to standard normal distribution. Normality is also formally

tested by Jarque-Bera test (Jarque and Bera, 1980) and null hypothesis of

normality is rejected in all cases, which confirms previous remarks.

In order to be able to estimate the equations, stationarity and mean-

reversion of time series is checked. Following Krǐstoufek and Luňáčková

(2013), two tests for stationarity, with different null hypotheses, are em-

ployed: Augmented Dickey-Fuller Test (ADF) (Dickey and Fuller, 1979)

with null hypothesis of unit-root and Kwiatkowski-Phillips-Schmidt-Shin

Test (KPSS) (Kwiatkowski et al., 1992) that has null hypothesis of sta-

tionarity. Lags for the tests are determined automatically by R software.

The null hypothesis of ADF test is rejected in all cases and therefore the

series do not contain unit root. However, results of KPSS test suggest non-

stationarity in the price series, but stationarity for price changes. These

characteristics are in line with findings for other power markets (see, e.g.

Knittel and Roberts (2005)) with more details in Section 2.

Literature focusing on electricity price behaviour emphasises the mean

reversion effect in contrast to the financial assets (Krǐstoufek and Luňáčková,

2013; Weron, 2014). The logic behind mean reversion is high dependency on

weather conditions which tend to be mean reverting. Other than that, higher
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electricity price motivates more costly power plants to operate, therefore

creating downward pressure on prices. In the case of low prices, generation

tends to go down and pushes the price up. Specifically for the Czech power

market, Krǐstoufek and Luňáčková (2013) study mean-reversion of price and

report Hurst component of 1.1, which suggests non-stationary but mean-

reverting time series.

Based on previous remarks and thanks to mean-reverting nature, we first

estimate Eq. (21) to formally determine, whether it is necessary to remove

the drift in our case. We test for significant difference between peak and

off-peak prices and between weekdays and weekend prices for the Czech Re-

public. Specifically, we drop out Peakj from Eq. (18) and add the intercept

α0 which represents the scenario for base period during weekday in winter.

pt,j = β0 + β1OffPeakj + β2Weekendt + β3Springt + β4Summert+

+ β5Autumnt + β6pt,j−1 + β7pt−1,j + ϵt,j.
(21)

The results of this regression are included in Appendix (Table 12). The

mean Czech spot price on weekday in winter is estimated to be 37.9429

EUR/MWh, while off-peak price for the same day is lower by 3.3268 EUR/MWh.

Ceteris paribus, price on weekend is lower by 6.6684 EUR/MWh. This can

be explained by generally lower demand during weekend which, together

with price setting dynamics, imply lower price. The last three rows demon-

strate seasonal fluctuations. We find prices in spring to be lower compared

to winter at 10% significance level.

Similarly, we test for significant difference between peak and off-peak

prices and between weekdays and weekend prices for Germany while we do

not need to amend Eq. (19). Therefore, it stays in its original form as:

pt,j = β0 + β1OffPeak1j + β2OffPeak2j + β3Weekendt + β4Springt+

+ β5Summert + β6Autumnt + β7pt,j−1 + β8pt−1,j + ϵt,j.
(22)

The results of the estimation can be found in Appendix (Table 13). The

mean German spot price during peak hours on weekday is estimated to be
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35.4820 EUR/MWh, while during weekend the peak-hour mean price is lower

by 3.1979 EUR/MWh. Price during off-peak periods is lower, however the

magnitude of decrease is higher during off-peak 1 period (between midnight

and 8 a.m.). The price decrease is 3.5965 EUR and 2.7048 EUR for off-peak

1 and off-peak 2 period, respectively. The coefficients indicating seasonal

fluctuations are qualitatively similar in both countries, showing decrease in

price for spring compared to winter season.

Based on the results of the regressions, seasonal, intra-day and intra-

week fluctuations were confirmed. These remarks apply to both markets

that supports the usage of de-meaned price changes in realised volatility

calculations.

6.2 Estimation of Jump and Continuous Component of Realised

Volatility

In order to disentangle jump and continuous component of realised volatility,

we follow the methodology presented earlier and since significant intra-day,

intra-week and seasonal differences were shown, we use de-meaned price

changes in the later computations. Theory of quadratic variation is then

applied and jump component of realised volatility is determined using Z-test

with chosen significance level. For days with significant jumps, continuous

variation is computed as realised variation netted off jump component.

Before estimating the jump component and continuous component of real-

ised volatility, we provide results (Table 6) of estimation of autoregressive

model with exogenous variables summarised in Eq. (18). Please note that

Peak and OffPeak are in Czech power market defined only during weekdays

and therefore the interpretation differs from the German market. Accord-

ingly, for the Czech Republic, mean spot price during peak hours in winter

is estimated at 37.9429 EUR/MWh while for offpeak hours for the same

season, the mean price is 34.616 EUR/MWh. Qualitatively similar results

for Germany are reported in Table 13 and commented in previous section.

Therefore, according to Chan et al. (2008), we continue to use de-meaned
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Table 6: Drift estimation for the Czech Republic power price series

Dependent variable:

Price

AR(1) 0.8327∗∗∗

(0.0039)

AR(24) 0.1461 ∗∗∗

(0.0039)

Peak 37.9429∗∗∗

(2.0307)

OffPeak 34.6160∗∗∗

(2.0294)

Weekend 31.6160∗∗∗

(2.0373)

Spring −3.1694∗

(1.9183)

Summer −2.443

(2.1995)

Autumn 0.3929

(1.9764)

Observations 17,542

Note: ∗∗∗ significance at 1%, ∗∗ significance at 5%, ∗ significance at 10%. Standard

errors are in parenthesis.

Source: Author’s computation.

price changes in computations of realised variance as noted in Eq. (7), where

rt,j is replaced by r∗t,j from Eq. (20). Please note that, unless specifically

noted, we always refer to de-meaned price changes when talking about re-

turns in the later sections. We compute all measures as described in section

Methodology, while we do not further comment on them if it is not necessary.

Once we compute bipower variation (Eq. (11)) and detect the day with a

significant jump, we can employ Eq. (16) to estimate the jump component

of the total variation and consequently determine the continuous component

of the total variation according to Eq. (17). Only continuous component

is used in later regression estimations and its rationale is stated in later
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sections.

For estimating the jump component of the realised variation using the

Z-test defined in Eq. (14), we have to first specify the desired level of α in

order to capture reasonable amount of jumps. On one hand, if we set α too

loosely, we will obtain too many jumps that will decrease the continuous

component of the variation. On the other hand, if α is set to be too low, we

will not detect some jumps and the omitted jump variation will be counted

towards the continuous part of the variation instead.

We aim to avoid both of the extremes and follow the approach of Tauchen

and Zhou (2011). They suggest to match a jump contribution of 80% with

α = 0.1% while in the case of a jump contribution being of order 10%, α

should be 5%. The latter is the case for the Czech Republic, as mean jump

contribution (JVt/RVt) is 5.298% when α is set at 5%, while results were

qualitatively similar when experimenting with different levels of significance.

Jump intensity, that is number of days with significant jumps scaled by all

days in sample period, is 12.82%. These results are in line with previous

study on Czech power market (Hortová, 2016) with just slightly lower result

of 5.2% jump contribution. For the same significance level, mean jump

contribution is 7.818% in German power market while jump intensity is

19.36%. These results seem reasonable given the summary statistics and

differences between the markets.

We further follow the methodology and obtain the estimated components,

that are summarised in Table 7, where variation components are reported

in their standard deviation form. By construction of the reported measures,

CV has lower mean compared to RV, while JV has high dispersion around its,

relatively low, mean. Statistics for skewness and kurtosis signal deviations

from normal distribution, which is in line with the results for power markets

(Mari, 2006; Chan et al., 2008). We arrive to the same conclusion after

performing Jarque-Bera test for normality.

As for the magnitudes of mean realised volatilities, the differences can be

attributed to varying sources of energy and possibly to better interconnec-
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tions with countries rich in storable hydro-power.

Table 7: Summary statistics for volatilities and test results

CZ DE

RV JV CV RV JV CV

N 731 731 731 1,642 1,642 1,642

Mean 22.47 2.35 21.57 8.8 0.84 8.49

Std dev 13.6 7.05 13.03 3.91 1.79 3.08

Skewness 2.27 3.32 2.48 2.73 1.94 2.51

Kurtosis 7.61 11.67 9.19 12.38 2.59 10.84

JV/RV 5.298% - - 7.818% - -

Coefficient of variation 0.6053 3.0 0.604 0.4443 2.131 0.481

Jarque-Bera test 2,411.1 5,525.8 3,346.9 12,567 1,490 9,781.1

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Dickey-Fuller test −5.4967 −8.4098 −5.4609 −7.6705 −10.612 −7.7648

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

KPSS test 0.30023 0.15055 0.2865 0.43956 0.095443 0.42464

(>0.1) (>0.1) (>0.1) (<0.01) (>0.1) (<0.01)

Note: The table reports summary statistics and statistical tests with p-values in

parenthesis for realised volatility (RV) and its jump (JV) and continuous (CV)

components, that are estimated with significance level α = 5%. Coefficient of variation

is defined as standard deviation divided by mean of corresponding data.

Source: Author’s computation.

The contribution of jumps to total realised volatility can be seen in Fig.

5. For the Czech market, mean jump contribution is 5.398% compared to

7.818% for Germany. There are more jumps identified in German market and

signs of volatility clustering can be observed for both countries, where there

are clear high jump intensity periods followed by periods of low volatility.

For the clarity and easier comparability, volatilities and jumps are shown

just for two-year period, which coincides with the whole sample period used

for the Czech Republic. Full graphs for Germany can be found in Appendix

(Figure 12).

The distribution of jumps during the week is uneven and differs by coun-
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try. For instance, 47% of jumps in German market occur during the weekend.

Even for continuous volatility, observations in the forth quartile are concen-

trated during weekend (around 40%). The results are contrasting to the

ones obtained for the Czech Republic. In this market, only 16% of jumps

are detected on Saturday or Sunday and 14% of continuous volatility ob-

servations that belong to the forth quartile are identified during weekend.

This suggest possibly different results in the later estimations in terms of

coefficients for binary variable Weekend.

As opposed to Czech market, volatilities computed for German mar-

ket exhibit time trend. Therefore, the null hypothesis of KPSS tests is

trend-stationarity. Jump component of volatility rises in time with concave

structure, while continuous component decreases. Before being used in the

models, these volatilities are de-trended. Such transformation leads to level-

stationary data. To reduce skewness and kurtosis of volatility distribution,

it is possible to do logarithmic transformation. However, this transforma-

tion yields in time series that is further from stationarity in contrast to level

form. Therefore in the later analysis, we preserve the level form of dependent

variables.
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6.3 Summary Statistics for Exogenous Variables

In this section, we briefly comment on exogenous variables that are used in

later regressions. Focus is put on penetration of RES and evolution of prices

of commodities over time. Summary statistics for all exogenous regressors

are provided in Appendix (Table 14 and 15), where the name of the variable

is kept the same as in Data Description and regression equations.

Values of daily total load differ in magnitude, which is not surprising

given different population size for each country. The same applies to daily

total RES generation forecasts, that depend on installed capacity mostly.

Therefore, usage of RES penetration is more appropriate for the estimations.

Mean percentage values of RES penetration are in line with figures from

Section 2.1 and 2.2. Germany has higher mean penetration of energy from

photovoltaics and together with wind penetration, on average, it can account

for around 20% of electricity demand.

As regards the weather conditions, higher mean values for each variable

and more extreme fluctuations in mean daily temperature are observed in

the Czech Republic. There is also rather significant difference in CDD,

which suggests generally higher daily temperatures in the Czech Republic

and possible fluctuations in electricity price.

Commodity prices use the same measure and differ only in length of the

sample period. The only exception is gas price, which is different for each

market and based on the summary statistics, is higher for Germany. Results

for oil and coal spot price suggest decreasing time trend. Contrasting remark

applies to ECarbix.

Figures 6 and 7 depict mean hourly RES penetration for German and

Czech market. For the latter, only Photovoltaics (PV) penetration is avail-

able and for easier comparability with German market, the same y-axis are

used. Combining these insights with Figure 1, we can discuss possible im-

plications on spot price volatility. For example, in German market, deeper

drop in spot price and higher (in absolute values) price changes might be

associated with peaking solar penetration in the corresponding hour of the
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6.4 Models

The previous analysis clearly separated continuous and jump component of

the total realised variation. In the later steps, we focus solely on the con-

tinuous component15 and model it by including lagged dependent variables

to reduce autocorrelation and make use of memory of electricity prices. We

add market-specific exogenous variables, building on models presented in

the literature. Specifically, standard deviation of continuous component of

variation is used, denoted as continuous volatility.

As regards the complexity and number of regressors, three models are

designed. Due to distinct dynamics of the markets, these models have to

be further adjusted to assure validity of the results and therefore, in total,

six alternatives are proposed. We inspect the impact of RES penetration

and other exogenous variables on the daily volatility and test for effects

commonly present in electricity markets. For the Czech Republic with less

developed structure of RES, only penetration of PV is available. Two dis-

tinct markets are compared; on one side, Germany which is the leading

country in integration of renewable energy into power grid, and the Czech

Republic with less developed market for RES and restricted availability of

data. Comparison with findings in the literature and explanation of possible

differences is provided.

First model, based on HAR-RV model (Corsi, 2004), however applied to

continuous volatility for the purpose of this thesis, takes volatility compon-

ents over different horizons as regressors. Following the original notation,

we refer to this model as HAR-CV model. Second model incorporates all

exogenous variables that are documented in the literature as factors possibly

influencing electricity price and its volatility. Various binary variables are

included to control for seasonal patterns and test for intra-week differences.

This model is referred to as HAR-CV-EX and should be viewed as the main

one for explaining variation in power prices and effects of exogenous vari-

ables, including RES penetration as the variable of interest. The last model
15When we refer to “volatility” in explaining the results, we always have continuous component of

volatility in mind, unless explicitly stated otherwise.



53

is constructed as a compromise between complexity and modelling power. It

includes only significant regressors, that can benefit modelling and forecast-

ing volatility in the power market. We denote it as HAR-CV-EX reduced

model.

Performance of models with exogenous regressors is compared to less

complex one that are based only on autoregressive terms. Assessment of the

most influencing exogenous variables for each market is made, which can

benefit future research in the area of electricity price volatility.

6.4.1 Model 1 - HAR-CV

As a starting point, we first examine the heterogenous autoregressive model

proposed by Corsi (2004). Although this AR-type model is not formally a

long memory-model, it can reproduce the decay of Autocorrelation Func-

tion (ACF) by taking volatility components over different horizons as re-

gressors. It is referred to as HAR-RV model and, as the notation suggests,

was originally applied to model Realised Volatility (RV). For the purpose

of this thesis, Continuous Component of Realised Volatility (CV) is used as

the dependent variable. The model specifically focuses on effects of current

and recent-past variation and for the in-sample modelling of CV, we rewrite

it as following:

CVt = β0 + β1CVt−1 + β2CV
w
t−1 + ϵt, (23)

where CVw
t−1 = 1

7

∑8
s=2 CVt−s is the average continuous volatility over

the seven days preceding day t − 1. This model assigns more weight to

previous day’s volatility than to the volatilities over recent past, as those

are averaged.

As an additional independent variable, we include binary variable taking

on value 1, if the sum of intra-daily returns for day t − 1 is in the lower

quartile and zero otherwise. This is to check for the so-called “(inverse)

leverage effect”, known from finance, which refers to asymmetric impact of

positive and negative shocks on power price volatility. We test, whether
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the effect is significantly different from zero, which corresponds to the null

hypothesis, under which β3 = 0 and alternative hypothesis of β3 ̸= 0. If we

want to specifically test for inverse leverage effect, then HA : β3 < 0. This

refers to situation, when volatility tends to rise less with negative shocks

than positive shocks, which can be attributed to convex shape of marginal

costs.

Therefore we amend the Eq. (23) accordingly and estimate it using OLS:

CVt = β0 + β1CVt−1 + β2CV
w
t−1 + β3INVt−1 + ϵt. (24)

The results reported with robust standard errors are displayed in Table

8. The coefficients show high degree of persistence and volatility clustering.

For the Czech market, recent past variation has even higher statistically sig-

nificant impact on today’s volatility than previous day’s variation. Haugom

et al. (2011) find this characteristic for Nord Pool quarterly contract series

while the effect does not impact yearly contracts to such extent. Chan et al.

(2008) find the same result for realised volatility of spot power prices in

Queensland, Australia, however not for the other regions. Adjusted R2 for

our model is higher compared to their results due to different dependent

variables used. While RV also includes the jump component, CV should be

more predictable.

When the model, as specified in Eq. (24), was applied to German data,

non-stationary residuals were obtained. This is due to different dynamics of

the volatility series, which can be seen from the previous analysis. There-

fore, the model was amended accordingly by adding autoregressive term for

continuous volatility from previous week, CVt−7. The equation for German

data therefore looks as following:

CVt = β0 + β1CVt−1 + β2CV
w
t−1 + β3INVt−1 + β4CVt−7 + ϵt. (25)

The results differ by country and for easier comparability, coefficients are

reported in the same table. In Germany, volatility from previous day has

much higher impact on day t volatility than averaged volatility over previous
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week. Weekly pattern is statistically significant, which was visible from ACF

plot for residuals from estimation of the original equation.

Regarding the inverse leverage effect for the Czech market, even though

the t-statistic of -1.2041 is negative, which would indicate inverse relation-

ship, we fail to reject the null hypothesis of no asymmetric effect at 10%

significance level when comparing with critical value for one-sided t-test.

The same conclusion applies to German market.

Table 8: Regression results for HAR-CV model

Dependent variable: CVt

CZ DE

Intercept 6.1190∗∗∗ 0.1833

(1.4823) (0.2653)

CVt−1 0.2219∗∗∗ 0.3391∗∗∗

(0.0559) (0.0498)

CVw
t−1 0.5159∗∗∗ 0.0851

(0.0498) (0.0637)

INVt−1 −1.3062 −0.1905

(1.0848) (0.1848)

CVt−7 - 0.1895∗∗∗

- (0.0318)

Adjusted R2 22.84% 18.83%

Breusch-Pagan test 11.088 42.182

(0.0113) (<0.01)

Breusch-Godfrey test 2.8637 0.5549

(0.0906) (0.4563)

ADF −7.8835 −11.163

(<0.01) (<0.01)

KPSS 0.1553 (0.3044)

(>0.1) (>0.1)

Jarque-Bera test 5759.3 6091.7

(<0.01) (<0.01)

Note: ∗∗∗ significance at 1%, ∗∗ significance at 5%, ∗ significance at 10%.

Robust standard errors and p-values of the tests are reported in parenthesis.

Source: Author’s computation.
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To comment on the residuals of the regressions, several tests are per-

formed. The following remarks apply to both regressions unless stated oth-

erwise. ADF rejects unit root and KPSS test for residuals does not reject

stationarity. Breusch-Pagan test suggests heteroskedasticity, which however

does not influence the unbiasedness of coefficients, just the efficiency of vari-

ance estimate. This finding is not surprising, as time-varying volatility of

the volatility estimator is present in any model (Corsi et al., 2008).

To check for autocorrelation in residuals from the models, we visually in-

spect ACF and Partial Autocorrelation Function (PACF) plots and formally

test by Breusch-Godfrey test. For the models that include lagged depend-

ent variables, Breusch-Godfrey is preferred over Durbin-Watson test (Dezh-

bakhsh, 1990; Maddala, 2001). Results of the test reject the null hypothesis

of no serial correlation at 10% significance level for the Czech market, but

not for German one. We therefore use heteroskedasticity and autocorrela-

tion robust standard errors and heteroskedasticity robust standard errors,

respectively. The results of previously mentioned tests are in Table 8 while

ACF and PACF plots can be found in Appendix (Figure 13). There are few

significant lags that are outside the confidence interval, which suggests that

model can be improved by adding new information, however autocorrela-

tions are changing sign and decay quickly and do not pose significant issues

on the validity of the model.

Finally, graphical representation of the performance of HAR-CV model

for both markets is provided in Figure 8.
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6.4.2 Model 2 - HAR-CV-EX

Several studies have examined the influence of exogenous variables on mod-

elling of electricity price volatility. We therefore further build on the first

model, while dropping binary variable INV due to its statistical insignific-

ance in explaining the variance. While it is interesting to inspect effects of

commodity prices or weather, the main focus should be on the series con-

taining daily RES penetration. Common approach in the literature is to

study the impact on realised volatility as a whole, not on its continuous

component separately. Therefore, the findings may differ due to exclusion

of jump component which is, by its nature and characteristics, a result of

unexpected shocks and capacity constraints.

The rationale behind the choice of exogenous variables and its form can be

found in section Data Description. It is important to note that all variables

with time trend are used in their de-trended form in the later regressions.

Another important remark is that t as a subscript to exogenous variables

means either forecast of the variable for day t, if such measure is available,

or the information known when submitting orders for delivery day t. In

the case of commodity prices, it means the most recent known value, while

details for the data amendments can be found in Data Description. We also

include seasonal dummy variables to account for differences between astro-

nomical seasons and intra-week patterns in all regressors. Binary variables

WeekDay and Winter are dropped out of the equation to avoid multicollin-

earity problem and are included in the intercept.

Based on the remarks found in the literature, we propose the following

model for the Czech market, which includes several exogenous variables,

binary variables and autoregressive terms to account for short-term price

volatility development:
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CVt = β0 + β1CVt−1 + β2CV
w
t−1 + β3PVt + β4ECarbixt + β5Oilt+

+ β6Coal/gast + β7Precipitationt + β8Wind speedt + β9CDDt+

+ β10Weekendt + β11Springt + β12Summert + β13Autumnt + ϵt.

(26)

In the above equation, β3 is the coefficient corresponding to penetration

of renewable energy sources, which in the case of the Czech Republic cor-

responds to solar penetration only. The values are reported in percentages

and express average generation forecast divided by average expected load.

For the purpose of modelling volatility for German market, the previous

equation is amended by adding one more autoregressive term to assure valid-

ity of the results. Since both PV and wind forecasts are available, variable

Windt represents wind penetration and the estimation is done based on the

following equation:

CVt = β0 + β1CVt−1 + β2CV
w
t−1 + β3PVt + β4ECarbixt + β5Oilt+

+ β6Coal/gast + β7Precipitationt + β8Wind speedt + β9CDDt+

+ β10Weekendt + β11Springt + β12Summert + β13Autumnt+

+ β14CVt−7 + β15Windt + ϵt.

(27)

Various studies have been performed on determining impact of renewable

resources on price volatility. For example, Mauritzen (2010) studies Danish

market and concludes decreased volatility, probably due to high number of

hydro-power available in the country. On the other hand, Ketterer (2014)

finds increasing effect due to wind generation for German market. Paraschiv

et al. (2014) study price levels and find price-decreasing impact caused by

PV penetration, however they do not comment on its effect on volatility. As

has been already noted, the results differ from country to country and can

differ by method used. It is interesting to see whether statistically significant

impact can be found in the Czech market, which has not been studied yet.

Regarding the selection of the independent variables, refer to Section 4.
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We provide just brief additional comments about expected signs of the coef-

ficients. Sensfuss et al. (2008) emphasise the importance of ratio of coal and

gas price when examining the MOE effect. They conclude that when prices

of coal are high while prices of gas are low, the MOE is reduced. Since the

MOE can be partially linked to price volatility, in this case, we expect β6

to be positive. Decrease in already low prices can, however, lead to higher

volatility. These volatility-decreasing expectations are based on assumption

of stronger MOE during periods of high prices. Paraschiv et al. (2014) stud-

ies the impact of commodities, CO2 prices and RES on electricity price in

Germany for each hour separately and discovers stronger price-increasing ef-

fect of emission certificates during peak hours, implying increasing volatility

in the market. Therefore, price of ECarbix is expected to increase volatility.

Similar rationale can be applied to oil price, for which positive coefficient is

expected.

Concerning the weather forecasts (which are represented by realised val-

ues due to data availability), wind speed, precipitation and temperature are

considered to be the most influencing variables on electricity price. Precipit-

ation, together with hydro-reservoir level, has decreasing level on volatility,

since hydro-power is not intermittent source and therefore can be used to

balance extreme conditions on the market. Hydro-reservoir levels are not

available and therefore only precipitation is used as a proxy for the increase

in such stored energy. Variable CDD, which indicates positive deviation

from the comfort temperature and can be viewed as a shock leading to

higher prices, is expected to have positive sign.
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Table 9: Regression results for HAR-CV-EX model

Dependent variable: CVt

CZ DE

Intercept 11.4319∗∗∗ (2.2904) −0.2509 (0.1909)

CVt−1 0.1639∗∗∗ (0.0481) 0.3077∗∗∗ (0.0418)

CVw
t−1 0.4555∗∗∗ (0.0789) −0.1311∗ (0.0698)

PVt −0.0131 (0.1846) 0.0911 (0.0630)

ECarbixt 0.7907 ∗ (0.4579) −0.0717 (0.0986)

Oilt 0.0607 (0.0561) 0.0378∗∗∗ (0.0119)

Coal/gast 2.3347∗ (1.3503) −1.3848∗∗∗ (0.3305)

Precipitationt −0.0935 (0.1846) −0.0957 (0.0849)

Wind speedt 0.2244∗ (0.1304) −0.0198 (0.0468)

CDDt 0.5477 ∗ (0.2936) 0.0010 (0.0133)

Weekendt −5.0292∗∗∗ (1.2875) 0.7776∗∗∗ (0.1619)

Springt −2.3609 (1.6088) −0.2004 (0.2764)

Summert −3.0104 (2.2569) 0.5940 (0.2419)

Autumnt −0.5036 (1.6024) −0.5322 (0.3295)

CVt−7 - - 0.1456∗∗∗ (0.0343)

Windt - - 0.1165∗∗∗ (0.0198)

Adjusted R2 25.94% - 30.6 % -

Breusch-Pagan test 24.459 (0.0272) 99.345 (<0.01)

Breusch-Godfrey test 13.159 (0.0003) 10.444 (0.0012)

ADF −7.5871 (<0.01) −10.749 (<0.01)

KPSS 0.0530 (>0.1) 0.3194 (>0.1)

Jarque-Bera test 6994.8 (<0.01) 4952.9 (<0.01)

Note: ∗∗∗ significance at 1%, ∗∗ significance at 5%, ∗ significance at 10%

Robust standard errors and p-values of the tests are reported in parenthesis.

Source: Author’s computation.

Coefficient estimates and test results for residuals analysis are summar-

ised in Table 9 and ACF and PACF plots of residuals can be found in

Appendix (Figure 14). The same remarks as for HAR-CV model apply

to HAR-CV-EX. Again, Newey-West estimator is used due to heteroske-

dasticity and serial correlation and robust standard errors are reported in
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parenthesis. ACF and PACF plots show autocorrelations that stay within

the 95% confidence interval, except few cases. These results suggest that

model coefficients can be used for valid inference.

Starting with the Czech market, first, we comment on the results for

photovoltaic penetration, which is the variable of our interest. Looking at

the coefficient and its corresponding robust standard error, the variable is not

significantly different from zero. Therefore, we fail to draw any conclusion

about its increasing or decreasing effect on spot price volatility. The result

can have various reasons, one of them being relatively low development and

usage of renewable energies in the Czech Republic, compared to conventional

power generators. See Figure 1 It might be interesting to investigate this

effect, when longer span of data is available or when the energy mix changes

in favour of RES. Since no data for wind generation forecasts exist for

the Czech Republic, wind-speed can be viewed as a proxy for wind power

plant generation, although specific wind speed is associated with start of

power producing and also the need to stop the plant due to strong wind,

which is not considered here. Since wind is not concentrated during peak

hours (as is the case for photovoltaic generation), prices diverge when the

residual demand fluctuates during the off-peak hours and therefore wind can

contribute positive to price volatility.

We also briefly comment on other coefficients from the regression. The

value of robust t-statistics for Coal/gas is 1.7269, which enables us to reject

the null hypothesis of β6 = 0 in two-tailed test at 10% significance level. This

result is in line with our expectations stated earlier. Similar conclusion can

be drawn for the price of ECarbix. Weather variables, except precipitation,

are also statistically significant, as noted in previous studies. Specifically,

wind speed has an increasing effect on daily volatility as well as cooling

degree days, i.e. positive deviation from comfort temperature.

Regarding the German market, some of the coefficients differ, which is not

a surprising result given individual country’s characteristics and power price

drivers. Note that the results are for de-trended volatility series, as opposed
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to volatility in the Czech market, which does not exhibit any time trend.

Therefore it is possible that volatility, as a non-negative measure, takes on

negative values. What is important, de-trending preserves the dynamics of

data series and all conclusions are valid.

The coefficient for PV penetration is positive, however not statistically

significant. This can be attributed to different dependent variables and

sample periods used, compared to previous works. From the prior graphical

analysis on the dataset used for the estimation, there is no clear indication

about the resulting direction of the change in price volatility. Looking at

the coefficient for wind penetration, it is positive and statistically significant,

which is in consent with other studies on German market. The main reason

is its intermittency and higher supply throughout the off-peak hours (res-

ults supporting this argument are available upon request), affecting off-peak

prices, that diverge and consequently contribute towards volatility. Even

though wind speed is in some ways a proxy for wind power generation, in-

cluding the wind penetration in the regression controls for this effect and

ceteris paribus, it does not influence price volatility.

Coefficients for binary variables, associated with intra-week and seasonal

fluctuations, do not always have common sign for both markets. It has been

shown in previous sections, that electricity prices vary in magnitudes and

dynamics. For instance, refer to Section 6.1, where occurrence of extreme

price levels is discussed or to Figure 1 for intra-week patterns. Since seasonal

differences with regards to volatility are not statistically significant, this

applies to coefficient for Weekend mostly.

To conclude, wind penetration has statistically significant increasing im-

pact on spot price continuous volatility in German market. The result is in

line with the literature. As for the PV penetration, the effect is not signi-

ficantly different from zero. This can be attributed to double-peaking daily

price and bell-shaped PV penetration (see Figure 1, 2 and 6).

Finally, the forecasting performance for HAR-CV-EX model can be found

in Figure 9.
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6.4.3 Model 3 - HAR-CV-EX reduced

Finally, for the use of forecasting, we propose modification to HAR-CV-EX

model, in which we optimise modelling accuracy and number of predictors

by dropping out highly insignificant variables while keeping the ones that

positively contribute to the explanation of variation. This model mainly aims

to propose a compromise between complexity and forecasting performance.

It can serve as a reference for further research on electricity price volatility.

Since PV penetration in the Czech Republic does not explain price variation,

it is not included in this reduced-form model. In contract, we include both

PV and wind penetration, since PV penetration was border-line insignificant

and can still be important in explaining the variance.

The construction of the models can be summarised by the following equa-

tions, first one corresponding to modelling volatility in the Czech power

market and second one for Germany:

CVt = β0 + β1CVt−1 + β2CV
w
t−1 + β3ECarbixt + β4Coal/gast+

+ β5Wind speedt + β6CDDt + β7Weekendt + β8Springt+

+ β9Summert + β10Autumnt + ϵt.

(28)

CVt = β0 + β1CVt−1 + β2CV
w
t−1 + β3PVt + β4Windt + β5Coal/gast+

+ β6Oilt + β7Weekendt + β8Springt + β9Summert+

+ β10Autumnt + β11CVt−7 + ϵt.

(29)

Assumptions of these models and results of residual analysis are very

similar to Model 2, therefore are not commented here. Numerical results

can be found in Table 10. Adjusted R2 rose in both cases, suggesting sim-

ilar modelling ability with less complex structure and easier access to data.

Graphical representation of model performance can be found in Figure 10.

For both markets, the results are robust and the signs of the coefficients

remain unchanged. Seasonal effects are more pronounced, indicating, ceteris
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Table 10: Regression results for HAR-CV-EX reduced model

Dependent variable: CVt

CZ DE

Intercept 10.8808∗∗∗ (2.1127) −0.2134 (0.1852)

CVt−1 0.1632∗∗∗ (0.0470) 0.3089∗∗∗ (0.0418)

CV7,t−1 0.4718∗∗∗ (0.0842) −0.1272∗ (0.0708)

PVt - - 0.1060∗ (0.0603)

Windt - - 0.1083∗∗∗ (0.0131)

ECarbixt 0.7878 ∗ (0.4642) - -

Coal/gast 2.4910∗ (1.3082) −1.3032∗∗∗ (0.2812)

Oilt - - 0.0372∗∗∗ (0.0118)

Wind speedt 0.2118∗ (0.1212) - -

CDDt 0.6228 ∗ (0.3272) - -

Weekendt -5.0399 ∗∗∗ (1.3163) 0.7927∗∗∗ (0.1578)

Springt −2.3804 ∗ (1.2472) −0.2511 (0.2603)

Summert −3.2401∗ (1.5415) 0.6214∗ (0.3194)

Autumnt −0.5197 (1.6142) −0.5834∗∗ (0.2410)

CVt−7 - - 0.1453∗∗∗ (0.0344)

Adjusted R2 26.16% 30.73%

Breusch-Pagan test 22.486 (0.01281) 99.53 (<0.01)

Breusch-Godfrey test 12.64 (0.0004) 10.073 (0.0015)

ADF −7.6232 (<0.01) −10.723 (<0.01)

KPSS 0.0372 (>0.1) 0.3045 (>0.1)

Jarque-Bera test 6832.5 (<0.01) 4947.9 (<0.01)

Note: ∗∗∗ significance at 1%, ∗∗ significance at 5%, ∗ significance at 10%

Robust standard errors and p-values of the tests are reported in parenthesis.

Source: Author’s computation.

paribus, lower volatility in Czech power market in spring and summer, com-

pared to winter. Recall the results from drift estimation (Table 12), which

also indicate seasonal differences in mean spot prices between seasons. In

Germany, the most volatile season is summer, followed by winter. Since the

estimation results are very similar to the ones from Model 2, please refer to

the previous section for further explanations.
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There is only one remark regarding coefficient for PV . In this reduced-

form regression, the variable shows to be different from zero at 10% signific-

ance level. Such confidence interval, given the previous results, is not high

enough to draw reliable conclusion.

Finally, the graphical presentation of model performance can be found in

Figure 10.
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6.5 In-Sample and Out-Of-Sample Evaluation

In this section, we provide in-sample and out-of-sample evaluation of the

models. Firstly, we choose the best model for each country based on inform-

ation criterion, namely Bayesian Information Criterion (BIC) introduced in

Schwarz et al. (1978), which is closely related to the Akaike information

criterion (AIC), however introduces larger penalty term for the number of

parameters in the model. We provide both measures to see, whether there

is any difference in the result. However since it is not possible to use BIC to

choose between nested models, we first decide between these two based on

extra sum of squares test.

For the in-sample selection, we first test HAR-CV-EX vs. HAR-CV-

EX reduced. Specifically, we look at extra sum of squares, that indicate

whether supplementary predictors explain a substantial additional amount

of variability. The numerical results of the test can be found in Table 16 and

17. In this case, we cannot reject the null hypothesis, that added predictors

have zero coefficients and therefore we use adjusted R2 measure to select

better performing model. For both markets, the selected model is HAR-CV-

EX in its reduced form with adjusted R2 = 26.16 (The Czech Republic (CZ))

and adjusted R2 = 30.73 (Germany (DE)).

Table 11 summarises BIC and AIC values for six variations of the models.

Overall, for regressions on Czech data, based on BIC, simple HAR-CV can

be considered as the best model, while based on AIC, it is reduced form

of HAR-CV-EX. For German regressions, reduced form of HAR-CV-EX is

the best according to both criteria. Different results can be attributed to

penalty terms for more regressors as noted earlier. AIC score improved after

adding exogenous variables to the model, however, since we want to pick the

minimal value of the criterion and account for additional variables, BIC is

more suitable in this case and finally, Model 1 and Model 3 are chosen as

the best performing ones for the Czech Republic and Germany, respectively.

Last model’s alternative for German market is chosen as the best one based

on all 3 criteria (see previous paragraph), while Czech version of Model 1
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and 3 are chosen based on BIC and AIC.

Table 11: AIC and BIC summary for models

CZ DE

BIC AIC BIC AIC

HAR-CV 4,934.699∗ 4,912.447 6,967.928 6,936.743

HAR-CV-EX 4,955.816 4,889.083 6,843.248 6,754.891

HAR-CV-EX reduced 4,937.691 4,884.305∗ 6,816.056∗ 6,748.489∗

Note: Best performing model based on corresponding criterion is marked with ∗.

Source: Author’s computation.

As the in-sample evaluation can sometimes bring misleading results, we

additionally perform out-of-sample evaluation using Diebold-Mariano Test

(DM) (Diebold and Mariano, 2002). DM is widely used test for forecasting

accuracy with null hypothesis of loss differential between two forecasts hav-

ing zero expectation for all t. Both two-sided and one sided tests can be

specified to construct different alternative hypothesis. Under the null hypo-

thesis, the DM test statistic is asymptotically N(0, 1) distributed, however

these properties depend on the sample size and degree of serial correlation

among the forecast errors. It has been shown that DM test remains asymp-

totically valid even for nested models if model parameters are estimated

using a rolling window instead of an expanding one (Giacomini and White,

2006).

For the Czech Republic, last 3 months of the dataset (April-June 2017)

are left for the out-of-sample evaluation. One-day ahead volatility forecasts

are obtained each time the model is re-estimated. Estimation is done on

a rolling-window basis, where the window length is fixed on 633 observa-

tions and each prediction is based on estimation from directly preceding

633 observations. Note that window length was restricted from in-sample

640 observations due to previous computations and adjustments of the data.

As already noted, the approach of fixed window length is more suitable for

testing forecasting accuracy with DM test.

For German data, last 10 months are left for out-of-sample period (ap-
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proximately 20% of the sample size). This results in 1336 observations for

in-sample estimation (after dropping 4 missing observations) and 295 obser-

vations for out-of-sample. Again, rolling window day-ahead forecast with

fixed window length is applied.

Starting with model versions for Czech market, under the null hypothesis

of DM test, tested models have the same forecast accuracy. Alternative

hypothesis is specified such as Model 3 is more accurate that Model 1 re-

garding the forecasting accuracy. The results (p-value = 0.05648) of the

test, performed with loss function power of 2, indicate that we can reject

the null in favour of alternative hypothesis at 90% confidence interval. This

means that Model 3, which includes also exogenous variables as opposed

to basic model proposed by Corsi (2004), provides significantly better fore-

casts. Out-of-sample evaluation in this case contradicts in-sample results.

The same procedure is applied to versions for German data and yields to

the same conclusion, with p-value of 0.03392 and loss function power of 2.

To conclude, adding exogenous regressors to the model improves mod-

elling accuracy, compared to the simpler version with autoregressive terms

only. Applying DM test to HAR-CV-EX model and its reduced form, no

significant difference in forecasting accuracy was detected. Therefore, it can

be concluded that even though Model 2 includes more exogenous variables,

similar forecasting performance can be achieved with fewer regressors. The

selection of these variables is country-specific and our results can serve as a

guidance for variables selection used for future research.
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7 Conclusion

This thesis investigates the effects of renewable resources and other exo-

genous variables on continuous volatility of electricity prices in Czech and

German day-ahead market. Using quadratic variation theory and it’s modi-

fication for electricity prices, it is possible to divide realised volatility into

its jump and continuous component. We determine lower mean continuous

volatility in German market with decreasing time trend. In contrast, jump

component exhibits an increasing trend. We do not find any time trend in

volatility series for the Czech Republic. Mean jump contributions of 5.298%

and 7.818%, while the former result is for the Czech Republic, are compar-

able with other world electricity markets.

We model the continuous volatility using three approaches with vary-

ing complexity, studying inverse leverage effect and sensitivities to weather

conditions, commodity prices and penetration of renewable sources. Volat-

ility persistence and clustering is found in both markets. To assure validity

of the results, six different models are proposed to account for individual

characteristics of the markets.

To the best of our knowledge, this is the first study concerning spot price

volatility and renewable resources in Czech power market. We do not find

significant effect of PV penetration on volatility, probably attributable to

low development of these sources. However, we find sensitivities to cooling

degree days and wind speed, as well as emission allowances and ratio of coal

and gas prices.

Although German market has been studied already, our analysis is dif-

ferent due to continuous volatility used as dependent variable, compared

to realised volatility or standard deviation used in the literature. We find

increasing effect of wind power penetration, however, not statistically signi-

ficant effect of PV penetration. Seasonal patterns and sensitivities to com-

modity prices are determined to be more suitable for volatility forecasting

than weather variables.

All models are evaluated in-sample and out-of-sample, resulting in selec-
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tion of reduced form of HAR-CV-EX model, where exogenous variables are

determined based on country-specific selection from regressions. We doc-

ument positive impact on forecast accuracy, when implementing relevant

exogenous variables, compared to purely autoregressive model. This finding

builds on previous remarks on power price volatility and provides founda-

tions for future research, potentially conducted on Czech power price series,

when longer span of data and wind penetration is available.

To summarise, continuous power price volatility differs in its nature and

drivers from country to country. In Germany, which is developed market

for renewables sources, higher wind penetration leads to increased volatility.

The effect of PV penetration is not significantly different from zero in both

studied markets.

For future research, we suggest to use different kind of models, such

as SARMA, GARCH or ARFIMA, that capture long-memory behaviour.

McAleer and Medeiros (2008) propose multiple-regime model based on re-

gression trees as a superior to HAR and ARFIMA models.

Future changes in penetration of renewable sources will shape the elec-

tricity market further and better understanding of these implications is im-

portant to assure secure power supply and rational investments into installed

and storage capacities.
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II

Table 12: Relevance of drift estimation in price changes for the Czech Republic

Dependent variable:

Price

AR(1) 0.8327∗∗∗

(0.0039)

AR(24) 0.1461∗∗∗

(0.0039)

Intercept 37.9429∗∗∗

(2.0306)

OffPeak −3.3268∗∗∗

(0.1578)

Weekend −6.6684∗∗∗

(0.3036)

Autumn 0.3929

(1.9765)

Summer -2.4429

(2.1996)

Spring −3.1694∗

(1.9183)

Observations 17,542

Note: ∗∗∗ significance at 1%, ∗∗ significance at 5%, ∗ significance at 10%.

Standard errors are reported in parenthesis.

Source: Author’s computation.



III

Table 13: Relevance of drift estimation in price changes for Germany

Dependent variable:

Price

AR(1) 0.8489∗∗∗

(0.0025)

AR(24) 0.1239∗∗∗

(0.0024)

Intercept 35.4820∗∗∗

(1.4726)

OffPeak1 −3.5965∗∗∗

(0.1164)

OffPeak2 −2.7048∗∗∗

(0.1165)

Weekend −3.1979∗∗∗

(0.2079)

Spring −4.0152∗∗∗

(1.2321)

Summer 0.2141

(1.1795)

Autumn 1.4053

(0.9606)

Observations 39,403

Note: ∗∗∗ significance at 1%, ∗∗ significance at 5%, ∗ significance at 10%.

Standard errors are reported in parenthesis.

Source: Author’s computation.







VI

Table 15: Summary statistics for exogenous variables for German data

Statistic N Mean St. Dev. Min Max

D 1,638 1,293,167.51 153,051.88 578,481.00 1,618,077.25

PVgen 1,638 61,520.87 36,854.34 2,002.75 151,626.50

Windgen 1,638 184,271.25 148,822.38 10,694.33 810,970.73

PV ∗ 1,638 4.93 3.15 0.13 15.79

Wind∗ 1,638 14.16 11.16 0.88 68.35

Temperature 1,638 8.03 5.67 −7.55 23.66

Windspeed 1,638 9.87 4.10 3.61 29.91

Precipitation 1,638 0.40 0.84 0.00 10.53

CDD∗ 1,638 0.07 0.47 0.00 5.36

Gas 1,638 20.30 5.02 10.88 39.49

Oil 1,638 59.26 18.40 23.84 88.98

Coal 1,638 57.17 9.54 37.42 83.05

ECarbix 1,638 5.75 1.32 2.66 8.63

Note: The table presents summary statistics for all exogenous variables, both for

original data and the ones constructed for the purpose of estimation. The latter case is

denoted with ∗.

Source: Author’s computation.







IX

Table 17: Analysis of variance of two nested models for DE

Statistic N Mean St. Dev. Min Max

Res.Df 2 1,322.000 2.828 1,320 1,324

RSS 2 11,977.240 10.129 11,970.080 11,984.400

Df 1 4.000 4 4

Sum of Sq 1 14.325 14.325 14.325

F 1 0.395 0.395 0.395

Pr(>F) 1 0.812 0.812 0.812
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