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spot index values, however, given the regression analysis results the prices do

not entirely follow the model design. The other part of the analysis focuses

on the behaviour of the basis throughout the life of the relevant futures

contracts. The results suggest that there is indeed a decreasing tendency

towards the expiration of a contract, nevertheless, it is subject to considerable

fluctuations. The paper also documents other factors that might impact

stock index futures prices yet not included in the standard pricing formula.
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Abstrakt

Práce se zabývá efektivitou běžně už́ıvaného modelu cost of carry na oceňováńı

termı́nových kontrakt̊u a možnost́ı jej aplikovat v rámci německého blue-chip

indexu DAX a souvisej́ıćıch termı́nových kontrakt̊u během posledńıch let.

Práce zvažuje jak odchylky pozorovaných cen termı́nových kontrakt̊u od

jejich teoretických hodnot, tak vhodnost modelu pomoćı regresńı analýzy.

Výsledky ukazuj́ı, že i přes mnoho odchylek od správných hodnot navržených

modelem jsou tyto deviace malé ve srovnáńı s potenciálńımi transakčńımi

náklady, což naznačuje, že kontrakty jsou efektivně oceněné. Kointegračńı

vztah mezi termı́novými a spotovými cenami indexu je potvrzen, nicméně

podle výsledk̊u regresńı analýzy ceny zcela neodpov́ıdaj́ı konceptu modelu

cost of carry. Daľśı část analýzy se soustřed’uje na chováńı báze během

obdob́ı př́ıslušných termı́nových kontrakt̊u. Výsledky naznačuj́ı, že báze

opravdu vykazuje klesaj́ıćı tendenci směrem k expiraci kontraktu, nicméně

podléhá značným výkyv̊um. Práce také představuje daľśı faktory, které

mohou ovlivnit ceny indexových termı́nových kontrakt̊u a které však nejsou

zohledněny ve standardńım oceňovaćım vzorci.
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E-mail vedoućıho práce oldrich.dedek@fsv.cuni.cz

mailto:marika.nemcova12@gmail.comm
mailto:oldrich.dedek@fsv.cuni.cz


Declaration of Authorship

I hereby proclaim that I wrote my bachelor thesis on my own under the

leadership of my supervisor and that the references include all resources and

literature I have used.

I grant a permission to reproduce and to distribute copies of this thesis

document in whole or in part.

Prague, 3 July 2017

Signature



Acknowledgment

I would like to express my gratitude especially to my supervisor, prof. Ing.
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Proposed topic The cost of carry model in stock index futures: theory

and reality

Topic characteristics

The cost of carry model is the standard model for pricing futures contracts.

It defines the relationship between futures and spot prices implying the price
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is assumed to be decreasing as the contract approaches its expiration. This

phenomenon is known as the basis convergence. The classic cost of carry

model is, however, limited by considerably strict assumptions of perfect

markets, which actually confronts the reality.

In my thesis, I would like to focus on the field of stock index futures and

compare the model suggestions with the actuality. An area of particular
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There are many studies detailing a comparison between the cost of carry
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1 Introduction

The rapid expansion of financial futures trading resulted in the introduction

of stock index futures. In 1982 the Chicago Mercantile Exchange was the first

to release trading in index futures and these types of futures contracts soon

expanded outside the USA to the European area. Since then stock index

futures have been an important and growing part of the financial markets

and they gained popularity for several reasons. One of the primary factors

was risk management as market participants obviously wished to reduce their

risk at low cost. By providing liquidity and lower transaction costs potential

risks in the cash market could be offset by index futures positions.

The effectiveness of a futures contract depends on its ability to reflect

the underlying index and therefore the spot-futures relationship and the

pricing performance of respective markets have been of interest to many

financial analysts and researchers. Futures contracts can be priced on the

basis of arbitrage meaning we can derive the price or the range of prices

at which investors will not be able to establish positions with both the

futures contract and the underlying concurrently in order to make riskless

profit with no initial investment. The cost of carry model, first introduced

by Cornell & French (1983), is considered as the standard pricing model

of stock index futures and will be the centre of this study. The model is,

however, based on rather unrealistic assumptions demanding perfect capital

markets with no transaction costs, taxes and constraints on short sales,

equal lending and borrowing rates or a certain risk-free rate. Over the years

many academics have attempted to model the futures price under various

assumptions and economic conditions trying to incorporate other factors

that might significantly influence the index futures price and explain the

mispricing reported in some index futures contracts.

This study will focus on the German blue-chip index DAX and its futures

contracts covering the period 2012-2016. DAX is composed of the 30 largest

German companies and belongs to the most popular worldwide underlyings

for index derivatives as indicated by their high trading volumes. The core area
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of the thesis is the cost of carry model. To investigate its appropriateness in

terms of pricing efficiency, first, the magnitude of the mispricing is measured.

In order to see how well the cost of carry model explains the price behavior

the fitness of the model is tested by regressions analysis using the actual

futures prices. In anticipation of the poor model performance the thesis

provides a summary of other important factors and models which might

provide further explanation with regards to futures pricing.

Further part of the investigation is dedicated to the relationship between

the spot and futures prices and the basis convergence suggested by the cost

of carry model. The study looks at the suggested pattern of the model and

the actual behavior of the prices over the life of a contract.

The rest of the thesis is organised as follows. The second chapter summar-

izes the literature dealing with the cost of carry model in pricing stock index

futures and related testing of its suitability. It also presents some authors

that proposed modifications of the standard model that have shown to be

relevant. The next chapter introduces the theoretical background of stock

index futures pricing. The cost of carry model, the related pricing formula

and the basis convergence as well as the concept of normal backwardation

and contango are explained. The chapter four provides some technical inform-

ation regarding the DAX index and its futures contracts. The fifth chapter

is dedicated to the methodology used in evaluating the relative mispricing of

futures contracts and the fitness of the standard model. After the description

of the dataset in section six, the following chapter discusses the empirical

results. Afterwards chapter eight focuses on other factors that proved to be

relevant in index futures pricing but that are not included in the standard

pricing formula. The last chapter concludes the thesis and the appendix

covers the tables and figures that are not included in the text.
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2 Literature review

The pricing of stock index futures has been a point of interest for many

academics and practitioners. There are numerous studies evaluating the

pricing efficiency of the cost of carry model and comparing its performance

with other modified models incorporating various factors that might have an

influence on stock index futures price.

Cornell & French (1983) developed the cost of carry formula for pricing

stock index futures under the assumptions of perfect markets and no-arbitrage

argument. Later, Bühler & Kempf (1995) tailored the formula, which was

primarily aimed at price indices, for performance or total return indices.

The cost of carry model has been percieved as the standard model for

pricing stock index futures, however, plenty of studies report the mispricing

of contracts when observed prices are compared to the theoretical fair values

suggested by this model. Bühler & Kempf (1995) studied the price relation

between the DAX index and its futures and they detected undervaluated

contracts. Moreover, they found that the absolute value of the undervaluation

increases with time to maturity for all contracts under the study. Investigating

arbitrage opportunities in German markets they indicated a large number

of arbitrage signals which disappear quickly for contracts with shorter time

to maturity suggesting arbitrageurs exploit these signals rapidly but only in

contracts with nearest delivery.

Similarly to German markets, Fassas (2010) reports deviations from the

fair price of FTSE/ATHEX-20 index futures contracts suggesting profitable

arbitrage opportunities exist in Greek markets. His findings also show

that dividends, volatility, liquidity and short-selling restrictions influence the

extent of mispricing. Many other studies found an undervaluation of the stock

index futures contracts. MacKinlay & Ramaswamy (1988), Bhatt & Cakici

(1990) investigated the US markets, Yadav & Pope (1990) examined the

pricing efficiency of the UK markets, Lim (1992) confirmed the undervaluation

of the contracts for Japanese markets.

Contrarily some research supports the standard pricing model.
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Butterworth & Holmes (2000) examined the pricing of the FTSE 100 and

FTSE mid 250 index futures contracts traded in the UK and found that

the deviations from the fair prices are rather small in magnitude. With the

estimation of the round-trip transaction costs based on Yadav & Pope (1990)

the mispricing range was within arbitrage limits and contracts were efficiently

priced. Furthermore, it was found that the futures trading in the FTSE mid

250 contract, which was designed to support the FTSE 100 with tracking

of medium and smaller capitalization stocks in the UK, is associated with

an improvement in the pricing performance of the FTSE 100 contract as

indicated by a reduction in the occurence of arbitrage opportunities in the

respective market.

Tharavanij (2012) tested the cost of carry model in relation to the SET50

futures traded on Thailand Futures Exchange and found that the model

explains the SET50 futures very well. The paper also investigated the

Granger causality between futures and spot prices and discovered that only

spot prices lead futures values. Among other papers that report no significant

deviations of futures prices from their theoretical fair values belong Cornell

(1985) with the US market investigation and Bailey (1989) that examined

Japanese markets.

Given the mixed results many researchers tried to explain the occurence

of mispricing and suggest other models that might prove to be more efficient

than the standard pricing model. Furthermore, there is copious literature

stating that real capital markets are imperfect and the arbitrage mechanism

does not complete which contradicts the cost of carry model design. Brenner

et al. (1990), Gay & Jung (1999), Twite (1998) and Andreou & Pierides

(2008) support the argument that real capital markets are imperfect.

Several authors focused on the taxation of dividends and tried to incorpor-

ate the tax effect in the valuation formula. Kempf & Spengel (1993) argued

that investors’ marginal tax rates have an influence on the fair stock index

futures price and therefore add the correct dividend payment to the pricing

equation. Considering additional costs to arbitrage, Janssen & Rudolph

4



(1995) modelled, apart from the tax treatment of dividends, transaction costs

and interest rate taxation. Other refinements of the theoretical valuation

formula in different tax systems can be found in Bamberg & Dorfleitner

(2002) and Weber (2005).

The most recent study of the tax effect on stock index futures prices

was conducted by Fink & Theissen (2014). They argue that the different

taxation of dividends in the spot and futures market in Germany causes

the violation of the cost of carry model. After analysing three significantly

different historical tax regimes in Germany during the period 1990-2011

they validated that the mispricing stems from the dividend taxation and

derived a DAX future valuation formula with the relevant tax effect. The

severest mispricing was found in the Vollanrechnungsverfahren period, an

imputation tax system that was in force until the end of 2000, where the

marginal investor encounters the biggest gap between the index-assumed

dividend payments and the dividend payments after tax. Fink & Theissen

(2014) state that over the last 20 years the daily mispricing and arbitrage

opportunities in the DAX futures contract were reduced as a result of the

systematic change in the taxation of dividends. They concluded that more

generic taxation rules lead to the easier and more accurate pricing of the

DAX futures contracts.

Investigating the NYSE stock index futures, Hemler & Longstaff (1991)

found that market volatility has an impact on stock index futures price and

developed a pricing model with stochastic interest rate and market volatility.

The influence of stock market volatility was confirmed in other papers too.

Fung & Draper (1999) examined the Hong Kong Hang Seng Index futures

and found the relation between the size of mispricing and market volatility,

the results of Andreou & Pierides (2008) suggest the mispricing is caused by

transaction costs, volatility and time to maturity. Among the most recent

studies Wang (2011) tested the pricing of the SGX FTSE Xinhua China A50

and HKEx H-share Index futures and reported that the high price volatility

of the two underlying Chinese stock markets undermines the efficiency of
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the standard cost of carry model in favor of the Hemler & Longstaff (1991)

model. Manu & Narayana (2015) confirms that the Hemler & Longstaff

(1991) model evinces the better pricing performance when compared with

the cost of carry model for CNX Nifty futures and Bank Nifty futures of

National Stock Exchange, India. On the other hand, CNX IT futures were

found to be better priced by the standard pricing model.

Short selling constraints represent another variable that was tested for

having explanatory power in the context of stock index futures pricing. The

study of Fung & Draper (1999) on the Hong Kong Hang Seng Index futures

contracts was conducted over the three distinct short selling regulatory

regimes in Hong Kong. They concluded that the relaxing of the short

sale constaints reduced the mispricing of stock index futures contracts and

accelerated market adjustment. Similar findings are reported in Gay & Jung

(1999) who found that the underpricing of Korean stock index futures was

affected by the transaction costs and restrictions on short sales. Fassas (2010)

confirms the effect of short sellling regulation as mentioned previously.

Transaction costs are another factor that is not present in the simple

cost of carry formula and that leads to the formation of a no-arbitrage band

rather than a single equation as expanded upon later. Aragó et al. (2003)

examined daily closing prices of the IBEX 35 futures contracts during the

period 1996-1997 covering a dramatic reduction in the transaction costs of

trading IBEX 35 stock index futures in January 1997. They found that the

correlation between the spot and futures prices increased.

Many researchers measure the market imperfections individually and

when deriving a modified pricing model they seldom incorporate multiple

market imperfections together. Nontheless, Hsu & Wang (2004) developed an

imperfect market pricing model which is based on arguments of an incomplete

arbitrage mechanism and real capital markets not being perfect. Instead of

separating the individual effects, the model incorporates the factor of price

expectation (expected growth rate) which reflects the effects of all market

imperfections between the stock index futures market and its underlying spot

6



market when implementing arbitrage activities. Empirically, the fact that

the degree of market flaws influence the futures price and may impede the

implementation of arbitrage mechamism in immature markets with higher

degree of market defects is confirmed in several papers. While Brooks et

al. (1999) support the cost of carry model pricing applicability in the well-

established FTSE 100 and S&P 500 index futures markets with low extent of

market imperfections, Gay & Jung (1999) and their study on Korean stock

index futures market show the effect of market defects in immature markets

with a relatively higher degree of imperfections. Wang (2007) compares the

pricing performance of the cost of carry model and the imperfect market

model for four Asian stock index futures markets covering the period 1997-

2005. The paper examines both mature and imature markets and captures

the Asian financial crisis in 1997-1998. The results confirm that market

imperfections play an important role in determining the stock index futures

prices for immature markets and turbulent periods. The cost of carry model

proved to provide a more accurate pricing for a mature market of Nikkei

225, immature markets such as the SGX and KOSPI 200 futures markets

were better priced by the imperfect market model. Moreover, the futures

contracts during the Asian crisis period were better described by, again, the

imperfect market model.

The relatively recent study Manu (2015) examines the pricing efficiency of

the Hemler and Longstaff model and the Hsu and Wang model when applied

on three futures indices of National Stock Exchange, India. The results show

that the Hsu and Wang model outperforms the other model for all three

futures markets and additionally suggest that average daily trading volume

might influence the pricing error in Indian markets. Based on the empirical

results and the fact that the standard cost of carry model does not include

the price expectation parameter, practitioners should identify the degree of

market imperfections for the markets in which they participate first before

selecting the correct pricing model.

With regard to basis convergence, the literature focuses primarily on
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commodity markets that assume delivery of a commodity rather than on

cash-settled futures contracts since the convergence of futures and spot

prices of an index is acomplished automatimally on derivatives exchanges.

Nontheless, there are some papers investigating stock index futures markets.

Beaulieu (1998) investigated the S&P 500 and the MMI. Using daily data of

the period 1985-1991 it was found that the variance of the basis decreased as

maturity approached. Low et al. (2002) found similar results for the variance

of the log-basis when examining the Nikkei 225 data of the period 1986-1996.

Another studies are focusing on the factors that influence the basis, since

the predictibility of the basis is of special importance for hedgers. While

investigating the S&P 500 index futures, Chen et al. (1995) suggested that

the basis decreases as the volatility of the stock market rises. Roll et al.

(2007) found the mutual relationship between the basis and the liquidity

of the stock market. Other factors influencing the basis include stochastic

risk-free rates or turnover of the underlying asset on the market as suggested

by Wu et al. (2011). Marcinkiewicz (2013) examined the Warsaw Stock

Exchange and its WIG20 index futures. The study did not detect any impact

of these factors excepting the positive relationship between the basis and the

volatility which contradicts the findigns of previous studies. Surprisingly it

was found that the the time to maturity had very little effect on the size

of the basis with both positive and negative signs. The values of the basis

strongly depended on the past observations which the author explained by

the predominance of speculators in the Polish stock index futures market.

8



3 Theoretical background

3.1 The cost of carry model

The cost of carry model determines the fair, arbitrage-free price of a futures

contract and defines the relationship between the spot and futures market

price as per Hull (2006). It states that the futures price is determined by

the relative costs of buying an asset with deferred delivery in the futures

market versus buying the asset in the spot market with immediate delivery

and carrying the asset in the inventory. When the stock index is considered

we can either buy the stocks involved in the index immediately or enter a

stock index futures contract with deferred settlement. The former would

provide us with dividend payments, while with the latter we would save the

proceeds needed for immediate purchase of stocks that could otherwise be

invested at a money market interest rate. Therefore we can define the net

carrying cost advantage of deferring the delivery of stocks as rf − d, i.e. the

difference between the risk-free rate and the dividend yield per period. This

advantage must be offset by a differential between the futures price and the

spot price. This is achieved when the following holds:

F0 = S0(1 + rf − d), (3.1)

where F0 is the futures price, S0 is the spot price, rf is the risk-free rate

and d represents the dividend yield from the stock. This is the so-called

spot-futures parity theorem or the cost of carry relationship which states

that the theoretical fair price of an index futures contract should be equal

to the spot index price adjusted for the cost of carrying the index over the

remaining life of the contract. The price difference between the two markets

should then be equal to the cost of carry of the underlying.

Any deviation from this parity would give rise to a risk-free arbitrage

opportunity. If the futures price were higher than the implied fair price,

traders could short a futures contract and buy the stocks underlying the

index at the spot price in an attempt to capitalize on that mispricing. This

way traders would bid up prices in the spot market and bid down the futures
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price until the parity is satisfied. If the futures price were to be lower than the

theoretical price the reverse could be done, i.e. shorting the stocks underlying

the index and taking the long position in the futures contract. Therefore

according to theory arbitrageurs should ensure that any deviation of the

price of futures transaction from their fair values is soon eliminated.

3.2 Stock index futures pricing formula

One of the first models for valuation of stock index futures was derived by

Cornell & French (1983). According to their model the fair, arbitrage-free

price for a price index is found as follows:

F (t, T ) = Ste
rt(T−t) −

N∑
i=1

Die
rt(T−ti), (3.2)

where F (t, T ) is the price of the index future at time t with maturity at time

T , St is the value of the stock index at time t, rt is the interest rate per year

for lending or borrowing money for period [t, T ], (T − t) is time to maturity of

the futures contract and the last component presents the dividend payment

at time ti compounded to the maturity date that are deducted from the

index.

As mentioned before, however, this cost of carry model relies on many

assumptions. First, the model requires perfect capital markets meaning there

are no transaction costs, no short sale restrictions, assets can be perfectly

divided, interest rates for lending and borrowing are equal and are non-

stochastic and orders are executed instantaneously. Furthermore, margin

requirements are ignored and arbitrageurs are not restricted in terms of

the size of their arbitrage positions. Also all dividends payments from the

underlying stock portfolio that took place until the expiration of the contract

are known. Lastly, the model does not take tax effects into consideration.

DAX is, however, a performance index. Measuring the total performance

of the index stock portfolio it is adjusted for stock price changes that are

results of subscription rights, stock splits and mainly dividend payments.

Dividend payments are reinvested into dividend paying stock and once
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a year the index is adjusted and re-invested dividends are distributed to

the involved companies proportionally to their market capitalization. This

suggests that arbitrageur has to follow the reinvestment strategy to avoid

unbalanced arbitrage positions i.e. reinvesting dividend payment into the

dividend paying stocks and rebalancing the portfolio once a year is needed

so that their stock portfolio increases in the same way as the index does. An

important assumption here is that there are no tax effects that would result

in different dividend payments.

As the increasing number of total shares of stocks in the index portfolio

is offset exactly by the decrease in stock price (the book value per common

share is diluted) the total value of the index portfolio remains unchanged

by dividends. These are the arguments of Bühler & Kempf (1995) who

moderately adjusted the cost of carry formula for futures contracts based on

performance indices. The no-arbitrage relationship is as follows:

F (t, T ) = Ste
rt(T−t). (3.3)

3.3 Basis convergence

Another area the cost of carry model covers is the notion of the basis

convergence. As stated in Sutcliffe (2006) the basis refers to the difference

between the spot price of the underlying index and its futures price. The

sign of the basis depends on the cost of carry discussed above. Negative cost

of carry represents the situation where funding costs needed to acquire the

basket of index stocks are higher than the dividends resulting from the cash

position. The futures contracts are simply more attractive and therefore trade

at higher prices than the underlying index. When calculated as spot less

futures the basis is negative and this phenomenon is referred to as contango.

On the other hand, positive cost of carry implies that the dividends exceed

the financing costs of the underlying index. When entering a futures position

investors forego the income on the cash market instrument therefore futures

prices are below the spot index level. When, again, quoted as spot less

futures the basis is positive and the situation is called backwardation.
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Regardless of whether the basis is negative or positive the cost of carry

model suggests that when a contract approaches maturity the futures price

converges to the spot price of the underlying index, in other words, the basis

converges to zero. At expiration date the prices should be equal. If this is

not the case the convergence should be completed with the help of arbitrage.

If the futures price is higher than the index value during the delivery period

traders might exploit the arbitrage opportunity by shorting a futures contract,

buying the asset in the spot market and making the delivery. Clearly, profit

would be made as price of the index is higher in the futures market than in

the cash market. The simple law of supply and demand implies that this

process would push the futures prices down. If the futures price is lower than

the index value at expiration, the reverse holds.

3.4 Normal backwardation and contango

The term backwardation should not be interchanged with normal backward-

ation, which relates to the relationship between the current futures price

and expected future spot price. Normal backwardation refers to a situation

where the futures price is below the expected spot price at maturity and it

is argued by Keynes (1930) to be usual for futures markets. When hedgers

hold, on average, short futures positions and want to transfer risk efficiently

to speculators, the speculators have to hold long futures positions. To induce

speculators to take on price risk that commercial traders do not wish to

take they have to be compensated in the form of risk premium and this in

turn requires the futures price to be below the market’s average opinion

about the future spot price. And as the basis converges to zero when nearing

maturity the futures price has to increase over time making gains for the

longs and losses for the shorts. Yet the traders in short positions are willing

to bear these losses to ensure against uncertain prices and therefore to reduce

risk. The modern approach to explaining this relationship is based on the

relationship between risk and expected return. Obviously, the higher the risk

of an investment, the higher the expected return demanded by an investor.
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When the return from an investment is positively correlated with the stock

market, i.e. the one that comprises the systematic risk, the investor requires

a higher expected return than the risk free rate of interest for bearing this

risk. The stock index is indeed correlated with the market and as such

needs to be traded for lower price on the futures market when compared to

expectations about the future spot price. Speculators are compensated in

the form of positive expected profits and short side investors are willing to

suffer expected losses in order to lower the portfolio risk.

The opposite situation, where the current futures price is above the

expected future spot price, is known as contango. On average, hedgers hold

long futures positions and risk-averse speculators are motivated to enter short

positions in the futures market by being offered expected return higher than

riskless rate. This is achieved when the futures price now is higher than the

expected spot price at maturity. As the basis narrows with maturity the

futures price is expected to decline over time which favours speculators in

short positions and disadvantages the long position traders.

3.5 Arbitrage and basis convergence in reality

As previously mentioned, the cost of carry model suggests that any deviation

of futures price from its theoretical fair value is soon eliminated because

of arbitrage activities. In reality it is not so straightforward and entering

arbitrage positions might not always be feasible. One of the main reasons

behind this are transaction costs that accompany arbitrage implementation.

These can be slippage, commissions, fees or bid-offer spreads. Therefore,

after allowing for transaction costs, relationship between the futures price

and the underlying index will not be expressed by the single fair price but

rather a fair range of prices that represent a band within which a profitable

arbitrage is not possible as per Sutcliffe (2006). Arbitrage strategy will be

then feasible only when the absolute size of any mispricing sufficiently exceeds

the transaction costs that are associated with the trade.

The heterogeneity of investors complicates the situation even more as
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the same rules do not necessarily need to apply to everyone. Obviously,

transaction costs might differ among various investors. Another example

could be taxation of dividends in Germany which differs between domestic and

foreign investors towards whom the procedure tends to be more discriminative.

As a result foreign investors are not exposed to favourable conditions as

German banks are and the arbitrage might prove to be unfeasible1. Moreover,

regulations imposed on capital markets play the role. All these factors that

exist in real markets and which the cost of carry model is unable to account

for change the stock index futures price and widen the arbitrage window

within which futures prices might fluctuate without triggering arbitrage

activity. Furthermore, the no-arbitrage band is not the same for all investors.

Regarding the price convergence at maturity of the futures contract, ar-

bitrage is, again, assumed to be efficient and eliminate any discrepancies

between the futures and cash market. But in reality some short-term mispri-

cing may persist. According to Kazmi (2011) excessive speculation and price

manipulation might lead to non-convergence and illiquid markets. Exchanges

can help to ensure convergence by assisting in arbitrage, keeping price ma-

nipulation at minimum or supressing excessive manipulation. In contracts

they can implement some structural mechanisms and design criteria which

may be various margins and position limits. One of the examples is a spot

margin which constitutes rather sharp increases in margin requirements just

before the contract maturity. This instrument forces a trader to forecast his

expectations of the future and take action, this means they will either stay in

the position or close it out. Following Sutcliffe (2006) position limits belong

to other instruments used for achieving price convergence. By limiting the

number of contracts, which a trader can enter into, potential price manipu-

lation and extensive manipulation are prevented therefore unexpected and

large price fluctuations can be potentially avoided.

The mechanism of price convergence is crucial especially for contracts that

assume delivery of a commodity. The lack of convergence between the futures

1The information was provided by one of the employees of Czech National Bank.
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and spot prices might lead to the failure of the contract itself as there could

be e.g. insufficient amounts of commodity that could be delivered under the

terms of the contract. Stock index futures, however, are settled in cash. A

buyer of an index future is entitled to any appreciation in the index over

the index futures price, a seller is entitled to any depreciation in the index

under the specified future value. With respect to cash-settled contracts the

convergence is automatic and the final price is determined by an exchange

settlement procedure that might vary from exchange to exchange.
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4 Institutional settings

4.1 DAX index and related futures contracts

DAX (Deutscher Aktienindex ) is the equity index tracking the performance of

the 30 largest and most important German companies. These companies are

selected on the basis of exchange turnover and market capitalization traded

on the Frankfurt Stock Exchange (FWB) as per the exchange documentation

(Deutsche Böerse AG (2017)). As the included stocks represent around 80%

of market capitalization listed in Germany the index is often perceived as the

benchmark for German stock market and the indicator for the performance

of the German economy as a whole. The index introduced in 1987 started

with a base of 1000 index points and was moving close to 12,000 in early

2017. This is covering various sectors among which automotive, banking,

chemicals and industrials can be found. As well as being representative and

well-diversified the DAX serves as the underlying for index derivatives and is

highly liquid as indicated by the high trading volumes of index futures and

option contracts.

The most important characteristic of the DAX used in this study is that it

belongs to total return (performance) indices. As stated in Fink & Theissen

(2014) a total return index assumes that dividends are reinvested and therefore

it shows the actual performance of an investment in the index portfolio.

With regards to DAX, dividends paid by German companies in the index are

reinvested into a dividend-paying stock. Once a year the index is adjusted and

re-invested dividends are distributed to the involved companies proportionally

to their market capitalization. This property can be visible when interpreting

the cost-of-carry pricing formula.

The DAX futures contracts were traded for the first time in 1996. They

soon became popular, highly liquid products. There are four maturity dates

in a year - March, June, September and December whereas contracts with

the three nearest maturity dates are traded. The main contract specifications

are provided in Table 1.
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Table 1: Contract specifications

Contract name DAX Futures

Product ID FDAX

Underlying DAX

Index type Total return in EUR

Contract value (per index point) EUR 25

Minimum price change (index points) 0.5

Tick value EUR 12.5

Contract terms up to 9 months

Delivery months March, June, September, December

Settlement Cash settlement

Final settlement price Based on Xetra intraday auction (13:00 CET)

Last trading day Third Friday of the maturity month

Final settlement day Third Friday of the maturity month

Source: Eurex (2017)

4.2 Arbitrage implementation

Regarding DAX futures trading, direct transaction costs are e0.50 per

contract comprising a trading and clearing fee while a volume rebate makes

transaction costs even cheaper when large volumes are traded. Nevertheless,

transaction costs which are variable only account for a small proportion of real

costs. The main costs are in establishing the network to either execute the

arbitrage, or, in case of market makers, to prevent the arbitrage. This fixed

costs that can’t be neglected in overall marginal costs of trading represent

large amounts of money paid in either latency or better models. In case a

trader decides to trade without exchange connectivity then they have to pay

a broker a commission per trade or contract.

Another factor which the arbitrage opportunity and risk depend on is the

tick size, i.e. the minimum price increment of a trading instrument. With

smaller tick sizes there are more increments in which an instrument’s price

can move hence more trading opportunities, i.e. with higher price granularity

the arbitrage is easier. In this context FDAX can be considered granular
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enough2.

4.3 Final settlement procedure

The final settlement of DAX futures takes place on the 3rd Friday of each

maturity month. Eurex establishes the final settlement price according

to the value of the underlying index based on Xetra auction prices of the

component shares constituting the index. This is done by the Xetra intraday

auction which together with opening and closing auctions serves as means of

price discovery and strengthened liquidity. The auction price is determined

according to the principle of highest volume transacted meaning it is the

price at which the highest executable order volume is apparent. The prices

determined in auctions are a result of strong demand and supply conditions

and therefore they are perceived as very reliable. Eurex, where the DAX

futures are traded, is not involved in enforcing the basis convergence3.

2The information was provided by one of the employees of Eurex Exchange.

3The information was provided by one of the employees of Eurex Exchange.
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5 Methodology

This thesis investigates the applicability of the cost of carry model in two

ways. First, the magnitude of mispricing is calculated to see the degree of

deviation of the actual futures prices from their theoretical counterparts and

the direction of the misalignment. The second part investigates the fitness of

the cost of carry model by regression analysis using the actual futures prices.

Data processing is implemented in R programming language using RStudio

IDE.

5.1 Mispricing

The mispricing series is calculated according to the formula suggested by

Butterworth & Holmes (2000) as the difference between the actual futures

price Ft and its theoretical fair price at time t divided by the value of the

spot index underlying the futures contract St:

Mt =
Ft − (Ste

rt(T−t))

St
. (5.1)

As the price difference is normalized with respect to the index value we talk

about relative mispricing. If the cost of carry model describes the realized

prices well, the average mispricing should not be significantly different from

zero. Positive mispricing implies the contract is overvalued and in a world with

no transaction costs this would automatically lead to the arbitrage activity

of buying the stocks and entering short futures positions. On the other

hand, negative mispricing signifies the undervaluation of futures contract

that in turn would induce arbitrageurs to purchase index futures and short

the stocks when no transaction costs are assumed. However, in the real world

transaction costs need to be considered to decide whether an arbitrage move

would yield any profits.

To confirm the findings of mispricing the statistical significance needs

to be tested. The particular methods used have to be chosen on the basis

of the properties of the data and therefore the data characteristics need

to be examined first. In particular, the normality and autocorrelation are
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considered. To test the normality assumption the Shapiro-Wilk test and

the Anderson-Darling test are employed. Introduced by Shapiro & Wilk

(1965) who recommended the use of their test statistic with rather smaller

samples, i.e. up to samples of size 20, Royston (1982) extended the test to

the version that is applicable to larger samples. The Shapiro-Wilk procedure

tests the null hypothesis that the sample of data comes from a normally

distributed population against the alternative claiming otherwise. This test

is accompanied by another commonly used normality test - the Anderson-

Darling - that tests the same null hypothesis.

To test the hypothesis of the mean of a mispricing series being zero,

i.e. the null H0 : µ = 0 against the two-sided alternative HA : µ 6= 0,

the standard one-sample t-test can be employed given normality and the

independence of observations are satisfied. If the contract data is normally

distributed yet autocorrelated the Newey-West standard errors that are

robust to heteroscedasticity and autocorrelation are used.

Nonetheless, the normality does not necessarily have to always be met. In

the event of the normality assumption being violated a non-parametric test

that does not require normally distributed underlying population needs to

be exercised. The non-parametric test applied in this thesis is a one-sample

rank test Wilcoxon signed-rank test that tests a similar hypothesis about the

median of a mispricing series with symmetric distribution, i.e. H0 : θ = 0

against the two-sided alternative HA : θ 6= 0. To calculate the Wilcoxon

signed rank statistic suggested in Bartoszynski & Niewiadomska-Bugaj (1996)

the absolute differences Vi = |Xi − 0| for i = 1, ..., n, where Xi are particular

observations of a mispricing series and 0 is a hypothesized value of the median,

need to be calculated. Considering the underlying distribution is continuous

it is assumed that all Vi’s are distinct and none equals 0. After arranging

Vi’s in increasing order the ranks R1, R2, ..., Rn are assigned to them, with

rank 1 assigned to the smallest Vi. Additionaly we define η = +1 if Xi > 0

and η = −1 otherwise. Then the test statistic is specified as

Sn =
n∑
i=1

ηiRi (5.2)
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and its asymptotic variance is defined as

V ar(Sn) =
n(n+ 1)(2n+ 1)

6
. (5.3)

For large n Sn√
V ar(Sn)

has approximately a standard normal distribution.

The Wilcoxon signed-rank test requires the independence of observations

as the T-test does. If this assumption is violated along with the normality

another approach needs to be employed. We could test the hypothesis that

there is no mispricing by setting the equation (5.1) to zero:

Ft − (Ste
rt(T−t))

St
= 0. (5.4)

After rearranging we get the following equation which can be used in regression

analysis:
Ft
St

= ert(T−t). (5.5)

More specifically, a regression with a constant can be run where Ft
St

is a

dependent variable and ert(T−t) is an independent variable:

Ft
St

= β0 + β1e
rt(T−t) + εt. (5.6)

In the final step a joint hypotheses of H0 : β0 = 0, β1 = 1 is tested. As each

contract sample only contains approximately 60 observations and therefore

is relatively small, a Lagrange Multiplier test needs to be employed instead

of the classical F-test as it does not require the normality of the error terms.

To correct for heteroscedasticity and autocorrelation the heteroscedasticity

and autocorrelation consistent (HAC) standard errors are used.
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5.2 Regression analysis

As described in the theoretical part of the thesis the long-run relationship

between stock index futures price and the underlying index value is expressed

as

F (t, T ) = Ste
rt(T−t), (5.7)

where F (t, T ) is the price of the index future at time t with maturity at time

T , St is the value of the stock index at time t, rt is the risk-free rate for

period [t, T ] and (T − t) is time to maturity of the futures contract. This

exponencial formula can be transformed to a linear model. After taking a

natural logarithm on both sides of the equation (5.7) and rearranging the

terms the following equation could be obtained:

lnFt = lnSt + rt(T − t). (5.8)

The equation (5.8) can be written for the regression purposes as

lnFt = β0 + β1 lnSt + β2rt(T − t) + εt, (5.9)

where lnFt is the logarithm of the actual futures price at time t, lnSt is

the logarithm of the index price at time t and rt(T − t) is the product of

the risk-free rate at time t and the time to maturity. Finally εt is an error

term. If the model fits the data well, then β0 = 0, β1 = 1 and β2 = 1 in the

regression equation (5.9).

Order of integration

Before the estimation procedure time series properties of the variables should

be determined. By performing unit root and stationarity tests the degree

of integration of the individual series can be assessed. A series is said to

be integrated of order 0, denoted as I(0), when the series is “a stationary,

weakly dependent time series process that, when used in regression analysis

satisfies the law of large numbers and the central limit theorem” (Jeffrey

et al. (2009), p. 850). A time series that is integrated of order 1, I(1), needs

to be first-differenced to result in a stationary process. In general, the I(d)

series have to be differenced d times in order to produce an I(0) process.
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The notion of stationarity is important since classical regression properties

hold only for weakly dependent time series (Jeffrey et al. (2009)). If all series

involved in the regression analysis were I(0) the ordinary least squares pro-

cedure (OLS) could be used. However, the estimation with highly persistent

time series characterized by a unit root can lead to misleading results if the

classical linear model (CLM) assumptions are violated. In many cases, the

usual large sample normal approximations in time series regression analysis

are no longer valid and if we regress the I(1) variables on each other we might

encounter spurious regression problem when using OLS. A possible solution

could be the transformation into a weakly dependent process by taking the

first differences of the I(1) variables and subsequently using these differences

in the modelling process instead of the levels. However, as stated in Brooks

(2008), this approach is not appropriate if there is some long-term relationship

between the variables since pure first difference models have no long-run

solution and therefore limits the number of questions that can be asked and

satisfactorily answered . Fortunately, in one case the spurious regression

problem can be overcome and I(1) variables can be used in levels. A regres-

sion involving I(1) variables is not spurious if the series are cointegrated. The

notion of cointegration is introduced in the next subsection. For the purpose

of determining the order of integration of the involved time series augmented

Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests

are applied.

As the name suggests the ADF test is an augmented version of the Dickey-

Fuller test (Dickey & Fuller (1979)) that is based on the null hypothesis that

there is a unit root in the autoregressive representation of the time series.

More precisely, the test examines the null hypothesis H0 : θ = 1 against the

one-sided alternative HA : θ < 1 in the following AR(1) model:

yt = θyt−1 + ut, t = 1, 2, .... (5.10)

In practice, for the sake of easier computation and interpretation the equation

(5.11) is used. After subtracting yt−1 from each side of the equation (5.10)
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and defining ψ = θ − 1 we could obtain

∆yt = ψyt−1 + ut, t = 1, 2, .... (5.11)

and test the null hypothesis of H0 : ψ = 0. The DF test regression can also

take the forms with an intercept or with an intercept and a deterministic

trend. The model of the interest then would be

∆yt = ψyt−1 + µ+ λt+ ut, t = 1, 2, ...., (5.12)

where µ is a constant and λt is a deterministic trend. Since the null hypothesis

is one of non-stationarity the test statistic does not follow the usual t-

distribution under the null and the central limit theorem that is behind the

asymptotic standard normal distribution for the t-statistic does not apply

even in large samples. Therefore a new set of critical values was derived for

the usual t-statistic of the coefficient of interest. The critical values for unit

root t test have been tabulated by several authors, the ones suggested by

Banerjee et al. (1993) are given in Table 19 in Appendix. It is evident that

the DF critical values are bigger in absolute terms implying more evidence

against the null hypothesis is required when testing for unit root than under

standard t-tests.

The classical Dickey-Fuller test, however, is valid only if ut is white noise,

i.e. the process with zero mean, constant variance and zero autocovariances,

except at leag zero. In other words it is assumed that ut is not autocorrelated,

but if there is autocorrelation in the dependent variable of the test regression

this woud not be the case. To absorb any dynamic structure contained

in the dependent variable ∆yt and hence to ensure that ut is not serially

autocorrelated the test regression can be augmented with the lagged changes

∆yt−h as follows:

∆yt = µ+ λt+ ψyt−1 +

p∑
i=1

αi∆yt−i + ut, t = 1, 2, ...., (5.13)

where p is the number of the lagged changes of the dependent variable. This

is the augmented Dickey-Fuller test. The null hypothesis of a unit root stays

the same, i.e. H0 : ψ = 0 versus the alternative HA : ψ < 0, and the same
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critical values as in the case of the DF test are used. The optimal number

of lags of the dependent variable can be determined either by the frequency

of the data or according to information criteria such as Akaike information

criterion (AIC) or Bayesian information criterion (BIC) as stated in Brooks

(2008). Since the daily financial data are used in this thesis the lag selection

based on the frequency of the data does not supply an obvious answer and

therefore an information criterion approach is more reliable.

As a supplement to the ADF unit root test the KPSS test developed by

Kwiatkowski et al. (1992) is performed. The KPSS test, named after its

authors Kwiatovski, Phillips, Schmidt and Shin, tests a null hypothesis that

a time series is stationary against the alternative of the presence of a unit

root. Kočenda & Černý (2015) recommend to use the KPSS along the ADF

as the latter detects only the unit root and the absence of the unit root does

not necessarily implies the stationarity of a series. The KPSS test assumes

that a time series tested for trend stationarity, yt, can be decomposed in the

sum of a deterministic trend βt, a random walk rt and a stationary error εt

as follows

yt = βt+ rt + εt, rt = rt−1 + ut, (5.14)

where ut are normal i.i.d. with a zero mean and variance σ2
u. When testing

for the level stationarity the deterministic trend is left out from the equation.

The initial value r0 is assumed to be fixed and serves as an intercept. The

null of the stationarity of a series is equivalent to the hypothesis that σ2
u = 0

that ensures that rt = r0 for all t, i.e. the random walk has zero variance. To

test this hypothesis the LM test is used. The KPSS test involves estimating

the regression yt = α0 + et or yt = α0 + βt + et, depending on whether the

trend stationatiry or level stationarity is examined, by OLS. The residuals êt

from the estimated regression are then used to compute the LM statistics,

either for level stationarity ηµ or for trend stationarity ητ as

ηµ/τ = T−2 1

s2(l)

T∑
t=1

S2
t , where St =

t∑
i=1

ei and
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s2(l) = T−1

T∑
t=1

e2
t + 2T−1

l∑
s=1

w(s, l)
T∑

t=s+1

etet−s, where

w(s, l) = 1− s/(l + 1). (5.15)

St above is the partial sum process of the residuals et from the estimated

equation, s2(l) is the estimator of the long-run variance of the residuals et,

and w(s, l) is the so-called Bartlett spectral window4. The variance estimator

s2(l) is a function of the parameter l and as l increases the estimator begins

to control for possible autocorrelation in the residuals et. Commonly the test

is performed for l in the range of 0 to 8. Lastly, the LM statistics ηµ or ητ is

compared with the asymptotic critical values for the KPSS test. The table

with the respective critical values is given in Table 20 in Appendix.

Cointegration

As mentioned before a regression with variables that are I(1) could be

meaningful when the time series involved are cointegrated. In most cases,

when two I(1) series are linearly combined the result is also an I(1) process.

However, it could be the case that some linear combination of non-stationary

variables forms a stationary I(0) process. This situation suggests that there

is a long-run equilibrium relationship between the variables, in other words

they are cointegrated. The formal definition given in Engle & Granger (1987)

is that “the components of the vector xt are said to be cointegrated of order

d, b, denoted xt ∼ CI(d, b), if all components of xt are I(d) and if there

exists a nonzero vector α so that the linear combination of the components

of xt, i.e. zt = α′xt, is I(d− b), b > 0”, where the vector α is the so-called

cointegrating vector. In practice, mostly the case of C(1, 1) variables forming

the I(0) stationary process is encountered.

One of the most common ways the cointegration can be examined is

with the residual-based approach suggested by Engle & Granger (1987).

After ensuring that the variables involved in the model are I(1) by the

application of a unit root test the regression is estimated using the standard

4For more detail, see Kwiatkowski et al. (1992).
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OLS method. Subsequently the residuals are saved and tested for stationarity.

More specifically, given the model with two variables yt = α̂ + β̂xt and its

residuals ût = yt − α̂− β̂xt, the DF or ADF test is applied on the residuals

using the regression of the form ∆ût = ψût−1 + νt, where νt is an i.i.d. error

term. When deciding about stationarity of the residuals another table of

critical values needs to be used as the test is now being conducted on the

residuals of an estimated model rather than on a series of raw data which

results in the change of the distibution of the test statistic. Their critical

values are larger in magnitude than the classical DF critical values. The

ones given by Davidson, MacKinnon et al. (1993) are presented in Table 21

in Appendix. In addition to the ADF test the KPSS test is performed to

provide more evidence about stationarity of the residuals. If non-stationarity

of the residuals is rejected the variables are said to be cointegrated. The

estimated model yt = α+ βxt + εt, where α and β are model parameters and

εt is the zero mean stationary process, is then referred to as the cointegrating

regression and the usual OLS procedure consistently estimates the regression

paratemers. The cointegrating regression represents the long-run relationship

between the variables implying they might deviate from their equilibrium

in the short run but in the long run they return back together. If no

cointegrating relationship was found the regression is levels is not appropriate

and rather the first-differenced model should be employed as per Jeffrey et al.

(2009).

Frequently, the cointegrated variables are further processed in an error

correction model that describes the short-run dynamics between the corres-

ponding variables. These models may incorporate first-differenced and lagged

levels of cointegrated variables as well as lagged values of the respective

differences. As another variable the lagged residuals from the cointegrat-

ing regression are included and are referred to as an error correction term.

However, this procedure is beyond the scope of this thesis since the centre

of interest is just the potential long-run equilibrium between the variables

included in the model.
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5.3 Basis convergence

The last part of the model analysis focuses on the phenomenon of basis

convergence. As mentioned previously the basis is the difference between

the spot and the futures price of an asset at time t, i.e. St − Ft. As well as

considering the basis magnitude and direction the mutual progression of the

prices over time is considered. Since it is assumed that the prices converge on

the way to contract maturity the basis is expected to decline over time. To

inspect this event and identify a trend the absolute value of basis is regressed

on time to maturity in days:

|Bat| = α + βMat dayt + εt, (5.16)

where the estimated coefficient β̂ is of interest. Finally, the KPSS test

for trend stationarity is applied to investigate the potential stationarity of

the basis around a deterministic trend and therefore the smoothness of the

realization of basis convergence.
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6 Data

The data on futures prices and index spot prices were acquired from Thomson

Reuters. Interest rates were supplied by EMMI (European Money Market

Institute).

The DAX futures contracts expire on the third Friday in March, June,

September and December respectively. The thesis embraces the index futures

contracts that matured in years 2013-2016 covering the period from the first

trading day of the Mar 2013 contract (Jun 18, 2012) to the expiration day of

the Dec 2016 contract (Dec 16, 2016). As there are four contracts per year,

this study includes 16 contracts with DAX and DAX futures closing prices

collected on a daily basis.

As a proxy for risk-free rate when calculating the fair futures price the

Euribor (Euro Interbank Offered Rate) rates are employed. The Euribor

rates are deemed the most important reference rates in the European money

market. They are based on the average rates of interest at which the so-called

panel banks borrow funds from one another. The panel banks are the banks

with a first class credit standing that transact the largest volumes in the

Eurozone money markets. The dataset consists of 1 week, 2 week, 1 month,

2 month, 3 month, 6 month, 9 month and 12 month Euribor daily rates

and a 1-day European interbank interest rate Eonia (Euro Overnight index

Average). When evaluating a future contract two of the aforementioned

rates which match the maturity of the futures contract best are interpolated

linearly to obtain the corresponding risk-free rate.

As the trading volume is significantly higher for contracts that are nearest

to maturity the dataset used for the regression analysis and calculating

mispricing series employs only contracts which are nearest to expiration and

are assumed to be rolled over at maturity. This comprises in total 1006

trading days. Obviously, when investigating the basis convergence all trading

days within the life of a contract are included. On average one contract

trades for 189 days.
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7 Empirical results

7.1 Mispricing

To detect any deviations from fair prices, the relative mispricing of the futures

contracts is calculated according to the equation (5.1). The theoretical prices

were derived using the standard cost of carry formula as given in the equation

(3.3). Tables 2, 3, 4 and 5 provide summary statistics of the contracts that

matured between years 2013 and 2016 and Figure 1 shows the daily mispricing

series over the studied period. As mentioned earlier the results are shown for

the contracts that are nearest to maturity.

If the model describes the data well the average mispricing should not

be significantly different from zero. The average size of misprising ranges in

absolute value between 0.01% and 0.17%. As visible in Figure 1 the daily

mispricing tends to remain within the -0.4-0.4% range. Table 6 provides

a closer look at the actual magnitude of mispricing by comparing the size

of deviations with various benchmark levels of total round-trip transaction

costs. The mean of absolute mispricing values tend to remain below 0.22%.

The mispricing indeed remains within the -0.4-0.4% band with less than 2%

of the observations surpassing these limits whereas the contracts maturing

between March 2013 and March 2015 and in the second half of 2016 mostly

exhibit deviations below 2% of the spot index price.

However, June contracts are the exception since apart from the year 2014

they show larger and more frequent deviations from fair values when compared

with other maturities which confirms the similar findings of Fink & Theissen

(2014). This might be connected to the dividend payments as German

companies pay dividends usually once a year during summer months as

opposed to e.g. S&P 500 and its quarterly payments. The accumulation

of dividend payments between April and June apprears to lead to more

deviations. This might be explained by the nature of total return indices.

As noted previously, in the DAX calculation the dividends are assumed to

be reinvested fully in the same basket of shares which leads to the fact that,
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other things being equal, the DAX futures price will rise a little each year. If

investors do not decide to fully invest their dividends into the same basket the

short-term discrepancies may arise. Nevertheless, even these do not surpass

0.6% of the index value which implies that the DAX futures contracts are

efficiently priced and the index arbitrage is rather rare in German markets.

Even though the markets and the model appear to be pretty efficient it

should be pointed out that the deviation of e.g. 0.2% represents approximately

e375-620 per contract due to the relatively large size of FDAX.

Regarding the direction of mispricing the futures contracts are mostly

overpriced as premiums occur on 596 (59.24%) occasions and discounts on

394 (39.17%) occasions leaving the rest being zero, specifically at contracts’

expiration dates. This contradicts the findings of Bühler & Kempf (1995)

who detected mostly undervalued contracts.
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Source: Own construction based on Thomson Reuters data.

Figure 1: Mispricing December 2012 - December 2016
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Table 2: Summary statistics of contracts maturing in 2013

N Mean SD Max Min

Mar 2013 Overpricing 30 0.07 0.06 0.25 0.00

Underpricing 24 -0.05 0.03 -0.00 -0.12

Total 55 0.02 0.07 0.25 -0.12

Jun 2013 Overpricing 52 0.11 0.06 0.30 0.01

Underpricing 14 -0.06 0.03 -0.01 -0.20

Total 67 0.07 0.07 0.30 -0.20

Sep 2013 Overpricing 26 0.08 0.06 0.31 0.01

Underpricing 38 -0.08 0.03 -0.00 -0.33

Total 65 -0.02 0.07 0.31 -0.33

Dec 2013 Overpricing 35 0.06 0.05 0.17 0.00

Underpricing 29 -0.05 0.04 -0.00 -0.15

Total 65 0.01 0.07 0.17 -0.15

Source: Own calculations based on Thomson Reuters data.

Table 3: Summary statistics of contracts maturing in 2014

N Mean SD Max Min

Mar 2014 Overpricing 35 0.10 0.10 0.54 0.01

Underpricing 24 -0.07 0.06 -0.00 -0.24

Total 60 0.03 0.12 0.54 -0.24

Jun 2014 Overpricing 49 0.10 0.07 0.30 0.00

Underpricing 12 -0.05 0.04 -0.00 -0.13

Total 62 0.07 0.09 0.30 -0.13

Sep 2014 Overpricing 40 0.08 0.06 0.27 0.00

Underpricing 24 -0.08 0.07 -0.00 -0.31

Total 65 0.02 0.10 0.27 -0.31

Dec 2014 Overpricing 38 0.09 0.08 0.30 0.00

Underpricing 25 -0.08 0.06 -0.01 -0.19

Total 64 0.02 0.11 0.30 -0.19

Source: Own calculations based on Thomson Reuters data.
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Table 4: Summary statistics of contracts maturing in 2015

N Mean SD Max Min

Mar 2015 Overpricing 31 0.11 0.09 0.38 0.01

Underpricing 28 -0.08 0.07 -0.01 -0.27

Total 60 0.02 0.12 0.38 -0.27

Jun 2015 Overpricing 50 0.20 0.11 0.51 0.00

Underpricing 10 -0.06 0.04 -0.00 -0.13

Total 61 0.15 0.14 0.51 -0.13

Sep 2015 Overpricing 45 0.12 0.11 0.52 0.01

Underpricing 19 -0.09 0.07 -0.02 -0.27

Total 65 0.06 0.14 0.52 -0.27

Dec 2015 Overpricing 37 0.10 0.08 0.35 0.00

Underpricing 27 -0.10 0.07 -0.00 -0.28

Total 65 0.01 0.12 0.35 -0.28

Source: Own calculations based on Thomson Reuters data.

Table 5: Summary statistics of contracts maturing in 2016

N Mean SD Max Min

Mar 2016 Overpricing 25 0.13 0.12 0.41 0.00

Underpricing 35 -0.15 0.12 -0.00 -0.42

Total 61 -0.03 0.18 0.41 -0.42

Jun 2016 Overpricing 47 0.25 0.18 0.57 0.00

Underpricing 14 -0.08 0.07 -0.00 -0.22

Total 62 0.17 0.21 0.57 -0.22

Sep 2016 Overpricing 31 0.09 0.11 0.60 0.00

Underpricing 33 -0.10 0.07 -0.00 -0.32

Total 65 -0.01 0.13 0.60 -0.32

Dec 2016 Overpricing 25 0.07 0.05 0.18 0.00

Underpricing 38 -0.09 0.06 -0.00 -0.25

Total 64 -0.03 0.10 0.18 -0.25

Source: Own calculations based on Thomson Reuters data.
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Table 6: Mispricing versus transaction costs levels

Ave Abs. |Mt| > C

0.1% 0.2% 0.3% 0.4% 0.5% 0.6%

Mar 2013 0.0560 8 1 0 0 0 0

Jun 2013 0.0971 25 10 0 0 0 0

Sep 2013 0.0786 20 3 2 0 0 0

Dec 2013 0.0555 12 0 0 0 0 0

Mar 2014 0.0876 20 3 1 1 1 0

Jun 2014 0.0899 26 4 1 0 0 0

Sep 2014 0.0748 17 4 1 0 0 0

Dec 2014 0.0857 23 6 1 0 0 0

Mar 2015 0.0920 22 5 2 0 0 0

Jun 2015 0.1723 40 24 10 1 1 0

Sep 2015 0.1118 30 9 4 1 1 0

Dec 2015 0.0952 27 6 1 0 0 0

Mar 2016 0.1396 31 19 8 2 0 0

Jun 2016 0.2112 39 28 21 12 3 0

Sep 2016 0.0941 23 5 2 1 1 0

Dec 2016 0.0820 20 4 0 0 0 0

Source: Own calculations based on Thomson Reuters data.

7.2 Statistical significance

To confirm the findings of the mispricing investigation the usual one-sample

t-test, its modification with Newey-West standard errors and the Wilcoxon

signed-rank test are performed. First, the individual contracts data are

tested for normality using the Shapiro-Wilk and the Anderson-Darling tests.

The results of which along with the size of autocorrelation at lags 1 and 10

are presented in Table 7. The null hypothesis of normality is not rejected

at 5% level of significance in 13 out of 16 contracts as indicated by high

p-values given by both normality tests. For the contract maturing in March

2014 the null hypothesis is not rejected at 5% level of significance by the

Anderson-Darling, however, there is evidence against the normality in the

Shapiro-Wilk test results. Given these contradictory results, the normality
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is not assumed for this dataset and therefore the Wilcoxon signed-rank test

needs to be applied as it was for the contracts where the normality was

rejected by both tests.

Regarding dependence of observations in the samples, the data mostly do

not exhibit strong autocorrelation excepting the June contracts in all periods

and the September 2013 contract with slightly higher autocorrelation at lag

10. For all these contracts the t-test with Newey-West standard errors is

employed apart from the more complicated June 2016 contract for which

neither the t-test nor the Wilcoxon signed-rank test can be run since there is

not enough evidence that the sample comes from the normal distribution and

it also lacks independence of observations. Therefore in this case auxiliary

regression and joint hypothesis testing are performed as described in the

methodology overview.

Table 7: Shapiro-Wilk and Anderson-Darling normality tests and autocorrelation

Shapiro-Wilk Anderson-Darling AC[1] AC[10]
W p-val A p-val

Mar 2013 0.9664 0.1267 0.3996 0.3522 -0.0632 -0.0988

Jun 2013 0.9798 0.3469 0.5584 0.1437 0.4850 0.2778

Sep 2013 0.9826 0.4914 0.3361 0.4977 -0.0245 0.2259

Dec 2013 0.9880 0.7838 0.2298 0.7994 0.0707 0.1772

Mar 2014 0.9312 0.0022 0.6084 0.1088 -0.0656 -0.0397

Jun 2014 0.9933 0.9826 0.1229 0.9866 0.2925 0.2872

Sep 2014 0.9666 0.0765 0.6333 0.0946 0.0983 0.2011

Dec 2014 0.9786 0.3303 0.4731 0.2350 0.1244 0.0274

Mar 2015 0.9776 0.3356 0.4645 0.2463 -0.1382 -0.1346

Jun 2015 0.9846 0.6396 0.2793 0.6350 0.5253 0.3535

Sep 2015 0.9738 0.1818 0.4794 0.2269 0.1054 -0.1528

Dec 2015 0.9911 0.9248 0.1888 0.8977 -0.0064 0.0089

Mar 2016 0.9841 0.6146 0.3815 0.3899 -0.0481 0.0877

Jun 2016 0.9496 0.0128 1.1442 0.0050 0.5807 0.3037

Sep 2016 0.9105 0.0002 0.8640 0.0251 0.1137 -0.0721

Dec 2016 0.9912 0.9323 0.1473 0.9642 0.1279 -0.0075

Source: Own calculations based on Thomson Reuters data, using R software.
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The results of the t-tests and the Wilcoxon signed-rank tests are provided

in Table 8 and 9, respectively. The results of the LM test applied in the case

of the June 2016 contract are presented in Table 10. There is no indication of

statistically significant evidence at 0.05 alpha level against the null hypothesis

of the mean, or the median, being zero on 10 out of 16 (62.5%) occasions

hence the null cannot be rejected. In the other 6 (37.5%) cases, including

the June 2016 contract, the data do provide evidence against the null which

can therefore be rejected at 5% level of significance. The situation of no

mispricing predominates in this analysis, however, it was not possible to

statistically confirm that the average size of mispricing is not significantly

different from zero in 37.5%. This corresponds to the later contracts under

the study and the contracts maturing in June that exhibit larger and more

frequent deviations.

Table 8: Statistical significance by application of T-test

N Mean SD/SDNW T-stat df p− val

Mar 13 55 0.0159 0.0730 1.6164 54 0.1118

Jun 13 67 0.0722 0.1727NW 3.4192 66 0.0011

Sep 13 65 -0.0168 0.1005NW -1.3446 64 0.1835

Dec 13 65 0.0119 0.0700 1.3724 64 0.1747

Jun 14 62 0.0689 0.1320NW 4.1072 61 0.0001

Sep 14 65 0.0177 0.0980 1.4565 64 0.1501

Dec 14 64 0.0248 0.1116 1.7754 63 0.0807

Mar 15 60 0.0180 0.1232 1.1332 59 0.2617

Jun 15 61 0.1533 0.2481NW 4.8275 60 0.0000

Sep 15 65 0.0574 0.1392 3.3226 64 0.0015

Dec 15 65 0.0147 0.1207 0.9797 64 0.3309

Mar 16 61 -0.0306 0.1818 -1.3132 60 0.1941

Dec 16 64 -0.0289 0.0974 -2.3739 63 0.0207

Source: Own calculations based on Thomson Reuters data, using R
software.

Note: In case of high autocorrelation, Newey-West standard errors
were applied.
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Table 9: Statistical significance by application of Wilcoxon signed-rank test

N Median W-stat Var z-score p− val

Mar 14 60 0.0186 482 73810 1.7741 0.0760

Sep 16 65 -0.0040 -342 93665 -1.1175 0.2638

Source: Own calculations based on Thomson Reuters data, using R
software.

Table 10: LM test for the June 2016 contract

N dfur q Chisq p− val

LM test 62 60 2 69.91 0.0000

Source: Own calculations based on Thomson
Reuters data, using R software.

Note: Testing H0 : β0 = 0, β1 = 1 in the equa-
tion (5.6).

7.3 Cointegration

It is sensible to believe that there is a long-run relationship between futures

prices and the underlying index values. These are obviously prices for the

same asset yet at different points in time, i.e. for future and immediate

delivery, and therefore they might be cointegrated. This long-run equilibrium

relationship is given by the cost of carry model.

The notion of cointegration could be used to estimate the equation (5.9)

as the regression involves natural logarithms of both futures and spot prices

of the index. The additional variable included is the product of interest

rate and the corresponding time to maturity. First, the non-stationarity of

variables and so their order of integration is examined by the ADF and the

KPSS tests that check for a unit root and level stationarity, respectively.

The ADF tests applied involve a regression with a drift and a trend as in

the equation (5.13). After the estimation of the equation (5.9) by OLS the

residuals are tested as well using the same tests, however, this time the ADF

applies a different regression as described in the methodology part. The

results are given in Table 11. It is evident that both natural logarithm of

futures prices and natural logarithm of index values are I(1) as the null

hypothesis of a unit root is not rejected when the ADF test is executed
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on levels but is rejected when the test is run at first-differenced variables.

Moreover, the KPSS test confirms the results by rejecting the null of level

stationarity in case of the level variables and not rejecting the null when first

differences are tested. However, the tests of the variable rt(T − t) produce

conflicting results. The null of a unit root is rejected in case of both levels

and first differences. Regarding the KPSS the null of stationarity is rejected

when testing the levels, but is not rejected when first-differenced variable

is examined. Hence these results imply that the variable indeed becomes

stationary when first-differenced, however, does not contain a unit root and

therefore is somewhere between an I(1) and I(0) process. This potentially

constitutes a problem for cointegration testing since it is required that all

the variables involved in the regression are integrated of the same order.

Nonetheless, this condition is not that strict if there are at least two I(1)

variables in the regression5.

The last step in investigating a potential cointegrating relationship com-

prises estimating the model of interest and testing its residuals for unit

root and stationarity. As shown in Table 11 the null of a unit root was

rejected at 1% significance level and the KPSS results indicate the station-

arity as there was not enough evidence to reject the null hypothesis. This

outcome suggests the residuals are stationary and the variables are cointeg-

rated. Therefore the equation (5.9) can be consistently estimated by OLS.

The estimated coefficients of the equation (5.9) are summarized in Table

12. To correct for heteroscedasticity and autocorrelation the HAC standard

errors are used. The coefficient on the natural logarithm of the spot price is

strongly significant and very close to unity which follows the model design.

Nonetheless, the coefficient on the second independent variable, rt(T − t),

is significant only on 10% level of significance and does not correspond to

what the model suggests. The constant is close to zero and statistically

significant at 5% level of significance. The F-test is applied to test the joint

hypothesis H0 : β0 = 0, β1 = 1 and β2 = 1. The results in Table 13 show

5Based on consultations with the Finance and Capital Markets Department of IES.
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that this hypothesis is strongly rejected which undermines the model design.

Therefore it can be concluded that only the size and the direction of the

effect of the spot price is as suggested by the model.

Table 11: ADF unit root and KPSS stationarity tests

ADF KPSS

lnFt level -2.1855 7.7871***

∆ -10.1999*** 0.0570

lnSt level -2.1950 7.8044***

∆ -10.1280*** 0.0568

rt(T − t) level -5.8308*** 8.6966***

∆ -10.3854*** 0.0511

ε̂t level -22.9340*** 0.1046

Source: Own calculations based on Thomson Re-
uters data, using R software.

Note: *, ** and *** denote statistical significance
at the 10%, 5% and 1% levels, respectively.

Table 12: The cost of carry model regression estimation

N β̂0 β̂1 β̂2 R2

Model 1006 -0.0145** 1.0016*** 2.9545* 0.99

(0.0068) (0.0007) (1.5959)

Source: Own calculations based on Thomson Reuters data, using
R software.

Note: Figures in parentheses are HAC standard errors. *, **
and *** denote statistical significance at the 10%, 5% and 1%
levels, respectively.

Table 13: Joint hypothesis testing by application of F-test

N dfur q F p− val

F test 1006 1003 3 14.13 0.0000

Source: Own calculations based on Thomson
Reuters data, using R software.

Note: Testing H0 : β0 = 0, β1 = 1, β2 = 1 in the
equation (5.9).
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7.4 Basis convergence

The last part of the analysis was dedicated to the basis convergence. Figures

2-9 show the development of the daily closing spot and futures prices6 over

the life of a contract for index futures maturing in years 2015 and 2016.

Obviously, it is not that straightforward to identify a decreasing manner of

the basis in these graphs. In most cases the futures price follows the spot

index value throughout the whole period and there is a little sign of the

basis narrowing when the contract approaches its maturity. The narrowing

tendency is best visible in contracts maturing in December 2015, March 2016

or September 2016. Figures 10-17 show the observed basis over the life of a

contract and the difference between the spot and the futures price suggested

by the model. Even though the basis appears to be decreasing over time in

many cases it is subject to considerable fluctuations. Large fluctuations are

noticeable for example in the June 2015, the September 2015 and the June

2016 contracts.

Table 14 provides summary statistics of the basis along with Table 22 in

Apendix that shows the same for the basis in absolute value expressed as

the percentage of the current spot index price. As already noted the basis of

some contracts appears to be unstable with large span of values. Generally

though the size of the fluctuations remain below 1% of the spot index price.

In majority of cases the basis is negative meaning the futures price is above

the spot price except the contract that matured in December 2016 where

positive basis prevails.

The results of the estimation of the regression equation (5.16) are presented

in Table 15. The beta coefficients representing the effect of the time trend, or

more precisely the time to maturity of the contract in days, are all positive and

significant indicating the basis increases with time to maturity as suggested

by the model. The size of the effect generally ranges between 0.02 and 0.15

implying the basis increases by 0.02-0.15 index points with additional day to

6The last closing spot index price does not correspond to the intraday spot price, i.e. the final settlement

futures price, in these graphs.
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maturity.

Finally, the KPSS test results are provided in Table 16. In majority of

the contracts the basis was not found to be trend stationary as indicated by

low p-values. At 0.05 alpha level only the basis of the September 2014 and

March 2016 are trend stationary followed by the March 2013 and March 2015

contracts where the basis appears to be fairly close to a trend stationary

process. These results confirm the basis convergence evinces substantial

fluctuations and the convergence process is not that smooth as one would

expect.

As mentioned previously in the literature review, movements in the basis

might be subject to other market factors as many researchers have suggested.

The unstable and unpredictable basis represents the higher risk of losses

and might undermine the efficiency of hedging strategies as explained in

Sutcliffe (2006). It is always better for investors to know the regularities

of the basis. Based on these facts the basis might be examined further to

estimate the effects of spot market volatility, liquidity, interest rate and

others, nevertheless, this is beyond the scope of this text.
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Figure 2: Basis convergence - March 2015 contract
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Figure 3: Basis convergence - June 2015 contract
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Figure 4: Basis convergence - September 2015 contract
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Figure 5: Basis convergence - December 2015 contract
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Figure 6: Basis convergence - March 2016 contract
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Figure 7: Basis convergence - June 2016 contract
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Figure 8: Basis convergence - September 2016 contract
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Figure 9: Basis convergence - December 2016 contract
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Figure 10: Basis - March 2015 contract
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Figure 11: Basis - June 2015 contract
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Figure 12: Basis - September 2015 contract
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Figure 13: Basis - December 2015 contract
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Figure 14: Basis - March 2016 contract
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Figure 15: Basis - June 2016 contract
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Figure 16: Basis - September 2016 contract
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Figure 17: Basis - December 2016 contract
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Table 14: Summary statistics of the basis

N Mean SD Max Min Ba > 0 Ba < 0

Mar 13 190 -5.02 7.09 10.14 -27.81 49 140

Jun 13 187 -10.97 7.83 16.70 -32.35 15 171

Sep 13 187 -10.00 11.25 26.47 -38.95 36 150

Dec 13 197 -9.16 11.17 19.47 -44.76 44 151

Mar 14 190 -11.66 10.59 23.08 -53.34 24 165

Jun 14 187 -20.92 13.44 11.60 -70.84 12 174

Sep 14 187 -16.83 16.37 29.67 -79.34 25 161

Dec 14 191 -11.41 13.71 25.17 -49.09 38 152

Mar 15 189 -11.05 13.47 25.50 -45.59 42 146

Jun 15 185 -21.07 14.56 14.79 -60.18 16 168

Sep 15 186 -16.03 16.63 27.53 -62.68 29 156

Dec 15 191 -11.61 17.37 30.64 -66.18 49 141

Mar 16 191 -10.03 18.70 42.11 -75.53 56 134

Jun 16 186 -30.05 20.41 22.86 -81.73 18 167

Sep 16 188 -10.80 23.07 32.86 -91.73 67 119

Dec 16 191 7.70 17.42 47.28 -46.94 132 58

Source: Own calculations based on Thomson Reuters data.

Note: Ba denotes the basis of a contract.
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Table 15: Trend analysis of the basis

α̂ β̂ R2

Mar 13 4.1605*** 0.0195*** 0.08
(0.7446) (0.0047)

Jun 13 6.8573*** 0.0358*** 0.18
(0.8760) (0.0056)

Sep 13 4.5519*** 0.0620*** 0.35
(0.9676HAC) (0.0065HAC)

Dec 13 1.0122 0.0745*** 0.43
(1.2642HAC) (0.0093HAC)

Mar 14 7.8449*** 0.0403*** 0.14
(1.1156) (0.0071)

Jun 14 7.4460*** 0.1045*** 0.45
(1.5137HAC) (0.0127HAC)

Sep 14 -0.0609 0.1429*** 0.61
(1.1919HAC) (0.0093HAC)

Dec 14 1.9830 0.0918*** 0.45
(1.6608HAC) (0.0121HAC)

Mar 15 5.7571*** 0.0616*** 0.23
(1.1560HAC) (0.0077HAC)

Jun 15 15.8372*** 0.0465** 0.08
(2.5439HAC) (0.0136HAC)

Sep 15 10.4019*** 0.0620*** 0.12
(2.1866HAC) (0.0158HAC)

Dec 15 4.3028** 0.0887*** 0.27
(2.0124HAC) (0.0179HAC)

Mar 16 9.1878*** 0.0569*** 0.12
(1.7205) (0.0109)

Jun 16 16.0539*** 0.1145*** 0.25
(2.5135HAC) (0.0154HAC)

Sep 16 2.7660* 0.1262*** 0.36
(1.5191HAC) (0.0145HAC)

Dec 16 7.1003*** 0.0645*** 0.22
(1.0579HAC) (0.0087HAC)

Source: Own calculations based on Thomson Reu-
ters data, using R software.

Note: Figures in parentheses are standard errors,
where needed HAC standard errors are applied. *,
** and *** denote statistical significance at the 10%,
5% and 1% levels, respectively.

Table 16: KPSS trend stationarity test

for the basis

KPSS p− val

Mar 13 0.1462** 0.0499

Jun 13 0.2878*** <0.0100

Sep 13 0.1966** 0.0173

Dec 13 0.3679*** <0.0100

Mar 14 0.2737*** <0.0100

Jun 14 0.6268*** <0.0100

Sep 14 0.0982 >0.1000

Dec 14 0.3937*** <0.0100

Mar 15 0.1476** 0.0486

Jun 15 0.2024** 0.0151

Sep 15 0.2640*** <0.0100

Dec 15 0.3273*** <0.0100

Mar 16 0.0558 >0.1000

Jun 16 0.3564*** <0.0100

Sep 16 0.3966*** <0.0100

Dec 16 0.6322*** <0.0100

Source: Own calculations based on
Thomson Reuters data, using R soft-
ware.

Note: *, ** and *** denote statist-
ical significance at the 10%, 5% and
1% levels, respectively.
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8 Other relevant factors in stock index futures pricing

As already indicated in the theoretical and literature review sections of this

thesis the cost of carry is based on rather strict assumptions and the pricing

formula might lack some factors that may have an impact on the index

futures price and explain further the mispricings of contracts. This fact raises

questions about the size of the effect of violation of particular assumptions on

the validity of the cost of carry and whether some modified, more appropriate

relationship between the spot and futures index prices can be derived.

8.1 Different risk-free interest rates and transaction costs

It might be the case that an arbitrageur faces different riskless borrowing and

lending rates of interest which contradicts the assumption of single interest

rate. Moreover, arbitrageurs incur transaction costs and these might be

different for going short and going long. Table 17 provides some examples

of estimated round trip transaction costs that were acquired from Sutcliffe

(2006). After allowing for different rates of interest and transaction costs

the futures price will not be described by an equality but rather it will

be allowed to fluctuate within a no-arbitrage band without creating index

arbitrage opportunities. It can be assumed that the investor can borrow

at rb and lend money at ra, where ra < rb. Furthermore, he or she incurs

transaction costs cS,l when buying shares in the index, cS,s when shorting

these shares, cF,l when going long in the futures contracts and cF,s when

selling the futures. Transaction costs might differ between traders. The

costs used for the no-arbitrage band are the ones of the marginal trader,

usually the market makers in the underlying shares. Then the corresponding

no-arbitrage band is as follows:

(S − cS,s − cF,l)(1 + ra − d)t ≤ F ≤ (S + cS,l + cF,s)(1 + rb − d)t, (8.1)

where S is the spot price of the index, F is the futures price, d is the dividend

yield over lifetime of futures contract as % of current index value and t is the

time to maturity of the contract. The relevant arbitrage activities associated
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with the situation where the futures price is above the upper limit Fh, i.e. the

right side of the equation (8.1) and when the futures price is below the lower

limit Fl, i.e. the left side of the equation (8.1), after allowing for transaction

costs are presented in Table 18. When being inside this band the futures

price does not induce any arbitrage activities. Outside the no-arbitrage band

the riskless arbitrage opportunities emerge.

As noted previously, in reality the derivation of the no-arbitrage window

and implementation of the arbitrage itself is much more complicated.

Table 17: Round trip transaction costs for index arbitrage: some examples

Author Index future Round trip trans. costs

Billingsley & Chance (1988) US futures 1%

Robertson (1990) FTSE 100 1.85% (institutions)

0.90% (market makers)

Yau, Schneeweis & Yung (1990) Hang Seng 1.96%

Liffe & LTOM (1991), FTSE Eurotrack 100 1.67% (long in stocks,

Liffe (1991) short in futures)

2.42% (short in stocks,

long in futures)

Chung, Kang & Rhee (1994) Nikkei St. Av. (Osaka) 2.7% (institutions)

0.8% brokers

Source: Sutcliffe (2006).

Note: Costs expressed as percentage of the index spot price.
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8.2 Taxes

Another parameter that the standard cost of carry formula is short of appears

to be the taxation of dividends. While investigating German futures market,

in particular the DAX futures prices, Fink & Theissen (2014) derived a

modified cost of carry pricing formula that corrects for the missing tax effect.

The model of Fink & Theissen (2014) defines r as the interest expenditure

and D as the dividend payments in the period of the time to maturity,

(T − t), sk denotes the tax on all capital gains and losses from stock and

futures transactions, sz is the tax levied on the interest income and expenses,

and finally the dividends are taxed with the rate of sd. For the sake of

simplification, a symmetric taxation of gains and losses is assumed. The

formula for the theoretical futures price is obtained based on the no-arbitrage

cost of carry argument. Assuming an arbitrage that involves a long position

in the stock index and a short position in the corresponding futures, first an

investment into a portfolio of stocks, S0, that replicates the index is required.

This is financed with a credit at the beginning of the arbitrage activity.

Simultaneously the equivalent amount of stock index futures contracts is

shorted. According to Fink & Theissen (2014) the dividends that are paid

by the index stocks until expiration cause tax payments to differ both at

the index level and the personal portfolio level. As a result these differences

have to be financed with supplementary credits. At maturity the following

needs to be paid: capital gains tax on the gains and losses of the index stocks

portfolio, (1− sk), taxes on the profit of the future contract, (F − ST ), at

the rate of sk, taxes on the reinvested dividends at the rate of sd, finally the

repayment of the loan on the index stocks as well as the supplementary loans

on dividend adjustment costs. From these payments the investor’s interest

tax credit at the rate of sz is subtracted. The cash flows are exactly zero

both after the transactions at the beginning and at the end of the arbitrage

activity. After adding the cash flows at maturity and solving for the futures

price, F , the following cost of carry formula that considers the effects of
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taxes is obtained7:

F = S0

(
1 + r

1− sz
1− sk

)
− [sk − sd − r(T − t)sd(1− sz)]

1

1− sk
D. (8.2)

Empirical results from Fink & Theissen (2014) confirmed that the changes

in the dividend taxation had an effect on the stock index futures prices.

Hence, taxes represent another challenge to the validity of the simple cost of

carry model.

8.3 Hemler & Longstaff model with market volatility and stochastic

interest rate

Hemler & Longstaff (1991) proposed other forces that may play a role in

stock index futures pricing and therefore contradict the standard no-arbitrage

formula. Based on empirical studies, their general equilibrium model, which

incorporates market volatility and stochastic interest rate may account for

mispricings indicated by the cost of carry model and is supposed to be more

efficient especially in highly volatile periods.

The model involves fitting the following regression equation:

Lt = α + β1rt + β2Vt + εt, (8.3)

where Lt = ln Fteq(T−t)

St
is the natural logarithm of the dividend-adjusted

futures/spot price ratio, St is the value of the underlying stock index, Ft

denotes the theoretical futures price of interest, rt is the risk-free rate of

interest, Vt denotes the market volatility, q is the constant annual dividend

yield, T − t is the time to maturity, α, β1 and β2 are the coefficients of the

regression equation (8.3), and εt is normally distributed error term with

zero mean. The estimated coefficients are then substituted to the general

equilibrium model to predict the dividend-adjusted futures/spot price ratio,

Lt, from which the theoretical futures price, Ft, can be subsequently obtained.

Hence the stock index futures price depends on the volatility of returns on

the index, the spot index price, risk-free rate of interest, dividend yield, and

time to maturity. Whilst remaining in this framework, the cost of carry

7The detailed arbitrage table and calculations can be found in Fink & Theissen (2014).
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model predicts α = β2 = 0 and β1 = T − t which is the time to maturity of

the contract.

The only parameter in the Hemler and Longstaff model that can’t be

directly observed is the volatility of the index returns, Vt. To estimate the

variance of the index returns, commonly the equally weighted moving average

method is applied to the past spot index returns8.

8.4 Hsu & Wang model with the degree of market imperfections

As was already sketched in the literature review part, Hsu & Wang (2004)

introduced the stock index futures pricing model with the concept of the

degree of market imperfections.

The imperfect market model considers a hedged portfolio P that is made

up of one unit of spot index and x units of futures contracts while assuming

there is initially no requirement of cash outflow for futures contracts and

that the underlying stock index price follows a geometric Wiener process.

Then the rate of return of the hedged portfolio, P , is given as follows:

dP

P
= (wfuf + u)dt+ (wfσf + σ)dZ, (8.4)

where wf = xF
S

, F is the index futures price, S is the spot price of the index,

u and σ are the constant expected growth rate and the constant volatility

of the stock index, respectively, uf and σf are the instantaneous expected

return on futures and the instantaneous standard deviation of return on

futures, respectively, and finally dZ denotes the geometric Wiener process.

If wf = − σ
σf

then wfσf + σ = 0 in the equation (8.4) and this would mean

that the return of portfolio P is certain and therefore the hedged portfolio is

risk-free. However, to keep it riskless wf needs to be continuously rebalanced

until the expiration of the contract. Figlewski (1989) argues that building

risk-free portfolio and continuously rebalancing the positions is possible only

in perfect markets unlike in imperfect markets where portfolio that can’t be

riskless earns some expected rate of return that might be different from the

risk-free rate.

8For more details, see Manu & Narayana (2015).
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Then the authors obtain up, the instantaneous expected rate of return

of the hedged portfolio, and σp, the coefficient of Wiener process dZ in the

equation (8.4) as

wfuf + u = up, (8.5)

wfσf + σ = σp. (8.6)

From the equations (8.5) and (8.6) a partial differential equation is obtained

as follows:
1

2
σ2S2Fss + uαSFs + Ft = 0, (8.7)

where uα = [(up− q)− (u− q)σp
σ

]/(1− σp
σ

) is the price expectation parameter

with the component σp
σ

reflecting all the effects of market imperfections, in

other words, the degree of market imperfections. Finally the solution of the

partial differential equation (8.7) is given by9

Ft = Ste
uα(T−t) (8.8)

which is the Hsu and Wang imperfect market pricing model. This model

assumes a continuous constant dividend yield q paid during the life of the

contract. However, it can be modified in terms of the index that pays irregular

lumpy dividends. If the capital market is perfect then σp = 0 and up = r

which corresponds to the cost of carry model.

The only parameter in the Hsu and Wang pricing model that needs to

be estimated is the price expectation parameter, uα. Hsu & Wang (2004)

proposed the implied uα,t−1 as follows:

uα,t−1 =
1

T − (t− 1)
ln
Ft−1

St−1

. (8.9)

8.5 Some factors that proved to be unimportant

The cost of carry model assumes that the dividend payments from the

underlying stocks that took place until the expiration of the contract are

known. However, the dividends might not be certain. Yadav & Pope (1990)

examined this assumption on the FTSE 100 index and found that a 50%

9For more detailed derivation of the model, see Hsu & Wang (2004).
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variation in dividends led to a change of only 0.3% in the no-arbitrage futures

price. Yadav & Pope (1994) examined the effects of dividend risk in terms

of both the size of the dividend and the payment date. They concluded

that the estimate of dividends used in the price calculation does not have

any significant effect and that the dividend certainty assumption is not that

important. For performance indices, such as the DAX index, Bühler & Kempf

(1995) concluded that there is no dividend risk.

Another assumption of the standard pricing model is that assets can

be perfectly divided. When constructing an arbitrage transaction with the

number of futures exactly offsetting the basket of shares in the index, it

might be needed to hold shares or futures in fractional quantities which is

not possible. This problem tends to be smaller if each futures contract has a

small nominal value and the total value of the arbitrage transaction is large.

Nontheless, according to Sutcliffe (2006) the effect of the violation of the

perfect asset divisibility assumption in real capital markets does not have

any major impact and can be omitted.

The cost of carry pricing formula applies rather to forward than futures

contracts since it does not allow for marking to the market. Futures positions

are settled on a daily basis and traders’ accounts are adjusted accordingly

which is not the case of forwards. Cox et al. (1981) suggested that if riskless

interest rates are certain futures and forwards prices are identical. Therefore

the prices will not be exactly equal if interest rates are stochastic. Nonetheless,

many economic studies concluded that the difference between the prices of

forwards and futures is economically insignificant as per Sutcliffe (2006).

There are other factors that might influence the stock index futures price

and therefore disrupt the no-arbitrage argument. More delicate ones concern-

ing initial margin, index weights, proceeds on short sales or risk of default

can be found in Sutcliffe (2006). Empirically it was found that deviations

from the perfect markets assumptions are rather of little consequence or

when needed the new relationship between futures and spot index prices can

be derived.
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9 Conclusion

The aim of the thesis was to examine the pricing efficiency of the cost of

carry model and its applicability on the German performance index DAX

and related stock index futures contracts covering the period 2012-2016. The

work investigated the suitability of the theoretical model confronted by the

real behaviour of futures prices while complementing the literature with more

updated dataset.

The analysis showed that the DAX futures contracts exhibit minor mispri-

cing. While there are many deviations from the theoretical fair values they

tend to remain in the range of -0.4-0.4%. The standard t-test and the non-

parametric Wilcoxon signed-rank test confirmed that the mean mispricing

is not significantly different from zero in most cases of examined contracts.

Given the small magnitude of the deviations it can therefore be concluded

that the futures contracts are efficiently priced and any index arbitrage

activity is rather rare. Further to this, the June contracts appear to have

a special position since the size and the occurrence of the June contracts’

mispricing was found to be larger when compared with other maturities.

This phenomenon can be related to the dividend payments that accumulate

between April and June.

The ADF and the KPSS tests confirmed that futures prices and spot index

values follow the I(0) process and that they are cointegrated. Regression

analysis showed that except the effect of spot index the variables do not

entirely follow the model suggestions implying the cost of carry can only

provide an approximation of the futures price.

Regarding the basis convergence, it was identified that there is a decreasing

tendency in the basis towards a contract’s expiration and that the futures

and spot prices merge automatically at maturity. Nevertheless, even though

the size of the basis remains low relative to the spot index price, it is subject

to many fluctuations. This was confirmed by the KPSS test that failed to

identify a trend stationarity in the basis.

The thesis also introduced some pricing models that do not demand some

57



of the restrictive assumptions of the cost of carry and summarized some

factors which empirically proved to be relevant with the mention of the

assumptions of perfect markets which in practice turned out to be negligible.

Minor discrepancies in German markets can be explained as most likely by

transaction costs and taxation of dividends.

The work suffers from some limitations. First, the exact round-trip

transaction costs of DAX index arbitrage are not provided hence, despite the

low magnitude of mispricing, the results should be interpreted with caution.

Secondly, as a proxy for risk-free rate the EURIBOR rates were used which

might not apply to all investors. Another proxy which can be employed is an

overnight index swap (OIS ) rate for shorter maturities of futures contracts.

Lastly, as the work uses closing prices some discrepancies may arise because

of non-contemporaneous trading.

The research of stock index futures pricing can be extended further. First,

the exact round-trip transaction costs for the DAX index arbitrage could

be estimated. To infer if the mispricing can actually trigger some arbitrage

activity it would be beneficial to determine the lower and upper bound of the

no-arbitrage window. Furthermore, as previously suggested, the movements

in the basis might be investigated with respect to market forces to support

hedging strategies.
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Appendix

Table 19: Asymptotic critical values for unit root T test

Significance level 1% 5% 10%

Model with constant and no trend -3.43 -2.86 -2.57

Model with constant and trend -3.96 -3.41 -3.12

Source: Banerjee et al. (1993).

Table 20: KPSS test critical values for ηµ and ητ

Significance level 1% 5% 10%

ηµ 0.739 0.463 0.347

ητ 0.216 0.146 0.119

Source: Kwiatkowski et al. (1992).

Note: ηµ and ητ denote statistics for level and
trend stationarity, respectively.

Table 21: Asymptotic critical values for cointegration testing

Significance level 1% 5% 10%

Critical value -3.90 -3.34 -3.04

Source: Davidson, MacKinnon et al. (1993).

Table 22: Summary statistics of the basis as percentage of current spot index value

Mean SD Max Min Mean SD Max Min

Mar 13 0.10 0.08 0.44 0.00 Mar 15 0.15 0.11 0.47 0.00

Jun 13 0.15 0.09 0.45 0.00 Jun 15 0.21 0.13 0.58 0.00

Sep 13 0.16 0.10 0.50 0.00 Sep 15 0.17 0.12 0.61 0.00

Dec 13 0.14 0.12 0.57 0.00 Dec 15 0.14 0.12 0.57 0.00

Mar 14 0.15 0.10 0.56 0.00 Mar 16 0.16 0.12 0.69 0.00

Jun 14 0.23 0.14 0.74 0.00 Jun 16 0.31 0.18 0.78 0.00

Sep 14 0.20 0.15 0.83 0.00 Sep 16 0.20 0.17 0.87 0.00

Dec 14 0.15 0.11 0.51 0.00 Dec 16 0.15 0.11 0.50 0.00

Source: Own calculations based on Thomson Reuters data.
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