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Chapter 1

Introduction

Factor investing, with its roots in arbitrage pricing theory, is best characterized

as a way to capture systematic risk premia. It is based on the anomalies (fac-

tors) literature which serves as the scientific foundation for quantitative asset

management. Number of factors were proposed to explain the so-called “cross-

section” of returns, or the distribution of returns at a given point in time. The

most famous examples are perhaps market, value, momentum and, quite re-

cently, profitability. To display the power of factors, (Ang et al. 2009) show

that risk factors represent 99.1% of the largest pension fund’s1 return variation.

Investor can then instead of allocating her portfolio between asset classes,

such as bonds and equities, allocate among the risk factors in order to achieve

desirable return or diversify herself.

The key question is which of the proposed factors actually matter. How

is it possible that some relationship that has held for a long time in a variety

of markets, and thus is very well known, continues to hold in the future. In

essence, there are two reasons, risk or mispricing.

Argumentation for rational risk premium goes along the following lines. If

some assets are riskier, and not just individually, which can be diversified away,

but as a portfolio, then it’s completely rational for them to be awarded a higher

expected return. What does it mean to be risky? It means that investor has

to lose sometimes and especially in the worst time possible, i.e. when almost

everything crashes at once. If this would not be the case, than good and bad

1Government Pension Fund of Norway, holding 0.8% of global equity markets as of June
2017 according to Management (2017)
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times could be diversified away, thus not deserving reward in terms of higher

expected return.

On the other hand, mispricing simply means that investors make errors.

Potential reasons for such errors are well documented in behavioral finance

literature, e.g. Montier (2009). In this case, the assets have higher expected

return not because they are riskier, but because investors make errors. In other

words, assets are mispriced and they earn higher expected return when things

return to rational prices, whether it means going up or down.

Risk and mispricing based explanations are not mutually exclusive, they

can both be true and their relevance can vary through time. An illustrative

example is the value factor. Some consider value strategy, general term for

selecting portfolios with high exposure to the value factor, to be an aggres-

sive strategy based on selecting distressed stocks, e.g. Fama (1998). Others

consider that the purpose of value strategies in general is the selection of high

quality stocks, e.g. Piotroski (2000). The value factor can thus be looked at

not only from both of the risk and mispricing perspectives but also from their

interaction.

Another concern is data-mining, i.e. extensively searching the data to find

in-sample patterns in returns that are not real but random. Not surprisingly,

random relationships doesn’t tend to repeat and out-of-sample returns look

anything but the ones promised by the in-sample discovery. Hou et al. (2017)

conduct a largest replication in the field of pricing anomalies and obtain results

suggesting the widespread p-hacking. On the similar note, McLean & Pontiff

(2016) compare in-sample returns, post-sample returns and post-publication

returns and find the latter returns to be significantly lower than in-sample

returns, suggesting either data-mining or practitioners learning from the aca-

demic literature and arbitraging the premia away. In order to prevent the

embarrassing number of false positive, Harvey et al. (2016) suggest multiple

testing framework should be used when considering whether certain anomaly

is statistically significant.

Above mentioned cases and other, in more details examined in Section 3.2,

offer methods for distinguishing between real factors and false positives.

Answer to the question of why any, known or unknown, systematic factor

offer a premia definitely helps in explaining which factors matter, however it
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does not directly provide the relevant factors. For a long time, the standard

model asset pricing model used was the four factor model of Carhart (1997)

based on the original Fama & French (1992) three factor model and momentum.

Today, with hundreds of known factors, e.g. Harvey et al. (2016) documenting

more than 300 in academic literature and Hou et al. (2017) implementing 447,

investor faces “the factor zoo” (Cochrane (2011)).

With so many factors, the alpha puzzle of the cross-section is more critical

than ever. If certain factor model is correct, this implies that portfolio returns

can be explained by it, and thus that portfolio has no alpha.

However, if we consider that the correct model is some other factor model,

then there is alpha in portfolio if we would use only the original model. With

the proliferation of factors, the story is repeating itself and alpha always seems

to come back.

Regardless of whether it is risk or mispricing that makes factors so power-

ful in explaining the cross-section of returns, holding the market alone is not

optimal.

Even if one knows which factors are real, i.e. which are associated with

higher expected returns going forward, in order to invest accordingly one must

form the portfolio. However, one thing is to select the assets to be included

into the portfolio, other is to actually assign them weights.

Typical weighting schemes used when constructing factor portfolios in the

anomalies literature are value-weighting and equal-weighting. There is number

of reasons why this is the case, while the most relevant is probably simplicity.

Besides that, equal-weighting puts the same weight on every stock, thus match-

ing the relevance of a given stock or observation in classical Fama & MacBeth

(1973) cross-sectional regression. Value-weighting serves mainly as a remedy

against the microcap stocks, with only limited economic relevance compared to

the larger stocks, domination of the results simply because of their plentifulness.

My insight comes from the portfolio selection literature, according to which

diversification pays off. Achieving diversification, given certain universe of as-

sets, is however not as straightforward as putting equal weight on each asset.

Meucci (2010) proposes composing the portfolio’s asset exposures by the
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portfolio’s exposures to uncorrelated, in a sense statistical as opposed to fun-

damental, even though these are definitely tightly connected, sources of risk.

The natural choice for such sources are the principal components, called prin-

cipal portfolios. For a portfolio to be well diversified its overall risk should be

evenly dispersed across these principal portfolios. Dispersion can be measured

by Shannon entropy, while its exponential has intuitive meaning as the effective

number of uncorrelated bets in the portfolio, i.e. the measure of diversification.

Earlier work and along the similar lines is the work of Choueifaty & Coignard

(2008), who came up with the diversification ratio to be maximized. Choueifaty

et al. (2013) show that square of the diversification ratio, in case of any port-

folio, can be interpreted as the number of independent risk factors.

Portfolios based on equally-weighted risk contributions introduced by Qian

and later developed further by (Maillard et al. 2010) are another attempt at

diversification. They imitate the diversification effect of equally-weighted port-

folios while taking into account single and joint risk contributions of the assets.

Risk contributions and sources of risk are not a mere mathematical decom-

position of risk. They are quite good predictors of out-of-sample risks and

therefore exhibit real and significant financial relevance.

Either because of risk or mispricing, factor portfolios are associated with

higher expected returns. What happens when risk-based, diversification maxi-

mizing, portfolio selection methods are applied in the process of factor portfolios

construction ?

From one perspective, if investors should not be compensated for diversifi-

able risk and advanced portfolio selection methods indeed provide more diver-

sification than equal-weighting, then one could expect that the expected return

should not change.

From another perspective, one could argue that advanced portfolio selection

methods applied to restricted universe already exposed to some fundamental

risk (or mispricing), provide more effective representation of factor portfolio

and therefore should be able to capture alpha more effectively than more noise-

contaminated methods such as equal-weighting.

Section 2 contains a short theoretical introduction into the Modern Portfolio
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Theory, including its main shortcomings. Partial solution to such shortcomings

is Arbitrage Pricing Theory, which is covered in Section 3 In Section 4 I review

the state-of-the-art portfolio selection methods, which are later employed to

answer the questions of interest. Methods used in the performance evaluation

of individual strategies are introduced in Section 5. Finally, the main empirical

results are presented in Section 6 alongside the disussion, while supplemental

results are documented in B.2.



Chapter 2

Modern Portfolio Theory

2.1 Mean Variance Framework

Return maximization and risk minimization are conflicting objectives that need

to be balanced according to the investor’s preferences. The first rigorous asset

allocation model to address this problem was developed by Markowitz (1952),

known as an mean-variance optimization, and its framework serves as the foun-

dation of modern portfolio theory. It allows the construction of optimal port-

folio with respect to return maximization while constraining risk or risk mini-

mization subject to minimum desired return.

Before outlining the process and main ideas of mean-variance analysis it is nec-

essary to define relevant characteristics and statistics.

Discrete single-period return for the period t− 1 until t can be calculated as

rt =
pt − pt−1

pt−1

where pt is the asset price at time t. When assuming continuous compounding

of the capital is more convenient logarithmic returns are used

rt = ln(
pt
pt−1

) = ln(pt)− ln(pt−1)

Mean-variance optimization requires knowledge of expected (mean) returns,

variance and covariance. The mean, variance and covariance are not observable

ex-ante, thus they must be estimated typically based on historical returns

µ̂i =
1

T

T
∑

t=1

rit
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σ̂i =
2

√

√

√

√

1

T − 1

T
∑

t=1

(rit − µ̂i)
2

σ̂ij =
1

T − 1

T
∑

t=1

(rit − µ̂i)(rjt − µ̂j)

ρ̂ij =
1

T−1

∑T
t=1(rit − µ̂i)(rjt − µ̂j)

σ̂iσ̂j

The portfolio weights are represented by N × 1 vector w where wi is the per-

centage holding of asset i and in case of no leverage condition,
∑N

i=1 wi = 1

must hold. The expected portfolio return is simply the sum of the products of

the asset returns and corresponding asset weights

µp =
N
∑

i=1

wiµi

in vector form

µp = w
′
r

The portfolio variance, σ2
p is calculated as

σ2
p =

N
∑

i=1

w2
i σ

2
i +

N
∑

i=1

N
∑

i=1
i 6=j

wiwjσij

in vector form

σ2
p = w

′Σw

where Σ is N × N covariance matrix with the generic covariances σij as ele-

ments.

From the formula for portfolio variance, the diversification effect, explicitly

demonstrated in Markowitz (1959), can be observed. For clarity of illustration,

assume a naive equal-weighted portfolio1, where all n assets have the same

1Portfolio weighting method that beats a number of more advanced methods as I present
later.



2. Modern Portfolio Theory 8

weight 1/n. The portfolio variance can then be obtained as

σ2
p =

N
∑

i=1

(

1

n

)2

σ2
i +

N
∑

i=1

N
∑

i=1
i 6=j

1

n

1

n
σij

=
1

n

(

1

n

N
∑

i=1

σ2
i

)

+
n− 1

n







1

n(n− 1)

N
∑

i=1

N
∑

i=1
i 6=j

σij







The mean of the variances and the mean of the covariances in the portfolio can

be seen in the brackets. Distinguishing feature of the systematic (market) risk

is that it cannot be diversified away through portfolio construction contrary to

the asset-specific (unsystematic) risk. It can be clearly seen as the number of

assets in the portfolio gets large, n → ∞

1

n

(

1

n

N
∑

i=1

σ2
i

)

→ 0,

n− 1

n







1

n(n− 1)

N
∑

i=1

N
∑

i=1
i 6=j

σij






→







1

n(n− 1)

N
∑

i=1

N
∑

i=1
i 6=j

σij






,

=⇒ σ2
p →







1

n(n− 1)

N
∑

i=1

N
∑

i=1
i 6=j

σij







This example shows why it is better to invest in a portfolio rather than hold

individual assets.

Mean-variance optimization enables construction of mean-variance efficient port-

folios by choosing the portfolio weights that offer the best return and risk pairs

on the portfolio level. It is based on three main components: the quadratic

objective function based on portfolio variance to be minimized; the set of the

unknown variables representing the optimal portfolio weights to identify; and
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the set of constraints. Formally,

min
w







N
∑

i=1

(w2
i σi)

2 +
N
∑

i=1

N
∑

i=1
i 6=j

wiwjσiσjρij







s.t.

N
∑

i=1

wiµi = µ∗
p

N
∑

i=1

wi = 1

wi ≥ 0

In a matrix form:
min
w

w′Σw

s.t.

w′µ = µ∗
p

w′e = 1

wi ≥ 0

where e is a N × 1 vector of ones. This optimization problem is solved in an

iterative manner, since restrictions on portfolio weights do not allow analytical

solution. The set of all efficient portfolios are obtained by varying the target

return r∗ and they form the concave function called the mean-variance efficient

frontier.

The choice of the efficient portfolios depends on the assumptions that in-

vestors care only about mean and standard deviation of an asset, and prefer

a higher return over a lower return given the same level of risk, i.e. are risk

averse. Two extremes are the minimum-variance portfolio, where the risk is

minimized without considering the return and the maximum-return portfolio,

where the return is maximized without considering the risk.

2.1.1 Drawbacks of Markowitz’s portfolios

From theoretical perspective, mean-variance optimization is a clear, exact frame-

work for facing the portfolio construction problem of investors. For its imple-

mentation, knowledge of expected returns, risks and correlations is necessary.
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This is usually done using time series of historical returns and is called by

Kan & Zhou (2007) the “plug-in” rule, since estimated parameters are simply

treated as true parameters in the optimization process. Neglecting the param-

eters uncertainty renders the procedure to be totally deterministic. However,

just because one does not see the estimation risk, it does not mean that it is

not there. Estimation error is simply the difference between any parameter’s

estimated value and that parameter’s true value. Ex-ante, it is very difficult

to know how far estimates are from the true parameter. Using the mean-

variance framework without acknowledging the threat of estimation error has

severe consequences in a form of number of undesirable features as documented

by number of authors, including Drobetz (2001), Herold and Maurer (2006),

Jobson and Korkie (1981) and Michaud (1989).

These undesirable features are, in no particular order, poor out-of-sample

performance, instability of weights and their extreme concentration, the lack

of diversification, counter-intuitive nature, etc.

Regarding the above mentioned, the issue deserving attention is the lack of

diversification of optimal portfolios which, paradoxically, contrasts with one of

the main goals of Markowitz’s portfolio. Results of mean-variance optimization

tend to have high weights on assets with high estimated returns compared

to low standard deviations and negative correlations. Unfortunately, these

assets are most likely to suffer from large estimation errors. A consequence of

considering inputs into the optimization problem as very accurate is that, as

Michaud (1989) wrote, “The unintuitive character of many optimized portfolios

can be traced to the fact that MV optimizers are, in a fundamental sense,

estimation-error maximizer”

The second major drawback is instability caused by high sensitivity of opti-

mal portfolio weights to small changes in the estimated parameters’ instability.

Best & Grauer (1991) suggested that this high sensitivity is especially pro-

nounced in changes in expected returns.

The third issue is actual non-uniqueness of optimal portfolios. The unique-

ness of the solution depends on the assumption that the inputs are without

estimation error, which as discussed above is not the case.

The last but potentially the most serious limitation of mean variance ef-

ficient portfolios is the poor out-of-sample performance. Results of Klein &

Bawa (1976) show that Markowitz’s portfolios suffer a significant deterioration

of performance, given the expected performance and the same phenomenon

holds in terms of risk-adjusted performance. Chopra (1993) obtain similar re-
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sults and show that errors in mean are at least ten times as important as errors

in variances, and errors in variances are about twice as important as errors in

covariances.

Rather than discussing it now, advanced concept in this field are discussed

later, in order to be presented together, in Section 4. Instead of them, this

section is finished with an introduction of the capital asset pricing model as

another pillar on which my thesis is based.

2.2 Capital Asset Pricing Model

The capital asset pricing model (CAPM) was introduced by Sharpe (1964),

Lintner (1965b) and Mossin (1966). It is an equilibrium framework where

investors make their portfolio decisions according to the mean-variance frame-

work presented in Section 2.1. Its necessary assumption is a perfect market,

thus number of conditions must hold. As mentioned, investors follow the mean

variance framework. Unlimited short sales are allowed, unconstrained lending

and borrowing at the risk-free rate is possible, no transaction costs and no

taxes, infinitely divisible and marketable assets and importantly, homogeneous

expectations regarding the mean, variance and correlations of assets. Conse-

quentially, all investors hold the same risky portfolio, which in equilibrium is

the market portfolio.

Tobin (1958) added the notion a risk-free asset into the model and pointed

out that the efficient frontier is a straight line in its presence. Therefore there

is single optimal portfolio of risky portfolio, dubbed the tangency portfolio.

Further, under some assumptions, Sharpe (1964) proved that the tangency

portfolio corresponds to the market-capitalization weighted2 portfolio (or mar-

ket portfolio). Relationship between the risk premium of asset i and the risk

premium of the market portfolio is called the capital market line and mathe-

matically it is represented according to the following formula:

E[Ri]−Rf = βm
i (E[Rm]−Rf )

2Standardly referred to as value-weighted portfolio.
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where Ri and Rm are the asset and market returns, Rf is the risk-free rate and

the coefficient βm
i is the beta of the asset i with respect to the market portfolio:

βm
i =

cov(Ri, Rm)

σ2(Rm)

The capital asset pricing model highlights the role of beta, since the ex-

pected return of any asset or portfolio i depends only on the β. Contrary to

idiosyncratic risks, β represents the asset’s systematic risk that cannot be di-

versified away. Risk that cannot be eliminated, e.g. by holding large enough

portfolio or more advanced and proper form of diversification, is compensated.

Even though testing the CAPM is difficult, because, as pointed out, it

requires the knowledge of exact composition of the market portfolio, the model

was extensively tested in number of empirical studies.

2.2.1 Empirical Evidence - Critique and Anomalies

The biggest challenge for the CAPM, as for any theory, is its confrontation

with reality. CAPM has its fair share of problems. These problems have been

known right from the start, when Lintner (1965a) did not find a statistically

significant relationship between expected returns and market betas. Jensen

et al. (1972) state that the bias of the regression coefficients arises through the

so called errors-in-variables problem. Solution to this problem is offered in the

same paper and subsequently in a famous work of Fama & MacBeth (1973),

laying foundations of testing hypothesis in asset pricing literature. Method

consists of sorting the assets into portfolios according to their estimated betas

and from which the portfolio beta is calculated. Portfolio betas are a better

measure, as the individual risks of the assets are smaller, thus there is lower

residual variance in the model.

Even though Jensen et al. (1972) and Fama & MacBeth (1973) find sup-

porting evidence for the relation of β to the excess return, it appeared to flat.

Another concern was the instability of estimated coefficients in different sub-

periods. Further, assets with low (high) betas had a higher (lower) return

than they should according to the CAPM, phenomenon known as low-beta

anomaly. Some explanation for low-beta anomaly is offered by Frazzini & Ped-

ersen (2014), who argue that in case of no leverage, high beta assets (i.e. riskier
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assets) should be over-weighted. As a consequence, there is a difference in high-

beta and low-beta assets of correct or observed sign.

However, according to the CAPM, β is the only thing on which future re-

turns depend. This starkly contrasts with many factors being found to be

related to returns, and thus are not in line with the original theory. In gen-

eral, factors that cannot be explained by some asset pricing model are called

anomalies with respect to that model. Based on anomalies, new asset pricing

models were proposed.



Chapter 3

Arbitrage Pricing Theory and

Factor Models

In light of number of discovered anomalies, Ross (1976) came up with an alter-

native to CAPM, the arbitrage pricing theory (APT). The return of i-th asset

is linearly dependent on number of factors:

Ri = αi +
m
∑

j=1

βj
iFj + εi

where αi is the intercept, βj
i is the sensitivity of asset i to factor j, Fj is

the (random) value of factor j and εi is the idiosyncratic risk of asset i. When

the following conditions hold

E[εi] = 0

cov(εi, εk) = 0 for i 6= j

cov(εi,Fj) = 0

then the risk premium of asset i is a linear function of the risk premia of the

factors:

πi = E[Ri]−Rf =
m
∑

j=1

βj
i π(Fj)

where π(Fj) = µ(Fj)−Rf and µ(Fj) = E[Fj].

A necessary assumption to make is that there is enough assets to build a

portfolio which is sufficiently diversified with respect to the risk of individual

assets, i.e. idiosyncratic risk. Another core assumption is a well-functioning se-
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curity market, not allowing persistent arbitrage opportunities. Arbitrage means

that risk-free profits can be made without a net investment by investors, simply

exploiting security mispricing. If security prices allow for arbitrage opportuni-

ties, the market is not in equilibrium, hence there will be pressures on prices

to adjust and eliminate these risk-free profits.

The basic idea of APT is that systematic risks are not captured by single

market risk but a number of risk factors. In general, there are three types of

risk factors with distinct characteristics:

� Statistical factors (e.g. determined by principal component analysis)

� Macroeconomic factors (e.g. surprises in inflation)

� Market factors (e.g. value or momentum)

In this thesis, I deal with two of the above mentioned factors, however, in

a hierarchical or in a nested way.

It is important to mention the difference between factors and firm-specific

characteristics, even though they are used interchangeably throughout this the-

sis, since there should be no confusion. Firm-specific characteristics are vari-

ables that can be computed using individual-firm data. Factors, on the other

hand, are variables that proxy for a common source of risk, e.g., the market

return. Firm-specific characteristics are related to factors because the return

of a long-short portfolio based on a characteristic can be used as a proxy for

an underlying unknown risk factor. The relation between characteristics and

risk factors, however, is not always clear.

Standard long-short factor portfolio in asset pricing literature is obtained

by eliminating the stocks around the median and selecting stocks in the bottom

and top quantiles based on some firm-specific characteristics.

Let Ri be the rank of stock i according to the factor characteristic. Factor

portfolios are value-weighted (VW) and equally-weighted (EW), i.e.

wVW
i =







−MEi∑N
i=1 MEi

if Ri < qc1(Ri)

MEi∑N
i=1 MEi

if Ri > qc2(Ri)

and
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wEW
i =

{

−1/N if Ri < qc1(Ri)

1/N if Ri > qc2(Ri)

where qc1 and qc2 are desired cut-off quantiles, usually 30% or 20% and N is

the number of stocks in long and short leg of the portfolio together.

3.1 Classical Asset Pricing Models

There is an extensive literature regarding identification of risk factors. Some

of the risk factors are long established and widely known, such as the size

factor discovered by Banz (1981) or the value factor discovered by Rosenberg

et al. (1985), others are more recent, such as the quality factor discovered by

Novy-Marx (2013).

3.1.1 Fama-French Three Factor Model

One of the first asset pricing models based on multiple factors, and perhaps still

the most famous one, is the Fama-French three factor model (FF3) of Fama

& French (1993). It is based on their prior work focused on examination of

individual factors, such as size, earnings-to-price, leverage and book-to-market

equity.

E[Ri]−Rf = βm
i (E[Rm]−Rf ) + βsmb

i E[Rsmb] + βhml
i E[Rhml] + εFF3

i

where Rsmb is the return of small stocks minus the return of large stocks,

and Rhml is the return of stocks with high book-to-market values minus the

return of stocks with low book-to-market values.

In order to test validity of their model, two linear regressions, corresponding

to the FF3 model and the CAPM, were performed on 6 portfolios constructed

using a two-way grouping based on size and B/M, following the Chan et al.

(1991). The first regression corresponds to CAPM:

E[Ri]−Rf = αCAPM
i + βm

i (E[Rm]−Rf ) + εCAPM
i
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whereas the second regression uses the three-factor model:

E[Ri]−Rf = αFF3
i + βm

i (E[Rm]−Rf ) + βsmb
i E[Rsmb] + βhml

i E[Rhml] + εFF3
i

If the FF3 model is valid, the null hypothesis of H0 : αCAPM
i = 0 must be

rejected in favor of the alternative hypothesis H1 : α
FF
i = 0, the βsmb

i and βhml
i

estimates must be significant and R2 should improve, i.e. R2
FF > R2

CAPM .

Further, regarding the validity of the FF3 factors, there is a strong interna-

tional evidence, including Chan et al. (1991), Drew et al. (2003) and Bauer et al.

(2010). The Fama-French model has since become a benchmark framework for

the asset pricing along with the model presented next.

3.1.2 Fama-French-Carhart Factor Model

From the number of anomalies being investigated by early researchers in the

field, anomalies related to the past returns were of a special interest. Bondt &

Thaler (1985) found that long-horizon past loser stocks outperform long-horizon

past winner stocks. On the other side of the horizon spectrum, Jegadeesh

(1990) and Lehmann (1990) report other evidence of return reversals, but with

a short-term horizon, i.e. stocks that have poorly performed in the previous

week or month perform better in the next month. The most prominent form

of the past returns based anomaly is the momentum strategy of Jegadeesh &

Titman (1993), who found that buying stocks that have performed well over

the past three to twelve months and selling stocks that have performed poorly

produces abnormal positive returns.

Using this form of momentum, Carhart (1997) adds it to the FF3 model

and uses this four-factor model to evaluate the performance of equity mutual

funds.

E[Ri−Rf = αFFC4
i +βm

i (E[Rm]−Rf )+βsmb
i E[Rsmb]+βhml

i E[Rhml]+βwml
i E[Rwml]+εFFC4

i

where Rwml is the return difference between winner and loser stocks over the

past twelve months. Alongside, and perhaps exceeding the FF3 model in a role

of a standard model in most studies on equity funds, it is called the Fama-

French-Carhart four-factor model (FFC4).
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3.2 Which Factors Really Matter?

Since the publication of Fama-French-Carhart risk factor model, hundreds of

studies have tried to identify asset pricing anomalies that explain the cross-

section of expected returns. Relevance of these anomalies and their relation-

ships to expected returns is however not in the historical insight they offer.

Their relevance depends on the extent to which these relationships hold outside

a study’s original sample. Out-of-sample performance is not only important as

a proof that documented relation is not spurious but can make it clearer why

cross-sectional return predictability is observed in the first place.

To this end, McLean & Pontiff (2016) compare in-sample returns, post-

sample returns, and post-publication returns for a large sample of predictors.

If return predictability in published studies results solely from statistical bi-

ases, then predictability should disappear out of sample. The term “statistical

biases” is used to describe a broad array of biases that are consequences of poor

research design (e.g. data mining), and are to some extent responsible for such

a decline in out-of-sample return predictability. For example, Lo & MacKinlay

(1990) argue that almost no empirical studies are free of data mining, which

becomes more severe as the number of published studies performed on a single

data set increases, Fama (1998) shows that value-weighting shrinks anomalies

alphas, Schwert (2003) documents that anomalies return predictability often

seem to disappear, reverse, or weaken after publication. Apart from statistical

biases, the extent to which investors learn from the publication can also be

responsible for difference between in-sample and post-publication returns. The

concept is nicely explained by McLean & Pontiff (2016):“If return predictability

reflects only rational expectations, then publication will not convey informa-

tion that induces a rational agent to behave differently. Thus, once the impact

of statistical bias is removed, pre- and post-publication return predictability

should be equal. If return predictability reflects mispricing and publication

leads sophisticated investors to learn about and trade against the mispricing,

then we expect the returns associated with a predictor should disappear or at

least decay after the paper is published. Decay, as opposed to disappearance,

will occur if frictions prevent arbitrage from fully eliminating mispricing.” Ex-

amples of such frictions include systematic noise trader risk (De Long et al.

(1990)) and idiosyncratic risk and transaction costs (Pontiff (1996) and Pontiff

(2006)). These effects can be magnified by principal-agent problems between
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investors and investment professionals (Shleifer & Vishny (1997)).

Based on 26% lower out-of-sample and 58% lower post-publication portfolio

returns, greater post-publication declines for anomalies with higher in-sample

returns and returns higher for portfolios concentrated in stocks with high id-

iosyncratic risk and low liquidity, McLean & Pontiff (2016) conclude that in-

vestors learn about mispricing from academic publications.

Another attempt at answering which factors really matter is Linnainmaa

& Roberts (2016). They amass comprehensive accounting data from Moody’s

manuals from 1918 through 1963 when the standard finance research database

Compustat becomes free of backfill bias and thus is the typical starting point

of the time periods examined in anomalies literature. Merging these data with

the Compustat and CRSP records, its coverage and the quality of publicly

traded firms is similar before and after 1963. Subsequently they examine pre-

miums for 38 anomalies and investigate three potential explanations for them:

risk, mispricing, and data-snooping. Each of these explanations correspond

to different testable hypotheses across three eras in their merged dataset: (1)

pre-sample data existing before the discovery of the anomaly, (2) in-sample

data used to identify the anomaly, and (3) post-sample data accumulating af-

ter identification of the anomaly. Results from pre-1963 data, only seven out

of the 38 anomalies earn average returns that are positive and statistically sig-

nificant at the 5% level, are consistent with data-snooping as the anomalies

are clearly sensitive to the choice of sample period. As explained in McLean

& Pontiff (2016), if the anomalies are risk-based, then we would have expected

them to be similar across periods, absent structural breaks in the risks that

matter to investors. If the anomalies are mispricing-based, then we would have

expected them to be at least equal if not larger during the pre-discovery sam-

ple period1. The data-mining as the most probable explanation for most of the

anomalies is also supported by the fact that the average anomaly becomes less

profitable and more volatile either before or after the original study’s sample

period. This does not mean that all anomalies are spurious, however there is

an ex-ante uncertainty of not knowing which anomalies are real and which are

spurious. Out-of-sample testing is the cleanest way to determine which factors

are true predictors of cross-sectional returns, however it cannot be used in the

real time. A genuine out-of-sample test needs data in the future.

1Larger because of limits to arbitrage, e.g. higher transaction costs (Hasbrouck (2009))
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In order to account for data mining in the anomalies literature, without nec-

essary out-of-sample data available, Harvey et al. (2016) conduct a meta-study

based on 312 papers concerned with cross-sectional return patterns published

in the top journals in finance, economics and accounting or presented at top

conferences. They employ four multiple testing frameworks, to obtain true for

multiple testing adjusted threshold statistical significance level from the first

empirical tests in 1967 through to present day. The threshold cutoff increases

over time as even more anomalies are tried and newly discovered factor today

should have a t-statistic over three. After going through 296 significant anoma-

lies, they report that 80-158 (27%-53%) are false discoveries, depending on the

specific methods of adjusting for multiple testing. The estimates are likely

conservative because many factors have been tried by researchers but never

reported, given they were unsuccessful. According to the authors, the main

suspects among publication biases mainly responsible for the false discoveries

in anomalies literature are difficulty to publish a negative result in top academic

journals and difficulty to publish replication studies in finance and economics2.

Consequently, there is strong incentive for publication of new factors rather

than necessary verification of known factors. Because of this incentives, it is

virtually impossible to publish weak or negative results.

Although one can relatively easily identify published variables, one cannot

observe the variables that have been tried, but not published. Yan & Zheng

(2017) solve this problem by examination of anomalies that are based on finan-

cial statements. By permuting 240 accounting variables with 15 base variables

they form more than 18,000 fundamental signals, a universe a data snooper

might face, construct long-short portfolios based on each fundamental signal

and bootstrap the alphas of long-short returns and its significance. Results,

robust to alternative universe of fundamental signals as well as alternative sam-

pling procedure, suggest that the superior performance of the top fundamental

signals cannot be attributed to pure chance. Following these results, they inves-

tigate whether they are consistent with mispricing- or risk-based explanations.

They find that fundamental-based trading strategies are more pronounced

among stocks with greater limits to arbitrage3 as explained by Lakonishok

et al. (1994), following high-sentiment periods as argued by Stambaugh et al.

2In other scientific fields, replication studies are common in top journals.
3E.g. small, low-institutional ownership, high-idiosyncratic volatility, and low-analyst

coverage stocks



3. Arbitrage Pricing Theory and Factor Models 21

(2012), and have higher returns during recessions than during expansions.

Overall, their results suggest that relatively large number of fundamental sig-

nals have true predictive ability and this predictive ability is more consistent

with mispricing-based explanation.

Looking for factors that matter in a more conventional way, Green et al.

(2017) focus on simultaneously including 94 firm characteristics as explanatory

variables, while avoiding overweighting microcap stocks. Since the mean abso-

lute correlation between these characteristics is low, it allows identification of

characteristics that provide independent information about stock returns. They

find that only 12 of 94 of characteristics provide independent information in

non-microcaps during 1980-2014 and that just two characteristics matter after

2003. These results support conclusions of Harvey, Liu and Zhou’s (2016) data

snooping critique and McLean and Pontiff’s (2016) finding of post-publication

decay. On the other hand, significant differences in returns predictability in

pre- versus post-2003 as well as in the case of different results based on size

indicate that data snooping is not a complete explanation.

Further, Feng et al. (2017) study which out of the 114 factors in their anal-

ysis contain useful new information. In order to do so, every time a new factor

is introduced, authors test whether its risk price is nonzero, controlling for all

factors existing up to that point, and whether in future, when this factor will

be part of potential controls, will be selected as part of the best model. Al-

though majority do not contain useful new information, authors find that some

factors (e.g., corporate investment) tend to appear throughout the 20 years

considered, being selected almost all the time. Others appear at the beginning

but are substituted with more modern ones. Results suggest that studying the

marginal contribution of new factors relative to the vast set of existing ones

is a conservative and productive way to screen new factors as they are proposed.

Very concerning is the case documented by McLean & Pontiff (2016) where

10 out of 82 studied anomalies in-sample performance of original studies could

not be replicated. Until very recently, finance literature did not put enough at-

tention to the replication of empirical results. The most famous general study

is conducted by Ioannidis (2005) who argues that most research findings are

false for most designs and for most fields. Echoing his troubling claims, Chang

& Li (2015) fail to replicate more than half of 67 published papers from 13
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economic journals. On the similar note, Brodeur et al. (2016) document a

concerning “two-humped” pattern of test statistics from 50 000 tests in presti-

gious economic journals. First hump is associated with high p-values and the

second hump with p-values slightly below 5%, suggesting that researchers look

for specification that deliver just-significant results and ignore those that give

just-insignificant results, thus commiting p-hacking.

To address the lack of comprehensive replication in anomalies literature,

Hou et al. (2017) create the largest factor library of 447 pricing anomalies

with definitions as well as description for transparent implementation. Cov-

ered anomalies span the categories from the momentum, value-versus-growth,

investment, profitability, intangibles, to trading frictions. One of the reasons

for diverse results often concerning the same characteristic is the wide range

of research designs used in the pricing literature. To put anomalies on the

equal footing, authors follow a common set of replicating procedures. Since

whenever possible I follow these procedures in my empirical section I leave de-

tails, with exception of the key size cutoff and value-weighting, to that part. In

replication, authors use value-weighting based on number of arguments. Ac-

cording to Fama (1998), value-weights more accurately reflect the wealth effect

experienced by investors. Fama & French (2008) document that microcaps are

influential in equal-weighted returns. Microcaps are stocks with the market eq-

uity below the 20th percentile of NYSE stocks. Microcaps are on average only

3% of the market value of the NYSE-Amex-NASDAQ universe, but represent

around 60% of the total number of stocks.

There is a number of reasons for eliminating microcaps. One of the as-

sumptions of APT is functioning markets preventing arbitrage opportunities.

This is unlikely to be the case for microcaps because of their transaction costs

and illiquidity. Asparouhova et al. (2013) document serious microstructure fric-

tions, e.g. bid-ask spreads, nonsynchronous trading, discrete prices which can

cause bias in cross-sectional equal-weighted returns.

Typically, researchers use NYSE-Amex-NASDAQ cutoffs for determining

which stocks are microcaps. Fama & French (2008) show that using this proce-

dure populates the extreme deciles in number of anomalies by microcaps, that

represent more than 60% of them.

On the contraty, Hou et al. (2017) use NYSE breakpoints. This smoothes

the impact that microcaps have in extreme deciles. They show on data from
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1967 to 2014, and I verify this claim, that there are 2,406 microcaps on average,

which account for 61% of the total number of firms, 3,938. This is in contrast

to microcaps representing only 3.28% of the total market capitalization, small

stocks 6.77%, and big stocks 90%. With equal-weights, microcaps earn on

average 1.32% per month relative to 1.03% for big stocks. In contrast, the

value-weighted market return of 0.93% is close to 0.92% for big stocks.

Further, authors use portfolio sorts instead of Fama & MacBeth (1973)

cross-sectional regressions. Their reasoning serves as a nice summary for po-

tential pitfalls when using cross-sectional regression without proper diligence

and I refer reader to their paper for more details.

They treat an anomaly as a replication failure if the average return of its

high-minus-low decile is insignificant at the 5% level (t ¡ 1.96). Results are

not good for anomalies literature, 286 out of 447 anomaly variables (64%) are

insignificant.

However, none of these single mispricing factors (i.e. HML, SMB, MOM)

can accommodate a large set of anomalies very well. Clearly, when a larger

set of anomalies is considered, old models do not have a strong ability to ex-

plain the larger number of anomalies analyzed. Of course, this may not be

too surprising since anomalies are typically only deemed “anomalous” once it

is determined that e.g. FF 3-factor model canâ¿�t explain the excess returns

associated with the strategy that generates the anomaly. Indeed, it is a sign of

a good asset pricing model to be able to explain number of anomalies, so they

are not “anomalous” anymore. In this spirit, authors use Hou et al. (2015)

q-factor model, motivated from investment-based asset pricing, to explain the

successfully replicated anomalies.

The q-factor model is based on the long line of literature concerned about

relationship between the production side and asset prices, including Cochrane

(1991), Berk et al. (1999) and Liu et al. (2009). The main idea is quite simple,

investment has predictive power with respect to returns because given expected

cash flows, high costs of capital mean low net present values of new capital and

low investment, whereas low costs of capital mean high net present values of

new capital and high investment. Reasoning for relation of return on equity

to returns is based on the discount rates. In their model, high discount rates

are equivalent to high expected return on equity (ROE) associated with low

investment. This is because the only reason for low investment, when there is
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high expected ROE, is to have high discount rates that prohibit more invest-

ment. The same goes for low ROE with high investment.

In q-factor model the expected return of an asset in excess of the riskfree

rate is described by the sensitivity of its return to four factors. They are the

market excess return (MKT), the difference between the return on a portfolio

of small-market equity stocks and the return on a portfolio of big-market equity

stocks (rME), the difference between the return on a portfolio of low-investment

stocks and the return on a portfolio of high-investment stocks (r∆A/A), and the

difference between the return on a portfolio of high return-on-equity stocks and

the return on a portfolio of low return-on-equity stocks (rROE).

E[Ri]−Rf = βm
i (E[Rm]−Rf )+βME

i E[RME]+β
∆A/A
i E[R∆A/A]+βROE

i E[RROE]

The size factor’s main role is to lower the average magnitude of the alphas

across size-related portfolios. According to the authors, compared to the ROE

and the investment, the size factor plays only a secondary role in the q-factor

model.

The q-factor model is able to explain, in an internally consistent and eco-

nomically meaningful way, number of anomalies that neither Fama-French

model nor Fama-French-Carhart model can. Anomalies that cannot be ex-

plained, like earnings surprise, idiosyncratic volatility, financial distress, net

stock issues, composite issuance, etc. have lower alpha when using q-factor

model.

Given the relative success of q-factor model in explaining number of signifi-

cant anomalies in the greatest up-to-date replication study of Hou et al. (2017),

it is valid to ask if there is no better asset pricing model.

There are two well-known and promising models in current literature. Fama

& French (2015) five factor model and Stambaugh & Yuan (2016) four factor

model based on the so-called mispricing factors.

Fama & French (2015) propose a five-factor model (FF5) by adding two
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factors into their 3-factor model. Its factors being the market excess return,

size (SMB), value (HML), operating profit (RMW), and asset growth (CMA).

E[Ri]−Rf = βm
i (E[Rm]−Rf )+βME

i E[RME]+β
∆A/A
i E[R∆A/A]+βROE

i E[RROE]

Factors operating profit and asset growth are somewhat different versions

than those in q-factor model. They provide theoretical motivation in a form of

comparative statics of a present-value relation.

More interestingly, Stambaugh & Yuan (2016) construct a four-factor model

consisting of market, size and two “mispricing” factors. The main idea behind

the model is that some anomalies reflect, at least partially, mispricing. This

mispricing should be manifested in a common way across stocks. The two

mispricing factors are based on 11 anomalies, examined earlier by Stambaugh

et al. (2012) and Stambaugh et al. (2015). Out of studies originally document-

ing underlying anomalies, studies containing mispricing interpretations include

Ritter (1991) for net stock issues (NSI), Daniel & Titman (2006) for composite

equity issues (CEI), Sloan (1996) for accruals (ACCR), Hirshleifer et al. (2004)

for net operating assets (NOA), Cooper et al. (2008) for asset growth (AG) ,

Titman et al. (2004) for investment-to-assets (IA), Campbell et al. (2008) for fi-

nancial distress (DIST), Jegadeesh & Titman (1993) for momentum, and Wang

& Yu (2013) for profitability anomalies including return on assets (ROA) and

gross profitability (GP). The underlying 11 anomalies are first classified into

two clusters using a correlation-based distance measurement and a clustering

method.

The first cluster of anomalies includes NSI, CEI, ACCR, NOA, AG, and IA.

Since these anomalies are more or less directly impacted by managers’ actions,

factor is called by authors as MGMT-characteristic.

The second cluster includes DIST, O, MOM, GP and NOA. Since these

anomalies are related more to performance and less directly or immediately

impacted by managers’ actions, it is called by authors as PERF-characteristic.

It is important to note that even though authors assign names to the clusters,

they do not claim that cluster must reflect only one and only behavioral story.

Following Stambaugh et al. (2015), who average across all 11 anomalies

constructing a single composite mispricing measure, individual stock’s rankings

are average within each of the two clusters. Stock’s rankings across anomalies
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are equal weighted. By combining information across anomalies, authors strive

to construct factors capturing common elements of mispricing. Finally, the two

mispricing factors are finished by applying a standard 2x3 sorting procedure.

In detail, each month NYSE, AMEX, and NASDAQ stocks, eliminating

stocks with prices smaller than $5, are sorted by size and split into big and

small groups based on the NYSE median size. Subsequently, all stocks are

sorted independently according to PERF-characteristic and assigned to three

groups using the 20th and 80th percentiles of the combined NYSE, AMEX, and

NASDAQ universe as breakpoints. The same procedure is applied in the case

of MGMT-characteristic. In the end, value-weighted returns are calculated for

each of the portfolios formed by the intersection of the two size categories and

extreme categories for both clusters. The value of factor for a given month is the

simple average of the returns on the two low PERF-characteristics portfolios

minus the average of the returns of the two high PERF-characteristics.

Additionally, they construct a three-factor model with a single mispricing

factor, following already mentioned Stambaugh et al. (2015).

As authors, Hirshleifer & Jiang (2010) and Kozak et al. (2017) admit

though, mispricing factors can capture systematic risks for which investors re-

quire compensation as well, and to make things more complicated, there does

not have to be a strict distinction between mispricing and risk compensation.

Nevertheless, a mispricing interpretation pushed forward is also partially sup-

ported by the evidence of McLean & Pontiff (2016), given the fact that following

an anomaly’s academic publication, there is an increase in trading volume and

“arbitrage” profits tend to decline.

Fama & French (2016) study the ability of the FF5 model of Fama & French

(2015) to explain a small set of return anomalies. Hou et al. (2015) compare

the FF5 model with their q-factor model in explaining a range of anomalies. Fi-

nally, Stambaugh & Yuan (2016) compare their mispricing factor model, both

4-factor version as well as 3-factor version with only one mispricing factor, with

all of the above and the FF3 model of Fama & French (1993).

Models are compared in number of dimensions, including explaining 73

anomalies covered by Hou et al. (2015), evaluating each model’s ability to ex-

plain factors from the another and using Bayesian posterior model probabilities,

developed by Barillas & Shanken (2015).
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The mispricing four-factor model outperforms other models in explaining

73 anomalies considered. Specifically, the Gibbons et al. (1989) test, concerned

whether all the anomalies’ alphas equal zero, produces a p-value of 0.10 for

the mispricing model compared to 0.003 or less for its competitors. It also

outperforms other 4 models in terms of explaining each other’s factors. The

three-factor mispricing model, from which the sole mispricing factor MISP is

used in this thesis, performs on par with the four-factor version.

Perhaps this isn’t surprising, since the factor model used to “control” for

the anomalies is built using the anomalies. However, the same critique can be

said for the other factor models, e.g. value is not significant when controled for

HML factor in the FF3 model.

At a minimum, for researchers looking to identify “new” ideas, this factor

model is a great tool. If one identifies a significant “alpha” after controlling for

the mispricing factor model, there is a good chance there may be something

special associated with the strategy under review.



Chapter 4

Risk-based Approaches

As presented in Section 2.1.1 there are severe problems with applying mean-

variance framework as a proper portfolio selection method. The main reason in

the estimation error for the input parameters µ and Σ making direct applica-

tion of the mean-variance approach towards portfolio optimization prohibitive

from the practitioner’s as well as from the scientific point of view. In light of

this, risk-based portfolio selection methods proceed by giving less room to esti-

mation errors by not requiring any explicit or implicit effort to model, measure

or predict returns. As a consequence, it is not possible to form a set of rec-

ommended portfolios for different desired levels of risk. This problem is often

solved through leverage, in case of multi-asset class allocation problem. Given

the fact that in my research setting, portfolio selection methods are applied not

only within one asset class, but specifically in rather narrow universe of factor

portfolios, usage of leverage is not necessary and probably ill-advised given the

strong exposure towards underlying factor risk.

Different risk-based solutions have been suggested in finance literature over

the year, with the most prominent being investigated in my thesis:

� the risk parity strategy

� the equally-weighted strategy

� the minimum-variance strategy

� the naive risk parity strategy

� the optimal risk parity or equal risk contribution strategy

� the most diversified portfolio strategy
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� the diversified risk parity strategy

� the hierarchical risk parity strategy

When saying that some portfolio is well-diversified, it is expected that it is

immune against shocks created by a single or a few assets. Given the portfolio

of risky assets, a reliable measurement of the degree of diversification can only

be achieved by incorporating the dependence structure among these assets, i.e.

the information of how the portfolio constituents interact. Typically, this is

done by evaluating the covariance matrix Σ.

In the following sections, individual portfolio selection methods, later used

in the empirical part, are introduced. The Section 4.2 contains summary, com-

parison and expectations of these methods going forward.

4.0.1 The Equally-Weighted Approach

The most elementary and naive approach to measure the diversification of a

portfolio of risky assets is to count the number of its constituents. It is build

upon the well-documented fact that the return variance of an equally-weighted

portfolio declines with the number of its constituents. As a diversification mea-

sure however, it completely ignores the heterogeneity of the assets as well as

different weighting schemes.

The most straightforward risk-based strategy based on this concept, where

portfolio allocations have only to be driven by the number of assets in the

investment universe it the equal-weighting. Portfolio selection problem is solved

using simple 1/N , formally :

wi = wj =
1

N
∀i, j

Hence, when the equally-weighted approach is used, all assets are given

an identical and static weight. It is obvious that since there is no optimiza-

tion problem to solve, the equally-weighted portfolio allocation is determined

regardless of any statistical estimate for returns, risks and correlations. A con-

ditions for ex-ante optimality for equally-weighted portfolio, in a mean-variance

framework, are very unrealistic: equal expected returns, equal volatilities and

uniform correlations among assets. Given these unrealistic conditions, why

would investors use the equally-weighted strategy? First of all, DeMiguel et al.
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(2009) find using several asset allocation models and different datasets, that

none of the theoretically more robust asset allocation models was consistently

better out-of sample than the naive 1/N rule. Second, according to the behav-

ioral finance the equally-weighted portfolio can be a reasonable way to avoid

regret that would occur in case of more concentrated but unfavorable bet.

Nevertheless, the assumption that using this simple and heuristic method

provides diversification can be misleading: it depends on the characteristics of

assets that the strategy does not consider, e.g. if their risk is very different,

the equally-weighted scheme can lead to concentrated risk loadings as will be

clear in Section 4.1.2

4.0.2 The Value-weighted Portfolio

According to the CAPM theory, there is a linear relationship between portfolio

return and risk, thus the existence of a market portfolio. The market portfolio

consists of all risky assets and their weights are their share of the total finan-

cial market’s value. The market portfolio is said to be completely diversified

and the risk the risk associated with it is called systematic or non-diversifiable.

As Roll (1977) points out, the market portfolio is a theoretical, unobservable

object. As such, it cannot be used as benchmark of diversification, only it very

limited proxies, e.g. index, could. The reason I include it in my empirical

tests is twofold. First, it is a standard weighting scheme in anomalies liter-

ature. Second, from the CAPM side, it is connected to diversification based

on the fact, that if my factor portfolio would be the market portfolio (which

it clearly is not) then in equilibrium, every investor is expected to hold some

value-weighted fraction of it.

Even though the turnover of this strategy is zero in case of stable universe,

its turnover is on par with other strategies given the fact that universe changes

as different stocks fall into the extreme factor deciles.

The above described framework constitutes the theoretical definition of di-

versification implied by the CAPM but this does not mean that there is no

other portfolio with smaller return variance. By its very definition, the so-called

Global Minimum-Variance Portfolio always allows for lower return variance.
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4.0.3 The Global Minimum-Variance Approach

Global minimum-variance portfolio or simply minimum-variance portfolio (MV)

lies at the start of the efficient frontier. It is expected to have the lowest possi-

ble volatility out of every portfolio in a given universe. As with the Markowit’s

portfolio, model parameters are not observable ex-ante, thus they must be

estimated. Using the estimates of correlation matrix, weights determining op-

timization can be performed. If MV portfolio is supposed to be both fully

invested and restricted from short-selling, as is usually the required case, the

optimization have to contain the two traditional constraints. Optimization

problem then takes the following form:

min
w







N
∑

i=1

(w2
i σi)

2 +
N
∑

i=1

N
∑

i=1
i 6=j

wiwjσiσjρij







s.t.

N
∑

i=1

wi = 1

wi ≥ 0

or in the matrix form:
min
w

w′Σw

s.t.

w′e = 1

wi ≥ 0

where e is a Nx1 vector of ones.

Given the inequality constraint in the optimization setting, analytical solu-

tion is not possible and iterative procedures have to be used in order to obtain

the optimal weights. Few comments regarding the properties of minimum vari-

ance portfolios are appropriate.

First, the MV portfolio does not have to be invested in all assets in the

universe. Second, the marginal risk contribution1 is the same for all assets

1As defined in the next Section 4.1
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belonging to the optimal portfolio. Formally:

∂σp

∂wi

=
∂σp

∂wj

∀i, j

This has to hold, otherwise increasing weight of one asset and at the same time

decreasing weight of the other would mean lower risk, leading to contradiction.

Third, since assets have different weights, then even though marginal risks

are equal, it does not mean that total risk contributions are equal.

Fourth, there is a difference between the portfolio weight for an asset in

the MV portfolio and the percentage contribution to the overall risk from that

asset. Therefore the MV portfolio is not truly diversified, even though it is

supposed to have the lowest variance.

4.1 Risk Parity Strategies

Based on the design of the optimization problem, the MV portfolios tend to

load on low-volatility assets.

In contrast, risk parity approach recommends to build the portfolio in a way

that its risk is equally distributed among assets. Focus in on the allocation or

budgeting of risk. Question to answer is then how much does specific asset

contribute to overall risk?

4.1.1 The Naive Risk Parity Strategy

The simplest and the easiest to solve form of risk parity strategy is commonly

referred to as näıve risk parity (NRP). Optimal weights can be calculated with-

out taking into account the correlation information between assets.

wi =
σ−1
i

∑N
j=1 σ

−1
j

Consequently, the higher the volatility of an asset, the lower its weight in

the portfolio. However, contributions to the portfolio volatility are equal only

in two cases; when there are only two assets in the portfolio and when all

correlations in the portfolio are equal. It is clear that in reality, näıve risk

parity is not an authentic risk parity strategy defined in Section 4.1.2.
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4.1.2 The Optimal Risk Parity Strategy

The authentic risk parity strategy, as opposed to the NRP strategy, is called

optimal risk parity or equally weighted risk contribution (ERC) strategy. It

suggests looking at portfolio through risk contributions instead of weights.

Consider a portfolio of N assets, let wi be the weight of the asset i and

R(w1, . . . , wn) be a risk measure for the portfolio w = (w1, . . . , wn). In the

following introduction into the topic I follow Maillard et al. (2010) and rely on

foundations of risk measures provided by Artzner et al. (1999).

If the risk measure is coherent and convex, it satisfies the Euler decompo-

sition

R(w1, . . . , wn) =
n
∑

i=1

wi
∂R(w1, . . . , wn)

∂wi

Marginal risk of asset i is weighted by its portfolio weight. Summed across the

portfolio it gives the risk measure. The risk contribution of the i-th asset is

then:

RCi(w1, . . . , wn) = wi
∂R(w1, . . . , wn)

∂wi

The risk budgeting portfolio should satisfy the following conditions:











































RC1(w1, . . . , wn) = b1
...

RC2(w1, . . . , wn) = b2
...

RCn(w1, . . . , wn) = bn

where {b1, · · · , bn} are risk budgets, e.g. amount of risk measured in absolute

terms. In order to assign weights and obtain the risk budgeting portfolio, the

above mentioned conditions in the form of system of nonlinear equations have

to be solved.

The core risk measure in general, as well as in my thesis, is the volatility

risk measure,

R(w) = σ(w) =
2
√
w

TΣw
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In case of volatility, the marginal risk and the risk contribution of asset i

are then defined as:

∂R(w)

∂wi

=
(Σw)i

2
√
w

TΣw

RCi(w) = wi
(Σwi)

2
√
wTΣw

In general, a proper long-only risk budgeting portfolio is defined as:











































wi(Σw)i = bi(w
TΣw)

bi ≥ 0

wi ≥ 0
∑N

i=1 bi = 1
∑N

i=1 wi = 1

The core idea of ERC strategy is preventing one or few assets from driving

portfolio risk. Consequently, the strategy aims at equalizing risk contributions

from the different assets. Risk contributions going forward are unknown, there-

fore need to be estimated again on ex-ante basis. The ERC strategy wants the

portfolio to be equally weighted in terms of risk allocations. Optimization in

the ERC strategy consists of searching for such a portfolio weights such that

risk budgets correspond to weights assigned to each asset. Formally:































wi
∂σp

∂wi
= bi

wi(Σw)i
2√
wTΣw

bi =
1
N

∑N
i=1 wi = 1

wi ≥ 0

In order to obtain the optimal weights, nonlinear problem has to be put

into a constrained optimization framework. Reasonable objective function is,

however, required. The main goal of the strategy is to have the same risk

contribution from each component, therefore the condition, from which the

objective function can be derived, is formally defined as:

wi
∂σp

∂wi

= wj
∂σp

∂wj

; ∀i, j

From this equation, the optimization problem to solve for the ERC portfolio
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can be fully stated as follows:

min
w

N
∑

i=1

N
∑

j=1

(

wi
∂σp

∂wi

− wj
∂σp

∂wj

)2

s.t.

N
∑

i=1

wi = 1

0 ≤ wi ≤ 1

This is a constrained nonlinear programming problem for which analytical

solutions are not available. To find them, it is necessary to use a numerical

algorithm of an iterative nature. Maillard et al. (2010) and Roncalli (2014)

suggest the use of the Sequential Quadratic Programming Algorithm (SQP)

and I follow their steps in the empirical part of this thesis. This method

generates approximated solutions that allow convergence to the minimum of

the nonlinear optimization problem. The tentative solutions are obtained using

the current iterate simultaneously to replace the original objective function

with a quadratic problem approximation and to approximate the constraint

functions after linearizing them.

4.1.3 The Most Diversified Portfolio Approach

Choueifaty [2006] proposed a measure of portfolio diversification, called the

Diversification Ratio (DR), which he defined as the ratio of the portfolio’s

weighted average volatility to its overall volatility. This measure embodies the

very nature of diversification whereby the volatility of a long-only portfolio of

assets is less than or equal to the weighted sum of the assets’ volatilities.

DRp =

∑N
i=1 wiσi

√

∑N
i=1 w

2
i σ

2
i +

∑N
i=1

∑N
i=1
i 6=j

wiwjρij

=

∑N
i=1 wiσi

σp

Using the matrix notation, it is written alternatively as:

DRp =
w′σ√
w′Σw

=
w′
√

diag(Σ)√
w′Σw

The DR of a long-only portfolio is greater than or equal to one. It is equal

to one in case when portfolio consists of only one asset or when it consists
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of perfectly positively correlated assets, because in this cases numerator and

denominator would be the same. The DR close to 1 means the portfolio is

poorly diversified. On the other side, the DR does note have an upper bound.

The higher the DR of the portfolio, the more diversified the portfolio is. In

essense, the DR of a portfolio measures the benefit from holding assets that

are not perfectly correlated.

This is clear from the fact that the numerator of the diversification ratio

computes the volatility of a given portfolio if all pair-wise correlations were

equal to one, which corresponds to the maximum value theoretically admissible

for portfolio standard deviation. Meucci (2010) points out that since the DR

emphasizes how far two measures of volatility are for the same portfolio, it is

a relative measure of diversification, not an absolute one.

The most diversified approach consists in the maximization of the diver-

sification ratio in an objective function. Result of this optimization is the

most diversified portfolio (MDP). Corresponding optimization problem looks

like this:

max
w

∑N
i=1 wiσi

√

∑N
i=1 w

2
i σ

2
i +

∑N
i=1

∑N
i=1
i 6=j

wiwjρij

s.t.

N
∑

i=1

wi = 1

0 ≤ wi ≤ 1

In a matrix notation:

max
w

w′
√

diag(Σ)√
w′Σw

s.t.

N
∑

i=1

wi = 1

0 ≤ wi ≤ 1

As shown by Choueifaty et al. (2013), the long-only MDP always exists and is

unique when the covariance matrix is definite. They also provide an extremely

insightful interpretation among other mathematical properties of the DR and

MDP. Assuming an universe of F independent risk factors and a portfolio with

each risk factor exposure inversely proportional to the underlying factor’s vari-

ance, allocates the risk budget equally across all risk factors. Therefore, its DR
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squared (DR2) equals F , the number of independent risk factors or degrees of

freedom represented in the portfolio.

An equivalent definition of the MDP is also offered by Choueifaty et al.

(2013): “Any stock not held by the MDP is more correlated to the MDP than

any of the stocks that belong to it. Furthermore, all stocks belonging to the

MDP have the same correlation to it.” and called the core property of the

MDP. It means that even though portfolio does not contain some of the assets

from the universe, it effectively represents the whole underlying universe. From

an another perspective, it’s also shown that “The long-only MDP is the long-

only portfolio such that the correlation between any other long-only portfolio

and itself is greater than or equal to the ratio of their DRs.”

For example, an MDP portfolio constructed using some index of stocks may

hold just a few percent of it. That does not mean, however, that this portfolio

is not diversified, as the remaining stocks that are not part of the portfolio are

more correlated to the MDP compared with the few percent it actually holds.

This is consistent with the notion that the MDP is the undiversifiable portfolio.

Theoretical as well as empirical results of Choueifaty & Coignard (2008) sug-

gest that the MDP is more efficient ex post than the value-weighted benchmark,

minimum-variance portfolio, and equal-weight portfolio, moreover its clear that

the MDP is a strong candidate for being the un-diversifiable portfolio, and as

such should offer the full exposure to any underlying factor premium.

4.1.4 Diversified Risk Parity

Another approach towards assessing the degree of a portfolio’s diversification

stems from information theory. Loosely speaking, information theory is con-

cerned with the quantification of the disorder of a random variable, with its

most prominent measure being the Shannon entropy. Woerheide & Persson

(1992) introduce measures from information theory as well as measures of eco-

nomic concentration to portfolio theory in order to assess the concentration of

weights on individual assets. Thus, their approach of measuring the diversi-

fication of a portfolio depends not only on the number of assets, but also on

the fractions of wealth invested into the assets. However, given the portfolio

of risky assets, a reliable measure of a level of diversification must take into



4. Risk-based Approaches 38

the account sources of risk. To achieve this, Meucci (2010) builds on principal

component analysis of the portfolio assets to extract the main drivers of its risk.

In case of a portfolio consisting only of uncorrelated constituents, its vari-

ance is a sum of variances of individual securities.

V ar(Rw) =
N
∑

n=1

V ar(wnRn)

In a portfolio with correlated constituents, this relationship does not hold.

Nevertheless, even if constituents are correlated, it is always possible to identify

uncorellated sources of risk. The most straightforward method is the principal

component decomposition of the covariance matrix. According to the spectral

decomposition theorem,Σ can be expressed as a product

Σ = EΛE ′

where Λ = diag(λ1, · · · , λn) is a diagonal matrix consisting of Σ’s eigenval-

ues that are assembled in descending order, λ1 ≥ · · · ≥ λn. These eigenvec-

tors define a set of N uncorrelated principal portfolios with variance λi for

i = 1, · · · , N and returns R̃ = E ′R. This decomposition holds for any universe

with a well-defined covariance, and not necessarily for normal markets only.

Based on Partovi et al. (2004), it is easy to see that portfolio can be consid-

ered to be either a combination of its constituents with corresponding weights

or a combination of the uncorrelated principal portfolios with weights w̃ = E ′w.

From the definition, the principal portfolios are uncorrelated, thus the port-

folio variance is simply a variance weighted average of the principal portfolios’

variances λi:

V ar(Rw) =
N
∑

i=1

w̃2
i λi

To get to the diversification distribution, concept introduced by Meucci

(2010), the variance is simly normalized:

pi =

∑N
i=1 w̃

2
i λi

V ar(Rw)
, i = 1, · · ·N

The diversification distribution p is always positive and such that sum of
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all pi is always unity.

In the spirit of equal risk budgeting, a portfolio is considered to be well-

diversified when all pi are of similar magnitude and the diversification distri-

bution has a uniform shape. On the other hand, portfolios with an exposure

to a single source of risk, i.e. a single principal portfolio, have more peaked

distribution. In order to measure the degree of dispersion in the diversification

distribution, the Shannon entropy can be used. Specifically, because of ease of

interpretation, it is better to use exponential of the Shannon entropy:

NEnt = exp(−
N
∑

i=1

piln(pi))

where NEnt can be interpreted as the number of uncorrelated bets. As an ex-

ample, a completely concentrated portfolio is characterized by pi = 1 for one i

and pj 6= 0 for i = j resulting in an entropy of 0 which impliesNEnt = 1. On the

other side of the spectrum, NEnt = N holds for a portfolio that is completely

homogenous in terms of uncorrelated risk sources. In this case, pi = pj = 1/N

holds for all i, j implying an entropy equal to ln(N) and NEnt = N .

The number of effective bets as a measure of diversification can be used

both in terms of ex-post measurement of actual diversification achieved and

as a portfolio selection method. The latter is manifested in searching for the

maximum diversification portfolio, or by Lohre et al. (2012) called diversified

risk parity (DRP) portfolio. The DRP long-only portfolio weights wDRP can

be obtained by solving the following optimization problem:

max
w

NEnt(w)

s.t.

N
∑

i=1

wi = 1

0 ≤ wi ≤ 1

4.1.5 Hierarchical Risk Parity Strategy

In order to deal with insufficient accuracy of returns forecasts, modern portfolio

selection approaches tend to focus on the risk side. It is still necessary to rely on
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quadratic optimizers and thus on the inversion of a positive-definite covariance.

DeMiguel et al. (2009) show, that even after keeping forecasted returns out of

the picture, many of the best known quadratic optimizers underperform the

equal-weighting benchmark. López de Prado (2016) clarifies that the main

reason is the inversion of a positive-definite covariance matrix. Stability of the

inverse matrix depends on the condition number of a covariance matrix, i.e.

the ratio between the highest and smallest eigenvalues. The more correlated

the assets, the greater the condition number. The more correlated the assets,

the greater the need for diversification, and yet the more unstable the matrix

inverse. One of the main reasons for the instability of quadratic optimizers is

that the vector space is represented as a complete, fully connected, graph. In

these terms, the matrix inversion consists of evaluating the rates of substitution

across the complete graph. This has an unfortunate side effect that small

estimation errors over several edges lead to wrong inversions.

An attempt to provide a solution is to bring the concept of hierarchy into

the picture.

López de Prado (2016) introduced hierarchical portfolio construction (HRP)

method addressing the absence of concept of hierarchy in correlation matrices.

Using graph theory and machine learning, it is no longer necessary for correla-

tion matrix to be invertible or positive-definite in order to leverage information

it contains, as was the case with quadratic optimizers. HRP algorithm consists

of three parts:

1. Tree clustering: Grouping similar investments into clusters.

2. Quasi-diagonalization: Reorganizing the rows and columns of the co-

variance matrix, so that the largest values lie along the diagonal.

3. Recursive bisection: Splitting allocations through recursive bisection

of the reordered covariance matrix.

As previously, assume N variables over T periods, i.e. T × N data matrix

X consisting of returns series and N × N correlation matrix with elements

ρ = {ρi,j}i,j=1,...,N

Tree clustering Using the distance measure d : (Xi, Xj) ⊂ B → R, di,j =
√

1
2
(1− ρi,j), where B is the Cartesian product of items in {1,...,N}, we com-

pute from correlation matrix a N × N distance matrix D = {di,j}i,j=1,...,N .
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Matrix D is a proper metric space2.

Next, I compute the Euclidean distance of distances matrix with entries d̃ :

(Di, Dj) ⊂ B → R ∈ [0,
√
N ], d̃i,j =

√

∑N
n=1(dn,i − dn,j)2 Each d̃i,j is a function

of the entire correlation matrix3, therefore d̃ is defined over the entire metric

space D.

Having matrix D̃ I can proceed with clustering together two collumns (i∗, j∗) =
argmini,j{d̃i,j} with resulting cluster u[1].

In order to incorporate new cluster u[1] into the distance of distances matrix

D̃ I need to perform a linkage creation, i.e. define the distance between a new

cluster and the unclustered (original) items: ḋi,u[1] = min[{d̃i,j}j∈u[1]]
By dropping the clustered columns and rows and appending ḋi,u[1] I update

matrix {d̃i,j}.
Repeating the last three steps recursively gives us N − 1 clusters appended to

matrix D.

The last four steps can be described by a (N − 1) × 4 linkage matrix Y , i.e.

for each cluster one row of 4 elements, where first two report the merged con-

stituents, third reports distance between them and the fourh shows the number

of original items in the cluster.

Quasi-diagonalization In this part of the algorithm correlated items are placed

close to each other and uncorrelated far apart. This quasi-diagonalization is

achieved by replacing clusters with their components recursively, until no clus-

ters remain. This is done inside of the linkage matrix, preserves order and

returns a sorted list of original (unclustered) items.

Recursive bisection From the Quasi-diagonalization part of the algorithm I

have a quasi-diagonal matrix. For a diagonal covariance matrix the inverse-

variance allocation is optimal4, therefore I can define the variance of a continu-

ous subset as the variance of an inverse-variance allocation and split allocations

between adjacent subsets in inverse proportion to their aggregated variances.

The algorithm consists of the following steps:

1. Initialization

2Satisfying non-negativity, coincidence, symmetry and sub-additivity.
3di,j is only function of a particular correlation pair.
4For the proof see López de Prado (2016).
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Set the list of items: L = {L0}, with L0 = {n}n=1,...,N and assign a unit

weight to them: wn = 1, ∀n = 1, ..., N

2. If |Li| = 1, ∀Li ∈ L, then stop

3. For each Li ∈ L, s.t. |Li| > 1:

(a) bisect Li into two subsets, L
(1)
i and L

(2)
i , where |L(1)

i | = int[1
2
|Li|]5

(b) for j = 1, 2, define var(L
(J)
i ) = Ṽ

(j)
i = w̃

(j)
i V

(j)
i w̃

(j)
i , where V

(j)
i is

the covariance matrix between the constituents of the L
(j)
i bisection

and w̃
(j)
i = diag[V

(j)
i ]−1 1

tr[diag[V
(j)
i ]−1]

(c) compute the split factor: αi = 1− ṽi
(1)

ṽi
(1)+ṽi

(2) , so that 0 ≤ αi ≤ 1

(d) re-scale allocations wn by a factor of αi, ∀n ∈
(e) re-scale allocations wn by a factor of (1− αi), ∀n ∈ L

(2)
i

4. Go back to step two.

The variance of the partition Lj
i is calculated using inverse-variance weightings

w̃
(j)
i in step 3.2. leveraging quasi-diagonalization in a bottom-up way. Step 3.3.

in algorithm is a top-down weight allocation of variance in inverse proportion

to the cluster’s variance.

In the algorithm described above, one is fully invested and shorting is not al-

lowed, i.e. 0 ≤ wi ≤ 1, ∀i = 1, ..., N and
∑N

i=1 wi = 1. This holds, because we

are only splitting weights received from higher hierarchical levels. If we would

like to change the constraints, e.g. allow shorting, leverage or require part of

the portfolio to be in cash we would simply change the equations in 3.3.-3.5.

The algorithm’s complexity is T (n) = O(log2n). For more detailed description

of algorithm I refer the reader to the original paper López de Prado (2016).

4.2 Comparison

Risk-based strategies enjoy ever-growing interest from academics as well as

from practitioners. Research done in the area is generally going in two dis-

tinct, but very often interconnected and together presented, directions. The

first approach is focused on the empirical examination of historical performance

5Order is preserved.
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of different risk-based strategies, i.e. comparison of various portfolio selection

methods according to the number of performance evaluation measures. The

second approach consists of analytical exploration like theoretical properties of

individual strategies or dynamics of weights turnover.

In the empirical category, to which this thesis belongs as well, most of the

studies are done in multi asset class setting, making the comparison to my work

of limited relevance, given the staggering difference of underlying universe on

which portfolio selection is performed. The relevance of such studies for our

work is with respect to the verification of usefulness of underlying portfolio

selection methods in a general way. Choueifaty et al. (2013) extend previous

work of Choueifaty & Coignard (2008) concerning the MDP strategy both from

theoretical as well as empirical perspective. Using index MSCI World as the

reference universe, they show consistent outperformance of the MDP strat-

egy over number of strategies, including those examined in this thesis, such as

EW, ERC and MV. Linzmeier (2011) obtain consistent results with a different

dataset, showing that MDP and surprisingly MV strategies achieve the best

Sharpe ratios. Unfortunately for the MDP strategy, Chow et al. (2011), Leote

et al. (2012), Chaves et al. (2011) and Lohre et al. (2012) obtain results sug-

gesting that the “non-optimized” allocations (EW, RP) are not dominated by

the “optimized” ones (MV and MD). All in all, with the exception of the fact

that risk-based approaches seem to consistently dominate market-capitalization

portfolios, empirical results can be deemed contradictory and seem highly con-

tingent on the universe and the period of study, which perfectly illustrate the

limitations of such empirical back-tests.

In that perspective, by being analytical, the second strand of the literature

offers a more general understanding of the individual characteristics of popular

risk-based portfolios and of their differences. Since it is clearly beyond the scope

of this work, I present them only for a reference purposes , with the exception

of few, which insights are used elsewhere in the text, for interested reader. In

general, these studies provide either exact or approximate analytical solutions

for specific cases or compute the sensitivities of the portfolios to number of

characteristics. They include Maillard et al. (2010), Kaya et al. (2012), Kaya

& Lee (2012), Clarke et al. (2011) and Scherer (2011).
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Performance Evaluation

Performance evaluation criteria usually used in the literature are based on the

investor’s preferences and cover the main attributes such as financial efficiency,

level of diversification and asset allocation stability. To match the rebalancing

frequency considered in this study, I use annualized version of measures when-

ever possible.

As a measure of attractiveness based on profitability of strategy I, simply

use arithmetic mean.

In the case of risk, there is a number of options to consider. I work with

standard deviation of returns, even though it means assuming that investors

treat returns that are greater than mean in the same way as those that are

lower. Higher moments of returns distribution are also considered by reporting

skewness and kurtosis.

In order to put return and risk into perspective and to be able measure

risk-adjusted performance, reward-to-variability ratios are considered. Based

on the work of Sortino et al. (1999) and Nawrocki (1999), the most prominent

measure is the Sharpe ratio defined as the difference between the mean strategy

return and the mean risk-free return divided by the standard deviation of the

strategy returns. Formally:

SRk =
E[Rk −Rf ]

σk

To address the weak points of standard deviation as a measure of risk,

included in the Sharpe ratio as well, the downside risk measures that focus
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only on the variability of returns lower than a minimum acceptable return

(MAR), are considered.

Regarding the above, I include the Sortino Ratio, with MAR represented by

the risk free return, defined as:

Sortinok =
E[Rk −MAR]

√

1
T

∑T
t=1 min(Rt,k −MAR; 0)2

Sortino ratio does not allow for a different emphasis on favorable events and

unfavorable ones, e.g. outperforming or underperforming the benchmark. In

order to accommodate such concerns, I use the upside potential ratio (UPR)

by Sortino et al. (1999) defined as :

UPR =
1
T

∑T
t=1 max(Rt,k −MAR; 0)

√

1
T

∑T
t=1 min(Rt,k −MAR; 0)2

and Ω-ratio by Cascon et al. (2002) defined as:

Ω =
1
T

∑T
t=1 max(Rt,k −MAR; 0)

1
T

∑T
t=1 |min(Rt,k −MAR; 0)2|

These ratios put different levels of importance towards out- and underfor-

mance of MAR.

Even though up-to now introduced performance measures cover wide range

of interesting aspect, one important aspect is not captured explicitly, the tail

risk. Therefore, I report the Value at Risk, Expected Shortfall and Maximum

Drawdown.

The Value at Risk (Var) risk metric summarizes the distribution of possible

losses by a quantile, a point with a specified probability of greater losses. It

is the maximum loss which will not be exceeded with a probability/confidence

level α ∈ (0, 1). Following Follmer & Schied (2004), let X be value the of the

portfolio, then VaR is formally defined as:

VaRα(X) = inf{x ∈ R : P (X + x < 0) ≤ 1− α}.

However, the VaR is not a coherent risk measure since it fails to hold the
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subadditivity axiom of coherence1 if the returns are not normally distributed.

Because of these features of VaR, I also report the Conditional Value at Risk.

The Conditional Value at Risk (CVAR) CVaR is also called Expected Short-

fall and it is a coherent risk measure. Again following, Follmer & Schied (2004),

it is defined as:

CVaRα =
1

α

∫

V aRγ(X)dγ

By definition, the CVaR is always greater than the VaR for the same con-

fidence level and it increases with decreasing α.

A drawdown is the drop in the portfolio value comparing to the maximum

achieved in the past. Following Chekhlov et al. (2000), assume Rp(w1, ..., wn, t)

is the cumulative portfolio return over the preceding portfolio holding time,

then the drawdown function is defined as:

D(w, t) = max
0≤τ≤t

{Rp(w, τ)} −Rp(w, t)

where max
0≤τ≤t

{Rp(w, τ)} is the maximum of the cumulative portfolio return over

the history preceding time t. The maximum drawdown is then defined as:

MDD(w) = max
0≤τ≤T

{D(w, t)}

After listing the tools used in measuring financial efficiency and tail risk,

another important attribute of strategy is introduced. The level of diversifica-

tion or said differently, the lack of concentration.

As the concept of diversification was already introduced in the Section 4, I

simply present the formal definitions of two measures used. Both of considered

measures could be used either with portfolio weights or total risk contributions.

I choose the effective number of bets (ENB), based on the Shannon entropy, to

go with the total risk contributions in form of principal portfolios as described

in Section 4.1.4 and Gini coefficient (G) to go with weights.

The concept of effective number of bets is already defined in Section 4.1.4,

1If X,Y ∈ L then ρ(X + Y ) ≤ ρ(X) + ρ(Y )
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therefore I just recommend reader to that part.

Gini coefficient is computed according to Chaves et al. (2011). First, port-

folio weights are sorted in ascending order and only then is Gini coefficient

calculated:

Gk(w) =
2

N

N
∑

i=1

i(wi,kwk)

The Gini coefficient has range between zero and one. It has an opposite

interpretation compared to the SE, the lower it is, the more diversified in terms

of weights the portfolio is. Specifically, zero means perfect equality of weights,

as is the case , while one means perfect inequality that is maximum weight

concentration, i.e. being invested in the only one asset.

Further, in order to be able to tell if the average returns and volatilities

of considered strategies differ significantly, I employ Wilcoxon signed-rank test

and Levene’s test. These tests are alternatives for the normality requiring Stu-

dent’s t-test and Bartlett’s test. For specific details, I refer reader to Wilcoxon

(1945) and Levene et al. (1960), respectively.

Even though, performance of individual strategies is compared between

each other, the naive equal-weighting portfolio serves as a main benchmark,

following DeMiguel et al. (2009).



Chapter 6

Empirical results

Factor portfolios under investigation are formed using methods presented in

Section 4. Description of datasets on which backtests are conducted as well as

details about backtesting procedure is provided below in Section 6.1. Perfor-

mance of individual portfolio selection methods is evaluated according to the

number of measures introduced in Section 5 with the main empirical results

reported in Section 6.2.

Analysis is performed using Python programming language. Optimization

tasks are implemented using Scipy library.

6.1 Data

Selection of asset universe is one of the most important and necessary deci-

sion to make in an asset allocation study. Mean-variance framework as well as

risk-based approaches are generally applied in allocation between asset classes,

however there is no reason for not using it in the equity-only domain. Actu-

ally, as argued in the introduction, given the question of efficiency in capturing

risk factor premia, it might be a wanted endeavour. Accordingly, this thesis is

focused on the U.S. stock market, the most developed stock market in the world.

I use standard datasets used in asset pricing literature:

� Center for Research in Security Prices (CRSP); from where I obtain

prices, Standard Industrial Classification (SIC) code and number of out-

standing shares.

� COMPUSTAT industrial files; from where I obtain annual fundamental

data.
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I integrate data across COMPUSTAT and CRSP through PERMNO/LPERMNO

link. Time period under investigation is factor specific and ranges from June

1965 (the earliest) to June 2015 (the latest). Starting date is restricted by the

availability of necessary accounting data for factor construction. For years be-

fore time period under consideration COMPUSTAT data have a selection bias.

My sample consists of all firms with common stock on the NYSE, AMEX or

NASDAQ that have a month-end market value on CRSP. I exclude firms with

negative book equity as well as financial firms, i.e. those with SIC code between

6000 and 6799. Fama & French (1992) argue for exclusion because of difference

in use of leverage between financial and non-financial firms. However, the main

reason is to stay in line with common factor construction procedures and be

sure that skewed financials fundamental data are not the main reason for my

results. Based on the argumentation of Hou et al. (2017), already described

in literature review, I use NYSE size cutoffs when defining and subsequently

eliminating microcaps. This procedure is important in my research design also

because of another reason. Since advanced portfolio selection methods often

allow relatively high weight concentration in the portfolio, I want to eliminate

a chance that portfolios would be highly concentrated on small stocks without

necessary capacity for investment. Finally I require all stocks included in the

portfolios to have 3 years of historical returns for estimation purposes. In or-

der to have equal setting for each portfolio selection method, this requirement

holds for equal-weighting as well as value-weighting, even though no estimation

is necessary in those cases.

Transforming a theoretical, non-investable risk factor into an investable one

is not straightforward. The implementation decisions, like short sale constraint,

rebalancing frequency, asset universe and weighting scheme, must be made.

In the academic literature, risk factors are designed as long/short portfolios.

As mentioned in Section 3, this construction technique dates back to Fama &

MacBeth (1973). In contrast, the commercial investment vehicles designed

to offer exposure to risk factors are mainly long-only. It is still unanswered

question which approach is better, with relevant studies being, e.g. Bender

et al. (2010), Ilmanen & Kizer (2012) and Huij et al. (2014).

Regarding setting for my empirical tests, there are two reasons I operate

under long-only or no short-sale condition. First, Huij et al. (2014), as the

most recent study regarding the topic of interest, compare long-only versus
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long-short approaches to factor investing in an empirical study. Main findings

are that although the long-short approach is relatively better in theory, the

long-only approach seems to be a better alternative in most of the scenarios

that account for practical issues such as benchmark restrictions, implementa-

tion costs and factor decay. As mentioned above, practitioners seem to agree.

Second reason is that it is not obvious how to translate most of the advanced

portfolio selection methods introduced in Section 4 into a long-short framework

given the structure of factor portfolio being split into two extreme parts of the

characteristic distribution.

The choice of rebalancing frequency is another important topic, not only

when it comes to the design of my empirical research, but also in case of practi-

cal implementation of factor investing. Factor portfolios are usually rebalanced

on monthly, quarterly, or yearly basis. Reason for choosing these frequencies

is given by the frequency of new information being available (quarterly and

annual financial statements) and availability of prices (monthly CRSP). In gen-

eral, increasing the frequency may have a considerable impact on the portfolio

turnover and also on trading costs.

Since most of the portfolio selection methods employed in my thesis solve

non-trivial optimization problem, testing monthly rebalanced strategies is com-

putationally very expensive, nevertheless absolutely feasible. Given the time

constraint, I focus on the annual rebalancing, while monthly rebalancing is used

just once for testing of robustness of main results.

For annual rebalancing, I rank all stocks in the universe1, at the end of June

of each year t according to some factor, e.g. MISP, computed using fundamental

data from the fiscal year ending in calendar year t−1. A general factor portfolio

consists of stocks that are above (below) 80% (20%) factor rank quantiles.

As a workhorse factor I choose mispricing factor (MISP) from Stambaugh

& Yuan (2016). It is a composite factor based on 11 prominent anomalies,

net stock issues (NSI), composite equity issues (CEI), accruals (ACCR), net

operating assets (NOA), asset growth (AG), investment-to-assets (IA), distress

(DSTR), O-score (O), momentum (MOM), gross profitability (GP), and re-

turn on assets (ROA). In the first step all stocks in my universe are ranked

according to each anomaly, e.g. firm with the lowest net operating assets

1Does not contain stocks eliminated in the previous steps, e.g. microcaps or financials.
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is given the rank one. Next, average rank across all characteristics is com-

puted. Apart from using the MISP factor, I use individual factors as well.

Further, I study factors that cannot be explained by currently most powerful

asset pricing model of Stambaugh & Yuan (2016) and work on the annually re-

balanced basis. These are, in no particular order, industry-adjusted real estate

ratio (RER), earnings predictability (EPRD), cash-based operating profits-to-

lagged assets (CLA), cash-based operating profitability (COP), changes in net

financial assets (dFIN), net payout yield (NOP), inventory changes (IVC) and

R&D Expense-to-market (RDM). Definitions, corresponding to the construc-

tion manuals, taken from Stambaugh et al. (2012) and Hou et al. (2017), are

presented in the Appendix.

After having a general portfolio, i.e. constituents of the portfolio, I form 8

portfolios corresponding to 8 portfolio selection methods presented in Section 4,

i.e. equal-weighting (EW), value-weighting portfolio (VW), minimum variance

portfolio (MV), naive risk parity portfolio (NRP), optimal risk parity portfolio

(ERC), the most diversified portfolio (MDP), hierarchical risk parity portfolio

(HRP) and diversified risk parity portfolio (DRP).

Garlappi et al. (2007) argue that equal-weighting should serve as a bench-

mark when comparing different portfolio selection methods. Equal-weighting,

along with value-weighting, is also used in anomalies literature as a simple port-

folio selection method related to the Fama & MacBeth (1973) cross-sectional

regression. In light of this, equal-weighting is selected as a benchmark for the

rest of the strategies.

Subsequently, for each of the eight portfolios I calculate returns from July

of year t to June of t+ 1 and save weights of individual stocks in formed port-

folios as well as returns of individual stocks in the portfolios for performance

evaluation purposes.

6.2 Results

This section contains the main results of my empirical investigation. Results

for the mispricing factor, it’s constituents and other significant anomalies with

respect to the mispricing model of Stambaugh & Yuan (2016) are reported
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in Sections 6.2.1, 6.2.2 and 6.2.3, respectively. The robustness of results is

considered in Section 6.2.4 and final discussion of results is provided in Section

6.3.

6.2.1 Mispricing Factor

Table 6.1 shows the basic statistics of the returns of mispricing factor (MISP)

porfolio formed based on eight portfolio selection methods, i.e. strategies.

MISP EW VW MV NRP ERC MDP HRP DRP

Mean p.a. (%) 17.80 17.10 14.90 16.45 18.38 22.13 16.31 18.59
Volatity p.a. (%) 15.56 16.00 12.49 14.36 15.41 14.13 13.02 22.95
Skewness -0.53 0.06 -0.11 -0.21 -0.22 -0.26 -0.59 0.13
Kurtosis 11.60 10.14 7.41 7.97 7.19 13.40 14.09 7.19

Table 6.1: Return characteristics for different portfolio selection
methods applied on mispricing factor portfolio. All values
displayed in percent, except the skewness and kurtosis.

In following discussions, unless stated otherwise, significant means at 99%

significance level given the the Wicoxon signed-rank test for comparison of

means and Levene’s test for comparison of variances between two return series.

Naive equal-weighting strategy (EW), serving as benchmark returned 17.8%

annualy on average. According to the well established stylized fact, value-

weighting (VW) performed slightly worse, however, surprisingly with moder-

ately higher volatility. Mean is significantly lower only at 95% level, while

volatility is significantly higher.

As expected, minimum variance strategy (MV) achieves the lowest volatility

not only in the in-sample estimation but also out-of-sample. This comes at price

of the lowest return as well.

Naive risk parity strategy (NRP) has significantly lower volatility than EW

as well as optimal risk parity (ERC). However, as in the case of the MV strategy,

this is accompanied by significantly lower average return.

The ERC strategy significantly outperforms the benchmark with compara-

ble volatility. In a sense, this contrasts with expectations based on findings of

Maillard et al. (2010), who find that ERC strategy lies between the MV and

EW strategy. While this is indeed the case for volatility, even though more

tilted towards EW side, it is not the case for returns.
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The Hierarchical Risk Parity strategy (HRP) has the second lowest volatility

among all strategies but also the second lowest return. Yet again, return goes

hand in hand with volatility as in the previous two cases. Another notable

aspect is the highest kurtosis as well as the lowest skewness.

Diversified Risk Parity strategy (DRP) is the most volatile strategy with

significantly higher volatility than even the second most volatile one, i.e. EW.

This result is extremely surprising, given the prominent role of DRP among

diversification maximizing strategies. Its abnormal volatility dominates even

the fact that it has the second highest return.

The strategy with the highest return is the most diversified portfolio strat-

egy (MDP), returning 22.13% p.a. on average, i.e. 3.33% p.a. more than

benchmark. This difference is highly significant both statistically and econom-

ically. What is, however, more impressive is that this excessive return doesn’t

come at the cost of higher volatility, which is significantly lower than bench-

mark and is the third lowest among all strategies.

Concerning skewness, only VW and DRP are positively skewed but rela-

tively close to 0. Strategies with the most negative skewness are EW and HRP,

indicating the longer or fatter tail on the left side of the probability density

function compared to the right side. All strategies are very leptokurtic, with

MDP’s and HRP’s kurtosis higher than benchmark.

According to return and volatility, strategies are ranked in the following

order:

µMV < µHRP < µNRP < µVW < µEW < µERC < µDRP < µMDP

σMV < σHRP < σMDP < σNRP < σERC < σEW < σVW < σDRP

In Figure 6.1, the hypothetic wealth evolution under different portfolio se-

lection strategies, assuming 1$ initial capital investment, is depicted.
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ratio is MDP and strategy with the lowest one is DRP. Interesting compari-

son is between rank of strategies based on Sharpe ratio versus rank based on

Sortino ratio, which is the same. This means that no strategy was penalized

by the Sharpe ratio for the lower partial moments relative to the other strategy.

Above presented risk-adjusted statistics look at risk based on the standard

deviation or downside standard deviation, i.e. capturing variability around a

central tendency. Table 6.3 offers an explicit insight into the tail risk inherent

to each portfolio selection method.

MISP EW VW MV NRP ERC MDP HRP DRP

VaR 5% 1.49 1.50 1.00 1.37 1.49 1.29 1.23 2.04
CVaR 5% 2.27 2.23 1.74 2.10 2.24 2.06 1.92 3.21
MDD -48.86 -41.52 -34.85 -48.45 -49.09 -42.74 -46.26 -63.83

Table 6.3: Tail risk measures for different portfolio selection methods
applied on mispricing factor portfolio. VaR 5% and CVar
5% calculated on the daily basis. All values displayed in
percent.

Maximum drawdown (MDD) is comparable across the strategies with two

notable exceptions. The MV strategy, as expected based on the literature

review, has substantially smaller maximum drawdown than other strategies.

On the other hand, quite surprisingly, the DRP has the highest drawdown of

−63.83% implying very little tail-risk protection, even compared to the bench-

mark.

As in the case of MDD, Value at risk (VaR) and Expected shortfall (CVaR)

with 5% confidence level are comparable across the strategies with the excep-

tion of the MV and DRP strategies. The MV strategy, as expected based on

the literature review, has substantially smaller VaR and CVaR.

For MISP factor, it seems that more advanced portfolio selection methods,

with the exception of MDP, offer very little protection against the tail risk. In

terms of tail-risk, the MDP strategy is beaten only by MV and VW, while in

case of VW only slightly.

The last dimension of performance evaluation is the level of diversification

achieved, both in terms of portfolio weights as well as sources of risk represented

as principal components or principal portfolios.
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MISP EW VW MV NRP ERC MDP HRP DRP

ENB 1.17 1.32 2.46 1.68 1.75 2.82 2.03 4.29
Gini(w) 0.00 0.54 0.62 0.49 0.39 0.61 0.69 0.51

Table 6.4: Average diversification measures across time for different
portfolio selection methods applied on mispricing factor
portfolio.

The level of concentration of portfolio weights, as given by the Gini coeffi-

cient, is 0 for EW from the definition. The highest weight concentration occurs

in case of HRP, followed by MV and MDP. On the other hand, the level of

diversification, when measured as effective number of bets (ENB) based on the

actual principal components (sources of risk) , looks different. By great margin,

the highest ENB is achieved by DRP. This is not entirely surprising, since it is

being maximized in-sample, however the persistence of this attribute towards

out-of-sample is impressive. Documented relationship between concentration

in terms of weights and in sources of risk can be observed as well in Table 6.4.

Specifically, strategies with higher weights concentration have less risk concen-

tration. To put it differently, in order to achieve higher risk diversification it is

necessary to allow higher weight concentration.

Even though mispricing factor is a composite factor, it is still only one factor

and therefore stocks included in the portfolio according to it create just one

universe (in time). In order to see if the results from the previous section hold

more generally in factor investing, it is necessary to apply them in a number

of factor portfolios and I proceed to do so in Sections 6.2.2 and 6.2.3.

6.2.2 Constituents of Mispricing Factor

Natural candidate factors for further tests are the constituents of the mispricing

factor (MISP), since they are based on the same line of literature as mispris-

ing factor and I have already implemented them during the construction of

mispricing factor. I disregard ROA factor, for which monthly rebalancing is

necessary, and work with the remaining 10 factors: net stock issues (NSI),

composite equity issues (CEI), accruals (ACCR), net operating assets (NOA),

asset growth (AG), investment- to-assets (IA), distress (DIST), O-score (O),

momentum (MOM) and gross profitability (GP). Definitions of all factors can

be found in Appendix A. Results of backtests for individual factors are shown
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in a compact way in Appendix. All results in this section are averages of results

for those underlying individual factors. Same performance evaluation criteria

as in the case of single mispricing factor are used, starting with basic statistics

of the returns.

Constituents EW VW MV NRP ERC MDP HRP DRP

Mean p.a. (%) 24.35 21.40 17.69 21.66 24.40 30.80 21.89 23.00
Stdev p.a. (%) 20.24 19.92 14.16 18.03 19.83 18.91 16.04 29.08
Skewness -0.30 0.04 -0.26 -0.33 -0.30 -0.27 -0.48 0.06
Kurtosis 6.49 7.05 5.93 7.09 6.39 10.79 10.66 7.92

Table 6.5: Average results across 10 constituents of mispricing factor
for different portfolio selection methods. All values dis-
played in percent, except the skewness and kurtosis.

Stambaugh & Yuan (2016) shows that, with equal weighting as a portfo-

lio selection method, the spread between the alphas for portfolios of stocks in

the extreme deciles of the average ranking across the 11 anomalies is nearly

twice the average across those anomalies of the spread between the top- and

bottom-decile alphas of portfolios formed using an individual anomalies. This

observation is in contrast with my results, average mean return across con-

stituents is 6.55% higher for EW and 8.67% for MDP strategy. The same effect

can be seen in case of volatility, which is higher 4.56% for EW and 3.98%

for MDP strategy. The main reason is that portfolios formed in my thesis are

long-only while portfolios generating returns in mentioned study are long-short.

There are also another minor differences. I take averages across 10 constituents

while the original paper averages across 11 and I also require stocks included

to have 3 year history of returns for the covariance matrix estimation purposes.

Apart from the difference in absolute returns and volatility, there is little

change in terms of relative order.

µMV < µVW < µNRP < µHRP < µDRP < µEW < µERC < µMDP

σMV < σHRP < σNRP < σMDP < σERC < σVW < σEW < σDRP

The most notable change is that volatility of EW is higher than VW, which

is expected given the stylized facts from asset pricing literature. Other than

that, the MDP strategy is the one with the highest return, while the MV strat-
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egy has the lowest volatility as well as returns.

Given the fact that both average mean returns and average volatility are

higher, it is useful to look again at the risk-adjusted measures when looking at

constituents.

Constituents EW VW MV NRP ERC MDP HRP DRP

Sharpe 1.24 1.02 1.20 1.15 1.27 1.73 1.35 0.79
Sortino 1.59 1.39 1.58 1.52 1.58 2.21 1.78 1.04
UPR 2.76 2.91 2.86 2.80 2.80 2.63 2.69 2.85
Omega 4.09 3.39 3.91 3.94 4.13 6.21 4.63 2.62

Table 6.6: Average risk-adjusted performance across 10 constituents
for different portfolio selection methods. All measures
computed on the annual basis. In Sortino ratio, upside po-
tential ratio (UPR) and Omega ratio, the threshold level
or minimum acceptable return is represented through the
risk free return.

Results in Table 6.6 are very similar to the results from Table 6.2 that are

describing mispricing factor. Therefore, even though mean returns are higher

on average for constituents than single mispricing factor, it is also accompanied

by higher volatility, making almost no difference on risk adjusted basis. This

means that the conversion rate between risk, defined as standard or downside

deviation, and return is basically the same as for the mispricing factor.

Constituents EW VW MV NRP ERC MDP HRP DRP

VaR 5% 1.74 1.74 1.21 1.59 1.76 1.55 1.39 2.46
CVaR 5% 2.74 2.70 1.99 2.53 2.72 2.55 2.23 3.97
MDD -53.61 -49.14 -41.49 -52.25 -51.96 -49.07 -49.49 -69.67

Table 6.7: Average tail risk measures across 10 constituents of mis-
pricing factor for different portfolio selection methods.
VaR 5% and CVar 5% calculated on the daily basis. All
values displayed in percent.

Looking at Table 6.7, the tail risk characteristics seem slightly worse than

for the mispricing factor across the board.

The MV strategy has the lowest maximum drawdown as well as 5% con-

fidence level VaR and CVaR. A very concerning fact for the DRP strategy,
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especially when taken together with previous results, is that extreme draw-

down of −63.83% and CVaR of 3.21% were not a simple outliars specific to the

mispricing factor, but look like more pervasive attribute of the DRP strategy

reaching on average almost −70% and 3.97% .

EW VW MV NRP ERC MDP HRP DRP

ENB 1.12 1.31 2.43 1.56 1.67 2.6 2.02 4.00
Gini(w) 0.00 0.58 0.64 0.56 0.41 0.69 0.70 0.61

Table 6.8: Average diversification measures across time for 10 con-
stituents of mispricing factor.

Table 6.8 shows measures of diversification for weights as well as risk sources

and paints the similar picture as Table 6.4 that describes the same attributes

for mispricing factor. DRP is again the strategy with the highest number of

effective number of bets, thus being the most diversified with respect to the

risk sources. This is achieved through relatively high weight concentration. Re-

sults for the DRP strategy are thoroughly surprising. On one hand, strategy

seems to achieve the highest level of diversification among all strategies and

yet clearly is exposed to the high amount of statistical risk, either in terms of

volatility or tail risk.

In order to verify my up-to-now results as well as obtain truly broad insight

into the portfolio selection in factor investing, I further look at the next list

of interesting factors. Inspired by the results of Hou et al. (2017), I consider

factors which can be considered anomalies with respect to the most powerful

asset pricing models today, q-factor model from Hou et al. (2015) as well as

the mispricing model from Stambaugh & Yuan (2016).

6.2.3 Other Significant Anomalies

Annually rebalanced factors that cannot be explained by the mispricing model

or q-factor model are considered in this section, including industry-adjusted

real estate ratio (Rer), earnings predictability (Eprd), cash-based operating

profits to lagged assets (Cla), cash-based operating profitability (Cop), changes

in net financial assets (dFin), net payout yield (Nop), inventory changes (Ivc),

and R&D expenses to market (Rdm). They are selected based on the results

presented in Hou et al. (2017) and Stambaugh & Yuan (2016). As in the

previous section, definitions of all factors can be found in Appendix A and
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the results of backtests for individual factors are shown in a compact way in

Appendix B.2. All results in Tables 6.9, 6.10, 6.11 and 6.12 are averages of

results for those underlying individual factors. Same performance evaluation

criteria are used as in the case of single mispricing factor, starting again with

the basic statistics of the returns in Table 6.9.

Other Factors EW VW MV NRP ERC MDP HRP DRP

Mean 21.78 20.90 16.26 19.39 21.70 27.99 19.37 21.89
Stdev 18.91 18.90 13.17 17.24 18.85 17.83 15.32 28.60
Skewness -0.23 0.01 -0.19 -0.29 -0.25 -0.26 -0.47 0.21
Kurtosis 6.09 6.98 7.75 7.56 6.31 10.63 11.86 7.33

Table 6.9: Average results across 8 other significant factors for dif-
ferent portfolio selection methods. All values displayed in
percent, except the skewness and kurtosis.

Both return-wise as well as volatility-wise results for the other 8 factors

fall between the original mispricing factor (lower bound) and the averages of

its constituents. EW outperforms VW in terms of returns as expected, while

again having comparable volatility.

The best strategy according to the raw returns remains to be MDP with

reasonable amount of volatility. The ERC strategy performs similarly, both in

terms of returns as well in terms of volatility as benchmark, confirming doubt

about its place between EW and MV strategies. HRP again ranks second in

terms of volatility.

The MV strategy is again the one with the lowest volatility as well as the

lowest average returns.

The observed skewness and kurtosis are comparable with skewness and kur-

tosis in case of MISP components. Remarkably, the relative order based on

return or volatility is unchanged as shown below:

µMV < µVW < µNRP < µHRP < µDRP < µEW < µERC < µMDP

σMV < σHRP < σNRP < σMDP < σERC < σVW < σEW < σDRP

Since both volatilities and returns moved in tandem compared to the MISP

constituents, it is reasonable to expect similar risk-adjusted results.
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Other Factors EW VW MV NRP ERC MDP HRP DRP

Sharpe 1.18 1.12 1.19 1.12 1.18 1.70 1.26 0.79
Sortino 1.51 1.48 1.59 1.46 1.51 2.14 1.63 1.05
UPR 2.90 2.97 2.90 2.87 2.89 2.73 2.77 2.96
Omega 3.72 3.52 3.81 3.56 3.72 5.76 4.13 2.52

Table 6.10: Average risk-adjusted performance across 8 other signifi-
cant factors for different portfolio selection methods. All
measures computed on the annual basis. In Sortino ra-
tio, upside potential ratio (UPR) and Omega ratio, the
threshold level or minimum acceptable return is repre-
sented through the risk free return.

This is indeed the case, not only with regard to the relative order but to

the magnitude of the ratios as well.

Other Factors EW VW MV NRP ERC MDP HRP DRP

VaR 5% 1.82 1.76 1.20 1.65 1.81 1.60 1.42 2.55
CVaR 5% 2.75 2.65 1.87 2.51 2.74 2.58 2.23 4.05
MDD -50.66 -45.87 -47.21 -49.24 -50.39 -45.07 -46.65 -71.55

Table 6.11: Average tail risk measures across 8 other significant fac-
tors for different portfolio selection methods. VaR 5%
and CVar 5% calculated on the daily basis. All values
displayed in percent.

Looking at Table 6.11, the tail risk characteristics fall in the middle between

the mispricing factor and characteristics of its constituents.

Interestingly, the MDP strategy has the lowest maximum drawdown as

opposed to the MV strategy. 5% confidence level VaR and CVaR is lowest for

the MV strategy as was in the previous cases. Regarding the DRP strategy, as

previous results suggested, extreme exposure to the tail risk can be seen.

Other Factors EW VW MV NRP ERC MDP HRP DRP

ENB 1.23 1.27 2.30 1.60 1.69 2.91 1.99 4.09
Gini(w) 0.00 0.60 0.66 0.53 0.44 0.63 0.73 0.58

Table 6.12: Average diversification measures across time for 8 other
significant factors.

Results regarding diversification, both in terms of weights as well as in terms

of risk sources, are very similar to the previous cases.
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6.2.4 Other Robustness Tests

In the preceding Sections 6.2.1, 6.2.2 and 6.2.3, results for different portfolio

selection methods, across number of significant factors are presented. Similar-

ity of results across the factors suggests certain robustness. However, over the

whole research process I made the number of methodological choices and thus

thorough testing for robustness is required. This is done along a variety of

dimensions. Results in this section are aggregated over every factor analyzed

previously, i.e. MISP, its constituents and other significant factors, totaling 19

factors. Results are described without presentation of all results and tables,

given the space constraint.

The cutoff percentile for each factor is either 20% or 80% depending whether

stocks to long are in the bottom two deciles or in the top two deciles. This is a

standard procedure in anomalies literature, however sometimes 30% and 70%

is used. Splitting universe in deciles is another common procedure. I replicate

the whole analysis for factor portfolios constructed using both bottom and top

30% and 10% of stocks from the universe.

When including 30% of the universe in the portfolio selection process, during

certain years when number of stocks in universe and thus in the portfolio is

particularly high, I encounter the problem with correlation matrix not being

positive definite. When sample size is small, a sample covariance or correlation

matrix may not be positive definite due to mere sampling fluctuation. This

condition is however necessary for every portfolio selection method relying on

optimization. In order to solve this problem, when working with extreme 30%,

I use five year long estimation window instead of three.

Results are as expected, given the stylized facts from the literature. Abso-

lute returns, volatility and tail risk are on average lower when using 30% cutoff

and on average higher when using 10% cutoff. Consequently, risk-adjusted

performance matrices are very similar.

In terms of weights concentration, I obtain comparable results across all

three cutoff methods. On average, the effective number of bets is marginally

higher when using more broad universe, i.e. 30% and marginally lower when

using narrower universe, i.e. 30%. These differences look economically insignif-

icant.

To be sure that results for 30% cutoff are not primarily driven by longer
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estimation window used, I use 5 year estimation window for 10% and 20% cut-

offs as well. In general, I obtain slightly better results on a risk-adjusted basis

and slightly higher effective number of bets on average.

I also split every backtest into two sub-periods, the first half and the second

half of the examined time period, and evaluate performance on those subpe-

riods. With the exception of the MDP strategy, mean returns are lower in

the second subperiod with comparable volatility to the first subperiod. Conse-

quently, results are weaker on the risk-adjusted basis as well. The MDP strategy

achieves similar results in both subperiods. Concentration in terms of weights

is marginally higher in the first subperiod, this difference seems economically

meaningless. Effective number of bets are comparable across subperiods for all

strategies.

Further, I repeat the default testing procedure for all factors examined in

this thesis and obtain very similar risk-adjusted results, tail risk measures as

well as diversification measures.

In Section 6.3, summarizing discussion as well as suggestions for further

research are presented.

6.3 Discussion

Eight portfolio selection methods are used in the portfolio formation based on

mispricing factor, its constituents and other factors that are significant anoma-

lies with respect to the mispricing model of Stambaugh & Yuan (2016) as well

as q-factor model of Hou et al. (2015). In aggregate, the main results are based

on 152 strategy backtests. Robustness tests consist of additional 616 backtests.

When looking at all portfolio selection methods together, obtained results

differ between mispricing factor, its constituents and other factors in terms

of returns and volatilities. On average the highest return and volatility is

achieved by constituents of the mispricing factor and the lowest return as well

as volatility is achieved in case of single mispricing factor. Since risk and reward

move more or less in synchronization, risk-adjusted measures are similar across

the groups.

Tail risk measures paint the similar picture, where mispricing factor has on
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average the smallest out-of-sample tail risk and its constituents the highest.

Nevertheless, there is a little bit more heterogeneity in case of other significant

factors.

In contrast to different volatilities and tail risk measures, weight concen-

trations as well as diversification regarding statistical sources of risk are very

homogenous across the groups (for a given strategy), suggesting that differ-

ences between individual groups of factors in terms of risk are not caused by

different level of diversification but because of different level of riskiness of each

underlying factor group. The same conclusion can be reached when individual

factors are considered instead of groups of factors.

More interesting and related to the questions directly asked in this thesis is

looking at differences between the portfolio selection methods. Here, relative

results between groups of factors as well as individual factors are surprisingly

stable.

First of all, in terms of returns and volatility, strategies can be ranked in

the following order:

µMV < µVW < µNRP < µHRP < µDRP < µEW ≈ µERC < µMDP

σMV < σHRP < σNRP < σMDP < σERC < σVW < σEW < σDRP

Consequentially, when looking at Sharpe ratio, not as the best risk-adjusted

measure in literate but as a standard, rank of strategies can be described in a

following way:

SRDRP < SRVW < SRNRP < SRMV < SREW ≈ SRERC < SRHRP < SRMDP

Concerning tail risk, there is a small difference in heterogeneity between

the constituents of mispricing factor and other significant factor. With the

exception of MV and DRP all strategies are similar for group of constituents,

while in case of the other significant factors there are small differences even

among the non-outlying strategies. Looking at maximum drawdown (MDD)

as the representative measure of the tail risk, the riskier half of the strategies
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can be ranked in the following order:

MDDNRP < MDDERC ≈ MDDEW < MDDDRP

while the less riskier half is different for the groups of factors. Noteworthy,

the MDP strategy has the smallest and the second smallest maximum draw-

down among its competitors.

Given the fact that investigated portfolios do not differ in original asset

universe from which they are picked, the difference is of course in the weight of

individual assets. It is insightful to look at the comparison of weights concen-

tration, especially since its relative order is very stable across different factors

as well as across time.

G(w)EW < G(w)ERC < G(w)NRP < G(w)V W < G(w)DRP ≈ G(w)MDP < G(w)MV < G(w)HRP

Concentration of portfolio weights is highest for the HRP strategy, rela-

tively closely followed by MDP and MV. From the definition, the EW strategy

has zero concentration based on weights. The lowest, non-zero weight concen-

tration is consistently achieved by the ERC strategy.

As argued throughout the thesis, weight concentration contrast strongly

with the diversification achieved with respect to the risk sources, defined through

Meucci (2010) framework. According to the effective number of bets (ENB),

individual strategies can be ranked in following order:

ENBEW < ENBV W < ENBNRP < ENBERC < ENBHRP < ENBMV < ENBMDP < ENBDRP

The DRP strategy has the highest number of effective bets and by a wide

margin. Strategy with the second highest number of effective bets is the MDP,

the best-performing strategy based on the number of measures, closely followed

by MV.

The worst diversified across sources of risk are the EW and VW strategies,

the very strategies used in the discovery of factor premia.



6. Empirical results 66

All these results alone offer a valuable insight for practitioners of factor

investing who cannot skip the portfolio construction part of the whole process.

Contribution consists not only in showing what works significantly better than

standardly used equal-weighting and value-weighting methods, i.e. the MDP

strategy, but also in what does not add any value depending on what aspects of

performance matter, and in what should factor investors be extremely careful

about, i.e. the DRP strategy.

However, as argued in the introduction, there is a deeper question.

Either because of risk or mispricing, original equal-weighted and value-

weighted factor portfolios are associated with higher expected returns. Ex-ante,

it is not obvious what should happen with the performance of factor portfolios

when advanced portfolio selection methods are used instead of original non-

optimal methods.

From one perspective, if investors should not be compensated for diversifi-

able risk and advanced portfolio selection methods indeed provide more diversi-

fication than equal-weighting, then one could expect that the expected returns

should not change compared to the benchmark of equal-weighting. This is

simply because by using equal-weighting unnecessary diversifiable risk is un-

dertaken, thus not deserving compensation in form of higher expected returns.

From another perspective, factor portfolios are constructed from very re-

stricted universe exposed to some fundamental risk (or mispricing). Portfolios

constructed using advanced portfolio selection methods, more or less directly

based on the idea of diversification across independent risk sources, see Sections

4.1.4, 4.1.2, 4.1.3 and 4.1.5, provide more effective representation of underly-

ing universe from which they are built. Since in case of factor portfolios the

underlying restricted universe is already exposed to some fundamental risk

(or mispricing), it could be argued that these portfolio selection methods offer

less noise-contaminated exposure to underlying risks (mispricing) and therefore

shoule be able to capture associated premia in a superior way.

To answer this question, it is important to look at the actual, out-of-sample

achieved diversification with respect to the risk sources and compare it with

the returns.

Looking at the relative order of all strategies according to the effective

number of bets, as well as individual factor results, it is clear that the naive
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EW and VW strategies are prime examples of not providing full exposure to

all risk sources explaining the return variation.

Out of the strategies based on diversification across risk sources, the ERC

and HRP strategies are weaker in terms of achieving the same properties as

in-sample than the other two. In terms of returns, ERC has consistently com-

parable return with the EW strategy and HRP has consistently lower return

in terms of returns, but with the lower volatility.

The most diversified out-of-sample are the MDP and DRP strategies, with

the highest number of effective bets. Based on the argumentation above, they

should be considered effective representations of underlying factors, having ex-

posure to more sources of risk not only from theoretical perspective but also

in reality as shown empirically. Surprisingly, their performances differ signifi-

cantly almost according to every single metric.

The MDP strategy has clearly the highest return with comparable volatility

and one of the lowest tail risk among other strategies. These results would

suggest that constructing portfolio by maximizing the diversification ratio, i.e.

degrees of freedom or independent sources of risk for given portfolio, is a more

precise way to fully capture the premia associated with underlying factors.

Despite the benchmark beating results of MDP, results for DRP, the most,

head above the rest, out-of-sample diversified strategy, are anything but sim-

ilar. Its returns are more comparable with EW and advanced ERC and HRP

strategies. However, opposed to these strategies, it suffers abnormal levels of

volatility as well as tail risk.

Overall out of four diversification maximizing strategies, all achieve higher

out-of-sample diversification across sources of risk than equal-weighting and

value-weighting. The level of achieved diversification differs across them, where

the DRP stands head above the rest, followed by the MDP. The ERC, HRP,

DRP strategies have similar average returns to EW. These results would sup-

port the explanation of not compensating the unnecessary, undiversifiable risk

undertaken by EW. However, the MDP achieves consistently significantly higher

returns, undermining the conclusion above and giving evidence more in favor

of offering less noise-contaminated exposure to underlying risks.

To summarize, these are conflicting but provide fertile ground for further

research. Few suggestions.

First of all, even though the MDP, DRP and ERC strategies are clearly
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related, empirical results suggest that there are significant differences deserving

thorough analytical investigation.

Second, I work with long-only portfolios, but factors are constructed be-

ing long-short. Modifying advanced portfolio selection methods into long-short

framework, while retaining the desirable properties of their long-only counter-

parts, in order to construct the factor portfolios more closely to their nature

looks like a logical next step.

Third, all advanced methods rely heavily on the estimates of covariance

matrix, therefore more robust methods, e.g. shrinkage can bring additional

benefits.

Finally, recent advances in the field of spectral portfolio theory, see Chaud-

huri & Lo (2016), are potentially worthy of combining with methods used in

this thesis.



Conclusion

Factor investing aims at capturing systematic risk or mispricing premia. This

thesis argues that using simple and, widely used equal- and value-weighting in

the equity portfolio construction process is not an obvious choice when more

advanced alternatives are considered.

In order to identify which factors are real, as opposed to being only random

results of data mining, I cover number of recent prominent studies resulting in

the selection of factors that are components of the currently most powerful asset

pricing model or cannot be explained by it. Eight risk-based portfolio selec-

tion methods (strategies) are then applied in the construction of corresponding

long-only factor portfolios. Using 50 years of fundamental and pricing data

from CRSP and COMPUSTAT databases, performance of individual strate-

gies is compared based on the financial efficiency, risk-adjusted performance,

tail risk and the level of diversification achieved. Specific attention is given to

the advanced methods focused on the idea of diversification across independent

risk sources, thus being more effective representations of the underlying factor

than their naive counterparts. From them, the most diversified portfolio proves

to be the best way to form a factor portfolio. It consistently earns significantly

higher returns than other strategies, while having comparable volatility and

one of the smallest tail risk exposure comparable with the minimum variance

strategy. Further it has the second largest out-of-sample diversification across

risk sources, measured as entropy based effective number of bets. This con-

trasts heavily with the diversified risk parity portfolio, which has the largest

out-of-sample diversification across risk sources, however its returns are only

comparable to the naive equal-weighting and it has very high tail risk exposure

as well as volatility, making it the least attractive method from a risk-adjusted

performance perspective. Other two advanced methods, i.e. equal risk contri-

butions and the hierarchical risk parity, have significantly lower out-of-sample

diversification and their average returns as well as volatilities differ. The equal

risk contribution method has average return and volatility comparable with
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the equal-weighting, while the hierarchical risk parity method has lower aver-

age return but lower volatility as well.

All these results alone offer a valuable insight for practitioners of factor

investing. Contribution consists not only in showing what works significantly

better than standardly used equal-weighting and value-weighting methods, but

also in what does not add any value and in what should factor investors be

extremely careful about.

Finally there is a mixed evidence, regarding the question of whether ad-

vanced portfolio selection methods can capture factor alpha more effectively

than the naive equal-weighting. The performance of the most diversified port-

folio would suggest the positive answer, however performances of other three

advanced portfolio selection methods point more in favor of “no compesation

for diversifiable risk” explanation. These differences provide a fertile ground

for further research.
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Brodeur, A., M. Lé, M. Sangnier, & Y. Zylberberg (2016): “Star wars:

The empirics strike back.” American Economic Journal: Applied Economics

8(1): pp. 1–32.

Campbell, J. Y., J. Hilscher, & J. Szilagyi (2008): “In search of distress

risk.” The Journal of Finance 63(6): pp. 2899–2939.

Carhart, M. M. (1997): “On persistence in mutual fund performance.” The

Journal of finance 52(1): pp. 57–82.

Cascon, A., C. Keating, & W. Shadwick (2002): “An introduction to

omega.” The Finance Development Centre, Fuqua-Duke University .

Chan, L. K., Y. Hamao, & J. Lakonishok (1991): “Fundamentals and stock

returns in japan.” The Journal of Finance 46(5): pp. 1739–1764.

Chang, A. C. & P. Li (2015): “Is economics research replicable? sixty pub-

lished papers from thirteen journals say’usually not’.” .

Chaudhuri, S. E. & A. W. Lo (2016): “Spectral portfolio theory.” .

Chaves, D., J. Hsu, F. Li, & O. Shakernia (2011): “Risk parity portfolio vs.

other asset allocation heuristic portfolios.” The Journal of Investing 20(1):

pp. 108–118.

Chekhlov, A., S. P. Uryasev, & M. Zabarankin (2000): “Portfolio opti-

mization with drawdown constraints.” .

Chopra, V. K. (1993): “Improving optimization.” The Journal of Investing

2(3): pp. 51–59.

Choueifaty, Y. & Y. Coignard (2008): “Toward maximum diversification.”

The Journal of Portfolio Management 35(1): pp. 40–51.

Choueifaty, Y., T. Froidure, & J. Reynier (2013): “Properties of the

most diversified portfolio.” Journal of Investment Strategies 2(2): pp. 49–

70.

Clarke, R., H. De Silva, & S. Thorley (2011): “Minimum-variance port-

folio composition.” The Journal of Portfolio Management 37(2): pp. 31–45.



Bibliography 73

Cochrane, J. H. (1991): “Production-based asset pricing and the link between

stock returns and economic fluctuations.” The Journal of Finance 46(1):

pp. 209–237.

Cochrane, J. H. (2011): “Presidential address: Discount rates.” The Journal

of finance 66(4): pp. 1047–1108.

Cooper, M. J., H. Gulen, & M. J. Schill (2008): “Asset growth and the

cross-section of stock returns.” The Journal of Finance 63(4): pp. 1609–

1651.

Daniel, K. & S. Titman (2006): “Market reactions to tangible and intangible

information.” The Journal of Finance 61(4): pp. 1605–1643.

De Long, J. B., A. Shleifer, L. H. Summers, & R. J. Waldmann (1990):

“Noise trader risk in financial markets.” Journal of political Economy 98(4):

pp. 703–738.

DeMiguel, V., L. Garlappi, & R. Uppal (2009): “Optimal versus naive

diversification: How inefficient is the 1/n portfolio strategy?” Review of

Financial Studies 22(5): pp. 1915–1953.

Drew, M. E., T. Naughton, & M. Veeraraghavan (2003): “Firm size,

book-to-market equity and security returns: Evidence from the shanghai

stock exchange.” Australian Journal of Management 28(2): p. 119.

Fama, E. F. (1998): “Market efficiency, long-term returns, and behavioral

finance.” Journal of financial economics 49(3): pp. 283–306.

Fama, E. F. & K. R. French (1992): “The cross-section of expected stock

returns.” the Journal of Finance 47(2): pp. 427–465.

Fama, E. F. & K. R. French (1993): “Common risk factors in the returns on

stocks and bonds.” Journal of financial economics 33(1): pp. 3–56.

Fama, E. F. & K. R. French (2008): “Dissecting anomalies.” The Journal of

Finance 63(4): pp. 1653–1678.

Fama, E. F. & K. R. French (2015): “Incremental variables and the in-

vestment opportunity set.” Journal of Financial Economics 117(3): pp.

470–488.



Bibliography 74

Fama, E. F. & K. R. French (2016): “Dissecting anomalies with a five-factor

model.” The Review of Financial Studies 29(1): pp. 69–103.

Fama, E. F. & J. D. MacBeth (1973): “Risk, return, and equilibrium: Em-

pirical tests.” Journal of political economy 81(3): pp. 607–636.

Feng, G., S. Giglio, & D. Xiu (2017): “Taming the factor zoo.” .

Follmer, H. & A. Schied (2004): “Stochastic finance: An introduction in

discrete time walter de gruyter.” Berlin, New York .

Frazzini, A. & L. H. Pedersen (2014): “Betting against beta.” Journal of

Financial Economics 111(1): pp. 1–25.

Garlappi, L., R.Uppal, & T.Wang (2007): “Portfolio selection with param-

eter and model uncertainty: A multi-prior approach.” Review of Financial

Studies 20(1): pp. 41–81.

Gibbons, M. R., S. A. Ross, & J. Shanken (1989): “A test of the efficiency

of a given portfolio.” Econometrica: Journal of the Econometric Society pp.

1121–1152.

Green, J., J. R. Hand, & X. F. Zhang (2017): “The characteristics that

provide independent information about average us monthly stock returns.”

The Review of Financial Studies p. hhx019.

Harvey, C. R., Y. Liu, & H. Zhu (2016): “â¿¦ and the cross-section of
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Appendix A

Definition of Anomalies

Components of MISP Factor

Net Stock Issues (NSI) The stock issuing market has long been viewed as

producing an anomaly arising from sentiment-driven mispricing: smart man-

agers issue shares when sentiment-driven traders push prices to overvalued

levels. Ritter (1991) and Loughran and Ritter (1995) show that, in post-issue

years, equity issuers underperform matching nonissuers with similar charac-

teristics. Motivated by this evidence, Fama and French (2008) show that net

stock issues and subsequent returns are negatively correlated At the end of

June of year t, net stock issues, Nsi, are measured as the natural log of the ra-

tio of the split-adjusted shares outstanding at the fiscal year ending in calendar

year t-1 to the split-adjusted shares outstanding at the fiscal year ending in

t-2. The split-adjusted shares outstanding is shares outstanding (Compustat

annual item CSHO) times the adjustment factor (item AJEX). At the end of

June of each year t, stocks with negative Nsi are sorted into two portfolios (1

and 2), stocks with zero Nsi into one portfolio (3), and stocks with positive Nsi

into seven portfolios (4 to 10). Monthly decile returns are from July of year t

to June of t + 1, and the deciles are rebalanced in June of t + 1.

Composite Equity Issues (CEI) Daniel and Titman (2006) find that issuers

underperform nonissuers using a measure they denote as composite equity is-

suance. At the end of June of each year t, stocks are sorted into deciles based

on composite equity issuance, Cei, which is the log growth rate in the market

equity not attributable to stock return, log (ME t /ME t-5 ) - r(t - 5, t). r(t
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- 5, t) is the cumulative log stock return from the last trading day of June in

year t - 5 to the last trading day of June in year t, and ME t is the market

equity (from CRSP) on the last trading day of June in year t. Monthly decile

returns are from July of year t to June of t + 1, and the deciles are rebalanced

in June of t + 1.

Accruals (ACCR) Sloan (1996) shows that firms with high accruals earn ab-

normally lower average returns than firms with low accruals, and he suggests

that investors overestimate the persistence of the accrual component of earn-

ings when forming earnings expectations. Prior to 1988, the balance sheet

approach in Richardson, Sloan, Soliman, and Tuna (2005) is used to measure

total accruals, Ta, as dWc + dNco + dFin. dWc is the change in net non-cash

working capital. Net non-cash working capital is current operating asset (Coa)

minus current operating liabilities (Col), with Coa = current assets (Compus-

tat annual item ACT) - cash and short-term investments (item CHE) and Col

= current liabilities (item LCT) - debt in current liabilities (item DLC). dNco

is the change in net non-current operating assets. Net non-current operating

assets are non-current operating assets (Nca) minus non-current operating li-

abilities (Ncl), with Nca = total assets (item AT) - current assets - long-term

investments (item IVAO), and Ncl = total liabilities (item LT) - current liabil-

ities - long-term debt (item DLTT). dFin is the change in net financial assets.

Net financial assets are financial assets (Fna) minus financial liabilities (Fnl),

with Fna = short-term investments (item IVST) + long-term investments, and

Fnl = long-term debt + debt in current liabilities + preferred stocks (item

PSTK). Missing changes in debt in current liabilities, long-term investments,

long-term debt, short-term investments, and preferred stocks are set to zero.

Starting from 1988, the cash flow approach is used to measure Ta as net in-

come (item NI) minus total operating, investing, and financing cash flows (items

OANCF, IVNCF, and FINCF) plus sales of stocks (item SSTK, zero if miss-

ing) minus stock repurchases and dividends (items PRSTKC and DV, zero if

missing). Data from the statement of cash flows are only available since 1988.

At the end of June of each year t, stocks are sorted into deciles based on Ta for

the fiscal year ending in calendar year t - 1 scaled by total assets for the fiscal

year ending in t - 2. Monthly decile returns are calculated from July of year t

to June of t + 1, and the deciles are rebalanced in June of t + 1.



A. Definition of Anomalies III

Net Operating Assets (NOA) Hirshleifer, Hou, Teoh, and Zhang (2004)

find that net operating assets, defined as the difference on the balance sheet

between all operating assets and all operating liabilities, scaled by total assets,

is a strong negative predictor of long-run stock returns. The authors suggest

that investors with limited attention tend to focus on accounting profitability,

neglecting information about cash profitability, in which case net operating

assets (equivalently measured as the cumulative difference between operating

income and free cash flow) captures such a bias. Noa is operating assets mi-

nus operating liabilities. Operating assets are total assets (item AT) minus

cash and short-term investment (item CHE), and minus other investment and

advances (item IVAO, zero if missing). Operating liabilities are total assets

minus debt in current liabilities (item DLC, zero if missing), minus long-term

debt (item DLTT, zero if missing), minus minority interests (item MIB, zero

if missing), minus preferred stocks (item PSTK, zero if missing), and minus

common equity (item CEQ).

Asset Growth (AG) Cooper, Gulen, and Schill (2008) find that companies

that grow their total assets more earn lower subsequent returns. They suggest

that this phenomenon is due to investors’ initial overreaction to changes in

future business prospects implied by asset expansions. At the end of June of

each year t, stocks are sorted into deciles based on investment-to-assets, I/A,

which is measured as total assets (Compustat annual item AT) for the fiscal

year ending in calendar year t-1 divided by total assets for the fiscal year ending

in t-2 minus one. Monthly decile returns are computed from July of year t to

June of t + 1, and the deciles are rebalanced in June of t + 1.

Distress (DIST) Financial distress is often invoked to explain otherwise anoma-

lous patterns in the cross-section of stock returns. However, Campbell, Hilscher,

and Szilagyi (2008) find that firms with high failure probability have lower

rather than higher subsequent returns. The authors suggest that their finding

is a challenge to standard models of rational asset pricing. Failure probability

is estimated with a dynamic logit model that uses several equity market vari-

ables, such as stock price, book-to-market, stock volatility, size relative to the

S&P500, and cumulative excess return relative to the S&P500. Specifically, us-

ing the above study’s equations (2) and (3) along with its Table IV (12-month
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column), the distress anomaly measure - failure probability - is computed as

π =− 20.26 NIMTAAV G+ 1.42 TLMTA− 7.13 EXRETAV G+ 1.41 SIGMA

− 0.045 RSIZE − 2.13 CASHMTA+ 0.075 MB − 0.058 PRICE − 9.16,

where

NIMTAAV Gt−1,t−12 =
1− Φ3

1− Φ12

(

NIMTAt−1,t−3 + · · ·+ Φ9NIMTAt−10,t−12

)

EXRETAV Gt−1,t−12 =
1− Φ

1− Φ12

(

EXRETt−1 + · · ·+ Φ11EXRETt−12

)

and Φ = 2−1/3. NIMTA is net income (Compustat quarterly item NIQ) di-

vided by firm scale, where the latter is computed as the sum of total liabilities

(item LTQ) and market equity capitalization (data from CRSP). EXRETs is

the stock’s monthly log return in month s minus the log return on the S&P500

index. Missing values for NIMTA and EXRET are replaced by those quan-

tities’ cross-sectional means. TLMTA equals total liabilities divided by firm

scale. SIGMA is the stock’s daily standard deviation for the most recent three

months, expressed on an annualized basis. At least five non-zero daily returns

are required. RSIZE is the log of the ratio of the stock’s market capitalization

to that of the S&P500 index. CASHMTA equals cash and short-term invest-

ment (item CHEQ) divided by firm scale. MB is the market-to-book ratio.

Following Campbell, Hilscher, and Szilagyi (2008), book equity is increased by

10% of the difference between market equity and book equity. If the resulting

value of book equity is negative, then book equity is set to $1. PRICE is the

log of the share price, truncated above at $15. All explanatory variables except

PRICE are winsorized above and below at the 5% level in the cross section.

CRSP based variables, EXRETAV G, SIGMA, RSIZE and PRICE are for

month t− 1. NIQ is for the most recent quarter for which the reporting date

provided by Compustat (item RDQ) precedes the end of month t− 1, whereas

the items requiring information from the balance sheet (LTQ, CHEQ and

MB) are for the prior quarter.

O-score (O) This distress measure, from Ohlson (1980), predicts return s in

a manner similar to the measure above. It is the probability of bankruptcy es-

timated in a static model using accounting variables. Following Ohlson (1980),
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it is constructed as:

O = −0.407 SIZE + 6.03 TLTA− 1.43 WCTA+ 0.076 CLCA− 1.72 OENEG

= −2.37 NITA− 1.83 FUTL+ 0.285 INTWO − 0.521 CHIN − 1.32,

where SIZE is the log of total assets (Compustat annual item AT), TLTA is

the book value of debt (item DLC plus item DLTT) divided by total assets,

WCTA is working capital (item ACT minus item LCT) divided by total assets,

CLCA is current liabilities (item LCT) divided by current assets (item ACT),

ONEEG is 1 if total liabilities (item LT) exceed total assets and is zero oth-

erwise, NITA is net income (item NI) divided by total assets, FUTL is funds

provided by operations (item PI) divided by total liabilities, INTWO is equal

to 1 if net income (item NI) is negative for the last 2 years and zero otherwise,

CHIN is (NIj −NIj−1)/(|NIj| − |NIj−1|), in which NIj is the income (item

NI) for year j, which is the most recent reporting year that ends (according to

item DATADATE) at least four months before the end of month t− 1.

Investment-to-Assets (IA) Titman, Wei, and Xie (2004) and Xing (2008)

show that higher past investment predicts abnormally lower future returns.

Titman, Wei, and Xie (2004) attribute this anomaly to investors’ initial un-

derreaction to overinvestment caused by managers’ empire-building behavior.

Following the above studies, investment-to-assets is computed as the changes

in gross property, plant, and equipment (Compustat annual item PPEGT) plus

changes in inventory (item INVT), divided by lagged total assets (item AT).

The most re-cent reporting year used is the one that ends (according to item

DATADATE) at least four months before the end of month t− 1.

Momentum (MOM) The momentum effect, discovered by Jegadeesh and

Titman (1993), is one of the most robust anomalies in asset pricing. It refers

to the phenomenon whereby high (low) past recent recent returns forecast high

(low) future returns. The momentum ranking at the end of month t − 1 uses

the cumulative returns from month t− 12 to month t− 2. This is the choice of

ranking variable used by Carhart (1997) to construct the widely used momen-

tum factor.
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Gross Profitability (GP): Novy-Marx (2013) shows that sorting on the ratio

of gross profit to assets creates abnormal benchmark-adjusted returns, with

more profitable firms having higher returns than less profitable ones. He ar-

gues that gross profit is the cleanest accounting measure of true economic prof-

itability. The farther down the income statement one goes, the more polluted

profitability measures become, and the less related they are to true economic

profitability. Following Novy-Marx (2013), gross profits-to-assets, Gpa, is mea-

sured as total revenue (Compustat annual item REVT) minus cost of goods

sold (item COGS) divided by total assets (item AT, the denominator is cur-

rent, not lagged, total assets). At the end of June of each year t, stocks are

sorted into deciles based on Gpa for the fiscal year ending in calendar year t−1.

Monthly decile returns are calculated from July of year t to June of t+ 1, and

the deciles are rebalanced in June of t+ 1.

Significant Anomalies

Rer, Industry-adjusted Real Estate Ratio: Following Tuzel (2010), the real

estate ratio is measured as the sum of buildings (Compustat annual item

PPENB) and capital leases (item PPENLS) divided by net property, plant,

and equipment (item PPENT) prior to 1983. From 1984 onward, the real

estate ratio is the sum of buildings at cost (item FATB) and leases at cost

(item FATL) divided by gross property, plant, and equipment (item PPEGT).

Industry-adjusted real estate ratio, Rer, is the real estate ratio minus its in-

dustry aver- age. Industries are defined by two-digit SIC codes. To alleviate

the impact of outliers, the real estate ratio at the 1st and 99th percentiles

of its distribution are winsorized each year before computing Rer. Following

Tuzel (2010), industries with fewer than five firms are excluded. At the end of

June of each year t, stocks are sorted into deciles based on Rer for the fiscal

year ending in calendar year t - 1. Monthly decile returns are calculated from

July of year t to June of t + 1, and the deciles are rebal- anced in June of t+1.

Because the real estate data start in 1969, the Rer portfolios start in July 1970.

Eprd: Following Francis, Lafond, Olsson, and Schipper (2004), earnings per-

sistence, Eper, and earnings predictability, Eprd, is estimated from a first-order

autoregressive model for annual split-adjusted earnings per share (Compustat
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annual item EPSPX divided by item AJEX). At the end of June of each year t,

the autoregressive model is estimated in the ten-year rolling window up to the

fiscal year ending in calendar year t - 1. Only firms with a complete ten-year

history are included. Eper is measured as the slope coefficient and Eprd is

measured as the residual volatility.

Cla, Cash-based Operating Profits-to-lagged Assets: Cash-based operat-

ing profits-to-lagged assets, Cla, is total revenue (Compustat annual item REVT)

minus cost of goods sold (item COGS), minus selling, general, and administra-

tive expenses (item XSGA), plus research and development expenditures (item

XRD, zero if missing), minus change in accounts receivable (item RECT), mi-

nus change in inventory (item INVT), minus change in prepaid expenses (item

XPP), plus change in deferred revenue (item DRC plus item DRLT), plus

change in trade accounts payable (item AP), and plus change in accrued ex-

penses (item XACC), all scaled by one-year-lagged book assets (item AT). All

changes are annual changes in balance sheet items and missing changes are

set to zero. At the end of June of each year t, stocks are sorted into deciles

based on Cla for the fiscal year ending in calendar year t - 1. Monthly decile

returns are calculated from July of year t to June of t + 1, and the deciles are

rebalanced in June of t + 1.

Cop, Cash-based Operating Profitability: Following Ball, Gerakos, Linnain-

maa, and Nikolaev (2016), cash-based operating prof- itability, Cop, is mea-

sured as total revenue (Compustat annual item REVT) minus cost of goods

sold (item COGS), minus selling, general, and administrative expenses (item

XSGA), plus research and de- velopment expenditures (item XRD, zero if miss-

ing), minus change in accounts receivable (item RECT), minus change in inven-

tory (item INVT), minus change in prepaid expenses (item XPP), plus change

in deferred revenue (item DRC plus item DRLT), plus change in trade ac-

counts payable (item AP), and plus change in accrued expenses (item XACC),

all scaled by book assets (item AT, the denominator is current, not lagged, to-

tal assets). All changes are annual changes in balance sheet items and missing

changes are set to zero. At the end of June of each year t, stocks are sorted into

deciles based on Cop for the fiscal year ending in calendar year t - 1. Monthly

decile returns are calculated from July of year t to June of t + 1, and the deciles
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are rebalanced in June of t + 1.

dFin, Changes in Net Financial Assets dFin is the change in net financial

assets. Net financial assets are financial assets (Fna) minus financial liabilities

(Fnl), with Fna = short-term investments (Compustat annual item IVST) +

long-term investments (item IVAO), and Fnl = long-term debt (item DLTT)

+ debt in current liabilities (item DLC) + preferred stock (item PSTK).

Nop, Net payout yield Per Boudoukh, Michaely, Richardson, and Roberts

(2007), total payouts are dividends on common stock (Compustat annual item

DVC) plus repurchases. Repurchases are the total expenditure on the purchase

of common and preferred stocks (item PRSTKC) plus any reduction (negative

change over the prior year) in the value of the net number of preferred stocks

outstanding (item PSTKRV). Net payouts equal total payouts minus equity

issuances, which are the sale of common and preferred stock (item SSTK)

minus any increase (positive change over the prior year) in the value of the net

number of preferred stocks outstanding (item PSTKRV). At the end of June of

each year t, stocks are sorted into deciles based on total payouts (net payouts)

for the fiscal year ending in calendar year t - 1 divided by the market equity

(from CRSP) at the end of December of t - 1 (Op and Nop, respectively). For

firms with more than one share class, the market equity for all share classes is

merged before computing Op and Nop . Firms with non-positive total payouts

(zero net payouts) are excluded. Monthly decile returns are calculated from

July of year t to June of t + 1, and the deciles are rebalanced in June of t + 1.

Because the data on total expenditure and the sale of common and preferred

stocks start in 1971, the Op and Nop portfolios start in July 1972.

Ivc, Inventory changes At the end of June of each year t, stocks are sorted

into deciles based on inventory changes, Ivc, which is the annual change in

inventory (Compustat annual item INVT) scaled by the average of total assets

(item AT) for the fiscal years ending in t - 2 and t - 1. We exclude firms that

carry no inventory for the past two fiscal years. Monthly decile returns are

calculated from July of year t to June of t + 1, and the deciles are rebalanced

in June of t + 1.
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Rdm,R&D Expense-to-market At the end of June of each year t, stocks are

sorted into deciles based on R&D-to-market, Rdm, which is R&D expenses

(Compustat annual item XRD) for the fiscal year ending in calendar year t− 1

divided by the market equity (from CRSP) at the end of December of t − 1.

For firms with more than one share class, the market equity for all share classes

is merged before computing Rdm. We keep only firms with positive R&D ex-

penses. Monthly decile returns are calculated from July of year t to June of t

+ 1, and the deciles are rebalanced in June of t + 1. Because the accounting

treatment of R&D expenses was standardized in 1975, the Rdm portfolios start

in July 1976.



Appendix B

Results for Individual Factors

B.1 Results for Constituents of Mispricing Factors
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NOA EW VW MV NRP ERC MDP HRP DRP

Mean 26.29 24.44 18.03 23.18 26.58 33.33 23.06 25.45
Stdev 21.02 22.23 14.59 19.04 20.85 19.87 16.67 28.84
Skewness -0.19 0.24 -0.10 -0.18 -0.11 -0.09 -0.31 0.14
Kurtosis 7.13 7.24 7.17 7.58 6.39 11.18 11.33 6.61

Sharpe 1.34 1.16 1.22 1.27 1.36 1.89 1.44 0.94
Sortino 1.69 1.52 1.63 1.63 1.73 2.38 1.85 1.22
UPR 2.81 2.93 2.89 2.80 2.83 2.68 2.70 2.90
Omega 4.37 3.74 3.93 4.16 4.47 6.69 4.90 3.03

VaR 5% 1.99 2.04 1.32 1.82 1.98 1.70 1.47 2.60
CVaR 5% 3.08 3.16 2.08 2.80 3.05 2.81 2.44 4.14
MDD -54.59 -49.17 -40.11 -50.08 -46.72 -56.41 -46.84 -59.29

ENB 1.2 1.33 2.56 1.77 1.84 2.87 2.04 4.3
Gini(w) 0.00 0.6 0.68 0.59 0.47 0.66 0.71 0.6

Table B.1: Net Operating Assets (NOA)

CEI EW VW MV NRP ERC MDP HRP DRP

Mean 27.36 26.31 23.42 25.33 27.49 35.45 25.86 25.81
Stdev 20.30 21.13 14.80 18.38 20.29 19.36 16.26 31.08
Skewness -0.36 -0.13 -0.49 -0.54 -0.39 -0.52 -0.71 -0.14
Kurtosis 5.34 5.66 5.30 5.75 5.30 7.10 8.12 6.88

Sharpe 1.28 1.08 1.64 1.17 1.39 1.92 1.55 0.81
Sortino 1.61 1.73 1.98 1.66 1.55 2.43 2.12 1.10
UPR 2.57 2.76 2.69 2.72 2.75 2.37 2.60 2.56
Omega 4.50 4.03 5.35 4.40 4.51 7.09 5.42 2.73

VaR 5% 1.72 1.73 1.35 1.61 1.69 1.65 1.36 2.56
CVaR 5% 2.84 2.94 1.90 2.55 2.74 2.61 2.38 4.46
MDD -46.64 -46.03 -36.86 -45.20 -46.53 -44.24 -43.17 -80.33

ENB 1.2 1.41 1.76 1.77 2.86 2.05 4.11 103.25
Gini(w) 0.00 0.61 0.69 0.53 0.41 0.71 0.70 0.56

Table B.2: Composite Equity Issues (CEI)
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NSI EW VW MV NRP ERC MDP HRP DRP

Mean 27.57 26.44 23.75 25.36 27.56 35.56 25.91 25.90
Stdev 20.56 21.30 14.81 18.71 20.50 19.38 16.48 31.21
Skewness -0.31 0.06 -0.25 -0.32 -0.31 -0.35 -0.53 0.10
Kurtosis 5.46 5.93 5.51 5.76 5.48 7.39 8.31 6.94

Sharpe 1.45 1.33 1.68 1.44 1.45 2.10 1.68 0.89
Sortino 1.83 1.74 2.23 1.84 1.84 2.60 2.13 1.15
UPR 2.84 2.92 2.84 2.83 2.84 2.69 2.74 2.85
Omega 4.72 4.32 5.63 4.72 4.74 7.36 5.66 2.93

VaR 5% 1.96 1.97 1.36 1.78 1.95 1.73 1.52 2.70
CVaR 5% 2.97 2.98 2.08 2.70 2.96 2.79 2.39 4.47
MDD -46.41 -45.79 -36.54 -44.91 -46.37 -44.03 -43.02 -80.26

ENB 1.28 1.34 2.38 1.61 1.85 2.69 1.90 3.80
Gini(w) 0.00 0.63 0.68 0.64 0.49 0.7 0.8 0.66

Table B.3: Net Stock Issues (NSI)

GP EW VW MV NRP ERC MDP HRP DRP

Mean 22.84 16.45 15.60 20.06 22.78 29.48 21.07 25.34
Stdev 18.96 18.89 13.62 17.19 18.90 18.45 15.55 27.87
Skewness -0.27 0.12 -0.23 -0.26 -0.27 -0.32 -0.36 0.38
Kurtosis 5.90 7.48 5.64 6.32 5.91 12.15 9.72 6.79

Sharpe 1.25 0.84 1.09 1.18 1.25 1.75 1.38 0.96
Sortino 1.59 1.13 1.46 1.51 1.59 2.19 1.77 1.28
UPR 2.87 3.00 2.97 2.86 2.87 2.71 2.76 3.05
Omega 3.95 2.61 3.40 3.73 3.96 5.98 4.55 3.03

VaR 5% 1.83 1.75 1.25 1.66 1.82 1.62 1.45 2.48
CVaR 5% 2.79 2.67 1.94 2.54 2.78 2.67 2.30 3.81
MDD -52.03 -49.13 -42.40 -50.97 -52.00 -53.60 -48.62 -60.25

ENB 1.25 1.33 2.39 1.66 1.78 2.75 1.99 3.96
Gini(w) 0.00 0.65 0.71 0.57 0.49 0.75 0.71 0.67

Table B.4: Gross Profitability (GP)
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MOM EW VW MV NRP ERC MDP HRP DRP

Mean 23.87 19.81 17.62 21.28 23.87 29.95 21.50 18.56
Stdev 18.77 19.28 13.33 17.09 18.72 17.84 15.42 26.28
Skewness -0.20 0.07 -0.12 -0.15 -0.20 -0.16 -0.06 0.07
Kurtosis 4.77 7.95 5.27 5.36 4.79 7.72 7.54 9.61

Sharpe 1.33 1.04 1.30 1.27 1.34 1.85 1.43 0.70
Sortino 1.73 1.40 1.77 1.68 1.73 2.36 1.90 0.93
UPR 2.94 3.00 2.94 2.94 2.94 2.79 2.86 2.86
Omega 4.22 3.27 4.20 4.05 4.24 6.29 4.70 2.28

VaR 5 % 1.78 1.79 1.20 1.62 1.77 1.61 1.41 2.34
CVaR 5% 2.65 2.62 1.85 2.40 2.64 2.52 2.17 3.77
MDD -50.22 -48.42 -46.80 -41.48 -49.10 -43.37 -40.70 -79.21

ENB 1.23 1.3 2.26 1.56 1.77 2.63 1.91 3.95
Gini(w) 0.00 0.65 0.65 0.61 0.47 0.76 0.79 0.65

Table B.5: Momentum (MOM)

ACCR EW VW MV NRP ERC MDP HRP DRP

Mean 18.95 16.45 12.15 16.26 18.88 23.48 16.28 20.09
Stdev 19.18 18.89 13.45 17.28 19.09 18.24 15.53 29.34
Skewness -0.40 0.12 -0.05 -0.45 -0.40 -0.13 -0.40 0.06
Kurtosis 8.55 7.48 5.92 9.84 8.63 14.18 13.56 6.66

Sharpe 0.98 0.84 0.81 0.91 0.98 1.34 1.01 0.69
Sortino 1.27 1.13 1.11 1.18 1.27 1.73 1.32 0.91
UPR 2.82 3.00 3.00 2.81 2.82 2.66 2.71 2.97
Omega 3.15 2.61 2.51 2.90 3.15 4.66 3.37 2.17

VaR 5% 1.78 1.75 1.25 1.60 1.78 1.55 1.39 2.65
CVaR 5% 2.84 2.67 1.91 2.56 2.82 2.63 2.28 4.19
MDD -53.39 -49.13 -40.41 -53.23 -53.36 -52.92 -54.78 -90.17

ENB 1.22 1.44 2.39 1.6 1.72 2.6 1.89 3.82
Gini(w) 0.00 0.66 0.68 0.57 0.50 0.71 0.73 0.63

Table B.6: Accruals (ACCR)
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IA EW VW MV NRP ERC MDP HRP DRP

Mean 22.84 16.45 15.60 20.06 22.78 29.86 20.74 25.81
Stdev 18.96 18.90 13.62 17.19 18.90 18.63 15.72 29.11
Skewness -0.27 0.12 -0.23 -0.26 -0.27 -0.01 -0.71 0.36
Kurtosis 5.90 7.48 5.64 6.32 5.91 16.23 15.18 14.96

Sharpe 1.25 0.84 1.09 1.18 1.25 1.76 1.34 0.94
Sortino 1.59 1.13 1.46 1.51 1.59 2.22 1.70 1.24
UPR 2.87 3.00 2.97 2.86 2.87 2.71 2.71 2.94
Omega 3.95 2.61 3.40 3.73 3.96 6.07 4.44 3.07

VaR 5% 1.83 1.75 1.25 1.66 1.82 1.62 1.45 2.49
CVaR 5% 2.79 2.67 1.94 2.54 2.78 2.67 2.32 3.92
MDD -52.03 -49.13 -42.40 -50.97 -52.00 -53.60 -48.62 -60.25

ENB 1.32 1.27 2.4 1.68 1.78 2.73 1.9 3.93
Gini(w) 0.00 0.63 0.73 0.63 0.50 0.77 0.75 0.66

Table B.7: Investments to Assets (IA)

AG EW VW MV NRP ERC MDP HRP DRP

Mean 20.25 16.97 9.31 17.03 20.18 22.21 15.97 12.08
Stdev 20.11 18.86 14.50 18.06 20.01 18.51 15.88 27.11
Skewness -0.34 -0.14 -0.35 -0.41 -0.34 -0.53 -0.44 -0.15
Kurtosis 9.59 8.33 6.57 10.74 9.67 14.00 13.75 7.39

Sharpe 1.02 0.88 0.54 0.92 1.02 1.24 0.97 0.40
Sortino 1.31 1.15 0.72 1.19 1.31 1.58 1.26 0.54
UPR 2.77 2.89 2.92 2.75 2.77 2.68 2.71 2.97
Omega 3.33 2.76 1.64 3.00 3.34 4.20 3.21 1.22

VaR 5% 1.83 1.74 1.34 1.64 1.82 1.61 1.41 2.48
CVaR 5% 2.99 2.76 2.15 2.69 2.97 2.69 2.34 3.95
MDD -61.11 -57.88 -62.50 -62.74 -61.12 -53.43 -59.52 -92.41

ENB 1.22 1.25 2.37 1.57 1.68 2.58 1.94 3.81
Gini(w) 0.00 0.62 0.68 0.57 0.45 0.69 0.7 0.64

Table B.8: Asset Growth (AG)
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O-Score EW VW MV NRP ERC MDP HRP DRP

Mean 18.66 16.32 11.93 16.04 18.77 23.42 16.12 20.00
Stdev 19.06 18.57 13.30 17.05 18.98 17.91 15.31 29.27
Skewness -0.43 -0.19 -0.36 -0.66 -0.41 -0.21 -0.67 -0.23
Kurtosis 8.40 7.36 5.83 9.80 8.59 13.86 13.29 6.61

Sharpe 0.91 0.62 0.56 0.64 0.93 1.01 0.93 0.49
Sortino 1.07 0.81 0.89 0.99 1.10 1.48 1.28 0.91
UPR 2.50 2.83 2.89 2.69 2.55 2.53 2.45 2.82
Omega 2.87 2.58 2.35 2.74 3.06 4.35 3.07 2.02

VaR 5% 1.75 1.68 1.16 1.44 1.67 1.29 1.23 2.36
CVaR 5% 2.51 2.60 1.71 2.28 2.50 2.53 2.04 4.18
MDD -53.68 -49.15 -40.65 -53.56 -53.53 -52.99 -54.98 -90.38

ENB 1.29 1.34 2.26 1.52 1.8 2.71 2.0 3.87
Gini(w) 0.00 0.66 0.68 0.63 0.47 0.73 0.71 0.62

Table B.9: O-Score (O)

DIST EW VW MV NRP ERC MDP HRP DRP

Mean 27.50 26.38 23.63 25.07 27.39 35.46 25.59 25.63
Stdev 20.45 20.98 14.48 18.57 20.28 19.24 16.39 31.18
Skewness -0.40 -0.03 -0.38 -0.38 -0.63 -0.38 -0.74 -0.05
Kurtosis 5.32 5.81 5.22 5.67 5.47 7.08 8.02 6.85

Sharpe 1.28 1.29 1.65 1.16 1.31 1.88 1.37 0.81
Sortino 1.83 1.73 1.99 1.53 1.68 2.47 1.95 0.86
UPR 2.62 2.84 2.58 2.79 2.78 2.49 2.66 2.62
Omega 4.60 4.23 5.30 4.71 4.52 7.35 5.41 2.85

VaR 5% 1.93 1.75 1.12 1.55 1.93 1.63 1.37 2.60
CVaR 5% 2.70 2.94 1.88 2.37 2.66 2.72 2.39 4.14
MDD -46.70 -46.10 -36.68 -45.16 -46.44 -44.16 -43.30 -80.30

ENB 1.31 1.34 2.46 1.56 1.7 2.63 1.92 3.93
Gini(w) 0.00 0.66 0.68 0.6 0.46 0.73 0.75 0.64

Table B.10: Distress (DIST)
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B.2 Results for Significant Anomalies
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RDM EW VW MV NRP ERC MDP HRP DRP

Mean 19.19 17.20 14.30 16.99 19.15 29.74 17.38 21.38
Stdev 19.23 17.70 12.17 17.44 19.05 18.35 15.26 33.31
Skewness -0.20 -0.02 -0.11 -0.19 -0.20 -0.13 -0.50 0.21
Kurtosis 6.22 7.69 7.73 6.42 6.29 12.52 10.58 7.47

Sharpe 1.00 0.95 1.10 0.95 1.00 1.78 1.11 0.66
Sortino 1.29 1.27 1.49 1.24 1.30 2.26 1.44 0.87
UPR 2.89 2.97 2.91 2.89 2.89 2.64 2.78 2.89
Omega 3.13 2.96 3.51 2.98 3.16 6.32 3.61 2.13

VaR 5% 1.86 1.66 1.11 1.69 1.84 1.59 1.44 2.91
CVaR 5% 2.83 2.49 1.73 2.56 2.80 2.64 2.25 4.79
MDD -51.64 -44.94 -40.56 -52.03 -51.57 -48.56 -47.62 -87.97

ENB 1.32 1.35 2.4 1.72 1.74 3.01 2.11 4.09
Gini(w) 0.00 0.63 0.68 0.56 0.54 0.64 0.78 0.59

Table B.11: R&D expense-to-market (RDM)

IVC EW VW MV NRP ERC MDP HRP DRP

Mean 23.29 23.09 15.07 20.61 23.22 27.31 19.51 25.68
Stdev 18.53 17.99 12.68 16.77 18.45 16.97 14.88 27.27
Skewness -0.24 -0.09 -0.34 -0.23 -0.24 -0.20 -0.46 0.37
Kurtosis 6.70 6.00 7.29 7.24 6.73 13.04 14.79 8.06

Sharpe 1.31 1.34 1.13 1.25 1.31 1.74 1.32 1.00
Sortino 1.68 1.74 1.51 1.62 1.68 2.21 1.71 1.33
UPR 2.82 2.94 2.88 2.81 2.81 2.67 2.69 2.98
Omega 4.27 4.25 3.62 4.08 4.27 6.06 4.46 3.24

VaR 5% 1.74 1.67 1.16 1.58 1.74 1.47 1.33 2.40
CVaR 5% 2.72 2.55 1.83 2.46 2.71 2.45 2.17 3.74
MDD -50.37 -42.58 -54.83 -50.96 -50.31 -45.02 -52.09 -64.55

ENB 1.34 1.3 2.43 1.65 1.83 2.98 1.99 4.15
Gini(w) 0.00 0.65 0.69 0.59 0.49 0.63 0.76 0.63

Table B.12: Inventory changes (IVC)



B. Results for Individual Factors XVIII

dFIN EW VW MV NRP ERC MDP HRP DRP

Mean 27.52 26.34 23.19 25.16 27.40 35.60 25.71 26.32
Stdev 20.48 21.18 14.76 18.63 20.42 19.39 16.43 31.19
Skewness -0.31 0.07 -0.25 -0.31 -0.31 -0.35 -0.53 0.12
Kurtosis 5.44 5.96 5.46 5.73 5.46 7.22 8.24 7.04

Sharpe 1.45 1.33 1.64 1.43 1.45 2.10 1.67 0.90
Sortino 1.82 1.72 2.15 1.81 1.81 2.57 2.10 1.16
UPR 2.88 2.95 2.89 2.86 2.88 2.73 2.77 2.89
Omega 4.61 4.23 5.33 4.58 4.61 7.18 5.49 2.93

VaR 5% 1.97 1.98 1.37 1.79 1.96 1.76 1.55 2.73
CVaR 5% 2.97 2.98 2.09 2.71 2.96 2.82 2.40 4.50
MDD -46.41 -45.79 -36.54 -44.91 -46.37 -44.03 -43.02 -80.26

ENB 1.34 1.29 2.43 1.67 1.73 3.07 2.00 4.28
Gini(w) 0.00 0.65 0.66 0.57 0.5 0.72 0.79 0.62

Table B.13: Changes in net financial assets (dFin)

NOP EW VW MV NRP ERC MDP HRP DRP

Mean 20.61 24.47 14.92 18.11 20.58 27.26 18.05 17.64
Stdev 20.74 21.20 13.02 18.68 20.65 18.79 15.75 32.11
Skewness -0.27 -0.05 -0.07 -0.27 -0.27 -0.36 -0.30 0.45
Kurtosis 6.17 6.14 7.79 6.88 6.21 9.25 8.71 6.35

Sharpe 1.01 1.22 1.09 0.96 1.01 1.56 1.13 0.54
Sortino 1.29 1.56 1.47 1.24 1.29 1.97 1.47 0.74
UPR 2.90 2.91 2.87 2.85 2.89 2.75 2.77 3.01
Omega 3.15 3.87 3.51 3.03 3.16 5.23 3.71 1.70

VaR 5% 2.00 1.98 1.21 1.78 1.99 1.73 1.48 2.95
CVaR 5% 3.05 3.04 1.87 2.77 3.04 2.75 2.34 4.54
MDD -55.06 -54.71 -59.60 -56.25 -54.73 -47.25 -56.10 -67.28

ENB 1.29 1.44 2.37 1.61 1.78 3.11 2.07 4.13
Gini(w) 0.00 0.62 0.69 0.59 0.51 0.63 0.82 0.6

Table B.14: Net payout yield (NOP)



B. Results for Individual Factors XIX

RER EW VW MV NRP ERC MDP HRP DRP

Mean 21.44 20.27 15.70 18.91 21.40 26.79 19.22 22.90
Stdev 19.11 18.96 15.09 17.54 19.09 19.73 16.37 26.99
Skewness -0.17 -0.01 -0.18 -0.20 -0.17 -0.28 -0.39 0.11
Kurtosis 6.55 5.36 6.58 6.37 6.54 9.35 11.74 5.27

Sharpe 1.15 1.08 1.00 1.08 1.15 1.46 1.18 0.88
Sortino 1.49 1.43 1.33 1.41 1.49 1.84 1.52 1.16
UPR 2.88 3.01 2.94 2.89 2.88 2.74 2.79 3.05
Omega 3.66 3.35 3.13 3.41 3.66 4.90 3.83 2.71

VaR 5% 1.82 1.78 1.37 1.67 1.81 1.74 1.49 2.47
CVaR 5% 2.79 2.66 2.15 2.55 2.78 2.89 2.38 3.79
MDD -53.38 -49.34 -51.18 -52.93 -53.79 -46.92 -48.97 -58.88

ENB 1.26 1.38 2.44 1.66 1.82 2.97 2.17 4.27
Gini(w) 0.00 0.67 0.73 0.53 0.52 0.67 0.8 0.58

Table B.15: Industry-adjusted Real Estate Ratio (RER)

COP EW VW MV NRP ERC MDP HRP DRP

Mean 23.61 19.65 17.47 21.06 23.60 30.00 21.09 18.70
Stdev 18.67 19.17 13.27 17.01 18.63 17.80 15.45 26.21
Skewness -0.20 0.07 -0.11 -0.15 -0.20 -0.16 -0.22 0.10
Kurtosis 4.78 8.00 5.26 5.37 4.80 7.64 9.35 9.70

Sharpe 1.32 1.03 1.29 1.26 1.32 1.86 1.39 0.71
Sortino 1.70 1.38 1.75 1.65 1.70 2.35 1.82 0.94
UPR 2.97 3.03 2.98 2.97 2.97 2.82 2.87 2.90
Omega 4.10 3.19 4.07 3.93 4.11 6.18 4.50 2.26

VaR 5% 1.78 1.79 1.21 1.63 1.78 1.62 1.42 2.36
CVaR 5% 2.65 2.62 1.85 2.41 2.64 2.54 2.19 3.77
MDD -50.22 -48.42 -46.80 -41.48 -49.10 -43.37 -40.70 -80.13

ENB 1.23 1.45 2.35 1.80 1.84 2.96 2.19 4.26
Gini(w) 0.00 0.62 0.73 0.54 0.5 0.64 0.75 0.67

Table B.16: Cash-based Operating Profitability (COP)



B. Results for Individual Factors XX

CLA EW VW MV NRP ERC MDP HRP DRP

Mean 24.43 21.19 17.77 21.81 24.43 29.68 21.20 27.79
Stdev 19.43 19.96 13.68 17.73 19.39 18.24 15.95 28.35
Skewness -0.20 0.23 -0.09 -0.16 -0.20 -0.31 -0.45 0.12
Kurtosis 4.13 8.02 4.27 4.68 4.14 6.83 9.15 6.00

Sharpe 1.32 1.08 1.28 1.26 1.33 1.79 1.36 1.06
Sortino 1.69 1.45 1.72 1.64 1.70 2.24 1.75 1.37
UPR 2.99 3.04 3.01 2.98 2.99 2.85 2.86 3.00
Omega 4.07 3.37 3.98 3.91 4.09 5.82 4.33 3.35

VaR 5% 1.91 1.85 1.28 1.72 1.90 1.70 1.51 2.51
CVaR 5% 2.76 2.71 1.92 2.51 2.75 2.61 2.28 3.96
MDD -49.94 -40.94 -41.82 -42.00 -49.11 -41.95 -39.99 -61.34

ENB 1.33 1.38 2.35 1.69 1.72 3.01 2.00 4.10
Gini(w) 0.00 0.61 0.71 0.56 0.46 0.69 0.76 0.63

Table B.17: Cash-based Operating Profits-to-lagged Assets (CLA)

EPRD EW VW MV NRP ERC MDP HRP DRP

Mean 14.14 14.96 11.67 12.50 13.84 17.51 12.83 14.75
Stdev 15.10 15.08 10.67 14.16 15.14 13.41 12.43 23.33
Skewness -0.26 -0.09 -0.33 -0.83 -0.40 -0.31 -0.92 0.22
Kurtosis 8.71 8.69 17.62 17.79 10.30 19.16 22.32 8.74

Sharpe 0.87 0.94 0.97 0.80 0.85 1.28 0.94 0.60
Sortino 1.15 1.26 1.32 1.04 1.11 1.67 1.23 0.81
UPR 2.84 2.93 2.70 2.72 2.81 2.64 2.66 2.96
Omega 2.77 2.95 3.30 2.59 2.70 4.40 3.13 1.87

VaR 5% 1.46 1.41 0.89 1.32 1.46 1.16 1.13 2.10
CVaR 5% 2.24 2.14 1.52 2.10 2.25 1.97 1.84 3.32
MDD -48.24 -40.24 -46.36 -53.36 -48.15 -43.47 -44.72 -72.00

ENB 1.26 1.30 2.32 1.61 1.80 3.06 2.15 4.28
Gini(w) 0.00 0.61 0.71 0.62 0.52 0.69 0.75 0.62

Table B.18: Earnings predictability (EPRD)
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