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Abstract

There is a demand for decision support tools that can model the electricity markets
and allows to forecast the hourly electricity price. Many different approach such as
artificial neural network or support vector regression are used in the literature. This
thesis provides comparison of several different estimators under one settings using
available data from Czech electricity market. The resulting comparison of over 5000
different estimators led to a selection of several best performing models. The role
of historical weather data (temperature, dew point and humidity) is also assesed
within the comparison and it was found that while the inclusion of weather data
might lead to overfitting, it is beneficial under the right circumstances. The best
performing approach was the Lasso regression estimated using modified Lars.
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Abstrakt

Mnoho rozdilnych piistupt jako jsou umeélé neuronové sité nebo SVR byva pouzito
v literatute. Tato préace poskytuje srovnani nékolika rozdilnych metod v jednotnych
podminkéch za pouziti dat z Ceského trhu s elektfinou. Vysledné srovnani vice
jak 5000 modelt vedlo k vybréni nékolika nejlepsich modeli. Tato prace také vy-
hodnocuje roli historickych meteorologickych dat (teplota, rosny bod a vlhkost)
— bylo zjisténo, ze tfebaze pouziti meteorologickych muze vést k preuceni, za
vhodnych podminek muze také vést k presnéjsim modelim. Nejlepsi testovany
piistup predstavovala Lasso regrese.
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The following hypotheses will be considered:

1. Models that use weather information are more accurate than models that do not
2. Neural network models are more accurate than classical regression models
3. Regression forests are able to perform similarly as other commonly used models

Methodology:

Several different parametrizations of different model classes will be fitted to available data from Czech electricity
market. The fitted models will be evaluated on the out-of-sample data for unbiased estimate of performance. The
models will be compared across different classes and the several criteria will be used to select several top




performing candidates which will be further compared using pairwise Diebold-Mariano test to select the most
suitable model for Czech electricity market. Individual approaches will be tested whether the inclusion of weather
data allows for more accurate forecasts on the out-of-sample data.

Expected Contribution:

There are many different models and approaches presented in the literature, however the models are usually not
compared with each other or when they are, the authors usually compare their model with a basic model from
other model class and then generalize that their model is better than models from that class. Thus the goal of this
work is to compare many different models under the same settings and to find a model that might be used for
forecasting Czech electricity market.

Outline:

1. Electricity market description and motivation — this section describes how electricity markets work and
how to they differ from other markets and also why we need a tool for modeling such markets.

2. Literature review and description of common approaches to modeling electricity markets and
comparisons of advantages and disadvantages of individual approaches.

3. Model description — this section describes the individual models and how they are estimated.

4. Data — The historic real-world data from the analyzed markets. It will describe how the data were
obtained, their source and most importantly, what the data tells us about the market. It will also state
which part of the data was used for the estimation of models and which was used for the validation of
models.

5. Models evaluation, Results — The models will be evaluated and compared with each other, several best
performing candidates will be selected for more detailed analysis

6. Concluding remarks — | will summarize the work and also briefly discuss its implication for future
research.

Core Bibliography:

N. Amjady. “Day-Ahead Price Forecasting of Electricity Markets by a New Fuzzy Neural Network”. In: IEEE
Transactions on Power Systems 21.2 (May 2006), pp. 887—896. doi: 10.1109/tpwrs.2006.873409. url:
http://dx.doi.org/10.1109/TPWRS.

2006.873409.

Bunn, Derek W. and Christopher J. Day (2009). “Computational modelling of price formation in the electricity pool
of England and Wales”. In: Journal of Economic Dynamics and Control 33.2, pp. 363—-376. doi: 10.1016/j.jedc.
2008.06.009. url: http://dx.doi.org/10.1016/j.jedc.2008.06.009.

Cincotti, Silvano and Giulia Gallo (2013). “The Genoa Atrtificial Power-Exchange”. In: Communications in
Computer and Information Science. Springer Science Business Media, pp. 348-363. doi: 10.1007/978-3-642-
36907-0_23. url: http://dx.doi.org/10.1007/978-3-642-36907-0_23.

Mést, Dominik and Massimo Genoese (2009). “Market power in the German wholesale electricity market”. In:
JEM 2.2, pp. 47-74. doi: 10.21314/jem. 2009.031. url: http://dx.doi.org/10.21314/JEM.2009.031.

Pinto, Tiago, Tiago M. Sousa, Hugo Morais, Isabel Pra,ca, and Zita Vale (2016). “Metalearning to support
competitive electricity market players’ strategic bidding”. In: Electric Power Systems Research 135, pp. 27-34.
doi: 10.1016/j.epsr.2016.03.012. url: http://dx.doi.org/10.1016/j.epsr. 2016.03.012. 1

Tiguercha, A., A.A. Ladjici, M. Boudour, and M. Hazli (2016). “Day ahead a electricity market analysis through a
neuroevolution algorithm”. In: 2016 IEEE International Energy Conference (ENERGYCON). Institute of Electrical
and Electronics Engineers (IEEE). doi: 10.1109/energycon.2016. 7513907. url:
http://dx.doi.org/10.1109/ENERGYCON.2016.7513907.

Ventosa, Mariano, Alvaro Balllo, Andres Ramos, and Michel Rivier (2005). “Electricity market modeling trends”.
In: Energy Policy 33.7, pp. 897-913. doi: 10.1016/j.enpol.2003. 10.013. url:
http://dx.doi.org/10.1016/j.enpol.2003.10.013.




Wang, QingQing, ZhaoYang Dong, Xue Li, Junhua Zhao, and Kit Po Wong (2007). “An Effective Approach to
Predicting Electricity Market Price Spikes”. In: 2007 IEEE Power Engineering Society General Meeting. Institute
of Electrical & Electronics Engineers (IEEE). doi: 10.1109/pes.2007.385852. url:
http://dx.doi.org/10.1109/PES.2007.385852.

Weidlich, Anke and Daniel Veit (2008). “A critical survey of agent-based wholesale electricity market models”. In:

Energy Economics 30.4, pp. 1728-1759. doi: 10.1016/j.eneco0.2008.01.003. url: http://dx.doi.org/10.1016/
j-eneco.2008.01.003.

Weron, Rafa | (2014). “Electricity price forecasting: A review of the state-of-theart with a look into the future”. In:
International Journal of Forecasting 30.4, pp. 1030-1081. doi: 10.1016/j.ijforecast.2014.08.008. url:
http://dx.doi.org/10.1016/].ijforecast.2014.08.008.

Zhang, Jianhua, Jian Han, Rui Wang, and Guolian Hou. “Day-ahead electricity price forecasting based on rolling
time series and least square-support vector machine model”. In: 2011 Chinese Control and Decision Conference
(CCDC). Institute of Electrical & Electronics Engineers (IEEE), May 2011. doi: 10.1109/ccdc.2011.5968342. url:
http://dx.doi.org/10.1109/CCDC.2011.5968342.

Author Supervisor



XX1V LIST OF TABLES



Chapter 1

Introduction

The energy markets are undergoing significant changes in the last two decades as
the energy industry itself has undertaken significant restructuring [7|. Before this
restructuring, the electricity markets were usually characterized by monopoly—based
organizational structures |7, 138, [169]. The situation has changed in the two last
decades and the energy markets resemble free and competitive market now |14, 169].
However, while these markets are already well established, they are still rapidly
changing together with the rapid changes in the underlying energy industry such as
the increasing share of renewables or the planned introduction of smart grids.

However, while the commodity markets has been around for decades, the knowl-
edge from these markets cannot be simply transferred to the energy markets as
the electrical energy differs significantly from most other commodities and thus the
energy markets has their own peculiarities. First of all, the electrical energy can-
not be efficiently stored in the necessary amounts [197]. Furthermore, in order to
ensure the stability of the power system, constant balance between supply and de-
mand is required [197]. Furthermore, the production of electrical energy is not as
easily controllable as the most of types of power-plants cannot be regulated within
short time interval, thus it is not possible to just shutdown the necessary amount of
power-plants when the supply is higher than the demand. This trait of the energy
industry leads to, among other things, the emergence of negative electricity prices on
the market — a phenomenon that is not common in the other commodity markets.
Moreover, the electrical markets are very complex not only because of the impos-
sibility of economical storage of electricity but also because the cost of electricity
generation varies with the weather — there is a not insignificant amount of wind
and solar power-plants in the industry.

However, the energy markets are not complex only because of the supply side
of the energy industry but also because the demand of electricity depends on many
things. First of all, the demand depends on the structure of business intensity
— there is a significant difference in electricity demand of some consumers in on—
peak hours and off-peak hours and also during the weekdays and the weekends).
Furthermore, even the demand strongly depends on the weather as, for example,
people might use electricity for heating when the weather is cold or use it for air—
conditioning when the weather it hot. Thus both electricity demand and supply
are changing with the seasons. This dependency result in complex market behavior
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and the electricity price exhibits both intraday periodic cycles and more long term
cyclical changes such as weekly changes or even seasonal changes, which together
with the changing energy industry, makes the electricity markets quite complex and
hard to predict their behavior in both short-term and long-term.

Moreover, the market behavior does not only exhibit seasonalities at various
levels (daily, weekly, or annually) but it also exhibits sudden and hard to predict
spikes [195] 197]. While the spikes themselves are actively researched, there is still
no general consensus about the cause behind them and they are still very hard to
predict [219]. The understanding of the causes of these spikes is a very important
task for risk management of market participants.

This work aims to compare many different models that are commonly used for
electricity price prediction on the Czech electricity market operated by OTE, a.s.[] as
no extensive model comparison for short-term electricity price forecasting is present
in the literature (with the exception of [24] which compares several different models
— more in Ch. . While electricity price prediction is actively researched topic in the
literature, almost none of the works focuses on the Czech electricity market which is
quite different environment compared to other, more frequently researched markets
— for in depth research about the Czech electricity market and its regulation, see
[100]. The goal of this work is to compare approaches that can be directly utilized
for trading thus this work focuses on hourly price prediction two days ahead — more
specifically, all used methods forecast a set of 24 hourly prices for day ¢t + 2 at time
t. This allows to make bids in the market as the market closes the previous day.
The ¢ + 2 forecast is a bit more challenging than the ¢ + 1 (which is not usable for
trading on the Czech electricity market) as it introduces more uncertainty and thus
the qualitative results from this work cannot be directly compared to works that
utilize a t + 1 forecasts.

This work focuses on artificial neural networks models, regression models and
other machine learning models — while it is nearly impossible to cover all possible
models, this thesis tries to cover various parametrizations of the most common
models — this works compares over 5000 estimators and their parametrizations.
Despite the number of compared estimators , agent—based models (ABMs) are not
used in this works — however, most of the predictive ABMs utilize internally an
ANN or SVM for the price forecasting (e.g. [144} 145} |169]) thus the results of this
thesis might be used in the ABMs.

The thesis has the following structure. A brief review of related work is provided
in chapter The used methods are presented in chapter [3] The description of
PSO and NM methods used for optimization of estimators’ parameters is provided
in section [3.1] the individual estimators that were used in this thesis are described
in section [3.2] and methods used for evaluation of the forecasts are presented in
section [3.3] Used data are described in chapter ] — including the individual sea-
sonalities present in the data. And finally, the used estimators are compared in
chapter [f] Concluding remarks and the possible extension of this work are in chap-
ter [6l

"http://www.ote-cr.cz
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Chapter 2

Related works

There has been a significant increase in the literature about electricity price fore-
casting in the last decade. The research of short-term electricity price prediction has
begun in 90s and then the number of published works rocketed in 2000s— there were
206 Scopus indexed journal articles and 274 conference papers in 2013 [197]. There
are two main classes of commonly used models — statistical models (e.g. OLS re-
gression, ARIMA models) and artificial neural networks models (ANNs). However,
the distinction between these two classes is blurry as there are models that can fit
both classes, e.g. linear regression using OLS is equivalent to a ANN with a single
neuron with linear activation function — the models are the same only the common
optimization approaches differs (OLS has a closed-form solution while ANN usu-
ally uses some kind of iterative numerical optimization such as gradient descent).
Furthermore support vector regression (SVR) is also sometimes considered to be a
kind of neural network albeit with completely different structure and optimization
compared to classical feed forward neural networks [188|.

It is greatly out of the scope to discuss all the related literature, thus only the
most relevant works are briefly described. A sample of related works for last two
decades is provided in table While the sample is not random, it can be observed
that two most popular approaches are ANNs and ARIMAs models and their mod-
ifications. A third quite popular approach is based on SVR (by some considered
to be an ANN). Other approaches such as decision trees (DTs) |47, |148|, random
forests (RFs) |57, (122], local informative vector machines (IVMs) [43|, relevance vec-
tor machines |4] are less frequent but still usable and able to provide quite accurate
forecasts. The list of used methods is incomplete and it is just to show the vari-
ety of approaches used for modelling electricity prices as almost every work about
electricity price prediction introduce a novel method or a novel modification of an
existing method.

The most popular ANNSs for electricity price prediction are feed forward ANNs.
A feed forward ANN with a single hidden layer with 8-12 neurons was used in [155].
Two layered feed forward ANN was used in |171] for day ahead price prediction in
the New England electricity market. A feed forward ANN was also used in [208|
where its performance was compared to other popular estimators, namely the SVR,
RFs and K-nearest neighbor (KNN) based models. One of the rare works about the
Czech electricity market is [172] where the authors compare an ANN model with
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ARIMA and hybrid ARIMA-ANN models for predicting the spot prices. While the
hybrid model performed better than the pure ARIMA models it was still outper-
formed by pure ANN model in their settings |[172]. Similar results were obtained
in another work focused on the Czech electricity market [24] which compared sev-
eral different model for prediction of both hourly and daily prices. An ANN model
(multi-layer perceptron) performed the best for prediction of hourly prices (RMSE
6.15 EUR/MWh) while an ARIMA model gave slightly worse prediction (RMSE
6.25 EUR/MWh). However, even worse prediction (RMSE 7.32 EUR/MWh was
made by another popular ANN model — Elman networks. The author also reports
different results when the used metrics was mean absolute percentage error (MAPE)
as the ARIMAX was worse than the Elman network. However, this was probably
caused by the unsuitability of MAPE as this metrics is biased towards lower forecasts
[184] due to its asymmetry [92, 163]. Another work focused on the Czech electric-
ity market is [102] which, however, dealt mainly with the prediction of volatility of
electricity prices even though one of the estimators was producing day ahead price
predictions during the volatility forecasting process [102].

SVR and SVMs are quite popular as they are able to deal well with outliers
and are able to provide quite robust forecasts [206] (even though even more robust
versions have been proposed in [80, 84} 186, (187]) and as SVRs can be used instead of
classical linear regression without any major changes in workflow. Furthermore, the
kernelized versions of SVR and SVMs allow implicit mapping to different space and
thus can be used even for non-linear problems. The parameters of SVR for electricity
price prediction were optimized using PSO in [165, 166| to tune the regularization
of the regression.

DTs and RFs represent completely different approach than LR and SVR — they
fit a non-continuous function to the data by creating decision tree with thresholds.
While this approach might not be intuitive for regression problems it can deal with
missing data [114] and the decision trees are easily interpretable [114]. A DTs
and RFs can function as a black—box algorithm as they can be applied directly to
the data without any pre-processing or assumptions. DTs were used for electricity
price prediction in [47] where each prediction is done by 24 models, each predicting
one particular hour in the day-ahead prediction. The first step is classification of
individual datapoints as either regular data point or a spike. Second step is a feature
selection process. Then finally the models for price prediction are fitted — each of the
24 models consists of 3 DTs. First DT predicts whether a spike will occur, the second
model predicts the price if the spike occurs and the third if the spike does not occur.
The advantage of such approach is that it also facilitates spike prediction. DTs might
be used also as part of feature selection process before yielding the prediction itself
to another estimator as in [148] where the author studies two different algorithms
for fitting DTs (ID3 and C4.5) for feature selection for price prediction.

Table 2.1: Summary of related works.

Sample or related works

year work method market notes

1998 1194 ANN England and Wales

1999 [13] expert-based model JPM MAPS software
1999 [175] ANN Victoria

2000  [136] ANN -

2000 135] expert-based structural model California

2000 |210| ANN UK power pool using wavelet transform and RBF NN
2000 150] ANN California

2001 |135) AR with classification New England estimating also PDF
2001 190] covariance TS model California

2002 1138 Dynamic regression Spain, California




Continuation of Table |2.1|

year method market notes

2002 ANN JPM

2002 ANN California

2002 OLS UK power pool using wavelet transform

2002 KNN, Dynamic regression Spain

2003 ARIMA Spain, California

2003 ANN New England using RBF' networks

2003 ANN New England using Cascaded NN

2003 ANN New England using Elman network

2004 ARMA JPM using wavelet transform

2004 ANN JPM, New England

2004 ARIMA California

2004 ANN California

2004 ANN, LR China both short—term and long—term forecast
2004 ANN ensemble New England

2004 ARMA Leipzig Power Exchange comparison of differnent ARMA models
2004 ANN JPM using recurrent NN with fuzzy rules
2004 ANN Ontario

2004 ANN China using wavelet NN

2005 ARIMA Spain using wavelet transform

2005 Hidden Markov Models Spain

2005 ARMAX California

2005 ANN ANEM with Bayesian classification for spike prediction
2005 ANN New England using Kalman filter

2005 ARMA,GARCH California, Spain

2006 ARIMA California

2006 ANN Leipzig Power Exchange

2006 ANN,AR Leipzig Power Exchange predicting daily prices

2006 ANN Spain using fuzzy NN

2006 ANN California

2006 Bayesian Expert with SVM China

2006 ANN JPM trained using artificial fish swarm
2006 ANN California recurrent NN

2007 ANN, KNN Spain

2008 ARMA NordPool, Ontario

2008 ANN, LR China

2008 SARIMA, GARCH Spain

2010 ANN,ARMAX,GARCH PIJM hybrid model adaptive wavelet neural network
2010 Grey model NordPool PSO tuned

2010 ANN ensemble Italy, New England, Ontario

2010 ARIMA, GARCH Spain, PJM using wavelet transform

2010 ANN PIM using extreme learning machines

2010 ANN ensemble PIM using extreme learning machines bagging
2010 ANN ensemble PIM using extreme learning machines ensemble
2010 GARCHX UK power pool daily prices

2010 115 EWM NordPool, France, The Netherlands

2010 ? ANFIS Spain using wavelet fuzzy NN

2011 1=77 ANN PIJM using extreme learning machines, RBF NN
2011 ﬁ ANN New England

2011 E: ANN PIM

2011 170, ANN New South Wales both price and load forecasting

2011 E LR Iran trained using GA

2011 ﬁ ANN —

2011 ﬁ ARMAX,GARCH, LS-SVM California hour ahead

2011 E PSO tuned SVR Ontario

2012 E SVR,ANN,RF,KNN, LR — daily prices, comparison of various approaches
2012 RVM New England

2012 Dynamic Factor Model Spain

2012 9 SVR ANEM, PJM, Spain

2012 ﬁ SVR, ANN NordPool, Ontario both wavelet and RBF NN

2012 E ANN, NARX New South Wales, New England using data association mining

2013 E ANN Ontario with feature selection

2013 ; ARIMAX ensemble NordPool

2013 E IVM Spain comparison with other methods

2013 {271] SARIMA NordPool
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Continuation of Table|2.1|

year method market notes

2013 RDFA ANEM

2013 Multi-Kernel learning MISO

2014 C4.5, ID3 New South Wales, Spain

2014 PSO tuned SVR Ontario interval estimation

2014 evolutionary based ANN Portugal 3 hours ahead

2014 Multi-Kernel Learning MISO

2014 ARMA, SVM Italy

2014 ANN NordPool focus on wind power bidding strategy
2014 SETAR Italy

2014 ANN ANEM hybrid ELM

2014 ANN, ANFIS, ARMA Spain using Kalman Fusion

2015 ANN PIM Combinatorial NN

2015 ANN Ontario multiobjective, interval estimation
2015 PSO tuned SVR Ontario,PJM interval estimation, comparison
2015 SVR Germany using natural gas prices

2015 ARIMA,NN Czechia hybrid ARIMA-NN model

2015 DT Belgium, NordPool spike prediction

2015 STAR Italy

2015 ANN with PSO Greece, U.S. cities wavelet NN

2015 LR Nordpool

2015 RF, ANN Spain

2015 RF, LS-SVM Victoria

2015 ANN ANEM, Spain fuzzy NN

2016 ANN SUD Italy

2016 ANN UK power pool, Serbia both short—term and long—term
2016 ANN, LR India daily prices

2016 LSSVM-GA Ontario

2016 ANN, SVR Italy

2016 SVR New England daily prices

2016 SVR New England daily prices, mid—term forecast
2016 SVR New England daily prices, feature selection
2016 Markov Switch Model NordPool using GARCH,MRJD

2016 ANN, SVR, RF New South Wales

2017 ANN with GA Victoria ELM with NSGA-II, interval estimation
2017 Mixed models, SARIMA Spain also general introduction

2017 ANN ANEM, Ontario wavelet neural network and generalized ELM

End of Table 2.1]




Chapter 3

Methods

Reviews of different methods for electricity price forecasting are available in [2].

3.1 Optimization of hyperparameters

While individual regression algorithms have their own methods for minimizing the
error of regression, most of those algorithms are parametrized by hyperparame-
ters. Hyperparameters are parameters that influence the function of a regression
algorithm but are not optimized in the algorithm itself. Commonly used hyperpa-
rameters are regularizing constants or, in case of ensembles, number of estimators
within the ensemble.

This work uses several approaches for selection of the suitable hyperparameters
for individual algorithms. The hyperparameters were optimized by training different
parametrization on the training set and then evaluated using the walidation set.
Three different methods were used for directing the search in the space of possible
hyperparameters: grid search (GS) [16], particle-swarm optimization (PSO) [19, |89,
146| and the Nelder-Mead (NM) method [105} |126, |134].

3.1.1 Grid search

Grid search is an undirected search of the optimization space that explores points
spaced evenly in all dimensions. This method is conceptually very simple and very
easy to parallelize as coordinates of each points are calculated at the beginning of
the search and then only independently evaluated. The GS is not suitable for high-
dimensional optimization as it suffers from the curse of dimensionality [16] — the
number of points to evaluate grows exponentially with the dimension. Furthermore,
the GS does not work well for functions with low effective dimensionality (i.e. some
dimensions are much more important than the others) in high dimensional search
space — for details viz [16]. Due to these problems, the GS method is used within
this work only for quite small problems.
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3.1.2 Particle-swarm optimization

Particle-swarm optimization (PSO) is a stochastic search population based method
that iteratively searches the optimization space [89]. PSO has been successfully
used in various optimization problems (for reviews of application viz |19, |146]) as
it is both simple and robust class of methods that are performing well even for
complicated functions.

3.1.2.1 Usage

This work uses PSO for finding optimal values of hyperparameters for a representa-
tive estimator of a class of estimators. The found optimal values of hyperparameters
of the representative estimator are then used as an initial point for local search for
other estimators from the class.

3.1.2.2 Algorithm

Tere are several different PSO algorithms that have been proposed over last two
decades (viz [19]), however the used PSO algorithm is based on [28] and is described
below.

The method uses a population of m particles that are iteratively updated and
explore n dimensional space that is constrained by initial range c;_, and c;, . for
j €{1,...,n}. Each particle i at iteration t has defined |19, [2§]:

e position x!

Position describes the coordinates in the search space and is directly respon-
sible for the quality of a particle.

e velocity v!

Velocity describes the direction and length of movement of a particle.

e personal best p!

Personal best describes the best position that a particle visited in since begin-
ning of the algorithm.

The algorithm then iteratively updates the particles

1. the positions x? and velocities v) are randomly initialized within the con-

strained initial range, p) = f(x?) for each particle i € {1,...,m}

2. find the historical minimum pé over all particles at time ¢

p,, = argmin f(p}) (3.1)
ie{l,....m}

3. then for each particle
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it = + @1 - (P} — x}) + @2 - (P} — ) (3.2)

(b)
it = x! +olt! (3.3)

()
p/ = min(p}, f (x{) (3.4)

where ¢ and ¢, are vectors of n uniformly sampled values in [0, ¢, ]
and [07 ¢2max]'

4. repeat 2 and 3 until termination criterion

3.1.3 Nelder—Mead

Nelder-Mead simplex method is a numerical optimization method for non-linear
problems introduced in [134]. The method search a n dimensional space using a
n + 1 vertices arranged in a simplex. The method computes the objective function
at each vertex of the simplex and then extrapolates the objective function to find
a better point in the search space that subsequently replaces the vertex with the
worst objective value in the simplex and then repeat the extrapolation.

While the Nelder-Mead method works well for many functions, it might con-
verge to a non-stationary point of the objective function [126]. The Nelder-Mead
method might still be useful despite the possible convergence to a non-stationary

point because it requires only a relatively few evaluations of the objective functions
[134].

3.1.3.1 Usage

Since this Nelder—-Mead method might have convergence problems, this method is
used in this work only as a possible refinement when the starting point should already
be close to an optima — the PSO algorithm is used to find optimal parameters of a
representative of a class of estimators and then the Nelder-Mead is used for possible
update of the optimal parameters of the representative estimator for each estimator
from the class. Since the estimators within the class are similar, their optimal values
of hyperparameters are mostly close as well. The Nelder-Mead method is thus used
only as a heuristic local search and therefore the convergence problem are not an
issue.

3.1.3.2 Algorithm

The Nelder—Mead method is an iterative approach that updates a simplex of n + 1
points in n-dimensional search space in each iteration [105]. The minimization
version from [105] is described below:

1. initialize the simplex of n + 1 points: {@1, ®2, ..., Ty, Tpi1}
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2. order and reindex the points by respective values of objective function

fay) <f(xz) < ... <f(x,) <f(xni1) (3.5)
3. calculate centroid Z of points x1, ®o, x3,..., T,_1, T,

4. Compute the reflection point x, and evaluate f(x,)

T, =T+ p(T — Tyy1) (3.6)
5. If f(xq) < f(x,) < f(x,), continue to 2 with {x1,xs, ..., x,, x,}

6. If f(x,) < f(x1), calculate the expansion point . and evaluate f(x.)

T =%+ x(x, — ) (3.7)

If f(x.) < f(x,), continue to 2 with {x1, xs, ..., x,, T}, else continue to 2 with
{x1,22,..., 2y, 2, }

7. Iff(x,,) < f(x,) < f(x,41), calculate outside contraction point x,. and evaluate
f(xoc)

Zoo =T + y(x, — T) (3.8)
If f(@o.) < f(xy41), continue to 2 with {xq, xs, ..., xTp, Toe}

8. If f(x,) > f(x,41), calculate inside contraction point ;. and evaluate f(x;.)

Zi. =& —y(x, — ) (3.9)
If f(@;.) < f(x,41), continue to 2 with {x1, xo, ..., x4, Ti}
9. For each point 7,7 € {2,3,...,n,n + 1} calculate x and evaluate f(x})
x, =x1+0(x; — x1) (3.10)

3 3 / / /
Continue to 2 with {x,x5,...,x), =, }.

where p, x, 7, and o € R are coefficients of individual operations |[105]. The standard
values are p=1, x =2, v = 3, and o = 3 [103].

3.2 Estimators

Various estimators are compared in this work, while this comparison cannot include
all different estimators and their parametrizations, nevertheless this thesis attempts
to provide comparison of the major and most intuitive classes of estimators. This
section contains short overview of each class of estimators that are compared in this
work.
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3.2.1 Ordinary Least Squares Regression

Ordinary Least Squares (OLS) is probably the most common linear estimator as
it is very simple and it works well in many cases. History and properties of the
OLS method are out of scope of this work and can be found in any textbook of
Econometrics — e.g. [199, p. 72|]. Even though the underlying model of hourly
electricity prices is not linear and it evolves dynamically in time, the OLS might
still be able to provide a good prediction of the prices. The quality of a prediction
is evaluated using out-of-sample data.

The OLS tries to fit linear model:
y=x"B+e¢ (3.11)

where y is the dependent variable and & € R" is vector of n independent variables
and 3 € R" is vector of n weights.

The optimization formulation of the problem tries to find such ,@ that minimize
the squared error:

-~

f= argﬁmin ly — X8I, (3.12)

where ||z, = /2% + 2% + ... + 22 for € R" is the Euclidean (Lj) norm. The

OLS is very simple and does not impose other constraints on the estimates B, which
makes OLS sensitive to outliers and overfitting in some settings.

3.2.2 Support Vector Regression

Support Vector Regression (SVR) is a regression method based on the same idea as
the famous Support Vector Machines (SVMs) [31] for classification tasks. It was first
proposed in [41] and similarly as SVM, the SVR model depends only on a subset of
data. This work has used several different formulation of SVRs.

3.2.2.1 eSVR with linear kernel

The simplest e-SVR is with linear kernel. This work has used two formulations of
linear e-SVRs — with L; loss (e-insensitive and with Lo loss (squared e-insensitive
loss).

The optimization formulation is:

1o cyr, (max (O, Y — 'wT:BZ-| — e)) if using L; loss
R 2w W {C’ Z?zl (maX (O, Yi — 'wT:BZ-| — e))2 if using Lo loss (3.13)

where w € R" is vector of n weights, C' is the regularization constant and € € R



12 CHAPTER 3. METHODS

is determining the sensitiveness of the loss |46].

The dual form of the optimization is:

min S [a* ] { Q —_Q} [af} Y@ —a)+a(at ta) »

where 1 is the vector of all ones, Q = Q + D, Q € R™™ and Qi == x]x;, and
D is a diagonal matrix defined as:

0 if using L, loss
D.. — q
" {— if using L, loss (3.15)
and U [46]:
_ JC'if using L, loss
U= {oo if using Lo loss (3.16)

The used implementation [46] actually optimize slightly different problem that
is equivalent, for details see [46).

3.2.2.2 SVR with a general kernel

Other kernels allows the e-SVR implicitly map the problem into different space where
the SVR might find better solution similarly as in regular SVM with a kernel.

The optimization problem of an e-SVR with a general kernel is [25]:

- +C 7,_'_
Jnin 5w Zf 25
w.r.t.

wr g (x) +b—y <e+&,

yi—w o (x:) —b< e+ &,
£i7£:207i:1727"'7m

(3.17)
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and the dual problem is [25]:

a,o*

: 1 * * - * - *
min= (a — a*)’ Q (a — « )+eZ(ai+ai)+2yi(ai—ai)
i=1 i=1
w.r.t. (3.18)
1" (a—a*) =0,
0<aa;<Cii=12....m

where Q;; = K(x;, ;) = ¢(x;) ¢(x), L.e. K(z;, ;) is determined by the used
kernel [25].

The approximate function is |25]:

fx) = Z (—a+a”) K(xz;,x) +b. (3.19)

3.2.2.3 Used kernels

This works uses several different kernels that are described below, however, the list
is limited only to used kernels, for deeper introduction into kernel see [190].

3.2.2.3.1 Linear kernel The linear kernel is the most simple one and is defined
as [143} 190]:
K(zi, ;) =z ; (3.20)

3.2.2.3.2 Polynomial kernel The polynomial kernel is defined as 143, [190]:

K(z;2;) = 7 (xfa; + )" (3.21)

where v € Ry is scaling parameter, ¢y is usually set either to 0 (homogeneous
polynomial kernel) or 1 (inhomogeneous polynomial kernel — other values are also
possible). The homogeneous kernel with ¢g = 0 and v = % is used for the purposes
of this work.

3.2.2.3.3 Sigmoid kernel This kernel is also known as hyperbolic tangent kernel
[143} {190]:

K (x;,x;) = tanh (v x; + ) (3.22)

where ¢y and v has the same meaning as in the polynomial kernel. This work
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uses the kernel with ¢g =0 and v = %

3.2.2.3.4 Radial basis function kernel The radial basis function kernel (RBF)
[143,190] is one of the most commonly used kernels with SVMs:

K (z;, ;) = exp (=]l — ajll3) - (3.23)

Sometimes the kernel is defined with o instead of 7 and the usual meaning is
v =25 [143] or v = 5% [190].

3.2.3 Decision Trees

Decision Trees (DTs) might be used for both regression and classification — when
used for regression, they actually discretize the output into varying levels. The tree
consists of binary decision nodes which contain condition and based on the condition,
the estimation continues with either left or right branch [114]. The leaves usually
contain an output value that is returned.

Decision Trees are very useful as they are very easily and intuitively interpretable
[114]. The disadvantage of DTs is that they are prone to overfitting — esp. in case
of high-dimensional input and few samples. The DTs are also popular for ensemble
methods such as Random Forests (RFs) |22] or AdaBoost [48], viz |3} |11} |38, 88|
110] for details of DTs in ensembles.

DTs are a general class of approaches and there is quite a number of algorithms
for fitting DTs to data — e.g. AID, THAID, MAID, ELISEE, 1D3, CART and
C4.5, viz |98, (113} |[114] [133] [150, 154, [174| for reviews and details. This work
uses the CART algorithm that allows both classification and regression. A DT has
many different parameters that strongly influence its shape and performance, e.g.
mazx features per split (the maximum number of features considered in each split),
mazximal depth (used often for reducing overfitting), minimum samples per split (the
minimum samples needed for a split), minimum samles in a leaf, maximum number
of leaves, or minimum impurity of a split (for stopping the growth of a tree early),
for details about the CART algorithm see [114} |160].

3.2.4 Ridge Regression

Ridge Regression (RR) is very similar to OLS but it adds L, regularization on
estimated coefficients. The first use of this method for regression was presented in
[73]. The optimization formulation of RR is defined as [143]:

min | Xw — yl; + aflwl; (3.24)

where a € Ry is the regularization parameter controlling the amount of the
shrinkage.
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3.2.5 Lasso Regression

Lasso (least absolute shrinkage and selection operator) regression is another exten-
sion with OLS that regularize estimated coefficients. The Lasso tries to estimate
sparse coefficients (and thus it can be also seen as a tool for feature selection) [181]
by regularizing the coefficients with the L; norm:

1
min—||y — Xw|;
w o m

wort, (3.25)
lwll, <t
where ¢ is the regularizing parameter.
It can be also rewritten to an equivalent problem [143]:
05l = Xwl}+ afwl (3.20)
min o— ||y w5 + aflw||, :
where « is a different regularizing constant and ||wl|, := Y . |w;| is the L,

norm.

3.2.6 Least Angle Regression

Least Angle Regression (LARS) is a regression method similar to Lasso that both fits
a linear model to data and performs an implicit feature selection similar to forward
selection |182].

The algorithm works as follows [182]:

1. Start with 5, :=0,1=1,2,...,n
2. find predictor z;, most correlated with the response

3. take largest possible step (i.e. increase in (3;) until some other predictor z;,
has as much correlation with the current residual

4. form set of predictors S

5. take largest possible step equiangular between predictors from S (e.g. in sec-
ond iteration S = {x;,,z;,}) until some other predictor x;, has as much corre-
lation with the current residual

6. add zj, to S
7. continue with step 5 until all predictors are in the model

for more details about the algorithm and how to compute the equiangular direc-
tion effectively, viz [182].
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3.2.6.1 Lasso—LARS

The slightly modified LARS allows for computing exact solution for Lasso regression
[182] — this method is denoted as Lasso-LARS and was used to compare to regular
Lasso that is optimized using coordinate descent in used implementation [143].

3.2.7 Elastic Net

Elastic Net (EN) represents an extension of Lasso regression. It extends the Lasso
by adding another penalty term [222].

The problem can be written as [143, 222]:

2w, (327)

.1 2
min =y = Xwl} +aplwl, +

where o and L1 ratio p are parameters.

3.2.8 Bayesian Ridge regression

Bayesian Ridge regression tries to find maximum a-posteriori solution w to a prob-
abilistic model where y is to have Normal distribution around Xw [143]:

p(y| X, w,a) =N (y| Xw,a). (3.28)

where « is from Gamma distribution with parameters oy (shape) and ay (inverse
scale). The prior over w is:

p (w[A) =N (y|O,x71). (3.29)

where A is from Gamma distribution with parameters A\, (shape) and Ay (inverse
scale).

3.2.9 Random Forest

Random Forests are popular ensemble estimators introduced in [22] that are very
similar to more general methods random subspaces and bagging |21, [71, |103} |157,
158, 218|. A random forest estimates a number of Decision Trees — each of these
DTs is estimated using a random sample taken with replacement from the training
set and also split in each node is made using only a random subset of features |22,
157, |158|. RFs performs very well in many settings while being robust to noise and
furthermore can be easily parallelized [22)].

The hyperparameters of RFs are the same as for DTs but contain also another
hyperparameter — number of trees. Higher number of trees in RFs usually leads to
similar or higher accuracy but is computationally more expensive.
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The advantage of RFs is that they also provide a measure of importance of
individual variables and thus they can be used for feature selection as part of data
pre—processing for other estimators |11, 55, 66, [67]. Another advantage of RFs is
that they can deal with missing values implicitly [67].

One of the most popular extensions of RFs are rotation forests [156| that maps
the random subset of features in each node to new space — usually using Princi-
pal component analysis (PCA) [156], non-parametric discriminant analysis (NDA),
Random projections (RP), Sparse random projections |104] or with Independent
component analysis (ICA) [45].

3.2.10 AdaBoost.R2

Another used ensemble estimator is AdaBoost.R2 [40] which is a modified regression
version of the famous AdaBoost ensemble estimator [48]. It sequentially fits estima-
tors and each subsequent estimator concentrates on the samples that were predicted
with higher loss.

The used algorithm implemented in [143| slightly differs from [40] as it allows to

used the weights directly in the fitted estimator and not only for weighted sampling
of features:

1. start algorithm ¢ = 0

2. To each training samples assign initial weight
whi=1,i=1,2,...,m (3.30)
3. fit estimator ¢ to the weighted training set with weights w?

4. compute prediction g using the estimator ¢ for each sample i

5. compute loss [; for each training sample

I =1loss (| — i) (3.31)

6. calculate average loss [¢

7. calculate confidence ' for the estimator (low ' means high confidence in
estimator )

B = — (3.32)

8. update weights of training samples

with = w! - (ﬂt)(l_l’t‘) d=1,2....m (3.33)

(3

9. t =t 4 1 continue to step 3 while the average loss It < 0.5
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where loss(e) : R — [0, 1]. The work [40] suggests following losses:

1. linear loss

~t
1= (331)
2. square loss
Ui — yz’2
Il = oz (3.35)
3. exponential loss
~t
[ —19 il 3.36
= e (T (3.36)
where D is defined as
D:sup{‘@\f—yﬂ,ie{1,2,...,m}} (3.37)

3.2.11 Neural networks

Artificial Neural Networks (NNs) represent a very broad field of approaches and
algorithms whose beginnings are in the 19th Century as the early NNs are based on
the linear regression [161]. However, the early NNs differed significantly from the
mpst commonly used NNs today as they were not able to learn from data [125 161].
Some researchers consider the introduction of McCulloch’s neural logical calculus
[125] as the beginning of the field. Then appear NNs that were able to learn from
data in unsupervised manner (1949) [69] (ref. from [161]) and only later in supervised
manner, for example the perceptron algorithm in 1958 [159]. The popularity of NNs
rises with the introduction of general learning algorithm — the backpropagation. The
backpropagation was first introduced in 1970 [112, [161] but it was used in context
of NNs a decade later — in 1981 [161] in [196].

A great number of various types of NNs was proposed since then — e.g. textitper-
ceptron |159|, RBF networs [23|, Boltzmann Machines |70|, Hopfield networks [77],
Restricted Boltzmann Machines [173|, Deep Belief networks (DBN) [15], Recurrent
neural networks (RNNs) [44], GRU networks (networks with gated recurrent units)
[27], LSTM networks (networks with Long short-term memory units) |72, Auto-
Encoders (AE) |20], Variational Auto—Encoders (VAE) |94], Sparse Auto—Encoders
(SAE) [152], Denoising Auto—Encoders [191], convolutional neural networks CNNs
[49, [107]|, Deconvolutional networks [213], Deep convolutional inverse graphics net-
works (DCIGN) [101], Generative Adversarial Networks 59|, Neural Turing Ma-
chines (NTM) |61, 211|, bidirectional recurrent neural networks (BRNNs) [162],
Self-organizing maps (SOM) 97|, Liquid State Machines [120|, Extreme Learning
Machines (ELMs), Recombinator networks |74], and Echo State networks |82]. This
list is incomplete and the types are not disjoint categories, the list was given only
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to show that the field of NNs is very broad and does not limit to the few simple
architectures that are used in this work.

This section only provides a very brief overview of the relevant parts of the field
focusing mostly on feed forward neural networks with simple architectures. For more
detailed introduction into NNs, viz |60, 85].

3.2.11.1 Description

A NN can be defined as a computational graphical model with weighted edges.
Nodes are called neurons and edges describes the flow of a signal. A neuron takes
all input signals and combines them into a single output signal that is either part of
the output of the NN or is sent to one or more other neurons. Thus for a neuron i
with inputs zg, z1, ..., x, that came through edges with weights wq, wy, ..., w,, an
activation function f(x) and a bias constant b the output z; at time ¢ is:

wlt) = f (bi P> - 1]) (3.38)

The Eq. is often written in a matrix form (without the time indices that are
often unnecessary):
zi = f(wlx), (3.39)
where

Zo

x=|. (3.40)

and

wi=| . (3.41)

There are many possible activations functions (e.g. linear or ReLU) but the most
known are the sigmoid activation functions and especially the logistic function:

flz) = (3.42)

An example of typical NN is shown in fig. that contains a NN consisting of
3 layers (certain NNs can have more than several hundreds of layers — e.g. residual
networks (ResNets) in [68]).
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Input Hidden Output
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Figure 3.1: An example of a simple feedforward NN with 3 input neurons, 2 neurons in

the hidden layer and 1 output neuron.

The output y of the NN from fig. [3.1] for given inputs xzy, ..., z3 is:

3 3 3
Y = S <b7 + w4,7S <b4 + Z wj,4xj> + 1U577S <b5 + Z w]‘,5$j> + w6,7S <b6 + Z ’wjﬁltj))

=0 §=0 j=0

(3.43)

where S is the sigmoid activation function and w; ; represents the weight of the
connection between neurons ¢ and j. The computation is usually done by layers
to avoid duplicate computations if the network has more layers (only the inputs

xg, . . ., x3 occur repeatedly in eq. (3.43))).

3.2.11.2 Training

The NNs are often trained using gradient descent with the use of backpropagation
(BP) for computing the gradient of the NN with the respect to the used loss function.
BP is basically an iterative application of the chain rule of differentiation . Let
reR, f(x) : R—=R,g9(x): R —>R,y=g(x), and z = f(y) = f(g(x)), then the
chain rule of differentiation is:

The NNs are usually written in terms of vector — for x € R™, y € R", 2z € R,
glx) : R" - R", fly): R" - R, y =g(x), and z = f(y), then the chain rule of

differentiation is:

0= _ zn: 9z Oy (3.44)

Once there is a method for computing the gradient, then the gradient descent
might be used for finding a local optima. Gradient descent works by going down in
the loss function landscape . The basic version of gradient descent make a fixed
length step in the direction of highest gradient, however many other modifications
to the algorithms were proposed in the literature — the gradient might be computed
for only a small subset of the training samples at a time (online gradient descent or
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minibatch gradient descent — both are sometimes called stochastic gradient descents
[85]), the algorithm might use momentum (or Nesterov momentum), or the algo-
rithm might change the learning rate. Some of the popular algorithms for optimizing
NNs besides the stochastic gradient descent are Adadelta [212|, adagrad 42|, Adam
and AdaMaz|93|, ESGD |33|, Nadam [39] or RMSprop |183]. More details about
optimization of NNs is available in [60].

3.3 Forecast evaluation

There are many different measures that might be used for forecast evaluation —
the most common ones are mean absolute error (MAE), root mean square error
(RMSE) and mean absolute percentage error (MAPE). A more comprehensive list
of available measures is in |81} [163]. This work uses MAE and RMSE; the MAPE
is not used due to its unsuitable characteristics. The MAPE is not defined when
the actual value is zero and explodes for values close to zero |81} 92, 184] and the
MAPE is biased toward lower forecasts [81], [184].

3.3.1 Mean absolute error

The MAE is defined as:
1 & N
MAE = n Z e — Uil (3.45)
t=1

where n is the size of the sample, y; is the actual value of the time series at time ¢
and 7; is the predicted value for time ¢. It is the recommended error measures for
most problems because it has clear interpretation and it is robust and not sensitive
to outliers |10} [81].

3.3.2 Root mean square error

The RMSE is defined as:

1 ~
RMSE =, | — Z (v — yt)Za (3.46)

where n is the size of the sample, y; is the actual value of the time series at time ¢
and 7; is the predicted value for time ¢.

RMSE is one of the most popular error measures but as it puts larger penalty
on larger errors, it is sensitive to outliers and is often misinterpreted as an average
error [10, 81]. It is, however, very useful for most optimizations as it does not
contain absolute value function and it is smooth and differentiable convex function
and leads to stable solutions. Most of the used algorithms are, in fact, finding an
estimator minimizing the RMSE, thus it the RMSE is used as one of main measures
for evaluating the forecasts.
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3.3.3 Diebold—Mariano test

The Diebold-Mariano (DM) test is often used for comparing the quality of two
different forecasts |37]. This test allows for testing the difference of two forecasts with
the null hypothesis of no difference. It allows for forecast errors to be non-Gaussian,
with non—zero mean, serially correlated and contemporaneously correlated [37]. It
uses the loss differential L(e;) for forecast error e; where the function L depends
on the used loss, e.g. quadratic loss is L(e;) = €?. Thus the time-¢ loss differential
between forecasts A and B is dap; = L(ea;) — L(ep:) |36]. The only requirement of
the DM test is that the loss differential is covariance stationary, i.e. the following
three equations must hold:

E(dABt) = /L,vt, (347)
Cov(dapt, dap—ry) = (), Vi, (3.48)
0 < Var(dap;) = 0 < . (3.49)

The null hypothesis consist thus to E(dap:) = 0 under which the DM statistics:

—
DMyp = —22 5 N(0,1), (3.50)

Odap

where dyp = Z?zl dap is the sample mean of dsp; and 0% is a consistent

estimate of standard deviation of dp [36]. More details about the whole procedure
are available in |36, [37].

3.3.4 Pareto rank

The estimators were evaluated using both RMSE and MAE which resulted in two
rankings of estimators as the RMSE and MAE error measures are two competing
objectives. The Pareto ranking was used to combine the two measures into a single
ranking based on multi-objective optimization. A estimator is considered Pareto
efficient when there is no other estimator that would be at least as good in one
measure and strictly better in the other measure. The Pareto optimal set (frontier)
is a set of all Pareto efficient estimators.

The Pareto rank is calculated iteratively — first, the Pareto optimal set P (fron-
tier) is determined for the set S; of all models and all models from the set P; are
assigned rank 1 and are removed from the set S = S; \ Py, then another iteration
is calculated.

The Pareto rank allows for comparing estimators without the need to limit the
comparison to either RMSE or MAE measures, however, the model within a single
Pareto rank might be very different while model with different Pareto ranks might
still be very similar in terms of MAE and RMSE — the Pareto rank does not weight
the individual RMSE and MAE measures. If one estimator had RMSE rank 1 while
the MAE rank 100, the Pareto rank will still be 1. The final estimator should be
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selected from estimators with Pareto rank according to the preferences to the used
error measures.
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Chapter 4

Data

There are several important characteristics of the Electricity Markets such as oc-
currence of negative prices, intraday cycles and abrupt spikes. This chapter de-
scribes the price data on the Czech Day—ahead electricity markets and confirms
that this market has all three characteristics. The data were obtained from the
interval of 2009/1 — 2017/5 and consists of one Excel file per year. The data are
provided by OTE, a.s. and are available at http://www.ote-cr.cz/statistika/
rocni-zprava. The Excel files contains hourly marginal prices in euros per megawatt
hour together with the amount of electricity sold and bought and the amount of elec-
tricity exported to or imported from Slovakia. It also contains several dependent
variables that were calculated from the variables mentioned above — e.g. the total
price for the electricity or daily averages. More detailed description of the published
data is available at http://www.ote-cr.cz/. It is important to note, however,
that the hourly prices in euros per megawatt hour were calculated from the price
in CZK/MWh using the exchange rate provided by the Czech National Bank until
31.1.2009. Thus the prices until 31.1.2009 are not exactly the same as the prices
after 31.1.2009 due to the slightly varying exchange rate but this difference is neg-
ligible for our purposes. The marginal prices in CZK/MWh since then are only
informative and are calculated from the prices in EUR/MWh using the exchange
rate provided by the Czech National Bank.

4.1 Price data

The data consists of 3073 sets of 24 hourly data from 2009/1 —2017/5 a. The highest
recorder price during that period reached 170 EUR/MWh and the lowest price
reached -150 EUR/MWh, while the average electricity price is 38.42 EUR/MWh, the
median is 37.44 EUR/MWhand the 25% and 75% quantiles were 28.00 EUR/MWh
and 48.38 EUR/MWh — this is just an illustration of the extreme ranges of the
price of electricity. The negative price of the electricity was observed in total of 284
samples, which is not very frequent as it represents less than 0.4 % of the dataset.
However, even these rare negative prices might be very important for risk managers
as the prices might be very low. The basic statistics for individual hours are shown
in table however, these static statistical description is only illustrative as there
are many seasonalities and periodicities present in the electrical prices [195, [197].
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hour count mean std min  pa2s%  Pso% P75y 0 Mmax
01 3103 29.317 10.997 -109.31 24.050 30.00 36.000 55.50
02 3103 26.291 11.134 -120.00 21.000 27.00 33.000 53.50
03 3103 24.454 11.304 -150.00 19.000 25.30 31.500 51.00
04 3103 22.929 11.358 -150.00 17.000 23.93 30.000 50.93
05 3103 23.543 11.355 -150.00 17.565 24.50 30.750  50.50
06 3103 26.873 11.607 -150.00 21.000 27.90 34.300 51.95
07 3103 34.371 14.597 -150.00 26.805 36.00 44.000 78.28
08 3103 42.092 18.061 -50.82 31.965 43.30 53.495 140.00
09 3103 44.654 17.498 -16.94 34.100 45.00 56.000 140.00
10 3103 45.428 16.243 -11.20 35.100 45.03 56.000 134.14
11 3103 44.879 15.764 -9.87 34.800 44.61 55.410 123.52
12 3103 44.913 16.000 -2.40 34400 44.50 55.435 121.00
13 3103 43.073 15.836  -10.00 32.515 42.51 54.000 115.21
14 3103 41.150 15.876  -18.83 30.500 40.70 52.000 112.67
15 3103 39.530 15.344  -25.60 29.500 39.20 50.000 110.30
16 3103 39.457 15.002  -18.41 29.920 39.40 49.550 112.50
17 3103 40.843 15.286  -13.89 31.100 40.03 50.065 115.00
18 3103 45.241 17.441 -2.01 34.390 43.30 54.720 142.98
19 3103 48.785 17.490 -2.00 37.000 46.37 58.710 170.00
20 3103 49.075 15.442 -2.00 38.080 47.79 58.680 150.00
21 3103 46.168 12.885 -2.00 37.500 45.43 54.000 120.00
22 3103 40.959 10.637 -2.00 34.705 40.40 47.800 105.99
23 3103 38.580 10.080 -2.00 32.835 38.00 45.575 107.83
24 3103 32.480 9.773 -60.00 27.235 32.37 38.305 57.13

Table 4.1: The basic description of used price data for individual hours.

Another important characteristics beside the occurrence of negative prices is the
occurrence of intraday cycles. The mean hourly prices showing the daily cycle is
depicted in Fig. however, as it contains only the average hourly price it does not
tell us anything about the variance of the cycle. The Fig. is just an illustration
how the price might vary — this figure shows the hourly prices for all four quarters
of the year 2016. The distribution of prices for individual hours also differs with the
time of day as shown in fig. and fig. 4.4l The fig. shows the quite wide range
of prices that occur at each hour in the dataset together with the few observation at
the most extreme values. The boxplot in fig. shows the range of the prices, the
shape of distributions of hourly prices is better shown in fig. [£.41 Both plots show
that the prices less vary during the night time where the demand is more stable —
this tendecy occurs even when controlled for both yearly and monthly differences.
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Figure 4.1: Mean hourly prices over the interval 2009/1-2017/5
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Figure 4.2: Daily prices for year 2016 for individual quarters.
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As can be seen from the Fig. [1.2] the price behaves slightly differently in each
quarter which is partially caused by the weather prevailing in each season. The
Fig. [£.7] shows the price averaged conditional on the quarter — we can observe that
in the first and fourth quarter the second peak is much higher which is probably
caused by the shorter period of daylight which causes the demand for electricity to
go up as more electricity is needed for lightening. However the prices changes even
in the long-term — the average hourly price for individual years is shown in Fig.
.8 Furthermore, the differences between years are not only in the in the mean
price but also the price distribution slightly varies between years as shown in fig. [1.5]
which show the variation in yearly distribution of the price for hour slot for 19:00 —
20:00. The variations are even more visible when the data are shown for individual
months as in fig. [£.6| which shows the variation in price for hour slot 11:00 — 12:00 for
February. However, without more data, it is impossible to say whether the observed
long-term change is due to the changes in the underlying energy industry or is caused
by different weather in each year — most likely it is caused by both phenomena. The
average electricity price for individual years and quarters is depicted in Fig. [£.9
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Figure 4.5: The variation in yearly distribution of the price for hour slot for 19:00 — 20:00

across all months.
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Figure 4.7: Mean price for individual quarters.



EUR/MWh

W
o

EUR/MWh

CHAPTER 4. DATA

2009 2010 2011 2012 2013 2014 2015 2016

P

0 12 240 12 240 12 240 12 240 12 240 12 240 12 240 12 24
h h h h h h h h

70

D
o

(W48
o

=~
o

&
—

[
o

Figure 4.8: Mean price for individual years.

— QL == Q2 - Q3 e Q4

2009 2010 2011 2012 2013 2014 2015 2016

0 12 240 12 240 12 240 12 240 12 240 12 240 12 240 12 24
h h h h h h h h

Figure 4.9: Mean price for individual years and quarters.



4.2. WEATHER DATA 33

4.2 Weather data

As both demand and supply of electricity is influenced by weather [195], |197], this
work also uses daily weather data for the electricity price prediction. The estimators
used historical weather information — at time ¢ the estimators have available weather
at time £ — 2 or even older. While use of historical weather forecast from ¢ — 2 for the
day t would be useful, no available open source of historical forecast has been found.
The weather data were obtained from https://www.wunderground.com. The used
variables were temperature, dew point, and relative humidity. Since all the variables
have been measured many times within a day, a daily summary statistics were used,
i.e. a single sample consists of recorded daily minimum, maximimum and average
value for each of the three variables. The distrubition of the daily averages of the

three variables are shown in fig. fig. .11} and fig. respectivelly.
4.3 Dataset creation

4.3.1 Division of data

The available data was divided into three disjoint datasets — training set, valida-
tion set and test set. The training dataset was used for training during parameter
optimization for individual estimators, the performance of the parametrization were
evaluated on the out-of-sample validation data. Once the optimal parametrization
was found, the estimator was retrained using both training and validation data and
its performance was evaluated using the test data that were previously unseen. The
validation and testing periods were distributed in the whole time range — 4 months
of training data were followed by 1 month of validation data and 1 month of test
data, then 1 month of data was skipped to ensure the independency of training and
test data as the highest lag that was used throughout this work is 31. Then the
cycle repeated. Over the years 2010 to 2016, this resulted in 12 months of test data
where each month was exactly once. The division of data is shown in table

1 2 3 4 5 6 7T 8 9 10 11 12
2000 | X Tr Tr Tr Tr V Te X Tr Tr Tr Tr
2011 |V Te X Tr Tr Tr Tr V Te X Tr Tr
2012 | Tr Tr V Te X Tr Tr Tr Tr V Te X
2013 | Tr Tr Tr Tr V Te X Tr Tr Tr Tr V
2014 | Te X Tr Tr Tr Tr V Te X Tr Tr Tr
2015 | Tr V. Te X Tr Tr Tr Tr V Te X Tr
2016 | Tr Tr Tr V Te X Tr Tr Tr Tr V Te

Table 4.2: The division of data into the training set, validation set and test set. The month
denoted by X is skipped, by Tr put into the training set, by V put into the validation set
and by Te put into the test set.

4.3.2 Scaling the data

Prior to training the individual estimators, the data were normalized, i.e. they were
scaled and shifted in a such way that they had zero mean and standard deviation
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Figure 4.11: The distribution of average daily dew point for individual months.
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Figure 4.12: The distribution of average daily humidity for individual months.

equal to one over the training data. The parameters of the transform were estimated
using the training data only and then used also for both walidation and test data.
Each forecast was then transformed back in order to evaluate the prediction in the

actual units.



36

CHAPTER 4. DATA



Chapter 5

Results

As several different classes and parametrizations of estimators were used, the results
are analysed both from overall point of view and also within each class of estima-
tors. The main measures used for comparing estimators were the RMSE and MAE
on the out—of-sample test data. The estimators were ranked by their RMSE and
MAE performance both in total and within the estimator’s class only. Then 10 best
estimators for both measures were selected for each class of estimators for further
analysis. The 10 estimators’ forecasts were then compared against each other using
the Diebold-Mariano (DM) test to analyze the gap in quality between the top fore-
casts. The used significance level for the Diebold-Mariano test was 5 %, the power
p of the DM test is used with the respect to the error measure used for selecting the
estimators — power p = 1 is used for estimators selected with respect to MAE while
power p = 2 (sqaured errors) is used for estimators selected with respect to RMSE.

For further analysis of the models from the overall comparison, only small subset
is selected as the total number of used estimators (> 5000) makes comparing all
models infeasible.

5.1 Comparison by class

The models were compared by the underlying estimator class. The models from
within the class might still differ from each other by used parametrization as the
individual models had optimized parameters with the respect to the used variables
for most of the estimator classes. The methods used for optimization are described in
section while the actual optimization is described individually for each estimator
class.

5.1.1 Used models

The individual estimators have assigned a small code to allow for easy identification
of individual parametrizations. The name consists of several field — [estimator ¢
lass]_[used lag and mean variables]_[price only | weather datal-[used
dummy variables].

37
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The possible estimator class codes are

AB-DT AdaBoost with Decision Trees as the underlying weak regressor
AB-LR AdaBoost with Linear Regression (OLS) as the underlying weak regressor

ANN48-0.5d-linear ANN with 48 neurons in hidden layer and 0.5 dropout with
tanh activation function in hidden layer and linear activation function in the
output layer trained using the Nadam optimizer for 600 epochs and batch
size 64. The data were shuffled during training. The hyperparameters of
the Nadam optimizer [39]: initial learning rate [ = 0.002, v = 0.999,u =
0.9, ¢ = 1 x 1078, and schedule decay of 0.004. The parameters were set as
recommended in [26] (the parameters have different names: v = 5 and p = 4
in |26]).

ANNR84-0.5d-1200e ANN with 84 neurons in hidden layer and 0.5 dropout with
tanh activation function in hidden layer and linear activation function in the
output layer trained using the SGD optimizer for 1200 epochs and batch size
64. The weights in the hidden layer were regularized using L2 regularizer with
weight 0.2. The data were shuffled during training. The hyperparameters of
the SGD optimizer: learning rate [ = 0.01, momentum m = 0 and decay d = 0,
i.e. vanialla SGD was used.

BR Bayesian Ridge regression. Used parameters werre: maximum number of itera-
tion during optimization n = 300, tolerance ¢ = 0.001, the parameters oy, s,
A1, and Ay were optimized individually for each estimator.

EN Elastic Net regression, both its parameters a and L1 ratio r were optimized
individually for each estimator.

KRR-linear Kernel Ridge Regression with linear kernel (equiv. to Ridge Regres-
sion). The parameter o was optimized individually.

KRR-poly-2 Kernel Ridge Regression with polynomial kernel with degree d = 2,
while the parameter v was set to v = —————0-—as default in [143].
numper oI samples
Lars Least Angle Regression (LARS) where the number of non-zero coefficients was
optimized using grid search over several possible values.

Lasso Lasso Regression (numerical optimization) where the maximum number of
iteration during optimization was set to n = 5000. The parameter o was
optimized individually.

LassoLars Lasso Regression with exact solution based on modified LARS viz sec-
tion [3.2.6.1} The parameter o was optimized individually.

OLS Linear regression using Ordinary Least Squares (OLS).

RF Random forest regression with 2000 trees in the ensemble. The maximum depth
was set to 20, the maximum features at each node was set to log, (number of features)
and the used criterion for optimization was mean squared error.

SVR-linear-e Suppor Vector Regression with linear kernel and L loss (e-insensitive
loss). The tolerance parameter was set to 0.0001 and the maximum number of
iterations was set to 1000 as default in [143|. Parameters ¢ and C' optimized
individually.
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SVR-linear-e2 Suppor Vector Regression with linear kernel and L loss (squared e-
insensitive loss). The tolerance parameter was set to 0.0001 and the maximum
number of iterations was set to 1000 as default in [143]. Parameters ¢ and C
optimized individually.

SVR-poly-2 Suppor Vector Regression with polynomial kernel with degree d = 2
and L loss (e-insensitive loss). The tolerance parameter was set to 0.001
and the maximum number of iterations was not limited, the coeffient of the
polynomial kernel ¢y = 0 (homogeneous polynomial kernel) as default in |143].
Parameters € and C' optimized individually.

SVR-poly-3 Suppor Vector Regression with polynomial kernel with degree d = 3
and L loss (e-insensitive loss). The tolerance parameter was set to 0.001
and the maximum number of iterations was not limited, the coeffient of the
polynomial kernel ¢g = 0 (homogeneous polynomial kernel) as default in [143].
Parameters € and C' optimized individually.

SVR-poly-4 Suppor Vector Regression with polynomial kernel with degree d = 4
and L loss (e-insensitive loss). The tolerance parameter was set to 0.001
and the maximum number of iterations was not limited, the coeffient of the
polynomial kernel ¢y = 0 (homogeneous polynomial kernel) as default in [143].
Parameters € and C' optimized individually.

SVR-rbf Suppor Vector Regression with RBF kernel and L; loss (e-insensitive
loss). The tolerance parameter was set to 0.001 and the maximum number of
iterations was not limited as default in [143|. Parameters ¢ and C' optimized
individually.

SVR-sigmoid Suppor Vector Regression with sigmoid kernel and L loss (e-insensitive
loss). The tolerance parameter was set to 0.001 and the maximum number
of iterations was not limited, the coeffient of the sigmoid kernel ¢y = 0 (ho-
mogeneous sigmoid kernel) as default in [143|. Parameters ¢ and C' optimized
individually.

The possible lag and mean variables codes are

T2 only the data from day ¢ — 2 are included.

T2-7 the data from days ¢t — 2 to t — 7 are included.

T2-31 the data from days ¢t — 2 to T'— 31 are included.

T2,3,7 the data from days ¢t — 2, t — 3, and t — 7 are included.

T2,7 the data from days ¢t — 2 and ¢ — 7 are included.

T2,7,14,28 the data from dayst —2,t — 7, t — 14, and t — 28 are included.

T2,M7 the data from day ¢ — 2 and the mean of hourly data for dayst —2tot—7
are included.

T2,M7,30 the data from day t — 2 and the means of hourly data for days from
t — 2 tot— 7 and for days from ¢t — 2 to ¢t — 30 are included.

T2,7,M7 the data from days t — 2 and t — 7 and the mean of hourly data for days
t —2tot— 7 are included.
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T2,7,14,28 M7,30 the data from day t —2,t —7, ¢t — 14, and t — 28 and the means
of hourly data for days from t — 2 to ¢t — 7 and for days from t — 2 to t — 30
are included.

nl no historical data included.

If only prices are included, p is appended to the name of the estimator; if weather
data are includes, w is appended. Possible codes for dummies:

no code no dummy variable used.
W Weekend dummy variable included. Cannot be used with dummy D.

D a dummy variable included for days from Tuesday to Sunday, Monday is the base
day. Cannot be used with dummy W.

M a dummy variable included for months from February to December, January is
the base month.

Y a dummy variable included for year from 2011 to 2016, year 2010 is the base
year.

An estimator is created for each possible combination of estimator class, used lag
and mean variables, price only or weather data , and the dummy variables, which
resulted in 5230 different estimators.

5.1.2 AdaBoost with Decision Trees (AB-DT)

This estimator class consists of AdaBoost estimators with Decision Trees as the un-
derlying weak regressor. All estimators from this class consist of 24 sub-estimators,
each predicting a single hour.

5.1.2.1 Optimization

The parameter learning rate was optimized for each of the estimator using the NM
method, the starting point for optimization was found using the PSO for model A
B-DT_T2,7,14,28,M7,30_w-WMY. The PSO used 10 particles for 5 generations as
the optimization was quite costly and the parameter space was Ir € [0,0.3]. The
starting point for NM was learning rate {r ~ 0.0500.

5.1.2.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1al While
there are significant differences in the forecasts betwen the estimators selected by
MAE;, this cannot be said for estimators selected by RMSE. This might have been
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caused by the AB-DT optimizing the RMSE error which made the estimators much
more closely stacked in the RMSE measure compared to the MAE measures —
the difference in RMSE between the 1st estimator and 10th by RMSE is 0.0315
EUR/MWh, while the difference in MAE between the 1st estimator and 10th by
MAE is 0.0537 EUR/MWh. The 1st estimator is better by DM test then only
the 10th estimator by RMSE at 5% significance level. This estimator class pref-
ered the T2,7,14,28,M7,30 variables with weekend dummy variables for both the
measures. The weather information was not very useful for this class of estimators
as it is not very frequent in the selection of the best estimators. The inclusion of
weather variables had small negative effect as is visible in figs. [A.1] and [A.2] which
might have been caused by the tendency of AdaBoost estimators to overfit the data.
While the overfiting for AB-DT is lower compared to AB-LR (and OLS, RF, SVR-poly?2,
SVR-poly-3) as can be seen in fig. and fig. , it is present.

Overall, the AB-DT is not very successful estimator as its error is quite high com-
pared to other estimators (viz figs. to . It ranked 16th by both RMSE and
MAE when compared to other estimators as shown in figs. [5.1] and [5.2] furthermore,
its best estimator by RMSE is 2741st in overall RMSE rankings and the best by
MAE is 2711th in overall MAE rankings.

The example prediction on test data is shown in fig. [E.1b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE

1/264  T2,7,14,28 M7,M30-W No 86204 6.3587 1/2741  3/2716
1/264  T2,7,14,28 M7,M30-WM  No 8.6234  6.3443 2/2744  1/2711
2/265  T2,7,1428 M7,M30-WY  No 8.6258  6.3497 3/2747  2/2713

3/268 T2,M7,30-WMY No 8.6372 6.38380 5/2759 6/2748
3/274 T2,7,M7-WY No 8.6317  6.5221 4/2756 52/2852
3/267 T2,7,14,28 M7,M30-WMY No 8.6572  6.3752 12/2775 4/2735
4/275 T2,M7-WY No 8.6417  6.5421 6/2761 64 /2865
4/269 T2,M7,30-W No 8.6447  6.3980 7/2764 10/2762
4/269 T2,M7,30-WM No 8.6506 6.3935 9/2772 8/2756
4/270 T2,7,14,28 M7,M30-WY Yes 8.7161  6.3789 17/2795 5/2738
5/270 T2,M7,30-WY No 8.6543  6.4125 11/2774 15/2771
5/275 T2,7,M7-WMY No 8.6477  6.5339 8/2767 59/2859

5/271 T2,7,14,28 M7,M30-W Yes 8.7190 6.3915 18/2798  7/2752

Table 5.1: The list of best AB-DT estimators with Pareto rank at most 5. Column rPareto
contain the Pareto rank within the class and also the overal Pareto rank (equivalety for
rRMSE and rMAE). The column Var. contains variables and dummies used by the esti-

mator and the columnd W. shows whether the weather data were included.

5.1.3 AdaBoost with Linear Regression (AB-LR)

This estimator class consists of AdaBoost estimators with Linear Regression (OLS)
as the underlying weak regressor. All estimators from this class consist of 24 sub-
estimators, each predicting a single hour.
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5.1.3.1 Optimization

The parameter learning rate was optimized for each of the estimator using the NM
method, the starting point for optimization was found using the PSO for model A
B-LR_T2,7,14,28,M7,30_w-WMY. The PSO used 20 particles for 50 generations as
the optimization was quite costly and the parameter space was Ir € [0,1]. The
starting point for NM was learning rate Ir ~ 0.000145 — the prefered learning rate
was converging to zero thus the model was quite close to OLS.

5.1.3.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table [5.2] which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. |C.1b, There
are signficant differences between the 1st estimator and the rest for both MAE
and RMSE;, there are also significant differences between the first three estimators
and the last four estimators by RMSE. This estimator class prefered the T2,M7,30
variables with weekend dummy variables for both the measures. Similarly as for
AB-DT, the weather information was not very useful for this class of estimators as it
is not very frequent in the selection of the best estimators. The inclusion of weather
variables had small negative effect as is visible in figs. and [A.2] This estimator
was heavily overfitting to the training data as can be seen in fig. and fig. B.2] Tt
is overfitting even more than the OLS to which it is similar when the learning rates
are low.

Overall, the AB-DT is quite successful (it was the 6th best estimator by RMSE

and 8th by MAE —- viz figs. |5.1|and |5.2)) with similar scores to other top—performing
estimator classes (viz figs. to|A.8). Its best estimator by RMSE was the 157th

in the overall ranking. The best estimator by MAE had slightly worse position — it
was 252nd.

The example prediction on test data is shown in fig. [E.2b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

5.1.4 ANN with 48 neurons (ANN/8-0.5d-linear)

This estimator class consists of ANN with 48 neurons in the hidden layer with tanh
activation function and 0.5 dropout.

5.1.4.1 Optimization

This estimator class was not optimized on individual estimator basis but the suitable
number of neurons and the intensity of dropout was determined by experiments using
PSO and grid search.
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rPareto Var. W. RMSE MAE rRMSE rMAE
1/38 T2,M7,30-D No 7.4500 5.4696 1/157 1/252
2/45 T2,M7-D No 7.4969 5.5392 2/222 2/468
3/47 T2,7,M7-D No 7.4972 55454 3/224 3/497
4/62 T2-DMY No 7.5834  5.5466 12/391 4/503
4/48 T2,7,14,28 M7,M30-D No 7.5081  5.5539 4/238 9/540
5/64 T2,3,7-DMY No 7.5848 55516 13/396 5/530
5/56 T2,M7,30-DM No 7.5451  5.5735 6/299 11/619
5/56 T2,7,M7-DY No 7.5449 55841 5/298 15/669

Table 5.2: The list of best AB-LR estimators with Pareto rank at most 5. Column rPareto
contain the Pareto rank within the class and also the overal Pareto rank (equivalety for
rRMSE and rMAE). The column Var. contains variables and dummies used by the esti-

mator and the columnd W. shows whether the weather data were included.

5.1.4.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table [C.0]
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1d While
the inclusion of weather data had a small negative effect on average as shown in-
figs. [A. T and [A.2], the top 10 selection contain several estimators with weather data.
This estimator was also heavily overfitting to the training data as can be seen in
fig. and fig. though not as extremely as AB-LR and OLS estimators.

Overall, the ANN48-0.5d-1inear was in middle of rankings when compared the
best estimators from each class, however, it was better than the similar ANN but
with 84 neurons and longer training when comparing forecasts selected by both
RMSE and MAE as shown in figs. and [5.2] This estimator class ranked 9th by
MAE and 11th by RMSE, its best estimator by RMSE is 392nd in overall RMSE
rankings and the best by MAE is 308th in overall MAE rankings.

The example prediction on test data is shown in fig. [E.3b (best by RMSE) and
fig. [E.3a[ (best by MAE) for 14th — 28th May 2016.

5.1.5 ANN with 84 neurons (ANN84-0.5d-1200¢)

This estimator class consists of ANN with 48 neurons in the hidden layer with tanh
activation function and 0.5 dropout trained for 1200 epochs.

5.1.5.1 Optimization

This estimator class was not optimized on individual estimator basis but the suitable
number of neurons and the intensity of dropout was determined by experiments using
PSO and grid search.



44 CHAPTER 5. RESULTS

rPareto Var. W. RMSE MAE rRMSE rMAE
1/63 T2,M7-D No 7.5839  5.5672 1/392 8/599
1/52 T2,M7,30-D Yes 7.5874 54947 2/404 1/308
2/66 T2,M7-DY No 7.5895  5.5604 3/411 7/567
2/59 T2,M7,30-DY No 7.6020 5.5170 4/454 2/367
3/69 T2-DMY Yes 7.6082  5.5564 5/479 5/550
3/70 T2,M7-D Yes 7.6186  5.5483 7/522 4/512
3/67 T2,7,14,28 M7,M30-D  Yes 7.6542  5.5313 15/640 3/431
4/72 T2,7,M7-D No 7.6109 5.5822 6/492 14/660
4/74 T2,7,14,28 M7,M30-D No 7.6289  5.5583 8/552 6/556
5/77 T2,7-DMY No 7.6360 5.5751 9/574 11/627
5/77 T2,M7,30-D No 7.6480 5.5685 11/615 9/602

Table 5.3: The list of best ANN48-0.5d-linear estimators with Pareto rank at most 5.
Column rPareto contain the Pareto rank within the class and also the overal Pareto rank
(equivalety for rRMSE and rMAFE). The column Var. contains variables and dummies

used by the estimator and the columnd W. shows whether the weather data were included.

5.1.5.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table [5.4] which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1d, When
comparing the estimators selected by MAE, there are significant differentces at the
5% level betwen the three best and the 6th to 10th estimators, however, when
comparing by RMSE, the differences are not significant for most of the estimators.
This migh be again caused by thorough optimizing of the RMSE during training and
thus the best estimators are closer to each other when comparing by RMSE then
when comparing by MAE. The differences in between the 10th and 1st estimators
seem to support this hypothesis: the difference between the 10th and 1st estimator
by RMSE is 0.0598 while the difference for MAE is 0.0772.

While the inclusion of weather data had a almost no effect on average for MAE
while having small negative average effect for RMSE as shown infigs. and —
this is supported also by the selection of top 10 where a half of estimators selected
by MAE uses the weather data while only two of estimators selected by RMSE.

This estimator was also slighty overfitting to the training data as can be seen in
fig. and fig. though less than the network with only 48 neurons (usually, the
more complex networks have higher capacity for overfitting, the fact that this more
complex network was overfitting less might have been caused by high dropout with
longer training period, however, further analysis is needed). Despite the lower over-
fitting compared to the less complex network, the ANN84-0.5d-1200e had slightly
higher error.

Overall, the ANN84-0.5d-1200e is in the lower half when comparing best esti-
mators’ forecasts selected by both RMSE and MAE as shown in figs. 5.1 and [5.2) —
it ranked 13th by both MAE and RMSE;, its best estimator by RMSE is 677th in
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overall RMSE rankings and the best by MAE is 563rd in overall MAE rankings.

The example prediction on test data is shown in fig. [E.4b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE
1/90 T3-31-DM No 7.6662 5.6894 1/677 25/1230
1/82 T2,M7,30-DMY Yes 7.7115  5.5598 4/832 1/563
1/92 T2,M7,30-D No 7.6979 5.6188 2/790 9/820
2/86 T2-7-DM Yes 7.7241  5.5664 /887 2/595
2/92 T2,M7,30-D Yes 7.7199  5.6070 6/868 6/765
2/99 T2,7,14,28 M7,M30-DMY No 7.7107  5.6548 3/828 17/1034
3/100 T2,7,14,28 M7,M30-DM No 7.7140 5.6848 5/843 22/1201
3/93 T2,M7,30-DY Yes 7.7474  5.5963 13/987 4/717
3/99 T2,M7,30-DY No 7.7235  5.6364 7/884 14/929
3/89 T2,7,14,28 M7,M30-DMY Yes 7.7301  5.5996 9/917 5/730
3/91 T2-7-WMY Yes 7.7676  5.5767 19/1076  3/635
4/102 T2-7-DY Yes 7.8484  5.6168 54/1371 7/814
4/107 T2,M7,30-DM No 7.7314 5.6796 10/923 21/1173
4/101 T2-7-DM No 7.7433  5.6305 12/971 11/893
4/107 T2-7-WM Yes 7.8020 5.6253 28/1210 10/859
4/102 T2-7-D Yes 7.8088  5.6169 33/1237 8/817
4/102 T2-7-D No 7.7342  5.6576 11/937 18/1052
5/113 T2 M7-DMY No 7.7576  5.6876 14/1040 24/1221
5/105 T2-7-WMY No 7.7699  5.6355 20/1089 13/925
5/105 T2-7-DY No 7.7715 5.6335 21/1094 12/912

Table 5.4: The list of best ANN84-0.5d-1200e estimators with Pareto rank at most 5.
Column rPareto contain the Pareto rank within the class and also the overal Pareto rank
(equivalety for rRMSE and rMAFE). The column Var. contains variables and dummies

used by the estimator and the columnd W. shows whether the weather data were included.

5.1.6 Bayesian Ridge regression (BR)

This estimator class consists of Bayesian Ridge regression estimators. All estimators
from this class consist of 24 sub-estimators, each predicting a single hour.

5.1.6.1 Optimization

The parameters oy, ag, A\g, and Ay were optimized for each of the estimator using the
NM method, the starting point for optimization was found using the PSO for model
BR_T2,7,14,28,M7,30_w-WMY. The PSO used 20 particles for 25 generations and
the parameter search space was ay, = 10% a5, € [—8, —2|, ap = 10%, ay € [-8, —2],
Ae = 10% [}, € [-8,—2], and \g = 10%, Iy € [-8, —2]. The initial point for the NM
optimization was a; ~ —5.241, ag =~ —4.295, [, =~ —2.002, and [y ~ —5.618.

5.1.6.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.10]
and table [C.9]for further analysis using the DM test. The best estimators by Pareto
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rank are shown in table which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1¢, When
comparing the estimators selected by RMSE, there are significant differences only
for group of the first three estimators compared to last four estimator. The few best

estimator in the MAE selection are significanlty better than the others as shown in
section [C.I]

While the inclusion of weather data had a almost no effect on average for RMSE
while having small positive average effect for MAE as shown infigs. [A.1] [A.2]
and[D.2]— only one estimator in the top 10 by RMSE used the weather data, but four
in the top 10 by MAE and two of them were at the first positions. This estimator is
quite robus against overfitting as virtually no overfitting occured as shown in fig. [B.]]

and fig. [B.2

Overall, the BR is quite good as it is on 4th position when comparing best esti-
mators’ forecasts selected by both RMSE and MAE as shown in figs. and [5.2]
furthermore, its best estimator by RMSE is 54th in overall RMSE rankings and the
best by MAE is 61st in overall MAE rankings.

The example prediction on test data is shown in fig. [E.5b (best by RMSE) and
fig. [E.5al (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE
1/11 T2,7-DMY Yes 7.3999  5.3492 1/54 1/61
2/16 T2,7-DM Yes 7.4109 5.3806 3/77 2/90
2/15 12,7, M7-DM No 7.4006  5.4045 2/57 5/131
3/18 T2,M7,30-D No 7.4110 54356 4/79 15/187
3/24 12,7, M7-D Yes 7.4266  5.3933 6/102 4/119
3/25 T2,7,M7-DY Yes 7.4488  5.3874 13/152 3/108
4/29 T2,7-DY Yes 7.4657  5.4103 17/180 6/143
4/24 T2,7,M7-D No 7.4250  5.4445 5/100 16/197
4/30 T2,7,M7-DY No 7.4381 54259 7/125 12/171
4/27 T2,7,M7-DMY No 7.4400 5.4114 8/130 7/145
5/28 T2,M7,30-D Yes 7.4427  5.4173 9/135 10/155
5/29 T2,7, M7-DM Yes 7.4569  5.4127 16/167 9/148
5/30 T2,7,M7-DMY  Yes 7.4847  5.4118 20/202 8/146

Table 5.5: The list of best BR estimators with Pareto rank at most 5. Column rPareto con-
tain the Pareto rank within the class and also the overal Pareto rank (equivalety for rRMSE
and 7MAE). The column Var. contains variables and dummies used by the estimator and

the columnd W. shows whether the weather data were included.

5.1.7 Elastic Net regression (EN)

This estimator class consists of Elastic Net regression estimators. All estimators
from this class consist of 24 sub-estimators, each predicting a single hour.
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5.1.7.1 Optimization

The parameters a and L1 ratio p were optimized for each of the estimator using the
NM method, the starting point for optimization was found using the PSO for model
EN_T2-31_w-DMY. The PSO used 100 particles for 50 generations and the parameter
search space was a € [0, 2] and p € [0,1]. The initial point for the NM optimization
was o ~ 0.0089 and p =~ 0.8273.

5.1.7.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.12]
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table [5.6| which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1f, The
differences were significant only for the very best estimators from the top 10 by both
MAE and RMSE when compared with several estimators that with lower rank. The
rest of estimators does not show significant differences.

This class of estimators is one of those that benefited most from the inclusion
of weather data. The average gain of inclusion of weather data is very small when
using the RMSE measure in figs. and while the average gain is higher for
the MAE measure in figs. and [D.2] However, the top performing estimators
from this class benefited almost always from the inclusion of the weather data as
seven estimators from the top 10 by RMSE and all estimatros from the top 10 by
MAE use weather data.

This estimator is quite robus against overfitting as virtually no overfitting oc-

cured as shown in fig. and fig. [B.2

Overall, the EN is very good as it is on 2nd position when comparing best esti-
mators’ forecasts selected by MAE and 3rd when comparing by RMSE as shown in
figs. and [p.2] furthermore, its best estimator by RMSE is 7th in overall RMSE
rankings and the best by MAE is 6th in overall MAE rankings. The only estimators
that were better was the Lasso estimator and its exact variant LassoLars, however,
the Lasso estimator is a special case of parametrization of EN when p = 1. It is
possible that the EN could outperform the Lasso when parameter optimization was
done using the best performing variable combination T2,M7,30_w-DMY (RMSE) or
T2,7,M7_w-DMY (MAE), however, it would be computationally very expensive to
run the PSO optimization for many (or all) variable combinations.

The example prediction on test data is shown in fig. (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

5.1.8 Kernel Ridge Regression with linear kernel (KRR-linear)

This estimator class consists of Kernel Ridge regression estimators with linear kernel.
All estimators from this class consist of 24 sub-estimators, each predicting a single
hour. The parameter o wa optimized for each of the estimator using the NM method,
the starting point for optimization was found using the PSO for model KRR-1line
ar_T2,7,14,28,M7,30_w-WMY. The PSO used 20 particles for 25 generations and
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rPareto Var. W. RMSE MAE rRMSE rMAE
1/4 T2,7,M7-DMY Yes 7.3662  5.2980 2/11 2/12
1/3 T2,M7,30-DMY Yes 7.3877  5.2898 10/39 1/6
1/4 T2,7,M7-DM Yes 7.3578  5.3083 1/7 6/22
2/6 T2,7,14,28 M7,M30-DMY Yes 7.3855  5.3021 9/38 3/15
2/6 T2,3,7-DMY Yes 7.3794  5.3071 4/23 5/20
2/6 T2,7-DMY Yes 7.3728  5.3382 3/14 13/46
2/5 T2,M7,30-DM Yes 7.3839  5.3051 7/34 4/17
3/8 T2,7,14,28 M7,M30-DM Yes 7.3854  5.3173 8/37 8/29
3/8 T2,7,M7-DMY No 7.3805 5.3473 6/29 17/58
3/9 T2,M7,30-DY Yes 7.4059  5.3170 16/66 7/28
3/8 T2,7, M7-DM No 7.3796 5.3568 5/24 19/69
4/11 T2,7,M7-DY Yes 7.4007  5.3337 14/58 11/37
4/10 T2,7,M7-D Yes 7.3979  5.3443 12/51 15/54
4/12 T2,M7,30-DM No 7.3977  5.3665 11/49 23/77
4/10 T2,M7,30-D Yes 7.3995  5.3343 13/53 12/38
4/11 T2,7,14,28 M7,M30-DY Yes 7.4103  5.3246 20/75 9/34
5/14 T2,7,14,28 M7,M30-D Yes 7.4073  5.3391 17/70 14/47
5/13 T2,7-DM Yes 7.4022  5.3512 15/62 18/64
5/12 T2-7-DMY Yes 7.4399  5.3265 34/129 10/35

Table 5.6: The list of best EN estimators with Pareto rank at most 5. Column rPareto con-
tain the Pareto rank within the class and also the overal Pareto rank (equivalety for rRMSE
and rMAE). The column Var. contains variables and dummies used by the estimator and

the columnd W. shows whether the weather data were included.

the parameter search space was a = 10%, a € [—6,6]. The initial point for the NM
optimization was a ~ 1.622.

5.1.8.1 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.14]
and table[C.13|for further analysis using the DM test. The best estimators by Pareto
rank are shown in table which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1g The
differences between the top 10 estimators were mostly significant for selection by
MAE and less frequently for selection by RMSE. There were no significant differences
between the top 3 by MAE and top 4 by RMSE.

This class of estimators is benefit from the inclusion of weather data in general,
however, the weather data had not much influence on the performance of the top
estimators by MAE and slightly negative effect on the performance of top estimators
by RMSE. The average gain of inclusion of weather data is very small when using
the RMSE measure in figs. and while the average gain is higher for the
MAE measure in figs. and [D.2l However, the top performing estimators from
this class benefited almost always from the inclusion of the weather data as seven
estimators from the top 10 by RMSE and all estimatros from the top 10 by MAE
use weather data.
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This estimator is quite robus against overfitting as virtually no overfitting oc-
cured as shown in fig. and fig. [B.2

Overall, the KRR-1linear is mediocre withwith 10th position when comparing
best estimators’ forecasts selected by both MAE an RMSE as shown in figs.
and[5.2] furthermore, its best estimator by RMSE is 275th in overall RMSE rankings
and the best by MAE is 243rd in overall MAE rankings.

The example prediction on test data is shown in fig. (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE
1/46 T2,M7,30-DY No 7.5334  5.4693 1/275 2/251
1/44 T2,M7,30-DY Yes 7.5741  5.4644 9/364 1/243
2/47 T2,M7,30-DM No 7.5435  5.4862 2/294 5/286
2/49 T2,M7,30-DMY No 7.5692  5.4750 6/352 3/263
3/53 T2,M7,30-DMY Yes 7.6152  5.4821 19/507 4/274
3/52 T2,7,14,28 M7,M30-DY Yes 7.5758  5.4971 11/370 6/316
3/55 T2,7,14,28 M7,M30-DY No 7.5512  5.5340 4/313 17/442
3/55 T2,7,14,28 M7,M30-DM No 7.5441 5.5494  3/296 21/518
3/56 T2,7,14,28 M7,M30-D Yes 7.5718  5.5160 7/358 9/362
4/58 T2,7,14,28 M7,M30-DM Yes 7.5751 5.5240 10/366 12/399
4/57 T2-7-DMY Yes 7.6300  5.4986 26/556 7/323
4/57 T2,7,14,28 M7,M30-DMY No 7.5652  5.5363 5/342 18/450
4/56 T2,M7,30-DM Yes 7.6073  5.5003 18/476 8/329
4/61 T2,7,14,28 M7,M30-DMY Yes 7.5983  5.5215 17/440 10/390
5/60 T2,7,M7-DMY No 7.5848  5.5282 12/394 14/421
5/63 T2,M7,30-D Yes 7.6193  5.5228 23/526 11/396
5/60 T2,M7-DMY No 7.5848  5.5282 12/394 14/421
5/60 T2,7,14,28 M7,M30-D No 7.5740  5.5786 8/363 31/645

Table 5.7: The list of best KRR-linear estimators with Pareto rank at most 5. Column
rPareto contain the Pareto rank within the class and also the overal Pareto rank (equivalety
for rRMSE and rMAE). The column Var. contains variables and dummies used by the

estimator and the columnd W. shows whether the weather data were included.

5.1.9 Kernel Ridge Regression with poly-2 kernel (KR R-poly-
2)

This estimator class consists of Kernel Ridge regression estimators with polynomial
kernel with degree 2. All estimators from this class consist of 24 sub-estimators,
each predicting a single hour.

5.1.9.1 Optimization

The parameter a was optimized for each of the estimator using the NM method,
the starting point for optimization was found using the PSO for model KRR-poly
-2_T2,7,14,28,M7,30_w-WMY. The PSO used 20 particles for 25 generations and
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the parameter search space was a = 10%, a € [—6,6]. The initial point for the NM
optimization was a ~ 1.622.

5.1.9.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.16|
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table [5.§ which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. |C.1hl The
results of the DM for the top 10 by MAE shows that significant differences were
mostly only between 1st estimator and 9th estimator. The two best by RMSE are
significantly different from the rest of the top 10 selection (with the exception of
7th and 8th estimators), while almost no significant differences were observed in
between the 7th-10th estimators.

The KRR-poly-2 is one of the estimators for which the inclusion of weather data
had negative effect as shown in figs.[A. 1], [A.2] [D.T]and [D.2] While the negative effect
was not large, it was significant for most of the variable combinations as shown in
figs.[5.3land [5.4 Furthermore, none of the top 10 estimators by either measure used
the weather data.

This estimator is overfitted the data slightly as shown in fig. and fig.

Overall, the KRR-poly-2 is very similar to KRR-1linear with 7th position when
comparing best estimators’ forecasts selected by RMSE and 11th by MAE as shown
in figs. and [5.2] furthermore, its best estimator by RMSE is 123rd in overall
RMSE rankings and the best by MAE is 204th in overall MAE rankings.

The example prediction on test data is shown in fig. [E.8bf (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE
1/30 T2,7-DM No 7.4358 54503 1/123 1/204
2/39 T2,7-D No 7.4564 54760 2/165 9/264
2/38 T2,7-DMY No 7.4741 54550 5/193 2/216
3/41 T2,14,28-DM No 7.4696  5.5265 3/185 23/415
3/42 T2,14,28-DMY No 7.4720 5.4965 4/191 12/315
3/41 T2,7,M7-DM No 7.4935 54613 6/214 3/236
4/42 T2,7-DY No 7.4951 54673 7/218 7/249
4/44 T2, 7-WMY No 7.5388  5.4645 11/282 4/245
4/44 T2,7,M7-DMY No 7.5309  5.4658 9/267 5/247
5/45 T2,7-WM No 7.5323  5.4672 10/271 6/248
5/43 T2,7,M7-D No 7.5043 54761 8/230 10/265

Table 5.8: The list of best KRR-poly-2 estimators with Pareto rank at most 5. Column
rPareto contain the Pareto rank within the class and also the overal Pareto rank (equivalety
for rTRMSE and rMAE). The column Var. contains variables and dummies used by the

estimator and the columnd W. shows whether the weather data were included.
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5.1.10 Least Angle Regression (Lars)

This estimator class consists of Least Angle Regression estimators. All estimators
from this class consist of 24 sub-estimators, each predicting a single hour.

5.1.10.1 Optimization

The only parameter is the number of nonzero coeffient that should be used for the
regression. This number was optimized for each of the estimators by exhaustive
search over the interval [1,30]. The optimal value never reached the upper limit of
the interval and was usually around 10 nonzero coefficients.

5.1.10.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.1§|
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table 5.9 which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1iL The
results of the DM test are very similar for both selection by RMSE and MAE where
the estimators are grouped to pairs (estimators with and without the weather data
performs the same), each pair is significantly better than pairs below.

The inclusion of weather data has no influence at all on the performance of the
Lars estimator as shown in figs. [A.1] [A.2] [D.1I]and [D.2] The procedure of selecting
the non-zero coefficients selected the variables that brings the most information
which were usually the dummies or the data from day t — 2.

This estimator is very robust to overfitting as shown in figs. and due to
the variable selection process.

Overall, the Lars is one of the worst estimators used in the comparison with
19th position for both MAE and RMSE as shown in figs. [5.1] and furthermore,
its best estimator by RMSE is 3142nd in overall RMSE rankings and the best by
MAE is 3070th in overall MAE rankings.

The example prediction on test data is shown in fig. (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

5.1.11 Least absolute shrinkage and selection operator (Lasso)

This estimator class consists of Lasso regression estimators. All estimators from this
class consist of 24 sub-estimators, each predicting a single hour.

5.1.11.1 Optimization

The parameter o was optimized for each of the estimator using the NM method, the
starting point for optimization was found using the PSO for model Lasso_T2,7,14
,28,M7,30_w-WMY. The PSO used 20 particles for 50 generations and the parameter



52 CHAPTER 5. RESULTS

rPareto Var. W. RMSE MAE rRMSE rMAE

1/321 nl-DMY No 9.1701  6.7607 1/3142 1/3070
1/321 nl-DMY Yes 9.1701  6.7607 1/3142 1/3070
2/337 nl-WMY No 9.3553  6.9675 3/3232 3/3232
2/337 nl-WMY Yes 9.3553  6.9675 3/3232 3/3232
3/346 nl-MY No 9.4699  7.0923 5/3289 5/3360
3/346 nl-MY Yes 9.4699  7.0923 5/3289 5/3360
4/368 T2-MY No 9.7349  7.3894 7/3439 7/3574
4/368 T2,7-MY No 9.7349  7.3894 7/3439 7/3574
5/383 T2-DMY No 9.8209 7.4871 9/3533 9/3692
5/383 T2-DMY Yes 9.8209  7.4871 9/3533 9/3692
5/383 T2,7-DMY No 9.8209  7.4871 9/3533 9/3692
5/383 T2,7-DMY Yes 9.8209  7.4871 9/3533 9/3692

Table 5.9: The list of best Lars estimators with Pareto rank at most 5. Column rPareto
contain the Pareto rank within the class and also the overal Pareto rank (equivalety for
rRMSE and rMAE). The column Var. contains variables and dummies used by the esti-

mator and the columnd W. shows whether the weather data were included.

search space was a = 10%, a € [—6,6]. The initial point for the NM optimization
was a ~ —2.411.

5.1.11.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.20]
and table[C.19 for further analysis using the DM test. The best estimators by Pareto
rank are shown in table which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. The
results of DM tests shows that the differences between the estimators are mostly not
significant, the major exception is the 1st estimator, which is significantly better
than four (MAE) and six (RMSE) other estimators. The inclusion of weather data
was beneficial for Lasso estimators as shown in figs. [A 1] [A.2] [D.1] and [D.2l While
the effect on average was positive but very small (but still mostly significant) for
the RMSE measure (fig. , all of the top 10 by MAE and 8 of the top 10 by
RMSE estimators used the weather data (tables [C.19| and [C.20)). The inclusion of
weather data has generally always positive effect on the MAE measurure and it
was significant for about 90% of Lasso estimators. It is interesting that the Lasso
version with exact solution LassoLars had not benefited as clearly from the inclusion
of weather data as the numerical optimization Lasso (but still it benefited in most
cases).

This estimator is quite robust to overfitting as shown in figs. and due to
the variable selection process.

Overall, the Lasso is very good as it is on 3rd position when comparing best
estimators’ forecasts selected by MAE (fig. and 2nd when comparing by RMSE
(fig. , furthermore, its best estimator by RMSE is 6th in overall RMSE rankings
and the best by MAE is 8th in overall MAE rankings. The version LassoLars
with exact solution was better in the overall rankings for both RMSE and MAE
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which suggests that the numerical optimization using coordinate descent fail to
reach global optima but finds solution quite close (but yielding significantly different
forecasts). This might be caused either be existence of close local optima with
objective function value close to the optimal solution or too slow convergence to local
optima (and maximum iteration limit is reached before convergence, used models
used limit of 1000 iterations). Another close contestant was the Elastic Net EN which
is a generalization of Lassoestimators — EN with parameter p = 1 is equivalent to
Lasso. The example prediction on test data is shown in fig. (best by RMSE)
and fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE
1/3 12,7, M7-DMY Yes 7.3647  5.2977 2/10 2/10
1/3 T2,7,M7-DM Yes 7.3566  5.3081 1/6 6/21
1/4 T2,M7,30-DMY Yes 7.3896  5.2937 10/42 1/8
2/5 T2,7,14,28 M7,M30-DMY Yes 7.3848 5.3014 8/35 3/14
2/5 T2,3,7-DMY Yes 7.3785  5.3057 4/21 5/19
2/5 T2,M7,30-DM Yes 7.3838  5.3052 7/33 4/18
2/7 T2,7,M7-DM No 7.3758  5.3554 3/17 21/68
3/7 T2,7,14,28 M7,M30-DM Yes 7.3848  5.3166 9/36 8/26
3/9 T2,7,M7-DMY No 7.3816  5.3490 6/30 18/60
3/8 T2-7-DMY Yes 7.4069  5.3113 19/69 7/23
3/7 T2,7-DMY Yes 7.3791  5.3510 5/22 19/62
4/8 T2,M7,30-DY Yes 7.4050  5.3166 17/65 9/27
4/10 T2,M7,30-D Yes 7.3999  5.3332 13/55 11/36
4/10 T2,7,M7-D Yes 7.3945  5.3445 11/46 16/55
5/12 T2,7,M7-DY Yes 7.4016  5.3353 15/60 13/40
5/11 T2,7-DM Yes 7.3963  5.3511 12/48 20/63
5/10 T2,7,14,28 M7,M30-DY Yes 7.4091 5.3234 21/74 10/33

Table 5.10: The list of best Lasso estimators with Pareto rank at most 5. Column rPareto
contain the Pareto rank within the class and also the overal Pareto rank (equivalety for
rRMSE and rMAE). The column Var. contains variables and dummies used by the esti-

mator and the columnd W. shows whether the weather data were included.

5.1.12 Least absolute shrinkage and selection operator opti-

mized using LARS (LassoLars)

This estimator class consists of Lasso regression estimators optimized using mod-
ified LARS (viz section [3.2.6.1)). All estimators from this class consist of 24 sub-

estimators, each predicting a single hour.

5.1.12.1 Optimization

The parameter o was optimized for each of the estimator using the NM method,
the starting point for optimization was found using the PSO for model LassoLa
rs_T2,7,14,28,M7,30_w-WMY. The PSO used 20 particles for 50 generations and
the parameter search space was o = 10%, a € [—6,6]. The initial point for the NM
optimization was a &~ —3.8499.
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5.1.12.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.22]
and table[C.21]for further analysis using the DM test. The best estimators by Pareto
rank are shown in table [5.11] which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1k The
results of DM tests are slightly different for the RMSE and MAE measure. While
the DM test (power p = 1) for the top 10 by MAE shows clear differences between
estimatorsthat are not exactly below each other in the ranking, the DM test (power
p = 2) for the top 10 by RMSE shows only few significant differences between the
very best estimator and 3rd to 10th estimators and also betwen the 10th and 1st to
4th estimators.

The inclusion of weather data was beneficial for LassoLars estimators as shown
in figs. [A1] [A.2] [D.1] and [D.2l While the effect on average was positive but very
small (but still mostly significant) for the RMSE measure (fig. [A.1]), 8 of the top
10 by both RMSE and all of the top 10 by MAE estimators used the weather data
(tables [C.21| and |C.22)). Compared to its numerical optimization version Lasso, the
inclusion of weather had negative significant effect for more estimators (but still
< 10 estimators have shown negative effect).

This estimator is quite robust to overfitting as shown in figs. and due to
the variable selection process.

Overall, the LassoLars was the best performing estimator ranking 1st in both
MAE and RMSE . The estimator LassoLars_T2,7,M7_w-DM ranked 1st by RMSE
and 11th by MAE and the estimator LassoLars_T2,7,14,28,M7,M30_w-DMY ranked
1st by MAE and 5th by MAE. The other estimators with Pareto Rank 1 are Lasso
Lars_T2,7,14,28,M7,M30_w-DMY (3rd by both MAE and RMSE) and LassoLars_
T2,M7,30_w-DM (2nd by RMSE and 4th by MAE).

The example prediction on test data is shown in fig. [E.11b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

5.1.13 Ordinary Least Squares linear regression (OLS)

This estimator class consists of linear regression estimators estimated using OLS.
All estimators from this class consist of 24 sub-estimators, each predicting a single
hour.

5.1.13.1 Optimization

The estimator has no parameters that would have to be optimized using validation
data.

5.1.13.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.24]
and table[C.23for further analysis using the DM test. The best estimators by Pareto
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rPareto Var. W. RMSE MAE rRMSE rMAE
1/1 T2,7,14,28 M7,M30-DMY Yes 7.3558 52710 5/5 1/1
1/1 T2,7,14,28 M7,M30-DM Yes 7.3491 5.2814 3/3 3/3
1/1 12,7, M7-DM Yes 7.3363  5.2980 1/1 8/11
1/1 T2,M7,30-DM Yes 7.3465  5.2829 2/2 4/4
2/2 12,7, M7-DMY Yes 7.3533  5.2887 4/4 5/5
2/2 T2,M7,30-DMY Yes 7.3689  5.2763 9/13 2/2
3/3 T2-7-DMY Yes 7.3798  5.2931 16/26 6/7
3/5 T2,7-DM Yes 7.3613  5.3367 7/9 18/43
3/3 T2,3,7-DMY Yes 7.3687  5.2946 8/12 7/9
3/5 T2,7,M7-DM No 7.3596  5.3405 6/8 21/49
4/5 T2,7,14,28 M7,M30-DY Yes 7.38906  5.3012 23/43 9/13
4/5 T2,7,M7-DMY No 7.3746  5.3356 10/15 17/42
4/5 T2,7,14,28 M7,M30-D Yes 7.3783  5.3136 14/20 11/24
4/5 T2,3,7-DM Yes 7.3768  5.3161 12/18 12/25
5/6 T2,7,M7-D Yes 7.3746  5.3371 11/16 19/44
5/6 T2,7,M7-DY Yes 7.3780  5.3203 13/19 13/30
5/7 T2,M7,30-DY Yes 7.3923  5.3023 25/45 10/16

Table 5.11: The list of best LassoLars estimators with Pareto rank at most 5. Column
rPareto contain the Pareto rank within the class and also the overal Pareto rank (equivalety
for rTRMSE and rMAE). The column Var. contains variables and dummies used by the

estimator and the columnd W. shows whether the weather data were included.

rank are shown in table [5.12| which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1lL The
results of DM tests are quite different for the RMSE and MAE measure. While
the DM test (power p = 1) for the top 10 by MAE shows clear differences only
between estimators that are further away from each other in the ranking. The DM
test (power p = 2) for the top 10 by RMSE shows only few significant differences
between estimators that are even further away from each other in the ranking.

The inclusion of weather data had negative effect on the OLS estimators mostly
because overfitting to the weather data. The distribution of the RMSE and MAE
with dependency on the weather is shown in figs. and [A.2] the pairwise compar-
ison between identical estimators with and without the weather variables is shown
in figs. and — the rise in the error after inclusion of weather variables is
clearly visible for most of the estimators.

This estimator is one of the most overfitting estimators used in this comparison
as shown in figs. and [B.2] Unlike most of the others estimators, it employed no
regularization, thus overfitting was the price for the simplicity of the model. The
only estimator that overfitted even more was the RF.

Overall, the OLS is a quite good estimator with 7th position by MAE and 8th
by RMSE shown in figs. and [p.2] furthermore, its best estimator by RMSE is
133rd in overall RMSE rankings and the best by MAE is 198th in overall MAE
rankings. This difference between the RMSE and MAE performance is caused by
optimizing with respect to only the RMSE and employing no regularization. The
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OLS is very simple estimator that is not robust — it is very sensitive to outliers.
However despite its simplicity it performed very well with the right selection of
variables when comparing the estimators by RMSE.

The example prediction on test data is shown in fig. [E.12b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE
1/31 T2,7-DM Yes 7.4408  5.4521 1/133 2/206
1/35 T2,7-DMY Yes 7.4673  5.4445 5/182 1/198
2/39 T2,M7,30-D No 7.4567  5.4729 4/166 3/258
2/37 T2,7,M7-D No 7.4487 54886 2/151 5/291
3/38 T2,7-DM No 7.4497 54905 3/155 6/299
3/40 T2,7-DMY No 7.4689 54784 6/184 4/271
4/44 T2,3,7-DM No 7.4903 5.5182 7/210 9/371
4/45 T2,3,7-DMY No 7.5012  5.5108 10/228 7/344
5/51 T2,3,7-DY No 7.5258  5.5380 11/259 12/460
5/51 T2,7-DY Yes 7.5373  5.5175 17/281 8/368
5/46 T2,M7-D No 7.4972 55406 8/223 14/475
5/50 T2,7,M7-D Yes 7.5305  5.5244 12/266 10/402

Table 5.12: The list of best OLS estimators with Pareto rank at most 5. Column rPareto
contain the Pareto rank within the class and also the overal Pareto rank (equivalety for
rRMSE and rMAE). The column Var. contains variables and dummies used by the esti-

mator and the columnd W. shows whether the weather data were included.

5.1.14 Random Forest regression (RF')

This estimator class consists of Random Forest estimators each with 2000 weak
estimators per single sub-estimator. All estimators from this class consist of 24
sub-estimators, each predicting a single hour.

5.1.14.1 Optimization

The individual parameters were not optimized out of the box but rather based on
preliminary experiments with different parametrizations — the number of estimators
is llimited only by compuational power. The maximum depth was optimized using
grid search for estimator RF_T2-14,M7,30_p-DM.

5.1.14.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.26]
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table [5.13| which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1m| The
results of DM tests are quite different for the RMSE and MAE measure. The DM
test (power p = 1) for the top 10 by MAE shows clear differences only for the 1st
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and 2nd compared t some of the other estimators. The DM test (power p = 2) for
the top 10 by RMSE shows only few significant differences between the first half
and the second half with no significant differences between the RF_T2_p-DY and
RF_T2,7_p-DY compared to the other estimators.

The inclusion of weather data had mostly negative effect on the RF estimators
mostly because overfitting to the weather data (similarly to OLS). The distribution
of the RMSE and MAE with dependency on the weather is shown in figs.
and [A.2] the pairwise comparison between identical estimators with and without
the weather variables is shown in figs. and — compared to most of the
used estimators, it shows quite a spread as the weather data had large effect (both
positive and negative) on several estimators. On the best performing estimators the
effect was very small but still negative.

This estimators was the most overfitting estimator used in the comparison figs.
and [B.2] Despite the overfitting, the estimators was still able to perform compara-
tively well even though its performance is in the lower half of the comparison.

Overall, the RF is in the lower half of estimators used in the comparison with
15th position by both RMSE and MAE as shown in figs. and [5.2] furthermore,
its best estimator by RMSE is 2425th in overall RMSE rankings and the best by
MAE is 2549th in overall MAE rankings.

The example prediction on test data is shown in fig. [E.13b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE
1/228 T2-DY No 82471  6.1772 1/2425 36/2549
1/228 T2,7-DY No 82471 6.1772 1/2425 36/2549
1/225 T2,14,28-D No 8.2574  6.0914 3/2442 1/2391
2/229 T2-7-W No 84305 6.0953 48/2617 2/2400
2/226 T2,14,28-DY No 8.2641  6.0984 4/2450 3/2409
3/231 T2-7-WMY No 84214  6.1010 46/2612 4/2420
3/228 T2,14,28-W No 82651 6.1028 5/2454 5/2427
4/232 T2-7-WY No 8.4355 6.1033 53/2626 6/2428

4/229 T2,14,28-WM No 8.2727 6.1084 7/2462 10/2442
4/229 T2,14,28-DM No 82718 6.1146 6/2460 13/2449
4/229 T2,14,28-DMY No 82854  6.1039 10/2479 7/2429
5/232 T2-7-D No 84334  6.1055 52/2624 8/2433
5/230 T2,14,28-WMY No 8.2794  6.1103 8/2470 12/2444

Table 5.13: The list of best RF estimators with Pareto rank at most 5. Column rPareto
contain the Pareto rank within the class and also the overal Pareto rank (equivalety for
rRMSE and rMAE). The column Var. contains variables and dummies used by the esti-

mator and the columnd W. shows whether the weather data were included.
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5.1.15 Support Vector Regression with linear kernel and e-

insensitive loss (SVR-linear-e)

This estimator class consists of Support Vector Regresssion with linear kernel and
e-insensitive loss. All estimators from this class consist of 24 sub-estimators, each
predicting a single hour.

5.1.15.1 Optimization

The parameters ¢ and C' were optimized for each of the estimator using the NM
method, the starting point for optimization was found using the PSO for model SV
R-linear-e_T2,7,14,28,M7,30_w-WMY. The PSO used 100 particles for 30 gener-
ations and the parameter search space was ¢ € [0,1] and C' = 10, ¢ € [—6,2]. The
initial point for the NM optimization was € ~ 0.3627 and ¢ ~ —1.7564.

5.1.15.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.2§]
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1nl The
results of DM tests are quite different for the RMSE and MAE measure. The DM
test (power p = 1) for the top 10 by MAE shows significant differences between the
estimators. The DM test (power p = 2) for the top 10 by RMSE shows significant
differences mainly for the 1st estimator compared to the other.

The inclusion of weather data had mostly positive effect on the SVR-linear-e
estimators as shown in figs. [A.1],[A.2] [D.1] and [D.2] even though the effect was quite
small and not present for all estimators — especially for the top estimators. The top
10 by RMSE contains only one estimator using the weather data and the top 10 by
MAE contained 5 estimators using the weather data.

This estimators was quite robust to overfitting figs. and even though not
as robust as Lasso, LassoLars, BR, and EN.

Overall, the SVR-linear-e is very good estimator with 5th position by both
MAE and RMSE as shown in figs. and [5.2] furthermore, its best estimator
by RMSE is 136th in overall RMSE rankings and the best by MAE is 120th in
overall MAE rankings. It is the best performing SVR used in the comparison closely
followed by SVR-linear-e2 which only employs squared e-insensitive loss.

The example prediction on test data is shown in fig. [E.14b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.
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rPareto Var. W. RMSE MAE rRMSE rMAE
1/25 T2,M7,30-D No 7.4435 5.3998 1/136 2/127
1/28 T2,M7,30-DY No 7.5117  5.3953 5/242 1/120
2/32 T2,M7,30-D Yes 7.5238  5.4158 7/257 4/153
2/34 T2,M7,30-DM No 7.4890  5.4308 2/208 5/177
2/30 T2,M7,30-DY Yes 7.5472  5.4045 12/308 3/132
3/46 T2,M7,30-DMY No 7.5339  5.4691 10/276 8/250
3/44 T2,M7,30-DMY Yes 7.5919  5.4567 24/417 6/224
3/44 T2,7,M7-DM No 7.5011  5.4831 3/227 9/277
4/48 T2-7-DMY Yes 7.6332  5.4651 40/565 7/246
4/46 T2,M7-DM No 7.5065  5.4987 4/233 13/324
4/50 T2,M7,30-DM Yes 7.5772  5.4861 22/373 10/283
4/50 T2,7,14,28 M7,M30-D Yes 7.5668  5.4920 18/344 12/301
5/54 T2-7-DM Yes 7.6578  5.4865 48/648 11/287
5/48 T2,M7-DY No 7.5232  5.5055 6/255 16/336
5/57 T2,7,14,28 M7,M30-DY Yes 7.6016  5.5027 27/453 15/334

Table 5.14: The list of best SVR-linear-e estimators with Pareto rank at most 5. Column
rPareto contain the Pareto rank within the class and also the overal Pareto rank (equivalety
for rRMSE and rMAE). The column Var. contains variables and dummies used by the

estimator and the columnd W. shows whether the weather data were included.

5.1.16 Support Vector Regression with linear kernel and squared

e-insensitive loss (SVR-linear-e2)

This estimator class consists of Support Vector Regresssion with linear kernel and
squared e-insensitive loss. All estimators from this class consist of 24 sub-estimators,
each predicting a single hour.

5.1.16.1 Optimization

The parameters ¢ and C' were optimized for each of the estimator using the NM
method, the starting point for optimization was found using the PSO for model
SVR-linear-e2_T2,7,14,28,M7,30_w-WMY. The PSO used 100 particles for 30
generations and the parameter search space was € € [0,1] and C = 10, ¢ € [—6,2].
The initial point for the NM optimization was € =~ 0.0001 and ¢ ~ —1.9492.

5.1.16.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.30]
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table [5.15| which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig.[C.10 The DM
tests show only scattered significant differences — the 1st estimator is significantly
better than at least half of the others estimators for both RMSE and MAE.



60 CHAPTER 5. RESULTS

Similarly as for SVR-1linear-e, the inclusion of weather data had mostly positive
effect on the SVR-1linear-e2 estimators as shown in figs. [A.1] [A.2] [D.1 and [D.2] even
though the effect was quite small and not present for all estimators — especially for
the top estimators. The top 10 by RMSE contains only one estimator using the
weather data and the top 10 by MAE contained 5 estimators using the weather
data.

This estimators was quite robust to overfitting figs. and [B.2] even though not
as robust as Lasso, LassoLars, BR, and EN.

Overall, the SVR-1inear-e2 is quite good estimator with 9th position by RMSE
and 6th by MAE as shown in figs. and 5.2 furthermore, its best estimator by
RMSE is 186th in overall RMSE rankings and the best by MAE is 193rd in overall
MAE rankings. It is the second best performing SVR estimator but worse than the
version with e-insensitve loss SVR-1inear-e.

The example prediction on test data is shown in fig. [E.15b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE
1/38 T2,M7,30-D No 7.4698  5.4589 1/186 7/232
1/34 T2,M7,30-DY No 7.4848 54391 2/203 2/194
1/39 T2,M7,30-DY Yes 7.5412 54376 14/288 1/193
2/39 T2,M7,30-D Yes 7.5237  5.4476 8/256 3/200
2/36 T2,M7,30-DM No 7.4953  5.4485 3/219 4/202
3/40 T2,M7,30-DMY No 7.5369  5.4539 12/279 5/211
3/45 T2,7,M7-DM No 7.5054  5.4890 4/231 10/295
4/47 T2 M7-DM No 7.5151 54946 5/248 12/307
4/42 T2,M7,30-DM Yes 7.5549  5.4614 19/322 8/237
4/45 T2,M7,30-DMY Yes 7.5814  5.4583 29/384 6/228
5/53 T2-7-DMY Yes 7.6146  5.4862 37/506 9/285
5/48 T2, M7-DMY No 7.5414 54984 15/289 13/321
5/48 T2,7,M7-DY No 7.5187 55110 6/251 16/345
5/51 T2,7,14,28 M7,M30-DY Yes 7.5685  5.4920 23/347 11/302

Table 5.15: The list of best SVR-linear-e2 estimators with Pareto rank at most 5. Column
rPareto contain the Pareto rank within the class and also the overal Pareto rank (equivalety
for rRMSE and rMAE). The column Var. contains variables and dummies used by the

estimator and the columnd W. shows whether the weather data were included.

5.1.17 Support Vector Regression with polynomial kernel of
degree 2 (SVR-poly-2)

This estimator class consists of Support Vector Regresssion with polynomial kernel of
degree 2 . All estimators from this class consist of 24 sub-estimators, each predicting
a single hour.
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5.1.17.1 Optimization

The parameters ¢ and C' were optimized for each of the estimator using the NM
method, the starting point for optimization was found using the PSO for model SVR
-poly-2_T2,7,14,28,M7,30_w-WMY. The PSO used 100 particles for 30 generations
and the parameter search space was € € [0,1] and C' = 10, ¢ € [—6,2]. The initial
point for the NM optimization was € ~ 0.0760 and ¢ ~ 0.6027.

5.1.17.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.32]
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. |C.1p, The
DM tests have slightly different results for both MAE and RMSE, when the first
three estimators are significantly better than the others by the MAE and only the
very first estimator is significantly better than the others by RMSE. The DM tests
for RMSE also show significant dominance over the last four estimators by the first
three estimators.

In contrast to SVR-linear-e and SVR-linear-e, the inclusion of weather data
had negative effect on the SVR-poly-2 estimators as shown in figs. [A.] [A.2] [D.]
and even though the effect was quite small and not present for all estimators —
especially for the top estimators. The top 10 by RMSE contains only one estimator
using the weather data and the top 10 by MAE contained no estimators using the
weather data.

This estimators was one of the estimators that overfitted for most variable com-
binations as shown in figs. and

Overall, the SVR-poly-2 is lower half of the estimators. It ranks 14th by both
RMSE and MAE as shown in figs. and furthermore, its best estimator by
RMSE is 1953rd in overall RMSE rankings and the best by MAE is 2126th in overall
MAE rankings. Other SVR with polynomial kernel of degree 3 and 4 performed even
worse.

The example prediction on test data is shown in fig. [E.16b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

5.1.18 Support Vector Regression with polynomial kernel of
degree 3 (SVR-poly-3)
This estimator class consists of Support Vector Regresssion with polynomial kernel of

degree 3 . All estimators from this class consist of 24 sub-estimators, each predicting
a single hour.
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rPareto Var. W. RMSE MAE rRMSE rMAE
1/180 T2-DM No 8.0146  5.9466 1/1953 1/2126
2/202 T2,7-WY No 81896  5.9930 3/2346 3/2241
2/197 T2,7-DY No 82076  5.9673 4/2378 2/2173
2/213 T2,14,28-DM No 81882  6.0786 2/2342 5/2373
3/211 T2-DY No 8.2965 6.0383 9/2497 4/2316
3/224 T2-DMY No 82641  6.0855 7/2452 7/2382
3/224 T2,7-DM No 8.2891 6.0831 8/2487 6/2377
3/223 T2,14,28-DMY No 82227 6.0973 5/2402 8/2404
4/230 T2,7-DMY No 83250 6.0985 15/2527 9/2411
4/229 T2,14,28-WM No 82563 6.1542 6/2441 12/2500
4/235 T2,7,14,28 M7,M30-DMY No 8.3158  6.1429 12/2517 11/2491
5/236 T2,7-WM No 83183  6.1557 13/2518 13/2503
5/236 T2,7-WM Yes 8.3014  6.1642 10/2500  15/2522
5/236 T2,7-WMY No 83816 6.1358 18/2585  10,/2480

Table 5.16: The list of best SVR-poly-2 estimators with Pareto rank at most 5. Column
rPareto contain the Pareto rank within the class and also the overal Pareto rank (equivalety
for rRMSE and rMAE). The column Var. contains variables and dummies used by the

estimator and the columnd W. shows whether the weather data were included.

5.1.18.1 Optimization

The parameters ¢ and C' were optimized for each of the estimator using the NM
method, the starting point for optimization was found using the PSO for model SVR
-poly-3_T2,7,14,28,M7,30_w-WMY. The PSO used 100 particles for 30 generations
and the parameter search space was € € [0,1] and C' = 10, ¢ € [—6,3]. The initial
point for the NM optimization was € =~ 0.6408 and ¢ ~ 0.1202.

5.1.18.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.34]
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table [5.17] which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.1gl The
DM test shows significant differences between most of the estimators for both MAE
and RMSE selections.

Similarly as SVR-linear-e and SVR-linear-e and in contrast to SVR-poly-2
and SVR-poly-4 , the inclusion of weather data had positive effect on the SVR-poly-3
estimators as shown in figs. [A.1] [A.2] [D.1] and [D.2] All estimator of the top 10 by
RMSE estimator and 8 estimators of the top 10 by MAE use the weather data.

This estimators was one of the estimators that overfitted for most variable combi-
nations as shown in figs. B.T] and [B.2] — this behavior is present also for SVR-poly-2
and SVR-poly-4.

Overall, the SVR-poly-3 is in one of the worst estimators — it ranks 17th by
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both RMSE and MAE as shown in figs. and [5.2] furthermore, its best estimator
by RMSE is 2892nd in overall RMSE rankings and the best by MAE is 2851st in
overall MAE rankings. The estimator with polynomial degree 4 performed even
worse.

The example prediction on test data is shown in fig. [E.17b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE

1/292 T2,7,M7-DY Yes 8.8580  6.5185 1/2892 1/2851
2/295 T2,7,M7-WY  Yes 8.8978  6.5763 2/2917 2/2883
3/299 T2,7,MT7-D Yes 8.9203  6.5799 3/2940 3/2885
4/304 T2,7,M7-W Yes 8.9586  6.6344 4/2979 6/2952
4/302 T2,7,M7-DMY  Yes 8.9654  6.6024 5/2984 4/2911
5/303 T2,7,M7-DM Yes 8.9811  6.6288 6/2995 5/2945

Table 5.17: The list of best SVR-poly-3 estimators with Pareto rank at most 5. Column
rPareto contain the Pareto rank within the class and also the overal Pareto rank (equivalety
for rRMSE and rMAE). The column Var. contains variables and dummies used by the

estimator and the columnd W. shows whether the weather data were included.

5.1.19 Support Vector Regression with polynomial kernel of
degree 4 (SVR-poly-4)

This estimator class consists of Support Vector Regresssion with polynomial kernel of
degree 4. All estimators from this class consist of 24 sub-estimators, each predicting
a single hour.

5.1.19.1 Optimization

The parameters ¢ and C' were optimized for each of the estimator using the NM
method, the starting point for optimization was found using the PSO for model SVR
-poly-4_T2,7,14,28,M7,30_w-WMY. The PSO used 100 particles for 30 generations
and the parameter search space was € € [0,1] and C' = 10, ¢ € [—6,3]. The initial
point for the NM optimization was € ~ 0.6408 and ¢ =~ 0.1202.

5.1.19.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.36|
and table[C.35]for further analysis using the DM test. The best estimators by Pareto
rank are shown in table [5.18 which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. [C.11] The
DM test for the top 10 by MAE shows significant differences between the first three
estimators compared to the others, on the other hand, the estimators in the top 10
by RMSE show significant differences only between the very first estimator and the
rest and also between the first three and last three estimators.
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The weather had almost no effect on the prediction error by both RMSE and
MAE, viz figs. [A1], [A.2] [D.1] and [D.2] — 3 estimator of the top 10 by by both
MAE and RMSE use the weather data. The effect was significant only for several
estimators and then the effect was mixed — positive for some and negative for others

viz figs. 5.3 and [5.4}

This estimators was one of the estimators that overfitted for most variable combi-
nations as shown in figs. and — this behavior is present also for SVR-poly-2
and SVR-poly-3.

Overall, the SVR-poly-4 is the worst estimator used in the comparison — it ranks
20th by both RMSE and MAE as shown in figs. and furthermore, its best
estimator by RMSE is 4289th in overall RMSE rankings and the best by MAE is
3979th in overall MAE rankings.

The example prediction on test data is shown in fig. [E.18b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE
1/437 T2,7,M7-DY No 10.6661 7.6831 1/4289 1/3979
2/456 T2,7-DY No 10.6754 7.8203 2/4292 3/4114
2/452 T2,7,M7-DMY No 10.8727 7.8074 5/4395 2/4105
3/460 T2,7-DMY No 10.7516 7.9046 3/4318 7/4164
3/459 T2,7,M7-WY No 10.8223 7.8733 4/4382 4/4145
4/477 T2,7-Y No 10.9365 8.1641 8/4414 24/4369
4/463 T2,7-WY No 11.0025 7.9200 12/4447 8/4181
4/466 T2,7-DY Yes 10.9533 7.9957 9/4418 13/4259
4/460 T2,7,M7-D No 11.1185 7.8997 19/4543 6/4158
4/460 T2,7,M7-DMY Yes 11.1250 7.8959 21/4546  5/4157
4/481 T2,7,14,28 M7,M30-WMY Yes 10.8916 8.4583 6,/4399 45/4517
5/475 T2,7-MY No 10.9960 8.1044 11/4443 18/4319
5/466 T2,7-DMY Yes 11.0202 7.9541 13/4451 10/4240
5/464 T2,7,M7-DY Yes 11.1203 7.9338 20/4545 9/4233

5/485  T2,7,1428 M7,M30-WMY No 10.9900 8.4491 10/4439 44/4512
5/482  T2,7,14,28 M7,M30-DMY  Yes 10.9120 8.4669 7/4408  47/4532

Table 5.18: The list of best SVR-poly-4 estimators with Pareto rank at most 5. Column
rPareto contain the Pareto rank within the class and also the overal Pareto rank (equivalety
for rRMSE and rMAE). The column Var. contains variables and dummies used by the

estimator and the columnd W. shows whether the weather data were included.

5.1.20 Support Vector Regression with RBF kernel (SVR-
rbf)

This estimator class consists of Support Vector Regresssion with RBF kernel. All
estimators from this class consist of 24 sub-estimators, each predicting a single hour.
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5.1.20.1 Optimization

The parameters ¢ and C' were optimized for each of the estimator using the NM
method, the starting point for optimization was found using the PSO for model S
VR-rbf_T2,7,14,28,M7,30_w-WMY. The PSO used 20 particles for 50 generations
and the parameter search space was € € [0,1] and C' = 10, ¢ € [—6,3]. The initial
point for the NM optimization was € ~ 0.2230 and ¢ ~ —0.0400.

5.1.20.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.3§|
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. The
DM test shows significant differences between the first two estimators and the rest
for top 10 by both RMSE and MAE.

The inclusion of weather data had negative effect as shown in figs. [A.2]
and [D.2] Only 3 of the top 10 by RMSE estimator and only 1 estimators of the
top 10 by MAE use the weather data. The effect was significant only for several
estimators and then the effect was mixed — positive for some and negative for others

viz figs. and .

While this estimators also overfitted quite a lot (viz figs. and [B.2)), the
overfitting was not as bad as for other SVR with polynomial kernel with degree 2 —
4.

Overall, the SVR-rbf is a mediocre estimator in the comparison — it ranks 12th
by both MAE and RMSE as shown in figs. and [5.2] furthermore, its best esti-
mator by RMSE is 337th in overall RMSE rankings and the best by MAE is 306th
in overall MAE rankings.

The example prediction on test data is shown in fig. [E.19b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

5.1.21 Support Vector Regression with Sigmoid kernel (SVR-

sigmoid)

This estimator class consists of Support Vector Regresssion with Sigmoid kernel.
All estimators from this class consist of 24 sub-estimators, each predicting a single
hour.

5.1.21.1 Optimization

The parameters ¢ and C' were optimized for each of the estimator using the NM
method, the starting point for optimization was found using the PSO for model SVR
-sigmoid_T2,7,14,28,M7,30_w-WMY. The PSO used 20 particles for 50 generations



66 CHAPTER 5. RESULTS

rPareto Var. W. RMSE MAE rRMSE rMAE
1/57 T2-DM Yes 7.5631  5.5590 1/337 12/559
1/55 T2-DY No 7.6096  5.4941 2/487 3/306
1/41 T2,7-DMY No 7.6959 54543 9/781 1/212
2/72 T2-DM No 7.6371 55419 3/578 11/481
2/65 T2-DMY No 7.6742 55242 4/703 8/401
2/52 T2,7-DM No 7.7169 54783 12/855 2/270
2/60 T2,7-DY No 7.6935 55126 8/770 5/351
3/69 T2,M7-DM No 7.6809  5.5355 5/720 9/447
3/62 T2, 7-WMY No 7.7579 55189 18/1041 7/374
3/60 T2,7-DMY Yes 7.7611  5.5125 19/1049 4/350
4/84 T2,14,28-DMY No 7.6869  5.5943 7/742 21/706
4/91 T2,3,7-DM Yes 7.6855  5.6467 6/735 50/976
4/62 T2,7-D No 7.7732 5.5159 23/1101 6/361
5/97 T2-D Yes 7.7061  5.6332 10/813 42/908
5/93 T2,14,28-DM No 7.7134  5.6220 11/840 35/835
5/71 T2,7-WM No 7.7792 55393 25/1123 10/469
5/97 T2-DMY Yes 7.7547  5.6102 17/1025 29/785
5/96 T2,3,7-DM No 7.7245 5.6213 13/890 33/831
5/95 T2,7,M7-DM No 7.7767  5.5950 24/1116 22/709

Table 5.19: The list of best SVR-rbf estimators with Pareto rank at most 5. Column
rPareto contain the Pareto rank within the class and also the overal Pareto rank (equivalety
for rRMSE and rMAE). The column Var. contains variables and dummies used by the

estimator and the columnd W. shows whether the weather data were included.

and the parameter search space was € € [0,1] and C' = 10, ¢ € [—6,3]. The initial
point for the NM optimization was ¢ &~ 0.6066 and ¢ ~ —1.3205.

5.1.21.2 Best estimators

The 10 best estimators were selected by both MAE and RMSE as shown in table[C.40]
and table for further analysis using the DM test. The best estimators by Pareto
rank are shown in table which also contains most of the estimators selected by
both measures.

The results of the DM test at 5% significance level are shown in fig. |C.1tl The
DM tests for top 10 by MAE show that the T2-31-WMY and T2-31-DMY are signifi-
cantly better than the estimators that have the same lag variables but are missing
some of the dummy variables. Furthermore, the DM tests show significant dif-
ferences between most of the estimators selected by RMSE with the exception of
T2-31-WMY and T2-31-DMY that are significantly dominated only by T2,14,28-DMY
and T2,14,28-DM.

The inclusion of weather data had generally positive effect as shown in figs. [A.T]
[A.2] [D.1] and [D.2] All estimator of the top 10 by both RMSE and MAE use the
weather data.

While this estimators also overfitted quite a lot (viz figs. and [B.2)), the
overfitting was not as bad as for other SVR with polynomial kernel with degree 2 —
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Overall, the SVR-sigmoid is one of the worst estimators in the comparison — it
ranks 18th by both MAE and RMSE as shown in figs. and [5.2] furthermore, its
best estimator by RMSE is 2959th in overall RMSE rankings and the best by MAE
is 2930th in overall MAE rankings.

The example prediction on test data is shown in fig. [E.20b| (best by RMSE) and
fig. (best by MAE) for 14th — 28th May 2016.

rPareto Var. W. RMSE MAE rRMSE rMAE

1/307 T2-31-WMY Yes 9.0637  6.6173 8/3042 2/2932
1/307 T2-31-DMY Yes 9.0637  6.6168 9/3043 1/2930
1/303 T2,14,28-DMY  Yes 8.9394  6.6319 1/2959 3/2951

2/310 T2-31-M Yes 9.0840 6.6379 11/3067 4/2953
2/305 T2,14,28-DM Yes 8.9646  6.6427 2/2983 7/2960
3/311 T2-31-DY Yes 9.0896  6.6399 13/3069  5/2955
3/306 T2,1428-WMY Yes 8.9786  6.6567 3/2994 13/2973
4/312 T2-31-WM Yes 9.0903  6.6409 14/3071 6/2958
4/307 T2,14,28-DY Yes 9.0105  6.6768 4/3007 19/2995
5/313 T2-31-WY Yes 9.0974  6.6472 16/3080  8/2964
5/313 T2-31-DM Yes 9.0921  6.6485 15/3073  10/2966

5/309 T2,14,28-MY Yes 9.0288  6.6906 5/3021 25/3017

Table 5.20: The list of best SVR-sigmoid estimators with Pareto rank at most 5. Column
rPareto contain the Pareto rank within the class and also the overal Pareto rank (equivalety
for rRMSE and rMAE). The column Var. contains variables and dummies used by the

estimator and the columnd W. shows whether the weather data were included.

5.2 Comparison between classes

While the sections above shortly described the results from the point of view of
individual estimators, this section contains the compares the estimator classes with
each other. For purposes of this comparison, best estimator from each estimator
class was selected. The best estimators by class were then compared to each other
using the DM test at 5% significance level (viz figs. and . The summary of
the best results by estimator classes and the combination of variables is shown in
table (RMSE) and table (MAE). The LassoLars is performing the best
with almost any combination of lagged and mean variables — the only time that it
is not the best is when no lagged and mean variables (named as nl) are present and
only dummies are available to the estimators. The ANN48-0.5d-1linear performs
the best when only dummies are present for both RMSE and MAE — this suggest
that the relationship between the electricity price and the dummies is not linear.
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BR_T2,7 w-DMY

SVR-linear-e_ T2,M7,30_p-DY
SVR-linear-e2_ T2,M7,30__w-DY
OLS_T2,7 w-DMY
AB-LR_T2,M7,30_p-D
ANN48-0.5d-linear_ T2,M7,30__w-D
KRR-linear_ T2,M7,30_w-DY
KRR-poly-2 T2,7 p-DM
SVR-rbf T2,7 p-DMY
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SVR-poly-2 T2 p-DM
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Figure 5.1: The results for DM tests (power p = 1) for best estimator from each class by
MAE. A filled square at [i,j] denotes that the forecast of estimator i is better than the
forecast j by the DM test on 5% significance level.
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Figure 5.2: The results for DM tests (power p = 2) for best estimator from each class by
RMSE. A filled square at [i, j] denotes that the forecast of estimator i is better than the
forecast j by the DM test on 5% significance level.
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AB-DT 8.945 8.838 8.935 8.948 8.620 8.632 8.642 8.637 8.887 8.774 10.740
AB-LR 7.581 7.558 7.585 7.582 7.508 7.497 7.497 7.450 7.673 9.478 9.095
ANN48-0.5d-linear 7.608 7.703 7.649 7.636 7.629 7.611 7.584 7.587 7.789 7.995 8.774
ANNB84-0.5d-1200e 7.925 7.817 7.941 7.939 7.711 7.804 7.758 7.698 7.724 7.666 9.509
BR 7.577 7.595 7.612 7.400 7.515 7.401 7.456 7.411 7.585 7.686 9.095
EN 7.550 7.419 7.379 7.373 7.385 7.358 7.434 7.384 7.440 7.539 9.103
KRR-linear 7.755 7.686 7.773 7.755 7.544 7.585 7.585 7.533 7.617 7.710 10.028
KRR-poly-2 7.639 7.470 7.699 7.436 7.609 7.493 7.562 7.673 7.644 7.803 9.039
Lars 9.735 11.050 10.049 9.735 11.337 10.516 10.516 11.678 10.516 10.269 9.170
Lasso 7.552 7.418 7.379 7.379 7.385 7.357 7.432 7.384 7.407 7.572 9.515
LassoLars 7.544 7.381 7.369 7.361 7.349 7.336 7.401 7.347 7.380 7.512 9.515
OLS 7.585 7.500 7.490 7.441 7.537 7.449 7.497 7.457 7.686 9.465 9.098
RF 8.247 8.257 8.608 8.247 8.376 8.648 8.648 8.919 8.421 8.617 9.932
SVR-linear-e 7.597 7.569 7.642 7.600 7.560 7.501 7.507 7.443 7.633 7.709 9.099
SVR-linear-e2 7.578 7.594 7.698 7.578 7.521 7.505 7.515 7.470 7.592 7.693 9.098
SVR-poly-2 8.015 8.188 8.478 8.190 8.316 8.474 8.971 9.341 8.675 10.958 9.413
SVR-poly-3 10.390 9.459 10.296 9.072 9.080 8.858 9.405 9.426 9.397 9.265 10.702
SVR-poly-4 11.818  11.435  12.194  10.675  10.892  10.666  11.498  11.413  12.207 11.811  11.388
SVR-rbf 7.563 7.687 7.685 7.693 7.790 7077 7.681 7.841 7.853 7.962 9.408
SVR-sigmoid 10.368 8.939 10.651 10.368 9.176 10.056 10.056 10.304 9.298 9.064 9.509

Table 5.21: The best results (RMSE) for individual estimators and variable sets. Each cell
contains the best value over all possible dummies and the inclusion of weather data. The
highest value for given estimator class is in green, for the particular selection of variables

in blue, and the overall highest value is in bold.
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AB-DT 6.864 6.646 6.803 6.861 6.344 6.522 6.539 6.388 6.510 6.408 8.409
AB-LR 5.547 5.627 5.552 5.552 5.554 5.545 5.539 5.470 5.678 7.251 6.678
ANN48-0.5d-linear 5.556 5.695 5.599 5.575 5.531 5.581 5.548 5.495 5.760 5.969 6.442
ANNB84-0.5d-1200e 5.830 5.732 5.821 5.863 5.600 5.741 5.688 5.560 5.566 5.689 7.089
BR 5.533 5.603 5.544 5.349 5.494 5.387 5.485 5.417 5.486 5.607 6.680
EN 5.516 5.373 5.307 5.338 5.302 5.298 5.407 5.290 5.326 5.421 6.682
KRR-linear 5.670 5.643 5.640 5.670 5.497 5.528 5.528 5.464 5.499 5.621 7.453
KRR-poly-2 5.663 5.496 5.688 5.450 5.563 5.461 5.567 5.590 5.514 5.704 6.669
Lars 7.389 8.640 7.724 7.389 8.894 8.153 8.153 9.185 8.153 7.927 6.761
Lasso 5.519 5.377 5.306 5.351 5.301 5.298 5.405 5.294 5.311 5.456 7.040
LassoLars 5.504 5.351 5.295 5.335 5.271 5.289 5.384 5.276 5.293 5.396 7.040
OLS 5.552 5.576 5.511 5.445 5.588 5.489 5.541 5.473 5.687 7.230 6.679
RF 6.177 6.091 6.428 6.177 6.131 6.486 6.486 6.603 6.095 6.241 7.519
SVR-linear-e 5.540 5.567 5.544 5.546 5.492 5.483 5.499 5.395 5.465 5.600 6.639
SVR-linear-e2 5.539 5.607 5.587 5.544 5.492 5.489 5.495 5.438 5.486 5.613 6.679
SVR-poly-2 5.947 6.079 6.267 5.967 6.143 6.255 6.577 6.826 6.321 8.308 7.030
SVR-poly-3 7.691 7.150 7.637 6.641 6.845 6.519 6.937 6.997 6.848 6.988 8.297
SVR-poly-4 8.650 8.930 8.972 7.820 8.449 7.683 8.386 8.379 8.707 9.135 8.997
SVR-rbf 5.494 5.594 5.621 5.454 5.605 5.576 5.536 5.583 5.577 5.725 7.048
SVR-sigmoid 7.764 6.632 7.978 7.764 6.777 7.480 7.480 7.630 6.689 6.617 7.003

Table 5.22: The best results (MAE) for individual estimators and variable sets. Each cell
contains the best value over all possible dummies and the inclusion of weather data. The
highest value for given estimator class is in green, for the particular selection of variables

in blue, and the overall highest value is in bold.
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5.2.1 Hypothesis: Neural network models are more accurate

than classical regression models

The hypothesis of the ability of ANN to outperform classical models was not con-
firmed nor refuted — while both of the classical ANN performed worse than the OLS
and the difference was significant by using DM test with 5% significance level for net-
works selected by MAE (viz fig. and RMSE (viz fig.[5.2)), one of the used ANNs
performed better than the ridge regression (KRR-linear) when the main criterion
was MAE. Furthermore, the SVR is sometimes considered to be a type of ANN [31],
188] in which case linear SVR with e-insensitive loss outperformed the OLS and the
KRR models for selection by MAE (significant difference by DM test at 5% signifi-
cance level, viz fig. and RMSE (the difference is not significant by DM test at
5% significance level fig. , it was the Hth best estimator, only the Bayesian Ridge
regression (BR), the Elastic Net and its special case Lasso outperformed the SVR.

5.2.2 Hypothesis: Regression forests are able to perform sim-

ilarly as other commonly used models

The RF builds a set of DTs and each of the DT outputs piecewise constant func-
tion, thus the approximation is quite crude, however, it is possible that a set of such
estimators is able to predict the price relatively well despite the crude approxima-
tion of the individual DTs. While the RF estimator was not the best (in ranked
15th by both RMSE and MAE), it performed better than SVR with sigmoid and
polynomial kernel of degree 3 and 4. However, since the RF was worse than the
OLS estimator at 5% significance level for both RMSE and MAE, the hypothesis of
similar performance has to be refuted.

5.3 Overall results

The overall results shows 20 best estimator by either MAE (table or RMSE
(table [p.24). The top 20 consists of only Lasso models ( Lasso and LassoLArs
or their generalization (EN). These estimators have several common characteristics
— all of them are using dummy variables for different weekdays (D) and not the
weekend dummies (W). Furthermore, 18 estimators from the top 20 by MAE and 17
estimators from the top 20 by RMSE use the dummies for individual months (M).

The yearly dummies (Y) are not as important as 15 estimators from the top 20
by MAE but only 9 estimators from the top 20 by RMSE use them. It seems that
the Y dummies are usefull for miniziming the RMSE as they are more frequent in the
top 20 and also when two estimators differs only by the inclusion of the Y dummies,
the estimator with these dummies performs better (e.g. 2nd and 4th, 5th and 11th).
Quite different trend in the Y dummies is when comparing the estimators by MAE
— less than half of the top 20 estimators uses them but the estimators without them
performs better (e.g. 1st and 3rd, 2nd and 4th, or 8th and 18th).

Also, all of the top 20 by MAE and 17 of the top 20 by RMSE use the weather
data. The two cases where the weather data are not used are actually cases when
the identical estimator but with the weather data is already in the rankings —
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Ist (with weather data) and 8th (without weather data), 4th (with weather data)
and 15th (without weather data), and 6th (with weather data) and 17th (without
weather data). This suggests that while the inclusion of weather data is beneficial
(viz section , the gain is rather small.

rMAE Estimator Var. W. Test RMSE Test MAE rRMSE rPareto
1 LassoLars T2,7,14,28 M7,M30-DMY Yes 7.3558 5.2710 5 1
2 LassoLars T2,M7,30-DMY Yes 7.3689 5.2763 13 2
3 LassoLars T2,7,14,28 M7,M30-DM Yes 7.3491 5.2814 3 1
4 LassoLars T2,M7,30-DM Yes 7.3465 5.2829 2 1
5 LassoLars T2,7,M7-DMY Yes 7.3533 5.2887 4 2
6 EN T2,M7,30-DMY Yes 7.3877 5.2898 39 3
7 LassoLars T2-7-DMY Yes 7.3798 5.2931 26 3
8 Lasso T2,M7,30-DMY Yes 7.3896 5.2937 42 4
9 LassoLars T2,3,7-DMY Yes 7.3687 5.2946 12 3
10 Lasso T2,7,M7-DMY Yes 7.3647 5.2977 10 3
11 LassoLars T2,7,M7-DM Yes 7.3363 5.2980 1 1
12 EN T2,7,M7-DMY Yes 7.3662 5.2980 11 4
13 LassoLars T2,7,14,28 M7,M30-DY Yes 7.3896 5.3012 43 5
14 Lasso T2,7,14,28 M7,M30-DMY Yes 7.3848 5.3014 35 5
15 EN T2,7,14,28 M7,M30-DMY Yes 7.3855 5.3021 38 6
16 LassoLars T2,M7,30-DY Yes 7.3923 5.3023 45 7
17 EN T2,M7,30-DM Yes 7.3839 5.3051 34 5
18 Lasso T2,M7,30-DM Yes 7.3838 5.3052 33 5
19 Lasso T2,3,7-DMY Yes 7.3785 5.3057 21 5
20 EN T2,3,7-DMY Yes 7.3794 5.3071 23 6

Table 5.23: The list of 20 best estimators by MAE. Column rMAE contain the overall
rank by MAE (equivalety for TRMSE and rPareto). The column Var. contains variables
and dummies used by the estimator and the columnd W. shows whether the weather data

were included.

rRMSE Estimator Var. W. Test RMSE Test MAE rMAE rPareto
1 LassoLars T2,7,M7-DM Yes 7.3363 5.2980 11 1
2 LassoLars T2,M7,30-DM Yes 7.3465 5.2829 4 1
3 LassoLars T2,7,14,28 M7,M30-DM Yes 7.3491 5.2814 3 1
4 LassoLars T2,7,M7-DMY Yes 7.3533 5.2887 5 2
5 LassoLars T2,7,14,28 M7,M30-DMY Yes 7.3558 5.2710 1 1
6 Lasso T2,7,M7-DM Yes 7.3566 5.3081 21 3
7 EN T2,7,M7-DM Yes 7.3578 5.3083 22 4
8 LassoLars T2,7,M7-DM No 7.3596 5.3405 49 5
9 LassoLars T2,7-DM Yes 7.3613 5.3367 43 5
10 Lasso T2,7,M7-DMY Yes 7.3647 5.2977 10 3
11 EN T2,7,M7-DMY Yes 7.3662 5.2980 12 4
12 LassoLars T2,3,7-DMY Yes 7.3687 5.2946 9 3
13 LassoLars T2,M7,30-DMY Yes 7.3689 5.2763 2 2
14 EN T2,7-DMY Yes 7.3728 5.3382 46 6
15 LassoLars T2,7,M7-DMY No 7.3746 5.3356 42 5
16 LassoLars T2,7,M7-D Yes 7.3746 5.3371 44 6
17 Lasso T2,7,M7-DM No 7.3758 5.3554 68 7
18 LassoLars T2,3,7-DM Yes 7.3768 5.3161 25 5
19 LassoLars T2,7,M7-DY Yes 7.3780 5.3203 30 6
20 LassoLars T2,7,14,28 M7,M30-D Yes 7.3783 5.3136 24 5

Table 5.24: The list of 20 best estimators by RMSE. Column rRMSFE contain the overall
rank by RMSE (equivalety for rMAE and rPareto). The column Var. contains variables
and dummies used by the estimator and the columnd W. shows whether the weather data

were included.

5.3.1 Hypothesis: Models that use weather information are

more accurate than models that do not

The inclusion of weather data to the model can be both beneficial and harmful.
Beneficial because the electricity demand is influenced by weather (e.g. high tem-
perature implies the need of cooling). However, the inclusion of such data might
be also harmful from the practial point of view because it might lead to overfitting
for certain estimators. To compare the benefits of the weather data, the estimators
were paired. Each pair consists of two identical estimators — one included weather
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data in the model, the other did not. Then the Diebold-Mariano (DM) test is used
for assessing whether the difference in performance between these two estimators is
significant. The DM was used with one sided alternative hypothesis that the first
estimator is better than the other. The results is deemed significant if the p—value
is at least 5%. The results of the tests are shown in fig. (MAE) and fig.
(RMSE) where each bar represents the number of pairs that dominated.

The inclusion of weather variables mostly led to deprecated performance for mod-
els AB-DT, AB-LR, ANN48-0.5d-1linear, OLS, RF and kernel methods with sigmoid
kernel and polynomial kernel of even degree. All of such models are particularly
prone to overfitting as shown in figs. and Interestingly, the inclusion of his-
torical weather data was beneficial for SVR-poly-3 despite the overfitting to which
this estimator is also prone and which was present (viz figs. and [B.2). While
the ANN84-0.5d-1200e had more neurons than the ANN48-0.5d-1inear and thus
should be more prone to overfitting as the capacity of such network is much larger, it
was not the case because the ANN84-0.5d-1200e employed the regularization of the
weights using L2 regularizer which, together with the quite high dropout, limited
the overfitting.

The inclusion of weather variables made no significant differences or had mostly
mixed effects for models AB-DT (for MAE only), BR (for RMSE only), KRR-1inear
(for RMSE only), Lars, SVR-1linear-e (for RMSE only), SVR-1linear-e2 (for RMSE
only), and SVR-poly-4. While the tests was mostly inconclusive for Lars, other
estimators usually exhibited mixed effects when there were significant differences
for between the estimators but not in consistent direction. For some estimators
(e.g. BR) the inclusion of weather was beneficial when compared the model using
DM test with power p = 1 (MAE), but the results were mixed when using DM test
with power p =2 (RMSE).

The inclusion of weather variables was beneficial for estimators ANN84-0.5d-1200e,
BR (for MAE only), EN, KRR-1inear (for MAE only), Lasso, LassoLars, SVR-linear-e
(for MAE only), SVR-1linear-e2 (for MAE only), SVR-poly-3, and SVR-sigmoid
Most importantly, the inclusion of weather variables was beneficial for the top
performing models such as LassoLars (1st by both MAE and RMSE) or Lasso or
EN.

As discussed in section [5.3] most estimators from top 20 by both RMSE and
MAE uses the weather data but the absolute gain is rather small. Thus the models
have to be quite robust against overfitting for the gain not to be offset by the rise
in error caused by overfitting.

Since the inclusion of historical weather data was beneficial for almost all of
the top performing estimators and furthermore the gain was statistically significant
at the 5% significance level for most estimators from the estimator classes with
the highest performance, the hypothesis is considered confirmed even though the
inclusion of weather data was not beneficial for all of the used estimators.
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Chapter 6

Conclusion

The electricity markets are very complex and will be even more complex in the
future as the electricity generation mix is changing towards renewable resources,
smardt grids are being introduced or are planned and as the end consumers of
electriciy are starting to play more active roles. Therefore the access to good tools
for analysis and prediction is necessary. There are many such tools for the stock
market which, however, is significantly different from the electricity markets — e.g.
the electricity cannot be stored economically, there are many seasonalities (daily,
weekly, and yearly), and there fewer players on the electricity marekts. The goal of
this thesis was to provide quite extensive comparison of possible model for electricity
price prediction that could be used on the day ahead market (thus all the used
models are forecasting day t using data only from days ¢ — 2 and before). Since it is
impossible to cover all possible models, used estimators and their parametrizations,
this work focuses on estimators using only the timeseries of historical electricity
prices and historical weather data. Even with this narrow focus omitting some
prominent classes of models (e.g. agent based models), the scope would be too large.
Thus this work further narrows its focus only state-less regression models such as
ridge regression, feed-forward neural networks or random forests. While some of
the models maintaining internal states such as LSTM networks might be useful, the
evaluation of such networks is available in my previous work [102] focusing on the
prediction of electricity price volatility.

Despite the somewhat narrower focus, this work compares 20 different estimator
classes with different variables which results in comparison of over 5000 different
estimators. These include both estimators common in the literature focused on
electricity price prediction such as artificial neural networks (ANNS), support vector
regression (SVR), random forests (RFs) and OLS regression and estimators that are
less frequent such as the AdaBoost, Lasso or Kernel ridge regression. Furthermore,
since most of these estimators have parameters influencing their performance, the
actual number of tested parametrizations of individual estimators is much higher as
their parameters were optimized using the particle swarm optimization (PSO) and
the Nelder-Mead (NM) method. The whole process took several weeks of processor
time. To the extent of my knowledge, this is the most extensive comparison of
models present in the literature — especially when compared to works focused on
the Czech electricity market. While the compared models are not the only models
that could be used, the presented comparison might provide good starting point for
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finding even better models.

A brief review of related work was provided in chapter [2 While thorough review
would be out of the scope of this work, this chapter provided introduction into the
used methods and good initial point for further research. The used methods were
described in chapter [3] The description of methods PSO and NM methods used for
optimization of estimators’ parameters was provided in section [3.1] the individual
estimators that were used in this thesis were described in section and finally
methods used for evaluation of the forecasts were introduced in section 3.3l Used
data were described in chapter 4] — including the individual seasonalities present
in the data. And finally, the estimators were compared in chapter [l First, the
estimators were evaluated within their estimator classes which assed the performance
of estimators with different variables available (both price, weather and dummy
variables) in section [p.1] This section also included the description of the used
parameters for optimization of the individual estimators. Then the best estimators
from each class were selected and used for comparison of different estimators classes
in section[5.2] The best estimators were then tested using the DM tests for dominace
— this test showed significant differences between most of the used estimator classes.
Based on the results, the hypothesis on competitive performance of RFs was refuted.
Furthermore, the tests have shown that the Lasso model optimized using modified
Lars performs the best for all but one used lagged and mean variables. This made
the LassoLars estimator the winner of this comparison and it is the recommended
approach for electricity price prediction since the model itself is very simple and the
estimator includes an implicit variable selection. Moreover this estimator is quite
robust against overfitting and does not require lengthy training as ANNs estimators.

6.1 Future work

There is still much to be done in the comparison of possible approaches. The first
possible extension is to broaden the scope of the used estimators to include, for
example, the agent-based models. Another possible extension is to focus more on
ANN and evaluate more than just two selected ANNs — the most viable possibil-
ity seems to use neuroevolution to search much greater space of possible network
architectures and topologies including different regularization approaches that are
available for ANNs. Since this search could be focused only on the best performing
variable combinations from this thesis, the whole process would be less computa-
tionally costly because it wouldn’t be necessary to evaluate the evolved network
for more than 200 different variable combinations (in case of evolving separately
topologies and weights). Yet another direction for possible extension of this work is
to use historical weather forecasts instead of historical weather from day ¢t — 2 and
older. This could results in more accurate prediction as meteorological models are
more accurate for short-term forecasts than just the regression of historical weather
data. This work is limited also in the sense that it does not consider heterogenous
ensemble estimators that consists of different estimators — the only ensemble es-
timators used in this work were random forests and AdaBoost. The future work
should include also these estimators. Furthermore, predicting the prices is only part
of the problem — another possible extension is to test the compared estimators in
real market settings, e.g. use them in tools for trading the electricity. Also, the
comparison should be repeated for different markets as it is possible that the dif-
ferences between the markets will be quite large and different estimators might be
more suitable for such markets than the LassoLars estimator that performed the
best in the presented comparison.
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Figure A.1: Distribution of RMSE broken down by individual estimator types and the
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f EN

MAE, DM test with p =1 RMSE, DM test with p = 2
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KRR-poly-2_T2,7,M7_p-DY KRR-poly-2_T2,14,28_p-DMY

KRR-poly-2_T2,7_p-D

T2,7,M7_p-DMY

KRR-poly-2_T2,7,M7_p-D KRR-poly-2 p-WM
Z z Z z Zz 2 7 7 z  Z =2 z 2

MAE, DM test with p =1 RMSE, DM test with p = 2
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Lars_nl_p-DMY Lars_nl_p-DMY

Lars_nl_w-DMY Lars_nl_w-DMY
Lars_nl_p-WMY Lars_nl_p-WMY
Lars_nl_w-WMY Lars_nl_w-WMY
Lars_nl_p-MY Lars_nl_p-MY
Lars_nl_w-MY Lars_nl_w-MY
Lars T2 p-MY Lars T2 p-MY

Lars_T2,7_p-MY Lars_T2,7_p-MY

Lars_T2_p-DMY Lars_T2_p-DMY

Lars_ T2 w-DMY Lars_T2_ w-DMY

Lars_T2,7_p-DMY Lars_T2,7_p-DMY

Lars_T2,7_w-DMY Lars_T2,7_w-DMY
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MAE, DM test with p =1 RMSE, DM test with p = 2
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MAE, DM test with p =1 RMSE, DM test with p = 2
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LassoLars_T2,7,14.28 M7,M30_w-DY assoLars_T2,M7,30_w-DMY
LassoLars_T2,M7,30_w-DY assoLars_T2,7,M7_p-DMY

MAE, DM test with p = 1 RMSE, DM test with p = 2

k LassolLars



106 APPENDIX C. 10 BEST ESTIMATORS
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MAE, DM test with p =1 RMSE, DM test with p = 2
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MAE, DM test with p =1 RMSE, DM test with p = 2
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SVR-linear-e_T2,M7,30_p-D SVR-linear-e_T2,7,M7_p-DM
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SVR-linear-e_T2,M7,30_p-DM SVR-linear-e_T2,M7_p-DM
SVR-lincar-c_T2,M7,30_w-DMY SVR-linear-e_T2,M7,30_p-DY

SVR-linear-e_T2-7_w-DMY

SVR-linear-e_T2,M7_p-DY

SVR-lincar-c_T2,M7,30_p-DMY SVR-linear-e_T2,M7,30_w-D
SVR-linear-e_T2,7,M7_p-DM SVR-linear-c_T2,7,M7_p-D
SVR-linear-c_T2,M7,30_w-DM SVR-linear-e_T2,M7,30_p-DMY

MAE, DM test with p = 1 RMSE, DM test with p = 2

n SVR-linear-e
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Figure C.1: The results for DM tests for selections of individual estimators by individual
measures. A filled square at [i, j] denotes that the forecast of estimator i is better than

the forecast j by the DM test on 5% significance level.
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C.2 Summaries

rRMSE Var. W. RMSE MAE rMAE rPareto
1/2741 T2,7,14,28 M7,M30-W No 8.6204 6.3587 3/2716 1/264
2/2744 T2,7,14,28 M7,M30-WM  No 8.6234  6.3443 1/2711 1/264
3/2747 T2,7,14,28 M7,M30-WY  No 8.6258  6.3497 2/2713 2/265
4/2756 T2,7,M7-WY No 8.6317  6.5221 52/2852 3/274
5/2759 T2,M7,30-WMY No 8.6372 6.3880 6/2748 3/268
6/2761 T2,M7-WY No 8.6417  6.5421 64/2865 4/275
7/2764 T2,M7,30-W No 8.6447  6.3980 10/2762  4/269
8/2767 T2,7,M7-WMY No 8.6477  6.5339 59/2859  5/275
9/2772 T2,M7,30-WM No 8.6506  6.3935 8/2756 4/269
10/2773 T2,M7-W No 8.6519  6.5387 62/2862 6/276

109

Table C.1: The list of 10 best AB-DT estimators by RMSE. Column rRMSFE contain the rank by
RMSE within the class and also the overal rank (equivalety for rMAE and rPareto). The column

Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/2711 T2,7,14,28 M7,M30-WM No 8.6234 6.3443 2/2744 1/264
2/2713 T2,7,14,28 M7,M30-WY No 8.6258 6.3497  3/2747 2/265
3/2716 T2,7,14,28 M7,M30-W No 8.6204 6.3587 1/2741 1/264
4/2735 T2,7,14,28 M7,M30-WMY No 8.6572 6.3752  12/2775 3/267
5/2738 T2,7,14,28 M7,M30-WY Yes 8.7161 6.3789  17/2795 4/270
6/2748 T2,M7,30-WMY No 8.6372 6.3880 5/2759 3/268
7/2752 T2,7,14,28 M7,M30-W Yes 8.7190 6.3915 18/2798 5/271
8/2756 T2,M7,30-WM No 8.6506 6.3935 9/2772 4/269
9/2759 T2,7,14,28 M7,M30-WM Yes 8.7334 6.3959  19/2805 6/272
10/2762  T2,M7,30-W No 8.6447 6.3980 7/2764 4/269

Table C.2: The list of 10 best AB-DT estimators by MAE. Column rMAFE contain the rank by
MAE within the class and also the overal rank (equivalety for TRMSE and rPareto). The column

Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.
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rRMSE Var. W. RMSE MAE rMAE rPareto
1/157 T2,M7,30-D No 7.4500 54696 1/252 1/38
2/222 T2,M7-D No 7.4969 55392 2/468  2/45
3/224 T2,7,M7-D No 7.4972 55454  3/497 3/47
4/238 T2,7,14,28, M7,M30-D  No 7.5081 5.5539 9/540 4/48
5/298 T2,7,M7-DY No 7.5449 5.5841 15/669  5/56
6,/299 T2,M7,30-DM No 7.5451 5.5735 11/619 5/56
7/311 T2,M7-DY No 7.5498 5.5841 14/668  6/58
8/329 T2,14,28-DM No 7.5579  5.6268 21/868  7/60
9/368 T2,M7-D Yes T7.5754 5.5950 16/708 7/61
10/382 T2-DM Yes 7.5808 5.6154 20/805 8/62

Table C.3: The list of 10 best AB-LR estimators by RMSE. Column rRMSE contain the rank by
RMSE within the class and also the overal rank (equivalety for rMAE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether
the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/252 T2,M7,30-D No 7.4500 5.4696 1/157 1/38
2/468 T2,M7-D No 7.4969 5.5392 2/222 2/45
3/497 T2,7,M7-D No 7.4972 5.5454 3/224 3/47
4/503 T2-DMY No 7.5834 5.5466 12/391 4/62
5/530 T2,3,7-DMY No 7.5848 5.5516 13/396 5/64
6/531 T2,7-DMY No 7.5859 5.5518 14/400 6/65
7/538 T2,7-DMY Yes  7.5981 5.5527 17/436 7/68
8/539 T2-DMY Yes  7.5963 5.5539 16/427 7/68
9/540 T2,7,14,28 M7,M30-D No 7.5081 5.5539 4/238 4/48
10/578  T2,M7,30-D Yes 7.6107 5.5635 21/490 8/70

Table C.4: The list of 10 best AB-LR estimators by MAE. Column rMAFE contain the rank by
MAE within the class and also the overal rank (equivalety for TRMSE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/392 T2,M7-D No 7.5839 5.5672 8/599 1/63
2/404 T2,M7,30-D Yes 7.5874  5.4947 1/308 1/52
3/411 T2,M7-DY No 7.5895 5.5604 7/567 2/66
4/454 T2,M7,30-DY No 7.6020 55170 2/367 2/59
5/479 T2-DMY Yes 7.6082 5.5564 5/550 3/69
6,/492 T2,7,M7-D No 7.6109 5.5822 14/660 4/72
7/522 T2,M7-D Yes 7.6186  5.5483 4/512 3/70
8/552 T2,7,14,28 M7,M30-D No 7.6289 5.5583 6/556 4/74
9/574 T2,7-DMY No 7.6360 5.5751 11/627 5/77
10/601 T2,M7,30-DM No 7.6437 5.5884 15/684  6/80

Table C.5: The list of 10 best ANN48-0.5d-linearestimators by RMSE. Column rRMSE contain
the rank by RMSE within the class and also the overal rank (equivalety for rMAE and rPareto).
The column Var. contains variables and dummies used by the estimator and the columnd W.

shows whether the weather data were included.
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rMAE Var. W. RMSE MAE rRMSE rPareto
1/308 T2,M7,30-D Yes  7.5874 5.4947  2/404 1/52
2/367 T2,M7,30-DY No 7.6020 5.5170 4/454 2/59
3/431 T2,7,14,28 M7,M30-D  Yes 7.6542 5.5313 15/640 3/67
4/512 T2,M7-D Yes 7.6186 5.5483 7/522 3/70
5/550  T2-DMY Yes 7.6082  5.5564 5/479 3/69
6/556 T2,7,14,28, M7,M30-D  No 7.6289 5.5583 8/552 4/74
7/567 T2,M7-DY No 7.5895 5.5604 3/411 2/66
8/599 T2,M7-D No 7.5839 5.5672 1/392 1/63
9/602 T2,M7,30-D No 7.6480 5.5685 11/615 5/77
10/614  T2,M7,30-DY Yes  7.7331 5.5719 37/932 6/88

Table C.6: The list of 10 best ANN48-0.5d-linear estimators by MAE. Column rMAFE contain the
rank by MAE within the class and also the overal rank (equivalety for rRMSE and rPareto). The

column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/677 T3-31-DM No 7.6662 56894 25/1230 1/90
2/790 T2,M7,30-D No 7.6979 5.6188 9/820 1/92
3/828 T2,7,14,28 M7,M30-DMY No 7.7107 5.6548 17/1034 2/99
4/832 T2,M7,30-DMY Yes 7.7115 5.5598 1/563 1/82
5/843 T2,7,14,28 M7,M30-DM No 7.7140 5.6848 22/1201 3/100
6,/868 T2,M7,30-D Yes 7.7199 5.6070 6/765 2/92
7/884 T2,M7,30-DY No 7.7235 5.6364 14/929 3/99
8/887 T2-7-DM Yes 7.7241 5.5664  2/595 2/86
9/917 T2,7,14,28 M7,M30-DMY Yes 7.7301 5.5996 5/730 3/89
10/923 T2,M7,30-DM No 7.7314 5.6796 21/1173 4/107

Table C.7: The list of 10 best ANN84-0.5d-1200e estimators by RMSE. Column rRMSE contain
the rank by RMSE within the class and also the overal rank (equivalety for rMAE and rPareto).

The column Var. contains variables and dummies used by the estimator and the columnd W.

shows whether the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/563 T2,M7,30-DMY Yes 7.7115 5.5598 4/832 1/82
2/595 T2-7-DM Yes 7.7241 5.5664 8/887 2/86
3/635 T2-7-WMY Yes 7.7676 5.5767 19/1076 3/91
4/717 T2,M7,30-DY Yes  7.7474 5.5963 13/987 3/93
5/730 T2,7,14,28 M7,M30-DMY  Yes 7.7301 5.5996 9/917 3/89
6/765 T2,M7,30-D Yes  7.7199 5.6070 6/868 2/92
7/814 T2-7-DY Yes  7.8484 5.6168 54/1371 4/102
8/817 T2-7-D Yes  7.8088 5.6169 33/1237 4/102
9/820 T2,M7,30-D No 7.6979 5.6188 2/790 1/92
10/859 T2-7-WM Yes  7.8020 5.6253 28/1210 4/107

Table C.8: The list of 10 best ANN84-0.5d-1200e estimators by MAE. Column 7MAFE contain the
rank by MAE within the class and also the overal rank (equivalety for rRMSE and rPareto). The

column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.
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rRMSE Var. W. RMSE MAE rMAE rPareto
1/54 T2,7-DMY Yes 7.3999 5.3492 1/61 1/11
2/57 T2,7,M7-DM  No  7.4006 54045 5/131  2/15
377 T2,7-DM Yes 7.4109 5.3806 2/90 2/16
4/79 T2,M7,30-D No 7.4110 54356 15/187  3/18
5/100 T2,7,M7-D No 7.4250 5.4445 16/197 4/24
6,/102 T2,7,M7-D Yes 7.4266  5.3933 4/119 3/24
7/125 T2,7,M7-DY No 7.4381 5.4259 12/171 4/30
8/130 T2,7,M7-DMY No 7.4400 5.4114  7/145 4/27
9/135 T2,M7,30-D Yes 7.4427 5.4173 10/155 5/28

10/141 T2,M7,30-DM No 7.4469 5.4518 17/205 6/32

Table C.9: The list of 10 best BR estimators by RMSE. Column rRMSE contain the rank by
RMSE within the class and also the overal rank (equivalety for rMAE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether
the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/61 T2,7-DMY Yes  7.3999 5.3492 1/54 1/11
2/90 T2,7-DM Yes 7.4109 5.3806 3/77 2/16
3/108 T2,7,M7-DY Yes  7.4488 5.3874 13/152 3/25
4/119 T2,7,M7-D Yes  7.4266 5.3933 6/102 3/24
5/131 T2,7,M7-DM No 7.4006 5.4045 2/57 2/15
6/143 T2,7-DY Yes  7.4657 5.4103 17/180 4/29
7/145 T2,7,M7-DMY No 7.4400 5.4114 8/130 4/27

8/146 T2,7,M7-DMY  Yes 7.4847 5.4118 20/202 5/30
9/148 T2,7,M7-DM Yes  7.4569 5.4127 16/167 5/29
10/155  T2,M7,30-D Yes  7.4427 5.4173 9/135 5/28

Table C.10: The list of 10 best BR estimators by MAE. Column rMAFE contain the rank by MAE
within the class and also the overal rank (equivalety for rRMSE and rPareto). The column Var.
contains variables and dummies used by the estimator and the columnd W. shows whether the

weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/7 T2,7,M7-DM Yes 7.3578 5.3083 6/22 1/4
2/11 T2,7,M7-DMY Yes 7.3662 5.2980 2/12 1/4
3/14 T2,7-DMY Yes 7.3728 5.3382 13/46 2/6
4/23 T2,3,7-DMY Yes 7.3794 5.3071 5/20 2/6
5/24 T2,7,M7-DM No 7.3796 5.3568 19/69 3/8
6/29 T2,7,M7-DMY No 7.3805  5.3473 17/58 3/8
7/34 T2,M7,30-DM Yes 7.3839 5.3051 4/17 2/5
8/37 T2,7,14,28 M7,M30-DM Yes 7.3854 5.3173 8/29 3/8
9/38 T2,7,14,28 M7,M30-DMY  Yes 7.3855 5.3021 3/15 2/6
10/39 T2,M7,30-DMY Yes 7.3877 5.2808 1/6 1/3

Table C.11: The list of 10 best EN estimators by RMSE. Column rRMSE contain the rank by
RMSE within the class and also the overal rank (equivalety for rMAE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.
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rMAE Var. W. RMSE MAE rRMSE rPareto
1/6 T2,M7,30-DMY Yes  7.3877 5.2898 10/39 1/3
2/12 T2,7,M7-DMY Yes 7.3662 5.2980 2/11 1/4
3/15 T2,7,14,28 M7,M30-DMY  Yes 7.3855 5.3021 9/38 2/6
4/17 T2,M7,30-DM Yes  7.3839 5.3051 7/34 2/5
5/20 T2,3,7-DMY Yes 7.3794 5.3071 4/23 2/6
6/22 T2,7,M7-DM Yes  7.3578 5.3083 1/7 1/4
7/28 T2,M7,30-DY Yes  7.4059 5.3170 16/66 3/9
8/29 T2,7,14,28 M7,M30-DM Yes  7.3854 5.3173 8/37 3/8
9/34 T2,7,14,28,M7,M30-DY Yes 7.4103  5.3246 20/75 4/11
10/35 T2-7-DMY Yes  7.4399 5.3265 34/129 5/12

Table C.12: The list of 10 best EN estimators by MAE. Column rMAE contain the rank by MAE

within the class and also the overal rank (equivalety for rRMSE and rPareto). The column Var.

contains variables and dummies used by the estimator and the columnd W. shows whether the

weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/275 T2,M7,30-DY No 7.5334  5.4693 2/251 1/46
2/294 T2,M7,30-DM No 7.5435 54862 5/286 2/47
3/296 T2,7,14,28 M7,M30-DM No 7.5441 5.5494  21/518 3/55
4/313 T2,7,14,28 M7,M30-DY No 7.5512 55340 17/442 3/55
5/342 T2,7,14,28 M7,M30-DMY  No 7.5652 55363 18/450  4/57
6/352 T2,M7,30-DMY No 7.5692 54750 3/263 2/49
7/358 T2,7,14,28 M7,M30-D Yes 7.5718 5.5160 9/362 3/56
8/363 T2,7,14,28 M7,M30-D No 7.5740 55786 31/645 5/60
9/364 T2,M7,30-DY Yes 7.5741 5.4644 1/243 1/44
10/366 T2,7,14,28 M7,M30-DM Yes 7.5751 5.5240 12/399  4/58

Table C.13: The list of 10 best KRR-linear estimators by RMSE. Column rRMSE contain the
rank by RMSE within the class and also the overal rank (equivalety for TMAE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/243 T2,M7,30-DY Yes 7.5741 5.4644 9/364 1/44
2/251 T2,M7,30-DY No 7.5334 5.4693 1/275 1/46
3/263 T2,M7,30-DMY No 7.5692 5.4750 6/352 2/49
4/274 T2,M7,30-DMY Yes 7.6152 5.4821 19/507 3/53
5/286 T2,M7,30-DM No 7.5435 5.4862 2/294 2/47
6/316 T2,7,14,28 M7,M30-DY Yes 7.5758 5.4971 11/370 3/52
7/323 T2-7-DMY Yes  7.6300 5.4986  26/556 4/57
8/329 T2,M7,30-DM Yes 7.6073 5.5003 18/476 4/56
9/362 T2,7,14,28 M7,M30-D Yes 7.5718 5.5160 7/358 3/56
10/390 T2,7,14,28 M7,M30-DMY  Yes 7.5983 5.5215 17/440 4/61

Table C.14: The list of 10 best KRR-linear estimators by MAE. Column rMAE contain the rank
by MAE within the class and also the overal rank (equivalety for TRMSE and rPareto). The

column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.
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rRMSE Var. W. RMSE MAE rMAE rPareto
1/123 T2,7-DM No 7.4358 5.4503 1/204 1/30
2/165 T2,7-D No 7.4564 54760 9/264 2/39
3/185 T2,14,28-DM No 7.4696 5.5265  23/415 3/41
4/191 T2,14,28-DMY No 7.4720 5.4965 12/315 3/42
5/193 T2,7-DMY No 7.4741 5.4550  2/216 2/38
6/214 T2,7,M7-DM No 7.4935 54613 3/236 3/41
7/218 T2,7-DY No  7.4951 54673 7/249  4/42
8/230 T2,7,M7-D No 7.5043 54761 10/265 5/43
9/267 T2,7,M7-DMY  No 7.5309 5.4658 5/247 4/44
10/271 T2,7-WM No 7.5323 5.4672  6/248 5/45

Table C.15: The list of 10 best KRR-poly-2 estimators by RMSE. Column rRMSE contain the
rank by RMSE within the class and also the overal rank (equivalety for rMAFE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows
whether the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/204 T2,7-DM No 7.4358 5.4503 1/123 1/30
2/216 T2,7-DMY No 7.4741 5.4550 5/193 2/38
3/236 T2,7,M7-DM No 7.4935 5.4613 6/214 3/41
4/245 T2,7-WMY No 7.5388 5.4645 11/282 4/44
5/247 T2,7,M7-DMY No 7.5309 5.4658 9/267 4/44
6/248 T2,7-WM No 7.5323 5.4672 10/271 5/45
7/249  T2,7-DY No 7.4951  5.4673 7/218 4/42
8/259 T2,7,M7-DY No 7.5443 5.4739 12/297 6,/47
9/264 T2,7-D No 7.4564 5.4760 2/165 2/39
10/265 T2,7,M7-D No 7.5043 5.4761 8/230 5/43

Table C.16: The list of 10 best KRR-poly-2 estimators by MAE. Column rMAFE contain the
rank by MAE within the class and also the overal rank (equivalety for rRMSFE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows
whether the weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto

1/3142 nl-DMY No 9.1701 6.7607 1/3070 1/321
1/3142 nl-DMY Yes 9.1701 6.7607 1/3070 1/321
3/3232 nl-WMY No 9.3553 6.9675 3/3232  2/337
3/3232 nl-WMY Yes 9.3553 6.9675 3/3232 2/337

5/3289  nl-MY No 9.4699 7.0923 5/3360 3/346
5/3289  nl-MY Yes 9.4699  7.0923 5/3360  3/346
7/3439  T2-MY No 9.7349 7.3894 7/3574  4/368

7/3439  T2,7-MY  No 9.7349 7.3894 7/3574  4/368
9/3533  T2-DMY  No 9.8209 7.4871 9/3692 5/383
9/3533  T2-DMY  Yes 9.8209 7.4871 9/3692 5/383
9/3533  T2,7-DMY No 9.8209 7.4871 9/3692 5/383
9/3533  T2,7-DMY Yes 9.8209 7.4871 9/3692 5/383

Table C.17: The list of 10 best Lars estimators by RMSE. Column rRMSE contain the rank by
RMSE within the class and also the overal rank (equivalety for rMAFE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.
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rMAE Var. W. RMSE MAE rRMSE rPareto

1/3070  nl-DMY No 9.1701  6.7607 1/3142  1/321
1/3070  nl-DMY Yes 9.1701  6.7607 1/3142  1/321
3/3232 nl-WMY  No 9.3553  6.9675 3/3232  2/337
3/3232  nl-WMY  Yes 9.3553  6.9675 3/3232  2/337

5/3360 nl-MY No 94699  7.0923 5/3280  3/346
5/3360 nl-MY Yes 9.4699  7.0923 5/3280  3/346
7/3574  T2-MY No 9.7349  7.3894 7/3439  4/368

7/3574  T2,7-MY No  9.7349 7.3894  7/3439 4/368
9/3692  T2-DMY No  9.8209 7.4871 9/3533 5/383
9/3692 T2-DMY Yes  9.8209 7.4871  9/3533 5/383
9/3692  T2,7-DMY No  9.8209 7.4871 9/3533 5/383
9/3692 T2,7-DMY Yes 9.8209 7.4871  9/3533 5/383

Table C.18: The list of 10 best Lars estimators by MAE. Column rMAE contain the rank by
MAE within the class and also the overal rank (equivalety for rRMSE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/6 T2,7,M7-DM Yes 7.3566 5.3081 6/21 1/3
2/10 T2,7,M7-DMY Yes 7.3647 52977 2/10 1/3
3/17 T2,7,M7-DM No 7.3758 5.3554  21/68 2/7
4/21 T2,3,7-DMY Yes 7.3785 5.3057 5/19 2/5
5/22 T2,7-DMY Yes 7.83791 5.3510 19/62  3/7
6/30 T2,7,M7-DMY No 7.3816  5.3490 18/60 3/9
7/33 T2,M7,30-DM Yes 7.3838 5.3052 4/18 2/5
8/35 T2,7,14,28 M7,M30-DMY  Yes 7.3848 5.3014 3/14 2/5
9/36 T2,7,14,28 M7,M30-DM Yes 7.3848 5.3166 8/26 3/7
10/42 T2,M7,30-DMY Yes 7.3896 5.2937 1/8 1/4

Table C.19: The list of 10 best Lasso estimators by RMSE. Column rRMSE contain the rank by
RMSE within the class and also the overal rank (equivalety for rMAFE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/8 T2,M7,30-DMY Yes  7.3896 5.2937 10/42 1/4
2/10 T2,7,M7-DMY Yes  7.3647 5.2977 2/10 1/3
3/14 T2,7,14,28 M7,M30-DMY  Yes 7.3848 5.3014 8/35 2/5
4/18 T2,M7,30-DM Yes  7.3838 5.3052 7/33 2/5
5/19 T2,3,7-DMY Yes 7.3785 5.3057 4/21 2/5
6/21 T2,7,M7-DM Yes  7.3566 5.3081 1/6 1/3
7/23 T2-7-DMY Yes  7.4069 5.3113 19/69 3/8
8/26 T2,7,14,28 M7,M30-DM Yes  7.3848 5.3166 9/36 3/7
9/27 T2,M7,30-DY Yes  7.4050 5.3166 17/65 4/8
10/33 T2,7,14,28 M7,M30-DY Yes  7.4091 5.3234 21/74 5/10

Table C.20: The list of 10 best Lasso estimators by MAE. Column rMAE contain the rank by
MAE within the class and also the overal rank (equivalety for rRMSE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.
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rRMSE Var. W. RMSE MAE rMAE rPareto
1/1 T2,7,M7-DM Yes 7.3363 5.2980 8/11 1/1
2/2 T2,M7,30-DM Yes 7.3465 5.2829 4/4 1/1
3/3 T2,7,14,28 M7,M30-DM Yes 7.3491 5.2814 3/3 1/1
4/4 T2,7,M7-DMY Yes 7.3533 5.2887 5/5 2/2
5/5 T2,7,14,28 M7,M30-DMY  Yes 7.3558 5.2710 1/1 1/1
6/8 T2,7,M7-DM No 7.3596  5.3405 21/49 3/5
7/9 T2,7-DM Yes 7.3613 5.3367 18/43 3/5
8/12 T2,3,7-DMY Yes 7.3687 5.2946 7/9 3/3
9/13 T2,M7,30-DMY Yes 7.3689 52763 2/2 2/2
10/15 T2,7,M7-DMY No 7.3746  5.3356 17/42 4/5

Table C.21: The list of 10 best LassoLars estimators by RMSE. Column rRMSE contain the
rank by RMSE within the class and also the overal rank (equivalety for rMAFE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows
whether the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/1 T2,7,14,28 M7,M30-DMY  Yes 7.3558 5.2710 5/5 1/1
2/2 T2,M7,30-DMY Yes 7.3689 5.2763 9/13 2/2
3/3 T2,7,14,28 M7,M30-DM Yes  7.3491 5.2814 3/3 1/1
4/4 T2,M7,30-DM Yes  7.3465 5.2829 2/2 1/1
5/5 T2,7,M7-DMY Yes  7.3533 5.2887 4/4 2/2
6/7 T2-7-DMY Yes 7.3798 5.2931 16/26 3/3
7/9 T2,3,7-DMY Yes  7.3687 5.2946 8/12 3/3
8/11 T2,7,M7-DM Yes 7.3363 5.2980 1/1 1/1
9/13 T2,7,14,28 M7,M30-DY Yes  7.3896 5.3012 23/43 4/5
10/16 T2,M7,30-DY Yes  7.3923 5.3023 25/45 5/7

Table C.22: The list of 10 best LassoLars estimators by MAE. Column rMAEFE contain the rank by
MAE within the class and also the overal rank (equivalety for TRMSE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/133 T2,7-DM Yes 7.4408 5.4521  2/206 1/31
2/151 T2,7,M7-D No 7.4487 5.4886 5/291 2/37
3/155 T2,7-DM No 7.4497 54905 6/299 3/38
4/166 T2,M7,30-D No 7.4567 54729 3/258 2/39
5/182 T2,7-DMY Yes 7.4673  5.4445 1/198 1/35
6/184 T2,7-DMY No 7.4689 54784 4/271 3/40
7/210 T2,3,7-DM No 7.4903 55182 9/371 4/44
8/223 T2,M7-D No 7.4972 55406 14/475 5/46
9/226 T2,14,28-DM  No 7.4997 5.5784 27/641 6/48

10/228  T2,3,7-DMY No 7.5012 55108 7/344  4/45

Table C.23: The list of 10 best OLS estimators by RMSE. Column rRMSE contain the rank by
RMSE within the class and also the overal rank (equivalety for rMAE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.
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rMAE Var. W. RMSE MAE rRMSE rPareto
1/198 T2,7-DMY Yes 7.4673 5.4445 5/182 1/35
2/206 T2,7-DM Yes 7.4408 5.4521 1/133 1/31
3/258 T2,M7,30-D No 7.4567 5.4729 4/166 2/39
4/271 T2,7-DMY No 7.4689 5.4784 6/184 3/40
5/291 T2,7,M7-D No 7.4487 5.4886 2/151 2/37
6/299 T2,7-DM No  7.4497 5.4905 3/155 3/38
7/344 T2,3,7-DMY No 7.5012 5.5108 10/228 4/45
8/368 T2,7-DY Yes  7.5373 5.5175 17/281 5/51
9/371  T23,7-DM  No 7.4903 5.5182 7/210 4/44
10/402  T2,7,M7-D Yes  7.5305 5.5244 12/266 5/50
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Table C.24: The list of 10 best OLS estimators by MAE. Column rMAE contain the rank by
MAE within the class and also the overal rank (equivalety for TRMSE and rPareto). The column

Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/2425 T2-DY No 8.2471 6.1772 36/2549 1/228
1/2425 T2,7-DY No 8.2471 6.1772  36/2549 1/228
3/2442 T2,14,28-D No 8.2574  6.0914 1/2391 1/225
4/2450 T2,14,28-DY No 8.2641 6.0984  3/2409 2/226
5/2454 T2,14,28-W No 8.2651 6.1028  5/2427 3/228
6,/2460 T2,14,28-DM No 8.2718 6.1146  13/2449 4/229
7/2462 T2,14,28-WM No 8.2727  6.1084 10/2442 4/229
8/2470 T2,14,28-WMY  No 8.2794  6.1103 12/2444 5/230
9/2472 T2,14,28-WY No 8.2816  6.1148 14/2450 6/231
10/2479 T2,14,28-DMY No 8.2854  6.1039  7/2429 4/229

Table C.25: The list of 10 best RF estimators by RMSE. Column rRMSE contain the rank by
RMSE within the class and also the overal rank (equivalety for rMAE and rPareto). The column

Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/2391 T2,14,28-D No 8.2574 6.0914 3/2442 1/225
2/2400 T2-7-W No 8.4305 6.0953  48/2617 2/229
3/2409 T2,14,28-DY No 8.2641 6.0984  4/2450 2/226
4/2420 T2-7-WMY No 8.4214 6.1010 46/2612 3/231
5/2427 T2,14,28-W No 8.2651 6.1028 5/2454 3/228
6/2428 T2-7-WY No 8.4355 6.1033 53/2626 4/232
7/2429 T2,14,28-DMY  No 8.2854 6.1039 10/2479 4/229
8/2433 T2-7-D No 8.4334 6.1055 52/2624 5/232
9/2440 T2-7-DM No 8.4477 6.1072  59/2642 6,/233
10/2442  T2,14,28-WM No 8.2727 6.1084 7/2462 4/229

Table C.26: The list of 10 best RF estimators by MAE. Column rMAFE contain the rank by MAE

within the class and also the overal rank (equivalety for rRMSE and rPareto). The column Var.

contains variables and dummies used by the estimator and the columnd W. shows whether the

weather data were included.
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rRMSE Var. W. RMSE MAE rMAE rPareto
1/136 T2,M7,30-D No 7.4435 5.3998 2/127 1/25
2/208 T2,M7,30-DM No 7.4890 54308 5/177 2/34
3/227 T2,7,M7-DM No 7.5011 5.4831 9/277 3/44
4/233 T2,M7-DM No 7.5065 54987 13/324  4/46
5/242 T2,M7,30-DY No 7.5117 5.3953 1/120 1/28
6/255 T2,M7-DY No 7.5232 55055 16/336  5/48
7/257 T2,M7,30-D Yes 7.5238 54158 4/153 2/32
8/263 T2,M7-D No 7.5278 55309 30/430 6/51
9/270 T2,7,M7-D No 7.5318 55354 31/445 7/52

10/276 T2,M7,30-DMY  No 7.5339  5.4691 8/250 3/46

Table C.27: The list of 10 best SVR-linear-e estimators by RMSE. Column rRMSE contain the
rank by RMSE within the class and also the overal rank (equivalety for rMAFE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows
whether the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/120 T2,M7,30-DY No 7.5117 5.3953 5/242 1/28
2/127 T2,M7,30-D No 7.4435 5.3998 1/136 1/25
3/132 T2,M7,30-DY Yes  7.5472 5.4045 12/308 2/30
4/153 T2,M7,30-D Yes  7.5238 5.4158 7/257 2/32
5/177 T2,M7,30-DM No 7.4890 5.4308 2/208 2/34
6/224 T2,M7,30-DMY  Yes 7.5919 5.4567  24/417 3/44
7/246 T2-7-DMY Yes 7.6332 5.4651  40/565 4/48
8/250 T2,M7,30-DMY No 7.5339 5.4691 10/276 3/46
9/277 T2,7,M7-DM No 7.5011 5.4831 3/227 3/44

10/283 T2,M7,30-DM  Yes 7.5772  5.4861 22/373  4/50

Table C.28: The list of 10 best SVR-linear-e estimators by MAE. Column rMAFE contain the
rank by MAE within the class and also the overal rank (equivalety for rRMSE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/186 T2,M7,30-D No 7.4698 54589 7/232 1/38
2/203 T2,M7,30-DY No 7.4848 54391 2/194 1/34
3/219 T2,M7,30-DM No 7.4953 54485 4/202 2/36
4/231 T2,7,M7-DM No 7.5054 5.4890 10/295 3/45
5/248 T2,M7-DM No 7.5151 5.4946 12/307  4/47
6/251 T2,7,M7-DY No 7.5187 5.5110 16/345 5/48
7/253 T2,7,14,28 M7,M30-DM  No 7.5206  5.5354 28/446  6/50
8/256 T2,M7,30-D Yes 7.5237  5.4476  3/200 2/39
9/261 T2,7,14,28 M7,M30-D No 7.5266  5.5450 36/495 7/52
10/272 T2,M7-D No 7.5325  5.5370 29/453 7/53

Table C.29: The list of 10 best SVR-linear-e2 estimators by RMSE. Column rRMSE contain the
rank by RMSE within the class and also the overal rank (equivalety for TMAE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.
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rMAE Var. W. RMSE MAE rRMSE rPareto
1/193 T2,M7,30-DY Yes 7.5412 5.4376 14/288 1/39
2/194 T2,M7,30-DY No  7.4848 5.4391 2/203 1/34
3/200 T2,M7,30-D Yes  7.5237 5.4476  8/256 2/39
4/202 T2,M7,30-DM No  7.4953 5.4485 3/219 2/36
5/211 T2,M7,30-DMY No 7.5369 5.4539 12/279 3/40
6/228 T2,M7,30-DMY  Yes 7.5814 5.4583 29/384 4/45
7/232 T2,M7,30-D No 7.4698 5.4589 1/186 1/38
8/237 T2,M7,30-DM Yes  7.5549 5.4614 19/322 4/42
9/285 T2-7-DMY Yes 7.6146 5.4862 37/506 5/53
10/295  T2,7,M7-DM No 7.5054 5.4890 4/231 3/45

Table C.30: The list of 10 best SVR-linear-e2 estimators by MAE. Column rMAFE contain the
rank by MAE within the class and also the overal rank (equivalety for rRMSFE and rPareto). The

column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/1953 T2-DM No 8.0146 5.9466 1/2126 1/180
2/2342 T2,14,28-DM No 8.1882 6.0786 5/2373 2/213
3/2346 T2,7-WY No 8.1896 5.9930 3/2241 2/202
4/2378 T2,7-DY No 8.2076  5.9673 2/2173 2/197
5/2402 T2,14,28-DMY  No 8.2227  6.0973  8/2404 3/223
6/2441 T2,14,28-WM No 8.2563  6.1542 12/2500 4/229
7/2452 T2-DMY No 8.2641 6.0855  7/2382 3/224
8/2487 T2,7-DM No 8.2891 6.0831 6/2377 3/224
9/2497 T2-DY No 8.2965 6.0383  4/2316 3/211
10/2500 T2,7-WM Yes 8.3014 6.1642 15/2522 5/236

Table C.31: The list of 10 best SVR-poly-2estimators by RMSE. Column rRMSE contain the
rank by RMSE within the class and also the overal rank (equivalety for rMAE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.

rMAE  Var. W. RMSE MAE rRMSE rPareto
1/2126  T2-DM No 80146  5.9466 1/1953  1/180
2/2173  T2,7-DY No 82076  5.9673 4/2378  2/197
3/2241  T2,7-WY No 81896  5.9930 3/2346  2/202
4/2316  T2-DY No 82065  6.0383 9/2497  3/211
5/2373  T2,1428DM  No 81882  6.0786 2/2342  2/213
6/2377  T2,7-DM No 82891  6.0831 8/2487  3/224
7/2382  T2-DMY No 82641  6.0855 7/2452  3/224
8/2404  T2,1428-DMY No 82227  6.0973 5/2402  3/223
9/2411  T2,7-DMY No 83250  6.0985 15/2527  4/230
10/2480 T2,7-WMY No 83816  6.1358 18/2585  5/236

Table C.32: The list of 10 best SVR-poly-2 estimators by MAE. Column rMAE contain the rank
by MAE within the class and also the overal rank (equivalety for TRMSE and rPareto). The

column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.
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rRMSE Var. W. RMSE MAE rMAE rPareto
1/2892 T2,7,M7-DY Yes 8.8580 6.5185 1/2851 1/292
2/2917 T2,7,M7-WY Yes 8.8978 6.5763  2/2883 2/295
3/2940 T2,7,M7-D Yes 8.9203 6.5799 3/2885 3/299
4/2979 T2,7,M7-W Yes 8.9586 6.6344 6/2952 4/304

5/2984 T2,7,M7-DMY  Yes 8.9654 6.6024 4/2911 4/302
6,/2995 T2,7,M7-DM Yes 8.9811 6.6288 5/2945 5/303
7/3015 T2,7,M7-WMY  Yes 9.0172 6.6690 9/2988 6/308
8/3022 T2,7,M7-WM Yes 9.0291 6.6890 13/3015 7/309
9/3052 T2,7-WM Yes 9.0722 6.6758 11/2993  7/309
10/3060 T2,7-WY Yes 9.0790 6.7025 16/3029 8/311

Table C.33: The list of 10 best SVR-poly-3 estimators by RMSE. Column rRMSE contain the
rank by RMSE within the class and also the overal rank (equivalety for rMAFE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows
whether the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/2851 T2,7,M7-DY Yes  8.8580 6.5185 1/2892 1/292
2/2883 T2,7,M7-WY Yes 8.8978 6.5763 2/2917 2/295
3/2885 T2,7,M7-D Yes  8.9203 6.5799  3/2940 3/299

4/2911 T2,7,M7-DMY  Yes 8.9654 6.6024 5/2984 4/302
5/2945 T2,7,M7-DM Yes 8.9811 6.6288 6/2995 5/303

6/2952 T2,7,M7-W Yes  8.9586 6.6344  4/2979 4/304
7/2957 T2,7-DM Yes  9.0946 6.6405 13/3074 6/312
8/2963 T2,7,M7-DY No  9.1382 6.6462 22/3115 7/313
9/2988 T2,7,M7-WMY  Yes 9.0172 6.6690 7/3015 6/308
10/2990 T2,7-DY Yes  9.1490 6.6744  23/3120 8/318

Table C.34: The list of 10 best SVR-poly-3 estimators by MAE. Column rMAE contain the rank
by MAE within the class and also the overal rank (equivalety for TRMSE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows
whether the weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/4289 T2,7,M7-DY No 10.6661 7.6831 1/3979 1/437
2/4292 T2,7-DY No 10.6754 7.8203 3/4114 2/456
3/4318 T2,7-DMY No 10.7516 7.9046 7/4164 3/460
4/4382 T2,7,M7-WY No 10.8223 7.8733 4/4145 3/459
5/4395 T2,7,M7-DMY No 10.8727 7.8074 2/4105 2/452

6,/4399 T2,7,14,28 M7,M30-WMY  Yes 10.8916 8.4583 45/4517 4/481
7/4408 T2,7,14,28 M7,M30-DMY  Yes 10.9120 8.4669 47/4532 5/482
8/4414 T2,7-Y No 10.9365 8.1641 24/4369 4/477
9/4418 T2,7-DY Yes 10.9533 7.9957 13/4259  4/466
10/4439  T2,7,14,28 M7,M30-WMY No  10.9900 8.4491 44/4512 5/485

Table C.35: The list of 10 best SVR-poly-4 estimators by RMSE. Column rRMSE contain the
rank by RMSE within the class and also the overal rank (equivalety for TMAE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.
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rMAE Var. W. RMSE MAE rRMSE rPareto

1/3979 T2,7,M7-DY No 10.6661  7.6831 1/4289 1/437
2/4105 T2,7,M7-DMY  No 10.8727 7.8074 5/4395 2/452
3/4114 T2,7-DY No 10.6754  7.8203  2/4292 2/456
4/4145 T2,7,M7-WY No 10.8223  7.8733 4/4382 3/459
5/4157 T2,7,M7-DMY  Yes 11.1250 7.8959 21/4546 4/460

6/4158 T2,7,M7-D No 11.1185  7.8997 19/4543 4/460
7/4164 T2,7-DMY No 10.7516  7.9046  3/4318 3/460
8/4181 T2,7-WY No 11.0025 7.9200 12/4447 4/463
9/4233 T2,7,M7-DY Yes 11.1203 7.9338 20/4545 5/464
10/4240 T2,7-DMY Yes 11.0202 7.9541 13/4451 5/466

Table C.36: The list of 10 best SVR-poly-4 estimators by MAE. Column rMAE contain the rank
by MAE within the class and also the overal rank (equivalety for TRMSE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows
whether the weather data were included.

rRMSE Var. W. RMSE MAE rMAE rPareto
1/337 T2-DM Yes 7.5631 5.5590  12/559 1/57
2/487 T2-DY No 7.6096 54941 3/306 1/55
3/578 T2-DM No 7.6371 55419 11/481 2/72
4/703 T2-DMY No 7.6742 55242 8/401 2/65
5/720 T2,M7-DM No 7.6809 5.5355  9/447 3/69
6/735 T2,3,7-DM Yes 7.6855 5.6467 50/976  4/91
7/742 T2,14,28-DMY No 7.6869 55943 21/706 4/84
8/770 T2,7-DY No 7.6935 55126 5/351 2/60
9/781 T2,7-DMY No 7.6959 54543 1/212 1/41
10/813 T2-D Yes 7.7061 5.6332  42/908 5/97

Table C.37: The list of 10 best SVR-rbf estimators by RMSE. Column rRMSE contain the rank
by RMSE within the class and also the overal rank (equivalety for rMAE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows
whether the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto
1/212 T2,7-DMY No  7.6959 5.4543 9/781 1/41
2/270 T2,7-DM No 7.7169 5.4783 12/855 2/52
3/306 T2-DY No  7.6096 5.4941 2/487 1/55
4/350 T2,7-DMY  Yes 7.7611 5.5125 19/1049 3/60
5/351 T2,7-DY No  7.6935 5.5126 8/770 2/60
6/361 T2,7-D No 7.7732 5.5159 23/1101 4/62
7/374 T2,7-WMY No  7.7579 5.5189 18/1041 3/62
8/401 T2-DMY No  7.6742 5.5242  4/703 2/65
9/447 T2,M7-DM  No  7.6809 5.5355 5/720 3/69

10/469  T2,7-WM No 7.7792 5.5393 25/1123 5/71

Table C.38: The list of 10 best SVR-rbf estimators by MAE. Column rMAE contain the rank by
MAE within the class and also the overal rank (equivalety for TRMSE and rPareto). The column
Var. contains variables and dummies used by the estimator and the columnd W. shows whether

the weather data were included.
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rRMSE Var. W. RMSE MAE rMAE rPareto

1/2959  T2,14,28DMY  Yes 8.9394 6.6319 3/2951  1/303
2/2983  T2,14,28-DM Yes 8.9646  6.6427 7/2960  2/305
3/2994  T2,14,28WMY Yes 8.9786 6.6567 13/2973  3/306
4/3007  T2,14,28-DY Yes 9.0105 6.6768 19/2995  4/307
5/3021  T2,14,28-MY Yes 9.0288 6.6906 25/3017 5/309
6/3032  T2,14,28-WM  Yes 9.0427 6.7110 31/3039 6/311

7/3038 T2,14,28-M Yes 9.0532 6.7050 29/3031 6/311
8/3042 T3-31-WMY Yes 9.0637 6.6173 2/2932 1/307
9/3043 T3-31-DMY Yes 9.0637 6.6168 1/2930 1/307

10/3053 T2,14,28-WY Yes 9.0752 6.7291 36/3050 7/313

Table C.39: The list of 10 best SVR-sigmoid estimators by RMSE. Column rRMSE contain the
rank by RMSE within the class and also the overal rank (equivalety for TMAE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.

rMAE Var. W. RMSE MAE rRMSE rPareto

1/2930  T3-31-DMY Yes 9.0637  6.6168 9/3043  1/307
2/2932  T3-31-WMY  Yes 9.0637  6.6173 8/3042  1/307
3/2051  T2,14,28-DMY  Yes 89394  6.6319 1/2059  1/303

4/2953 T3-31-M Yes  9.0840 6.6379 11/3067 2/310
5/2955 T3-31-DY Yes  9.0896 6.6399 13/3069 3/311
6/2958 T3-31-WM Yes  9.0903 6.6409 14/3071 4/312
7/2960 T2,14,28-DM Yes  8.9646 6.6427 2/2983 2/305
8/2964 T3-31-WY Yes 9.0974 6.6472 16/3080 5/313
9/2965 T3-31-W Yes  9.1000 6.6483 17/3086 6/314
10/2966  T3-31-DM Yes  9.0921 6.6485 15/3073 5/313

Table C.40: The list of 10 best SVR-sigmoid estimators by MAE. Column rMAE contain the
rank by MAE within the class and also the overal rank (equivalety for rRMSFE and rPareto). The
column Var. contains variables and dummies used by the estimator and the columnd W. shows

whether the weather data were included.
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Figure D.1: The impact of weather data on RMSE. Each point represent a pair of esti-

mators A and B that differ only by the inclusion of weather data. The x axis shows the
RMSE of the estimator without the weather data and the y axis hows the RMSE of the

estimator with the weather data. The closer the estimators are to the dashed line, the

smaller influence have the weather data on the estimator.
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Figure D.2: The impact of weather data on MAE. Each point represent a pair of estimators
A and B that differ only by the inclusion of weather data. The x axis shows the MAE of
the estimator without the weather data and the y axis hows the MAE of the estimator with
the weather data. The closer the estimators are to the dashed line, the smaller influence

have the weather data on the estimator.
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Appendix E

Examples of prediction

This appendix shows the examples of forecasts on the test data (out-of-sample) of
best estimators in each estimator class for both RMSE and MAE measures.

' Actual Estimator AB-DT_T2,7,14,28 M7,M30_p-WM e Actual Estimator AB-DT_T2,7,14,28 M7,M30_p-W

EUR/MWh
EUR/MWh

Error [EUR/MWH]
Error [EUR/MWH]

a by MAE b by RMSE

Figure E.1: The best estimator of the AB-DT class.
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------- Actual —— Estimator AB-LR_T2M7,30_p-D s Actual —— Estimator AB-LR_T2M7,30_p-D

EUR/MWh
EUR/MWh

Exrror [EUR/MWh]

a by MAE b by RMSE

Figure E.2: The best estimator of the AB-LR class.

------- Actual —— Estimator ANN48-0.5d-linear T2M7,30_w-D e Actual —— Estimator ANN48-0.5d-lincar T2,M7 p-D

EUR/MWh
EUR/MWh

Error [EUR/MWH]

a by MAE b by RMSE

Figure E.3: The best estimator of the ANN48-0.5d-1inear class.

------- Actual ~—— Estimator ANN84-0.5d-1200e_ T2 M7.30_w-DMY s Actual — Estimator ANN84-0.5d-1200e_T3-31_p-DM

EUR/MWh
EUR/MWh

Error [EUR/MWH]
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Figure E.4: The best estimator of the ANN84-0.5d-1200e class.
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Figure E.5: The best estimator of the BR class.
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Figure E.6: The best estimator of the EN class.
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Figure E.7: The best estimator of the KRR-1inear class.
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Figure E.8: The best estimator of the KRR-poly-2 class.
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Figure E.9: The best estimator of the Lars class.
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Figure E.10: The best estimator of the Lasso class.
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Figure E.11: The best estimator
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Figure E.12: The best estimator of the OLS class.
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Figure E.13: The best estimator of the RF class.
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Figure E.14: The best estimator of the SVR-1inear-e class.
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Figure E.16: The best estimator of the SVR-poly-2 class.
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Figure E.17: The best estimator of the SVR-poly-3 class.
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Figure E.18: The best estimator of the SVR-poly-4 class.
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Figure E.19: The best estimator of the SVR-rbf class.
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Figure E.20: The best estimator of the SVR-sigmoid class.
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