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Introduction
Some insurance products provide benefits that are contingent on the combined

status of a couple or group of people and these kind of products are known as
multiple life insurance policies. A very good example of a such kind of product
is a contract issued to a married couple.

The computation of multiple life premiums in a standard actuarial theory is
based on the unrealistic assumption of independence of the remaining lifetimes
of a husband and wife. However, this assumption is mainly used because of
its computational convenience. Several empirical studies suggest that there is a
considerable dependence between the lifetimes of a married couple. Denuit et al.
(2001) argue that a husband and wife are more or less exposed to the same risks
since they share a common way of life. Parkes et al. (1969) showed that there is
a significant increase in mortality rate among widowers during the first six months
after the deaths of their wives in comparison with the rate for married men of
the same age. They also call this kind of death a “broken heart” and interpret
it as a figure of speech which reflects a bygone belief that grief could kill, and
kills through the heart. Another type of dependence is known as a “common
shock” effect, which reflects simultaneous deaths of a couple from a common
disaster, such as road accidents or airplane crash. Overall, the dependence
between the future lifetimes of a husband and wife can be categorized as the
long-term association between lifetimes, the short-term impact of spousal death
and the instantaneous dependence due to a catastrophic event that affects both
lives.

A number of articles about insurance contracts on two lives, which allow for
dependence between two lifetimes, have been published over the past years. One
way how to model the dependence between lifetimes is using Markov models
with a finite number of states. Depending on the properties of the transition
intensities, we can use Markov or semi-Markov models. Transition intensities in
Markov models depend only on the current state, while in semi-Markov models,
transition intensities depend on the current state and also on the time elapsed
since the last transition. From a multiple state model, we can clearly see how
the change of a particular state impacts mortality. Thus, the advantage of using
Markov and semi-Markov models is its high transparency. Markov multiple state
models have been applied to different areas in actuarial science. Dickson et al.
(2009) explain how Markov models can be used for modelling various insurance
benefits such as joint-life, last-survivor, critical illness, permanent disability or
accidental death. The first application of the joint-life mortality is probably done
by Norberg (1989). His work extends Spreeuw and Wang (2008) by considering
mortality to vary with the time elapsed since the death of a spouse.

Another approach to modelling the dependence between remaining lifetimes
is through copulas. Using copulas has the advantage that the correlation
structure of the remaining lifetime variables can be estimated separately from
their distributions. On the other hand, it is not easy to quantify whether the
dependence structure of a particular copula fits appropriately. Frees and Valdez
(1988) explore in their paper some practical applications including estimation
of joint life mortality. Copula models were also applied by Denuit et al. (2001)
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to classical insurance contracts issued to married couples. We would like to
mention that lifetime dependence can be modelled not only through Markovian
approaches or copulas but also using multivariate distributions. A multivariate
gamma distribution for incorporating the dependence is applied by Alai et al.
(2012) and a multivariate Pareto distribution is applied later again by Alai et al.
(2016).

In this thesis, we will model the dependence between remaining lifetimes of
a husband and wife using a specific Markov model. Our main aim is to examine
the effect of a possible dependence of remaining lifetimes on the amount of a net
single premium related to insurance products sold to married couples. We shall
deal with a joint-life and last-survivor life insurance. We would like to mention
that, to our best knowledge, up to now these products are not sold in the Czech
Republic. One can arrange this kind of insurances e.g. in the United Kingdom,
the United States of America or India.

The thesis consist of three chapters. The first two chapters are devoted to
theory. A practical application can be found in Chapter 3.

Chapter 1 introduces the joint-life and last-survivor status, and it states
formulae of the net single premiums for specific insurances. The concern of
Chapter 1 lies also in fundamental graduation approaches in life insurance and
in the concept of positive quadrant dependence.

In Chapter 2, we deal with a specific Markov model that can be used for
calculation premiums and benefits for the joint-life or last-survivor insurance.
This chapter is a base for the practical part in Chapter 3. Considering the
specific Markov model, we derive probabilities related to joint-life and last-
survivor insurances. We will be employed with relationships among transition
intensities and remaining lifetimes of the husband and wife. Moreover, we will
pay our attention to a special case of the considered specific Markov model which
assumes independence of remaining lifetimes. Finally, we state two extensions of
the specific Markov model.

Chapter 3 aims to examine the impact of dependence between the remaining
lifetimes of the husband and wife on the amount of premium for joint-life and last-
survivor insurances by calculating net single premiums. Calculations are done in
Excel and Mathematica.
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1. Multiple Life Insurance and
Other Related Aspects

The theory for the analysis of financial benefits contingent on the time of
the death of a single life can be extended to benefits involving several lives.
A very good example of the application of this extension is a joint-life or last-
survivor insurance. In this chapter, we shall introduce the joint-life and last-
survivor status. We shall also state the formulas of net single premiums for
particular insurances considering general case, as well as the case of independence.
Furthermore, we devote our attention to fundamental graduation approaches by
which a survival model can be constructed. Moreover, the concept of positive
quadrant dependence will be brought forward and its importance for actuarial
computations in case of multiple life insurances will be explicated.

Let us start with some notation. We denote a life aged x by (x), where x ≥ 0.
In single life insurance theory, we model the future lifetime of (x) by a continuous
random variable which we denote by Tx. This means that x + Tx represents the
age-at-death random variable for (x). In multiple life theory we consider m lives
with initial ages x1, x2, . . . , xm. Further, we denote the future lifetime of the
kth life by Txk

for k = 1, . . . , m. On the basis of the remaining lifetimes of m
considered lives we shall define a status u with a continuous future lifetime T (u).
Accordingly, a standard actuarial notation is used here with the subscript listing
several ages rather than a single age. For example, Ax1x2...xm and tpx1x2...xm have
the same meaning for the joint-life insurance status (x1x2 . . . xm) as Ax and tpx

for the single life x. Elementary life insurance theory can be found in Gerber
(1997).

In this thesis, we will restrict ourselves to considering only two lives, since
our main interest lies in analysing premiums relating to products sold to married
couples. In such a case, let us refer to x as the age of the husband and y as
the age of the wife. Obviously, all actuarial quantities denoted with subscript x
(resp. y) shall refer to the husband (resp. wife) if not stated differently.

1.1 Joint-Life Status
The status

u = xy (1.1)
is defined to exist as long as both considered lives survive. The failure time of
this joint-life status is

T (u) = min(Tx, Ty). (1.2)
The probability tpxy of the status (1.1) surviving beyond time t is given by

tpxy = P [T (xy) > t] =
= P [min(Tx, Ty) > t] =
= P [Tx > t ∩ Ty > t] = assuming independence (1.3)
= P [Tx > t]P [Ty > t] =
= tpx tpy, t ≥ 0. (1.4)
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The probability that the joint-life status (1.1) fails before time t, denoted by tqxy,
is then given by

tqxy = P [T (xy) ≤ t] = P [min(Tx, Ty) ≤ t] =
= 1 − P [min(Tx, Ty) > t] =
= 1 − tpxy = assuming independence (1.5)
= 1 − tpx tpy = (1.6)
= 1 − (1 − tqx)(1 − tqy) =
= tqx + tqy − tqx tqy, t ≥ 0. (1.7)

Let us define K(u) = ⌊T (u)⌋, a random variable representing a number of
completed future years survived by a status u - in other words, the curtate future
“lifetime” of a status u. Whenever it is clear by context, we denote the remaining
lifetime of a status u simply by T . Now the probability distribution of this
integer-valued random variable K is given by

P [K(u) = k] = P [k ≤ T < k + 1] = P [k < T ≤ k + 1] =
= P [T ≤ k + 1] − P [T < k] =
= 1 − P [T > k + 1] − (1 − P [T ≥ k]) =
= P [T ≥ k] − P [T > k + 1] =
= kpu − k+1pu = kpu − kpu pu+k =
= kpu(1 − pu+k) = kpu qu+k, k = 0, 1, . . . . (1.8)

Under our assumption that T (u) is a continuous random variable it holds that
P [T (u) = k] = P [T (u) = k + 1] = 0. Thus, the interchanging of inequalities in
above stated relations is possible. The identity

k+1pu = kpu pu+k (1.9)

has an intuitive interpretation. The probability that both the husband aged x
and the wife aged y survive more than k + 1 years is the same as the probability
that the status xy survives beyond its “age” u + k + 1, having survived to “age”
u + k. Further, the quantity qu+k can be interpreted as the failure of a status u
between “ages” u + k and u + k + 1.

Now we can apply the principles of life insurance theory for a single life in
order to calculate the net single premium for specific insurances in a multiple life
theory. Let us consider a whole life insurance and a life annuity-due. Obviously,
a similar study can be obtained for other insurance products as well. In case we
extend a whole life insurance for the joint-life status, it provides a payment of 1
at the end of the year of the first death and its net single premium is defined by

Axy =
∞∑

k=0
vk+1

kpxy qx+k:y+k (1.10)

using (1.8). By extending a life annuity-due for a joint-life status, that is
a guaranteed contract promising to provide a regular income over the lifetime(s)
of individuals, we obtain a joint-life annuity-due. This product pays 1 at the end
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of the years 1, 2, . . . as long as both lives survive and its net single premium has
the form

äxy =
∞∑

k=0
vk

kpxy. (1.11)

Obviously, we can also consider net single premiums of the joint-life status for
temporary contracts. Let us denote by n the status which fails exactly at time n,
i.e.

T (n) = n. (1.12)

Then we can write

T (u : n) = min(T (u), n). (1.13)

Considering a special case for a single life (x), we obtain T (x : n) = min(T (x), n)
and so it is apparent that the net single premium symbols e.g. Ax:n for term
insurance or äx:n for n-year temporary life annuity-due are in accordance with
the notation in the multiple life theory. Further, in order to indicate that the
corresponding amount of premium is computed under the independence of the
remaining lifetimes of the husband aged x and the wife aged y, we set the
superscript “⊥”. More precisely, ⊥A1

xy:n and ⊥äxy:n are given by

⊥A1
xy:n =

n−1∑
k=0

vk+1
kpx kpy(qx+k + qy+k − qx+k qy+k) (1.14)

using (1.7) and (1.4),

⊥äxy:n =
n−1∑
k=0

vk
kpx kpy (1.15)

using (1.4).

1.2 Last-Survivor Status
The status

u = xy (1.16)
is defined to exist while at least one of the two lives survives, so the failure time
of this last-survivor status happens with the last death and can be written in the
form

T (u) = max(Tx, Ty). (1.17)
In the following we shall use the inclusion-exclusion principle of probability, that
is

P (A ∪ B) = P (A) + P (B) − P (A ∩ B). (1.18)

Defining A as {T (x) ≤ t} and B as {T (y) ≤ t}, we have A ∩ B = {T (xy) ≤ t}
and A ∪ B = {T (xy) ≤ t}, which can be useful in deriving the probability of the
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status (1.16) surviving beyond “age” u + t. This probability is denoted by tpxy

and given by

tpxy = P [T (xy) > t] = P [max(Tx, Ty) > t] =
= P [Tx > t ∪ Ty > t] = using (1.18)
= (P [Tx > t] + P [Ty > t] − P [Tx > t ∩ Ty > t]) =
= tpx + tpy − tpxy = assuming independence (1.19)
= tpx + tpy − tpx tpy, t ≥ 0. (1.20)

The probability tqxy that the last-survivor status (1.16) fails before time t is then
given by

tqxy = P [T (xy) ≤ t] = P [max(Tx, Ty) ≤ t] =
= 1 − P [max(Tx, Ty) > t] = 1 − tpxy = using (1.19) (1.21)
= 1 − (tpx + tpy − tpxy) =
= 1 − (1 − tqx) − (1 − tqy) + (1 − tqxy) =
= tqx + tqy − tqxy = (1.22)
= tqx + tqy − (1 − tpxy) = assuming independence
= tqx + tqy − (1 − (1 − tqx)(1 − tqy)) =
= tqx tqy, t ≥ 0. (1.23)

We know that using (1.18), it holds

P [Tx > t ∪ Ty > t] + P [Tx > t ∩ Ty > t] = P [Tx > t] + P [Ty > t].

Since there exists a discrete version of the above stated equality for the curtate
future lifetimes, we can write

P [K(xy) > k] + P [K(xy) > k] = P [K(x) > k] + P [K(y) > k]. (1.24)

From (1.24) it follows that

P [K(xy) = k] + P [K(xy) = k] = P [K(x) = k] + P [K(y) = k]. (1.25)

Then from (1.25) and applying (1.8), the probability distribution of the integer-
valued random variable K(xy), where K(xy) represents the number of completed
future years survived by the last-survivor status, is determined by

P [K(xy) = k] = kpx qx+k + kpy qy+k − kpxy qx+k:y+k. (1.26)

In case of independent lives, (1.4) and (1.7) allow us to write (1.26) as

P [K(xy) = k] = kpx qx+k + kpy qy+k − kpx kpy(qx+k + qy+k − qx+k qy+k) =
= (1 − kpy)kpx qx+k + (1 − kpx)kpy qy+k + kpx kpy qx+k qy+k.

(1.27)

In the last equality stated above, the first two terms are the probabilities for
which the first death occurs before reaching the age y + k (resp. x + k) and the
second one occurs between ages x + k and x + k + 1 (resp. y + k and y + k + 1).
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The third term represents the probability that both lives end up between times
k and k + 1.

Now we are able to specify net single premiums for particular insurances. By
allowing for the extension of whole life insurance for the last-survivor status, we
obtain an insurance which provides a payment of 1 at the end of the year of the
last death and can be expressed as

Axy =
∞∑

k=0
vk+1P [K(xy) = k] =

=
∞∑

k=0
vk+1( kpx qx+k + kpy qy+k + kpxy qx+k:y+k) (1.28)

using (1.26). Further, we consider the last-survivor annuity for a married couple.
This product pays 1 at the end of the years 1, 2, . . . as long as at least one of the
spouses survives and it is defined by

äxy =
∞∑

k=0
vk( kpx + kpy − kpxy) (1.29)

using (1.19). Moreover, taking into account n-year contracts under the
assumption of indepedence, the corresponding formulas for ⊥A1

xy:n and ⊥äxy:n
using (1.27) and (1.20) are given by

⊥A1
xy:n =

n−1∑
k=0

vk+1((1 − kpy)kpx qx+k + (1 − kpx)kpy qy+k + kpx kpy qx+k qy+k)

(1.30)

⊥äxy:n =
n−1∑
k=0

vk( kpx + kpy − kpx kpy). (1.31)

1.3 Graduation via Mortality Laws
The term graduation is defined by Haberman and Renshaw (1996) as the set

of principles and methods by which a set of observed (or crude) probabilities
is adjusted to provide a suitable basis for making practical inferences and
calculations of premiums. One of its principal applications is to construct a
survival model which is usually represented in the form of a life table. In order
to show how to mathematically represent the force of mortality1, as a quantity of
life tables, by graduation, we shall introduce Gompertz and Gompertz-Makeham
mortality laws.

In the literature, a lot of various graduation methods are suggested that are
also used in practice. In particular, two broad fundamental categories can be
classified, i.e. parametric approaches adjusting data to a function, and non-
parametric approaches that avoid adjusting data to a functional form. Non-
parametric methods involve, for example, Kaplan-Meier estimates. Gompertz
and Makeham mortality laws are recognized as parametric graduation methods.

1The force of mortality is also known as the hazard function.
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The use of mathematical functions was historically the first approach to the
task of constructing a survival model. Its purpose is to find a mathematical
representation of the force of mortality that achieves a proper fit to empirical
data that can be relied upon as exact. This approach seeks to find functions
which capture the age-effects of mortality properly, since the force of mortality is
a function of age. The first useful approach was proposed by Benjamin Gompertz
(see Gompertz (1825)) and is known as Gompertz law. Gompertz formula is
a function of age x given by

µx = Bcx, x ≥ 0, B > 0, c > 1. (1.32)

Thus, this model assumes that mortality grows exponentially with age. Moreover,
Gompertz noted in his work that there might exist another component of
mortality that is independent of age, e.g. because of accidents. However, this age-
independent component had been added to the Gompertz model as a constant
term by William Makeham (see Makeham (1866)). Then the model known as
Gompertz-Makeham law is given by

µx = A + Bcx, x ≥ 0, B > 0, c > 1, A ≥ −B. (1.33)

Both approaches are parsimonious, in a sense of simplicity, and nowadays are still
used in actuarial work.

Let us further derive tpx of (x) under Gompertz-Makeham law. Using the
relationship of a survival probability tpx and a force of mortality µx from a single
life theory, we can write

tpx = exp
{

−
∫ x+t

x
µsds

}
=

= exp
{

−
∫ x+t

x
(A + Bcs)ds

}
=

= exp
{

−
[
As + Bcs

ln c

]x+t

x

}
=

= exp
{

− A(x + t − x) −
(

B

ln c
(cx+t − cx)

)}
=

= exp {−At} exp
{

− B

ln c
cx(ct − 1)

}
. (1.34)

Since Gompertz law is a special case of Gompertz-Makeham law with A = 0,
under Gompertz formula we have

tpx = exp
{

− B

ln c
cx(ct − 1)

}
.

We shall devote ourselves to the derivation of survival probabilities for the specific
Markov model in the next chapter.

1.4 Positive Quadrant Dependence
A positive quadrant dependence is a kind of dependence between two random

variables, which describes the characteristic that large values of the one variable
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are associated with large values of the second variable. In this section, we give an
intuitive interpretation of positive quadrant dependence for remaining lifetimes of
the husband and wife. Furthermore, we explain how significant this dependence
is for actuarial computations.

The concept of positive quadrant dependence is introduced in Lehmann
(1966). Let X and Y be real random variables defined on some probability
space. We say that X and Y are positive quadrant dependent if

P [X > s, Y > t] ≥ P [X > s]P [Y > t], for all s, t ∈ R. (1.35)

Similarly, negative quadrant dependence of two random variables can be defined
if (1.35) holds with the reversed sign of the inequality.

Remark 1. Note that (1.35) is equivalent to

P [X ≤ s, Y ≤ t] ≥ P [X ≤ s]P [Y ≤ t], for all s, t ∈ R,

since

P [X > s, Y > t] = 1 − P [X ≤ s] − P [Y ≤ t] + P [X ≤ s, Y ≤ t]

and

P [X > s]P [Y > t] = 1 − P [X ≤ s] − P [Y ≤ t] + P [X ≤ s]P [Y ≤ t].

In this section, we shall assume that the remaining lifetimes Tx and Ty are
positive quadrant dependent. The following property, which was stated and
proved by Denuit et al. (2001, page 25, Property 4.7), provides an intuitive
interpretation of positive quadrant dependence.

Property 1. If Tx and Ty are positive quadrant dependent then the inequalities

E[Ty | Tx > s] ≥ E[Ty] for all s ≥ 0

and

E[Tx | Ty > t] ≥ E[Tx] for all t ≥ 0

both hold true.

Proof. We will prove only the first inequality, since the proof of the second one
is analogous. We have

E[Ty | Tx > s] =
∫ ∞

0
P [Ty > t | Tx > s]dt =

= 1
P [Tx > s]

∫ ∞

0
P [Ty > t, Tx > s]dt ≥ using (1.35)

≥ 1
P [Tx > s]

∫ ∞

0
P [Ty > t]P [Tx > s]dt =

=
∫ ∞

0
P [Ty > t]dt = E[Ty]. (1.36)
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Property (1) tells us that the expected remaining lifetime of one of the spouses
grows with the information that the second one of the two considered lives is
still alive at some time. Intuitively, we realise from the introduction that the
assumption of positive quadrant dependence for the remaining lifetimes of married
couples seems to be a natural assumption.

A relevancy of positive quadrant dependence assumption for actuarial
calculations lies in the height of a premium. Assuming positive quadrant
dependence, the joint-life annuity values are higher than annuities under
independence, e.g. for n-year joint-life annuity-due we have

äxy:n ≥ ⊥äxy:n. (1.37)

The above relation is obvious, since it holds that tpxy = P [Tx > t, Ty > t] and
tpx tpy = P [Tx > t]P [Ty > t] (see (1.4) and (1.3)). Considering last-survivor
annuities, there is a reverse situation. Thus, these annuities are lower than or
equal that annuity values under independence, e.g. in case of n-year last-survivor
annuity due it holds

äxy:n ≤ ⊥äxy:n. (1.38)

To sum up, considering positive quadrant dependence in the case of joint-life
insurance there is an underestimated premium, and in the case of last-survivor
insurance there is an overestimated premium in comparison with the dependent
“situation”.

Obviously, a similar study can be achieved for whole life or term insurance.
In case of whole life insurance, we have inequalities

Axy ≤ A⊥
xy and Axy ≥ A⊥

xy. (1.39)

The resulting inequality for n-year joint-life term insurance has the form

A1
xy:n ≤ ⊥A1

xy:n. (1.40)

Comparing (1.26) and (1.27), we obtain for n-year last-survivor term insurance
the relation

A1
xy:n ≥ ⊥A1

xy:n. (1.41)
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2. Joint-Life and Last-Survivor
Model

Multiple state models based on Markov and also semi-Markov stochastic
processes constitute a powerful mathematical instrument that can be used to form
a general attentive approach for describing and analysing insurance premiums
and benefits. It can be applied not only to joint-life or last-survivor types of
insurances but also to several others, such as disability, long-term care or critical
illness insurance. A fine overview of multiple state models for life and other
contingencies using Markov chains, in both the time-continuous and the time-
discrete case, is provided by Haberman and Pitacco (1998).

Markov model which considers forces of mortality depending on marital status
was probably proposed by Norberg (1989, page 247). We devote this chapter to
this Norberg’s original model. Let us further refer to this Markov model as to the
joint-life and last-survivor model. Further, in order to show how to calculate
premiums for joint-life and last-survivor insurances, we derive corresponding
probabilities based on the joint-life and last-survivor model. We will be occupied
with relationships among transition intensities and remaining lifetimes. Moreover,
we examine the probabilities of a special case of the joint-life and last-survivor
model which assumes independence of remaining lifetimes of the husband and
wife. Finally, we state two extensions of the joint-life and last-survivor model.

We would like to mention that all the derivations and proofs that are contained
in this chapter are done just for the joint-life and last-survivor model, even though
it could be derived in a general case. The reason why we restrict ourselves only
to the derivations for the joint-life and last-survivor model is that the results
obtained in this chapter will be directly used in Chapter 3.

2.1 Description of Model
Since the husband and wife share a common way of life, they are mostly

exposed to the same risk. The joint-life and last-survivor model captures this
interdependence between spouses just by taking into account forces of mortality
which depend on whether the other partner is still alive. To be specific, if say the
wife is alive, the force of mortality depends on her exact age as well as on the age
of the husband. Reflecting this information into a notation, we have that µ01

x+t:y+t

denotes the force of mortality for the wife aged y +t, given that her husband aged
x + t is still alive. However, if the wife died, then the force of mortality for the
husband, denoted by µ13

x+t , depends only on the present age and the fact that
his wife died, but definitely not on how long she has been dead. Analogously, we
denote by µ02

x+t:y+t the force of mortality of the (x + t)-year-old husband whose
spouse is still alive and by µ23

y+t the force of mortality of the (y+t)-year-old wife in
case her husband is dead. Thus, the future development of the marital status for
the x-year-old husband and the y-year-old wife can be seen as time-continuous
Markov process {Xt, t ≥ 0} with the state space consisting of four states and
forces of mortality as shown in Figure (2.1).

Further, we state four important assumptions of this model, introduce some
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notation and also specify transition probabilities related to the Markov process.

Assumption 1. Obviously, we assume that the above mentioned time-continuous
Markov process fulfills Markov property, i.e. we assume that the conditional
probability P [Xt+s = j | Xt = i], for any states i, j ∈ {0, 1, 2, 3} and any times
s, t ≥ 0, is well defined in a sense that its value does not depend on any knowledge
about the process that happened before time t.

This basically means that the probabilities of future events do not depend on the
position of the past states of the process, but are entirely determined by knowing
the present state.

Assumption 2. We assume that for any interval of time h > 0,

P [two transitions within a time period of length h] = o(h), h → 0.

Let us recall that o(.) is a function that satisfies limh→0
o(h)

h
= 0, i.e. o(h)

converges to 0 faster than h. Assumption 2 tells us that for a small interval
of time h > 0, the probability of two transitions in that interval is so small that
it can be neglected. Note that in case of more complicated models which consist
of more states and transitions than the considered model shown in Figure (2.1),
we would have to consider not only the probability of two transitions but also
more than two transitions.

both spouses alive
husband alive

wife dead

husband dead

wife alive
both spouses dead

1

2

0

3

µ01
x+t:y+t

µ13
x+tµ02

x+t:y+t

µ23
y+t

Figure 2.1: The joint-life and last-survivor model with the forces of mortality
depending on the marital status

Let us denote the transition probabilities of Markov process by

tp
ij
s = P [Xs+t = j | Xs = i] for i, j ∈ {0, 1, 2, 3} and s, t ≥ 0.

The probability tp
ij
s can be interpreted as the conditional probability that the

married couple is in state j at time s + t, given that it was in state i at time s.
Clearly, for any s, t ≥ 0, 0 ≤ tp

ij
s ≤ 1 for all i, j ∈ {0, 1, 2, 3}, 0p

ij
s = 1 if i = j

and it is equal to 0 otherwise. Also it holds that ∑j tp
ij
s = 1 for all i ∈ {0, 1, 2, 3}.
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From Figure (2.1) it can be also observed that for example the probability tp
10
s

is equal to 0, since the backward transition is not allowed as indicated by the
direction of the arrow between states 0 and 1. Furthermore, note that we adapt
the notation of transition probabilities to the notation of forces of mortality.
Concretely, say tp

13
x+s denotes the probability that the husband aged x + s, whose

wife has died, does not survive beyond age x + s + t. For this probability, the
age of the wife’s death is not a part of the notation, since it is assumed to be
irrelevant.

Now, we can state the third assumption.

Assumption 3. We assume that the process {Xt, t ≥ 0} is time-inhomogeneous
process.

The following definition gives a relation of forces of mortality to the transition
probabilities.

Definition 1. For s ≥ 0, we define µij
s as the transition intensity or force of

transition between states i and j by

µij
s = lim

h→0+
hpij

s

h
for i ̸= j. (2.1)

Assumption 4. For all states i, j ∈ {0, 1, 2, 3} and all s ≥ 0, we assume that
tp

ij
s is a continuously differentiable function of t.

Assumption 4 is a technical assumption that is needed to guarantee that
mathematics proceeds smoothly.

Note that (2.1) for h > 0 can be also written in the form

hpij
s = hµij

s + o(h), h → 0. (2.2)

Thus, we can say that for small h > 0

hpij
s ≈ hµij

s . (2.3)

2.2 Derivation of Probabilities
In this section, we assume that the forces of transition are known and we

derive the probabilities associated with the joint-life and last-survivor model. It
is important to note the fact that all the probabilities can be expressed in terms of
transition intensities. This fact tells us that by knowing transition intensities, we
can determine all that is necessary to know about the joint-life and last-survivor
model.

Firstly, let us prove the following result.

Problem 1. Show that for the joint-life and last-survivor model and for h > 0 it
holds

hpii
s = 1 − h

∑
j∈{0,1,2,3},j ̸=i

µij
s + o(h), h → 0, i ∈ {0, 1, 2, 3}. (2.4)
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Solution. Note that 1 − hpii
s is the probability that Markov process leaves state

i between times s and s + h. Obviously, any state i in the model cannot be
reentered, and so we can write

1 − hpii
s =

∑
j∈{0,1,2,3},j ̸=i

hpij
s = using (2.2)

= h
∑

j∈{0,1,2,3},j ̸=i

µij
s + o(h), h → 0,

which proves (2.4).
�

Now we can proceed to the derivation of probabilities in Markov process in terms
of transition intensities.

Problem 2. For the probability that the process does not leave the state i between
times s and s + t in the joint-life and last-survivor model it holds

tp
ii
s = exp

{
−
∫ t

0

∑
j∈{0,1,2,3},j ̸=i

µij
s+τ dτ

}
, i ∈ {0, 1, 2, 3}. (2.5)

Solution. For h > 0, consider the probability t+hpii
s , i.e. the probability that

the process stays in state i between times s and s + t + h, given that the process
was in state i at time s. Clearly, the event can be splitted into two events, the
process stays in state i between times s and s + t, given that it was in state i at
time s, and the process stays in state i between times s + t and s + t + h, given
that it was in state i at time s + t. Thus, using the chain rule for probabilities,
we can write

t+hpii
s = tp

ii
s hpii

s+t.

Using the solution of Problem 1, the above relation can be rewritten as

t+hpii
s = tp

ii
s

(
1 − h

∑
j∈{0,1,2,3},j ̸=i

µij
s+t + o(h)

)
, h → 0.

Rearranging this equation, we obtain

t+hpii
s − tp

ii
s

h
= −tp

ii
s

∑
j∈{0,1,2,3},j ̸=i

µij
s+t + o(h)

h
, h → 0,

and since h → 0, we get the differential equation

d

dt tp
ii
s = −tp

ii
s

∑
j∈{0,1,2,3},j ̸=i

µij
s+t.

Integrating over (0, t), we have

log tp
ii
s − log 0p

ii
s = −

∫ t

0

∑
j∈{0,1,2,3},j ̸=i

µij
s+τ dτ.
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And finally, by exponentiating both sides, the solution has the form

tp
ii
s = 0p

ii
s exp

{
−
∫ t

0

∑
j∈{0,1,2,3},j ̸=i

µij
s+τ dτ

}
.

This proves (2.5), since 0p
ii
s = 1.

�
Writing (2.5) in the notation that we have adapted for transition probabilities,
we have for the husband aged x and the wife aged y

tp
00
xy = exp

{
−
∫ t

0

(
µ01

x+τ :y+τ + µ02
x+τ :y+τ

)
dτ

}
, (2.6)

tp
11
x = exp

{
−
∫ t

0
µ13

x+τ dτ

}
and (2.7)

tp
22
y = exp

{
−
∫ t

0
µ23

y+τ dτ

}
. (2.8)

In order to derive the rest of the probabilities in the joint-life and last-survivor
model, we solve Problem 3 and state the following remark.

Remark 2. Note that in the joint-life and last-survivor model by stating, for
example, that the x-year-old husband and the y-year-old wife are in state 1, we
mean that the x-year-old husband is alive and the wife died before reaching age y.

Problem 3. The probability given that the husband aged x + u and the wife aged
y + u are in state 1, given the husband aged x and the wife aged y were in state
0, considering t, h, u > 0, in the joint-life and last-survivor model has the form

up01
xy =

∫ u

0
tp

00
xy µ01

x+t:y+t u−tp
11
x+tdt. (2.9)

Obviously, the analogous formula for the married couple of movement from state
0 to state 2,

up02
xy =

∫ u

0
tp

00
xy µ02

x+t:y+t u−tp
22
y+tdt, (2.10)

also holds. Furthermore, the above stated formulae for the probabilities can also
be derived intuitively.

Solution. It is sufficient to derive (2.9), since (2.10) can be obtained analogously.
For x, y ≥ 0 and t, h, u > 0, we start by proving the formula

t+hp01
xy = tp

01
xy hp11

x+t + tp
00
xy h µ01

x+t:y+t + o(h), h → 0. (2.11)

The probability on the left-hand side of (2.11) is the probability that the husband
aged x + t + h and the wife aged y + t + h are in state 1, given that the husband
aged x and the wife aged y were in state 0. This probability can be splitted into
two paths. Either the couple with corresponding ages x+ t and y + t is in state 1,
given that it was in state 0 at ages x and y (the probability tp

01
xy) and then stays

at state 1 until the husband reaches the age x + t + h (the probability hp11
x+t) or

the considered couple with ages x + t and y + t stays in state 0, given that it was
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in state 0 at ages x and y (the probability tp
00
xy) and then occupies state 1 at the

husband’s age x + t + h (the wife is already dead), given that it was in state 0 at
the husband’s age x + t (the probability h µ01

x+t:y+t + o(h), h → 0, using (2.2)).
Notice that the probability of both lives being alive at ages x + t and y + t,

then considering the death of the wife before her age y + t + h and the death of
the husband before his age x + t + h (i.e. Markov process would reach state 3) is
equal to o(h), h → 0, since it involves two transitions in a time interval of length
h.

Using the solution of Problem 1, we can rewrite the probability (2.11) as

t+hp01
xy = tp

01
xy (1 − h µ13

x+t) + tp
00
xy h µ01

x+t:y+t + o(h), h → 0. (2.12)

After rearranging the equation (2.12) and dividing it by h we obtain

t+hp01
xy − tp

01
xy

h
= tp

00
xy µ01

x+t:y+t − tp
01
xy µ13

x+t + o(h)
h

, h → 0,

and since h → 0, we get

d

dt tp
01
xy = tp

00
xy µ01

x+t:y+t − tp
01
xy µ13

x+t. (2.13)

Further, we calculate the derivation

d

dt

(
tp

01
xy exp

{∫ t

0
µ13

x+sds

})
=

= exp
{∫ t

0
µ13

x+sds

}
d

dt tp
01
xy + tp

01
xy exp

{∫ t

0
µ13

x+sds

}
µ13

x+t = using (2.13)

= exp
{∫ t

0
µ13

x+sds

}
( tp

00
xy µ01

x+t:y+t − tp
01
xy µ13

x+t +t p01
xyµ13

x+t) =

= tp
00
xy µ01

x+t:y+t exp
{∫ t

0
µ13

x+sds

}
.

Integrating both sides of the equation over (0, u) and realising that 0p
01
xy = 0, we

have

up01
xy exp

{∫ u

0
µ13

x+sds

}
=
∫ u

0
tp

00
xy µ01

x+t:y+t exp
{∫ t

0
µ13

x+sds

}
dt.

Multiplying both sides of the equation by exp
{
−
∫ u

0 µ13
x+sds

}
gives

up01
xy =

∫ u

0
tp

00
xy µ01

x+t:y+t exp
{

−
∫ u

t
µ13

x+sds

}
dt.

For proving the formula (2.9), it suffices to realise that using (2.5), we obtain

u−tp
11
x+t = exp

{
−
∫ u

t
µ13

x+sds

}
. (2.14)

Lastly, we derive the formula (2.9) intuitively. For the married couple with
corresponding ages x and y to transfer from state 0 to state 1 before reaching
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corresponding ages x + u and y + u, the couple must occupy state 0 until some
ages x + t and y + t, move to state 1 between the husband’s ages x + t and
x + t + dt, whereas dt is small, and then stay in state 1 (which means that the
wife is already dead) from the husband’s age x+ t+dt to age x+u. These events
can be illustrated as shown in Figure (2.2).

We can write the infinitesimal probability of this sequence of events as

tp
00
xy µ01

x+t:y+t dt u−tp
11
x+t.

Note that it could also be possible to write u−t−dtp
11
x+t instead of u−tp

11
x+t, but

it is not necessary, since both terms are for small dt approximately the same.
Considering that the transfer from state 0 to state 1 can happen anytime between
the husband’s ages x and x + u, we have that the “sum” (i.e. integral) of these
probabilities over the interval (0, u) represents the total probability up01

xy.

time

age

probability

event

0 t t+ dt u

x, y x+ t, y + t x+ t+ dt, y + t+ dt x+ u

tp
00
xy

µ01
x+t:y+tdt u−tp

11
x+t

in state 0 for t years

transition to state 1

in state 1 for u− t years

Figure 2.2: Illustration for an intuitive derivation of the probability up01
xy in the

joint-life and last-survivor model

�
We have derived formulae for probabilities in the joint-life and last-survivor
model that are expressed in terms of transition intensities. Similar derivation
for probabilities can be found in Dickson et al. (2009), but in terms of a disability
model.

Moreover, we consider important to introduce the set of equations for Markov
process known as Kolmogorov’s forward equations. These equations are used to
calculate probabilities in multiple state models as we have already encountered
them in the solutions of Problem 2 and Problem 3. Problem 4 will be devoted to
the derivation of Kolmogorov’s forward equations.

Problem 4. For s, t, h ≥ 0, in the joint-life and last-survivor model, we derive
the formula

d

dt tp
ij
s =

∑
k∈{0,1,2,3},k ̸=j

(
tp

ik
s µkj

s+t − tp
ij
s µjk

s+t

)
, i, j ∈ {0, 1, 2, 3}. (2.15)

This formula consists of a set of equations for Markov process and is known as
Kolmogorov’s forward equations.

Solution. In order to derive this set of equations, we proceed as we did in
Problem 2 and Problem 3. Let us think of the probability being in state j at
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time s + t + h, given that the process is in some state at time s + t . So the
process is either already in state j or in some state, say k, and the movement to
j is needed before time s + t + h. Therefore, we have

t+hpij
s = tp

ij
s hpjj

s+t +
∑

k∈{0,1,2,3},k ̸=j
tp

ik
s hpkj

s+t

Using formulae (2.2) and (2.4), we can rewrite the above stated equality as

t+hpij
s = tp

ij
s

(
1 − h

∑
k∈{0,1,2,3},k ̸=j

µjk
s+t − o(h)

)
+ h

∑
k∈{0,1,2,3},k ̸=j

tp
ik
s hµkj

s+t + o(h), h → 0.

Rearranging the equation gives

t+hpij
s = tp

ij
s + h

∑
k∈{0,1,2,3},k ̸=j

(
tp

ik
s hµkj

s+t − tp
ij
s µjk

s+t

)
+ o(h), h → 0, (2.16)

again rearranging, then dividing it by h and letting h → 0 proves (2.15).
�

2.3 Formulae for Transition Intensities
In Section 2.2, we have derived the formulae for probabilities in the joint-life

and last-survivor model in terms of transition intensities assuming that transition
intensities are known. Now we can write the joint survival function of remaining
lifetimes of the husband aged x and the wife aged y and also related marginal
distribution functions. The joint survival function of (Tx, Ty) is given by

P [Tx > s, Ty > t] =
{

sp
00
xy + tp

00
xy s−tp

01
x+t:y+t, s ≥ t ≥ 0,

tp
00
xy + sp

00
xy t−sp

02
x+s:y+s, t > s ≥ 0.

(2.17)

In the following, we omit “dv” terms in particular integrals in order to simplify
formulae, i.e. we will use

e−
∫ t

0 µij
x+v:y+vdv ≡ e−

∫ t

0 µij
x:y , i, j ∈ {0, 1, 2, 3}.

Then using (2.6),(2.9) and (2.10), we can write

P [Tx > s, Ty > t] ={
sp

00
xy + tp

00
xy

∫ s
t τ−tp

00
x+t:y+t µ01

x+τ :y+τ s−τ p11
x+τ :y+τ dτ, s ≥ t ≥ 0,

tp
00
xy + sp

00
xy

∫ t
s τ−tp

00
x+s:y+s µ02

x+τ :y+τ t−τ p22
x+τ :y+τ dτ, t > s ≥ 0.

Using (2.6), (2.8) and (2.7), we obtain

P [Tx > s, Ty > t] =⎧⎨⎩ e−
∫ s

0 µ01
xy+µ02

xy + e−
∫ t

0 µ01
xy+µ02

xy
∫ s

t e−
∫ τ

t
µ01

xy+µ02
xyµ01

x+τ :y+τ e−
∫ s

τ
µ13

x dτ, s ≥ t ≥ 0,

e−
∫ t

0 µ01
xy+µ02

xy + e−
∫ s

0 µ01
xy+µ02

xy
∫ t

s e−
∫ τ

s
µ01

xy+µ02
xyµ02

x+τ :y+τ e−
∫ t

τ
µ23

y dτ, t > s ≥ 0,
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and simplifying, we have

P [Tx > s, Ty > t] =⎧⎨⎩ e−
∫ s

0 µ01
xy+µ02

xy +
∫ s

t e−
∫ τ

0 µ01
xy+µ02

xyµ01
x+τ :y+τ e−

∫ s

τ
µ13

x dτ, s ≥ t ≥ 0,

e−
∫ t

0 µ01
xy+µ02

xy +
∫ t

s e−
∫ τ

0 µ01
xy+µ02

xyµ02
x+τ :y+τ e−

∫ t

τ
µ23

y dτ, t > s ≥ 0.
(2.18)

The marginal survival functions of Tx and Ty are given by

P [Tx > s] = sp
00
xy + sp

01
xy, s ≥ 0, (2.19)

P [Ty > t] = tp
00
xy + tp

02
xy, t ≥ 0. (2.20)

Again applying (2.6),(2.9) and (2.10) and omitting particular “dv” terms, we can
write

P [Tx > s] = e−
∫ s

0 µ01
xy+µ02

xy +
∫ s

0
τ p00

xy µ01
x+τ :y+τ s−τ p11

x+τ :y+τ dτ, s ≥ 0,

P [Ty > t] = e−
∫ t

0 µ01
xy+µ02

xy +
∫ t

0
τ p00

xy µ02
x+τ :y+τ t−τ p22

x+τ :y+τ dτ, t ≥ 0,

and using (2.6), (2.8) and (2.7), we obtain

P [Tx > s] = e−
∫ s

0 µ01
xy+µ02

xy +
∫ s

0
e−
∫ τ

0 µ01
xy+µ02

xyµ01
x+τ :y+τ e−

∫ s

τ
µ13

x dτ, s ≥ 0, (2.21)

P [Ty > t] = e−
∫ t

0 µ01
xy+µ02

xy +
∫ t

0
e−
∫ τ

0 µ01
xy+µ02

xyµ02
x+τ :y+τ e−

∫ t

τ
µ23

y dτ, t ≥ 0. (2.22)

In Section 1.3, we have introduced Gompertz and Gompertz-Makeham laws
of mortality in case of single life theory representing force of mortality of a single
life as a function of age. In order to show how to calculate premiums for joint-
life and last-survivor insurances, it remains to express forces of transition in the
joint-life and last-survivor model in some functional form, so that they could be
estimated from data. And that is the aim of this section. Let us start with the
concept of a right tail increase for two random variables.

Let X and Y be continuous non-negative real random variables defined on
some probability space and s, t ≥ 0. We say that X is right tail increasing (resp.
decreasing) in Y if P [X > s | Y > t] is increasing (resp. decreasing) in t for all
s ≥ 0. The following lemma clarifies the relationship between right tail increasing
variables and variables that are positively quadrant dependent.

Lemma 1. If say X is right tail increasing in Y then X and Y are positive
quadrant dependent.

Proof. Note that X and Y are positive quadrant dependent if

P [Y > t | X > s] ≥ P [Y > t], s, t ≥ 0. (2.23)

Obviously, the assumption that X is right tail increasing in Y is equivalent to
the statement that

P [Y > t, X > s]
P [Y > t]

1
P [X > s] is increasing in t for all s ≥ 0. (2.24)
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We choose t = 0 for fixed s ≥ 0 and we rewrite the term in (2.24) as follows

P [Y > 0, X > s]
P [Y > 0]

1
P [X > s] . (2.25)

Since we assume that Y is a continuous non-negative random variable, we have
that P (Y > 0) = 1, and then the term (2.25) is equal to 1. Since the term in
(2.24) is increasing in t for all s ≥ 0, we have for t > 0 that

P [Y > t, X > s]
P [X > s]

1
P [Y > t] > 1,

which proves (2.23).
�

Now we present the result proved by Norberg (1989, page 249, Theorem 4.1) which
will lead to a natural suggestion for a functional form of transition intensities
in the joint-life and last-survivor model. This result characterizes relationships
between transition intensities and remaining lifetimes.

Theorem 2. In the joint-life and last-survivor model it holds:

i) µ02
x+τ :y+τ ≤ µ13

x+τ and µ01
x+τ :y+τ ≤ µ23

y+τ for all τ ≥ 0 =⇒
Tx and Ty are positively quadrant dependent,

ii) µ02
x+τ :y+τ ≥ µ13

x+τ and µ01
x+τ :y+τ ≥ µ23

y+τ for all τ ≥ 0 =⇒
−Tx and Ty are positively quadrant dependent,

iii) µ02
x+τ :y+τ = µ13

x+τ and µ01
x+τ :y+τ = µ23

y+τ for all τ ≥ 0 ⇐⇒
Tx and Ty are independent.

Proof. Since the proof is quite massive and contains straightforward but tedious
calculations, we shall prove it only partially. We start by proving item i). Using
Lemma 1, it is sufficient to establish that

µ02
x+τ :y+τ ≤ µ13

x+τ and µ01
x+τ :y+τ ≤ µ23

y+τ for all τ ≥ 0

implies that say Tx is right tail increasing in Ty.
Let us proceed further for s < t. From (2.18) and (2.22), we can write

P [Tx > s | Ty > t] =

=P [Tx > s, Ty > t]
P [Ty > t] =

=
e−
∫ t

0 µ01
xy+µ02

xy +
∫ t

s e−
∫ τ

0 µ01
xy+µ02

xyµ02
x+τ :y+τ e−

∫ t

τ
µ23

y dτ

e−
∫ t

0 µ01
xy+µ02

xy +
∫ t

0 e−
∫ τ

0 µ01
xy+µ02

xyµ02
x+τ :y+τ e−

∫ t

τ
µ23

y dτ
=

=
1 +

∫ t
s e−

∫ t

τ
µ01

xy+µ02
xy−µ23

y µ02
x+τ :y+τ dτ

1 +
∫ t

0 e−
∫ t

τ
µ01

xy+µ02
xy−µ23

y µ02
x+τ :y+τ dτ .
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Using the rule for differentiating the fraction, the numerator of the derivation
d
dt

P [Tx > s | Ty > t] has the form(
1 +

∫ t

0
e−
∫ t

τ
µ01

xy+µ02
xy−µ23

y µ02
x+τ :y+τ dτ

)
[
µ02

x+t:y+t +
∫ t

s
e−
∫ t

τ
µ01

xy+µ02
xy−µ23

y µ02
x+τ :y+τ dτ

(
µ01

x+t:y+t + µ02
x+t:y+t − µ23

y+t

)]
−
(

1 +
∫ t

s
e−
∫ t

τ
µ01

xy+µ02
xy−µ23

y µ02
x+τ :y+τ dτ

)
[
µ02

x+t:y+t +
∫ t

0
e−
∫ t

τ
µ01

xy+µ02
xy−µ23

y µ02
x+τ :y+τ dτ

(
µ01

x+t:y+t + µ02
x+t:y+t − µ23

y+t

)]
,

(2.26)

We realise that (2.26) has the same sign as d
dt

P [Tx > s | Ty > t], since the
denominator of the derivation is positive due to the second power. Now, putting

At =
∫ t

0
e−
∫ t

τ
µ01

xy+µ02
xy−µ23

y µ02
x+τ :y+τ dτ, (2.27)

we can rewrite (2.26) as

(1 + At)
[
µ02

x+t:y+t + (At − As)(µ01
x+t:y+t + µ02

x+t:y+t − µ23
y+t)

]
−(1 + At − As)

[
µ02

x+t:y+t + At(µ01
x+t:y+t + µ02

x+t:y+t − µ23
y+t)

]
=

= (1 + At)
[
µ02

x+t:y+t + At(µ01
x+t:y+t + µ02

x+t:y+t − µ23
y+t)

]
−(1 + At)As(µ01

x+t:y+t + µ02
x+t:y+t − µ23

y+t)
−(1 + At)

[
µ02

x+t:y+t + At(µ01
x+t:y+t + µ02

x+t:y+t − µ23
y+t)

]
+As

[
µ02

x+t:y+t + At(µ01
x+t:y+t + µ02

x+t:y+t − µ23
y+t)

]
=

= −As µ01
x+t:y+t − As µ02

x+t:y+t + As µ23
y+t

−AtAs µ01
x+t:y+t − AtAs µ02

x+t:y+t + AtAs µ23
y+t

+As µ02
x+t:y+t + AsAt µ01

x+t:y+t + AsAt µ02
x+t:y+t − AsAt µ23

y+t =
= As( µ23

y+t − µ01
x+t:y+t).

(2.28)

Since the term As is positive for all s, it can be seen from (2.28) that µ23
y+t ≥

µ01
x+t:y+t implies d

dt
P [Tx > s | Ty > t] ≥ 0 for s < t. It can also be showed that

µ13
x+t ≥ µ02

x+t:y+t implies d
dt

P [Tx > s | Ty > t] ≥ 0 for s ≥ t. For the proof, we refer
to Norberg (1989, page 249, Theorem 4.1). Overall, for all s and t, we have that
Tx is right tail increasing in Ty, which proves item i). Item ii) follows immediately
from item i). Item iii) follows by noting that Tx is right tail increasing in Ty and
also Tx is right tail decreasing in Ty is together equivalent to independence.

�

In the introduction, we have mentioned that the husband and wife are more or
less exposed to the same risks, since they share a common way of life. Therefore,
we consider forces of mortality that depend on the fact whether the other spouse
is still alive or not. Taking this into account and also in the view of items i)− iii)
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in Theorem 2, it seems natural to suggest that for t ≥ 0,

µ01
x+t:y+t = (1 − α01)µy+t, (2.29)

µ23
y+t = (1 + α23)µy+t, (2.30)

µ02
x+t:y+t = (1 − α02)µx+t and (2.31)

µ13
x+t = (1 + α13)µx+t, (2.32)

whereas α0j’s ∈ [0, 1) and αij’s are non-negative as has been proposed by Denuit
et al. (2001, page 27). Obviously, µx+t (resp. µy+t) denotes force of mortality of
a single life for the husband aged x (resp. the wife aged y). So, we have derived
functional formulae for transition intensities in the joint-life and last-survivor
model and we are able to calculate premiums for joint-life and last-survivor
insurances which will be performed in Chapter 3 using a specific dataset.

2.4 Independent Joint-Life and Last-Survivor
Model

Item iii) in Theorem 2 has suggested a special case of the joint-life and last-
survivor model, where the lives of the husband and wife are independent. It says
that remaining lifetimes of the husband and wife are independent if and only if

µ02
x+t:y+t = µ13

x+t and µ01
x+t:y+t = µ23

y+t for all t ≥ 0.

Thus, forces of mortality in this model do not depend on whether the other
partner is still alive or not. It is an important model, since it is often used in
practise. Let us further refer to this special case of the joint-life and last-survivor
model with the assumption of independent lives as to the independent joint-life
and last-survivor model.

both spouses alive
husband alive

wife dead

husband dead

wife alive
both spouses dead

1

2

0

3

µy+t

µx+tµx+t

µy+t

Figure 2.3: The independent joint-life and last-survivor model

By solving Problem 5, which assumes independence in the joint-life and last-
survivor model, we show that probabilities of joint events are the product of the
probabilities of events for each life separately.
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Problem 5. Suppose that in the joint-life and last-survivor model it holds that
µ02

x+t:y+t = µ13
x+t and µ01

x+t:y+t = µ23
y+t for all t ≥ 0.

We show that
i) the probability that both partners are alive at time t is

exp
{

−
∫ t

0
µ13

x+sds

}
exp

{
−
∫ t

0
µ23

y+sds

}
, (2.33)

ii) the probability that the husband is alive and the wife is dead at time t is

exp
{

−
∫ t

0
µ13

x+sds

}(
1 − exp

{
−
∫ t

0
µ23

y+sds

})
, (2.34)

iii) the probability that the husband is alive at time t has the form

exp
{

−
∫ t

0
µ13

x+sds

}
, (2.35)

iv) and finally the probability that both partners are dead at time t is(
1 − exp

{
−
∫ t

0
µ13

x+sds

})(
1 − exp

{
−
∫ t

0
µ23

y+sds

})
. (2.36)

Solution. i) Obviously, the probability that both partners are alive at time
t in the joint-life and last-survivor model is tp

00
xy and using the assumption of

independence, it can be rewritten as

tp
00
xy = exp

{
−
∫ t

0

(
µ01

x+τ :y+τ + µ02
x+τ :y+τ

)
dτ

}
=

= exp
{

−
∫ t

0
µ01

x+τ :y+τ dτ

}
exp

{
−
∫ t

0
µ02

x+τ :y+τ dτ

}
=

= exp
{

−
∫ t

0
µ13

x+τ dτ

}
exp

{
−
∫ t

0
µ23

y+τ dτ

}
.

ii) The probability that the husband is alive and the wife is dead at time t is
given by (2.9) and can be rewritten as

tp
01
xy =

∫ t

0
exp

{
−
∫ s

0

(
µ01

x+τ :y+τ + µ02
x+τ :y+τ

)
dτ

}
µ01

x+s:y+s

exp
{

−
∫ t

s
µ13

x+τ dτ

}
ds =

=
∫ t

0
exp

{
−
∫ s

0

(
µ23

y+τ + µ13
x+τ

)
du

}
µ23

y+s exp
{

−
∫ t

s
µ13

x+τ dτ

}
ds =

= exp
{

−
∫ t

0
µ13

x+τ dτ

}∫ t

0
exp

{
−
∫ s

0
µ23

y+τ dτ

}
µ23

y+s ds =

= exp
{

−
∫ t

0
µ13

x+τ dτ

}∫ t

0

d

ds

(
− exp

{
−
∫ s

0
µ23

y+τ dτ

})
ds =

= exp
{

−
∫ t

0
µ13

x+τ dτ

}
d

ds

(
−
∫ t

0
exp

{
−
∫ s

0
µ23

y+τ dτ

}
ds

)
=

= exp
{

−
∫ t

0
µ13

x+τ dτ

}(
1 − exp

{
−
∫ t

0
µ23

y+τ dτ

})
,
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which proves (2.34).
iii) The probability that the husband is alive at time t is tp

00
xy + tp

01
xy. Applying

the results from items i) and ii), we obtain

tp
00
xy + tp

01
xy =

= exp
{

−
∫ t

0
µ13

x+τ dτ

}
exp

{
−
∫ t

0
µ23

y+τ dτ

}
+

+ exp
{

−
∫ t

0
µ13

x+udu

}(
1 − exp

{
−
∫ t

0
µ23

y+τ dτ

})
=

= exp
{

−
∫ t

0
µ13

x+udu

}
(2.37)

as required.
iv) The probability that both the husband and the wife are dead at time t, can
be rewritten as

1 − tp
00
xy − tp

01
xy − tp

02
xy,

using (2.37) and the corresponding formula for tp
02
xy, we get the probability

1 − exp
{

−
∫ t

0
µ13

x+τ dτ

}
− exp

{
−
∫ t

0
µ23

y+τ dτ

}(
1 − exp

{
−
∫ t

0
µ13

x+τ dτ

})
,

which gives (2.36) after adjustment.
�

Moreover, note that

µ02
x+t:y+t = µ13

x+t = µx+t, t ≥ 0

and

µ01
x+t:y+t = µ23

y+t = µy+t, t ≥ 0.

The independent joint-life and last-survivor model is illustrated by Figure (2.3).

2.5 Extended Models
In this section we would like to state two extensions of the joint-life and

last-survivor model. In the introduction, we mentioned that there are three
types of possible dependencies between the two considered lives, i.e, the long-
term association between lifetimes, the short-term impact of a spousal death and
the instantaneous dependence due to a catastrophic event.

The long-term association is captured by the joint-life and last-survivor model
by taking into account forces of mortality which depend on whether the other
partner is alive. Now, we modify the joint-life and last-survivor model by
considering the instantaneous dependence due to a catastrophic event that effects
both lives and by considering the short-term impact of a spousal death.

In order to extend the joint-life and last-survivor model shown in (2.1)
by considering a “common shock” type of dependence, which stands for a
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Figure 2.4: The joint-live and last-survivor model with the “common shock” effect

simultaneous deaths of the couple due to a common catastrophic event, we simply
add the transition from state 0 to state 3, i.e. µ03. We assume that µ03 is
independent of age (time), which is already reflected by the notation. The model
is shown in Figure (2.4). The force of mortality of the (y+t)-year-old wife, in case
her husband is dead, is denoted by µ23

y+t. The force of mortality from all causes
other than a “common shock” effect, for the wife aged y+t with the husband aged
x+ t still living, is denoted by µ01

x+t:y+t. Likewise, the husband’s force of mortality
at age x + t is µ13

x+t if he is widowed, while µ02
x+t:y+t denotes the mortality for the

still-married man aged x + t from all causes other than a “common shock” effect.
The use of “common shock” transitions means that the total force of mortality
for the married woman aged y + t is µ01

x+t:y+t + µ03, and similarly for the married
men.

The joint-life and last-survivor model with the “common shock” effect differs
from the joint-life and last-survivor model only in one equation from the set of
all differential equations, to be concrete,

d

dt tp
00
xy = −tp

00
xy

(
µ01

x+t:y+t + µ02
x+t:y+t + µ03

)
. (2.38)

According to Problem 2, the solution of (2.38) has the form

tp
00
xy = exp

{
−
∫ t

0

(
µ01

x+τ :y+τ + µ02
x+τ :y+τ + µ03

)
dτ

}
. (2.39)

Further, we extend the joint-life and last-survivor model shown in (2.1) by
considering the third kind of dependence, i.e. the short-term impact of the
spousal death. This dependence represents the existence of appreciable increase
in mortality rate among the widowers during the first six months after the deaths
of their wives in comparison with the rate of married men of the same age. We
can take this dependence into account by considering the transition intensities
from state 1 to 3 and from state 2 to 3 to be dependent not only on the current
state, but also on the time elapsed since the latest transition. So, we take µ13

x+t,r
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Figure 2.5: The joint-live and last-survivor model including the short-term impact
of the spousal death

(resp. µ23
y+t,r) instead of µ13

x+t (resp. µ23
y+t), whereas r is the time elapsed since the

latest transition into state 1 (resp. 2). Note that the forces of mortality µ01
x+t:y+t

and µ02
x+t:y+t stay unchanged.

In order to write differential equations (also integro-differential equations)
for the joint-life and last-survivor model including the short-term impact of the
spousal death, we would have to consider semi-Markov theory, but it is not our
purpose. We just want to emphasize that transition intensities (also probabilities)
in Markov models depend only on the current state and the strength of semi-
Markov theory is that it allows to built a model in which the intensities (also
probabilities) depend not only on the current state but also on the time elapsed
since the last transition to that state. The joint-life and last-survivor model
including the short-term impact of the spousal death is shown in Figure (2.5).
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3. Application of Joint-Life and
Last-Survivor Model

This chapter aims to quantify the impact of dependence between the
remaining lifetimes of the husband and wife on the amount of premiums
considering the joint-life and last-survivor model. To do so, we calculate
premiums for n-year joint-life and n-year last-survivor annuities due in both cases,
assuming independence and also dependence of lifetimes of the husband and wife,
and we compare them.

In this thesis, the application of the joint-life and last-survivor model will
be based on a dataset collected by the Czech Statistical Office considering the
population in the Czech Republic during the year 2015. This dataset can be
partially found on the official webpage1 of the Czech Statistical Office and was
partially provided on request. The dataset description will be specified later in
this chapter.

Let us proceed to the calculation of premiums in case of the dependency of
the two insured lifes. We assume that the husband and wife buy the insurance
contract in their ages x and y and we want to calculate n-year joint-life and n-year
last-survivor annuities due, given by

äxy:n =
n−1∑
k=0

vk
kpxy and (3.1)

äxy:n =
n−1∑
k=0

vk( kpx + kpy − kpxy). (3.2)

To do so, we need to calculate corresponding probabilities in the joint-life and
last-survivor model. We already know that all the probabilities in the joint-life
and last-survivor model can be written in terms of transition intensities. It tells
us that all the information that is necessary to know about the joint-life and
last-survivor model is fully determined by transition intensities. Thus, we will be
concerned with the calculation of transition intensities that are given by (2.29)
- (2.32). Before we deal with the estimation of non-negative parameters αij’s,
that are contained in the above mentioned formulae, we will pay attention to
modelling forces of mortality µx+t and µy+t using Gompertz-Makeham mortality
law.

3.1 Gompertz-Makeham Law
Let us assume that forces of mortality for the woman aged y + t and the man

aged x + t are given by Gompertz-Makeham law (1.33), i.e.

µy+t = A1 + B1c
y+t
1 , y, t ≥ 0, B1 > 0, c1 > 1, A1 ≥ 0, (3.3)

µx+t = A2 + B2c
x+t
2 , x, t ≥ 0, B2 > 0, c2 > 1, A2 ≥ 0. (3.4)

1https://www.czso.cz
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Further, by denoting

Ai = − ln si and Bi = − ln ci ln gi, si, gi ∈ [0, 1], i = 1, 2, (3.5)

we obtain

tpy = st
1g

cy+t
1 −cy

1
1 , t ≥ 0, (3.6)

tpx = st
2g

cx+t
2 −cx

2
2 , t ≥ 0. (3.7)

To realise that say (3.6) holds true, it is sufficient to plug A1, B1 and c1 into
(1.34) instead of A, B and c, obviously considering the woman aged y, and so we
get the result immediately.

We have at hand life tables experienced in the Czech Republic during 2015
and based on this dataset, we estimate parameters Ai, Bi, ci, i = 1, 2. The method
of least squares will be used and accompanied by the following algorithm that
was used by Denuit et al. (2001, page 21).

Let us proceed to the estimation of parameters say related to women. The
formula (1.34), in case of one-year survival probability for the woman aged y
using the above stated notation, can be written as

py = exp {−A1} exp
{

− B1

ln c1
cy

1(c1 − 1)
}

. (3.8)

By applying logarithm on both sides of (3.8) and then multiplying the equation
by minus one, we obtain

− ln(py) = A1 + B1

ln c1
cy

1(c1 − 1). (3.9)

Let us further denote the empirical estimator of one-year survival probability at
age y by p̂y and define

αy = − ln p̂y. (3.10)

The empirical one-year survival probability p̂y will be taken from life tables that
we have at hand. And now, we plug (3.10) in (3.9) instead of − ln(py) and we
obtain

αy = A1 + β1c
y
1, (3.11)

where

β1 = −(c1 − 1) ln g1. (3.12)

We estimate parameters A1, β1, c1 in the equation (3.11) for a chosen age range
(ϑ1, η2) in such a way, that we decompose the age range into two parts, i.e. (ϑ1, ϑ2)
and (η1, η2), whereas η1 = ϑ2 + 1. In (3.9), the term A1 can be neglected for the
range (η1, η2). Thus, by omitting A1 in (3.9) and further by applying logarithm,
we obtain a linear approximation

ln (αy) ≈ ln β1 + y ln c1. (3.13)
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The mentioned approximation will be useful for choosing the age η1. On the other
hand, the term A1 may no longer be omitted in (ϑ1, ϑ2). The method determines
the estimates of parameters β1, c1, i.e. β̂1, ĉ1, as the solution of

(β̂1, ĉ1) = argmin
(β1,c1)

η2∑
y=η1

(
ln αy − ln β1 − y ln c1

)2
, (3.14)

and the estimate of A1, i.e. Â1, is determined by

Â1 = argmin
A1

ϑ2∑
y=ϑ1

(
αy − A1 − β̂1ĉ

y
1

)2
. (3.15)

In order to obtain estimates β̂1, ĉ1, we just differentiate the sum in (3.14) with
respect to β1 and separately with respect to c1, and then we set these derivatives
to be equal to zero. We obtain the equations

η2∑
y=η1

(
ln αy − ln β̂1 − y ln ĉ1

)
= 0, (3.16)

η2∑
y=η1

(
ln αy − ln β̂1 − y ln ĉ1

)
y = 0. (3.17)

From (3.16), we have

(η2 − ϑ2) ln β̂1 + ln ĉ1

η2∑
y=η1

y =
η2∑

y=η1

ln αy,

and expressing ln β̂1, we obtain

ln β̂1 =
∑η2

y=η1 ln αy − ln ĉ1
∑η2

y=η1 y

(η2 − ϑ2)
. (3.18)

After plugging (3.18) into (3.17), we have
η2∑

y=η1

y ln αy −
∑η2

y=η1 y
∑η2

y=η1 ln αy − ln ĉ1(
∑η2

y=η1 y)2

(η2 − ϑ2)
− ln ĉ1

η2∑
y=η1

y2 = 0,

rearranging gives us

ln ĉ1

( η2∑
y=η1

y
)2

− (η2 − ϑ2) ln ĉ1

η2∑
y=η1

y2 =
η2∑

y=η1

y
η2∑

y=η1

ln αy − (η2 − ϑ2)
η2∑

y=η1

y ln αy.

Finally, we have

ln ĉ1 =
∑η2

y=η1 y
∑η2

y=η1 ln αy − (η2 − ϑ2)
∑η2

y=η1 y ln αy

(∑η2
y=η1 y)2 − (η2 − ϑ2)

∑η2
y=η1 y2 . (3.19)

Differentiating the sum in (3.15) with respect to A1, applying estimates β̂1, ĉ1,
and setting it to zero gives

ϑ2∑
y=ϑ1

(
αy − Â1 − β̂1ĉ

y
1

)
= 0,
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by rearranging, we obtain
ϑ2∑

y=ϑ1

αy − (η1 − ϑ1)Â1 −
ϑ2∑

y=ϑ1

β̂1ĉ
y
1 = 0,

and then the estimate Â1 takes the form

Â1 =
∑ϑ2

y=ϑ1(αy − β̂1ĉ
y
1)

(η1 − ϑ1)
. (3.20)

An analogous derivation can be proceeded for survival probability px related to
a man aged x.

ln (αy)
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Figure 3.1: A graph of ln αy for the age range from 0 to 104

Clearly, the above stated method is sensitive to the choices of age ranges
(ϑ1, ϑ2) and (η1, η2). There is no rule how to determine them, therefore we do
an analysis based on our data. And we start the analysis related to the female
population 2015.

In order to determine η1, we have plotted ln p̂y (see Figure (3.1)). By omitting
term A1 and applying logarithm in (3.11) for the range (η1, η2), we obtained the
linear approximation (3.13). Thus, if the values of ln αy in our female population
remind us a line from some age, we can take that age as η1. When we look at
Figure (3.1), we can see two “lines”, i.e. the graph reminds us the line already
from age 45 that ends at age 72, since there is a small blip and this “line” seems
to have a different slope than the “line” starting from age 72. So, based on this
observation, we can determine η1 bigger or equal than 45 years.

Now, we would like to determine ages ϑ1 and η2, and also find good estimates
of A1, β1(also B1) and c1. From the literature, we know (see for example Fiala
(2005)) that in general the values of a Gompertz-Makeham fit may significantly
differ from empirical values under age 60 and above age 75, when estimating forces
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Figure 3.2: The empirical values of αy and its fitted values for choice τ 2
y

of mortality, but it is not a rule. It also indicates that a force of mortality cannot
be expressed by one simple function for all ages say from 0 to 104. Furthermore,
when estimating forces of mortality, we know that age 85 is considered as reliable
from the view of empirical data, because for older ages there is less observations
(see for example Dotlačilová and Langhamrová (2015)), and therefore the upper
age η2 should be taken around 85.
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Figure 3.3: The empirical values of αy and its fitted values for choice τ 1
y

Based on the above made analysis and the above stated knowledge from
literature, we did several reasonable choices of (ϑ1, ϑ2) and (η1, η2), we made
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Figure 3.4: The empirical values of αy and its fitted values for choice τ 1
y using

different scaling
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Figure 3.5: A graph of ln αx for the age range from 0 to 104

a fit for the choices and we compared empirical observations with fitted values.
We decided to mention two choices that we will discuss in detail. Let us denote
the i-th choice of age ranges by τ i

y, i = 1, 2, whereas the subscript y indicates that
choices are made for population related to women. The age ranges for the two
choices are in table (3.1).

age parameters\choices τ 1
y τ 2

y

ϑ1 20 60
ϑ2 65 65
η1 66 66
η2 80 80

Table 3.1: The choices of age ranges related to the female population 2015

Figure (3.2) shows the empirical values of αy and its fitted values for choice
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τ 2
y . The choices ϑ1 = 60 and η2 = 80 were based on the recommendations from

the above mentioned literature, and the choice η1 = 66 was made on the basis
of the comparison of graphs of empirical and fitted values for different choices of
η1. From Figure (3.2), we can clearly see that empirical values match with those
fitted very well from 60 to 72, then they are very little overestimated for ages 73
to 75, and they are greatly underestimated from age 82 and higher. Moreover,
we can compare Figure (3.1) and Figure (3.2), and notice that they correspond
to each other. Since, in Figure (3.1), the “line” from age 60 to 72 seems to have
a different slope than the “line” from age 72 and higher, in Figure (3.2), the fit
is very good only until age 72.
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Figure 3.6: The empirical values of αx and its fitted values for choice τ 2
y

We realise that for our purposes we would like to estimate A1, β1(also B1) and
c1 for a wide range (ϑ1, η2), since later we need to plot joint-life and last-survivor
annuities considering the range (ϑ1, η2), and therefore the age range (60, 72) is
quite short to be used later for plotting annuities. Moreover, the method that
will be used for estimation of α’s is very sensitive on the choice of (ϑ1, η2). We
could have also considered the age range (60, 80), since from the graph in Figure
(3.2) we can still see good results, but we would like to make the age range
(ϑ1, η2) as big as possible, even with the acception of some small misalignments,
because we want to achieve the aim of this thesis, e.g. to examine the impact
of dependence between the remaining lifetimes of the husband and wife on the
amount of premiums considering the joint-life and last-survivor model by plotting
and comparing annuities. It would be sufficient for us to choose ϑ around 30 and
η2 around 80.

From Figure (3.1), we see the “line” from age 45, therefore we can try to set
ϑ1 to lower ages around 20 − 30 and have a look at the graph of empirical and
fitted values. We did several choices of η1 (from 45 to 72) with ϑ1 at lower ages
and η2 around age 80, and we decided to choose the choice τ 1

y , since empirical
values of αy seems to match with fitted values best (see Figure (3.3)). From
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Figure (3.3), it seems that there is a very good match of empirical values with
those fitted already from age 20 to 72. Again, we can compare Figure (3.3) and
Figure (3.1) and we realise that the fit in Figure (3.3) is really good up to age
72, since there is a blip in Figure (3.1) at age 72. We realise that an important
role is played by scaling and therefore we decided to plot empirical and fitted
values for the choice τ 1

y using different scaling. Looking at the graphs in Figure
(3.4), we can see that the match of empirical and fitted values is not so good as
it seems to be from Figure (3.2). We can clearly see that empirical values of αy
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Figure 3.7: The empirical values of αx and its fitted values for choice τ 1
x
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Figure 3.8: The empirical values of αx and its fitted values for choice τ 1
x using

different scaling

are quite overestimated for ages lower than 35 and from ages 35 to 80 we can see
some small over- or underestimations that we consider as acceptable (definitely
not bad), since we require a wide age range. So, we decided to choose the age
range (35, 80) and using the choice τ 1

y , we obtained the estimates Â1, β̂1 and ĉ1,
then the estimate B̂i can be calculated from (3.5), whereas ĝ1 can be obtained
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from (3.12) as

ĝ1 = exp
{

−β̂1

(ĉ1 − 1)

}
.

All the estimates for the choice τ 1
y are shown in Table (3.3).

Let us make a similar analysis related to the male population 2015. We want to
determine age ranges (ϑ1, ϑ2) and (η1, η2) and acceptable estimates of A2, β2 (also
B2) and c2. We proceed analogously as we did for the female population. Firstly,
we look at the graph in Figure (3.5). We see that the graph of ln αx reminds us
the line from age 60, and this “line” seems to have a different slope than the “line”
in the age range (37, 60). So based on this graph, we can determine η1 bigger
than or equal to 37. Again, we did several reasonable choices of (ϑ1, ϑ2) and
(η1, η2), we made a fit for those choices and compared empirical values with fitted
values. We will discuss in detail two specific choices τ 1

x , τ 2
x whose age ranges are in

Table (3.2). Figure (3.6) shows the empirical values of αx and its fitted values for

age parameters\choices τ 1
x τ 2

x

ϑ1 30 60
ϑ2 51 65
η1 52 66
η2 83 83

Table 3.2: The choices of age ranges related to the male population 2015

choice τ 2
x . The choice τ 2

x was determined in the same way as in case of the female
population. From Figure (3.2), we can see that the empirical values match with
those fitted quite well from 60 to 73, then they are very little overestimated for
ages 74 to 78, and they are underestimated from age 82 and higher. Moreover,
we can compare Figure (3.5) and Figure (3.6), and notice that they correspond
to each other. The over- and underestimation in Figure (3.6) corresponds with
very small blips that can be seen in Figure (3.5) over the range (60, 80).

Since we would like to obtain a wide age range (ϑ1, η2), we have considered
the choices with ϑ1 at lower ages around 20 − 30 similarly as in the case of
female population. Finally, we decided to choose the choice τ 1

x by comparing the
empirical and fitted values with other possible choices. The empirical values of αx

and its fitted values for choice τ 1
x are shown in Figure (3.7). From Figure (3.7), it

seems that we have quite a good match of the empirical values with those fitted
already from age 30 to 60. There is an underestimation in range (61, 67) and
an overestimation in range (76, 80). Further, we look at the empirical and fitted
values for the choice τ 1

x using different scaling (see Figure (3.8)). We can see that
there is an underestimation for ages lower than or equal to 36 and then around
ages 45 and 50, there can be seen a small overestimation. A little disturbing seems
to be an underestimation from 61 to 67. An overestimation in range (76, 80) seems
to be very small. Looking again at the graph in Figure (3.5), we realise that all
over- and underestimations in Figure (3.7) correspond with blips in Figure (3.5).
It is impossible to obtain an excellent fit of ln αx in the age range starting around
30 and ending about 85 by a simple function. We must say that the estimation
results are a little worse for the male population than for the female population
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2015, but are not bad and we consider them acceptable for our further work in
this thesis. So, we decided to choose the age range (37, 83) and using the choice
τ 1

y , we obtained the estimates that are in Table (3.3).

parameter women (i = 1) men (i = 2)
Âi 0.000252598 -0.000307324
B̂i 0.000006866 0.000046943
ĉi 1.117035884 1.097397160
ŝi 0.999747434 1.000307371
ĝi 0.999937965 0.999495040
β̂i 0.000006866 0.000046943

Table 3.3: Least squares estimates of all considered parameters related to the
female (resp. male) population in 2015 with the choice τ 1

y (resp. τ 1
x)

In order to consider the same age ranges for the female and male population,
we make an intersection of final female and male age ranges and we obtain the
range (37, 80). We would like to emphasize that our aim in this section was not to
obtain the best estimates of considered parameters, but to obtain the estimates
that are good enough for further calculations and can be used for a wide age
range.

To sum up, we have estimated parameters A1, B1 and c1 in (3.3) (resp. A2, B2
and c2 in (3.4)) using data related to the female (resp. male) population in the
Czech Republic in 2015 and in this thesis we will assume for further calculation
that the forces of mortality in forms

µy = 0.000253 + 6.87 · 10−6 · 1.117036y, (3.21)
µx = −0.000307 + 46.94 · 10−6 · 1.097397x (3.22)

hold for the age range (37, 80). The calculations were done in Excel.

3.2 Estimation of Parameters
Now we can proceed to the estimation of four parameters α01, α13, α02 and α23

involved in (2.29) - (2.32). For estimation purposes, we have at hand a dataset
related to the Czech population experienced during the year 2015, more precisely
we have at hand the total population sorted according to sex, age and marital
status on 31 December 2014 and also on 31 December 2015, as well as the number
of divorces according to age and sex, marriages and deaths according to age, sex
and marital status during the year 2015. The method of least squares, which will
be used, can be found in Denuit et al. (2001, page 27). We start by a definition
of transaction functions. We define the transition functions2 as

Ωij
s+t =

∫ t

0
µij

s+τ dτ, t ≥ 0, (3.23)

where s represents the age of an insured person and t is the time elapsed since
the person’s age s. In our notation, for example, if i = 0 and j = 1, we have that

2The transition functions are known as cumulative hazard functions.
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s + t ≡ x + t : y + t. Further, let l ≥ 0, then we write the theoretical increments
∆Ωij

s+l of Ωij
s+l as

∆Ωij
s+l = Ωij

s+l+1 − Ωij
s+l = (3.24)

=
∫ l+1

0
µij

s+τ dτ −
∫ l

0
µij

s+τ dτ =

=
∫ l+1

l
µij

s+τ dτ =

=
∫ 1

0
µij

s+l+τ dτ. (3.25)

We want to obtain estimates α̂01, α̂13, α̂02 and α̂23 by minimizing the sum of
squared differences between the increments ∆Ωij of the transition functions Ωij

and their estimates ∆Ω̂ij. We make the substitution k = s + l, which gives

∆Ωij
k =

∫ 1

0
µij

k+τ dτ. (3.26)

To explain this substitution, let us consider a couple with ages x = 60 and y = 60.
If we wanted to estimate say α01 using the increments ∆Ω01

60+l:60+l, then estimates
of the increments ∆Ω̂01

60+l:60+l must have been based only on the data related to
the groups consisting only of the couples being in state 0 at ages 60 and 60. To be
concrete, for example, the number of 62-years old widowers must have contained
only the widowers that had been married at age 60 and became widowers at age
62. This is not our case, since in our dataset the number of 62-years-old widowers
may contain also the widowers who became widowers at the age of 60 or before.
Moreover, using the increments ∆Ω01

60+l:60+l for estimation of α01 would mean
that α01 would be dependent on the spouses’s ages 60 and 60. But we are not
interested in α01 just for specific ages. We want α01 to be usable for the age range
37 to 80 that we have determined in Section 3.1. Moreover, the integral from 0
to 1 from say µ01

60+τ with respect to τ gives the same value as the integral from 0
to 1 from µ01

40+20+τ with respect to τ .
Thus, because of the reasons mentioned above, it makes sense to make the

substitution (3.26).
And now we determine estimates α̂01, α̂13, α̂02 and α̂23 as the solution of

α̂ij = argmin
αij

∑
k

(
∆Ω̂ij

k −
∫ 1

0
µij

k+tdt

)2

. (3.27)

Before we deal with the estimates of the increments of the transition functions,
we minimize the sum of the squared differences between the increments ∆Ωij and
their estimates ∆Ω̂ij and state its explicit solution.

Let us calculate the explicit solution say of the estimate α̂01. We start by
adjusting the sum in (3.27), i.e.

∑
k

(
∆Ω̂01

k −
∫ 1

0
µ01

k+tdt

)2

. (3.28)

Applying (2.29), (3.28) can be rewritten as

∑
k

(
∆Ω̂01

k −
∫ 1

0
(1 − α01)µk+tdt

)2

,
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and using (3.3), we have

∑
k

(
∆Ω̂01

k − (1 − α01)
∫ 1

0
(A1 + B1c

k+t
1 )dt

)2

.

After calculating the integral in the above stated expression, we obtain

∑
k

(
∆Ω̂01

k − (1 − α01)
(

A1 + B1c
k
1
c1 − 1
ln c1

))2

. (3.29)

Differentiating the sum (3.29) with respect to α01 and setting it to zero gives

∑
k

(
∆Ω̂01

k − (1 − α̂01)
(

A1 + B1c
k
1
c1 − 1
ln c1

))(
A1 + B1c

k
1
c1 − 1
ln c1

)
= 0,

by rearranging, we obtain

(1 − α̂01)
∑

k

(
A1 + B1c

k
1
c1 − 1
ln c1

)2

=
∑

k

∆Ω̂01
k

(
A1 + B1c

k
1
c1 − 1
ln c1

)
.

And then the estimate α̂01 takes the form

α̂01 = 1 −
∑

k ∆Ω̂01
k

(
A1 + B1c

k
1

c1−1
ln c1

)
∑

k

(
A1 + B1ck

1
c1−1
ln c1

)2 . (3.30)

Since we have already calculated estimates Â1, B̂1 and ĉ1 in Section 3.1, we can
just plug them into (3.30). Clearly, analogous calculation can be done to compute
α̂02, α̂13 and α̂23. Thus, in the joint-life and last-survivor model assuming (2.29)
- (2.32), we derived the explicit forms of estimators α̂ij that are given by

α̂01 = 1 −
∑

k ∆Ω̂01
k

(
Â1 + β̂1ĉ

k
1

ĉ1−1
ln ĉ1

)
∑

k

(
Â1 + β̂1ĉk

1
ĉ1−1
ln ĉ1

)2 , (3.31)

α̂02 = 1 −
∑

k ∆Ω̂02
k

(
Â2 + β̂2ĉ

k
2

ĉ2−1
ln ĉ2

)
∑

k

(
Â2 + β̂2ĉk

2
ĉ2−1
ln ĉ2

)2 , (3.32)

α̂13 =
∑

k ∆Ω̂13
k

(
Â2 + β̂2ĉ

k
2

ĉ2−1
ln ĉ2

)
∑

k

(
Â2 + β̂2ĉk

2
ĉ2−1
ln ĉ2

)2 − 1, (3.33)

α̂23 =
∑

k ∆Ω̂23
k

(
Â1 + β̂1ĉ

k
1

ĉ1−1
ln ĉ1

)
∑

k

(
Â1 + β̂1ĉk

1
ĉ1−1
ln ĉ1

)2 − 1. (3.34)

Looking at expressions (3.31) - (3.34), we realise that it remains to determine the
estimates of the increments of the transition functions, i.e. Ω̂01

k , Ω̂02
k , Ω̂13

k and Ω̂23
k .

Let us denote the number of couples in state i at age t by Li
t and the number

of transitions from state i to state j over [0, t] by Lij
t . In order to do so, we will

consider the Nelson-Aalen estimator. Notice that from (3.23) it holds

Ωij
s+τ+h − Ωij

s+τ ≈ hµij
s+τ

= P [Xr = j, r ∈ (s + τ, s + τ + h] | Xs+τ = i].
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It is natural to estimate Ωij
s+τ+h − Ωij

s+τ by

Lij
s+τ+h − Lij

s+τ

Li
s+τ

.

Summing these quantities over subintervals of (0, t] and letting the subintervals
get small enough so that they contain at most one event time, gives the Nelson-
Aalen estimator

Ω̂ij
s+t =

∫ t

0

1(Li
s+τ > 0)
Li

s+τ

dLij
s+τ , (3.35)

whereas 0 ≤ τ ≤ t, s is a fixed age and we consider the convention that the
integral is given to be zero when Li

s+τ = 0. More details about Nelson-Aalen
estimator can be found for example in Therneau and Grambsch (2000, page 7).
Further, for l ≥ 0, we can write the empirical increments ∆Ω̂ij

s+l of Ω̂ij
s+l as

∆Ω̂ij
s+l = Ω̂ij

s+l+1 − Ω̂ij
s+l = (3.36)

=
∫ l+1

0

1(Li
s+τ > 0)
Li

s+τ

dLij
s+τ −

∫ l

0

1(Li
s+τ > 0)
Li

s+τ

dLij
s+τ =

=
∫ l+1

l

1(Li
s+τ > 0)
Li

s+τ

dLij
s+τ =

=
∫ t

0

1(Li
s+l+τ > 0)
Li

s+l+τ

dLij
s+l+τ . (3.37)

We want the empirical estimated increments to correspond with the theoretical
increments (3.24), therefore we make the substitution k = s + l, which gives

∆Ω̂ij
k+t =

∫ t

0

1(Li
k+τ > 0)
Li

k+τ

dLij
k+τ . (3.38)

The above mentioned substitution is made also because of the structure of the
dataset that we have at hand, and because we want to estimate αij for a range of
ages 37 to 80 as we have already explained in the case of the substitution made
in theoretical increments ∆Ωij

s+l. Now, we can proceed to the calculation of the
integral (3.38) and its determination from the dataset.

In our dataset, the number of transitions is available only for a year, therefore
we will use the assumption of linearity, i.e. we assume that for any integer k and
0 ≤ t ≤ 1 it holds

Lij
k+t = Lij

k + t(Lij
k+1 − Lij

k ) and
Li

k+t = Li
k + t(Li

k+1 − Li
k).

Then, we can write

∆Ω̂ij
k+t =

∫ 1

0

1(Li
k+τ > 0)

Li
k + τ(Li

k+1 − Li
k)(Lij

k+1 − Lij
k )dτ =

= (Lij
k+1 − Lij

k ) 1
Li

k+1 − Li
k

[
ln(Li

k + τ(Li
k+1 − Li

k))
]1

0

= Lij
k+1 − Lij

k

Li
k+1 − Li

k

(ln Li
k+1 − ln Li

k) =

= Li:j
k

Li
k+1 − Li

k

(ln Li
k+1 − ln Li

k), (3.39)
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where

Li:j
k = Lij

k+1 − Lij
k

represents the number of transitions from state i to state j observed for lives aged
k. Further, we describe the precise estimation say of ∆Ω01

k and ∆Ω13
k considering

the dataset related to the Czech population experienced during the year 2015.
Let us start with ∆Ω01

k and analyse its components:

1. The numerator L0:1
k represents the number (#, in short) of married women

aged k died during the year 2015 (this number is directly available from our
dataset).

2. The denominator L0
k+1 − L0

k is equal to:
- # of married women aged k died during 2015

- # of married women aged k whose husband died during 2015
+ # of women aged k got married during 2015
- # of married women aged k got divorced during 2015.

Since the number of married women aged k whose husband died during 2015
cannot be obtained directly from our dataset, we estimate it in the following
way:

+ # of widows aged k + 1 on 31 December 2015
- (# of widows aged k on 31 December 2014
- # of widows aged k died during 2015
- # of widows aged k got married during 2015).

3. Lastly, considering the difference between the logarithms in (3.39), L0
k

represents the number of married women aged k on 31 December 2014 and L0
k+1

is easily deduced from above since (L0
k+1 − L0

k) + L0
k = L0

k+1.

Let us continue with the examination of ∆Ω13
k :

1. The numerator L1:3
k represents the number of widowers aged k died during

2015.

2. The denominator L1
k+1 − L1

k is equal to:
- # of widowers aged k died during 2015
+ # of men aged k whose wife died during 2015
- # of widowers k got married during 2015.

Since the number of men aged k whose wife died during 2015 cannot be obtained
directly from our dataset, we estimate it in the following way:
# of widowers aged k + 1 on 31 December 2015

- (# of widowers aged k on 31 December 2014
- # of widowers aged k died during 2015
- # of widowers aged k got married during 2015).
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3. Lastly, considering the difference between the logarithms in (3.39), L1
k

represents the number of widowers aged k on 31 December 2014 and L1
k+1 is

easily deduced from above since (L1
k+1 − L1

k) + L1
k = L1

k+1.

Apparently, the estimation of ∆Ω02
k and ∆Ω23

k can be deduced from the above
description simply by exchanging the roles of the two spouses. According to
expressions (3.31) - (3.34), using the dataset provided by the Czech Statistical
Office concerning the Czech population experienced during 2015 and considering
age spread from 37 to 80, we calculated

α̂01 = 0.209245955, α̂02 = 0.158489993 (3.40)
α̂13 = 0.240952327, α̂23 = 0.042490475. (3.41)

The calculation was done in Excel and these numbers tell us that in comparison
to the mortality experienced by the entire Czech population during 2015, there
is an under-mortality about 21% for married women, 16% for married men, and
an over-mortality about 24% for widowers and 4% for widows.

3.3 Calculation of Premium
In this section, we will deal with a calculation of the net single premium for

n-year joint-life annuity due and the net single premium of n-year last-survivor
annuity due in case of dependence and also independence. We start with the
calculation of the premium in case of dependence.

We rewrite the probabilities in (3.1) and (3.2) in the notation used for the
joint-life and last-survivor model. We realise that the survival probability kpxy is
equal to the probability kp00

xy, and so we can write

äxy:n =
n−1∑
k=0

vk
kp00

xy (3.42)

Furher, say the probability kpx represents the probability that the husband aged
x will be alive at his age x+k. We realise that the husband is alive at his age x+k
in the joint-life and last-survivor model when the considered couple is in state 0
or in state 1, therefore the probability kpx is equal to kp00

xy +kp01
xy. Analogously, we

have that the kpy is equal to the probability kp00
xy + kp02

xy, therefore we can write

äxy:n =
n−1∑
k=0

vk( kpx + kpy − kpxy) =

=
n−1∑
k=0

vk( kp00
xy + kp01

xy + kp00
xy + kp02

xy − kp00
xy) =

=
n−1∑
k=0

vk( kp01
xy + kp02

xy + kp00
xy). (3.43)

So, in order to price joint-life and last-survivor annuities given by (3.42) and
(3.43), we just need to determine the probabilities kp00

xy, kp01
xy and kp02

xy.
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We start with the calculation of the probability kp00
xy. We can rewrite (2.6)

using (2.29) and (2.31) in the following way:

kp00
xy = exp

{
−
∫ k

0

(
µ01

x+τ :y+τ + µ02
x+τ :y+τ

)
dτ

}
=

= exp
{

− (1 − α01)
∫ k

0
µy+τ dτ − (1 − α02)

∫ k

0
µx+τ dτ

}
=

and using (3.3) and (3.4), we have

= exp
{

− (1 − α01)
∫ k

0
(A1 + B1c

y+τ
1 )dτ − (1 − α02)

∫ k

0
(A2 + B2c

x+τ
2 )dτ

}
=

= exp
{

− (1 − α01)
[
A1τ + B1

cy+τ
1

ln c1

]k

0
− (1 − α02)

[
A2τ + B2

cx+τ
2

ln c2

]k

0

}
=

= exp
{

− (1 − α01)
[
A1k + B1

ln c1
cy

1(ck
1 − 1)

] }
(3.44)

exp
{

− (1 − α02)
[
A2k + B2

ln c2
cx

2(ck
2 − 1)

]}
.

The calculation of kp01
xy is quite tedious, therefore we will not write every step in

detail. Firstly, we need to calculate

k−tp
11
x+t = exp

{
−
∫ k

t
µ13

x+sds

}
= using (2.32)

= exp
{

− (1 + α13)
∫ k

t
µx+sds

}
= using (3.4)

= exp
{

− (1 + α13)
∫ k

t
(A2 + B2c

x+s
2 )ds

}
=

= exp
{

− (1 + α13)
[
A2(k − t) + B2c

x
2

ln c2
(ck

2 − ct
2)
]}

. (3.45)

And now, we rewrite (2.9) using (3.44),(2.29), (3.45) and we obtain

kp01
xy =

∫ k

0
exp

{
− (1 − α01)

[
A1t + B1

ln c1
cy

1(ct
1 − 1)

] }

exp
{

− (1 − α02)
[
A2t + B2

ln c2
cx

2(ct
2 − 1)

]}

exp
{

− (1 + α13)
[
A2(k − t) + B2c

x
2

ln c2
(ck

2 − ct
2)
]}

(1 − α01)
[
A1 + B1c

y+t
1

]
dt =

Let us denote the exponent in the above written formula by f(x, y, k, t), i.e.

f(x, y, k, t) := − (1 − α01)
[
A1t + B1

ln c1
cy

1(ct
1 − 1)

]
− (1 − α02)

[
A2t + B2

ln c2
cx

2(ct
2 − 1)

]
− (1 + α13)

[
A2(k − t) + B2c

x
2

ln c2
(ck

2 − ct
2)
]
.
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Then we can write

kp01
xy = (1 − α01)A1

∫ k

0
exp {f(x, y, k, t)}dt

+ (1 − α01)B1c
y
1

∫ k

0
ct

1 exp {f(x, y, k, t)}dt. (3.46)

Let us denote

(∗) := (1 − α01)A1

∫ k

0
exp {f(x, y, k, t)}dt and (3.47)

(∗∗) := (1 − α01)B1c
y
1

∫ k

0
ct

1 exp {f(x, y, k, t)}dt. (3.48)

Firstly, we simplify exp {f(x, y, k, t)} and then we compute (∗) and (∗∗). So, for
exp {f(x, y, k, t)}, we can write

exp {f(x, y, k, t)} = exp
{

− A2k + A2t − B2c
x
2

ln c2
ck

2 + B2c
x
2

ln c2
ct

2

}

exp
{

− α13A2k + α13A2t − α13
B2c

x
2

ln c2
ck

2 + α13
B2c

x
2

ln c2
ct

2

}

exp
{

− A1t − B1c
y
1

ln c1
ct

1 + B1c
y
1

ln c1
+ α01A1t + α01

B1c
y
1

ln c1
ct

1 − α01
B1c

y
1

ln c1

}

exp
{

− A2t − B2c
x
2

ln c2
ct

2 + B2c
x
2

ln c2
+ α02A2t + α02

B2c
x
2

ln c2
ct

2 − α02
B2c

x
2

ln c2

}
=

= exp
{

− (1 + α13)A2k + B2c
x
2

ln c2

(
− ck

2(1 + α13) + 1 − α02
)}

exp
{

B1c
y
1

ln c1
(1 − α01)

}

exp
{

t[A1(α01 − 1) + A2(α02 + α13)]
}

exp
{

ct
1

[
B1c

y
1

ln c1
(α01 − 1)

]
+ ct

2

[
B2c

x
2

ln c2
(α02 + α13)

]}
=

= h11 exp
{
t h12 + ct

1h13 + ct
2h14

}
,

whereas

h11 := exp
{

− (1 + α13)A2k + B2c
x
2

ln c2

(
− ck

2(1 + α13) + 1 − α02
)}

exp
{

B1c
y
1

ln c1
(1 − α01)

}
,

h12 := [A1(α01 − 1) + A2(α02 + α13)],

h13 :=
[

B1c
y
1

ln c1
(α01 − 1)

]
and

h14 :=
[

B2c
x
2

ln c2
(α02 + α13)

]
.

44



And we have

(∗) = (1 − α01)A1h11

∫ k

0
exp

{
t h12 + ct

1h13 + ct
2h14

}
dt and (3.49)

(∗∗) = (1 − α01)B1c
y
1h11

∫ k

0
ct

1 exp
{
t h12 + ct

1h13 + ct
2h14

}
dt. (3.50)

The integrals in (3.49) and (3.50) cannot be done in terms of any standard
mathematical functions. For their calculation must numerical integration be used.
So, we have obtained that

kp01
xy = (1 − α01)A1h11

∫ k

0
exp

{
t h12 + ct

1h13 + ct
2h14

}
dt

+ (1 − α01)B1c
y
1h11

∫ k

0
ct

1 exp
{
t h12 + ct

1h13 + ct
2h14

}
dt. (3.51)

The calculation of kp02
xy can be done analogously. We start by the computation

of k−tp
22
y+t, i.e.

k−tp
22
y+t = exp

{
−
∫ k

t
µ23

y+sds

}
= using (2.30)

= exp
{

− (1 + α23)
∫ k

t
µy+sds

}
= using (3.3)

= exp
{

− (1 + α23)
∫ k

t
(A1 + B1c

y+s
1 )ds

}
=

= exp
{

− (1 + α23)
[
A1(k − t) + B1c

y
1

ln c1
(ck

1 − ct
1)
]}

. (3.52)

Now, we rewrite (2.10) using (3.44), (2.31), (3.52) and we obtain

kp02
xy =

∫ k

0
exp

{
− (1 − α01)

[
A1t + B1

ln c1
cy

1(ct
1 − 1)

] }

exp
{

− (1 − α02)
[
A2t + B2

ln c2
cx

2(ct
2 − 1)

]}

exp
{

− (1 + α23)
[
A1(k − t) + B1c

y
1

ln c1
(ck

1 − ct
1)
]}

(1 − α02)
[
A2 + B2c

x+t
2

]
dt =

= (1 − α02)A2h21

∫ k

0
exp

{
t h22 + ct

1h23 + ct
2h24

}
dt

+ (1 − α02)B2c
x
2h21

∫ k

0
ct

2 exp
{
t h22 + ct

1h23 + ct
2h24

}
dt, (3.53)

whereas

h21 := exp
{

− (1 + α23)A1k + B1c
y
1

ln c1

(
− ck

1(1 + α23) + 1 − α01
)}

exp
{

B2c
x
2

ln c2
(1 − α02)

}
,

h22 := [A2(α02 − 1) + A1(α01 + α23)],

h23 :=
[

B1c
y
1

ln c1
(α01 + α23)

]
and

h24 :=
[

B2c
x
2

ln c2
(α02 − 1)

]
.
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The integrals in (3.53) must be again solved numerically.
Since we have already computed estimates of Ai, Bi, ci and α0i for i = 1, 2 in

Section 3.1 and Section 3.2, we can plug those into (3.44) , (3.51), (3.53), and we
obtain the values of kp00

xy, kp01
xy and kp02

xy for k = 0, 1, . . . , n − 1.
Now, we are able to calculate the net single premium of n-year joint-life

annuity due given by (3.42) and the net single premium of n-year last-survivor
annuity due given by (3.43). In order to obtain consistent results, we calculate
n-year joint-life and n-year last-survivor annuities due assuming independence
given by (1.15) and (1.31) using relations

kpy = exp
{

−
∫ k

0
µy+τ dτ

}
(3.54)

and

kpx = exp
{

−
∫ k

0
µx+τ dτ

}
. (3.55)

Using (3.3), we can rewrite (3.54) as

kpy = exp
{

−
∫ k

0
(A1 + B1c

y+τ
1 )dτ

}
=

= exp
{

−
[
A1τ + B1

cy+τ
1

ln c1

]k

0

}
=

= exp
{

−
[
A1k + B1

ln c1
cy

1(ck
1 − 1)

]}
.

Analogously, using (3.4), we rewrite (3.55) and we obtain

kpx = exp
{

−
[
A2k + B2

ln c2
cx

2(ck
2 − 1)

]}
.

3.4 Results and Discussion
In order to examine the effect of a possible dependence of remaining lifetimes

on the amount of the net single premium, we have plotted the net single premiums
of n-year joint-life annuity due and n-year last-survivor annuity due in case of the
dependence and also independence. We assume that the duration of contracts is
10 years and the annual interest rate is 4% for annuities in all the graphs in this
section. For the sake of simplicity, we assume that x = y. The calculation of
annuities was done in Mathematica and the main part of the code can be found
in the Appendix.

Firstly, we look at joint-life annuities (see Figure (3.9)). We can see that
10-year joint-life annuity due assuming independence is lower than 10-year
“dependent” joint-life annuity due for all considered ages and it can be explained
as follows. Since all α̂ij’s are non-negative, we have from Theorem 2 that the
remaining lifetimes of the husband and wife Tx and Ty are positive quadrant
dependent. With positive quadrant dependent remaining lifetimes, the couple
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Figure 3.9: 10-year joint-life annuities due
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Figure 3.10: An illustration of 10-year joint-life annuities due

stays longer in state 0 (thus there is a longer time for annuity payments) and
shorter in states 1 or 2 (no payments). Further, we calculated that the net single
premium ⊥äxy:n is roughly of about 99% of the net single premium äxy:n. The
result is clearly not significant. The “exact” value of the premium äxy:n itself is
important for actuaries, since it can help them for example to decide whether
or not to grant a discount to an assured couple. It is also meaningful when
determining a safety loading. In our case, it tells us that underestimation of
⊥äxy:n is not so significant, therefore actuaries should avoid using excessive safety
margins.

Note that we assume that all the annuities plotted in this section hold for the
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age range (37, 80) as we have determined in Section 3.1. Just for illustration, we
decided to plot joint-life annuities on the age scale (20, 95) (see Figure (3.10)).
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Figure 3.11: 10-year last-survivor annuities due
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Figure 3.12: 10-year last-survivor annuities due with the age scale from 37 to 45

Let us look at last-survivor annuities that are shown in Figure (3.11). From
Figure (3.11), it is not clear whether the 10-year last-survivor annuity due
assuming independence is lower than 10-year “dependent” last-survivor annuity
due for all considered ages, therefore we plotted last-survivor annuities using
different scaling of x axis (see Figure (3.12) and Figure (3.13)). We can clearly
see that the premium äxy:n is bigger than the premium ⊥äxy:n for all considered
ages. Again, since all α̂ij’s are non-negative, we have from Theorem 2 that the
remaining lifetimes of the husband and wife Tx and Ty are positive quadrant
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Figure 3.13: 10-year last-survivor annuities due with the age scale from 45 to 55
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Figure 3.14: An illustration of 10-year last-survivor annuities due

dependent. For last-survivor annuity, the premium is paid when the couple is in
states 0, 1 or 2. Therefore, using positive quadrant dependence the relationship
between äxy:n and ⊥äxy:n cannot be seen straightforward. By comparing Figure
(3.9) and Figure (3.11), we realise that the net single premium ⊥äxy:n must be
roughly of about 99.9% of the net single premium äxy:n. Again the result is not
significant.

To sum up, we calculated and plotted the net single premiums of 10-year joint-
life annuity due and 10-year last-survivor annuity due in case of the dependence
and also independence in order to quantify the effect of a possible dependence of
the remaining lifetimes on the amount of the net single premium. The calculations
were based on the dataset related to the Czech population 2015. We have
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concluded that the differences between net single premiums of 10-year joint-life
annuity due and 10-year last-survivor annuity due are not significant for the Czech
population in 2015. For actuaries, it would mean for example that they should
avoid excessive safety margins.
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Conclusion
In this thesis, our main interest was the dependence between remaining

lifelengths of the husband and wife. We mentioned that there are three types
of possible dependencies between the two considered lives, i.e, the long-term
association between lifetimes, the short-term impact of a spousal death and the
instantenaous dependence due to a catastrophic event.

The long-term association between lifetimes was captured by the joint-life
and last-survivor model. Considering this model, we calculated and plotted 10-
year joint-life annuities due and 10-year last survivor annuities due in case of
dependence and also independence. The calculations were based on the dataset
related to the Czech population in 2015. By comparing the annuities we have
concluded that the effect of the possible dependence of remaining lifetimes on
the amount of the net single premium is not significant for both 10-year joint-life
annuity due and 10-year last-survivor annuity due. Hypothetically, as a result,
actuaries should for example avoid excessive safety margins.

The short-term impact of a spousal death and the instantenaous dependence
due to a catastrophic event were captured by the extensions of the joint-life and
last-survivor model.
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Appendix

Main Part of the Source Code of Joint-Life and
Last-Survivor Annuities
A1 = 0.000252597703303867;
B1 = 0.00000686621527197381;
c1 = 1.11703588412242;
A2 = -0.000307324024515891;
B2 = 0.0000469433916408876;
c2 = 1.09739715992391;
alpha01 = 0.209245955040946;
alpha13 = 0.240952327076487;
alpha02 = 0.158489993441526;
alpha23 = 0.0424904747821149;

i = 0.04;
v = 1/(1 + i);

p00 [x_, y_, k_] :=
Exp[-(1 - alpha01) (A1*k + B1/Log[c1]*c1ˆy (c1ˆk - 1)) - (1 -

alpha02) (A2*k + B2/Log[c2]*c2ˆx (c2ˆk - 1))]

h11[x_, y_, k_] :=
Exp[-(1 + alpha13) A2*k + (B2*c2ˆx)/

Log[c2] (-c2ˆk (1 + alpha13) + 1 - alpha02)]*
Exp[(B1*c1ˆy)/Log[c1] (1 - alpha01)]

h12[x_, y_, k_] := A1*(alpha01 - 1) + A2*(alpha02 + alpha13)
h13[x_, y_, k_] := (B1*c1ˆy)/Log[c1] (alpha01 - 1)
h14[x_, y_, k_] := (B2*c2ˆx)/Log[c2] (alpha02 + alpha13)
p01 [x_, y_,

k_] := (1 - alpha01)*A1*h11[x, y, k]*
N[Integrate[

Exp[t*h12[x, y, k] + c1ˆt*h13[x, y, k] + c2ˆt*h14[x, y, k]], {t,
0, k}] ] + (1 - alpha01)*B1*c1ˆy*h11[x, y, k]*

N[Integrate[
c1ˆt*Exp[

t*h12[x, y, k] + c1ˆt*h13[x, y, k] + c2ˆt*h14[x, y, k]], {t,
0, k}] ]

h21[x_, y_, k_] :=
Exp[-(1 + alpha23) A1*k + (B1*c1ˆy)/

Log[c1] (-c1ˆk (1 + alpha23) + 1 - alpha01)]*
Exp[(B2*c2ˆx)/Log[c2] (1 - alpha02)]

h22[x_, y_, k_] := A2*(alpha02 - 1) + A1*(alpha01 + alpha23)
h23[x_, y_, k_] := (B1*c1ˆy)/Log[c1] (alpha01 + alpha23)
h24[x_, y_, k_] := (B2*c2ˆx)/Log[c2] (alpha02 - 1)
p02 [x_, y_,

k_] := (1 - alpha02)*A2*h21[x, y, k]*
N[Integrate[

Exp[t*h22[x, y, k] + c1ˆt*h23[x, y, k] + c2ˆt*h24[x, y, k]], {t,
0, k}] ] + (1 - alpha02)*B2*c2ˆx*h21[x, y, k]*

N[Integrate[
c2ˆt*Exp[

t*h22[x, y, k] + c1ˆt*h23[x, y, k] + c2ˆt*h24[x, y, k]], {t,
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0, k}] ]

JointLife[x_, y_, n_] := Sum[vˆk*p00[x, y, k], {k , 0, n - 1}]

LastSurvivor[x_, y_, n_] :=
Sum[vˆk*(p00[x, y, k] + p01[x, y, k] + p02[x, y, k]), {k , 0, n - 1}]

py[x_, y_, k_] := Exp[-(A1*k + B1/Log[c1]*c1ˆy (c1ˆk - 1))]
px[x_, y_, k_] := Exp[-(A2*k + B2/Log[c2]*c2ˆx (c2ˆk - 1))]

JointLifeIndep[x_, y_, n_] :=
Sum[vˆk*px[x, y, k]*py[x, y, k], {k , 0, n - 1}]

LastSurvivorIndep[x_, y_, n_] :=
Sum[vˆk*(px[x, y, k] + py[x, y, k] - px[x, y, k]*py[x, y, k]), {k ,

0, n - 1}]
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