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Introduction

Why do we model hearing?

The (mammalian) perceiving of sound is the result of multiple processes occuring

in the ear and in the auditory cortex of the brain. In a normal healthy person, these

processes are set such that the system transforms uniquely an external physical stimulus

to a specific sound perception. This ensures a clear understanding of the incoming

information. However, not all of the persons have the auditory system with this normal

functioning. Currently we register various types of partial or total hearing losses. These

are caused by the damage of an auditory component situated at various levels of the

auditory system. Persons with such damages may hear the sound very weakly or

they may have severe problems in the perception of different sounds. To fix these

incapacities, engineers develop and produce a variety of substitutes for the damaged

auditory components like hearing aids or cochlear implants. These substitutes have as

an objective the simulation of the normal functioning of a particular hearing component.

When implemented to a living organism, they may therefore partially or totally improve

its hearing abilities.

The development of cochlear implants brings us to one of the main reasons why we

are attempting to model the hearing processes. To develop a device that could reliably

substitute a part of the hearing apparatus, engineers need to use suitable mathematical

models. A natural requirement for these models is to reproduce the hearing process

as well as possible. Another requirement is to be compatible with the currently used

technologies. The development of cochlear implants is therefore a common project of

scientists and engineers, namely the scientists who develop the models and the engineers

who turn the models into the material form.

Our model - model of cochlea

We utilize a model of an inner ear component, the cochlea, that is the crucial

part in the transformation of physical external stimuli to nerve stimulations during the

hearing process. This model has been created as a collection of several (originally mostly

independent) parts, from which each one models a particular process in the cochlear

behaviour. These parts have been developed by different researchers and the current

work on this model consists primarily in the improvement of the linkings between them.

In the development of our model we collaborate with the researchers from the MED-

EL company in Innsbruck1 that focuses on the development and creation of cochlear

implants. The current version of our model is supposed to be published and presented

to the MED-EL company in the near future. The model will then be further refined

according to the requirements of MED-EL engineers.

1http://www.medel.com/
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Goal

Our model is a collection of three main parts: the mechanical part, the electrical

part and the auditory nerve part. While my colleague Ondřej Ticháček (see Ticháček

(2014)) works mainly on the linking between the electrical model and the auditory

nerve, my work focuses primarily on the mechanical model and partially on its linking

to the electrical model.

The mechanical model that we use originates in the model developed by Fabio

Mammano and Renato Nobili in the 90th years (see Mammano and Nobili (1993)).

Since then this model has been upgraded several times but the current version still

holds the principles integrated by Mammano and Nobili. The electrical part has been

developped by Pavel Mistŕık, at present a researcher in the MED-EL company, (see

Mistŕık et al. (2009)) in the first decade of the 21th century. Mistŕık et al. (2009)

managed to model the ion flow in the cochlea and he proposed also the dependence

of the ion flow on the cochlear mechanics. This dependence now serves as a good

approximation of the linking between the mechanical and the electrical parts.

The mechanical model is based on two differential equations that govern the motion

of cochlear parts. These equations have been implemented into the computer model

using various numerical approaches, each of them ensuring a particular goal for the

user. Since the usual aim has been to obtain the results quickly, the model contains

a very restricted domain of numerical methods. Now, as we try to make the model

closer to the real hearing process, we extend our requirements. Our main current aim

is to improve the linking between the mechanical and the electrical model so that this

respects better the physiological aspects of hearing. This is related to the demands on

the wider range of particular input model parameters. To make the model robust with

respect to the choice of input parameters we need to consider a much broader domain

of numerical approaches than we have done up to now. This brings us to the idea of

the implementation of new numerical methods.

The goal of our work is thus to implement a suitable numerical approach to the

mechanical model respecting the physiological connection of the mechanical and the

electrical parts.

Plan of the work

The work is divided into two parts. The first part is the theoretical background.

Here we present the basic mechanisms of the hearing processes in mammals and the

principles of our cochlear model. We include here also selected chapters from numer-

ical mathematics. The second part presents our work on the mechanical model. It

summarizes eight experiments with the model that led us to the choice of the suitable

numerical method.
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Part I

Theory
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1. Mammalian ear physiology

Ear is the organ that enables hearing. Ear collects sound waves from the surround-

ing environment and converts them to electrical signals that are subsequently sent to

the brain. Transforming sound waves to the information decodable by the brain is gen-

erally not a trivial task. The way how ear reaches this aim has been largely unknown

until recently. However, thanks to multiple experiments and research studies we can

nowadays understand most of the ear’s functioning. One of the first basic findings is

that ear consists of multiple parts connected in series. Each part passes the signal to

the following part after processing it in a specific way. The partitioning of the ear to

entities with a separate function makes it a complex organ worthy to describe in a

separate chapter.

According to the standard description, a mammalian ear consists of three main

parts: the outer, middle and inner ears. In this chapter we provide the essential char-

acteristics of each of these components and we specify their primary function in the

process of hearing. Before doing this, we give a brief description of the decibel scale

generally used to quantify the intensity of the sound waves. The information about the

decibel scale is adopted from the section 1.2 in Pickles (2012) and the sections about

the ear physiology follow chapters 2 and 3 in Pickles (2012).

The decibel scale

Sound wave is a longitudinal mechanical wave of pressure in a transmission medium.

To express the measure of its intensity, we generally use the decibel scale expressed in

Pickles (2012) as

Number of dB = 10 log10 (
sound intensity

reference intensity
) . (1.1)

Since the intensity of the pressure wave is related to the pressure by the square root,

(1.1) can be rewritten using the sound pressure as follows

Number of dB = 20 log10 (
sound pressure

reference pressure
) . (1.2)

Furthermore, we express the sound pressure in (1.2) as the root mean square (RMS)

value of the pressure wave and we set the reference pressure as the lowest sound pressure

that is detectable by a human ear, i.e. 2 × 10−5N/m2 RMS. Then the sound intensity

levels in (1.2) are expressed in the units called dB SPL (Decibel Sound Pressure Level):

Intensity level in dB SPL = 20 log10 (
RMS sound pressure

2 × 10−5N/m2
) . (1.3)

1.1 Outer ear

Outer ear is composed of two components: pinna and ear canal. Pinna constitutes

the external part of the ear and ear canal is the tube connecting pinna to the tympanic
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membrane (the eardrum) of the middle ear. The outer ear has various roles in the pro-

cess of hearing. Its primary role is to collect the incoming sound waves and to funnel

them to the middle ear. Its more delicate role consists in aiding sound localization in

mammals.

The later function is enabled especially by the corrugated shape of the pinna. This

makes the pinna to be a complex acoustic cavity. Incoming pressure waves may there-

fore exhibit multiple reflections on the rims of the pinna and may then interfere with

the primary (non-reflected) wave while travelling through the ear canal. Depending

on the wavelength and on the position of the ear with respect to the sound source,

the primary and the reflected pressure waves interfere constructively or destructively.

While the constructive interference gives rise to a peak in the sound intensity, the de-

structive interference induces its drop. The dependence of the sound intensity on the

frequency of the incoming sound wave is therefore unique for an orientation of the ear

with respect to the source. This enables a mammal to localize sound wave sources.

Outer ear

Inner earMiddle ear

Cochlea

Malleus

Stapes

Incus

Tympanic
membrane

Semicircular
canals

Pinna Ear canal

Figure 1.1: Ear. Images in the figure are reproduced from the video presentation

[1].

1.2 Middle ear

Middle ear transfers sound waves from the outer ear apparatus to the cochlea. A

sound wave that travels in the ear canal (in the direction from the exterior) reaches

first the tympanic membrane and makes it vibrate. The vibration of the tympanic

membrane is then communicated by three small inter-connected bones of the middle

ear – malleus, incus and stapes – to the oval window of the cochlea. Why do we need

this mediator of transfer between the outer ear and the cochlea?
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Firstly, the difference between the impedance of the air (outer ear medium) and

the impedance of cochlear fluids (the cochlear medium) is so high that without any

mediator, most of the incoming sound hitting the oval window would be reflected back

to the exterior. Thanks to specific connections of the middle ear bones and to the high

ratio of the tympanic membrane area to the oval window area, the middle ear repre-

sents a highly efficient impedance transformer. Therefore, even though the cochlear

impedance measured at the oval window is very high, the impedance of the ensemble

of the middle ear and of the cochlea measured at the tympanic membrane is much

lower. This impedance is therefore much closer to the impedance of the air, hence most

of the energy of the sound vibrations coming from the air to the cochlea is efficiently

transmitted.

Secondly, middle ear permits to transfer the pressure to only one of the two elastic

windows of the cochlea. If there was no such concentrator of the incoming force, the

pressure wave travelling through the cochlear fluid would be strongly attenuated and

the perceived sound would be very weak.

1.3 Inner ear

Inner ear is formed by the part responsible for the balance, consisting primarily

of semicircular canals, and by the part that is responsible for hearing, formed by the

cochlea. Here we focus specifically to the hearing part.

Cochlea is the crucial element of the hearing apparatus: it transforms mechanical

vibrations coming from the middle ear into a sequence of electrical stimulations that

are sent to the brain. Cochlea is embedded in the the lateral part of the skull and it is

formed by a coiled tube of the length of about 35mm. The width of the cochlea in its

natural coiled state is about 1 cm. The cochlear tube is divided into three longitudinal

scalae, each of them containing a particular cochlear fluid and hearing processing parts.

Two of the scalae, scala vestibuli and scala tympani are joined at the cochlear apex1 by

the aperture called helicotrema. The two scalae are filled with perilymph, a cochlear

fluid resembling to extracellular fluids in its ionic composition. At the base of the

cochlear tube, the scala vestibuli is connected to the oval window of the cochlea and

the scala tympani to the round window of the cochlea. These two windows are elastic

membranes embedded in the cochlear surface and they are responsible for the effective

transmission of pressure vibrations from the stapes to the perilymph as well as for the

effective release of the pressure from the perilymph to the surrounding medium. The

third scala, scala media, forms a separate cochlear compartment that is not directly

joined with the two other scalae. It is separated from the scala vestibuli by the Reiss-

ner’s membrane and from the scala tympani by the basilar membrane. The cochlear

1By cochlear apex we mean the edge of the cochlear tube that is distant from the middle ear

apparatus. The edge of the cochlear tube that is situated close to the middle ear is called cochlear base.
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fluid that fills the scala media is the endolymph and its particularity consists in the

fact that its ionic composition is similar to most of intracellular fluids.

organ of Corti

scala media
(with

endolymph)

Reissner’s
membrane

tectorial membrane

nerve fibers

outer hair cells

Hensen

cells

reticular lamina

scala vestibuli
(with perilymph)

stria
vascularis

spiral
ligament

basilar
membranescala tympani

(with perilymph)

spiral limbus

hearing nerve

tectorial
membrane

Deiters

cellspillar

cells
inner

phalangeal

cell

inner hair cell

stereocilia

Figure 1.2: Transversal section of cochlea (left) and zoom to organ of

Corti with tectorial memebrane (right). Figure is reproduced from figures

in [2] and [3].

The part of the cochlea that executes the auditory transduction process2 is the

organ of Corti. The organ of Corti lies on the basilar membrane from the side of the

scala media. It is separated from the endolymph by a thin layer that adheres to its

upper surface, called reticular lamina. The key component structures of the organ of

Corti are the transduction receptor cells, the hair cells. Human cochlea contains one

longitudinal row of inner hair cells and three to five longitudinal rows of outer hair

cells; one row being formed by approximately three thousand of the cells. The key

part of a hair cell is the bundle of small protrusions that emerge from the apical part

of the cell to the scala media. These are called stereocilia. They play an essential

role in capturing of mechanical stimuli transmitted by cochlear fluids. Hair cells are

innervated mostly by afferent nerves, sending the information from the cochlea to the

central nervous system. Most of the afferent nerves (90 − 95%) are connected to inner

hair cells and the rest of them adheres to outer hair cells. Less numerous are efferent

nerves that direct the information from the central nervous system to the cochlea.

The organ of Corti contains multiple cells with a secondary, mostly supporting role.

The hair cells are surrounded by inner and outer phalangeal cells: inner phalangeal

cells surround entirely inner hair cells and outer phalangeal cells (Deiters cells) hold

the basal end of outer hair cells. Another type of supporting cells are Hensen cells

residing close to outer hair cells. The rigidity of the organ of Corti is given by pillar

cells.

2Sensory transduction is the conversion of a physical stimulus to nerve stimuli, particularly to a

sequence of action potentials. The conversion is executed by receptor cells that capture the stimulus and

transform it to the change in the intracellular electrical potential. This change in potential triggers the

release of the neurotransmitter by receptor cells and the neurotransmitter activates action potentials

in the nerve cells.
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Another structure intruding into the scala media and playing a significant role in

the hearing transduction is the tectorial membrane. Tectorial membrane is a fibrous

oblong structure that is by one edge firmly attached to the spiral limbus and by the

other edge attached to the organ of Corti. The principal connection of the tectorial

membrane to the organ of Corti is performed by the longest row of outer hair cells’

stereocilia. An important role in the transduction process plays also the stria vascu-

laris, situated in the lateral part of the cochlear duct and being in direct contact with

the endolymph.
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2. Mechanism of hearing in

cochlea

We distinguish four stages of the hearing process arising in the cochlea: mechanical

processes, electrical processes, the release of neurotransmitter and the communication

of the information to the brain via auditory nerve. In this chapter we will present

particularly the two most specific parts for hearing: the mechanical and the electrical

one.

2.1 Mechanical part

It has been shown that cochlear responses to external stimuli change if we consider

the cochlea of a cadaver versus the cochlea of a living organism. This proves the

presence of an active element in the cochlea and gives us an incentive to study the two

behaviours separately.

2.1.1 Passive cochlea

Pilot experiments and observations

First direct observations of cochlear responses to mechanical stimuli were made

by a Hungarian biophysicist Georg von Békésy. Von Békésy performed a series of

experiments on cochleae of human and animal cadavers in order to see how the basilar

membrane (BM) responds to a mechanical vibration applied to the oval window. His

observations are summarized mainly in Von Békésy and Wever (1960), from which the

most significant points can be resumed as follows:

A mechanical vibration of a fixed frequency applied to the cochlear oval window

gives rise to a travelling wave of the BM displacement (see Figure 2.1). The wave

has several particularities. Firstly, it travels always in the direction from the base to

the apex of the cochlea. Secondly, the wave velocity decreases as it travels to the

apex. Thirdly, the wave envelope has a specific shape: from base to apex it first grows

shallowly, then reaches the maximum at a specific point and then decreases rapidly

in the region close to the apex. Furthermore, the BM behaviour has a particular

dependence on the input vibration frequency. At low input frequencies the maximum

of the travelling wave envelope localizes near the cochlear apex and a broad region of

the BM becomes activated. Raising the input frequency induces that the maximum of

the travelling wave moves towards the cochlear base and that the activated BM region

becomes narrower. In each case each point of the activated region of the BM vibrates

with the frequency of the input stimulus. The described behaviour proves the cochlear

frequency selectivity.
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Figure 2.1: Travelling waves as they were seen by von Békésy. Solid lines

represent the BM displacement at successive instants denoted by numbers. Dashed

line is the envelope of the travelling wave. Input frequency is 200Hz. Figure is a

reproduction of Figure 22 from v. Békésy (1953).

Interpretation of the passive cochlear mechanics

Experiments made by von Békésy have provided a solid base to the interpretation

of the passive cochlear mechanics. Here we present the principal ideas as they are

summarized mainly by Pickles (2012, section 3.2.3.1) and Patuzzi (1996, section 5.1).

A mechanical vibration applied to the cochlear oval window initiates a pressure

wave travelling through the perilymph. The pressure wave, as it propagates first by

the scala vestibuli and then by the scala tympani, generates a pressure difference be-

tween these two scalae. The pressure is finally released by the round window. The

mechanical effect of the pressure wave on the cochlear partition1 is its displacement in

the transversal plane. This displacement is depending on the position in the cochlear

duct.

To quantify the effect of the pressure difference on the motion of the CP we in-

troduce the notion of the CP admittance. It is defined as the velocity of the CP at a

particular position divided by the pressure difference imposed at this point. The larger

is the admittance of a CP point, the more significant is the response of this point to

the pressure difference. The CP admittance is a function of the position in the cochlear

duct and of the frequency of the input vibration.

The cochlea as a unified organ presents also its admittance to the incoming pres-

sure wave. This is formed by admittance of individual parts: the stapes with the oval

window with stapes, the round window and the cochlear interior. Following the reason-

ing of Patuzzi (1996, page 244), when a mechanical vibration of a very low frequency

is imposed to the oval window, the perilymph just flows forth and back through the

helicotrema and displaces the round window. The admittance of the cochlear interior

is here given purely by the admittance of the helicotrema, see Figure 2.2C. At a little

1By cochlear partition (CP) we mean the set of the following cochlear components: the organ of

Corti, the basilar membrane and the tectorial membrane.
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higher input frequencies the CP is initiated into a movement in phase along its whole

length, the base end moving less than the apex end. In this case the admittance of the

helicotrema is decreased because of the inertia of the fluid and it’s the admittance of the

CP that comes into play. The admittance of the cochlear interior is therefore given by

the admittance of the helicotrema with the admittance of the CP branched in parallel,

see Figure 2.2D. The increase of the input frequency causes the enforcement of the CP

motion and the lowering of the perilymph flow through the helicotrema. This can be

interpreted as an increase of the CP’s admittance and lowering of the helicotrema’s

admittance. This trend continues up to the point when the helicotrema’s admittance

becomes very low and the flow of the fluid through it ceases. The cochlear admittance

is in this case purely given by the CP admittance, see Figure 2.2E. Increasing the input

frequency further causes that the CP is no longer displaced in phase along its length.

The behaviour of the CP has the form observed by Von Békésy and Wever (1960): a

travelling wave that has the envelope form dependent on the input frequency. In this

case the motion of the CP is influenced by multiple parameters: mass, damping and

stiffness of the CP and the inertia of the perilymph, see Figure 2.2F. The CP admit-

tance is dependent on the listed quantities in a complicated way and its derivation can

be found for example in Elliott and Shera (2012).

An illustrative view on the CP admittance is provided by Pickles (2012), see Figure

Figure 2.2: Cochlear admittance at various input signal frequencies. (A)

the admittances of the sound source (ysp), ear canal (yec), eardrum (ym) and mid-

dle ear (yj) are replaced by an equivalent source admittance y∗s at (B). (C)-(F)

represent the changes of the admittance of various cochlear components with vary-

ing input signal frequency. yrw represents the admittance of the round window,

yh of the helicotrema, ybm of the cochlear partition and yst of the stapes. Figure

reprinted from Patuzzi (1996, Figure 4.21, page 244).
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2.3. Pickles (2012) represents this quantity by a curve that grows from the base to a

specific position depending on the input frequency, reaches the maximum at this posi-

tion and then descends up to the apex. This form of the dependence results from the

theory about the passive cochlear mechanics that he explains in his book (see section

3.2.3.1 in Pickles (2012)). The theory says that the formation of the travelling wave is

due to the interaction of the CP stiffness with the inertia of the system CP-perilymph.

The latter term embraces the mass of the CP and the inertia of the perilymph. The

inertia of the perilymph is due to its longitudinal flow caused by the progressive gain

of the phase of the CP. Experiments performed for example by Von Békésy and Wever

(1960) and Emadi et al. (2004) show that the stiffness of the CP decreases and that the

inertia of the system increases from base to apex. Hence close to the base, the stiffness

part of the interaction is dominant and governs the displacement of the CP. Close to

the apex it’s the inertia that plays this role. The point where the stiffness dominated

region and the inertia dominated region meet is the resonance point of the CP. This

point is characterized by the cancellation of the effect of the two forces since they are

equal in magnitude and exactly opposite in phase. The CP admittance is maximal at

this point.

Another factor that affects the CP displacement is the damping force. The damp-

ing force originates in the viscous character of the perilymph and in the friction of

neighbouring cochlear cross-sections. The damping causes a decrease of the admit-

tance particularly at the resonant point. The final form of the admittance is shown in

Figure 2.3A.

The Figure 2.3B represents the pressure difference across the CP. The pressure
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Figure 2.3: Interpretation of the passive cochlear mechanics. RP - reso-

nance point, x - position in the cochlear duct. Solid lines correspons to the system

with stiffness, mass and damping; dashed lines correspond to the system with de-

creased damping; dash-dot vertical line designates the position of the resonanace

point. Figure is a reproduction of Figure 3.15 in Pickles (2012).
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difference is high at the cochlear base. Here in the upper scala vestibuli the input

vibration is initiated and the lower scala tympani is only waiting for this stimulus to

arrive. The pressure difference then decreases and sharply drops to the zero value at

the resonant point. The drop is caused by the high CP admittance that enables the

pressure wave to pass through the basilar membrane into the scala tympani before

reaching the helicotrema. In the remaining apical portion the pressure difference is

zero.

From the derived dependences of the admittance and of the pressure difference

along the cochlear duct we can derive the shape of the envelope of the BM displace-

ment. This is plotted in Figure 2.3C. As can be seen in the figure, the amplitude first

increases shallowly, then reaches the maximum at the basal proximity of the resonant

point and then drops rapidly to zero at the resonant point. The phase change of the

BM displacement in the cochlear duct is shown in Figure 2.3D. The phase of the BM

displacement decreases from base to the resonant point and then holds a constant value

up to the apex.

The reason why the maximum position of the BM displacement envelope changes

with the input vibration frequency consists in the frequency-dependent inertia term.

As an illustration, for higher input frequency the inertia forces are relatively larger but

the stiffness remains unchanged. The resonant point therefore switches to a position

closer to the base what modifies the pressure difference, the amplitude and the phase

change curves in the same way. The BM is therefore activated mostly in the basal part.

The BM displacement corresponding to the above presented theory, i.e. possessing

the amplitude plotted in Figure 2.3C and the phase change plotted in Figure 2.3D, cor-

responds well with the notion of the travelling wave that was observed experimentally.

2.1.2 Active cochlea

The von Békésy’s experiments on cochleae of human and animal cadavers initiat-

ed a growing interest of the researchers on the cochlear behaviour. The researchers

started to study the cochlear responses to various stimuli in various conditions and

using various experimental settings. One of the settings in which the cochlea showed

an exceptionally particular behaviour was the in vivo setting. Experiments performed

on living organisms led to the observation of several new phenomena that had not been

observed before.

One of such phenomena was observed by Kemp (1978). Kemp studied the respons-

es of the ear canal of the outer ear to the acoustic stimuli near the lower threshold

of audibility. Particularly, he measured the sound pressure at the ear canal in time

intervals much larger than was the time interval of the input stimulus. He performed

the experiment for both the dead and the living cochleae. The experiment revealed a

secondary response to the input stimulus that appeared in a time delay and only in the

living cochlea. Kemp identified this behaviour as the emission of a signal by the cochlea

15



itself and not as a passive consequence of the input stimulus. The living cochlea was

therefore proved to be an active element.

Another phenomenon was observed by Russell and Nilsen (1997) who performed

a series of experiments on anaesthetized (i.e. living) guinea pigs. Russell and Nilsen

stimulated the cochlea with tones of a single frequency 15Hz but with different in-

tensities from 15dB SPL to 100dB SPL and they measured the amplitude of the BM

displacement as a function of the position along the cochlear duct. The obtained results

are represented in Fig5. The first observation that can be made in this figure is the

change in the width and in the position of the main peak. For the lowest values of the

signal intensity the peak is narrow and situated at the characteristic position (CPo)

for the 15Hz frequency. As the intensity increases the peak becomes broader, its slope

on the basal side becomes shallower and its position shifts to the basal proximity of

the CPo. The spatial selectivity of the frequency is therefore more significant at lower

signal intensities than at the higher ones. The second observation concerns the non-

linear increasing trend of the BM displacement at the CPo position with the increase

of the signal intensity. Figure 2.4 shows that the increase of the signal intensity by

20dB causes a larger increase of the BM displacement for lower signal intensities than

for higher signal intensities. This provides evidence of the nonlinearity of the active

process.

The observed phenomena revealed that the living cochlea must contain an active

Figure 2.4: Amplitude of the BM displacement at various intensities of

the input signal and at 15Hz. Arrow designates the CPo. Figure is the

reprinted figure 3.10B from Pickles (2012); the data are originally adopted from

Russell and Nilsen (1997), Figure 1D.

element and that the active response is nonlinear and saturating for high signal in-

tensities. This assumption was confirmed by theoretical models. In essence, models

that included only passive elements were not able reproduce the observed shape of

the travelling wave envelope: they could not capture the height and the width of the

peak at the characteristic position. Introducing an active element in a limited region

around the peak led to a better reproduction of the observed results. The active re-
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gion is supposed to be activated by the travelling wave that passes through it and to

subsequently feed the mechanical energy back to the travelling wave (see Pickles (2012,

section 3.2.3.2)). This manifests as the amplification of the travelling wave amplitude

at positions of the active region and the related sharp tuning of the travelling wave.

The leading idea presented for example in Pickles (2012) is that the cochlear mechanics

has two components: the passive one (with small amplitude and broadly tuned) and

the active one (with greater amplitude and sharply tuned). At low intensities, the ac-

tive component makes a relatively large contribution and causes the sharp tuning of the

BM behaviour. Increasing the signal intensity the active mechanics loses its importance

and it is the passive mechanics that becomes predominant, causing the broad tuning

of the BM behaviour. Experiments show that the elements responsible for the active

behaviour of the cochlea are the outer hair cells (OHCs) present in the organ of Corti.

The protein prestin incorporated in their membrane enables the OHCs to contract and

to dilate and to modulate in this way the displacement of the BM. More on the OHC’s

activity will be presented in the following section.

2.2 Electrical part

In the previous section we presented the mechanical processes that arise in the

cochlea as a response to an external stimulus. Here we go further and present the

mechanisms that are triggered by these mechanical processes. The triggered mecha-

nisms happen at the level of cochlear hair cells and are related to a current flow, hence

they belong to the electrical part of the response. Before explaining the mechanisms of

the electrical part we present some additional information about the affected cochlear

elements.

2.2.1 Additional information about cochlear components

The information in this section are adopted primarily from the chapters 3 and 5 in

Pickles (2012).

Cochlear fluids

The principal cochlear fluids are the perilymph and the endolymph. As was already

mentioned in the chapter 1, the perilymph fills the scala vestibuli and the scala tympa-

ni, two compartments that communicate directly via helicotrema. The endolymph fills

the central cochlear scala, the scala media. Perilymph and endolymph play a significant

role in the transduction process, notably thanks to their specific ionic composition and

to the level of the electric potential.

Endolymph is characterized by possessing a high concentration of K+ cations

(≈ 150mM) and a low concentration2 of Na+ cations (≈ 1.3mM). This cation concen-

2The terms high and low are taken with regard to the concentration of any usual extracellular fluid
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trations make the endolymph similar to an intracellular fluid (the similarity is mainly

in the K+ concentration). However, endolymph is also characterized by a high electrical

potential that makes it completely unique in the set of human body fluids. While the

usual intracellular potential varies between −45mV and −60mV and a usual extracellu-

lar potential takes values between 0 and 6mV, the potential of the endolymph reaches

from 87mV up to 100mV (the potential varies depending on the position in the cochlear

duct, being higher near the base and lower near the apex, see Pickles (2012, section

3.3.2)) . The origin of this potential has been the object of many studies. Firstly it was

shown that the endolymphatic potential is not the K+ nor Na+ diffusion potential: not

the first one because it would be of the opposite sign, not the second one as it was shown

experimentally by Johnstone and Sellick (1972). Secondly, many studies revealed that

the key role in the maintaining of the endolymphatic potential is played by the stria

vascularis (see Hibino et al. (2010)). A so-called two-cell model has been developed to

explain mechanisms occuring in the stria vascularis when generating this potential (see

Pickles (2012, section 3.3.2.2)). According to this model, the endolymphatic potential

is generated as the K+ diffusion potential across the membrane of the intrastrial cells.

The diffusion potential in the stria is due to the very low concentration of K+ cations

in the intrastrial fluid in comparison with the high K+ concentration in the intrastrial

cells. The low K+ concentration in the intrastrial fluid is maintained by ion-pumping

processes3 (see Pickles (2012, section 3.3.2.2) and Marcus et al. (2002)).

Perilymph is in its ionic composition similar to most extracellular fluids since it has

the concentration of K+ ≈ 5mM and of Na+ ≈ 140mM (see Delprat (2016)). Its electri-

cal potential is ≈ +6mV, +7mV in the scala tympani and +5mV in the scala vestibuli

(see Pickles (2012, section 3.3.3)). The difference in potentials of the endolymph and

the perilymph, i.e. ≈ 80mV, is referred to as the endocochlear potential.

Other cochlear extracellular fluids that the basal part of hair cells are in contact

with have the same ionic composition as the perilymph but have a little lower electric

potential of approximately 0mV.

Hair cells

Hair cells are the receptor cells of the auditory transduction process. They are able

to capture a mechanical stimulus by their apical end, then to process this information

inside and to transform it into a sequence of neurotransmitter quanta that are finally

released by their basal end to the neurons.

The apical end of a hair cell is formed by the cuticular plate and by three to five

rows of small projections called stereocilia that rise from the plate (the ensemble of the

stereocilia of one hair cell will be referred to as a hair cell bundle). Each stereocilium is

formed by longitudinally superposed actin filaments that give it the significant rigidity.

3Ion pumps transfer ions in the diffusion gradient direction, i.e. from the low concentrated site to

the more concentrated site, consuming the cellular energy stocked in ATPs
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The flexibility of motion of a stereocilium is given only to the point where it emerges

from the cuticular plate. A stereocilium can deflect as an entity but not bend at any

point of its length (Pickles (2012, section 5.2.1)).

Stereocilia of a hair cell bundle are cross-linked in numerous ways. First, the stere-

ocilia of different rows and the stereocilia of the same row are connected by side links.

These couple the sides of the stereocilia almost parallel to the cuticular plate (see Fig-

ure 2.5). Second, the tip of the shorter stereocilium is connected to the side of the

taller stereocilium by a tip link. Tip links connect only the stereocilia of different rows.

While the side links have purely mechanical function, the tip links intervene actively in

the transduction mechanism. The mechanical function of the side links consists in the

mechanical coupling of the stereocilia of a bundle. Therefore, if a mechanical action is

applied to one part of the bundle, this is immediately transferred to the whole bundle.

The deflection of the stereocilia of a bundle is therefore always uniform. The transduc-

tion function of the tip links results from the fact that they are attached by their one

end to mechanotransducer channels (MCs) of a hair cell. MCs are small gaps in the

hair cell membrane situated in the apical end of the stereocilia. If opened, they let the

cations pass directly into the hair cell interior(see Pickles (2012, section 5.2.2.1)).

The way in which the tip links are attached to MCs is not known. The model
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cuticular
plate
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Figure 2.5: Hair cell. (A) hair cell at rest, (B) hair cell with applied external

force in the excitatory direction - stereocilia deflect and the MCs open, allowing

the transfer of ions between the cell interior and the endolymph.

that researchers suggest presents the action of the tip link to the channel as a direct

mechanical action: the channel is opened by a tip link pull. When no tension from

the tip link is applied, MCs are found to fluctuate between the opened and closed

state by the influence of the thermal energy. The probability of finding the channel

in one or another state is therefore given by Boltzmann distribution. When a tension

is applied, a redistribution of states occurs and the probabilities change. To describe

the behaviour of MCs in response to a mechanical action the researchers propose the
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so-called gating-spring theory. The theory assumes that channels are pulled open by

an elastic link, the gating spring, and it determines the probabilities of the opened and

closed state under the effect of this spring. Both the side and the tip cross-linking of

the stereocilia have a decisive effect on the passage of cations through MCs. If some

stereocilia of the hair cell bundle are deflected in the direction towards the tallest stere-

ocilia (the excitatory direction), all stereocilia of the bundle deflect in the same way, the

tip links are stretched and the probability of finding the MCs opened rises. In reverse,

the deflection of the stereocilia in the direction towards the smallest stereocilia (the

inhibitory direction) slackens the tip links and the probability of finding the channels

opened falls (see (Pickles, 2012, section 5.3.2)).

The apical end of hair cells is entirely surrounded by the endolymph. The hair

cell interior fluid and the endolymph have approximately the same concentration of K+

while the hair cell interior fluid has a higher concentration of Na+ than the endolymph.

The essential difference between these two fluids is related to their electrical potential.

While the endolymph has the potential +80mV, the hair cell fluid has −45mV in the

case of inner hair cells and −75mV in outer hair cells. There exists therefore a poten-

tial difference of 125mV or even 155mV between these two media. The basal end of

hair cells baths in the extracellular fluid that is similar to the perilymph in its ionic

composition and has the electrical potential ≈ 0mV.

The basal end of hair cells is in direct contact with afferent and efferent nerve fibres.

The majority of the afferent auditory nerve fibres make the contact with inner hair cells

(IHCs). IHCs are therefore the ones that play the main role in the transduction pro-

cess. The outer hair cells (OHCs) serve mainly to amplify the movement of the basilar

membrane.

2.2.2 Cochlear activity induced by the BM displacement

Mechanotransduction

Amechanical vibration applied to the oval window of the cochlea induces a travelling

wave of the BM displacement along the cochlear duct. The travelling wave initiates a

movement of the endolymph in the scala media and of the attached tectorial membrane.

The relative movement of the basilar membrane with respect to the tectorial membrane

causes the deflection of hair cell bundles of OHCs. The viscous drag of the endolymph

on the stereocilia causes deflection of the hair cell bundles of IHCs. When stereocilia

are deflected in the excitatory direction, the probability of the opening of MCs rises.

When an MC is opened, the potential difference across the apical membrane of the hair

cell induces a flux of K+ cations directing from the endolymph to the intracellular fluid

of the hair cell. The entry of K+ cations into the hair cell causes the change of the

intracellular potential to a less negative value, i.e. it causes the hair cell depolarization.

The depolarization of the hair cell in turn activates opening of voltage-gated Ca2+
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and K+ channels situated at the basal end of the hair cell. The opening of Ca2+

channels induces Ca2+ entry that stimulates the release of neurotransmitter by the

basal part of the hair cell as well as the opening of Ca2+-dependent K+ channels.

Since the equilibrium potential4 for K+ is more negative than the hair cell’s resting

potential, the difference in the concentration of K+ across the basal membrane of the

hair cell drives the efflux of the K+ cations from the intracellular medium through the

K+ channels towards the intercellular medium. The efflux of K+ causes the hair cell

hyperpolarization, i.e. the change of the hair cell potential to more negative values.

The K+ is then recirculated by various types of supporting cells and other components

back to the endolymph.

The transduction process is therefore associated to the K+ recirculation through

IHCs and OHCs. A hair cell acts in this process as a two-part component, each of them

characterized by its own equilibrium potential for K+. For more information about the

mechanotransduction processes see Pickles (2012), Purves D (2001) and Mistŕık et al.

(2009).

Mechanical amplification of the travelling wave

Multiple experiments showed that the cochlear components that are responsible for

the active modulation of travelling waves are the OHCs. As an example, Liberman

and Dodds (1984) proved that when OHCs are destructed, the cochlear response to

a mechanical stimulus is not sharply tuned. The question about how OHCs actively

influence the cochlear behaviour is up to now not definitively answered. We consider

two active OHCs motions to be the candidates for causing this behaviour. The first

type of the OHC’s active motion is the change in their length that occurs as a response

to potential changes inside the cell. Experiments performed by Brownell et al. (1985)

on isolated OHCs showed that when an OHC is depolarized, it reduces its length while

when it is hyperpolarized, it increases it. Both length changes happen by relatively

large amounts: they can be seen by light microscope (Brownell et al. (1985)) and may

take up to 4−5% of the cell length (Ashmore (1987)). As it was shown later, the length

changes are primarily associated with the presence of motor proteins in the OHC plas-

ma membrane (see for example the review article Nobili et al. (1998)). These have

the ability of modifying their conformation when the membrane potential is changed.

The deformation provoked by the motor proteins is transmitted along the longitudinal

axis of the cell through the medium of the cytoskeleton5. The described mechanism is

currently considered as the primary factor responsible for the active cochlear process-

es. The way how the OHC’s length changes modulate the displacement of the BM is

4The equilibrium potential for an ion is the membrane potential where the net flow through any

open channel is 0 (definition taken from Fitzakerley (2014))
5Cytoskeleton is a highly elastic structure bordering the inner face of the plasma membrane (Nobili

et al. (1998))
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however not exactly determined. A small review on the considered possibilities can be

found in Pickles (2012, section 5.4.5.1).

The second type of the OHC’s active movement is related to that of the OHC’s hair

bundle. It was shown that stereocilia may exhibit spontaneous active movements and

that these movements may potentially generate a force magnifying the BM displace-

ments. The real effect of the hair cell bundle motility on the cochlear active processes

remains however uncertain. A discussion on this topic can be found in Pickles (2012,

section 5.4.5.2) or Fettiplace (2006).
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3. Mathematical model of the

hearing process in the cochlea

3.1 Mechanical part

The mechanical part of our mathematical model simulates the BM response to

input stimuli. We employ the model that is by the great majority based on the model

created by F. Mammano and R. Nobili. Their ideas of the mathematical description

of hearing mechanics are summarized in Mammano and Nobili (1993) and Nobili and

Mammano (1996). Here we present the most essential elements of these ideas. For

detailed information see the cited publications.

The essential part of the cochlea that needs to be mathematically described is the

organ of Corti. The organ of Corti is a set of ≈ 3000 adjacent transversal segments of

a unicellular width, each of them containing three OHCs and generally one IHC. The

segments are lying on the basilar membrane and are in contact with the underlying

tectorial membrane.

3.1.1 Passive cochlea

Principles

In our model we consider the combination of an organ of Corti transversal segment

with the underlying basilar membrane segment as an element (referred to as a BM

element) possessing a given mass and stiffness and oscillating in the transversal plane.

The transversal motion of a BM element is driven by the force of the stapes that is

transmitted by cochlear fluids from the oval window to that element. The motion is

damped by viscous forces of the surrounding fluid and by the shearing motion between

adjacent elements. The motion is also affected by the BM-BM coupling force. Mam-

mano and Nobili (1993) characterize this force as the one that is exerted by one BM

element to another BM element by the effect of their interaction with the surrounding

fluid. The model neglects elastic longitudinal couplings of BM elements.

Mathematical model

In order to make the problem mathematically solvable i.e. to be able to establish

explicit mathematical equations of the BM motion, we consider the BM with the un-

derlying components as a unidimensional continuum in the longitudinal direction. We

introduce the continuous position coordinate x from the interval [0,1] that represents

the position along the unrolled cochlear duct. The x = 0 point lies at the basal end of

the cochlea where the external force of the stapes is applied. The x = 1 point is situated
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at the apical end of the cochlea close to the cochlear helicotrema. We denote by u(x,t)

the BM displacement in the transversal direction at the position x and at the time t.

Then we can establish the motion equation for u(x,t) as follows:

m(x)
∂2u(x,t)

∂t2
+ h(x)

∂u(x,t)

∂t
− [

∂

∂x
s(x)

∂

∂x
]
∂u(x,t)

∂t
+

+ k(x)u(x,t) = FS(x,t) + FBM(x,t). (3.1)

Following Mammano and Nobili (1993), the term-by-term analysis of the equation (3.1)

is expressed in the following overview.

cochlear

base

cochlear

apex

0 1

external force

of stapes BM displacement

u(x,t)

x

Figure 3.1: Mechanical model setting, as designed by Mammano and

Nobili (1993). x is the position in the unrolled cochlea.
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m(x)
∂2u(x,t)

∂t2
mechanical inertial term;

m(x) is the mass per unit length of the or-

gan of Corti

h(x)
∂u(x,t)

∂t fluid viscosity term;

h(x) is the endolymph viscosity multiplied

by the factor related to the geometry of the

TM-reticular lamina (RL) cleft

[ ∂
∂xs(x)

∂
∂x
]
∂u(x,t)

∂t shearing resistance term;

the term represents the resistance due to

the shearing motion between adjacent seg-

ments of the organ of Corti;

s(x) is the average shearing viscosity coeffi-

cient of the organ of Corti multiplied by the

effective area of the section at the position

x

k(x)u(x,t) fiber stiffness term;

k(x) is the elastic constant of the cochlear

partition, it receives contribution from the

BM fibers and the limbus-TM-stereocilia-

RL system

FS(x,t) = −GS(x)
∂2σ(t)
∂t2

stapes force term;

σ(t) is the stapes displacement at time t;

GS(x) is the Green’s function represent-

ing the stapes-BM hydrodynamic coupling,

GS(x) gives the force per unit length

caused by the unit stapes acceleration and

acting on the BM element at x

FBM(x,t) = − ∫
1
0 G(x,y)

∂2u(y,t)
∂t2

dy BM force term;

G(x,y)dy is the Green’s function of the

BM-BM hydrodynamic coupling, G(x,y)dy

gives the force contribution per unit BM

length at site x caused by the unit acceler-

ation of the dy-long BM segment at y

3.1.2 Active cochlea

Experiments have shown that models of the passive cochlea are not adapted to

reproduce the behaviour of the BM displacement in living organisms. The reason is

that they do not contain a sufficient number of degrees of freedom to reproduce the

sharp peak in the BM displacement envelope produced at small (0 − 40dB SPL) input

signal intensities. In particular, they cannot fit the width and the height of the peak
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at the same time. This finding led researchers to conclude that cochlea must provide

a particular force contribution that had not been included into the existing model. As

we have already stated in the section 2.2.2, subsequent experiments showed that the

missing element in the interpretation of the cochlear mechanics is the force generated

by OHCs via their capacity of electromotility (ie the active movements invoked by an

electrical impulse). The problem that naturally arose concerned the way how this active

element should be included into the models.

In our model we operate with the mathematical model of the active cochlear force

proposed by F. Mammano and R. Nobili. Here we present only a brief overview of

how they proceeded in the derivation of the active term and how they included it into

the existing passive model. The full derivation and further comments are provided by

Mammano and Nobili (1993) and Nobili and Mammano (1996).

Principles

The electromotility of OHCs has a significant effect on the BM displacement in the

cochlear response to external stimuli. The interpretation of this mechanism by Mam-

mano and Nobili (can be found in Mammano and Nobili (1993, section IV.A. and the

related Figure 5)) is as follows: When an external stimulus induces the BM to move

upwards, i.e. towards the scala media, the hair cell bundle of OHCs deflects in the

excitatory direction. To understand why this happens we need to know two things.

Firstly, there exists a shearing motion of the RL with respect to TM when the organ

of Corti is rotated due to the BM displacement. Secondly, the tallest row of OHC

stereocilia is firmly attached to the undersurface of the TM and the rest of the hair

cell bundle is linked to the tallest row by side links (see chapter 2.2.1). The deflection

of the stereocilia gives rise to a current flow to the OHC that depolarizes the cell and

the cell contracts in its length. The contraction causes the organ of Corti to be pulled

back downwards, i.e. towards the scala tympani. The RL is therefore pulled toward

the BM, see Figure 3.2. An opposite situation, i.e. when the BM is first displaced

downwards by an external force, results in the upwards final movement of the RL. The

OHC active force is therefore always such that it acts in the opposite direction to the

impulse displacement.

The observed properties of an OHC leads to the suggestion that the OHC works as

a spring possessing a stiffness in the longitudinal direction of the cell. Mammano and

Nobili (1993) based the derivation of the active force (also referred to as undamping

term) on this idea, stating that ”undamping term (...) is a pseudoelastic force term,

i.e. a term proportional to the elastic reaction (...) of the BM, to be added to the lhs

of Eq. (3.1)) with a positive sign”. Nobili and Mammano (1996) provide an extension

to this suggestion stating that ”In Part I (...) we assumed that the OHC force is sim-

ply proportional to the local BM stiffness. This is legitimate only provided that the

internal viscosity of the OHCs and Deiter’s cells (DC) is negligible.” Since the research
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Figure 3.2: Scheme of the active dynamics of the basilar membrane. The

scheme represents the transversal section of the cochlea from Figure 1.2 (left); the

base line represents the BM, the triangle represents the tunnel of Corti formed

by pillar cells and the upper line represents the reticular lamina. (A) no external

force is applied; (B) external force on BM is applied and forces the BM to move

upwards; (C) - contraction of OHCs pushes the organ of Corti to move downward.

Figure inspired by Figure 2B in Nobili et al. (1998).

provided by Mammano and Ashmore (1993) shows that the damping elicited by OHCs

and DCs plays an important role in the RL-BM coupling, Mammano and Nobili cor-

rected their initial model by incorporating this term. Further experiments show that

the RL-BM coupling is dominated by the damping of the DCs, hence it is characterized

as a viscous interaction. The RL-BM coupling is in the model of Nobili and Mammano

(1996) finally simulated as two spring-dashpot systems branched in series, see Figure

3.3.

Another structure that intervenes in the undamping mechanism is the tectorial

membrane. Mammano and Nobili (1993) consider two viscoelastic connections of a

segment of the TM: one to the spiral limbus, the other one to a triplet of OHC stere-

ocilia. Measurements performed by Zwislocki et al. (1988) show that the stiffness of the

TM attachement to stereocilia is approximately seven-times greater than the stiffness

of its attachement to the limbus. The attachement to the limbus is therefore considered

as mainly a viscous one and the TM-stereocilia system is viewed as a set of resonant

mechanical systems. Each mechanical system is formed by one transversal segment of

the system TM-stereocilia with the unicellular width. This implies that the system

contains three OHC hair bundles and the corresponding portion of the TM. The mass

of the resonant system is formed by the TM segment mass, the elasticity is provided by

the three bundles of OHC stereocilia and the damping is furnished by the fluid in the

TM-RL cleft. The harmonic motion of this system is performed in parallel with the

reticular lamina and triggers the opening/closing of the mechanotransducer channels.

Mathematical model

The goal of this section is to present the derivation of the undamping force term

U[x,t;u] that Nobili and Mammano (1996) add to the motion equation for the BM

displacement (3.1). U[x,t;u] is a functional of u(x,t) and it is linked to the condition

U[x,t; 0] = 0. Its addition to the equation (3.1) is supposed to ensure the nonlinear

undamping behaviour of the solution. The full derivation with additional comments
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reticular lamina
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Figure 3.3: Model of the active dynamics of the organ of Corti designed

by Nobili and Mammano (1996). Dashed lines represent the elements that

Nobili and Mammano (1996) consider in their model as very small in comparison

with other elements. Figure is inspired by figure 2C from Nobili et al. (1998).

can be found in Nobili and Mammano (1996).

Nobili and Mammano start with introducing the Fourier transform of U[x,t; u]

with respect to time, denoted by Uω[x;u]. They propose the relation between Uω[x;u]

and the Fourier transform of the OHC intracellular (receptor) potential Vω[x;u] as a

linear one of the form

Uω[x;u] =
dFω(x)

dV
Vω[x;u], (3.2)

where dFω(x)/dV is the rate of change of the OHC force with the variation of the recep-

tor potential. The term dFω(x)/dV combines the stiffness and the damping coefficient

of OHCs and DCs and the OHC cell length. Vω[x;u] is further expressed in terms of

the Fourier transform of the transducer current Iω[x,t;u] via the linear relation

Vω[x;u] =
1

bω(x)
Iω[x;u], (3.3)

where bω(x) represents the resistance-capacitance (RC) filtering of the cell membrane.

Combining (3.2), (3.3) and the assumption that the viscoelastic RL-BM coupling can-

cels the RC filtering of the OHC membrane, if we return to the time domain we get

the relation between the OHC force and the transducer current in the linear form

U[x,t;u] = c(x)I[x,t;u], (3.4)

where c(x) = dFω(x)/dV × 1/b(x).

As we have already explained in the section 2.2.1, the intensity of the transduc-

er current depends on the probability of the opening of mechanotransducer channels

(MCs). This probability is dependent on the stereocilia deflection and the deflection

is caused by the shearing motion between TM and RL. The shearing motion is finally

due to the BM displacement. Let’s now describe this process mathematically.
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Nobili and Mammano (1996) propose the relation

I[x,t;u] = IS(x)S[x,t;u], (3.5)

where IS(x) is the saturation value of the transducer current at the position x and

S[x,t;u] represents the transducer current through MCs corresponding to the BM dis-

placement u(x,t) and scaled as: sup(S) − inf(S) = 1. To build the dependence of S on

the BM displacement u, Nobili and Mammano (1996) introduce an auxiliary functional

representing the hair bundle deflection denoted by y[x,t;u]. The dependence of S on

y is expressed using a three-level Boltzmann’s partition function:

S(w) =
1

1 + c1exp(−w/w1) + c2exp(−w/w2)
− b, (3.6)

where

w ∶= w[x,t;u] = a(x)y[x,t;u] (3.7)

and c1, w1, c2, w2, b and a(x) are suitable coefficients. This expression incorporates

the thermodynamical as well as the mechanical origin of the channels opening.

The dependence of the hair cell bundle deflection y on the BM displacement u is

a result of the cochlear micromechanics. The driving force for the hair cell bundle

deflection (that we consider to be performed in the radial direction1) is the radial

component of the RL displacement. The radial component of the RL displacement

is assumed to be the BM displacement u(x,t) multiplied by the sinus of the angle θ

formed by the RL and BM surfaces (this varies from ≈ 30° at the apex to ≈ 0° at the

base). Hence for the time Fourier transform of y[x,t;u], yω[x;u], it holds

yω[x;u] = Zω(x)uω(x)sin(θ(x)), (3.8)

where Zω(x) accounts for the viscoelastic properties of the TM attachements to the

limbus and to the stereocilia. With the assumption that the TM-limbus attachment is

primarily viscous, Zω(x) takes the form

Zω(x) =
iω

γTM − i [ω2
TM(x) − ω

2] /ω
, (3.9)

where ωTM is the TM resonant frequency and γTM is the TM damping coefficient per

TM mass.

Let’s now suppose that ωTM(x) ≈ ωCF (x) for all x, where ωCF (x) is the character-

istic frequency (CF) of the position x. Then for ω from a small interval around the CF,

the imaginary part of the denominator of the expression (3.9) is close to zero. Hence

we can neglect it provided that γTM(x) is large enough. Under these conditions the

magnitude of Zω(x) is a linear function of ω that causes that also the magnitude of

yω[x;u] is a linear function of ω.

1By radial direction in the cochlea we mean the direction orthogonal to the coiling cochlear axis

and parallel to the BM fibers.
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Let’s now consider small BM displacements. This induces small deflections of the

hair bundle y and the relation (3.5) can be reduced to a linear one with the slope equal

to 1:

I[x,t;u] ≈ IS(x)a(x)y[x,t;u]. (3.10)

Hence for small BM displacement and for ω ≈ ωTM ≈ ωCF , the combination of (3.8),

(3.9), (3.10) and (3.4) gives

Uω(x) = iωβ(x)uω(x) (3.11)

with

β(x) =
c(x)IS(x)a(x)sinθ(x)

γTM
. (3.12)

We obtained therefore Uω(x) such that as the magnitude of Uω(x) is a linear function

of ω. This is exactly the result we wanted to obtain since it is adequate to oppose

the damping term iωh(x)uω(x) present in the Fourier transformation of the motion

equation (3.1) for the passive cochlea. By setting β(x) so that

β(x) ≈ −h(x) (3.13)

and by adding the active force U to the left-hand side of the equation (3.1), the damping

term is entirely compensated by U and the solution exhibits a sharply tuned peak near

the CF site. At higher input amplitudes the transducer current becomes saturated

hence the undamping force term U looses its importance with respect to the damping

term. In this case the damping causes that the solution exhibits the broadly tuned

peak characteristic for the passive cochlea.

The inverse Fourier transform of (3.8) with the recalculated Zω(x) using coefficients

following from (3.13) gives the motion equation for the hair bundle displacement in the

radial direction, denoted by y(x,t), as follows

∂2y(x,t)

∂t2
+ γTM

∂y(x,t)

∂t
+ ω2

TMy(x,t) = −sin(θ(x))
∂2u(x,t)

∂t2
. (3.14)

Finally, the motion equation for the BM displacement of the active cochlea is

m(x)
∂2u(x,t)

∂t2
+ h(x)

∂u(x,t)

∂t
− [

∂

∂x
s(x)

∂

∂x
]
∂u(x,t)

∂t
+

+ k(x)u(x,t) +U(x,t) = FS(x,t) + FBM(x,t). (3.15)

It is worthy to notice in this derivation that the assumption ω ≈ ωTM ≈ ωCF has an

particular physical meaning. The assumption indeed says that there is a limited region

around the CF site where the undamping force is active. In the region more distant

from the CF site the assumption is not valid and the undamping force has the form

that may not directly compensate the damping force.
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3.2 Electrical part

The electrical part of our model simulates the K+ circulation in the cochlea. The

K+ circulation reacts in a particular way to the displacements of the basilar membrane,

it is therefore directly connected to the mechanical model. On the other side, the K+

circulation triggers the hair cell neurotransmitter release hence it must be connected

to the model of the hearing nerve.

The model that we are operating with originates in the work of P. Mistŕık, C.

Mullaley, F. Mammano and J. Ashmore, see Mistŕık et al. (2009). It has been further

developed and refined by P. Mistŕık and J. Ashmore (see Mistŕık and Ashmore (2010))

and O. Ticháček (see Ticháček (2014)). In the following overview we present only the

basic ideas of the model; for detailed information see the cited publications.

Cochlea as a system of electrical circuits

Let us first specify the details concerning K+ circulation in the cochlea, as it is

seen by Mistŕık et al. (2009). Mistŕık et al. (2009) consider a cochlear cross-section

in the transversal direction with the unicellular width (as defined in the mechanical

part) and they account for two parallel K+ passages in this cross-section: the first one

passing through IHC and the second one passing through OHCs. The K+ flow through

OHCs has been experimentally well explored: K+ passes from the scala media through

mechanotransducer channels into the OHC, then it is released into the intercellular

space of the organ of Corti through K+ channels in the basal membrane of the OHC,

then it passes to the perilymph, then it is actively pumped into the spiral ligament,

then to the stria vascularis and finally back to the scala media. We have less informa-

tion about the passage of the K+ flow through the IHC, however we suppose that it is

happening independently from the OHC passage and that it passes through the spiral

limbus. Both of the passages are represented in Figure 3.4a. The K+ flow is driven

predominantly by the endocochlear potential. This is maintained at a high value due

to the active processes in the stria vascularis (see section 2.2). Furthermore, the model

assumes the K+ flow also in the longitudinal direction. This is realized specifically in

the stria vascularis, organ of Corti and spiral limbus.

Mistŕık et al. (2009) dissects the cochlear duct into a set of 300 transversal segments

(referred to as cross-sections), each of them possessing the width of multiple cells. Each

cross-section is then translated to an electrical circuit where the cochlear structures are

represented by passive or active circuit elements. Passive elements are the resistances

and capacitances and active elements are the batteries imposing a certain potential

difference. The current in the electrical circuit is naturally carried by K+ cations. The

scheme of the circuit is represented in Figure 3.4c.

The electrical circuit is primarily formed by two subcircuits, one of them in-
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volving IHCs and the other involving OHCs. IHCs and OHCs are represented by

two-component circuit elements, see Figure 3.4b. One component substitutes the api-

cal part of the hair cell membrane and it is composed of the capacitance and variable

resistance branched in parallel. This element is branched in series with the other one

that represents the basal part of the hair cell membrane. This second component is

composed of two branches connected in parallel: one is formed by the capacitance and

the other is formed by the resistance in series with the battery that imposes the voltage

of −100mV. This voltage represents the Nernstian driving force for K+ ions, i.e. the

force that drives the K+ ions from the hair cell interior through the cell membrane to

the exterior due to the fact that the membrane equilibrium potential for K+ is more

negative than the cell resting potential. The branches including IHC and OHCs contain

also resistances ascribed to other cochlear structures, mainly to the organ of Corti for

the OHCs branch and to the spiral limbus for the IHC branch. Other elements of the

circuit are the battery, the resistance and the capacitance that represent the generated

endocochlear potential and the properties of the stria vascularis. The individual elec-

trical circuits are interconnected by branches with resistances of the organ of Corti, of

the spiral limbus and of the stria vascularis, see Figure 3.4d.

(a)
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(b) (c)

(d)

Figure 3.4: Recirculation of K+ in cochlea designed by Mistŕık et al.

(2009). (A) K+ recirculation in the cochlea; (StV) - stria vascularis, (RM) -

Reissner’s membrane, (SV) - scala vestibuli, (SM) - scala media, (D) - Deiters’

cells, (H) - Hensen’s cells, (O) - outer hair cell, (IHC) - inner hair cell; (B) schema

of the electrical circuit of a hair cell, (C) electrical circuit corresponding to one

cochlear transversal section; the most left branch corresponds to an IHC, the

second left branch corresponds to an OHC, the most right two branches represent

the stria vascularis; IN refers to intracellular, EX refers to extracellular; RSL

denotes the resistance of the spiaral limbus, ROC refers to the resistance of organ

of Corti; (D) illustrates the longitudinal electrical coupling of cochlear transversal

sections. Figure reprinted from Mistŕık et al. (2009).

Variable resistances of hair cells

The resistances RAI and RAO are variable in such a way that their magnitude can

be expressed as a function of the BM displacement, yielding therefore the connection

between the mechanical and the electrical models. RAI and RAO are indeed linked to

the probability of opening/closing of mechanotransducer channels (MCs) and this is in

turn related to the magnitude of the BM displacement.

Let’s first see how the deflection of the stereocilia affects the probability of opening

33



of an MC. There have been multiple ideas how to describe this effect. A significant

progress in the description has been brought by experiments of Corey and Hudspeth

(1979). Corey and Hudspeth (1979) revealed that the opening/closing response of

MCs to an external stimulus is very fast and furthermore it is temperature dependent.

The fact that the latency of MCs is very small favors the simple, mechanics-based

mechanisms. This idea is supported by the argument that if the contrary was true, i.e.

if the mechanism involved some biochemical reactions, these would have to progress at

unphysiologically high rates. The successful theories are therefore based on the idea

that MCs are opened/closed by a mechanical action. The experimentally detected

temperature dependence implies that this mechanical action must be triggered at least

partially by thermal energy.

The probability of the MC opening is in our model given by the gating spring theory,

presented for example in Markin and Hudspeth (1995). We use in particular a two-state

gating-spring model which means that we account for two complementary states of an

MC: opened or closed. The theory assumes that the opening/closing of the MC is in

correspondence with the position of the gate that is attached to it. The gate is in turn

attached to an elastic spring with the stiffness κ. Let us first consider the case of a

single MC placed out of the cochlea. When the MC is opened, the spring is stretched a

little, i.e. it bears a certain tension. In the situation when the channel passes from the

opened state to the closed state (by the effect of the thermal energy), the gating spring

stretches more and gains an additional amount of the tension. When it in turn passes

to the original open state, the additional tension is released and the spring returns to

the original state. This situation gives rise to a certain probability of the opened or

closed state that is determined by the Boltzmann’s distribution law. The situation is

considerably changed when we introduce an external force applied to the spring. This

force is considered to act by stretching or compressing the spring in the original state,

i.e. by respectively increasing or decreasing the initial tension when the MC is opened.

The effect of the additional force is the redefinition of the open/closed state probabilities

(see Pickles (2012, section 5.3.2.6, Figure 5.11)). An analogical situation occurs when

the MC is put into the cochlear environment. Here, the external force is represented

by the mechanical action of stereociliar tip links on MCs, induced by the deflection of

stereocilia. Particularly, when the hair bundle is in the resting position, the situation

corresponds to the first described case when the external force is not applied. The

gating spring bears some tension, hence the MC has a finite probability of being open.

When the hair bundle is deflected in the excitatory direction, the spring stretches more

and it pushes the opening probability of the MC to higher values. Deflecting the hair

bundle in the inhibitory direction brings the compression of the spring and consequently

the lowering of the MC opening probability. Following the reasoning of Markin and

Hudspeth (1995) the dependence of the MC opening probability (po) on the hair bundle
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displacement X is given by the dependence

po =
1

1 + exp (−
Z(X−X0)

kT )
, (3.16)

where Z is the gating sensitivity, X is the hair bundle’s displacement from its resting

position, X0 is the midpoint of the opening transition, i.e. the point where the proba-

bility of the MC opening is 1/2, k is the Boltzmann constant and T is the temperature.

Mistŕık et al. (2009) use the result (3.16) to develop the dependence of the MC

conductivity gMC on the BM displacement u in the form

gMC(u) = gMC,max
1

1 + exp (−u−u0

d
)

(3.17)

where gMC,max is the limit value of gMC as u→∞, u0 is the BM displacement at which

MCs are half-activated and d is the width of the transition range; all the three variables

are different for IHCs and OHCs. Mistŕık et al. (2009) use the relation (3.17) it their

model.

3.3 Connection of the electrical model to the hearing

nerve

The previous section provided an overview of the model that simulates the K+

recirculation in the cochlea. The output of this model is formed by voltages at different

cochlear sites and by currents passing through the voltage sources. The next step in

the modelling of the hearing process is the simulation of the connection between the

electrical model and the model of the auditory nerve. Processes that are related to

this connection occur at the level of IHCs since these are the receptor cells responsible

for the transduction process. The input to this part of the model is the intracellular

voltage of an IHC, denoted by V (t). The output is expected to be the amount of

the neurotransmitter that is released by the IHC into the synaptic cleft, i.e. into the

space between the IHC and the nerve axon. The mathematical model that we employ

of originates in the model presented by Sumner et al. (2002). The Sumner’s model

is extended by new results mainly by Eguia et al. (2010) and Zampini et al. (2014).

The final model has multiple parts that are subsequently presented in the following

overview, sticking to the notation of Sumner et al. (2002).

A. Depolarization of an IHC causes that the calcium channels open and that

the Ca2+ flow into the IHC increases

Sumner et al. (2002) suggest the following relation for the calcium current ICa

through the IHC membrane

ICa(t) = G
max
Ca m3

ICa
(t)(V (t) −ECa), (3.18)

35



where Gmax
Ca is the calcium conductance in the vicinity of the synapse when all the

calcium channels are open, mICa
(t) is the fraction of the calcium channels that are open

and ECa is equilibrium potential for Ca2+. Recent researches performed by Goutman

and Glowatzki (2007) show that the dependence of ICa on mICa
is linear, hence they

suggest the expression of ICa(t) in the form

ICa(t) = G
max
Ca mICa

(t)(V (t) −ECa). (3.19)

We opted finally for the relation (3.19) to be included into our model.

Further, mICa
(t) admits a steady state value mICa,∞ that is in Sumner et al. (2002)

expressed as

mICa,∞(V ) = [1 + β
−1
Caexp(γCaV )]

−1, (3.20)

where γCa and βCa are constants chosen such that they fit the experimental data. An

updated form of the relation (3.20) comes from Zampini et al. (2014) who state

mICa,∞(V ) = [1 + exp(
V1/2 − V

S
)]

−1

. (3.21)

where V1/2 and S are suitable constants. We use the expression (3.21) in our model.

Moreover, mICa
(t) can be expressed as a low-pass-filtered function of mICa,∞ hence

it satisfies the equation

τICa

dmICa
(t)

dt
+mICa

(t) =mICa,∞, (3.22)

where τICa
is a time constant.

B. The stimulated calcium ion flow into the IHC causes an increase in the

calcium concentration in the vicinity of the synapse

The relation for the calcium concentration [Ca2+] is

τ[Ca]
d[Ca2+](t)

dt
+ [Ca2+](t) = ICa(t), (3.23)

with τ[Ca] being a time constant and expressing that [Ca2+] is a low-pass-filtered

function of ICa(t).

C. The calcium concentration in the vicinity of the synapse affects the prob-

ability of the neurotransmitter release

The probability of the neurotransmitter release k(t) by the IHC is in Sumner et al.

(2002) given by the relation

k([Ca2+]) =max(([Ca2+]3 − [Ca2+]3thr)z,0), (3.24)

where [Ca2+]thr is the constant representing the threshold [Ca2+] value and z is a scalar

that converts the cube of the calcium concentration into the release rate. Another

relation is proposed by Eguia et al. (2010) stating that

k([Ca2+]) =
[Ca2+]kmax

A + [Ca2+]
, (3.25)
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where kmax is the maximum release rate and A is a parameter. In our model we operate

with the relation (3.24).

D. The released neurotransmitter into the synaptic cleft is lost or recycled

The basic idea of the neurotransmitter (NT) processing that we have adopted in

our model has been proposed by Meddis (1986), see Figure 3.5. Meddis (1986) suggests

that there is a free transmitter pool in the basal part of an IHC and that the NT leaks

from the cell into the synaptic cleft with the release rate k(t). Denoting the quantity of

the free NT in the pool by q(t), the amount of the released NT into the cleft in dt can

be expressed as k(t)q(t)dt. Meddis (1986) suggests further that the cell is equipped

with a NT factory that replenishes the pool with the NT at the rate y(1− q(t)). Here,

1 was set to be the maximal amount of NT present in the pool i.e. the maximal value

that q(t) can take. The amount of the NT present in the synaptic cleft is denoted

by c(t). From the cleft, lc(t)dt of the NT is definitively lost and rc(t)dt of the NT is

retaken back to the cell. The retaken NT is stored in the reprocessing store from which

it is released into the transmitter pool. The quantity of the NT in the reprocessing

store is denoted by w(t) and the release rate into the pool is x. Finally, the equations

governing the time changes of the NT quantity in the transmitter pool q(t), in the

synaptic cleft c(t) and in the reprocessing store w(t) are formulated as follows

dq

dt
= y(1 − q(t)) + xw(t) − k(t)q(t), (3.26a)

dc

dt
= k(t)q(t) − lc(t) − rc(t), (3.26b)

dw

dt
= rc(t) − xw(t), (3.26c)

where individual terms with the appropriate sign determine the inflow/outflow of the

NT to/from the appropriate site.

The model that we have adopted to implement into our work is presented by

Sumner et al. (2002) accounts for two modifications in the above presented ideas. The

first one is that the NT is present in the transmitter pool in the form of quanta called

NT vesicles. The transmitter pool will be newly called the immediate store, in order

to not to be confused with a pool of freely dispersed NT. The release of the NT from

the immediate store into the cleft is therefore realised by finite quanta. In the cleft,

the vesicles are opened and the NT is dispersed. Some NT is returned back into

the IHC and is repackaged into vesicles in the reprocessing store. NT is sent to the

immediate store already in the form of vesicles. The immediate store has the capacity

of maximum M NT vesicles and is refilled by the vesicles coming from the factory. The

second modification is the stochastic aspect imported to the model. This new approach

assumes that the NT enters and leaves the immediate store stochastically. Sumner et al.

(2002) hence introduce the function representing the stochastic transport, N(n,ρ), in
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Figure 3.5: Schema of the model of the neurotransmitter (NT) processing

by Meddis (1986).

which each of the n quanta has an equal probability of release, ρdt, in a single simulation

interval. Applying the stochastic approach and assuming the quantal character of NT

in the immediate store, the governing equations take the form

dq

dt
= N((M − q(t)), y) +N(w(t), x) −N(q(t), k(t)), (3.27a)

dc

dt
= N(q(t), k(t)) − lc(t) − rc(t), (3.27b)

dw

dt
= rc(t) −N(w(t), x). (3.27c)

3.4 Model of the hearing nerve

The previous section provided a model of the neurotransmitter release by an IHC

into the synaptic space. The neurotransmitter in the synaptic space plays the primary

role in the triggering of sudden depolarizing and hyperpolarizing actions of auditory

nerve cells, forming action potentials. These are communicated to the central nervous

system which retransforms them to the initial input information. In this section we

will provide the mathematical model of the responses of the hearing nerve to external

stimuli. Our model is in its major part formed by the deterministic Hodgkin-Huxley

model introduced by A. L. Hodgkin and A. F. Huxley in 1950s (see Hodgkin and Huxley

(1952b)) and is extended by various stochastic approaches.

3.4.1 The Hodgkin-Huxley model

Hodgkin and Huxley (1952b) introduced the model of the cell membrane as repre-

sented in Figure 3.6. Following Figure 3.6, the current I through the cell membrane can

be processed in different ways. Either it may charge the capacitor CM that is ascribed
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to the cell membrane (the capacity current is denoted by IC) or it may be carried by

movement of ions through the resistors that are branched in parallel with the capaci-

tors. Hodgkin and Huxley assume three types of ionic current: the currents INa and

IK carried respectively by sodium and potassium ions and a small ’leakage current’ Il

carried by chloride and other ions. In the scheme of the Figure 3.6 each of the currents

passes by a separate branch equipped with a resistance and a battery. The resistances

are related to specific ion channels embedded in the cell membrane. While the sodium

and potassium resistances RNa and RK vary according to the opened/closed channel

state, the resistance of the leakage current RL is assumed to be constant. The battery

potentials ENa, EK and El in the circuit represent the equilibrium potential specific

for sodium, potassium and chloride and other ions. We denote by U the membrane

potential. Furthermore, for practical uses, Hodgkin and Huxley (1952b) introduce the

potentials V , VNa, VK and Vl as:

V = U −Er, (3.28a)

VNa = ENa −Er, (3.28b)

VK = EK −Er, (3.28c)

Vl = El −Er, (3.28d)

where Er is the absolute value of the cell resting potential. Variables V , VNa, VK and

Vl designate therefore the displacement from the resting potential.

extracellular space

intracellular space

CM U
RNa

ENa EK

RK

IKINaIC Il

Rl

El

I

Figure 3.6: Electrical circuit representing cellular membrane as seen by

Hodgkin and Huxley (1952b). The most left branch represents the charg-

ing/discharging of the membrane capacitance, other branches represent the pas-

sage of various ions through the membrane. Character l designates chloride and

other ions. Ex represent equilibrium potentials of the membrane for the ion x.

The resistances RNa and RK are variable. Figure is the reproduction of Figure 1

from Hodgkin and Huxley (1952b).

Following the scheme of the membrane electric circuit in Figure 3.6 we can write
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the equation relating the above introduced currents as

I = IC + INa + IK + Il. (3.29)

Expressing the capacitive current as IC = CMdV /dt, introducing the ion channel con-

ductance as gi = 1/Ri with i meaning the three current types, and reorganizing the

terms we can rewrite the equation (3.29) as

CM
dV

dt
= −gNa(V − VNa) − gK(V − VK) − gl(V − Vl) + I, (3.30)

where the overbar of the gl designates that this variable is considered as being constant.

Experiments performed by Hodgkin and Huxley (1952a) showed that the sodium

and potassium conductances are functions of the intracellular voltage V and of time.

The Figure 3.7 presents the data from the experiment where they observed the change

Figure 3.7: Potassium conductance responding to a 25mV depolarization

and a subsequent repolarization to the resting potential as measured by

Hodgkin and Huxley (1952a). Circles are the experimental data; solid curves

are the result of the fitting by a relation of the type (A−Bexp(−Ct))4 with A, B

and C constants. Figure reprinted from Hodgkin and Huxley (1952b, figure 2).

of the potassium conductance in time when depolarizing the cell by 25mV and then

subsequent repolarizing back to the cell resting potential. As is reasoned in Hodgkin

and Huxley (1952b), to fit the data of the depolarization experiment for higher times,

one needs a first-order equation since the data have the growing trend as (1−exp(−t)).

However to fit the data at the beginning of the record, one needs a third- or fourth-order

equation because the curve grows first very shallowly and then meets an inflection point.

For the data of the repolarization the situation is simpler in that the conductance falls

exponentially. Hodgkin and Huxley propose a solution that simplifies the problem of

the data fitting: they suppose that gK is proportional to the fourth power of a variable

denoted by n which obeys a first-order equation. The conductance then growths as

(1−exp(−t))4 in the depolarization case and falls as exp(−4t) in the repolarization case.

The reasoning for the dependence of the sodium conductance on time is made similarly

however it applies to a different type of the data curve. In fact, in the depolarization

experiment the sodium conductance first growths very similarly to the case of the

potassium conductance but then it reaches a maximum and decreases to the initial

value. To capture this type of the dependence, Hodgkin and Huxley introduce two
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variables m and h obeying the first-order equation and they multiply the third power

of m by the first power of h. While the rise of the sodium conductance in the beginning

is well captured by the third power of m, the fall of the conductance for longer times

is well described by h. Hodgkin and Huxley (1952b) propose finally the following set

of equations

gK = gKn4, (3.31a)

gNa = gNam
3h, (3.31b)

where n, m and h take values between 0 and 1 and obey the equations

dn

dt
= αn(1 − n) − βnn, (3.32a)

dm

dt
= αm(1 −m) − βmm, (3.32b)

dh

dt
= αh(1 − h) − βhh, (3.32c)

where αi and βi are functions of V . The variables n and m have in the presented form

the meaning of respectively the potassium and the sodium current activation while the

variable h represents the sodium current inactivation. Each of the equations (3.32a),

(3.32b) and (3.32c) can be further reformulated in the form

dx

dt
=
x∞ − x

τx
(3.33)

with x representing the variables m, n or h and with

x∞ =
αx

αx + βx
(3.34)

and

τx =
1

αx + βx
, (3.35)

where x∞ and τx are again functions of V . In this formulation ant at the fixed value of

V , the x∞ represents the value that x tends to in time with the time constant τx. The

voltage dependences of αi and βi or alternatively of x∞ and τx have been found by fitting

experimental data and can be found in Hodgkin and Huxley (1952b). Summarizing,

Hodgkin and Huxley (1952b) proposed the system of equations (3.30), (3.31), (3.32),

and the dependences of αi and βi on V . This system involves the parameter I and

can be solved for V . Depending on the input current I, the system either exhibits

or does not exhibit an action potential, see Figure 3.8. Action potential represents a

sudden depolarization, a subsequent repolarization up to values lower than the resting

potential and a final slow rise up to the resting potential. The final phase when the

potential is below the resting potential is called the refractory period. During this

period, other action potentials cannot be activated. There exists a threshold value of

the input current for the action potential to be initiated. If I has a lower value, the

potential first rises a little and it is very quickly returned back to the resting value,
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without exhibiting the behaviour of an action potential. The situation is illustrated in

Figure.

Several simplifications of the system of equations of Hodgkin and Huxley have

resting
potential
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Figure 3.8: Action potential. A - depolarization, B - repolarization, C - refrac-

tory period, D - voltage variations stimulated by subthreshold stimuli.

been introduced to enable us to see how action potentials can represent solutions of

the system. One of the simplified models is the FitzHugh-Nagumo model that works

with two variables (v and w) instead of the four (V , n, m and h) and the solutions can

therefore be easily seen in the phase portrait. For more information, see for example

Georgescu et al. (2012).

3.4.2 The stochastic approach and implementation

To model the excitation of action potentials, Hodgkin and Huxley (1952b) used

the assumption that ion channels embedded in the cell membrane behave following

deterministic principles. Later, it was shown that this assumption is not justified. It

was suggested that the model has to be furnished by a stochastic feature in order to

describe the phenomena like random excitation of action potentials at subthreshold

injected currents (see Strassberg and DeFelice (1993)). It was shown that ion chan-

nels are probabilistic devices and that they fluctuate randomly between two discrete

states, the opened and the closed one. To introduce the stochastic approach into the

deterministic model, various methods have been developed. The common feature of

these methods is that the stochastic nature of ion channels is described by Markov

processes. The methods differ in the particular introduction of these processes into

the model. While Strassberg and DeFelice (1993), Rubinstein (1995) and Chow and

White (1996) use exact methods, Fox (1997) opt for an approximation by stochastic

differential equations. The four above cited models are compared in Mino et al. (2002).
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In our model, we use the implementation of the stochastic approach into the com-

puter model made by Bruce (2007). Bruce (2007) implemented both the model of Chow

and White and the model of Fox. We currently make use predominantly of the more

accurate but slower model of Chow and White.
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4. Selected parts from numerical

mathematics

This section presents selected chapters from numerical mathematics that we use in

this work. First, we present several methods to solve numerically ordinary differen-

tial equations and then we describe numerical methods to solve the system of linear

equations.

4.1 Numerical methods for solving Ordinary Differential

Equations (ODEs)

This section follows primarily the chapter 5 from Doleǰśı (2015) and reproduces

some ideas from the chapter 3 of Doleǰśı (2016).

4.1.1 Numerical methods: general approach

We are looking for the function y ∶ [a,b]→ Rm, m ∈ N that satisfies

y′ = f(x,y) (4.1a)

with the initial condition

y(a) = η, (4.1b)

and with f = (f1,...,fm) ∶ [a,b] ×Rm → Rm and η ∈ Rm given; f is supposed to be such

that there exists a unique global solution y ∶ [a,b]→ Rm.

We aim to solve the problem (4.1) numerically. We first define a partition of the

interval [a,b]. For simplicity we choose the equidistant partition i.e. we divide the

interval [a,b] to N intervals of the length hx = (b − a)/N by the nodes {xi}
N
i=0 defined

as xi = a + ihx, i = 0,...,N . We try to find the approximate values of the solution at

nodes {xi}
N
i=0, denoted by yi, yi ∈ Rm, i = 0,...,N . The approximate values {yi}

N
i=0 are

generally given by an l-step numerical method:

yk+1 = Fk(xk+1,xk,xk−1,...,xk−l+1; yk+1,yk,yk−1,...,yk−l+1), k = l − 1,..,N − 1, (4.2)

where Fk are m appropriately chosen functions to fit the problem (4.1). If Fk do

not depend explicitly on yk+1, the numerical method defined by (4.2) is referred to as

explicit, otherwise it is characterized as implicit.

We consider two types of error that are related to the adopted numerical method.

� global error Gk evaluated in xk is defined as the difference between the approx-

imate value yk obtained by the numerical method (4.2) and the exact solution y

of the problem (4.1) evaluated in xk. Particularly,

Gk = yk − y(xk). (4.3)
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� local error Lk evaluated in xk is defined as the difference between the approx-

imate value yk obtained by the numerical method (4.2) and the exact solution

uk−1 of (4.1a), satisfying the condition uk−1(xk−1) = yk−1 instead of the initial

condition (4.1b), evaluated in xk, namely

Lk = yk − uk−1(xk). (4.4)

Let us mention several properties of numerical methods of the type (4.2):

� we say that the numerical method (4.2) has the order p if

Lk = O(h
p+1
x ). (4.5)

The order of numerical method gives us an information about the rate of conver-

gence of the solution to the exact solution when the step hx diminishes. Partic-

ularly, the approximate solution of a method of order p converges to the exact

solution as hpx when hx → 0.

� we say that the numerical method (4.2) is stable if the global error Gk propagates

with attenuation in the following steps, i.e. its contribution to the global error at

nodes xi, i = k+1,...,N diminishes. If a numerical method is unstable, the opposite

happens, ie the global error propagates with an enforcing tendency. One of the

direct effects of the stability is that rounding errors occuring in finite precision

arithmetic computations are attenuated and do not disrupt the solution. Op-

positely, an unstable method induces the amplification of rounding errors which

destroys the numerical solution. Generally, there exist many notions of stability

in the numerical mathematics. The one that fits the best to our definition is the

A-stability.

4.1.2 Explicit methods

In the case of explicit methods, Fk in the expression (4.2) is not a function of yk+1.

The approximate solution at the node xk+1 can therefore by directly calculated using the

approximate solutions at nodes xk−l+1,...,xk. Explicit methods are therefore generally

very practical to use due to their speed. An inconvenient property of most explicit

methods is the conditional stability. The conditional stability means that the method

is stable for certain small values of the step hx and unstable for the complementary

values. Here we present a class of explicit one-step conditionally stable methods.

Explicit Runge-Kutta methods

An s-stage explicit Runge-Kutta method is given by the formula

yk+1 = yk + hx
s

∑
i=1

biqi, (4.6)
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where

q1 = f(xk,yk), (4.7a)

q2 = f(xk + c2hx,yk + hx(a21q1)), (4.7b)

q3 = f(xk + c3hx,yk + hx(a31q1 + a32q2)), (4.7c)

⋮ (4.7d)

qs = f(xk + cshx,yk + hx(as1q1 + as2q2 +⋯ + as,s−1qs−1)). (4.7e)

The coefficients ci, aij and bi are grouped in the so-called Butcher’s tableau:

0

c2 a21

⋮ ⋮ ⋱

cs as1 . . . as,s−1

b1 . . . bs−1 bs

The relation between the number of stages s of a Runge-Kutta method having the order

p and the order p is expressed as follows: in general, it holds s ≥ p and if p ≥ 5, then

s > p.

In our work, we will use particularly two explicit Runge-Kutta methods:

explicit Euler method

s = 1, p = 1 and it is conditionally stable

yk+1 = yk + hxf(xk,yk), (4.8)

6-stage Runge-Kutta method

s = 6, p = 5, it is conditionally stable and is characterized by the Butcher’s tableau

4.1.

0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 −56/15 32/9

8/9 19372/6561 −25360/2187 64448/6561 −212/729

1 9017/3168 −355/33 46732/5247 49/176 −5103/18656

35/384 0 500/1113 125/192 −2187/6784 11/84

Table 4.1: Butcher’s tableau for 6-stage Runge-Kutta method

4.1.3 Implicit methods

Implicit methods are characterized by explicit dependence of Fk from the expression

(4.2) on yk+1. This property brings difficulties to the computation of yk+1 since it cannot

be computed directly as it was in the case of explicit methods. The expression (4.2)
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leads in the case of implicit methods to a system of linear equations (if Fk is linear

with respect to yk+1) or nonlinear equations (if Fk is nonlinear with respect to yk+1)

with the unknown yk+1. To solve the system, we use appropriate techniques known

from numerical linear algebra. The computation of yk+1 is therefore generally slower

than in the case of explicit method. On the other hand, their important advantage is

the unconditional stability. This means that we can choose an arbitrarily large step hx

to reach the stability of the method. Here we present several one-, two- or three- step

implicit methods that are unconditionally stable.

implicit Euler method

- method of the 1st order

yk+1 = yk + hxf(xk+1,yk+1), (4.9)

Crank-Nicolson method

- method of the 2nd order, it combines the implicit and explicit Euler methods

yk+1 = yk +
hx
2
[f(xk,yk) + f(xk+1,yk+1)] , (4.10)

Backward Difference Formula of the 2nd order

3

2
yk+1 − 2yk +

1

2
yk−1 = hxf(xk+1,yk+1), (4.11)

Backward Difference Formula of the 3rd order

11

6
yk+1 − 3yk +

3

2
yk−1 −

1

3
yk−2 = hxf(xk+1,yk+1). (4.12)

4.1.4 Approaches to solve nonlinear ODEs with implicit numerical

methods

As we stated in the section 4.1.3, an implicit method applied to the original problem

(4.1) leads to a system of linear or nonlinear equations that we need to solve at each step.

The ways how to solve a system of linear equations are multiple and will be presented

in the part 4.2. For the moment we assume that we can handle the linear problem

satisfactorily and we focus on solving systems of nonlinear equations. In particular, we

consider the following nonlinear form of the problem (4.1a):

y′ = Jy + g(x) + h(y), (4.13)

where J is a constant matrix m ×m, g is an arbitrary function of x: g = (g1,...,gm) ∶

[a,b]→ Rm and h is a nonlinear function of y: h = (h1,...,hm) ∶ Rm → Rm.
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Application of any of the four implicit methods considered in the section 4.1.3 to

the problem (4.13) leads to

Ayk+1 − ch(yk+1) = bk, (4.14)

where A is a matrix m ×m, bk is a vector of the length m and c is a scalar constant

that involves the step hx. We present two approaches of how to attack the nonlinear

term ch(yk+1) in (4.14).

Explicitly treated h

One way how to deal with the nonlinear problem (4.14) is to treat the nonlinearity

explicitly. This means that we evaluate the function h at a specific point and we include

it to the right hand side. The newly formed linear problem is then easily solvable. This

method belongs to the group of the so-called Implicit-Explicit Methods (IMEX), see

Ascher et al. (1997) for more information and other examples.

We proceed by iterations at each step and we evaluate the nonlinear function h

at the point that forms a suitable combination of solutions from previous iterations.

In this way we transform the nonlinear problem (4.14) at each step k to an iterating

sequence of linear problems in the form

Ayik+1 = d
i
k (4.15)

where yik+1 is the solution in the iteration i of the step k and dik is the right hand side

that may take various forms; we consider two of them:

dik = bk + ch(y
i−1
k+1), i = 1,2,... (4.16)

and

dik = bk + ch(2y
i−1
k+1 − y

i−2
k+1), i = 2,3,... . (4.17)

The initial value y0k+1 for the calculation of d0k in (4.16) and additionally the value

y1k+1 for the calculation of d1k in (4.17) are chosen arbitrarily. The solution yk+1 of the

nonlinear problem (4.14) at the step k is given by the value to which the approximate

solutions yik+1 converge:

yk+1 = lim
i→∞

yik+1. (4.18)

In practical use, we solve the sequence of problems (4.15) at each step k until the

moment given by a stopping criterion.

Newton method - linearization

The obstacle in the form of the nonlinearity in (4.14) can be surmounted by lin-

earization of the nonlinear function h.

At each step k, we proceed by iterations and at each iteration i we look for the ap-

proximate solution yik+1. At each iteration we approximate the nonlinear term h(yik+1)
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by its linear expansion developed in yi−1k+1 and evaluated in yik+1:

h(yik+1) ≈ h(y
i−1
k+1) +

Dh

Dy
(yi−1k+1) (y

i
k+1 − y

i−1
k+1) , i = 1,2,... (4.19)

Hence at each iteration we have the linear problem

Bi
ky

i
k+1 = d

i
k (4.20)

that we solve for yik+1, with

Bi
k =A − c

Dh

Dy
(yi−1k+1) (4.21)

and

dik = bk + ch(y
i−1
k+1) − c

Dh

Dy
(yi−1k+1)y

i−1
k+1. (4.22)

The principal disadvantage of this method in practical applications is that we are

obliged to recalculate the matrix Bi
k at each iteration. In some cases this procedure

may be rather time-consuming or difficult. Often in these situations, a more effective

method turns out to be the so-called fixed Newton method. The fixed Newton method

is also based on the linearization but uses the constant slope of the linear function in

all iterations, namely

h(yik+1) ≈ h(y
i−1
k+1) +

Dh

Dy
(y0k+1) (y

i
k+1 − y

i−1
k+1) , i = 1,2,.... (4.23)

The nonlinear problem therefore reduces to the solution of

Bky
i
k+1 = d

i
k (4.24)

for yik+1 with

Bk =A − c
Dh

Dy
(y0k+1) (4.25)

and

dik = bk + ch(y
i−1
k+1) − c

Dh

Dy
(y0k+1)y

i−1
k+1. (4.26)

The sought solution yk+1 of the problem (4.14) is then given by

yk+1 = lim
i→∞

yik+1. (4.27)

Similarly to the previous case, in practical uses we define a stopping criterion for

the iteration process to get the solution.

The advantage of the fixed Newton method is that we do not have to calculate the

matrix Bk at each iteration but only once in a step. The inconvenient is that since

it does not take into account the shape of the nonlinearity at each iteration, it may

converge more slowly than the classical alternative.
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4.2 Numerical methods for solving systems of linear equa-

tions

Let’s consider the system of N linear equations for N unknowns written in the form

Ax = b, (4.28)

where A is a regular matrix N × N and b is a vector of the length N . To solve the

system (4.28) numerically, we can use various direct or iterative numerical methods.

Direct methods are advantageous in finding the solution in only one step, however this

step may be rather time or capacity demanding. Iterative methods find the solution

in multiple steps, however these each of them may be very fast since it involves only

multiplication of a vector by matrix. If, in particular, the matrix is sparse, this option

may be rather time and space saving. It therefore depends on the particular problem

whether we opt for a direct or an iterative method. Here we present particularly one

of each. The information about both methods are taken from the book Tebbens et al.

(2012); the direct method follows Chapter 4 and the iterative method follows Chapter

9.

4.2.1 Direct method: method using LU decomposition of the matrix

A

If we decompose the matrix A in such a way that

A = LU, (4.29)

where L is the lower triangular matrix and U is the upper triangular matrix, then the

problem (4.28) can be rewritten in the form

Ux = y, (4.30a)

Ly = b (4.30b)

and can be easily solved by the forward substitution of (4.30b) getting y and by the sub-

sequent backward substitution of (4.30a) getting x. The two substitutions are generally

performed very quickly and especially Matlab performs it very fast by the operator

of a backward slash. The only expensive operation is the computation of the matrix

decomposition.

The decomposition of a regular square matrix A in the form (4.29) with an ad-

ditional property that the diagonal of L is unit is called the LU decomposition of the

matrix A. The algorithm to calculate the LU decomposition of a matrix is given by the

Gauss elimination process. In fact, the Gauss elimination transforms a given matrix

A to the upper triangular matrix U by successive multiplications by lower triangular

matrices from the left. Each of the lower triangular matrices have a unit diagonal

and one non-zero subdiagonal column that is formed by a certain combination of the
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elements of A. These matrices have such form that their multiplication results in a

lower triangular matrix that is exactly the matrix L from the decomposition (4.29).

The elements of L and U can therefore be calculated from elements of the matrix A in

a way that is given by the Gauss elimination process.

According to the presented scheme, the LU decomposition seems to be a practical

tool for solving linear systems of the form (4.28). Further analyses show however that

this method may not be stable in some cases that means that it may lead to unjustifi-

ably large values destroying the computation. To improve the stability of the method,

an additional operation, the pivoting, is included into the computation. The pivoting in

the Gaussian elimination means that before each elimination of subdiagonal elements

in a column, we rearrange the rows of the matrix (partial pivoting) or the rows and

the columns of the matrix (full pivoting) in order to get the maximal element in the

diagonal position. This ensures that the ratio of an arbitrary element of the column

subdiagonal to the diagonal element is less than 1. Since these ratios form the ele-

ments of the matrix L, each element of the matrix L is then less then 1. In Chapter

4, Tebbens et al. (2012) use this result to introduce the growth factor that determines

the backward stability of the method. The LU decomposition method with pivoting is

therefore conditionally stable.

Let’s now focus on the partial pivoting and let’s see what differences brigs the

partial pivoting element to the expression (4.29). The partial pivoting introduces a

permutation matrix P into (4.29) such that

PA = LU (4.31)

hence the LU decomposition of the matrix A with pivoting is in fact the LU decompo-

sition of the matrix PA without pivoting. The system (4.30) is therefore rewritten in

the form

Ux = y, (4.32a)

Ly = Pb (4.32b)

Matlab implementation

To perform the LU decomposition of a matrix, Matlab uses the lu built-in func-

tion, see [4]. Here we present several input and output parameters that lu accepts in

its algorithm.

[L,U,P] = lu(A)

L, U, P, A L, U and P designate respectively the lower triangular, the

upper triangular and the permutation matrices as the re-

sult of LU factorization of the matrix A with pivoting; the

relation between the matrices is LU=PA
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4.2.2 Iterative method: Generalized Minimal Residual Method (GM-

RES)

GMRES is an iterative method for solving (4.28) that at the k-th iteration searches

an approximation of the solution named xk while the initial approximation x0 is given.

The xk is searched in the space x0+Kk(A,r0) where Kk(A,r0) is k-th Krylov subspace

defined as

Kk(A,r0) = span{r0,Ar0,A
2r0,...,A

k−1r0} (4.33)

with r0 = b −Ax0 being the residual of the initial approximation x0. The approximate

solution xk ∈ x0 +Kk(A,r0) is determined at each iteration by the condition of obtain-

ing minimal norm of the residual rk, rk = b −Axk. As was derived in Chapter 9 of

Tebbens et al. (2012), this requirement is equivalent to the condition that the residual

is orthogonal to the space AKk(A,r0). Formally the method can be summarized as

xk ∈ x0 +Kk(A,r0), rk ⊥AKk(A,r0). (4.34)

As well as other methods based on Krylov subspaces, GMRES finds the solution

in a finite number of iterations (thought in the precise arithmetic), particularly in N

iterations if A ∈ CN×N . However in practical uses, we generally do not need the exact

solution of the problem (4.28) and we look only for the approximation of this solution.

We get the approximation of the solution by stopping the GMRES algorithm in a

specified moment and by taking the lastly calculated xk. The stopping criterion is

generally given by the condition that the relative residual ∥b −Axk∥ / ∥b∥ is lower than

an initially given tolerance value. The fact that we need to stop the iteration process to

obtain the desired solution implies a natural requirement on the high convergence rate

of approximate solutions xk. At high rate of convergence of the method we only need

a small number of iterations to satisfy the stopping criterion, thus making the whole

GMRES computation fast. In our work we will use the preconditioning technique to

improve the convergence properties of GMRES. Some GMRES general convergence

results can be found in Saad (2003, section 6.11.4).

Preconditioning of GMRES

In our computations we will make use of a generally used and efficient method to

improve the convergence rate called preconditioning. The preconditioning of the system

(4.28) consists in its modification to the form

(PL
−1APR

−1) (PRx) = PL
−1b, (4.35)

where PL and PR are suitably chosen matrices. The algorithm of GMRES is applied

to the newly defined system (4.35) and the solution is recalculated back using the

matrix PR. The crucial task for users is to choose the matrices PL and PR so that
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the convergence properties of (4.35) be better than that of (4.28). Following Tebbens

et al. (2012), the generally used rule to reach this goal is to choose the matrices so that

PL
−1APR

−1
≈ I. (4.36)

If PL = I and PR ≠ I we say that it is the preconditioning from the right, if PR = I and

PL ≠ I, it is the preconditioning from the left and if PL ≠ I and PL ≠ I, we talk about

the split preconditioning. Following (4.36), we require PR ≈ A in the preconditioning

from the right, PL ≈A in the preconditioning from the left or

PLPR ≈A (4.37)

in the split preconditioning. Some results from the comparison of these three precon-

ditioning types for GMRES are summarized in Saad (2003).

One of the most used ways to determine the matrices PL and PR satisfying (4.37)

in the split preconditioning is the incomplete LU factorization of the matrix A. The

incomplete LU factorization of A consists in the decomposition of A in the form

A = LU −R where L and U are the lower and upper triangular matrices respectively.

The specificity of this decomposition is that L and U have zeros at initially predefined

positions and R is the residual matrix of this decomposition. The basic type of incom-

plete lu factorization denoted by ILU(0) involves the same nonzero pattern of L and

U as the nonzero patterns of the lower and upper parts of A. A general algorithm to

obtain this decomposition is the Gaussian elimination with dropping elements at the

zero positions of A. This algorithm is rather inexpensive and fast to perform but may

lead only to a crude approximation that may not improve the GMRES convergence

properties. To fix this problem several alternatives of ILU(0) have been developed.

These are designed so that they allow more fill-in of L and U according to a specified

criterion. One way is to specify the level of fill-in that leads to ILU(p) methods de-

scribed in detail in Saad (2003, section 10.3.3). Another way involves the dropping of L

and U elements depending on the relation of these elements with a specified tolerance

value, leading for example to the ILUTP algorithm (Saad (2003, section 10.4.4)) or to

the Crout ILU algorithm (Saad (2003, section 10.4.6)). These alternatives lead to an

increase of accuracy of the decomposition however they have a greater computational

cost. To reduce the effect of dropping elements in the ilu process we may opt for the

modified strategy. This technique permits to compensate the discarted entries so that

the row (or column) sums of A be equal of those of LU, see Saad (2003, section 10.3.5)

for more information. It depends on the particular situation what ilu version we will

opt for.

Matlab implementation

Matlab disposes of a built-in function gmres that executes the GMRES algorithm.

The function accepts multiple input parameters from which several are specified in the
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following overview. More on the gmres function can be found in [5]

[x, flag, relres, iter, resvec] = gmres(A, b, restart, tol, maxit,

M1, M2, x0)

x, A, b x is the desired approximation of the solution of the linear problem

Ax=b

restart denotes the number of GMRES iterations after which the algo-

rithm, takes the lastly computed approximation xres and uses it

as the initial approximation to another subsequent GMRES algo-

rithm; we say that gmres accepts restart of inner iterations

tol specifies the tolerance value; the computation stops if

∥b −Axk∥ / ∥b∥ <tol; the default value is 10−6

maxit denotes the maximum number of repeating the GMRES algorithm

with restart inner iterations; the maximum total number of it-

eration is therefore restart*maxit; if restart is not specified,

then GMRES algorithm is executed only once and maxit denotes

the maximum number of iterations

M1, M2 designate the preconditioning matrices: M1 represents PL and M2

represents PR in (4.35)

x0 is the initial guess to the GMRES algorithm; the default is a zero

vector

flag gives information about the reliability of the result

relres returns the relative residual norm of the final approximation

iter returns a two-element vector: the first element designates the num-

ber of outer iterations and the second designates the number of

inner iterations

resvec returns a vector of relative residual norms (for the preconditioned

system) at each inner iteration

To build the split preconditioning matrices M1 and M2 different from the identity

matrix we use the built-in function ilu that performs the incomplete LU factorization.

Here we present the ilu Matlab function with the selected input and output param-

eters.

[L,U,P] = ilu(A, setup)

L, U, P, A denote respectively the lower triangular, the upper triangular and

the permutation matrices as the result of the incomplete factor-

ization algorithm of the matrix A

setup specifies the type of the incomplete LU decomposition; it may contain up to five
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setup options from which the selected ones are specified in the following overview

type may take various arguments

� ’nofill’(default) - performs ILU(0)

� ’ilutp’ - performs incomplete LU decomposition with specified

threshold value droptol and with pivoting;

� ’crout’ - performs the crout version of the incomplete LU factor-

ization with specified threshold value droptol

droptol specifies the dropping tolerance of the incomplete LU factoriza-

tion; the nonzero extra-diagonal elements of U satisfy ∣U(i,j)∣ ≥

droptol∥A(∶ ,j)∥ and the nonzero extra-diagonal elements of L satis-

fy ∣L(i,j)∣ ≥ droptol∥A(∶ ,j)∥ /U(j,j)

milu may take various arguments

� ’row’ - row-sum modified incomplete LU factorization

� ’col’ - column-sum modified incomplete LU factorization
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5. Mechanical part of the model:

discretization and

implementation

In the section 3 we provide a detailed description of how we model mechanical

processes that arise in the cochlear duct in response to external stimuli. We explain

that the crucial active parts in the mechanical processes are the displacement of the

basilar membrane and the deflection of hair cell bundles. The description ends up by

writing the equations (3.15) and (3.14) governing these motions. In this chapter we

will work with these equations, particularly with the equation (3.15) in its original

form assuming Fohc(y(x,t)) = U(x,t) and with the equation (3.14) in a modified form,

namely:

Equation for the BM displacement u(x,t)

m(x)
∂2u(x,t)

∂t2
+ h(x)

∂u(x,t)

∂t
− [

∂

∂x
s(x)

∂

∂x
]
∂u(x,t)

∂t
+

+ k(x)u(x,t) + Fohc(y(x,t)) = FS(x,t) + FBM(x,t), (5.1)

Equation for the hair cell bundle displacement y(x,t)

M(x)
∂2y(x,t)

∂t2
+H(x)

∂y(x,t)

∂t
+K(x)y(x,t) = −C(x)

∂2u(x,t)

∂t2
(5.2)

with C a (for instant) arbitrary function of x and

FS(x,t) = −GS(x)
∂2σ(t)

∂t2
(5.3)

FBM(x,t) = −∫
1

0
G(x,z)

∂2u(z,t)

∂t2
dz, (5.4)

and we add that we have: x ∈ [0,1], t ≥ 0,
∂u(x,0)

∂t = u(x,0) = 0,
∂y(x,0)

∂t = y(x,0) =
0, ∀x ∈ [0,1] and that the boundary conditions will follow from the discretization of

the term [ ∂
∂xs(x)

∂
∂x
]
∂u(x,t)

∂t .

(5.1) and (5.2) are equations of the second order with respect to the time derivative.
They can be rewritten in the form of a system of four equations of the first order:

∂u(x,t)

∂t
= v(x,t)

m(x)
∂v(x,t)

∂t
= FS(x,t) + FBM(x,t) − Fohc(y(x,t)) − k(x)u(x,t) + [

∂

∂x
s(x)

∂

∂x
− h(x)] v(x,t)

∂y(x,t)

∂t
= w(x,t)

M(x)
∂w(x,t)

∂t
= −C(x)

∂v(x,t)

∂t
−H(x)w(x,t) −K(x)y(x,t).

(5.5)
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5.1 Discretization of the system of motion equations in

space

In this section we will treat the problem of the spatial discretization of the system

(5.5).

5.1.1 Discretization of the position coordinate x

We introduce N discrete nonequidistant points with the coordinate xj covering the

interval [0,1] and this is done in the following way:

MiddlePoint=0.35; % point of change in [0,1]

sig1=2*(1.2)^2; % coefficient of the 1st dependence

sig2=2*(0.46)^2; % coefficient of the 2nd dependence

xo=(1:N)/N; % initial equidistant division of the interval [0,1]

ind=ceil(MiddlePoint/xo(1)) % index corresponding to the MiddlePoint

dx(1:ind)=exp(((xo(1:ind)-xo(ind)).^2)./sig1);

dx(ind+1:N)=exp(((xo(ind+1:N)-xo(ind)).^2)./sig2);

% distance between neigbor discrete points

dx=dx/sum(dx); % normalization so that sum(dx)=1

x(1)=dx(1);

for i=2:N,

x(i)=x(i-1)+dx(i); % allocation of new position coordinates

end

As can be easily understood from the Matlab code, MiddlePoint determines

a unique point index ind that, after the allocation of new position coordinates, de-

termines the point xind with minimal distance to the neighbour points. With the

change of the position coordinate from xind−1 to 0 and from xind+1 to 1, the relative

distance dx between points is increased and this increase is more rapid in the second

interval (see Figure 5.1). The point density is therefore maximal in the proximity of

xind and is diminished more rapidly when passing from xind+1 to 1 than from xind−1 to 0.
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Figure 5.1: Interpoint distances dx as a function of x for N = 1000. Vector

dx is defined as dxi = xi − xi−1

A nonequidistant division of the interval [0,1] was introduced already in the first

version of the program by Mammano and Nobili (see the related article Mammano and

Nobili (1993)). This one has been characterized by the fixed position of the maximal

and minimal point densities, namely maximal at x1 and minimal at xN = 1. In the re-

gion between x1 and xN the distances dx obeyed an exponential law. The improvement

of the code to the up-to-date form was made by Vetešńık and Gummer (2012). The

improvement consists in the correction of the position of the maximal point density:

it is shifted from 0 to the value given by MiddlePoint, i.e. approximately by 0,27

(after the new allocation of coordinates in the code). The reason why this form of

the dependence was selected is the observed reaction of the BM to the input signals

of different frequencies. While for higher frequencies, the BM oscillates primarily in

the region close to the stapes (i.e. in the proximity of x = 0) and the activated region

is narrow, for lower frequencies the BM is oscillates close to the cochlear apex with a

larger activated region. The narrowest region that is activated is placed around 0,27.

5.1.2 Discretization of functions of the spatial coordinate f(x,...)
First, we introduce the vector U(t) of the length N that approximates the BM

displacement u(x,t) at discrete positions xj :

U(t) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

U1(t)

U2(t)

⋮

UN(t)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≈

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(x1,t)

u(x2,t)

⋮

u(xN ,t)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.6)

Analogically, we introduce vectors V (t), Y (t) and W (t) of the BM velocity v(x,t),

of the hair cell bundle displacement y(x,t) and of the hair cell bundle velocity w(x,t)
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approximated at discrete positions xj . The time derivative of a time dependent vector

is taken by elements, that is for example for U(t):

dU(t)

dt
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dU1(t)
dt

dU2(t)
dt

⋮

dUN (t)
dt

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.7)

Then we introduce the N-long vector m of the functional values of m(x) at discrete

positions xj :

m ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m1

m2

⋮

mN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m(x1)

m(x2)

⋮

m(xN)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.8)

and we define the N ×N diagonal matrix m with m on the diagonal:

m ∶= diag (m) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m1 0 . . . 0

0 m2 . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . mN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.9)

Analogically, we define N-long vectors k, s, h, GS, M , H, K, C from k(x), s(x), h(x),

GS(x), M(x), H(x), K(x) and C(x) and the corresponding diagonal matrices k, s, h,

GS, M, H, K and C.

5.1.3 Discretization of FBM, [ ∂
∂xs(x) ∂

∂x
] and Fohc, further notations

If we define N ×N Green’s function matrix G as

Gij = G(xi,zj),

for i,j ∈ {1,...,N}, we can write FBM in the discretized form:

FBM(t) = −G
dV (t)

dt
.

To discretize the operator [ ∂
∂xs(x)

∂
∂x
] we use the finite difference method, i.e.

∂

∂x
s(x)

∂

∂x
≈

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1
dx1

1
dx1

0

⋱ ⋱

0 − 1
dxN−1

1
dxN−1

0 − 1
dxN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

s

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
dx1

0

− 1
dx2

1
dx2

0

⋱ ⋱

0 − 1
dxN

1
dxN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=∶ Sh. (5.10)

Finally, let’s denote the discrete form of Fohc by the N-long vector holding the same

name Fohc and let’s make two further definitions

A(t) ∶=
dV (t)

dt
(5.11)

S(t) ∶=
∂2σ(t)

∂t2
. (5.12)
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Using the introduced notation we can finally write the space-discrete form of the

equations (5.5):

dU(t)

dt
= V (t) (5.13a)

(G +m)A(t) = −GSS(t) − kU(t) − (h − Sh)V (t) − Fohc(Y (t)) (5.13b)

dY (t)

dt
=W (t) (5.13c)

M
dW (t)

dt
= −CA(t) −KY (t) −HW (t). (5.13d)

If we multiply the equation (5.13d) by (G +m)C−1 from the left side we get

(G +m)C−1M
dW (t)

dt
= −(G +m)A(t) − (G +m)C−1KY (t) − (G +m)C−1HW (t).

(5.13e)

Then, substituting the term (G +m)A(t) in (5.13e) by the right hand side of the

equation (5.13b) and using (5.11) we get a new version of the system (5.13):

dU(t)

dt
= V (t) (5.14a)

(G +m)
dV (t)

dt
= −GSS(t) − kU(t) − (h − Sh)V (t) − Fohc(Y (t)) (5.14b)

dY (t)

dt
=W (t) (5.14c)

(G +m)C−1M
dW (t)

dt
= GSS(t) + kU(t) + (h − Sh)V (t) + Fohc(Y (t))−

− (G +m)C−1KY (t) − (G +m)C−1HW (t)

(5.14d)

The new system (5.14) is a system of 4N equations with 4N unknowns: U(t), V (t),

Y (t) and W (t).

5.2 Discretization of the system of motion equations in

time

In this part we treat the problem of the time discretization of the space-discrete

system (5.14).

5.2.1 Linear case

Definition of the system to solve

If we consider

Fohc(Y (t)) = FY (t) (5.15)

where F is an N ×N matrix, then the system of equations (5.14) is linear with respect

to the 4N unknown functions.
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Let’s now define the vector function Z(t) of the length 4N :

Z(t) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

U(t)

V (t)

Y (t)

W (t)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.16)

and the 4N × 4N matrices Mt and J:

Mt ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I 0 0 0

0 (G +m) 0 0

0 0 I 0

0 0 0 (G +m)C−1M

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.17)

J =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 I 0 0

−k −(h − Sh) −F 0

0 0 0 I

k (h − Sh) F − (G +m)C−1K −(G +m)C−1H

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.18)

where I is the N×N identity matrix and 0 is the N×N zero matrix and let’s finally

introduce the 4N−long vector function g(t):

g(t) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

−GSS(t)

0

GSS(t)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.19)

where 0 is the N-long vector of zeros.

Then we can rewrite the linear version of the system (5.14) in the form:

Mt
dZ(t)

dt
= JZ(t) + g(t). (5.20)

If we multiply the relation (5.20) by the matrix Mt
−1 from the left, we get the equation

in the form
dZ(t)

dt
= JMZ(t) + gM(t) (5.21)

where JM =Mt
−1J and gM =Mt

−1g.

Time discretization

We denote each time level by k, k = 0,1,..., the time step by ht, the approximate

solution at the level k by Zk and we define gM,k ∶= gM(kht) .

Our model disposes of two implemented explicit numerical methods: the explicit

Euler method implemented by Ticháček (2014) and the 6-stage Runge-Kutta method

implemented by Vetešńık and Gummer (2012). Both of the methods are applied to the

linear system in the form (5.21) and lead to a direct calculation of Zk+1.
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� Explicit Euler method

Following (4.8) we get

Zk+1 = Zk + ht(JMZk + gM,k). (5.22)

� 6-stage Runge Kutta method

Following (4.6) we get

Zk+1 = Zk + ht
s

∑
i=1

biqi (5.23)

where qi, i = 1,...,s are defined by (4.7) with f(t,Z) = JMZ + gM(t). The coeffi-

cients ci, aij and bi are given by the Butcher’s tableau 4.1.

5.2.2 Nonlinear case

Definition of the system to solve

Let’s now consider Fohc as the nonlinear function of Y :

(Fohc(Y ))i = 0.1Fii
⎛

⎝

1

1 + c1exp(−
Yi

y1
) + c2exp(−

Yi

y2
)
− b
⎞

⎠
(5.24)

with y1 = 0.01139, y2 = 0.03736, c1 = 0.7293, c2 = 1.4974, b = 0.30991 and the same

matrix F as in the linear case.

Let’s now proceed analogically to the linear case. We keep the definition (5.16) of

the vector function Z(t), the definition (5.17) of the matrix Mt as well as the definition

(5.19) of the vector g(t). Let’s now define the matrix J̃ in the following way:

J̃ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 I 0 0

−k −(h − Sh) 0 0

0 0 0 I

k (h − Sh) −(G +m)C−1K −(G +m)C−1H

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.25)

where I is the N×N identity matrix and 0 is the N×N zero matrix and finally let’s

introduce the vector function h(Z) of the length 4N:

h(Z) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

−Fohc(Z(2N + 1 ∶ 3N))

0

Fohc(Z(2N + 1 ∶ 3N))

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.26)

where 0 is the N-long vector of zeros.

Then we can rewrite the nonlinear version of the system (5.14) in the following

simplified form:

Mt
dZ(t)

dt
= J̃Z(t) + g(t) + h(Z(t)) (5.27)

or, by multiplying (5.27) by Mt
−1 from the left, in the form

dZ(t)

dt
= J̃MZ(t) + gM(t) + hM(Z(t)), (5.28)

where J̃M =Mt
−1J̃, gM =Mt

−1g and hM =Mt
−1h.
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Time discretization

We adopt here the notation of ht, Zk and gk from the linear case.

Applied to the nonlinear equation (5.28), explicit methods lead to a direct expression

of Zk+1 just as it was in the linear case. The nonlinearity therefore brings no problem to

computations that follow from the application of explicit methods. Here we present the

explicit Euler method implemented by Ticháček (2014) and the 6-stage Runge-Kutta

method implemented by Vetešńık and Gummer (2012).

� Explicit Euler method

Following (4.8) we get

Zk+1 = Zk + ht(J̃MZk + gM,k + hM(Zk)). (5.29)

� 6-stage Runge Kutta method

Following (4.6) we get

Zk+1 = Zk + ht
s

∑
i=1

biqi (5.30)

where qi, i = 1...s are defined by (4.7) with f(t,Z) = J̃MZ + gM(t) + hM(Z). The

coefficients ci, aij and bi are given by the Butcher’s tableau 4.1.

5.3 Computer program description

We use a Matlab program that computes the numerical solution Zk, k = 0,1,... of

the linear or nonlinear system in both forms: original ((5.20) or (5.27)) or multiplied

by the Mt
−1 matrix ((5.21) or (5.28)). It accepts the input in the form of a signal and

creates the output in the form of the vector Zk for specified range of k. The particular

sections of the program are presented in the following overview.

Input signal and parameters

It is generally possible to set the input signal σ(t) to an arbitrary form. In this

work we will consider for simplicity only cosine waves of a particular frequency f and

amplitude A. To get the term S(t) that is present in the motion equations, we com-

pute the second time derivative of σ(t) and we multiply it by the envelope function

1/2 tanh(a(t − t0) + 1) with a = 400 and t0 = 0.012. The objective of this multiplica-

tion is to obtain a very slow increase of the signal amplitude at the beginning of the

simulation. This causes that no secondary oscillations of the solution are produced.

The envelope function asymptotically approaches 1 as t → ∞ hence the original sig-

nal remains practically not modified by the multiplitcation for higher time values. An

example of the final S(t) is represented in Figure 5.2.
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Figure 5.2: Second time derivative of the input signal multiplied by the

envelope function. Input signal has frequency 1000Hz and amplitude

90dB.

The main input parameters of the program are the following:

A [dB] input signal amplitude

f [Hz] input signal frequency

h_t [ms] time step

T [s] duration of the simulation

N number of discretization points in space

algorithm numerical method

We make an assumption that the unit of the input signal amplitude A that is denoted

by dB in the model means the unit dB SPL.

Program core

The core of the program is formed by the time loop. This, at each step, calls the a

priori specified algorithm to solve the system of equations.

Output data

The result of the simulation are: the approximate BM displacement and velocity

and the approximate hair cell bundle displacement and velocity in time (forming the

vector Zk). The part that interests us the most is the BM displacement since it enters

to the electrical part of the model. An example of the output BM displacement is

represented in Figure 5.3.
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Figure 5.3: 10 consecutive BM displacements in time taken after 20ms

of the simulation. Input parameters: ht = 0.1ms, f = 1000Hz, A = 90dB.
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Part II

Applications
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Goals of our work

Up to now we have used only explicit numerical methods to solve the governing

equations of the mechanical model. Explicit methods turn out to be efficient in cases

where we work with a small number of discretization points in space (around 300).

They ensure a fast computation and the stability in the range of time steps that we

usually need. The number of discretization points around 300 is however insufficient

for our current purposes. Why?

As we mentioned in the Introduction, the aim of our current work is to introduce the

physiological quantities into the connection between the mechanical and the electrical

models. Particularly, we want that the connection be realized individually at each of the

3000 cochlear transversal sections with a unicellular width. These sections are placed

equidistantly in the cochlear duct. We explained in the Section 3 that the electrical

model represents the cochlea as a set of longitudinally coupled electrical circuits. The

number of transversal cochlear sections that are represented by electrical circuits can

be chosen essentially arbitrarily hence there is no problem to set the number of 3000.

A more complicated situation occurs with the mechanical model. Here we work with a

nonequidistant division of the position along the cochlear duct. To get 3000 equidistant

positions we will need firstly to make use of interpolation techniques and secondly to

study how the solution at these points changes with the varying number of discretization

points. Due to their level of nonequidistancy, we will make the study in the range of

approximately [300,4000] of the discretization points. We need therefore to ensure that

the mechanical model is adapted to this range of discretization points.

Let’s return back to our original model with only explicit methods. If we increase

the number of discretization points, holding the time step constant at a reasonable

value, the stability of the system becomes violated. We are forced to choose much

smaller time steps to make the simulation work properly (see the related Figure 5.4).

A more efficient way to treat this problem in these cases appears to be the use of

implicit numerical methods. These enable us to choose rather big time steps and the

stability of the computation persists. Our goal in this work is to propose and test

suitable implicit numerical methods on the mechanical model and to choose the one

that is the most suitable to our requirements.
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Figure 5.4: Eigenvalues λ of (htJ) in the complex plane, with J the Ja-

cobian matrix of the linear system . N denotes the number of discretization

points. The circle in both plots denotes the stability region of the explicit Euler

method. (a) shows that increasing N the absolute value of the real part of eigen-

values increases and the eigenvalues go out of the stability region of the explicit

Euler method at some point, (b) shows that to put all the eigenvalues to the

explicit Euler stability region we need to diminish the time step appropriately.
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6. Linear model

Implementation

We opt for four implicit numerical methods: IE, CN, BDF2 and BDF3 and we

implement them into our model. All the four methods, when applied to the system in

the form (5.20) or (5.21), lead to the system of linear equations

AZk+1 = bk (6.1)

that we solve for Zk+1 at each time step k. In the case of implicit methods it is more

convenient to work with the linear system in the form (5.20) than (5.21). In this way

we omit the computation of the inverse of the matrix Mt and moreover we avoid its

multiplication by elements of the right hand side of (5.20) that would otherwise destruct

their sparsity.

In practice, since the matrix A is constant in time, it is efficient to use the LU

decomposition of A to solve (6.1). In fact, the constancy of A allows us to compute

the most expensive operation, i.e. the LU decomposition (see the part 4.2.1), only once

and this is done before the time loop. At each time step, we compute therefore only the

value of bk and we perform one forward and one backward substitution (4.30). These

substitutions are already very fast, particularly in Matlab with the function accorded

to the sign \ and sparse nature of L and U matrices. Particularly in our model we

use the LU decomposition with the added pivoting to improve the stability properties

of the computation. The backward and forward substitutions used to get the solution

Zk+1 of the system (6.1) follow therefore the modified formulas (4.32)

In the following overview we present the implemented implicit methods written in

the form (6.1).

� Implicit Euler method

Following (4.9) we get

(Mt − htJ)Zk+1 =MtZk + htgk+1 (6.2)

� Crank-Nicolson method

Following (4.10) we get

(Mt −
ht
2
J)Zk+1 =MtZk +

ht
2
(gk+1 + gk + JZk) (6.3)

� Backward difference formula of the 2nd order

Following (4.11) we get

(
3

2
Mt − htJ)Zk+1 = 2MtZk −

1

2
MtZk−1 + htgk+1 (6.4)
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� Backward difference formula of the 3rd order

Following (4.12) we get

(
11

6
Mt − htJ)Zk+1 = 3MtZk −

3

2
MtZk−1 +

1

3
MtZk−2 + htgk+1 (6.5)

MATLAB implementation

Each of the methods is written in a separate Matlab script, see functions

cochleaSolverIE_lin, cochleaSolverCN_lin, cochleaSolverBDF_2_lin and

cochleaSolverBDF_3_lin in Appendix. All of them have a similar structure so here

we explain only the basic case of the implicit Euler method.

To the cochlea.m home script before the time loop we add:

� the calculation of the J and Mt matrices

� the calculation of the A matrix

A = M_t-h_t*J;

� LU decomposition with pivoting of A

[L,U,P] = lu(A).

To the cochleaSolverIE_lin script we transfer the matrices L, U and P and we insert

there

RHS = P*(gf*h_t+y);

y = U\ (L\ RHS);

where gf means gk+1 and y represents MtZk and Zk+1 from the first and from the

second line of the code respectively.

6.1 Experiment 1: convergence of the BM displacement

computed by implicit numerical methods with de-

creasing time step

The first experiment aims at showing the behaviour of the solution that corresponds

to the BM displacement, calculated by the four implicit numerical methods with a

varying time step. The results should reveal which of the calculated BM displacements

converges the most rapidly to the exact solution and which of them exhibits the smallest

deviation from the exact solution for all of the values of the time step.

Initialization

We run a series of simulations with different time steps, different numerical methods

and different frequencies of the input signal. The input parameters for this experiment

are:
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N = 1000; % number of discretization points in space

A = 20; % [dB] amplitude of the input signal

f = [200,2000,15000]; % [Hz] frequency of the input signal

h_t_200Hz = [0.5,0.1,0.05,0.01]; %[ms] time steps for 200Hz

h_t_2000Hz = [0.05,0.01,0.005,0.001]; %[ms] time steps for 2000Hz

h_t_15000Hz = [0.005,0.001,0.0005,0.0001]; %[ms] time steps for 15000Hz

t_save = 0.025; % [s] time of the results saving

The number of discretization points in space and the amplitude are kept unchanged

in the simulations since we do not expect that they have a significant influence on

the results. The frequencies are taken from different parts of the range of human

hearing. They are chosen so that different regions of the BM are activated by the input

signal (200Hz at the cochlear base, 2000Hz in the middle and 15000Hz at the cochlear

apex). The time steps are chosen for each frequency separately and are selected as four

numbers from approximately 1/10 of the input signal time period to approximately

1/500 of the input signal time period. The variable t_save designates the time in

milliseconds at which we save the instantaneous BM displacement. Its value is chosen

such that the BM displacement be equilibrated after the 20ms of continuous increase

in the input signal amplitude. We denote the computed BM displacement at the time

t_save by U .

In addition to the tested simulations we generate a so-called ”reference solution”

for each frequency of the input signal. The input parameters to this simulation are the

following:

N = 1000; % number of discretization points in space

A = 20; % [dB] amplitude of the input signal

h_t = 0.0001 % [ms] time step

f = [200,2000,15000] % [Hz] input signal frequencies

method = RK6; % used numerical method

t_save = 25; % [ms] time of results saving

In this simulation we use the explicit RK6 method and we used very small time step

of ht = 0.00001ms. We denote the reference solution at time t_save by Uref .

Results

We plot the relative error ∣∣U −Uref ∣∣/∣∣Uref ∣∣ for each frequency from f interval. The

resulting curves are plotted in the figure 6.1.
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Figure 6.1: Convergence of the calculated BM displacement to the refer-

ence solution in the linear model; IE (blue), CN (red), BDF2 (yellow),

BDF3 (violet). At each figure we plot the relative error ∣∣U − Uref ∣∣/∣∣Uref ∣∣ of

the calculated BM displacement at 25ms with relation to the reference solution

for different methods and for different time steps.

Discussion and conclusions

The figure 6.1 reveals firstly that the BM displacement calculated by the four im-

plicit methods converges to the reference solution, each of them with the rate that

corresponds to the order of the method. Secondly, it shows that the most convenient

method for our purpose is the CN method. This combines a high rate of convergence

and a low sensibility of the solution to the change of the time step. Hence if we run the

simulation with the time step between 1/10 and 1/50 of the input signal time period,

we get a result very close to the reference solution. Moreover, to get a solution closer

to the reference solution, we do not need to decrease the time step too much. For the

values of 1/50 of the time period and lower, the method gives already a sufficiently

good approximation.
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7. Nonlinear model

A significantly different situation from the previous one happens with the nonlinear

system. The four implicit methods IE, CN, BDF2 and BDF3, if applied to the linear

system (5.20), lead to a system of linear equations (6.1) easy to solve using LU de-

composition. However, their application to the nonlinear problem (5.27) leads to the

nonlinear system in the form

AZk+1 − ch(Zk+1) = bk (7.1)

with c a constant depending on the method and on the time step ht, that is much more

difficult to solve. Note that A is in the nonlinear case different from A in the linear

case.

As in the linear case, we use the version 5.27 of the system to solve since it keeps

the original sparsity of the problem.

Nonlinearity

We remind that the nonlinearity h(Z) has the form

h(Z) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

−Fohc(Z(2N + 1 ∶ 3N))

0

Fohc(Z(2N + 1 ∶ 3N))

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7.2)

with

(Fohc(Y ))i = 0.1Fii
⎛

⎝

1

1 + c1exp(−
Yi

y1
) + c2exp(−

Yi

y2
)
− b
⎞

⎠
(7.3)

where Fii, y1, y2, c1, c2 and b are specific coefficients related to the problem, particularly

y1 = 0.01139, y2 = 0.03736, c1 = 0.7293, c2 = 1.4974 and b = 0.30991. Let’s denote by

f(Yi) the function

f(Yi) =
1

1 + c1exp(−
Yi

y1
) + c2exp(−

Yi

y2
)
− b. (7.4)

Then f has the form specified in the figure 7.1.
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Figure 7.1: The shape of the nonlinearity. (a) on the interval [-1,1], (b)

zoomed to the interval [-0.1,0.3]

The function f takes the value 0 at Yi = 0 and moreover it has the derivative of 1

at this point. As Yi →∞, f tends to the value 1 − b and as Yi → −∞ f tends to −b.

To see what is the influence of the nonlinear term on the solution, we performed an

experiment where we ran successively the simulations with various values of the input

signal amplitude and with different types of the model: linear, nonlinear and passive.

The last term means that we put Fohc to be the identically zero function. The ways

how these versions of model behave at various amplitudes are shown in Figure 7.2.
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Figure 7.2: Envelope of the BM displacement with the input signal of

1000Hz. Linear model (blue), nonlinear model (red), passive model

(yellow). (a) shows that for 10dB, envelopes for linear and nonlinear models

coincide, hence the nonlinear model is in the linear regime. The nonlinear model

starts to perceive the nonlinearity at amplitudes above 40dB, as can be seen in

(b) - there is a tiny shift of the red and blue curves at their maxima. (c), (d), (e),

(f) show that the behaviour of the nonlinear model approaches to the behaviour of

the passive model as the amplitude increases up to the maximal value of 130dB.

Implementation

Here we present two approaches that we use to fix the nonlinearity when applying

implicit numerical methods. The approaches follow the reasoning in the part 4.1.4

� Method 1: explicitly treated nonlinearity and the LU decomposition

The first way how to deal with the nonlinear term ch(Zk+1) in (7.1) is to include

it into the right hand side of (7.1) and to proceed iteratively at each time step

until the convergence of approximate solutions1 occurs. This method is explained

1By approximate solution we mean in this chapter the solution of the system obtained at each

iteration.
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in detail in the part Explicitly treated h in the section 4.1.4. Using this method we

solve a system of linear equations (4.15) at each iteration, involving the matrix

A that is constant for each iteration and each time step and involving the right

hand side in the form (4.16) or (4.17) that needs to be regularly recalculated. To

solve the linear system we use the method related to the LU decomposition with

pivoting of the matrix A, see part 4.2.1 for description of this method. Thanks to

the constancy of A, the LU decomposition is performed only once before the time

loop and we perform solely the backward and the forward substitutions (4.32) at

each iteration to get the approximate solution. The final solution Zk+1 is then

given by making the limit (4.18) of approximate solutions Zi
k+1.

� Method 2: Newton method and GMRES

The second method to treat the nonlinear term is to perform its linearization as

it is done in the expression (4.19), see Newton method-linearization in the section

4.1.4). This method leads to a system of linear equations (4.20) at each iteration,

involving a different matrix Bi
k and different right hand side dik each time. To

solve the linear system we opt for an iterative method that is expected to compute

quickly the approximate solution. Particularly, we use the GMRES method that

is a commonly used method to solve linear systems with a general matrix (for

the description of the method see the section 4.2.2). To improve the convergence

properties of GMRES we test the application of various preconditioners. We use

particularly the split preconditioners and opt for the incomplete LU factorization,

see the section Preconditioning in the section 4.2.2 for further details.

Both of these methods are iterative, i.e. at each time step we get a sequence of

approximate solutions that is supposed to converge to the final solution. Method 1

computes each iteration very quickly but may converge slowly since it does not take

into account the particular shape of the nonlinearity. Method 2 computes each iteration

slowlier but may converge quickly since it involves the form of the nonlinear function

into the iteration process. It is not possible to estimate a priori which of the methods

is more effective.

To test both methods and their effectiveness we apply them to the CN algorithm and

we perform several experiments. The observations of our experiments are summarized

in the following section.

7.1 Method 1 optimization

We dispose of the Method 1 applied to the CN algorithm (see

cochleaSolverCN_nonlin_M1.m) and we seek for the version of this method that en-

sures a fast computation of each time step and leads moreover to a good approximation

of the solution. The criterion of a good approximation of the solution is given by an a
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priori selected tolerance value tol. Particularly, at each iteration i at each time step k

we find the approximate solution Zi
k+1 and we check if this satisfies the criterion

∣∣Zi
k+1 −Z

i−1
k+1∣∣

∣∣Zi
k+1∣∣

< tol. (7.5)

If the criterion is satisfied then we accept Zi
k+1 as the solution at the time step k,

otherwise we continue in the iteration process. The ratio in the left hand side of 7.5

will be referred to as the relative error.

7.1.1 Experiment 2: convergence test of direct and extrapolated ver-

sions

We have two versions of the Method 1 at our disposal: 4.16 that will be denoted by

Version A and 4.17 denoted by Version B. In this experiment we test these versions to see

which of them ensures faster achievement of the criterion 7.5. Since the computational

time of each iteration is approximately the same for both versions, we will compare the

number of iterations at each time step.

Initialization

We run a series of simulations with the parameters

N = 1000;

f = 1000; % [Hz]

h_t = 0.1; % [ms]

T = 0.025; % [s] simulation length

A = [20,70,130]; %[dB]

tol = 1e-4; % tolerance value as the stopping criterion

method = [’A’,’B’]; % Version A and B of the Method 1

and we save the total number of iterations at each time step for Version A and B

separately. We fix the variables N, f and h_t since we do not expect that they would

influence the conclusion of the experiment. The amplitudes are chosen from different

parts of the interval [0,140] dB that we take into account in this work.

Results

The results are summarized in Figure 7.3.
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Figure 7.3: Convergence of Version A (blue) and B (red) of the Method

1. (a), (c), (e) show the relative error ∣∣Zi
k+1 −Z

i−1
k+1∣∣/∣∣Z

i
k+1∣∣ at each iteration i at

each time step k from 0 to 25ms. (b), (d), (f) show the relative error as a function

of the iteration number i at the fixed time of 20ms.
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Discussion and conclusions

Figure 7.3 shows that for each of the tested input signal amplitudes and for each

time step Version A converges more rapidly to the desired tolerance than Version B.

The results show therefore that to estimate the next approximate solution it is better

to use the previous approximate solution rather than a linear extrapolation of the two

previous ones. This result is related to the value of tol and could be different if we

chose a much smaller value. Since the value of 10−4 is satisfactory for our purposes, we

keep this result and will use Version A in the following computations.

Another observation can be concluded from Figure 7.3. When we are in the strictly

nonlinear regime (130dB from 15ms), the convergence of both versions is much faster

than in the linear regime (20dB) - in the nonlinear regime we need 3 − 5 iterations and

in the linear one we need 6 − 11 iterations. This is a direct consequence of the form of

the nonlinearity: it has a very small slope from a certain point. The remaining question

is if the approximate solutions converge correctly, i.e. if the final solution is close to the

exact solution of the equation. This question will be answered later in the Experiment

6.

7.2 Method 2 optimization

As in the case of Method 1, we aim to optimize Method 2 applied to the CN algo-

rithm (see the script cochleaSolverCN_nonlin_M2.m) so that it calculates the solution

effectively. The good approximation of the solution is imposed by a given tolerance

value tol and the related stopping criterion 7.5. The time in which the approximate

solutions attain this tolerance can be adjusted by various factors. Particularly, we will

adjust the GMRES preconditioner and the type of the Newton method.

7.2.1 Experiment 3: choice of the GMRES preconditioner

As we stated in the section 4.2.2, a commonly used way to improve the convergence

properties of the GMRES method is the use of the preconditioning technique. We

stated also that efficient preconditioners fulfill the criterion 4.36, that is 4.37 for the

split preconditioners.

In this experiment we will focus on the split preconditioning with the use of the

incomplete LU factorization technique. We will consider three situations: 1. ilu(Bi
k)

at each Newton iteration; 2. ilu(B1
k) at each time step and only in the first Newton

iteration; 3. ilu(A) before the time loop - only once in the simulation. These situations

will be referred to as positions.

In the first part we will test various ilu types and we will observe their influence on

the number of GMRES iterations and on the GMRES duration. We will choose the

best three of them. Then we will test various positions of the ilu process and we will
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choose the most efficient of them. Finally we will investigate in detail the ilu types in

the chosen position.

Eperiment 3A - ilu type test

We make a general test of ilu types to see which of them could be good candidates

to generate effective GMRES preconditioning matrices. We test particularly 11 types.

Initialization

We run a series of simulations with the parameters

A = 90; % [dB]

f = 1000; % [Hz]

h_t = 0.1; % [ms]

N = 300;

T = 0.0005; %[s]

t_save = 0.5 % [ms]

position = [1,3];

tol_Newton = 1e-4;

tol_gmres = 1e-6;

ilu_type = 1:11;

%------ ILU TYPE--------

% 1 [L,U] = ilu(sparse(Matrix),struct(’type’,’ilutp’,’droptol’,1e-6));

% 2 [L,U] = ilu(sparse(Matrix),struct(’type’,’ilutp’,’droptol’,1e-4));

% 3 [L,U] = ilu(sparse(Matrix),struct(’type’,’ilutp’,’droptol’,1e-2));

% 4 [L,U] = ilu(sparse(Matrix),struct(’type’,’nofill’));

% 5 [L,U] = ilu(sparse(Matrix),struct(’type’,’nofill’,’milu’,’row’));

% 6 [L,U] = ilu(sparse(Matrix),struct(’type’,’nofill’,’milu’,’col’));

% 7 [L,U] = ilu(sparse(Matrix),struct(’type’,’crout’,’droptol’,1e-6));

% 8 [L,U] = ilu(sparse(Matrix),struct(’type’,’crout’,’droptol’,1e-4));

% 9 [L,U] = ilu(sparse(Matrix),struct(’type’,’crout’,’droptol’,1e-2));

% 10 [L,U] = ilu(sparse(Matrix),struct(’type’,’crout’,’milu’,’row’,...

% ’droptol’,1e-6));

% 11 [L,U] = ilu(sparse(Matrix),struct(’type’,’crout’,’milu’,’col’,...

% ’droptol’,1e-6));

%----GMRES comand in cochleaSolverCN_nonlin_M2.m--

[y,~] = gmres(B,d,[],tol_gmres,200,L,U,z1);

hence for 11 ilu types and for the position 1 and 3. Since we make only a quick general

test, we stop the simulation already at the beginning (after 5 time steps) and we save

the GMRES duration (in seconds denoted by timeGmres), the number of GMRES

iterations (iter) and the ilu duration (in seconds denoted by timeIlu), all in the first

Newton iteration.
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Results

The results are summarized in Table 7.1. Figures 7.4 and 7.5 represent selected

data from Table 7.1. In Figure 7.4 we plot timeGmres for the two positions and

timeGmres+timeIlu for the position 1. The latter should represent the approximate

duration of one Newton iteration for the position 1 while timeGmres represents itself

the duration of a Newton iteration for the position 3. Figure 7.5 shows the comparison

of iter for each method and position.

timeGmres timeIlu iter

ilu type position 1 position 3 position 1 position 3 position 1 position 3

1 0,047 0,083 0,274 0,185 2 5

2 0,076 0,122 0,223 0,181 5 6

3 0,409 0,733 0,038 0,043 67 106

4 0,038 0,055 0,099 0,109 10 14

5 1,044 0,159 0,113 0,136 164 40

6 0,726 0,991 0,099 0,113 130 161

7 0,313 0,247 0,188 0,141 65 59

8 1,317 1,368 0,048 0,059 200 200

9 0,974 1,216 0,031 0,041 166 200

10 0,278 0,243 0,194 0,150 61 57

11 0,184 0,162 0,184 0,137 43 41

Table 7.1: General test of ilu types at position 1 and 3. timeGmres

is the GMRES duration in seconds, timeIlu is the ilu factorization duration

in seconds and iter is the number of GMRES iterations.
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Figure 7.4: GMRES and one Newton iteration duration comparison for

11 ilu types and positions 3 and 1; timeGmres for the position 3 (green),

timeGmres for the position 1 (red), timeGmres+timeIlu for the posi-

tion 1 (pink). The green and pink bars represent approximately the Newton

iteration duration for respectively the position 3 and 1.
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Figure 7.5: Comparison of the number of GMRES iterations for 11 ilu

types and positions 3 and 1; position 3 (green), position 1 (red).

Discussion and conclusions

For both positions 1 and 3, the methods 1, 2 and 4 turn out to be the most efficient.

We therefore stick to these three methods and we study them further in the following

experiments.

Experiment 3B - 1, 2, 3 position and 1, 2, 4 ilu type test

We test the positions 1, 2 and 3 and the ilu types 1, 2 and 4 from the previous

experiment to see which combination will be the most efficient2 to precondition our

system. The position 1 ensures a fast convergence of the GMRES process at each

iteration because the criterion (4.37) is well satisfied in this case. This position however

requires the ilu computation at each Newton iteration that is generally rather time

consuming. The position 2 reduces the computation of ilu to only once at each time

step but it also causes that the condition (4.37) is satisfied less strictly from the second

Newton iteration. Hence it needs more GMRES iterations to converge in the second

and the following Newton iterations. The position 3 requires only one computation of

ilu in the whole simulation but may lead to very small GMRES convergence rate since

the matrix A may be very different from the matrix Bi
k in some cases. Except from the

position, ilu type may also more or less influence the effectiveness of the preconditioner.

While the ilu type 1 leads to reliable3 preconditioning matrices, these may have a

2By efficient preconditioner we mean the preconditioner that causes a small GMRES duration.

This may be related to a small number of GMRES iterations or to a small duration of particular

GMRES iterations.
3By reliable split preconditioning matrices we mean the matrices that satisfy well the condition

(4.37).
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big number of nonzero elements. GMRES converges therefore in a small number of

iterations but these may be rather time-consuming. The ilu type 2 is a softer version

of the ilu type 1 - it produces sparser but less reliable preconditioning matrices. The

ilu type 4 produces sparse matrices that ensure a fast computation of each GMRES

iteration but may not ensure its fast convergence. It is therefore difficult to conclude

a priori which of the combinations will be the most effective to use in our system. We

make a series of tests to see the result.

Initialization

We run a series of simulation with the parameters

A = 90; % [dB]

f = 1000; % [Hz]

h_t = 0.1; % [ms]

N = [300,1000,2000];

T = 0.025; % [s]

tol_Newton = 1e-4;

tol_gmres = 1e-6;

position = [1,2,3];

% 1 - at each iteration

% 2 - at each time step

% 3 - once before the time loop

ilu_type = [1,2,4];

% 1 [L,U] = ilu(sparse(Matrix),struct(’type’,’ilutp’,’droptol’,1e-6));

% 2 [L,U] = ilu(sparse(Matrix),struct(’type’,’ilutp’,’droptol’,1e-4));

% 4 [L,U] = ilu(sparse(Matrix),struct(’type’,’nofill’));

%----GMRES comand in cochleaSolverCN_nonlin_M2.m--

[y,~] = gmres(B,d,[],tol_gmres,200,L,U,z1);

The value of A was chosen such that during the 25ms of the simulation we could observe

the behaviour at the linear and the nonlinear regime, with the emphasis to the nonlinear

regime. The linear regime is present at the time before 5ms. We make the test of the

position and the ilu type for three different numbers of N, ie for three different sizes of

the problem.

Results

The results are summarized in Figure 7.6.
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Figure 7.6: Comparison of positions 1, 2, 3 and ilu types 1, 2, 4 of the ilu

factorization from the point of view of the GMRES duration; position

1 (red), position 2 (blue), position 3 (green); ilu type 1 (solid line), ilu

type 2 (dotted line), ilu type 4 (dashed line). (a), (c), (e) show the duration

of each time step from 0 to 25ms, (b), (d), (f) show the number of GMRES

iterations for each Newton iteration at the fixed time t = 24ms.
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Discussion and conclusions

Let us first look at different ilu types (line styles) for a given position (color) in

Figure 7.6. Figures 7.6b, 7.6d and 7.6f show that the ilu type 4 induces generally the

largest number of iterations, while the ilu type 2 less and the ilu type 1 the least number

of GMRES iterations. This result has been expected, as we state in the introductory

part. Another result comes when observing the duration of a time step in Figures 7.6a,

7.6c and 7.6e. Data corresponding to the position 3 - where the duration of a time

step does not include the duration of an ilu process - show that even though the ilu

type 4 induces the most of GMRES iterations, these are much less time-consuming

than in the case of the other two ilu types. This confirms our initial hypothesis that

the ilu type 4 produces sparse but not too reliable preconditioning matrices. The new

information is that at the conditions that are set in this experiment, the ilu type 4

induces such number of GMRES iterations that it still holds the post of the most rapid

method. Another information can be extracted from the data plotted in 7.6a, 7.6c and

7.6e. The data corresponding to the position 1 reveal the approximate duration of the

ilu computation since this arises at each Newton iteration. The jumps in the curves

represent therefore the occurence of a new Newton iteration with the ilu computation.

It shows that ilu in the ilu type 4 is the least, in the ilu type 2 more and in the ilu

type 1 the most time-consuming operation. This result also confirms our expectations.

Let us now look at different positions for a fixed ilu type. Figures 7.6b, 7.6d and 7.6f

show that in the first Newton iteration the positions 1 and 2 induce the same number of

GMRES iterations and this is less than the number of iterations induced by the position

3 (except for the ilu type 4 in N = 2000). This result has been well expected as well as

the behaviour of the curves in the remaining Newton iterations. The most remarkable

point is related to the behaviour of the position 3 since the number of GMRES iterations

is in this case not very different from the number of GMRES iterations corresponding

to other two positions (particularly at the second Newton iteration, the green data pass

below the blue data for a fixed line type). This confirms that in the conditions set in

our experiment (particularly the h_t value) the ilu of the Matrix at the position 3

gives a relatively reliable preconditioning matrices for the GMRES. Figures 7.6a, 7.6c

and 7.6e show primarily that in the range of the GMRES iterations numbers that occur

in our experiment, the ilu computation is a more time-consuming operation than the

GMRES process. This fact is more significant for bigger N where we see a splitting

of curves to the red above the blue above the green ones. The most effective position

therefore shows to be the position 3 that induces more GMRES iterations than the

other ones but this number is in the current setting so low that the GMRES process is

less time-consuming than the ilu computation.
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Experiment 3C - 1, 2 and 4 ilu type test for the position 3

In the previous experiment we showed that the option where the ilu is computed

from A only once before the time loop and the resulting matrices are used as split

preconditioners for GMRES at each Newton iteration is a very efficient method to use

at least for the initial parameters that we have set. In this experiment we fix the

position 3 of ilu and we test the three ilu types 1, 2 and 4 that we used also previously.

Now, we will extend the initial parameters, namely the range of N from 300 up to

5000. For N = 300, 1000 and 2000 the data are plotted in Figure 7.6. Figure 7.6 shows

that the ilu type 3, even though it induces more GMRES iterations than the other two

ilu types, causes the fastest GMRES computation. This is caused by the sparsity of

the preconditioning matrices that are generated by ilu. The ilu type 2 induces less

GMRES iterations and a greater GMRES duration since the produced preconditioning

matrices are less sparse and more reliable. The ilu type 1 induces the smallest number

of GMRES iterations and causes approximately the same GMRES duration as the

method 2. This method produces the less sparse but the most reliable matrices. The

described results are valid for the three chosen values of N. Let us make an experiment

to see if this situation remains the same also for a grater N.

Initialization

We run a series of simulations with the initial parameters:

A = 90; % [dB]

f = 1000; % [Hz]

h_t = 0.1; % [ms]

N = [300,1000,1500,2000,2500,3000,3500,4000,4500,5000];

T = 0.025; % [s]

t_save = 24 % [ms]

tol_Newton = 1e-4;

tol_gmres = 1e-6;

position = 3;

% 3 - once before the time loop

method = [1,2,4];

% 1 [L,U] = ilu(sparse(Matrix),struct(’type’,’ilutp’,’droptol’,1e-6));

% 2 [L,U] = ilu(sparse(Matrix),struct(’type’,’ilutp’,’droptol’,1e-4));

% 4 [L,U] = ilu(sparse(Matrix),struct(’type’,’nofill’));

%----GMRES comand in cochleaSolverCN_nonlin_M2.m--

[y,~] = gmres(B,d,[],tol_gmres,200,L,U,z1);

and we save the time step duration, the GMRES duration and the number of GMRES

iterations at each Newton iteration at the time t_save.

Results

The results are summarized in Figure 7.7 and 7.8.
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Figure 7.7: The time step duration at 24ms for different N, the position

3 and the ilu types 1 (solid line), 2 (dotted line), 4 (dashed line).
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Figure 7.8: GMRES duration and number of GMRES iterations as a

function of N, for each Newton iteration: 1 (light green), 2 (dark green),

3 (cyan), 4 (blue) and for different ilu types: 1 (a)(b); 2 (c)(d); 4 (e)(f).

Discussion and conclusions

Figure 7.7 shows that in the range of N from 0 to 2500 the ilu types 1 and 2 induce

similar time step duration while the ilu type 4 induces a lower time step duration. The

method 4 is therefore the fastest method in this range of N . Starting from N = 3000

the situation changes rapidly. The time step duration becomes the lowest for the ilu

type 1 and the biggest for the ilu type 3. The latter one switches its role with the ilu

type 2 from N = 4000. The ilu type 1 remains the fastest method up to N = 5000.

The abrupt change in the behaviour of the curves for the ilu types 1 and 2 between

N = 2500 and N = 3000 is unexpected. To see better the behaviour of the ilu types,

we extracted from the time step duration only the GMRES durations at each Newton

iteration and we plotted them in Figure 7.8. Figure 7.8b shows that the number of

GMRES iterations induced by the ilu type 1 remains the same for each number of N

and at each Newton iteration. We suppose therefore that the drop between N = 2500

and N = 3000 is caused by the change in the structure of the preconditioning matrices.

We suppose that increasing N from 2500 to 3000, a set of matrix elements becomes

so small that they are excluded by the dropping criterion of the method. A similar

situation arises in the case of the ilu type 2. The principal difference from the ilu type

1 consists in the continuously increasing number of the GMRES iterations with the

increasing N. This causes that the drop in the GMRES duration between N = 2500 and

N = 3000 is lower than in the case of the ilu type 1. Figure 7.8d shows moreover that

the increase of the number of GMRES iterations is sharper from N = 3000 than to this

value. This is supposed to be the reason of the sharp increase of the GMRES duration

from N = 3000. The behaviour of the ilu type 4 is much different from the previous

two. The GMRES duration increases continuously from N = 300 to N = 5000 while the

number of GMRES iterations changes only a little. This can be well explained by the
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increase in the size of A with the growing N.

Figure 7.8 shows that the fourth Newton iteration for all of the three ilu types

exhibits no GMRES iteration but a nonzero GMRES duration. This is related to

the situation where the error of the Newton method is greater than the predefined

tolerance but the initial relative residual of the GMRES method is lower than the

GMRES predefined tolerance. The GMRES duration is therefore given only by the

duration of an initial computation of gmres before the iterations start.

The reason of the behaviour of ilu types 1 and 2 with the change of N from 2500 to

3000 remains unclear and should be studied in detail. For future uses we will opt for

the ilu type 4.

7.2.2 Experiment 4: classical vs. fixed Newton

In the Chapter 4 we stated that there exists another version of the Newton method,

the fixed Newton method, that omits the recalculation of the matrix Bi
k at each iter-

ation. The matrix Bk is calculated only once in the time step and this is before the

Newton iteration loop. We will test this method to see if this could be a good can-

didate to an effective method solving our equations. In the classical Newton method

we calculate the matrix Bi
k at each iteration and then we use the GMRES iterative

method to find the approximate solution of the newly formed linear problem. The

implementation of the fixed Newton is realized differently. Since we compute the so-

lution of the linear problem with the same matrix at each iteration of a time step,

we do not opt for an iterative solver. Instead, we calculate the LU decomposition of

Bk once in a time step and then we compute the approximate solution at each it-

eration using one forward and one backward substitution. The corresponding script

cochleaSolverCN_nonlin_M2_fixed.m with the implemented fixed Newton method

can be found in Appendix.

Initialization

We run a series of simulations with the parameters

A = 90; % [dB]

f = 1000; % [Hz]

h_t = 0.1; % [ms]

N = [300,500,1000];

T = 0.025; %[s]

method = [’classical’,’fixed’]

% ’classical’ - classical Newton

% ’fixed’ - fixed Newton

tol_Newton = 1e-4; % tolerance for the classical Newton method

tol_gmres = 1e-6; % gmres tolerance

tol_fixedNewton = 1e-4; % tolerance for the fixed Newton method
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and we save the time step duration and the number of Newton iterations at each time

step.

Results

The results are plotted in Figure 7.9.
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Figure 7.9: Classical (blue) versus fixed (red) Newton method. NW iter-

ation in (b), (d), (f) means Newton iteration.

Discussion and conclusions

Figures 7.9b, 7.9d and 7.9f show that the number of Newton iterations for the

fixed Newton method is equal to (mainly in the linear regime) or greater than (in the

nonlinear regime) for the classical Newton. We observe that this behaviour is the same

for all of the three situations with different N and confirms our hypothesis about the

slower convergence of the fixed Newton from the introductory part. Let us now extend

our focus to Figures 7.9a, 7.9c and 7.9e. We see (mainly in Figure 7.9a) that while

the blue curve exhibits visible jumps at the times when there is an increase in the

number of iterations, there is no such behaviour of the red curve. In other words, while

the dependence of the time step duration on the time for the classical Newton follows

the shape of the number of iterations dependence, for the fixed Newton this does not

occur. The dependence in this case exhibits only small variations that are much less

significant than in the case of the classical method. At the same time, the time step

duration for each value of N and for each time is smaller in the classical method than

in the fixed method and the difference between them increases with the N increasing.

Our interpretation of this behaviour is the following. The most expensive operation

in the fixed Newton method is the lu decomposition. Each iteration is then very fast,

hence the time step duration is practically equal to the duration of the lu process.

This causes that the duration of the time step for this method is almost constant in

Figures 7.9a, 7.9c and 7.9e. The fact that this dependence accepts bigger values when

we increase N is due to the increasing cost of the lu process with the increasing size of

the decomposed matrix. The classical Newton method behaves differently. The time

step duration is almost entirely due to the GMRES process duration. Hence increasing

the number of iterations we get an appropriately increased time step duration. Based

on Figure 7.9 we conclude that for the given tolerance tol the classical Newton is
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a faster method than the fixed Newton. The number of Newton iterations is indeed

so small that their summed duration does not exceed the duration of the lu process

performed in the fixed Newton. We showed that this result is valid for the number N of

300, 500 and 1000. The duration of the lu process is however generally more expensive

for bigger values of N . As well, we do not expect that the number of iterations in

the classical Newton would increase abruptly with increasing N . We suppose therefore

that the classical Newton method is more effective also for larger values of N than the

ones used in the current experiment.

7.3 Comparison of Method 1 and 2 with CN and final

optimization

In the previous two sections we analysed various versions of Method 1 and 2 of the

CN method from the point of view of their effectiveness. Here we will use these results

to compose Method 1 and 2 so that they be effective for the currently set parameters

and we will compare the final versions. First we will compare the number of iterations

and the time step duration and then we will study their convergence with decreasing

time step. The latter study will be extended to the four implicit methods that we take

into account in this work: IE, CN, BDF2 and BDF3.

In this chapter we use the following versions of Method 1 and 2:

Method 1 Version A - without extrapolation

Method 2 preconditioner choice: position 3, ilu type 4 - before the time loop

and the nofill version

Newton method choice: classical

7.3.1 Experiment 5: time step duration and number of iterations

comparison

We compare the number of iterations and the time step duration at particular times

for Method 1 and 2 with the CN algorithm. Based on the previous reasoning we suppose

that Method 1 involves more iterations than Method 2. The time step duration cannot

be estimated a priori.

Initialization

We run nine simulations with the following parameters:

A = [20,70,130]; % [dB]

f = [200,2000,15000]; % [Hz]

h_t = [0.5,0.05,0.005]; % [ms] time step for various frequencies

N = 1000;

T = 0.030; %[s]

t_save = [5,12,30]; % [ms] time of the data save

method = [1,2]; % method 1 or 2 for the CN algorithm
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tol_method1 = 1e-4; % tolerance for the method 1

tol_method2 = 1e-4; % tolerance for the method 2

tol_gmres = 1e-6;

%--- we have 9 simulations -----

% 1: 200Hz, 20dB

% 2: 200Hz, 70dB

% 3: 200Hz, 130dB

% 4: 2000Hz, 20dB

% 5: 2000Hz, 70dB

% 6: 2000Hz, 130dB

% 7: 15000Hz, 20dB

% 8: 15000Hz, 70dB

% 9: 15000Hz, 130dB

%----------------------------------------

and we save the number of iterations Niter and the time step duration tdT at times

specified by t_save. This is done for each of the nine simulations and for each of

the two methods. The values of t_save are chosen such that we could observe the

behaviour of the model in each experiment at various regimes. At 5ms the 20dB and

70dB simulations are in the linear regime and the 130dB simulation is in the nonlinear

regime. At 12ms, the 70dB simulation as well as 130dB are in the nonlinear regime

while the 20dB is still in the linear regime. At 30ms the situation is the same as at

12ms. We include this value into the t_save interval because the simulation is here

already stabilized at the amplitude given by the decibel number.

Results

The results are summarized in Figure 7.10.
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Figure 7.10: Comparison of Method 1 (blue) and 2 (red) of CN algorithm

at various times of the simulation. Time step duration tdT and number of

iterations of the method Niter. Simulation numbers: 1 - 200Hz, 20dB; 2 - 200Hz,

70dB; 3 - 200Hz, 130dB; 4 - 2000Hz, 20dB; 5 - 2000Hz, 70dB; 6 - 2000Hz,

130dB; 7 - 15000Hz, 20dB; 8 - 15000Hz, 70dB; 9 - 15000Hz, 130dB.

Discussion and conclusions

As we see in Figures 7.10b, 7.10d and 7.10f Niter of Method 2 is in all cases smaller

than Niter of Method 1: while Method 2 involves 1 − 4 iterations, Method 1 needs up

to 8 iterations in some cases4. This observation approves our hypothesis: Method 1

converges slower than Method 2. Concerning tdT , Figures 7.10a, 7.10c and 7.10e show

that the two methods are in most cases very close each other. Especially the simulation

5 at 5ms shows that six iterations of Method 1 and two iterations of the Method 2 have

similar time length. The duration of a specific number of iterations of Method 2 may

however differ from case to case. For example, the two iterations in the simulation 5 at

5ms take approximately 0.06 s longer time than the two iterations in the simulation 8

at 5ms. This is due to the GMRES process running at each iteration that may converge

differently.

Let us now discuss the changes of Niter in time (ie. for different values of t_save).

4By case we mean a particular simulation and a particular time value of 5ms, 12ms or 30ms.
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For 20dB - ie. the simulations 1, 4, 7 - we do not see a particular trend with increasing

time: Niter takes values between 5 and 8 for Method 1 and between 2 and 3 for Method

2. For 70dB and the frequencies 2000Hz and 15000Hz - ie. the simulations 5, 8 - we

see an increase of Niter for Method 2 when we pass from the linear regime of 5ms to

the nonlinear regime of 12ms. The phenomenon of the increase of Niter with increasing

time of the simulation for the classical Newton method has been also observed in

the Experiment 4, see Figure 7.9. Here we performed the experiment with the input

amplitude of 90dB that has the threshold time for the linear regime similar to our case

of 70dB. We can conclude therefore that there is an increase in Niter for Method 2

with the passage from the linear to the nonlinear regime. This point is however not

valid in the simulations 6 and 9 - with 130dB, 2000Hz and 130dB, 15000Hz. In these

two cases, since we are in the nonlinear regime at all three values of t_save, we would

expect a high number of iterations for Method 2. Figure 7.10 shows that this is true for

5ms but not for 12ms and 30ms. Here Niter falls to the number 1. To understand what

happens in these cases, we need to look at the particular solutions of the simulations.

This will be performed in the next experiment.

7.3.2 Experiment 6: convergence of the BM displacement computed

by implicit numerical methods with decreasing time step

In the preceding experiments we studied the effectiveness, i.e. especially the time

step duration of the two available methods Method 1 and Method 2. Up to now we

did not however study the accuracy of these methods. In the following experiment we

will compare the solutions obtained by the two methods with a reference solution. We

will extend our study to all the four implicit methods that we use in our work: IE, CN,

BDF2 and BDF3.

Initialization

We implement Method 1 and Method 2 to IE, BDF2 and BDF3 in the same manner

as to the CN algorithm, see scripts cochleaSolverIE_nonlin_M1.m,

cochleaSolverIE_nonlin_M2.m, cochleaSolverBDF2_nonlin_M1.m,

cochleaSolverBDF_nonlin_M2.m, cochleaSolverBDF3_nonlin_M1.m and

cochleaSolverBDF3_nonlin_M2.m. We run a series of simulations with the initial

parameters:

A = [20,70,130]; % [dB]

f = [200,2000,15000]; % [Hz]

h_t_200Hz = [0.5,0.1,0.05,0.01]; %[ms] time steps for 200Hz

h_t_2000Hz = [0.05,0.01,0.005,0.001]; %[ms] time steps for 2000Hz

h_t_15000Hz = [0.005,0.001,0.0005,0.0001]; %[ms] time steps for 15000Hz

t_save = 25; % [ms] time of the results saving

N = 1000;

T = 0.030; %[s]
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method = [1,2]; % Method 1 or 2

algorithm = [’IE’,’CN’,’BDF2’,’BDF3’]; % implicit numerical method

tol_method1 = 1e-4; % tolerance for the method 1

tol_method2 = 1e-4; % tolerance for the method 2

tol_gmres = 1e-6;

and we save the first N elements of the solution Zk+1 at the time given by t_save.

These elements correspond to the BM displacement at the this instant and we denote

this vector by U . Then we generate the reference solution with the use of the explicit

RK6 method and with the following parameters:

N = 1000; % number of discretization points in space

A = [20,70,130]; % [dB]

f = [200,2000,15000]; % [Hz]

h_t = 0.0001 % [ms] time step

method = RK6; % used numerical method

t_save = 25; % [ms] time of results saving

We save again the solution corresponding to the BM displacement at the time t_save

and we denote it by Uref .

Results

We plot the relative error of the BM displacement at the instant t_save, defined

by ∣∣U − Uref ∣∣/∣∣Uref ∣∣ against minus the decimal logarithm of the time step. We use

the minus sign in the scale of the x axis because we want that the time step decreases

from the left to the right. This plot is repeated for each value of A, f, method and

algorithm. The results are represented in Figure 7.11.
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Figure 7.11: Convergence of the BM displacement computed by IE (blue),

CN (red), BDF2 (green) and BDF3 (magenta) with decreasing time

step; input frequency of 200Hz (solid line), 2000Hz (dashed line),

15000Hz (dotted line)
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Figure 7.12: oscillations of the BM displacement at 25ms computed by

BDF3 algorithm at 20dB and 200Hz. Method 1 (blue), Method 2 (red)

and RK6 (yellow)

Discussion and conclusions

Figure 7.11 shows that in most cases of amplitudes and frequencies the rate of

convergence of the BM displacement computed by a numerical method to the reference

solution is corresponding to the order of the method. The BDF3 converges in the fastest

way, CN and BDF2 converge similarly but more slowly than BDF3 and IE converges

the most slowly. Two significant discrepancies are visible in Figure 7.11. The first one

concerns BDF3 mainly at 200Hz. The convergence curve exhibits severe jumps to large

values mainly at the time step 0.05ms. This behaviour is related to the occurence of

oscillations in the solution U and it is represented in Figure 7.12. This Figure shows

the BM displacement at 25ms. Further simulations showed that the oscillations arise

already at the beginning of the computation and that they are damped completely

after a period of time. The second discrepancy concerns the convergence of the BM

displacement for Method 2 at 130dB. Figure 7.11f shows that at 2000Hz and 15000Hz,

methods do not converge to the reference solution. Further computations show that

this is related to a specific behaviour: up to approximately 15ms the computation

proceeds in a standard way and then the solution becomes constant in time up to the

end of the computation (the solution is frozen in time). This phenomenon explains

the fall of the number of iterations for Method 2 at 130dB to 1 in the Experiment

5. The Newton method indeed finds the solution at the specified tolerance already in

the first iteration. Even after decreasing the GMRES tolerance to the value 10−20 the

same behaviour occurs. The discrepancy points out that the Method 2 may fail at the

nonlinear regime.

We conclude that the CN algorithm with Method 1 is the best for our uses since it
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converges well to the reference solution in all cases and at the same time, it computes

the BM displacement not very deviated from the reference solution also for big time

steps.

7.3.3 Experiment 7: tolerance adjustment for CN with Method 1

In the previous experiment we concluded that the most reasonable choice of the

implicit numerical method to implement into our program is CN with Method 1. Up

to now we used the tolerance value in the stopping criterion of this method equal to

10−4. This value may however be unnecessarily small and may therefore induce more

iterations than is really needed. In the following experiment we will adjust this value

and this will be done by watching the changes in approximate solutions obtained at

each iteration.

Initialization

We run two simulations with the following initial parameters:

A = [20,130]; % [dB]

f = 2000; % [Hz]

h_t = 0.05 %[ms]

t_save = 25; % [ms] time of the results saving

N = 1000;

T = 0.030; %[s]

method = 1; % method 1 or 2

algorithm = ’CN’; % implicit method

tol_method1 = 1e-4; % tolerance for the method 1

and we save the elements 1:N of the approximate solution Zi
k, denoted by U i, at each

iteration i and at the time level k corresponding to the time t_save. These elements

of the solution vector represent the calculated BM displacement. At the same time we

save the value of the relative error of the approximate solution ∣∣Zi
k−Z

i−1
k ∣∣/∣∣Z

i
k∣∣ at each

iteration i.

Results

BM displacements U i and relative errors of the approximate solutions for various

iterations i for 20dB and 130dB are represented in Figure 7.13.
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Figure 7.13: Convergence of BM displacement approximate solutions at

25ms for CN algorithm with Method 1. (a) and (c) show the BM displace-

ment U i for each iteration i as the function of the spatial coordinate x; in (a)

the plot is zoomed to the region of the curve that varies the most with increasing

iteration number. The remaining portions of the curves are close to zero and vary

only a little; (b) and (d) represent the relative error ∣∣Zi
k − Z

i−1
k ∣∣/∣∣Z

i
k ∣∣ of the ap-

proximate solution Zi
k at each iteration i. Each color corresponds to a particular

iteration. The zero-th iteration, i.e. the first guess of the solution, is marked by

blue, the first iteration is marked by red and then green, cyan, magenta, grey,

black and yellow.

Discussion and conclusions

Figures 7.13a and 7.13c show that starting from the first iteration, the BM dis-

placement change by very small amounts and primarily in the extrema portions of the

curves. While the system in the linear regime (i.e. at 20dB) needs seven iterations to

attain the desired tolerance, the system in the nonlinear regime (at 130dB) needs only

three. The tolerance of the method can be adjusted to a bigger value, for example the

value of 10−2 should give a satisfactorily good result.
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7.4 Interpolation to 3000 equidistant points

As we stated in the Goal of our work, we aim to express the solution of our sys-

tem (particularly the BM displacement) at 3000 points equidistantly distributed in the

interval [0,1]. In the program we work with the nonequidistant distribution of dis-

cretizing points and these are given by the gaussgrid function (see in Appendix). The

method that we will use to get the solution in equidistant points is the interpolation

by cubic spline, ie by a piecewise polynomial function where the polynomials are of the

order three and the function has continuous first and second derivatives in all internal

nodes. To see how the solution at 3000 equidistant points changes with the number of

spatial discretizing points N we make the following experiment.

7.4.1 Experiment 8: Convergence of the BM displacement with de-

creasing spatial step

Initialization

We run a series of simulations with the parameters

A = 90; % [dB]

f = [200,2000,15000]; % [Hz]

h_t_200Hz = 0.5; %[ms]

h_t_2000Hz = 0.05; %[ms]

h_t_15000Hz = 0.005; %[ms]

N = [300,700,1000,1500,2000,2500,3000,3500,4000,5000];

t_save = [5,25]; % [ms] time of the results saving

T = 0.030; % [s]

method = 1;

algorithm = ’CN’; % implicit method

tol_method1 = 1e-2; % tolerance for the method 1

x_noneq = gaussgrid(N); % nonequidistant discretization

x_eq = (1:3000)/3000; % equidistant distribution in [0,1]

and we save the solution at the given by t_save. The values of t_save are chosen such

that we could observe the behaviour of the system in the linear regime 5ms and in

the nonlinear regime 25ms. We take the first N elements that correspond to the BM

displacement and we interpolate them to 3000 equidistant points x_eq using interp1

built-in Matlab function with the option ’spline’ (for cubic spline) and ’extrap’

(to extrapolate at the end of the interval). The so-created solutions will be denoted

by Uint. The solutions that have been generated with N = 5000 will be referred to as

reference solutions and denoted by Uref .

Results

We plot the differences Uint−Uref for each value of N in a separate figure for each f

and t_save. The plots are displayed in Figures 7.14 and 7.15. Then we plot the relative

error ∣∣Uint − Uref ∣∣/∣∣Uref ∣∣ as a function of N for each frequency in Figure 7.16. Since
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for f = 15000Hz the Uint takes unreasonable large values at the apical end (mainly for

25ms), we exclude the first 4 points from the calculation of the relative error at this

frequency. As well, Figures 7.14c and 7.15c contain the plot only at 5:3000 equidistant

points.
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Figure 7.14: Difference of the interpolated solution at 3000 equidistant

points in [0,1] from the reference solution at 5ms (linear regime) and

for various values of N. Data corresponding to various values of N are plotted

with different colour - see Figure 7.16a for the colour correspondance to N.
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Figure 7.15: Difference of the interpolated solution at 3000 equidistant

points in [0,1] from the reference solution at 25ms (nonlinear regime)

and for various values of N. Data corresponding to various values of N are

plotted with different colour - see Figure 7.16b for the colour correspondance to

N.
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Figure 7.16: Relative error of the interpolated solution at 5ms (a) and

at 25ms (b) as a function of the number of spatial discretizing points

N for various frequencies: 200Hz (circles), 2000Hz (stars), 15000Hz

(triangles); 15000Hz without the most apical 4 points (crosses).

Discussion and conclusions

Figure 7.16 shows that the interpolated BM displacement converges to the reference

solution with increasing N . Comparing the two plots of 7.16, we see that the higher

frequency simulations exhibit a larger relative error for 5ms than for 25ms. This may

be partially caused by temporary oscillations arising around x = 0.4 at these frequencies.

The main cause is that in the linear regime the activated region of the BM is narrower

than in the nonlinear regime. The solution is here therefore more sensitive to the

changes in the spatial discretization.

It depends on our objectives what value of N we should choose in future simulations.

Big values of N assure the accuracy of the solution but cause that the simulation takes

very long time. Simulations with low value of N run fast but not so accurately.
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Conclusion

The main aim of our work was to implement a new numerical approach into the

model, namely the implicit numerical methods. We selected four of the most commonly

used implicit methods: implicit Euler (IE), Crank-Nicolson (CN), backward difference

formula of the second order (BDF2) and of the third order (BDF3) and we tested

them on the linear and the nonlinear versions of the model. In the linear case the

implementation of these methods is straightforward. We conclude that the CN method

convenes the most to our requirements since it combines the fast convergence rate for

decreasing time step and the small sensitivity of the solution to the change in the time

step (see Figure 6.1.) The use of implicit methods in the nonlinear case turned out to

be much more difficult. This difficulty is enhanced by the specific shape of the nonlinear

function: it exhibits a saturating property. This system leads to a system of nonlinear

equations at each time step. We proposed two ways how to solve this system and we

tested them from the the point of view of the efficiency and accuracy.

The two proposed versions of implicit methods are iterative and transform the

nonlinear system to a linear one at each iteration. The first version simply hides the

nonlinearity into the right hand side, hence each iteration is performed fast but the

method converges slowly. The other version is more sophisticated: it uses the linear

approximation of the nonlinear function at each iteration. This version computes each

iteration slowly but needs very few iterations to satisfy the criterion of the numerical

convergence. Our analysis showed that, for the initial parameters that we need in

simulations, the first, simple version is more effective. Even though it involves more

iterations, these are in sum less time-consuming than the few iterations of the second

method. Moreover, the first version turned out to be more reliable in the convergence.

While this one converged to the reference solution at each simulation, the second version

failed to converge at high input amplitudes. This happened at each case of the two

versions applied to the four implicit methods. Finally, we concluded that the first

version of the CN method would be the best choice to solve our nonlinear problem.

With the winning method we performed the test of the sensitivity of the solution

interpolated at 3000 equidistant point on the number of discretization points. We saw

a clear convergence to the reference solution. It depends therefore on our requirement

of the solution accuracy, what number of discretization points we opt for.

The result of our work is the implementation of an implicit numerical method that

allows us to increase the number of discretization points to a practically arbitrary value,

while preserving the stability of the computation. The interpolation of the solution to

3000 equidistant points gives us the values that serve as the direct input to the electrical

model. The connection between the mechanical and the electrical models is therefore

well established.
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The work on the improvement of the connection between the mechanical and the

electrical models is however not finished yet. There are several parts that need to be

revised. As an example, the model involves an inconsistency concerning the probability

of opening of mechanotransducer channels. This is in our model expressed as a function

of the BM displacement (see section 3.2) and of the hair bundle displacement (see

section 3.1). We aim to develop and to implement into the model a unified expression

of this term. The removing of this inconsistency will thus be the next stage of the work

on the model.
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Abbreviations

BM basilar membrane

TM tectorial membrane

CP cochlear partition

CPo characteristic position

MC mechanotransducer channel

RL reticular lamina

CF characteristic frequency

NT neurotransmitter

EE explicit Euler method

RK6 6-stage explicit Runge-Kutta method

IE implicit Euler method

CN Crank-Nicolson method

BDF2 backward difference formula of the second order

BDF3 backward difference formula of the third order
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Appendix: list of selected Matlab

scripts

1 f unc t i on [ t , y ] = c o ch l e aSo l v e r IE l i n ( t , y , h , . . .

2 N, L , U, P, in , AM, TMa, om, om2 , f a c )

3

4 t = t + h t ;

5 g f = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

6 RHS = P*( g f * h t+y) ;

7 y = U\(L\RHS) ;
8

9 end

10

11

12 f unc t i on [ t , y ] = coch l eaSo lve rCN l in ( t , y , y j , h t , . . .

13 N, L , U, P, in , AM, TMa, om, om2 , f a c )

14

15 g f1 = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

16 t = t + h t ;

17 g f2 = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

18 RHS = P*( y+h t /2*( g f1+gf2+y j ) ) ;

19 y = U\(L\RHS) ;
20

21 end

22

23

24 f unc t i on [ t , y ] = coch leaSo lverBDF 2 l in ( t , y2 , y1 , h t , . . .

25 N, L , U, P, in , AM, TMa, om, om2 , f a c )

26

27 t = t + h t ;

28 g f = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

29 RHS = P*( h t * g f+2*y2−1/2*y1 ) ;

30 y = U\(L\RHS) ;
31

32 end

33

34

35 f unc t i on [ t , y ] = coch leaSo lverBDF 3 l in ( t , y3 , y2 , y1 , h t , . . .

36 N, L , U, P, in , AM, TMa, om, om2 , f a c )

37

38 t = t + h t ;

39 g f = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

40 RHS = P*( h t * g f+3*y3−3/2*y2+1/3*y1 ) ;

41 y = U\(L\RHS) ;
42

43 end

44

45

46 f unc t i on [ t , y ] = cochleaSolverBDF 2 nonl in M1 ( t , y prev , y2 , . . .

47 y1 , h t , N, L ,U,P, in , AM, TMa, BMy, om, om2 , f a c )
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48

49 i t e r = 0 ;

50 t o l = 0 . 1 ;

51 e r r o r 1 = t o l +1;

52 t = t + h t ;

53 g f = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

54 z1 = y prev ;

55 whi le e r r o r 1 > t o l

56 i t e r = i t e r +1;

57 RHS = P*( h t * g f+2*y2−1/2*y1 + . . .

58 h t * non l i n e a r i t y ( z1 ,N,TMa,BMy) ) ;

59 y = U\(L\RHS) ;
60 e r r o r 1 = norm(y−z1 ) /norm(y ) ;

61 z1 = y ;

62 end

63

64 end

65

66

67 f unc t i on [ t , y ] = cochleaSolverBDF 2 nonl in M2 ( t , y prev , y2 , . . .

68 y1 , h t , N, A, L , U, in , AM, TMa, BMy, om, om2 , f a c )

69

70 i t e r = 0 ;

71 tol Newton = 0 . 1 ;

72 to l gmre s = 1e −4;

73 e r r o r 1 = tol Newton+1;

74 t=t+h t ;

75 g f = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

76 i = [N+1:2*N, 3*N+1:4*N] ’ ;

77 j = [2*N+1:3*N, 2*N+1:3*N] ’ ;

78 z1 = y prev ;

79 whi le e r r o r 1 > tol Newton

80 i t e r = i t e r + 1 ;

81 [ term1 , term2 ] = nonl interms (N, z1 ,TMa,BMy) ;

82 v = [ term1 ; term2 ] ;

83

84 Dh DY = spar s e ( i , j , v , 4*N,4*N) ;

85 B = A−h t *Dh DY;

86

87 z1TMdispl = z1 (2*N+1:3*N) ;

88 T1 = term1 .* z1TMdispl ;

89 T2 = term2 .* z1TMdispl ;

90 d = 2*y2−1/2*y1+h t * g f+h t * non l i n e a r i t y ( z1 ,N,TMa,BMy) − . . .

91 h t * [ z e r o s (N, 1 ) ;

92 T1 ;

93 z e r o s (N, 1 ) ;

94 T2 ] ;

95 [ y , ˜ ] = gmres (B, d , [ ] , to l gmres , 100 ,L ,U, z1 ) ;

96 e r r o r 1 = norm(y−z1 ) /norm(y ) ;

97 z1 = y ;

98 end

99

100 end
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101

102

103 f unc t i on [ t , y ] = coch leaSo lver IE non l in M1 ( t , y prev , y mass , . . .

104 h t , N, L , U, P, in , AM, TMa, BMy, om, om2 , f a c )

105

106 i t e r = 0 ;

107 t o l = 0 . 0 1 ;

108 e r r o r 1 = t o l +1;

109 t = t + h t ;

110 g f = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

111 z1 = y prev ;

112 whi le e r r o r 1 > t o l

113 i t e r = i t e r +1;

114 RHS = P*( g f * h t+y mass+h t * non l i n e a r i t y ( z1 ,N,TMa,BMy) ) ;

115 y = U\(L\RHS) ;
116 e r r o r 1 = norm(y−z1 ) /norm(y ) ;

117 z1 = y ;

118 end

119

120 end

121

122

123 f unc t i on [ t , y ] = coch leaSo lver IE non l in M2 ( t , y prev , y mass , . . .

124 h t , N, A, L , U, in , AM, TMa, BMy, om, om2 , f a c )

125

126 i t e r = 0 ;

127 tol Newton = 1e −4;

128 to l gmre s = 1e −6;

129 e r r o r 1 = tol Newton+1;

130 t=t+h t ;

131 g f = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

132 i = [N+1:2*N, 3*N+1:4*N] ’ ;

133 j = [2*N+1:3*N, 2*N+1:3*N] ’ ;

134 z1 = y prev ;

135 whi le e r r o r 1 > tol Newton

136 i t e r = i t e r + 1 ;

137 [ term1 , term2 ] = nonl interms (N, z1 ,TMa,BMy) ;

138 v = [ term1 ; term2 ] ;

139

140 Dh DY = spar s e ( i , j , v , 4*N,4*N) ;

141 B = A−h t *Dh DY;

142

143 z1TMdispl = z1 (2*N+1:3*N) ;

144 T1 = term1 .* z1TMdispl ;

145 T2 = term2 .* z1TMdispl ;

146 d = y mass+h t * g f+h t * non l i n e a r i t y ( z1 ,N,TMa,BMy) − . . .

147 h t * [ z e r o s (N, 1 ) ;

148 T1 ;

149 z e r o s (N, 1 ) ;

150 T2 ] ;

151 [ y , ˜ ] = gmres (B, d , [ ] , to l gmres , 100 ,L ,U, z1 ) ;

152 e r r o r 1 = norm(y−z1 ) /norm(y ) ;

153 z1 = y ;
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154 end

155

156 end

157

158

159 f unc t i on [ t , y ] = cochleaSolverCN nonl in M1 ( t , y prev , y mass , . . .

160 y j , h t , N, L , U, P, in , AM, TMa, BMy, om, om2 , f a c )

161

162 i t e r = 0 ;

163 t o l = 0 . 0 1 ;

164 e r r o r 1 = t o l +1;

165 g f1 = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

166 t = t + h t ;

167 g f2 = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

168 z1 = y prev ;

169 whi le e r r o r 1 > t o l

170 i t e r = i t e r +1;

171 RHS = P*( y mass+h t /2*( g f1+gf2+y j+non l i n e a r i t y ( y prev ,N,TMa,BMy) )+

h t /2* non l i n e a r i t y ( z1 ,N,TMa,BMy) ) ;

172 y = U\(L\RHS) ;
173 e r r o r 1 = norm(y−z1 ) /norm(y ) ;

174 z1 = y ;

175 end

176 end

177

178

179 f unc t i on [ t , y ] = cochleaSolverCN nonl in M2 ( t , y prev , y mass , . . .

180 y j , h t , N, A, L , U, in , AM, TMa, BMy, om, om2 , f a c )

181

182 i t e r = 0 ;

183 tol Newton = 1e −4;

184 to l gmre s = 1e −6;

185 e r r o r 1 = tol Newton+1;

186 g f1 = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

187 t = t + h t ;

188 g f2 = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

189 i = [N+1:2*N, 3*N+1:4*N] ’ ;

190 j = [2*N+1:3*N, 2*N+1:3*N] ’ ;

191 z1 = y prev ;

192 whi le e r r o r 1 > tol Newton

193 i t e r = i t e r + 1 ;

194 [ term1 , term2 ] = nonl interms (N, z1 ,TMa,BMy) ;

195 v = [ term1 ; term2 ] ;

196

197 Dh DY = spar s e ( i , j , v , 4*N,4*N) ;

198 B = A−h t /2*Dh DY;

199

200 z1TMdispl = z1 (2*N+1:3*N) ;

201 T1 = term1 .* z1TMdispl ;

202 T2 = term2 .* z1TMdispl ;

203 d = y mass+h t /2*( g f1+gf2+y j+non l i n e a r i t y ( y prev ,N,TMa,BMy) ) + . . .

204 h t /2* non l i n e a r i t y ( z1 ,N,TMa,BMy)−h t /2* [ z e r o s (N, 1 ) ;

205 T1 ;
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206 z e r o s (N, 1 ) ;

207 T2 ] ;

208 [ y , ˜ ] = gmres (B, d , [ ] , to l gmres , 100 ,L ,U, z1 ) ;

209 e r r o r 1 = norm(y−z1 ) /norm(y ) ;

210 z1 = y ;

211 end

212

213 end

214

215

216 f unc t i on [ t , y ] = coch leaSo lverCN nonl in M2 f ixed ( t , y prev , . . .

217 y mass , y j , h t , N, Matrix , in , AM, TMa, BMy, om, om2 , f a c )

218

219

220 i t e r = 0 ;

221 tol Newton = 1e −4;

222 e r r o r 1 = tol Newton+1;

223 g f1 = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

224 t = t + h t ;

225 g f2 = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

226 i = [N+1:2*N, 3*N+1:4*N] ’ ;

227 j = [2*N+1:3*N, 2*N+1:3*N] ’ ;

228 z1 = y prev ;

229 [ term1 , term2 ] = nonl interms (N, z1 ,TMa,BMy) ;

230 v = [ term1 ; term2 ] ;

231 Dh DY = spar s e ( i , j , v , 4*N,4*N) ;

232 B = A−h t /2*Dh DY;

233 [V,W,P] = lu (B) ;

234 whi le e r r o r 1 > tol Newton

235 i t e r = i t e r + 1 ;

236 z1TMdispl = z1 (2*N+1:3*N) ;

237 T1 = term1 .* z1TMdispl ;

238 T2 = term2 .* z1TMdispl ;

239 d = P*( y mass+h t /2*( g f1+gf2+y j+non l i n e a r i t y ( y prev ,N,TMa,BMy) ) + . . .

240 h t /2* non l i n e a r i t y ( z1 ,N,TMa,BMy)−h t /2* [ z e r o s (N, 1 ) ;

241 T1 ;

242 z e r o s (N, 1 ) ;

243 T2 ] ) ;

244 y = W\(V\d) ;
245 e r r o r 1 = norm(y−z1 ) /norm(y ) ;

246 z1 = y ;

247 end

248

249 end

250

251

252 f unc t i on [ t , y ] = cochleaSolverBDF 3 nonl in M1 ( t , y prev , y3 , . . .

253 y2 , y1 , h t , N, L , U, P, in , AM, TMa, BMy, om, om2 , f a c )

254

255

256 i t e r = 0 ;

257 t o l = 0 . 1 ;

258 e r r o r 1 = t o l +1;
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259 t = t + h t ;

260 g f = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

261 z1 = y prev ;

262 whi le e r r o r 1 > t o l

263 i t e r = i t e r +1;

264 RHS = P*( h t * g f+3*y3−3/2*y2+1/3*y1+h t * non l i n e a r i t y ( z1 ,N,TMa,BMy) ) ;

265 y = U\(L\RHS) ;
266 e r r o r 1 = norm(y−z1 ) /norm(y ) ;

267 z1 = y ;

268 end

269

270 end

271

272

273 f unc t i on [ t , y ] = cochleaSolverBDF 3 nonl in M2 ( t , y prev , y3 , . . .

274 y2 , y1 , h t , N, A, L , U, in , AM, TMa, BMy, om, om2 , f a c )

275

276 i t e r = 0 ;

277 tol Newton = 1e −4;

278 to l gmre s = 1e −6;

279 e r r o r 1 = tol Newton+1;

280 t=t+h t ;

281 g f = g ( t ,N, in ,TMa,AM,om, om2 , f a c ) ;

282 i = [N+1:2*N, 3*N+1:4*N] ’ ;

283 j = [2*N+1:3*N, 2*N+1:3*N] ’ ;

284 z1 = y prev ;

285 whi le e r r o r 1 > tol Newton

286 i t e r = i t e r + 1 ;

287 [ term1 , term2 ] = nonl interms (N, z1 ,TMa,BMy) ;

288 v = [ term1 ; term2 ] ;

289

290 Dh DY = spar s e ( i , j , v , 4*N,4*N) ;

291 B = A−h t *Dh DY;

292

293 z1TMdispl = z1 (2*N+1:3*N) ;

294 T1 = term1 .* z1TMdispl ;

295 T2 = term2 .* z1TMdispl ;

296 d = h t * g f+3*y3−3/2*y2+1/3*y1+h t * non l i n e a r i t y ( z1 ,N,TMa,BMy) − . . .

297 h t * [ z e r o s (N, 1 ) ;

298 T1 ;

299 z e r o s (N, 1 ) ;

300 T2 ] ;

301 [ y , ˜ ] = gmres (B, d , [ ] , to l gmres , 500 ,L ,U, z1 ) ;

302 e r r o r 1 = norm(y−z1 ) /norm(y ) ;

303 z1 = y ;

304 end

305

306 end

307

308

309 f unc t i on x = gaus sg r id (N, p l o t f l a g )

310

311 i f nargin <2,
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312 p l o t f l a g =0;

313 end

314

315 i f nargin <1,

316 N=500;

317 end

318

319 s t r ed =0.35;

320 s i g 1 =2*(1.2) ˆ2 ;

321 s i g 2 =2*(0.46) ˆ2 ;

322

323 xo=(1:N) /N;

324

325 ind=c e i l ( s t r ed /xo (1 ) ) ;

326 dx ( 1 : ind )=exp ( ( ( xo ( 1 : ind )−xo ( ind ) ) . ˆ 2 ) . / s i g 1 ) ;

327 dx ( ind+1:N)=exp ( ( ( xo ( ind+1:N)−xo ( ind ) ) . ˆ 2 ) . / s i g 2 ) ;

328 dx=dx/sum(dx ) ;

329

330 x (1 )=dx (1) ;

331

332 f o r i =2:N,

333 x ( i )=x( i −1)+dx ( i ) ;

334 end

335

336 i f ( x (N) > 1) ,

337 x (N) = 1 ;

338 end

339

340 dens=ones ( s i z e ( dx ) ) . / dx ;

341 Nmx=max( dens ) ;

342 Nmn=min ( dens ) ;

343

344 i f p l o t f l a g==1,

345 [ xm, im ] = min ( abs (x−0 .5) ) ;

346 Nmdl=dens ( im) ;

347

348 f i g u r e (2 ) ;

349 c l f ,

350 p lo t (x , z e r o s ( s i z e ( x ) )+Nmx/2 , ’ .w ’ , x , dens , ’−r ’ ) ,

351 ax i s ( [ 0 , 1 , 0 ,Nmx] ) ;

352 t ex t ( 0 . 2 , 0 .95*Nmx, [ ’Max . dens i ty = ’ , num2str (Nmx) ] )

353 t ex t ( 0 . 2 , 0 .85*Nmx, [ ’Mid . dens i ty = ’ , num2str (Nmdl) ] )

354 t ex t ( 0 . 2 , 0 .75*Nmx, [ ’Min . dens i ty = ’ , num2str (Nmn) ] )

355 y l ab e l ( ’ Point dens i ty ’ )

356 x l ab e l ( ’ F rac t i ona l d i s t anc e from stape s ’ )

357 end

358

359

360 f unc t i on [Y] = non l in (Y)

361

362 y1 = 0 .01139 ;

363 y2 = 0 .03736 ;

364 c1 = 0 . 7293 ;
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365 c2 = 1 . 4974 ;

366 b = 0 .30991 ;

367

368

369 Y=(1./(1+ c1*exp(−Y./ y1 )+c2*exp(−Y./ y2 ) ) )−b ;

370

371 Y=0.1*Y;

372

373

374 f unc t i on [ z ] = non l i n e a r i t y ( y , N, TMa, BMy )

375

376 fun = BMy.* non l in (y (2*N+1:3*N) ) ;

377

378 z = [ z e ro s (N, 1 ) ; . . .

379 − fun ; . . .

380 z e r o s (N, 1 ) ; . . .

381 TMa.* fun ] ;

382

383 end

384

385

386 f unc t i on [ term1 , term2 ] = nonl interms ( N, y ,TMa,BMy )

387

388 y1 = 0 .01139 ;

389 y2 = 0 .03736 ;

390 c1 = 0 . 7293 ;

391 c2 = 1 . 4974 ;

392

393 yTM = y(2*N+1:3*N) ;

394 der = 0 . 1* ( c1/y1*exp(−yTM./ y1 )+c2/y2*exp(−yTM./ y2 ) ) . / . . .

395 (1+c1*exp(−yTM./ y1 )+c2*exp(−yTM./ y2 ) ) . ˆ 2 ;

396

397 term1 = −BMy.* der ;

398 term2 = TMa.*BMy.* der ;

399 end
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