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Abstract: Under suitable conditions anodic metal oxidation leads to growth of
complex porous structures. The initiation and growth of these structures is an
interesting and challenging task for electrochemical modelling. One must identify
chemical reactions in a multi-phase framework, derive a proper partial differential
equations and solve them in time dependent domains. In this work, electrochem-
ical model for the oxide growth in nano scales is presented. Physically motivated
equations are formulated with precise mathematical meaning and existence of
solutions is studied. Electrostatic potential fulfilling high-field conduction law
and interfacial jump conditions is sought for. Numerical discretization is per-
formed with the use of finite element method and free boundaries are tracked
with characteristic level-set functions. Basic mechanism governing the growth of
porous structures is given and numerical experiments are explained on it’s basis.
This thesis presents novel contributions to the electrochemical and mathematical
picture of nanopores growth.
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Introduction

This master thesis is a compilation of results from different parts of physics,
chemistry and mathematics.

It deals with a problem of metal oxidation, i.e. formation of oxides (TiO2,
Al2O3, ZnO,MnO, . . .) on the surface of a corresponding metal. These oxides
could form a nice compact surface coating with thicknesses in range 1− 1000 nm
or it could develop into porous or tubular structures.

There are several physical and chemical models which capture such behaviour.
Current picture of these processes is by no means complete. History of this topic
and literature overview is given in first chapter. Applications of porous/tubular
structures, especially on titan dioxide TiO2 are discussed. We need to keep in
mind that diversity of possible applications should be a driving force for this
work.

In second chapter electrochemical model is examined in more detail. This
part is formulated in language of electrochemical engineering.

Third chapter considers mathematical point of view on the electrochemical
model. It is necessary to formulate equations in a precise way, study their prop-
erties (existence, uniqueness). This part is formulated in language of mathe-
matical analysis.

Abstract mathematical formulation is a good starting point before numerical
discretization is proposed. Keeping in mind what abstract mathematical prop-
erties belong to this problem one can implement finite element method to actually
solve it. In the fourth chapter all details about discretization, implementation
and convergence are given.

Fifth chapter shows results of numerical calculations. Convergence proper-
ties for a simple sub-problem are studied and general model is tested on several
geometries.

How to read this thesis / how is it written

As we stated, this is a compilation of results from different parts of mathematical
and physical sciences. In mathematics, it is recommended to communicate re-
sults in “definition-theorem-proof” style. In physical and chemical sciences more
“continuous stories” are told. Although we fully understand the advantages 1 of
mathematical approach, we choose physical way of presentation.

This text is written as a story. One task is followed by another and motiva-
tional link is given. On the other hand, we hope that mathematical exactness is
not suppressed when it is needed.

1clarity of presentation, minimum unnecessary information
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1. History and literature
overview

1.1 History and literature

In this section we briefly review current state of research in nanopores modeling.
Several terms (pore shape, dissolution rate, electric potential, ...) are not given
precise meaning here. We do so in consequent chapters.

Historically, first results of some porous oxide structures were reported on
aluminium. It dates back to [Keller et al., 1953]. Using optical and electron op-
tical micrographs they observed regular, almost cylindrical, parallel-sided pores,
perpendicular to the macroscopic surface. In additions, these pores formed close-
packed hexagonal, cellular structure. It was postulated in their consequent works,
that structure maintained itself during growth of oxide.

These observations triggered significant interest. The work on morphology and
mechanism of formation of porous anodic films on aluminium due to [O’sullivan
and Wood, 1970] is considered a classic reference.

We should stress here, that most of the pioneering work was done in the
scope of nanopores on alumina. Difference between nanopores and nanotubes
is rather subtle and many authors confuse the terminology. Think of nanopores as
of porous holes etched into an oxide. In this thesis only nanopores are simulated.

Figure 1.1: An example of experimentally grown nanotubes structure.
Taken from [Grimes and Mor, 2009].
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Figure 1.2: An example of experimentally grown nanopores structure.
Taken from [O’sullivan and Wood, 1970].

Another classical reference become [Parkhutik and Shershulsky, 1992]. With
approx. 650 citations 1 their model of nanopores on alumina is considered essen-
tial, even in modern-days. They make quantitative predictions based on mecha-
nism from [O’sullivan and Wood, 1970]. It is assumed, that pores are formed due
to enhanced electric field at any surface perturbation. This field boosts electro-
chemical dissolution of oxide. On the other hand, new oxide is formed also with
increased rate, so this counter-play determines final pore shape. They force the
shape of pore to be stationary and hemispherical 2. Aforementioned conditions
give linear dependence of pore radius on applied electric potential – in agreement
with experimental data. However, the exact form of dissolution rate vs. electric
field is questionable.

We should mention here the model of [Cheng, 2015]. It is of Parkhutik &
Shershulsky-type but geometry is not forced to be constant. They solve the
equations over oxide phase and move it’s boundaries accordingly. Discretized
mesh must be re-meshed and additional smoothing is implemented to suppress
its ragged shape. This smoothing could have crucial effect on pore stability.
Furthermore, current continuity is imposed in a way, which requires reconstruc-
tion of electric current from potential. It involves path integration and most of
computational time is consumed in this task.

1According to Google Scholar, April 2017.
2Note this condition carefully. In this thesis, similar model is used, but we do not force the

shape of pore to some predefined geometry and this has substantial effects.
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Next class of models are represented by [DeWitt and Thornton, 2014, 2016].
These models are very complex and solve spatio-temporal evolution of concen-
tration of several ions. Ions migrate under high-field conduction mechanisms and
reaction kinetics are prescribed. Nevertheless, the more complex model, the more
“free” parameters emerge. Many parameters are given poor interpretation and
cannot be experimentally measured.

We would like to focus on simpler models. Simple enough so all parameters
have reasonable explanation but complex enough so all the desired phenomena
(pore initiation, growth) are observable. Papers [Houser and Hebert, 2006, 2009,
Hebert and Houser, 2009, Hebert et al., 2012] constitute this group. Many results
in this thesis are built on [Houser and Hebert, 2006] electrochemistry. In their
work, geometry is forced to be constant and velocity of oxide boundaries are
computed from Laplace equation for potential and compared to velocity from
current continuity equation. Velocity profile is not the same at both interfaces,
which motivates them to incorporate plastic flow and stress generation into the
model.

Papers [Limonov, 2011, Sample and Golovin, 2006] study instability of oxide
surface. Their reaction kinetics are in addition curvature dependent, which is
the crucial factor. Linear stability analysis of the equations leads to Kuramoto-
Sivashinsky equation 3 with chaotic behaviour and short-wave stabilisation mech-
anism.

Let alone numerous experimentalists papers [Macak et al., 2007], where influ-
ence of electrolyte composition (pH, ion concentration, water content), tempera-
ture, age of electrolyte, potential sweeping rate, etc. are thoroughly studied.

Summing up, there are three basic types of models:

• interface stability,

• concentration evolution with detailed reactions,

• simplified models with fixed geometry.

1.2 Applications

Briefly speaking, the main feature of nanotubular/nanoporous structure from the
application point of view is its high specific surface area. This is obvious for
any catalytic reaction. By diminishing dimensions to the nanoscale, not only the
specific surface area increases significantly but also the electronic properties of
these oxides may change considerably.

Among all transition-metal oxides, TiO2 is the most extensively studied ma-
terial. It is non-toxic, environmentally friendly, biocompatible and corrosion-
resistant material. Titanium dioxide in all its crystal forms is a wide-bandgap
semiconductor. It can be used for splitting water into oxygen and hydrogen,
remediation of hazardous wastes (contaminated waters, toxic air contaminants)
[Ghicov and Schmuki, 2009], [Grimes and Mor, 2009].

UV light promotes electrons from the valence band to the conduction band.
Consequently, a semiconductor-environment interface is created and several highly

3Briefly speaking, it is an evolutionary equation ut +∇4u+∇2u+ 1
2 |∇u|2 = 0 with partial

time derivative, laplacian, biharmonic operator and gradient norm.
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reactive species are formed from, e.g. surrounding water. These species are able
to oxidise all organic material to CO2 and H2O. Apart from organic material de-
composition holes from the valence band and electrons from the conduction band
could react with H2O to form H2 and O2. This light-induced catalytic mechanism
is called photocatalysis.
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2. Electrochemical model

2.1 Basic motivational experiment

It all begins with a real physical experiment. Our experimental setup is usually
referred to as electrochemical anodization cell. It consists of electrolyte, (metal)
electrodes and an outer voltage supply. A simple sketch of such cell is shown in
Fig. 2.1. We will try to shortly explain the terms.

electrolyte

Ti

-

Pt

+

Figure 2.1: Sketch of a simple electrochemical cell.

Electrolyte is a substance, which becomes electrically conducting when dis-
solved into a polar solvent. Consider e.g. sodium chloride, NaCl dissolved in
water. Solution as a whole stays electrically neutral, but sodium cations Na+

and chloride anions Cl− could migrate in an applied external electric field and
facilitate the conduction mechanism.

In the scope of nanopores/nanotubes the electrolytes are composed of some
small portion (0.1−5 % wt 1) of HF,HNO3,H3PO4,NH4F soluted in water. Some
experimentalists use combination of these acids soluted in non-aqueous organic
polar substances (ethylene glycol, dimethyl formamide...), see [Paulose et al.,
2008].

Electrodes are pieces of metal sunk into the electrolyte. Minimal electrochem-
ical cell involves two electrodes. Positive anode and negative cathode. When
voltage of appropriate sign is applied, anode loses electrons as they move towards
outer supply and cathode. We call this reaction oxidation. This partial point-
of-view where we consider only one electrode with its surrounding electrolyte is
called (electrochemical) half-cell.

In this thesis, only half-cell related to the anode is studied. We are interested
in oxidation reaction which produces metal oxide. 2 If the anode is made of
aluminum, Al2O3 is formed, if its made of titan, TiO2 forms, etc.

1mass fraction percentage, i.e. mass of solute / (mass of solute + solvent) * 100
2Strictly speaking, it could happen, that no oxide is formed on the anode, for instance if

electrolyte dissolves oxide rapidly. However, in this work we always assume some (at least
nano-scale) oxide layer is present.

8



If we take a closer look at the surface of anode, we can distinguish three
substances - metal, oxide and electrolyte, and their respective interfaces. Interface
between metal and oxide will be abbreviated as MO interface and similarly for
oxide electrolyte as OE interface. This zoomed picture is shown in Figure 2.2,
and it will accompany us throughout whole thesis.

Ti TiO2 electrolyte
MO OE

Figure 2.2: Closer look at half-cell for anode made of titan.

2.2 Thin layer growth, high-field conduction law

In the half-cell experiment, the metal anode gets covered with thin oxide layer.
Several models for the metal oxidation were developed. Early theories consider

diffusion of uncharged/charged particles through the oxide film be the driving
mechanism.

So called Tammann Pilling Bedworth theory is based on Fick’s law of diffusion
and predicts square root dependence of oxide thickness on time. Improvement in
the form of Wagner ’s theory considers electro-diffusion of charged particles.

However, when film thickness is in order of nanometers different mechanisms
prevail. Most of the very thin film theories are based on [Cabrera and Mott,
1949].

Nice figure on validity of these theories is included, see Fig. 2.3. We can
see there, that Cabrera & Mott theory is valid for thicknesses below, to some
extent, say 1× 10−7m. This justifies our assumption, that metal oxidation in
the geometry of nanopores/nanotubes (or in general in nanoscales) is governed
by Cabrera & Mott theory. The same assumption is adopted in most of the
papers on nanopores modeling, for instance [Parkhutik and Shershulsky, 1992,
Cheng, 2015, Houser and Hebert, 2009, Hebert et al., 2012].

Their theory reveals mechanism that govern charged species transport through
thin oxide layer. These mechanisms could be from macroscopic point of view
seen as so called high-field conduction law. It is nothing but generalisation of well
known linear Ohm law of conductivity for very high electric fields (approx. in
order of volts per nanometers). According to [Houser and Hebert, 2009] high-field
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Figure 2.3: Validity of metal oxidation theories for various film thicknesses
(in nm) for NiO.

Taken from [Fromhold Jr, 1976].

conduction law says

ji = −Ciu
0
i

grad ϕ̄⏐⏐grad ϕ̄⏐⏐ sinh
(
ziaF

⏐⏐grad ϕ̄⏐⏐
RT

)
, (2.1)

where ji is the current density flux due to i-th ion in ampere per surface
area, zi is valence number of the moving ion, Ci concentration of the ion, u0

i

is some pre-exponential referential ion velocity, ϕ̄ is electrostatic potential (the
one which fulfils Maxwell electrostatic equations, it is denoted with upper bar,
because there will be another electrostatic potential in this thesis), a is migration
jump distance, R, T, F the gas constant, temperature and Faraday constant of
electrolysis respectively. Their values are included in the results section.

One can define non-linear conductivity, σo(ϕ̄)
3, such that the differential form

of the Ohm’s law j = σoE = −σo grad ϕ̄ is recognised. Simply with

σo := Ciu
0
i

1⏐⏐grad ϕ̄⏐⏐ sinh
(
ziaF

⏐⏐grad ϕ̄⏐⏐
RT

)
, (2.2)

ji = −σm,i grad ϕ̄. (2.3)

It is called generalised Ohm law, because the current density is function of
electric field in a form

j = A
sinh

(
B
⏐⏐grad ϕ̄⏐⏐)⏐⏐grad ϕ̄⏐⏐ gradϕ (2.4)

3We write the conductivity with lower index o to denote it is a conductivity of oxide layer.
There will be conductivities of metal and electrolyte also, denoted σm, σe
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which for low potential gradients (low electric field intensities) reduces to

j ≈ AB grad ϕ̄, for low electric fields, (2.5)

the well known Ohm law for conductivity AB. On the other hand, for very
high electric fields, the sinhx = 1

2
(expx − exp(−x)) ≈ 1

2
expx so the high-field

conduction is

j ≈ A

2

exp
(
B
⏐⏐grad ϕ̄⏐⏐)⏐⏐grad ϕ̄⏐⏐ grad ϕ̄, for high electric fields. (2.6)

We have to make a comment on validity of the high-conduction law as stated
here. The current density ji is due to the flux of charged ions inside the oxide.
Their flux is driven by the external electric field grad ϕ̄. This is valid only if
no concentration gradients of ions are present or the ions do not influence each
other, e.g. they do not effect the external electric field. In terms of electrochem-
ical potential we could say that the only difference in electrochemical potential
between MO and OE interface is due to the electrostatic contribution. More on
electrochemical potential in section 2.4.

Our quest is to start with some initial planar oxide layer thickness and let it
grow - observe the dependence of its thickness on time. So far we know, that i-th
specie is flowing (migrating) through thin oxide layer due to the high-field law
(2.1). We need to sort out, what species are migrating. Then we can discuss how
do each individual specie contributes to the interfacial (MO/OE) 4 movement.

Let us now think, for illustration, about the growth of TiO2 layer. The sim-
plest electrochemical picture is given in Figure 2.4.

According to the [Houser and Hebert, 2009] and many others, there are two
types of species migrating within TiO2. Oxide anions, O2−, are supplied from
dissociation of the electrolyte and from dissolution of the TiO2 layer.

They migrate towards the metal, to the MO interface or react at OE interface.
Titanium cations, Ti4+, vacant after ionisation in the metal, form new oxide when
they react with oxide anions. This reaction is written as

Ti4+ + 2O2− −−→ TiO2. (2.7)

It could happen at the MO interface or at OE interface.
In the Figure 2.4 possible reaction pathways are enumerated. Let us examine

them:

1 Ionised titanium cations meet oxide anions at OE interface. Oxide anions
were supplied from dissolution of the oxide layer, so the remaining Ti4+ are
ejected into electrolyte,

2 titanium cations react at MO interface with oxide anions supplied from
dissolution of oxide layer,

3 similar to 1 , but the source of oxide anions is in dissociation of electrolyte,

4 similar to 2 , but the source of oxide anions is in dissociation of electrolyte.

4Our MO/OE notation means, that the statement is valid for MO and/or OE interface.
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Ti TiO2 electrolyte

Ti4+
1

2

O2−3

4

e−

+-+-

MO OE

Figure 2.4: The simplest electrochemical picture.
There are Ti4+ (blue) and O2− (red) ions reacting. This reaction forms new oxide, TiO2,

and it could take place somewhere at MO or at OE interface.

This picture tells us qualitatively, where do ions come from and where do we
expect them to react. Nonetheless, quantitative description is a different question
addressed in section 2.4.

We denoted total current density j. There are several contributions to the
total current density and these contributions vary from place to place, interface
to interface. The current density j must have continuous normal component (we
will discuss this later) but its contribution don’t. Therefore, we have to be careful
when talking about the “current at OE or MO” interface. We must specify which
side of OE/MO is actually thought of.

Because we denoted the interfaces as OE and MO, ordering of letters naturally
define some orientation of the interface. OE means oxide to electrolyte, so the
natural orientation of normal would be pointing outside of the oxide, to the
electrolyte. If we write jOE+

O2− then we mean current due to O2− inside electrolyte,

right next to the OE interface. Writing jOE−
O2− current inside oxide is meant. If

no sign is denoted then the partial current has continuous component and both
limits are equal. Orientations of the interfaces are depicted in Figure 2.4 with
dotted lines.

2.3 Total current density and current continuity

Current density due to the flux of i-th ion is denoted ji. If there are several ions
flowing then total current density, i.e. flux of total charge could be written as

j =
∑
i∈ions

ji. (2.8)

Let us define a charge density ρ.
In terms of physics it is a limit of total charge contained inside some volume

V divided by measure of this volume |V| as this measure approaches zero, i.e.
ρ = lim|V|→0Q(V)/|V|.

In terms of mathematics, the charge measure is absolutely continuous with
respect to the volume measure and therefore due to the Radon-Nikodym theorem,
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see [Rudin, 1987] (Theorem 6.10), there exists an L1 function called charge density
ρ.

Having defined the charge density, let us write the law of conservation of total
charge for a fixed (no advection term) test volume in differential form. It states

∂ρ

∂t
= − div j, (2.9)

where j is the flux of the charge density here. It is by the definition the same
quantity as the total current density.

If we assume there is no region, where total charge density is being accumu-
lated/removed, then

∂ρ

∂t
= 0 ⇒ div j = 0. (2.10)

Total current density is divergence free. This equation is the most basic
equation in this thesis. We will refer to this equation as to the current continuity
equation. Total current density will have different forms and different boundary
conditions will be applied, but the structure of this equation will be preserved.

2.4 Butler-Volmer kinetic relation

We will follow the book [Newman and Thomas-Alyea, 2012].
One of the simplest relation between current density j and surface overpoten-

tial ηs is so called Butler-Volmer equation

j · n = i0

[
exp

(
αaF

RT
ηs

)
− exp

(
−αcF

RT
ηs

)]
(2.11)

where i0, αa and αc are kinetic parameters, namely the exchange current den-
sity, anodic and cathodic transfer coefficients. The parameter i0 depends on the
composition of the solution adjacent to the electrode, temperature and nature of
the electrode surface. More difficult is to define the surface overpotential ηs. Let
us quote the [Newman and Thomas-Alyea, 2012]:

“Much of the electrochemical literature is written in terms of electrical poten-
tials of various kinds, and it is necessary to set our minds straight on these matters
and to investigate how potentials might be used in electrochemistry. Much of
the confusion in electrochemistry arises from uncertainty in the use of
these concepts.”

If we say potential or cell potential we mean the difference of electrochemical
potentials of electrons between the electrodes divided by Faraday’s constant. We
will denote different types of potentials (not electrochemical!) with Φ and they
will always refer to some value, which could be measured with a voltmeter.

The electrochemical potential is a thermodynamic quantity which measures
how the internal energy changes when a substance is added/removed. In contrast
to pure chemical potential it does not omit the energy contribution by electro-
statics but it incorporates the electrostatic energy and the influence of electric
field on intermolecular forces.

Overpotential, in general sense, refers to the magnitude of a potential drop
caused by resistance to the passage of current. Potentials could be measured

13



only with respect to some reference state. In physics, the reference state is a
potential of an electron in a vacuum (infinitely far away), electrochemists use
reference electrode, an electrode designed so that its potential is well-defined and
reproducible. Let us revisit the Figure 2.1 and add reference electrode into it.
This setup is shown in Figure 2.5.

working electrode, Ti

reference electrode, Ti

cell potential

counterelectrode, Pt

Figure 2.5: Sketch of a simple electrochemical cell with the electrodes added.

A potential measured on high impedance 5 voltmeter between working and
counterelectrode is called cell potential. It is basically an overall potential con-
sisting of several contributions and drops within the whole electrochemical cell.

A potential measured on high impedance voltmeter between working and ref-
erence electrode of the same (!) material, surface roughness, temperature, pres-
sure, etc. is called the surface overpotential. It is very important that the refer-
ence electrode is made of the same material, with the same temperature, surface
properties, etc. Due to the different thermodynamic nature of the electrolyte
and metal electrode there always exists some (electrochemical) potential jump on
their interface. It is caused simply because the electrons have different electro-
chemical potential in metal and in electrolyte. They flow to the more favourable
environment and this flow is measured with a voltmeter as a potential difference.
If we use reference electrode with the same properties then these contributions
to the potential difference cancel and we see only the pure surface overpotential.

The overall (cell) overpotential is caused by several types of resistances to a
current. The surface overpotential represents the resistance due to electrochemi-
cal reaction6, ohmic overpotential represents the resistance to ionic or electronic
current and concentration overpotetial accounts for concentration gradients caus-
ing the potential drop.

In order to complete our picture we have to define the last source of potential
difference in electrochemical cell. If we place piece of tarnished silver into salt
water electrolyte and connects it with zinc, the silver will become shiny and zinc
will dissolve. It is the thermodynamic properties of silver, silver oxide, zinc, and
zinc oxide that determine that silver oxide is reduced spontaneously at the expense

5So negligible current flows through voltmeter.
6Electrochemical reaction has some inner rate at which it is advancing. This is exactly the

relation (2.11).
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of zinc. The current flowing between silver and zinc electrode won’t be zero.
We already discussed the reasons for this current (difference in electrochemical
potentials in different materials in contact). This could be easily measured. We
can connect electrodes to a potentiostat and adjust the potential difference to
some value when no current is flowing. This value of potential is called equilibrium
or open-circuit potential.

Our interest is not in full electrochemical cell as in Figure 2.5 but rather
the zoomed-in half cell, as in 2.2. The terminology and theory described in this
section could be used also in the half-cell case.

As depicted in Figure 2.6, imagine metal covered with an oxide layer and
surrounded with an electrolyte. If we were able to construct electrode of the same
material as the metal and place it close to the MO interface 7, into the oxide, and
we were able to measure the potential difference between these “electrodes” we
would measure the surface overpotential for the MO interface, ηs,MO. Similar idea
leads to the surface overpotential for the OE interface, ηs,OE. These overpotentials
are related to the currents passing through MO/OE interfaces via (2.11).

ηs,OEηs,MO

Figure 2.6: Electrochemical picture of the anode half-cell with probe elec-
trodes.

The potential distribution is shown in Figure 2.7.
Blue dash-dotted line represents the potential distribution when no outer po-

tentiostat is connected. The only potential jump is due to the open-circuit po-
tential, i.e. the different thermodynamic nature of metal, oxide and electrolyte.
These open-circuit potentials are denoted UMO and UOE.

If we now connect a potentiostat and apply a potential Φ0 we change the
distribution as shown with red solid line. Both potential jumps (overpotentials)
are increased with additional contributions. The surface overpotentials that were
virtually measured in Figure 2.7 represent the inner resistance of the chemical
reactions to the outer driving potential.

We should not forget, that the ohmic drop inside the oxide layer (the sloped
lines in Figure 2.7) is determined by the high-conduction law as discussed in
section 2.2.

7This is of course impossible. Physical dimensions of the oxide layer are in order of nanome-
tres, oxide is moreover a solid substance.

15



x

Φ
MO OE

Φ0

ηs,MO + UMO

ηs,OE + UOE

UOE

UMO

Figure 2.7: Potential distribution in our electrochemical picture.

2.5 Faraday’s law of electrolysis and interface

evolution

Once the current passing through interface is known we have to evolve it. Fara-
day’s law of electrolysis is nothing, but balance of mass and charge for charged
species reacting at an interface. It states

m =
QM

zF
, (2.12)

where m is mass of substance liberated/deposited in kilograms, Q is total
charge passed through interface in coulombs,M is the molar mass of the substance
in kilograms per mole, F = 96 485.332Cmol−1 the Faraday’s constant with the
meaning of electric charge per mole of electrons and z being the valency number
of ions of the substance, i.e. electrons transferred per ion.

Illustration of reacting ions is in Figure 2.8.

newly formed TiO2

2O2−Ti4+

Figure 2.8: Illustration of the Faraday’s law of electrolysis.
The charge of 4 electrons is being transported.

It is often more useful to use the law in differential form. For the simple
derivation of differential form divide the equation (2.12) with some small time
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step ∆t and some small surface area, ∆S to get

m

∆t∆S
=

Q

∆t∆S

M

zF
= j

M

zF
=

∆d∆Sρ

∆t∆S
= ρ

∆d

∆t
. (2.13)

Where j is the current density in coulomb per second per metre squared, ∆d
is thickness of newly formed planar(!) oxide layer in metres and ρ its density in
kilograms per metres cubed. Letting ∆t,∆S −→ 0 we have the differential form

d

dt
d(t) = j

M

zρF
(2.14)

For the specific case of titanium dioxide z = 4 and

d

dt
d(t) = j

MTiO2

4ρTiO2F
(2.15)

It was experimentally observed, that if we let the anodic oxidation happen,
the new oxide grows on both interfaces, MO and OE. However it does not grow
on both interfaces equally fast. Ratio of the speed of the growth of interfaces
could be measured in “simple” experiment. It is illustrated in Figure 2.9.

+ time

a b

Figure 2.9: An illustation of the transport number, tO.

Let newly grown oxide layers at MO and OE interfaces have thickness a and
b respectively. We can define ratio

r =
a

a+ b

which express, what fraction of newly grown oxide (on both interfaces) was grown
at MO interface.

Let us, in addition, define a number, tO ∈ [0, 1], we will call it transport
number of the oxygen ions. This number express what fraction of oxide anion
current jOE−

O2− is transported from OE to the MO interface. In the virtue of Figure

2.4 it is a ratio between current of O2− (red) due to the 2 + 4 and the total
current density jOE ·n. This number is usually stated in the papers on thin layer
oxide growth, see for example [Houser and Hebert, 2006]. Symbolically we write

tO =
2 + 4

jOE · n . (2.16)
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Natural question arises: what is the connection between both defined numbers,
tO and r? The only way, how MO interface can grow is due to incoming oxide
anions, 2 + 4 . The thickness a is therefore proportional to this current with
some faradaic constant, say C. This constant depends on mass and density of
oxide that is formed. On the other hand, the total thickness a+ b is proportional
to the total current density jOE ·n with the same constant C, because we assume
that the oxide with the same material properties is growing (and dissolving). We
can therefore write

r =
a

a+ b
=

C( 2 + 4 )

CjOE · n =
2 + 4

jOE · n = tO.

In other words, transport number and number r are both equal and express
how fast is growing MO interface comparing to how fast is growing OE interface.

We are now few steps from the formulation of how the thickness of oxide
film grows for given total current density, j. The last thing we need is so called
oxide current efficiency, denoted usually ε. Again, from our basic electrochemical
picture (Figure 2.4), total current density at OE+ 8 interface is due to flux of
oxide anions from dissociation in electrolyte and due to flux of ionised titanium
cations that come from MO interface. We can write

jOE+ = jOE+
O2− + jOE+

Ti4+
.

The oxide current efficiency is defined as

ε :=
jOE+
O2− · n

jOE+
O2− · n+ jOE+

Ti4+
· n =

jOE+
O2− · n
jOE+ · n . (2.17)

In other words, it is the ratio between the oxide anion current and the total
current density at OE interface.

Following the [Houser and Hebert, 2006] we will write the interface evolution
based on the oxide anion balance.

The OE interface evolution 9 is based on two contributions:

• negative contribution (growth of new layer). Oxide anions from dissociation
of electrolyte react at OE interface and create new oxide, pathway 3 ,

• positive contribution (layers being dissolved). The TiO2 is dissolved and
arosed oxide anions are transported to MO interface, pathway 2 .

Symbolically

vOE · n = C( 2 + 3 ).

We can express the pathway 3 with the help of current efficiency as

3 = εjOE+ − 4

8The (normal component of) total current density is continuous through interfaces, the plus
sign here is not necessary. However, decomposition of the total current density at OE+ side is
more simple, comparing to decomposition of the total current density at OE− side.

9 Our sign convention is, that positive interfacial speed means removal rate, i.e. the layer is
dissolved. Negative interfacial speed means addition of new layers.
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since oxide anion current at OE+ interface is by the definition of current
efficiency equal to εjOE+ (red lines in electrolyte in Figure 2.4) and we subtracted
the pathway 4 . With the help of this we can write OE speed as

vOE · n = C( 2 + 3 ) = C( 2 + 4 )− CεjOE+ = C(tOj
OE − εjOE+) =

= (tO − ε)jOE · n MTiO2

4ρTiO2F
(2.18)

where definition of transport number was used and actual values of constant
was taken from Faraday’s law of electrolysis (2.15).

The first term on the right hand side in previous relation is the removal rate
due to transport to MO interface, while the second term is growth rate due to
O2− dissociated in electrolyte.

The MO interface cannot dissolve (in this model), so the only mechanism
which evolve the interface is due to oxidation reaction of oxide anions that are
transported from OE interface. We can write Faraday’s law as

vMO · n = tOj
MO · n MTiO2

4ρTiO2F
. (2.19)

The equations (2.18) and (2.19) are very important. They substantially influ-
ence the growth process. However, it is hard to imagine how the model behaves
for different values of tO and ε. Let us examine some simple cases.

• Take tO = 1 and ε = 0. It means, that all of the O2− migrates towards
MO and no O2− is supplied from electrolyte. They must therefore come
from dissolution of TiO2. The OE interface is for given jOE advancing with
maximal possible speed towards MO. But MO is also moving with maximal
speed, since each O2− is transfered to MO interface where it forms the oxide.

• Take tO = 0 and ε = 1. No oxide ion migrates through oxide layer and all of
the current is due to formation in electrolyte. We can simply see, that OE
would advance in opposite direction as the previous case and MO interface
would not move at all. In other words, the oxide thickness increases.

• In general, whenever tO = ε the OE interface is not moving. Why? Because
each oxide ion which is supplied from water is transported through oxide
layer and vice versa, each oxide which is transported is the one, which was
formed in water.

Transport number for oxide anions is usually measured and given from some
experiments. Most of the literature consider transport number to be constant.
On the other hand, the oxide current efficiency, ε, changes substantially. It is a re-
sult of chemical reactions and their mutual competition. Any time there are some
electrochemical reactions they influence the current density as Butler-Volmer re-
lation suggests. Because the oxide anion current density at OE+ interface is a
result of some processes (dissociation) in electrolyte we can write Butler-Volmer
relation in form (2.11)

jOE+
O2− · n = i0,O2−

[
exp

(
αa,O2−F

RT
ηs,OE

)
− exp

(
−αc,O2−F

RT
ηs,OE

)]
, (2.20)
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where i0,O2− , αa,O2− , αc,O2− are kinetic coefficients related to the reactions at
OE interface and ηs,OE is our well known surface overpotenial at OE interface
defined in previous sections.

Titanium cation current density (at OE interface) is also a result of some
electric field induced effects and is here modelled as

jOE+
Ti4+

· n = i0,Ti4+

[
exp

(
αa,Ti4+F

RT
ηs,OE

)]
, (2.21)

where again, i0,O2− , αa,O2− are kinetic coefficients related to reactions at OE in
which Ti4+ participate. Note, that current density for titanium cations doesn’t
contain cathodic (negative) exponential term. This engender that for ηs,OE = 0
we have jOE+

Ti4+
·n ̸= 0. This assumption of nonzero titanium current even for zero

overpotential is in agreement with experimental data from [Vetter and Gorn,
1973].

Summing up - if we are given the transport number tO, surface overpotential
ηs,OE and total current density j we can compute from (2.20), (2.21) and (2.17)
the current efficiency. Plugging into (2.18) gives the OE interface evolution.
Similar procedure applies also for the MO interface.

We are now finally able to provide an overall picture for the electrochemical
theory of thin layer oxide growth in the following section.

2.6 Overall picture

Overall picture consists of several steps and physical mechanisms.

1 Identify ions migrating through the oxide layer. For the case of TiO2 these
are Ti4+ and O2−.

2 In order to find generalised conductivities σo,i(ϕ̄) we need to find the elec-
trostatic potential ϕ̃. From the high-field conduction law (2.1) and current
continuity (2.10) we have

div j = div

(∑
i∈ions

ji

)
= div

(∑
i∈ions

Ciu
0
i

grad ϕ̄⏐⏐grad ϕ̄⏐⏐ sinh
(
ziaF

⏐⏐grad ϕ̄⏐⏐
RT

))
= 0,

(2.22)

which is a highly non-linear second order elliptic partial differential equation
in an unknown quantity, potential ϕ̄.

3 Electrochemical reaction at the interfaces must be incorporated. This is
governed with the boundary conditions such as (2.11). They couple jumps
in potential at the interfaces ([[ϕ]]MO = ηs,MO+UMO, [[ϕ]]OE = ηs,OE+UOE)
with normal component of total current density. We have to find a potential
and total current density, such that jump conditions as in Figure 2.7 are
satisfied and such that the potential fulfils 2 inside the oxide domain.
Conductivities in metal and electrolyte are assumed constant and given
numbers, say σm, σe.
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This is a task of solving mixed system of equations and finding j, ϕ satisfying

div j = 0, (2.23)

j = −σ gradϕ (2.24)

with conductivity constant σm in metal, σo(ϕ) in oxide (varying in space)
and constant σe in electrolyte. We denoted this potential ϕ (without bar!)
because it is different function from potential from the step 2 , ϕ̄. Potential
ϕ is defined everywhere in metal, oxide and electrolyte and satisfies the
Butler-Volmer jump conditions. On the other hand, the potential ϕ̄ is used
solely to compute the non-linear conductivity of oxide, i.e. σo,i(ϕ̄). The
reason why the mixed system must be solved will become clear in following
mathematical chapters and is related to the jumps in solution, ϕ.

4 Having total current density j and overpotentials (jumps) computed from
step 3 we could plug into relations (2.18) and (2.19) to get production
rates. These are used to evolve the geometry of our problem and we could
start from the step 2 again.

21



3. Mathematical model

After describing the electrochemical model in the previous chapter, we could step
into more rigorous, mathematical formulation of the equations. In the beginning
of this chapter high-field conduction is formulated, followed by mixed formulation
which incorporates jumps in electrostatic potential. In the end, time is added to
our formulation and reaction equations evolving the interfaces are given.

Each section of this chapter formulates problem on the same bounded domain
(=open, connected), Ω ⊂ Rd, d ∈ N, d ≥ 1 of class C0,1. Let Γ be its Lipschitz
continuous boundary. Let ΓD and ΓN be disjoint parts of Γ such that |ΓD| ≠ 0
and Γ = ΓD ∪ ΓN .

Moreover let us define Ωm(t),Ωo(t),Ωe(t) ⊂ Ω such that Ω = Ωm(t) ∪Ωo(t) ∪
Ωe(t) and each subdomain have Lipschitz-continuous boundary (they evolve in
time, so regularity of domain depends on a way, how their time evolution is
defined). The time t ∈ I := [0, T ]. Additionaly, there are interfaces, let us call
them ΓMO(t) := ∂Ωm(t) ∩ ∂Ωo(t) and ΓOE(t) := ∂Ωo(t) ∩ ∂Ωe(t).

We also require ΓMO(t)∩ΓD = ΓOE(t)∩ΓD = ∅ and nΓMO
(t) ·nΓN

= nΓOE
(t) ·

nΓN
= 0 where both are defined. 1

An example of such domain Ω with its boundaries and interfaces is shown in
Figure 3.1.

ΓMO(t)nΓN

nΓMO
(t)

ΓOE(t)
nΓN

nΓOE
(t)

Ωe(t)

Ωo(t)

Ωm(t)
ΓN

ΓN

ΓD

ΓD

Figure 3.1: An example of Ω.
Dirichlet boundaries are shown with solid line, Neumann boundaries with dashed line and

the interface is shown with dotted line.

1 The first condition assures, that we do not need to care about compatibility of boundary
data prescribed at ΓD and jump condition prescribed at ΓMO/OE(t).
The second condition is less trivial. If a jump in ϕ is prescribed on a surface which is not

perpendicular to the boundary, then normal derivative of ϕ has some non-zero component in
direction nΓN

. This component should be also compatible with Neumann data prescribed on
ΓN . We again do not want to bother with compatibility conditions for this, so perpendicular
interface is chosen.
Bear in mind, that interface changes in time so it could happen nΓMO

(t) · nΓN
̸= 0. It is

necessary to enforce this condition in some post-processing step.
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The Figure 3.1 is nothing but our half-cell from previous chapter, 2.2, rotated
90 degrees counter-clockwise. Recall it’s composition from metal (Ti or Ωm),
oxide (TiO2 or Ωo) and electrolyte (Ωe).

In the following, several mathematical equations are formulated on the same
domain Ω.

3.1 High-field conduction law

Electrochemical motivation for this equation is summarised in Section 2.6, point
2 . Weak formulation for the equation (2.22) reads: find ϕ̄ ∈ V such that(

σ grad ϕ̄, grad v
)
L2(Ω)

= 0 (3.1)

for all v ∈ V where

σ = σm in Ωm(t),

σ = σo(ϕ̄) :=
∑
i∈ions

Ciu
0
i

1⏐⏐grad ϕ̄⏐⏐ sinh
(
ziaF

⏐⏐grad ϕ̄⏐⏐
RT

)
in Ωo(t),

σ = σe in Ωe(t),

V := {v ∈ H1(Ω); v = 0 on ΓD in the sense of trace}.
This high-field potential fulfils homogeneous Dirichlet boundary conditions,

but application of prescribed boundary conditions, say ϕ0 on ΓD is treated in a
classical way.

3.2 Mixed formulation for discontinuous solu-

tion

3.2.1 Problem definition

Electrochemical motivation for this equation is summarised in Section 2.6, point
3 . We would like to find a potential ϕ which is not continuous at the MO and OE
interfaces. Clearly, it is not possible to look for ϕ satisfying −∆ϕ = 0 in classical
sense. Additionally, for a weak formulation we would need (gradϕ, grad v)L2(Ω),
but it is not possible to interpret gradϕ either without a notion of distributions.

We could formulate our problem in a piecewise sense find ϕ : Ω −→ R such
that

− div(σm gradϕ) = 0 in Ωm(t), (3.2)

− div(σo(ϕ̄) gradϕ) = 0 in Ωo(t), (3.3)

− div(σe gradϕ) = 0 in Ωe(t), (3.4)

ϕ = f on ΓD, (3.5)

−σ gradϕ · nΓN
= 0 on ΓN , (3.6)

[[−σ gradϕ · nΓMO
(t)]] = 0 on ΓMO(t), (3.7)

[[−σ gradϕ · nΓOE
(t)]] = 0 on ΓOE(t), (3.8)

[[ϕ]] = gMO(−σ gradϕ · nΓMO
(t)) on ΓMO(t), (3.9)

[[ϕ]] = gOE(−σ gradϕ · nΓOE
(t)) on ΓOE(t). (3.10)

23



Function

σ =

⎧⎨⎩
σm if x ∈ Ωm(t),
σo(ϕ̄) if x ∈ Ωo(t),
σe if x ∈ Ωe(t).

Functions gMO and gOE are inverted Butler-Volmer relations (2.11). More specif-
ically, Butler-Volmer relations couple surface overpotential with current density
normal component. If we neglect the open-circuits potential (the constant contri-
butions to the jump at the interface, UMO/OE) we can find j · n = gMO/OE(ηs) =
gMO/OE([[ϕ]]).

The [[ϕ]] denotes a jump in a function ϕ defined as [[ϕ]] := ϕ+ − ϕ− with ϕ+

and ϕ− being one-side limits, i.e. ϕ+/−(x) := limε→0+/− ϕ(x+ εnΓMO/OE
).

3.2.2 Weak solution

An idea of a proper mixed weak solution will be derived. For that reason let us
suppose that functions ϕ, σm, σo(ϕ), σe, f, gMO,OE are sufficiently smooth.

For simplicity, we will derive a proper formulation neglecting Ωe, i.e. assuming
only a jump at MO interface. Additional jump condition will be added in a similar
way.

As usual in mixed formulation, define additional quantity

j := −σ gradϕ in Ωm(t) ∪ Ωo(t).

With the aid of this quantity equations (3.6), (3.9) become

j · nΓN
= 0 on ΓN , (3.11)

[[ϕ]] = gMO(j · nΓMO
) on ΓMO(t). (3.12)

Multiply equations (3.2), (3.3) with arbitrary test function v ∈ C∞
c (Ω), inte-

grate over Ωm(t),Ωo(t) and sum together leading to∫
Ωm(t)∪Ωo(t)

(div j)v dx = 0. (3.13)

In a similar fashion, multiply the definition of j (3.11) with another arbitrary
test function τ ∈ {f ;f ∈ (C∞(Ω))d;f ·nΓN

= 0} and integrate over Ωm(t),Ωo(t)
to get ∫

Ωm(t)∪Ωo(t)

j · τ dx−
∫

Ωm(t)

(−σ gradϕ) · τ dx−
∫

Ωo(t)

(−σ gradϕ) · τ dx = 0.

It was not specified yet, but naturally σ ̸= 0 2 in Ω and we divide by it.
Moreover, according to courageous assumptions on ϕ we can use Green’s identity

2This condition it not so trivial. Recall, that σ inside the oxide domain is given from the
previous solution ϕ̄ to the high-field conduction law. Inside metal domain we are fine, since
it is set to a given non-zero constant. Inside oxide domain we can see, that it is in the form
sinh(x)/x. This function has image [1,+∞], so lower bound is easily found.
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and arrive at ∫
Ω

σ−1j · τ dx−
∫

Ωm(t)∪Ωo(t)

ϕ div τ dx

+

∫
∂Ωm(t)

ϕτ · n∂Ωm(t) dS +

∫
∂Ωo(t)

ϕτ · n∂Ωo(t) dS = 0.

The boundaries ∂Ωm(t)∪∂Ωo(t) = ∂(Ωm(t) ∪ Ωo(t))+ΓMO(t)−ΓMO(t) where
minus sign formally represents the opposite orientation. The test functions τ
vanish on ΓN and on the ΓD we can set ϕ = f due to (3.5). Overall we have∫

Ω

(σ−1j · τ − ϕ div τ ) dx+

∫
ΓD

fτ · n dS +

∫
ΓMO(t)

[[ϕ]]τ · nΓMO
dS = 0. (3.14)

Plugging (3.9) into previous equality finishes this derivation. We have rewrit-
ten our problem into equations (3.13) and (3.14). This gives a clue about a weak
formulation. More legitimate definition is given in the following subsection.

Back to the jump at OE interface. Adding Ωe into the formulation is simple
and the only difference is in additional interfacial integral. The equation (3.13)
has integration over Ωe also and (3.14) becomes∫

Ω

(σ−1j · τ − ϕ div τ ) dx+

∫
ΓD

fτ · n dS +

∫
ΓMO(t)

[[ϕ]]τ · nΓMO
dS (3.15)

+

∫
ΓOE(t)

[[ϕ]]τ · nΓOE
dS = 0. (3.16)

3.2.3 Mixed weak formulation

Let Ω be domain defined in the previous section. The mixed formulation of
our problem is to find (j, ϕ) ∈ H ×Q, such that

a(j, τ ) + b(τ , ϕ) = F (τ ) ∀τ ∈ H , (3.17)

b(j, v) = 0 ∀v ∈ Q. (3.18)

The mappings a(·, ·) : H ×H −→ R and b(·, ·) : H ×Q −→ R are defined as

a(j, τ ) :=

∫
Ω

σ−1j · τ dx+ (3.19)

+ ⟨gMO(TrnΓMO
(j)),TrnΓMO

(τ )⟩ΓMO
+ (3.20)

+ ⟨gOE(TrnΓOE
(j)),TrnΓOE

(τ )⟩ΓOE
, (3.21)

b(τ , ϕ) := −
∫
Ω

ϕ div τ dx , (3.22)

with gMO : H−1/2(ΓMO) −→ H1/2(ΓMO), gOE : H−1/2(ΓOE) −→ H1/2(ΓOE) and
+∞ > sup

x∈Ω
σ(x) ≥ σ(x) ≥ inf

x∈Ω
σ(x) > 0 being bounded from above and from be-

low. The operator Trn is the normal trace operator from Theorem 1 in Appendix
A.
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Function spaces are denoted

H := H(div,Ω) = {τ ∈ (L2(Ω))d; div τ ∈ L2(Ω) in the distributional sense,

TrnΓN
(τ ) = 0},

Q := L2(Ω).

The non-trivial aspect of this problem is the second and third term in the
mapping a(·, ·). The structure of this functional motivates us to write

a(j, τ ) := a1(j, τ ) + a2(j, τ ),

a1(j, τ ) :=

∫
Ω

σ−1j · τ dx , (3.23)

a2(j, τ ) := ⟨gMO(TrnΓMO
(j)),TrnΓMO

(τ )⟩ΓMO
+

+ ⟨gOE(TrnΓOE
(j)),TrnΓOE

(τ )⟩ΓOE
(3.24)

and we will refer to the a2 as to the jump functional, since it reproduces the
conditions (3.9), (3.10). Clearly, the a1 is bounded and linear while properties of
a2 depends on non-linearities in gMO(·) and gOE(·).

On the right hand side there is a functional F ∈ H∗ defined as

F (τ ) := −⟨f,TrnΓD
(τ )⟩ΓD

, (3.25)

for f ∈ H1/2(ΓD). The continuity and boundedness of the normal trace oper-
ator, Trn, assures that F is indeed in the dual space to H .

3.2.4 Existence and uniqueness

Let us now prove the existence of solution to the problem (3.17), (3.18). The
proof is based on little adjustment of standard mixed Stokes problem proof, see
[Süli, 2013]. In the standard mixed proof all of the functionals are linear, while
here the jump functional a2 is not. This is dealt with the use of (generalized)
non-linear version of Lax-Milgram lemma, see Appendix A Theorem 3 3, instead
of its linear counterpart.

Let us define the closed linear subspace V ⊂ H where functional b vanishes,
i.e.

V := {v ∈ H ; b(v, q) = 0 ∀q ∈ Q}. (3.26)

In other words, the space V is a space of divergence-free functions. Choosing
a test function τ ∈ V ⊂ H we have from (3.18) and (3.17) simply

a(j, τ ) = F (τ ), ∀τ ∈ V . (3.27)

Because V is a Hilbert space equipped with scalar product and norm from
the space H we have trivial isometric embedding of V into H .

By the non-linear Lax-Milgram we have the existence of unique j0 ∈ V ful-
filling (3.27). This function j0 automatically satisfies (3.18). In more detail, the

3In some literature this is called just Fixed point technique - since the proof of this lemma
is based on straight use of Banach fixed point theorem.
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non-linear Lax-Milgram lemma requires a to be strongly monotone, see Ap-
pendix A, Definition 1, and Lipschitz continuous, see Appendix A, Definition
2. The functional a has an inner structure, so we need to examine it further.

Lipschitz continuity for a1 is trivial, since⏐⏐⏐⏐⏐⏐
∫
Ω

σ−1(j1 − j2) · τ dx

⏐⏐⏐⏐⏐⏐ ≤ 1

inf σ

∫
Ω

|(j1 − j2) · τ | dx ≤ 1

inf σ
∥j1 − j2∥L2∥τ∥L2 =

=
1

inf σ
∥j1 − j2∥V ∥τ∥V .

The last equality is important and follows from the fact, that space V is a
space of divergence free functions.

In order to satisfy the Lipschitz continuity of a2 we have to assume, that
gMO : H−1/2(ΓMO) −→ H1/2(ΓMO) and gOE : H−1/2(ΓMO) −→ H1/2(ΓMO) are Lip-
schitz continuous. Then (for MO interface, since OE is treated in the same
way)⏐⏐⏐⟨gMO(TrnΓMO

(j1))− gMO(TrnΓMO
(j2)),TrnΓMO

(τ )⟩ΓMO

⏐⏐⏐ ≤
≤
gMO(TrnΓMO

(j1))− gMO(TrnΓMO
(j2))


H1/2(ΓMO)

TrnΓMO
(τ )

H−1/2(ΓMO)

≤

≤ L
TrnΓMO

(j1)− TrnΓMO
(j2)


H−1/2(ΓMO)

TrnΓMO
(τ )

H−1/2(ΓMO)

≤

≤ LCTr∥j1 − j2∥V ∥τ∥V
due to the normal trace theorem and again, vanishing divergence of functions

from V . Because both, a1 and a2 are Lipschitz continuous so is their sum, a.
Strong monotone property of a1 is also simple,∫

Ω

σ−1(j1 − j2) · (j1 − j2) dx ≥ 1

supσ
∥j1 − j2∥2V .

Strong monotone property of a2 (and of gMO/OE in consequence) could be as-
sumed, but it is not necessary. We need only gMO/OE be monotone. Then the
whole functional is strongly monotone, i.e.∫
Ω

σ−1(j1 − j2) · (j1 − j2) dx+ ⟨g(TrnΓI
(j1))− g(TrnΓI

(j2)),TrnΓMO
(j1 − j2)⟩ΓMO

≥

≥
∫
Ω

σ−1(j1 − j2) · (j1 − j2) dx ≥ 1

supσ
∥j1 − j2∥2V .

In summary, assumptions of non-linear Lax-Milgram lemma are sat-
isfied for gMO/OE being Lipschitz continuous and monotone.

Now, we need to show the existence of unique ϕ0 such that (3.17) holds. For
the found and fixed j0 we are looking for ϕ0 fulfilling b(τ , ϕ0) = F (τ )− a(j0, τ )
for all τ ∈ H . Recall that b(·, ·) is a bounded bilinear functional on H ×Q and
the right hand side mapping L : τ ↦→ F (τ ) − a(j0, τ ) is a linear and bounded
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mapping from H to real numbers. In other words, our sub-problem could be
rewritten: find ϕ0 ∈ Q such that

b(τ , ϕ0) = L(τ ) ∀τ ∈ H . (3.28)

For these type of problems, where bilinear functional maps cartesian product
of two different Hilbert spaces, so called inf-sup condition on b must be fulfilled.
Fortunately, the functional b in our paper is a standard functional from mixed
Stokes problem and the validity of inf-sup condition could be found in most of
books on this topic, [Boffi et al., 2013], [Gatica, 2014]. Our only difference, the
non-linear jump functional doesn’t play any role here, since j0 is fixed and hidden
inside L.

Referring to the standard results we have the existence and uniqueness of
ϕ0 ∈ Q satisfying (3.28).

Summing up, we have shown the existence and uniqueness of j0 ∈ H satisfying
(3.27) and existence and uniqueness of ϕ0 ∈ Q satisfying (3.28). This piece-wise
strategy is put together and the couple (j0, ϕ0) is the desired solution.

3.3 Interface evolution

The problem of nanoporous structure evolution is a problem with evolving free
boundary. The basic physical mechanism which evolves the boundaries (inter-
faces) is metal oxidation, summarized in Section 2.6, point 2 . By the nature
of oxidation reaction the interfaces are not material surfaces, i.e. they are not
composed of the same physical species (molecules, atoms) at every time. This
determines the actual mathematical equation which is used to solve boundary
movement.

Let us think, that we are given scalar quantitity, co : [0, T ]× Ω −→ R, which
describes a “concentration” of oxide. 4 Advection-reaction equation (or one can
say: continuity equation with sources/sinks) for this quantity reads

∂co
∂t

+ div(uco) = rMO + rOE,

without giving it precise mathematical meaning for now.
The first term represents change in oxide concentration, the second term is re-

sponsible for advection in external velocity field u and the term on right hand side
is called reaction-rate term. It usually comes from chemical reactions occuring
inside Ω.

If we assume there are no advective fluxes (u = 0) and the only change in
concentration is due to source/sink right hand side term we have

∂co
∂t

= rMO + rOE.

Reaction rates could be present in whole domain Ω, on some k < d, k ∈ N
dimensional interfaces 5 or even at a single point. In this work k = d − 1 and

4This quantity will be formalised in the following section about level-set method. Unlike in
phase-field methods, it doesn’t describe real physical concentration of the oxide phase. It is
purely mathematical construction to tell if we are inside of the oxide or not.

5By the dimension of the interface we mean it’s topological dimension, i.e. dimension of the
interface as a smooth manifold.
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usually we have d = 2. This type of coupling is in literature often called 2d-1d
coupling. Vaguely speaking, we are interested in reactions occuring at MO and
OE interfaces so we can write

∂co
∂t

= rMOδΓMO
+ rOEδΓOE

for the evolution of oxide layer due to OE and MO interfatial reactions. The
δΓOE

is dirac delta measure concentrated at OE interface, similarly for the MO
interface. Reaction rates rMO, rOE are functions of normal component of electric
current given by the right hand sides in (2.19) and (2.18).

Mathematically more pleasing formulation will be clear in the following sub-
section.

3.3.1 Weak formulation

We will formulate this problem after we perform finite difference discretization
in time. This approach is more similar to the way we actually solve the equa-
tions. Additionally, fully coupled time problem would be very challenging, since
subdomains (and their regularity) change in time.

The discrete-in-time problem reads: for a given time step k, given previous
time step solution ck ∈ S, given total current density jk ∈ H(div,Ω) find ck+1 ∈ S
such that(

ck+1 − ck

∆t
, v

)
L2(Ω)

= ⟨rMO(j
k · n), v⟩ΓMO

+ ⟨rOE(j
k · n), v⟩ΓOE

∀v ∈ S,

(3.29)

with

S := {s ∈ H1(Ω); s = 0 on ΓD in the sense of trace}

and rMO : R −→ R, rOE : R −→ R are defined as

rMO(x) := xtO
MTiO2

4ρTiO2F
,

rOE(x) := x(tO − εk)
MTiO2

4ρTiO2F
.

We must be careful with duality pairing (between H−1/2 and H1/2) in (3.29).
Because rMO is linear (with respect to jk) we could define their action on a H−1/2

distribution due to the normal trace theorem (Green’s identity for H(div,Ω), see
Theorem 2 in Appendix A), i.e.

⟨rMO(j
k · n), v⟩ΓMO

:=

∫
Ωo

rMO(div j
k)v dx+

∫
Ωo

rMO(j
k) · grad v dx .

More problematic is the term rOE. Due to the current efficiency ε, this term
is highly non-linear. It is not possible to define non-linear mapping of a H−1/2

distribution. In order to ε(jk · n) make sense we must assume that jk · n ∈
L2(ΓOE).
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4. Numerical model

In this chapter, infinite-dimensional equations formulated above are discretized.
We are interested in a numerical solution to the problems: high-field conduction
law, continuity equation with jumps and inteface evolution. Each of the problem
is addressed in an individual section.

Generally speaking, spatial discretization is always treated with the use of fi-
nite element method, while temporal discretization is dealt with a finite difference
scheme.

4.1 Characteristic level-set method

Motivation for the use of a level-set method is straightforward. Interfaces MO
and OE must be tracked and evolved in time. The aim is also to approximate
interfacial integrals over ΓMO,ΓOE in (3.21).

One could use methods where interface is approximated with edges of triangles
(or faces of tetrahedra) - so called conforming mesh would need to be constructed.
This is a common approach in finite element method.

Another technique is based on so called characteristic level-set function. We
say, that φε ∈ C∞(Ω,R) is a characteristic level-set function of an interface
Γ, iff

Γ := {x ∈ Ω;φε(x) = K}, (4.1)∫
Ω

|gradφε|f dx −→
∫
Γ

f dS , as ε −→ 0+, ∀f ∈ H1(Ω) (4.2)

for a given K ∈ R. The property (4.1) is the standard level-set property. It
tells which “slice” of the function φε represents the interface. The property (4.2)
is connected with the adjective characteristic in the name of the method. This
function approximates the characteristic function of a domain, which boundary
is the interface Γ.

An example of such function with its derivative in one dimension is

φε :=
1

1 + ex/ε
, |gradφε| =

(φε)
2

ε
ex/ε. (4.3)

It is shown in Figure 4.1.
So far, only one characteristic funtion was discussed, called φε. Our interest is

in approximation of two interfaces and we need two characteristic level-set func-
tions. Let us call a function describing the MO interface φε,MO and a function
describing the OE interface φε,OE.

1 One-dimensional illustration of these func-
tions is in Figure 4.2. Note, that function φε,OE is not a smoothed characteristic
function of the oxide phase but of metal+oxide phase together. This way we can
represent characteristic function of the oxide phase as φε,OE − φε,MO.

With the use of the property (4.2) we can approximate the jump functional a2
(3.24). More precisely, for j, τ ∈ (H1(Ω))d the duality on ΓMO/OE is represented

1 We sometimes drop the ε subindex for brevity.
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Figure 4.1: An example of a one-dimensional level-set function.
It is clearly visible how ε −→ 0 approximates the characteristic function of (−∞, 0).

0 0.5 1 1.5 2

0

0.5

1

1.5 φOE, metal+oxide
φMO, metal

Figure 4.2: One-dimensional illustration of two (characteristic) level-set func-
tions.

The interfaces are shown as the dashed vertical lines.

via L2 scalar product (Theorem 1 in Appendix A), so we have

a2(j, τ ) =

∫
ΓMO

gMO(j · nΓMO
)τ · nΓMO

dS +

∫
ΓOE

gOE(j · nΓOE
)τ · nΓOE

dS

and using the definitions of normal vectors, i.e.

nΓMO
:=

− gradφε,MO

|gradφε,MO|
,

nΓOE
:=

− gradφε,OE

|gradφε,OE|
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and (4.2) one arrives at

a2,ε(j, τ ) :=

∫
Ω

gMO

(
j · − gradφε,MO

|gradφε,MO|

)
(τ · gradφε,MO) dx+

+

∫
Ω

gOE

(
j · − gradφε,OE

|gradφε,OE|

)
(τ · gradφε,OE) dx ,

with

a2,ε(j, τ ) −→ a2(j, τ ).

The level-set function isn’t used solely to approximate the jump functional
a2. The function (conductivity) σ is approximated also as

σε := σφε,MO
m σ(1−φε,MO)φε,OE

o σ(1−φε,MO)(1−φε,OE)
e .

With the aid of the approximated conductivity we can write approximation
to functional a1. Indeed

a1,ε(j, τ ) :=

∫
Ω

σ−1
ε j · τ dx .

The level-set approximate problem for mixed formulation is the same as in
(3.17), (3.18), but taking an approximation to a as

aε := a1,ε + a2,ε. (4.4)

The problem of interface evolution also contains dualities on the MO/OE
interfaces. We can utilize the level-set method to approximate these also. Thanks
to the property (4.2) dualities in (3.29) are approximated in a similar fashion as
above, i.e.

⟨rMO/OE(j
k · n), v⟩ΓMO/OE

≈
∫
Ω

rMO/OE

(
jk · − gradφε,MO/OE⏐⏐gradφε,MO/OE

⏐⏐
)
v
⏐⏐gradφε,MO/OE

⏐⏐ dx .
(4.5)

This (characteristic level-set) formulation has several advantages over the
methods mentioned before. The most functional aspect is the implicit descrip-
tion of interface ΓMO,ΓOE. Because the geometry changes and Ωm = Ωm(t),Ωo =
Ωo(t),Ωe = Ωe(t) are time-dependent domains, level-set function is evolved ac-
cordingly.

4.2 Finite element discretization

Spatial partial differential equations in this thesis are discretized with the use of
the finite element method, see [Brenner and Scott, 2007].

We restrict ourself to cases where dimension d = 2. Let Ω be the same as in
the previous section, let moreover Γ be its polygonal or polyhedral boundary and

Th a finite triangularization of Ω, i.e. Ω =
m⋃
r=1

Kr, Kr ∈ Th.
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We call Kr an element. In this thesis we use simplicial elements, in d = 2
triangles. The edges are denoted ei, i ∈ {1, 2, 3}. The index h is, as usual, the
minimum diameter of the elements of the decomposition. This index is sometimes
refered also as a discretization parameter. In the following sections, functions with
subindex h denote a Galerkin approximation to functions without the subindex.
For example, ϕh is a finite-dimensional Galerkin finite element approximation to
an abstract, infinite dimensional electrostatic potential ϕ.

Discretized equations are implemented in finite element library FEniCS 2017.1
[Alnæs et al., 2015].

4.3 Finite elements for high-field conduction law

The basic (infinite-dimensional) problem is stated in section 3.1. In this section
finite element approximation to the level-set function of the MO and OE interface
on time level k is denoted just φMO and φOE.

Finite element formulation of this problem reads: find ϕ̄h ∈ Vh such that(
σ(ϕ̄h) grad ϕ̄h, grad vh

)
L2(Ω)

= 0, ∀vh ∈ Vh (4.6)

with non-linear conductivity inside the oxide domain as

σo(ϕ̄h) :=
∑
i∈ions

Ciu
0
i

1⏐⏐grad ϕ̄h

⏐⏐ sinh
(
ziaF

⏐⏐grad ϕ̄h

⏐⏐
RT

)

and overall conductivity composed with the help of level-set function as

σε := σφMO
m σ(1−φMO)φOE

o σ(1−φMO)(1−φOE)
e .

Finite element space used

Vh := {v ∈ V, ∀K ∈ Th : v ∈ Pk(K)}

where k is the degree of finite element functions used (the same for all K),
i.e. Pk is the space of polynomials up to (and equal) degree k. We will refer to
this finite element space usually as CGk (continuous galerkin of degree k).

The function σ is a non-linear function of the finite element solution ϕh. We
are using classical Newton-Raphson method to linearize and solve the equations.
The system of linear equations is solved using direct PETSc LU solver.

4.4 Finite elements for mixed formulation for

discontinuous solution

The basic (infinite-dimensional) problem is stated in subsection 3.2.3. Finite
element formulation of this problem is a classical saddle-point problem: find
(jh, ϕh) ∈ Hh ×Qh such that

aε(jh, τh) + b(τh, ϕh) = F (τh) ∀τh ∈ Hh,

b(jh, vh) = 0 ∀vh ∈ Qh

(4.7)

(4.8)

33



with aε defined in (4.4), b and F the same as in (3.22) and (3.25).
We define

Rk(∂K) := {ϕ;ϕ ∈ L2(∂K);ϕ|ei ∈ Pk(ei),∀ei)}

where Pk are polynomials of degree ≤ k. It is a space of functions with
polynomial traces on edges of K.

Let us define also

Pk := (Pk(K))d,

P n,s
k := {p ∈ Pk(K);p · n ∈ Rs(∂K)}

as a vector valued polynomials and vector valued polynomials with polynomial
normal traces.

If we take a special case of vector valued polynomials of degree ≤ k with
polynomial normal traces of degree ≤ s we obtain so called BDM or Brezzi-
Douglas-Marini space. Formally

BDMk(K) := P n,k
k (K).

We construct finite dimensional approximations according to [Boffi et al.,
2013] and inspired with the more simple problem where the nonlinear jump func-
tional a2 = 0. Therefore

Hh := {τ ; τ ∈ H ; τ |K ∈ BDMk,∀K ∈ Th},
Qh := {v; v ∈ Q; v|K ∈ P k−1, ∀K ∈ Th}.

In other words, the standard mixed formulation of Laplace equation(a2 = 0)
is inf − sup stable for this choice of spaces.

Another possibility which satisfies discrete inf − sup condition is Raviart-
Thomas spaceRT k with discontinuous piecewise polynomials of order k or Brezzi-
Douglas-Fortin-Marini space BDFMk with discontinuous piecewise polynomials
of order k. Comprehensive analysis is found in [Boffi et al., 2013].

4.5 Finite elements and finite differences for in-

terface evolution

The basic (infinite-dimensional) problem is stated in section 3.3. The “concen-
tration” ck is here replaced with two characteristic level-set functions φMO, φOE.
This means, that two equations, each per level-set function, must be solved.

Finite element formulation for the discrete-in-space and discrete-in-time prob-
lem reads: for a given time step k, given previous time step solution φk

MO/OE ∈ Sh,

given total current density jkh ∈ Hh find φk+1
MO/OE ∈ Sh such that

1

∆t

(
φk+1
MO/OE − φk

MO/OE, vh

)
L2(Ω)

=
(
rMO/OE(j

k
h · gradφk

MO/OE), vh
)
L2(Ω)

(4.9)

for all vh ∈ Sh with

Sh := {v ∈ S,∀K ∈ Th : v ∈ Pk(K)}
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4.5.1 Reinitialization

The solution of (4.9) introduces spurious numerical artefacts. The property of
level-set functions (4.2) is getting lost and the functions are loosing it’s “sharp-
ness”, i.e. their ε-transition region is being diffused.

In order to address this unwelcome behaviour so-called reinitialization of level-
set functions was introduced in [Olsson et al., 2007], [Olsson and Kreiss, 2005].
It is basically just a sharpening procedure where the functions are focused back
to the initial state with well-controlled transition thickness region.

Assume we are given diffused level-set function of the MO/OE interface on
time-level k, denoted φk

MO/OE. Reinitialization consists of solving sub-time prob-

lems, i.e. finding (φk)j+1
MO/OE ∈ Wh such that

1

∆τ

(
(φk

MO/OE)
j+1 − (φk

MO/OE)
j, qh

)
L2(Ω)

−

−
(
nΓMO/OE

(φk
MO/OE)

j+1[1− (φk
MO/OE)

j+1], grad qh

)
L2(Ω)

=

= −ε
(
grad(φk

MO/OE)
j+1, grad qh

)
L2(Ω)

(4.10)

for all qh ∈ Wh with

Wh := {v ∈ H1(Ω),∀K ∈ Th : v ∈ Pk(K)}.

It is very important to note, that the normal vector nΓMO/OE
is kept constant

with respect to index j.
Reinitialization parameters are ∆τ , a sub-time finite-difference discretization

parameter and ε which determines the steady-state diffusion thickness of the
level-set. These parameters are determined by the minimal finite element mesh
cell diameter, h as

∆τ :=
1

2
h, ε := βh.

The parameter β is usually set to 1. It linearly scales the level-set thickness
with respect to the minimal cell diameter.

Illustration of the reinitialization effect on a diffused function is shown in
Figure 4.3.

Reinitialization would never stop for j −→ ∞. We have to terminate the
sub-time iteration for some j = jmax. This jmax is determined with so called
steady-state criterium. We define the steady-state with the help of functional

Rj(fh, qh) :=
1

∆τ

(
fh − (φk

MO)
j, qh

)
L2(Ω)

− (nΓMO
fh(1− fh), grad qh)L2(Ω)−

− ε (grad fh, grad qh)L2(Ω) .

It is just rearranged formulation (4.10). Evaluating the functional R on each
basis function of the space Wh (in both of its arguments) gives a matrix Rmn.
We say, that j = jmax if Rj

mn


∞ < εreinit. (4.11)
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Figure 4.3: Focusing effect of the reinitialization.
One-dimensional initially diffused function is being focused to ε thickness. Several

sub-time steps j are shown with solid lines. Approaching the steady state is clearly

visible.

Parameter εreinit is usually set to 10−5 if not specified otherwise.
We will conclude this section with a nice application of reinitialization to

the advection equation. Consider one-dimensional example where characteristic
function of some interval is advected in constant velocity field. Solving the ad-
vection equation (details are not important here, we want just to demonstrate
the reinitialization effect) gives profiles for several times as in Figure 4.4.
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Figure 4.4: Advection of a characteristic function without (top) and with
(bottom) reinitialization.

Notice how reinitialization maintains the thickness of the transition region of the

characteristic function.
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4.6 Overall solution strategy

Figure on the overall numerical picture is given in 4.5.

Initial state, positions of interfaces φk
MO/OE are given.

Reinitialize φk
MO/OE.

Solve (4.10) until a steady state defined in (4.11) is reached.

High-field conduction law.
Solve (4.6) for conductivity in oxide layer, σo(ϕ

k
j ).

Mixed formulation.
Solve (4.7) and (4.8) for jkh and ϕk.

Interface evolution.
Solve (4.9) and find position of OE and MO
interface in next time step, i.e. φk+1

MO/OE.

n
ex
t
ti
m
e
st
ep

Figure 4.5: Overall numerical scheme.
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5. Numerical tests

In the previous chapter several sub-problems were studied. We formulated high-
field conduction law, mixed formulation for a solution with jumps and interface
evolution with reinitialization.

Mixed formulation with electrochemically motivated non-linear jumps is the
most novel contribution. For this reason we devote a big part of this chapter to
the study of convergence of this formulation.

Later, we are able to connect each sub-problem into the overall model for the
oxide growth.

5.1 Mixed formulation for discontinuous solu-

tion

Several numerical tests should be carried out for the level-set discrete problem
(4.7) and (4.8). The aim of this section is to study the mixed formulation re-
gardless of it’s application in electrochemistry. We will find a potential with
prescribed jump at an implicitly given interface.

Finite element mesh for one-dimensional examples is just a uniform partition-
ing of interval (0, 1).

5.1.1 One dimension

Constant jump in one dimension

Consider a one-dimensional case Ω = (0, 1),ΓD = {0, 1},ΓN = ∅ where g(·) =
g0 ∈ R is a constant function and there is only one interface, ΓI = {0.5}.

Dimensionless boundary conditions and data are set to

ϕ(0) = 1, ϕ(1) = 0, σ1 = 10, σ2 = 1 (5.1)

with σ1 and σ2 being “conductivities” in the subdomains of Ω.
The sharp-interface (zero thickness of transition region, or in our case ε = 0)

classical solution in one dimension with constant jump could be easily found.
Indeed, one can check that the exact solution for the problem in subsection 3.2.1
is

ϕ(x) =

{
2
11
(g0 − 1)x+ 1, for x ∈ [0, 1/2),

20
11
(g0 − 1)(x− 1), for x ∈ (1/2, 1],

where g0 is the discontinuity and the function j = −σ dϕ
dx

is constant for all
x ∈ (0, 1)

j(x) =
20

11
(g0 − 1).

These exact solutions will be used as a referential solution for error computa-
tion.
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For the level-set discrete problem we choose a characteristic level-set function
φε in form

φε :=
1

1 + e(x−1/2)/ε
.

In this example the level-set function is not reinitialized, therefore the ε is
just a parameter in the equation above. Here, it is not a parameter of the reini-
tialization.

The discontinuity is imposed at x = 1/2. In this special case the jump func-
tional a2 takes simple form

a2,ε(jh,ε, τ) :=

∫
Ω

g0τ gradφε dx .

For the one-dimensional case the finite element space BDMk reduces simply
to CGk element, i.e. Lagrange element of polynomial degree k.

To give a picture how the exact solution and level-set discrete solutions looks
like Figures 5.1 and 5.2 are included.
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Figure 5.1: Exact and approximate solutions for ϕ.
Approximate solutions ϕh,ε where the epsilon parameter was set as ε = h, finite element

spaces used are CG1 ×DG0 and the jump g0 = 1/2. Several mesh parameters h are

plotted in the right figure.

More accurate convergence results are obtained in terms of (absolute error)
quantities

eϕ := ∥ϕ− ϕh,ε∥L2 , ej := ∥j − jh,ε∥L2 . (5.2)

Obtained convergences are plotted in Figure 5.3.
The convergence behaviour for ϕh,ε and jh,ε in this simple case is independent

of the order k of utilised elements CGk ×DGk−1.
For the jh,ε, the order of convergence is found to be approximately 1. For

potential ϕh,ε the order of convergence is found to be 1/2. We present here a
simple reasoning for this behaviour.
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Figure 5.2: Exact and approximate solutions for j.
Approximate solutions ȷh,ε where the epsilon parameter was set as ε = h, finite element

spaces used are CG1 ×DG0 and the jump g0 = 1/2. Several mesh parameters h are

plotted in the right figure.
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Figure 5.3: Convergence of approximate solutions for one dimensional con-
stant jump with ε = βh.
Convergence for various β parameters is shown on left. Several orders k of finite element

spaces CGk ×DGk−1 are depicted on the right. The order of convergence p of ϕh,ε is

approximately the same for all included cases, e.g. for β = 4, k = 1 we found

p = 0.519± 0.003. The order of convergence r for jh,ε is also approximately the same for

all included cases, and e.g. for β = 4, k = 1 we found r = 1.03± 0.01.
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Figure 5.4: Convergence of approximate solutions for one dimensional con-
stant jump with ε = hq.

Convergence for various q parameters is shown. Finite element spaces used are

CG1 ×DG0.

First of all, we have to understand the approximation properties of the level-
set as a smooth function. Indeed we can compute

χ(0,1/2) − φε

2
L2 =

1/2∫
0

(
1− 1

1 + e
x−1/2

ε

)2

dx+

1∫
1/2

(
1

1 + e
x−1/2

ε

)2

dx =

1

2
+ 2ε log 2 +

ε

1 + e
1
2ε

+
ε

1 + e
−1
2ε

− ε(log (1 + e
−1
2ε ) + log (1 + e

1
2ε )).

For ε −→ 0+ the constant term 1/2 cancels with the term −ε log (1 + e
1
2ε )

and all the remaining terms are of leading order O(ε). That finally impliesχ(0,1/2) − φε


L2 is of order O(ε1/2).

This means, that if the mesh is refined enough, i.e. there are sufficiently many
nodes within the interface region, convergence is of order 1/2. No discretization
effect is present. This is mimicked in Figure 5.3 on left top. Increasing the β
parameter one gets more refined mesh but convergence doesn’t improve. We are
limited with the smooth approximation properties.

If we set ε := βhq we expect the convergence to improve with increasing
q. This is in agreement with Figure 5.4 but only for limited q. For q > 1 the
convergence doesn’t improve and is of order approx. 1/2. This fits nicely into
our picture. For q < 1 the level-set thickness is much smaller than mesh element
diameter h and the error comes from the interpolation of discontinuity over one
element.

According to [Boffi et al., 2013] the convergence for a Poisson equation in
mixed setting with (BDMk,DGk−1) is of order O(hk). On the other hand, our
simple 1D example is exactly solvable with piece-wise affine function (in sharp
interface limit). It means, that the finite element discretization error is at the
level of machine precision (≈ 10−16).

We can conclude this study with observation, that no matter what order of
spaces k is used the best achievable convergence for ϕh,ε in this example is of
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order 1/2 and for jh,ε is of order 1. Moreover, this convergence rate limit is due
to level-set approximation properties.

5.2 Porous structure growth

5.2.1 Understanding the basic mechanism

We can finally step back to the full electrochemical problem after a “little excur-
sion” to the mathematical and numerical world.

Let us recall the motivation again. When a metal piece (we talked mostly
about titan, Ti) is sunk into an electrolyte and external potential difference is
applied we can see new oxide layer being formed. Zoomed experimental setup
would after some time looks like Figure 2.2. This picture shows a planar geome-
try and so far only planar geometry was discussed. It is postulated in the paper
[Parkhutik and Shershulsky, 1992] (and many other derived papers) that nonpla-
nar geometries could lead to the growth of so called porous or tubular structure
during the anodic oxidation.

The basic mechanism for the growth of non-planar geometries is the increase
in electric field in the vicinity of the perturbed geometry. Roughly speaking,
increased electric field stimulates electrochemical reaction on the interface and
total current density j is also increased. Total current density is composed of
contributions from metal and oxide ions due to (2.17). Knowing total current
density we can add new oxide (or dissolve the oxide) according to (2.18) for the
OE interface. Let us study this relation in detail.

We denote here jOE · n =: j,vOE · n =: v for brevity. With the use of (2.20)
and (2.21) we can write total current density as a function (this function will be
denoted j̃) of the surface overpotential

j = j̃(ηs,OE) = i0,O2−

[
exp

(
αa,O2−F

RT
ηs,OE

)
− exp

(
−αc,O2−F

RT
ηs,OE

)]
+

+ i0,Ti4+

[
exp

(
αa,Ti4+F

RT
ηs,OE

)]
. (5.3)

With the use of (2.20) and (2.21) we can also write the current efficiency as
a function of the surface overpotential,

ε = ε̃(ηs,OE) =
i0,O2−

[
exp

(
αa,O2−F

RT
ηs,OE

)
− exp

(
−αc,O2−F

RT
ηs,OE

)]
j̃(ηs,OE)

and inverting the relation j̃ and plugging into ε̃ we finally get the current
efficiency as a function of total current density, j,

ε = ε̃(j̃−1(j)).

This simple arithmetic allows us to write the OE evolution speed as a function
of the total current density

v = v(j) = (tO − ε̃(j̃−1(j)))j
MTiO2

4ρTiO2F
. (5.4)
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Figure 5.5: Velocity of the OE interface, v, as a function of total current
density j.

Several values of oxide transport number tO are included.

Table 5.1: Constants and parameters used for the basic mechanism illustration.
Constants were taken from [Houser and Hebert, 2006].

MTiO2 79.866 gmol−3

ρTiO2 3.78× 106 gm−3

i0,Ti4+ 20× 10−2 Am−2

i0,O2− 4.9× 10−2 Am−2

αa,O2− 1.9

αc,O2− 0.1

αa,Ti4+ 1.35

F 96485.3329 sAmol−1

R 8.314 JK−1mol−1

T 294 K

In Figure 5.5 the relationship (5.4) is depicted. Constants and parameters
used are included in Table 5.1. For low total current densities (< 1Am−2) the
OE interface evolves with negligible speed. Increasing the current density also the
velocity increases. Recalling the sign convention, OE interface velocity expresses
removal rate, i.e. the oxide layer is dissolved more then formed. The increase
is valid up to a point, where removal rate reaches it’s maximum. Subsequently,
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OE velocity is decreased monotonically. For negative v new oxide layer is formed
more then it is dissolved - this results into an overall growth of the oxide phase.
There clearly exist a certain value of j for which v = 0 and OE is not evolving in
time.

This analysis is very important. Whenever there is a little perturbation to
the OE interface the electric field is focused in that region. As discussed before
- the higher electric field the bigger total current flows. And according to the
Figure 5.5 the higher current density the more oxide is removed (up to a point of
maximum).

5.2.2 Single perturbation growth

Reinitialization

The first full test case will be the growth of a single perturbation.
Let Ω = [0, 1]2 be two-dimensional square. In each example we use space CG1

for high-field potential, BDM1 × DG0 for mixed formulation of potential and
current and space CG1 for level-set functions.

Let MO and OE interfaces be given by the following level-set functions

φMO =
1

1 + exp x−0.3
ε

,

φOE =
1

1 + exp x−0.7+0.04 cos(2πy)
ε

,

with ε = h being minimal mesh cell diameter. In other words, the MO
interface is planar and OE interface is perturbed around 0.7 with amplitude 0.04.
These function are then interpolated into CG1 finite element space. According
to our solution strategy from Figure 4.5 the following step is reinitialization.
Level-set function after reinitialization are included in Figure 5.6.

Zoomed level-set function is depicted in Figure 5.7. Triangularization of the
Ω domain is visible. Discretized domain is composed of 100×100 squares divided
by both of their diagonals into 4 triangles. This discretization corresponds to
h = 0.001. In addition, we have plotted 0.1, 0.5 and 0.9 contours. Recall, that
0.5 contour defines the position of the interface. From this picture we can see,
that there are approximately 8 triangles per interfacial layer.

High-field conduction law

We could solve the high-field conduction law in this geometry. For this purpose
let us specify physical constants and parameters, see Table 5.2.

The referential length scale is set to xref = 900 nm which means that our Ω
domain is a 900 nm × 900 nm square. High-field conduction law solution, the
potential ϕ̄, is plotted in Figure 5.8. Expected drop of the potential from 60V to
0V is evident. This drop occurs solely in the oxide layer, because oxide has the
lowest expected conductivity. The conductivity is showed in Figure 5.9. It is
also clearly visible, that conductivity is equal to 1× 10−2Ω−1m−1 in both metal
and electrolyte subdomains. Additionally, conductivity in oxide region is approx.
5 orders smaller. Because of several orders difference in conductivity, we have
included plot rescaled to the oxide layer, see Figure 5.9 (bottom).
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Figure 5.6: Level-set functions after reinitialization.

Figure 5.7: Zoomed interfacial region of the level-set function.
Note the triangularization. There are approximately 8 triangles spanning the width of

the interface.

This picture shows an increase in conductivity near the perturbation. We
could compute total current density due to (2.1). Magnitude of a current com-
puted this way is included in Figure 5.10. This total current density could be
then plugged into the (5.4) to obtain the velocity of OE interface (or similarly for
the MO interface). This would be, roughly speaking, the approach from [Houser
and Hebert, 2006].

However, we do not use this potential for the interfacial evolution. Unlike the
paper mentioned, we expect a jump in a solution to play an important role. For
that reason a discontinuous potential (mixed formulation) must be solved.

46



Table 5.2: Constants and parameters used in single pore growth example.
Constants were taken from [Houser and Hebert, 2006].

xref 900 nm

ϕbottom 60 V

ϕtop 0 V

σm 1× 10−2 Ω−1m−1

σe 1× 10−2 Ω−1m−1

CO2− 9× 104 molm−3

CTi4+ 4.5× 104 molm−3

u0
O2− 1× 10−5 Ammol−1

u0
Ti4+

1× 10−5 Ammol−1

zO2− 2

zTi4+ 4

a 0.1 nm

F 96485.3329 sAmol−1

R 8.314 JK−1mol−1

T 294 K
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Figure 5.8: High-field conduction law potential in V.
Contours (0.1, 0.5 and 0.9) of level-set functions are included.
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Figure 5.9: High-field conductivity in Ω−1m−1.
Fully scaled (top) and locally (to the oxide region) rescaled (bottom) plots are included.

Contours (0.1, 0.5 and 0.9) of level-set functions are also included.
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Figure 5.10: High-field current magnitude with streamlines in Am−2.
Note in the bottom zoomed picture the spurious oscillatory effect in the interfacial region.

This is related to the high level-set function gradients in this region. Contours (0.1, 0.5

and 0.9) of level-set functions are also included.
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Mixed formulation

The previous computations are used to find a proper conductivity inside oxide
domain. We take σ and solve the mixed problem (4.7) and (4.8). In the mixed
formulation one must express the jump in potential as a function of the total
current density. We denoted this dependence gOE in the previous chapters.

This dependence is nothing but the inverse of relation (5.3). Unfortunately,
we are unable to write the inverse function in a closed form. This bring many
complications to the numerical computation. We would need to compute the
inverse relation numerically. In addition, this inverse relation maps the sought
function non-linearly. Because the non-linear problem is solved with the use of
Newton-Raphson method one must differentiate this inverse function.

Because of these complications we choose simpler (exactly invertible) version
of the Butler-Volmer kinetic relation in form

j = j̃([[ϕ]]) = i0,O2− sinh

[
αa,O2−F

RT
[[ϕ]]

]
with its inverse

[[ϕ]] = gOE(j) =
RT

αa,O2−F
log

⎡⎣ j

i0,O2−
+

√
1 +

(
j

i0,O2−

)2
⎤⎦ .

Solving the mixed problem we get the mixed formulation potential and mixed
formulation current. The current is showed in Figure 5.11. Note the difference
between (classical) high-field conduction current in Figure 5.10 and this current.
Mixed formulation do not cause unwanted oscillatory effects inside interfacial
region. Not only this formulation enforces electrochemically valid jump in the
potential but the results are more stable from numerical point of view.

Reaction equation and time loop

We have finally the correct total current density in hand from the earlier sub-
section. Considering the solution strategy, Figure 4.5, the last step is interface
evolution.

Although we simplified the Butler-Volmer relation (gOE) in the mixed formu-
lation because of the implementation problems, we do not need to simplify this
relation when computing the current efficiency to obtain the OE reaction rate,
rOE. This is very important. Even if the jumps are slightly different from the full
electrochemical picture, the interface velocity is evaluated correctly and has the
desired profile as in Figure 5.5.

Time solution is shown in Figure 5.12. After time 335 s the MO interface
approaches bottom boundary and simulation must be terminated.

We changed the geometry (extended the Ω domain to [0, 1] × [0, 2] to see
the single pore evolution in further time steps. Electrochemical constants are
the same as in previous example (Table 5.2) but initial perturbation amplitude
is changed to 0.1. Contours of level-set functions are shown in Figure 5.13. In
addition, mixed formulation potential is shown in Figure 5.14.
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5.2.3 Multiple pores growth

In the last section we will present evolution of perturbations from different initial
geometries.

Our domain Ω is again [0, 1]×[0, 2] rectangle. The initial level-set functions are
chosen in a similar way to the previous experiments. The MO interface is initially
planar and OE interface is sinusoidally perturbed. Electrochemical constants are
(if not specified otherwise) the same as in Table 5.2.

First example is the growth of two initial perturbations. Results are depicted
in Figures 5.15, 5.16. We can see how two perturbations start to grow. Before the
MO interface reaches the bottom computational boundary perturbations become
unstable and start to split (t = 4000 s).

Nice illustration of high-field current is given in Figure 5.17. Note, how the
current density is increased at the bottom of the perturbations. The higher
current density the more is oxide dissolved (up to a maximum point) - due to the
basic mechanism.

We can add another initial perturbation to the geometry. Again, results are
shown in Figures 5.18, 5.19, 5.20. In the final computational time the pores are
beginning to split.

We introduced the transport number tO in the electrochemical section. The
previous results are all computed with transport number set to 0.6. From the
basic mechanism illustration, see Figure 5.5, if we set the transport number to
tO = 0.4 we expect the OE velocity be always negative (only addition of new
oxide layer due to the sign convention). Indeed, this is demonstrated in Figure
5.21. You can see how initially perturbed OE interface gets straightened. In
addition, the perturbations are not growing and the only evolving interface is the
MO. After some time even the speed of MO interface halts. This is due to the
fact, that growing oxide layer decreases total current density.

Recall, that the level-set thickness is given by the minimal mesh cell diameter
h. This means, that if we refine the mesh to h = 0.0067 the level-set transition
region shrinks. The effect of mesh density on our results is shown in Figure
5.22. For the times t < 1500 s no significant change is visible. Results are mesh
independent. However, when the bottom of the pore get more and more flattened
it begins to split and this splitting seems to be dependent on the discretization
parameters.

The reason for the fact, that the perturbations doesn’t maintain their profile
and gets dissected is clear from Figure 5.5. Consider the solid (blue) line with
tO = 0.6. Until a point of maximum the OE velocity vs. current density function
is increasing. This means, that the higher current density the more is oxide
removed. Sinusoidal perturbation has the highest current density near its bottom
tip, so the higher the interfacial curvature, the faster is the tip moving. However,
when current density exceeds the maximum point of the solid (blue) line, the
OE velocity vs. current density function in decreasing. And this has substantial
effects. Sharp tip of a perturbation is moving more slowly than less curved vicinity
of the tip. It results in the flattening of the pore bottom and consecutive splitting.

52



Figure 5.11: Mixed formulation current magnitude with streamlines in Am−2.
Note in the bottom zoomed picture without the spurious oscillatory effect in the

interfacial region. Contours (0.1, 0.5 and 0.9) of level-set functions are also included.
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Figure 5.12: Evolution of OE and MO interfaces for single pore experiment.
Initial configuration is shown on the left (t = 0 s). On the right interfaces after 335 s are

portrayed. Contours (0.1, 0.5 and 0.9) of level-set functions are included.

Figure 5.13: Evolution of OE and MO interfaces for single pore experiment
with extended geometry.
Contours at times (from left to right) t = 0 s, 1000 s, 2000 s, 3000 s, 4000 s. Contours (0.1,

0.5 and 0.9) of level-set functions are included.
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Figure 5.14: Mixed formulation potential for single pore experiment with
extended geometry in V.
Potential at times (from left to right) t = 0 s, 1000 s, 2000 s, 3000 s, 4000 s. Contours (0.1,

0.5 and 0.9) of level-set functions are also included.

Figure 5.15: Evolution of OE and MO interfaces for two perturbations ex-
periment.
Contours at times (from left to right) t = 0 s, 1000 s, 2000 s, 3000 s, 4000 s. Contours (0.1,

0.5 and 0.9) of level-set functions are included.
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Figure 5.16: Mixed formulation potential for two perturbations experiment
in V.
Potential at times (from left to right) t = 0 s, 1000 s, 2000 s, 3000 s, 4000 s. Contours (0.1,

0.5 and 0.9) of level-set functions are also included.

Figure 5.17: High-field current for two perturbations experiment in Am−2.
Current at times (from left to right) t = 0 s, 1000 s, 2000 s, 3000 s, 4000 s. Contours (0.1,

0.5 and 0.9) of level-set functions are also included.
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Figure 5.18: Evolution of OE and MO interfaces for three perturbations
experiment.
Contours at times (from left to right) t = 0 s, 1000 s, 2000 s, 3000 s, 4000 s. Contours (0.1,

0.5 and 0.9) of level-set functions are included.

Figure 5.19: Mixed formulation potential for three perturbations experiment
in V.
Potential at times (from left to right) t = 0 s, 1000 s, 2000 s, 3000 s, 4000 s. Contours (0.1,

0.5 and 0.9) of level-set functions are also included.
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Figure 5.20: High-field current for three perturbations experiment in Am−2.
Current at times (from left to right) t = 0 s, 1000 s, 2000 s, 3000 s, 4000 s. Contours (0.1,

0.5 and 0.9) of level-set functions are also included.

Figure 5.21: Evolution of OE and MO interfaces for three perturbations
experiment. Oxide transport number is set to tO = 0.4.
Contours at times (from left to right) t = 0 s, 1000 s, 2000 s, 3000 s, 4000 s. Contours (0.1,

0.5 and 0.9) of level-set functions are included.

Figure 5.22: Illustration of level-set thickness dependence.
Contour (0.5) of level-set functions is shown. Red line corresponds to discretization

parameter h = 0.01, blue line to a finer mesh with h = 0.0067. Times

t = 1000 s, 1500 s, 2000 s are included.
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A. Appendix

Theorem 1 (Normal traces of H(div,Ω)). Let Ω be a bounded domain in Rd

with Lipschitz-continuous boundary Γ. Then there exists a linear, bounded and
surjective operator TrnΓ

: H(div,Ω) −→ H−1/2(Γ) such that for each τ ∈ [H1(Ω)]d

the TrnΓ
(τ ) is identified through the inner product of L2(Γ) with Tr τ · nΓ.

Proof. See [Gatica, 2014], Theorem 1.7.

Theorem 2 (Green’s identity in H(div,Ω)). Let Ω be a bounded domain in Rd

with Lipschitz-continuous boundary Γ. Then there holds

⟨TrnΓ
(τ ),Trw⟩H−1/2,H1/2 =

∫
Ω

τ · gradw dx+

∫
Ω

w div τ dx ,

∀w ∈ H1(Ω), τ ∈ H(div,Ω).

Proof. See [Gatica, 2014], Lemma 1.4.

Theorem 3 (Non-linear Lax-Milgram lemma). Let V be a Hilbert space, A : V −→ V ∗

be strongly monotone and Lipschitz continuous. Then for all f ∈ V ∗ there exists
a unique solution u ∈ V such that

A(u) = f.

Proof. Simple exercise on the use of the Banach fixed-point theorem. See [Roub́ıček,
2013], Proposition 2.22.

Definition 1 (Strongly monotone mapping). Let V be a Banach space and let
A : V −→ V ∗. We call A strongly monotone iff

⟨A(u)− A(v), u− v⟩V ∗,V ≥ ∥u− v∥2V
for all u, v ∈ V .

Definition 2 (Lipschitz continuous mapping). Let V be a Banach space and let
A : V −→ V ∗. We call A Lipschitz continuous iff there exists L > 0 such that

∥A(u)− A(v)∥V ∗ ≤ L∥u− v∥V
for all u, v ∈ V .
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Conclusion

This thesis is a compilation of results from different parts of physics, chemistry
and mathematics.

The work is composed of 5 chapters. In the first chapter a history and current
state of research are outlined. Few applications are mentioned there also.

The second chapter deals with detailed electrochemical picture. It is writ-
ten without any assumption on previous electrochemistry knowledge. Reaction
pathways occurring in the half-cell experiment are thoroughly discussed. Basic
terms such as overpotential, potential, electrochemical potential, etc. are intro-
duced. Additionally, Butler-Volmer relations are explained and the whole picture
is summarized into the overall solution procedure.

The aim of the third chapter is to formulate equations from the second chap-
ter in a mathematically more precise, rigorous way. In this stage only infinite-
dimensional abstract problems are formulated. In addition, we derive a mixed
formulation for a solution to the Laplace equation with a jump inside the solution
domain. Existence and uniqueness of the solution to this problem is proved.

Fourth chapter intents to discretize the infinite-dimensional equations in a
numerically stable way. A method for interface tracking, the characteristic level-
set method, is introduced. With the help of this method interfacial integrals are
approximated.

Last chapter demonstrates the performance of overall model. It starts with
step-by-step solution to a single pore growth example. Later, multiple pores and
more complex geometries are simulated.

In summary, the problem of metal oxide growth is very complex. None of the
overall solution steps could be neglected and this makes the problem very difficult
to solve. There are several simplifications in our model. Let us list disadvantages
of this model:

• High-field conduction potential is sought continuous. In a proper simulation
one would merge high-field computation with mixed formulation. Unfortu-
nately, our mixed formulation doesn’t allow both.

• Reaction pathways are debatable. There are many papers each having
different point of view on the electrochemical nature of the process. In ad-
dition, parameters and constant do not always have clear physical meaning,
nor are measurable.

• Characteristic level-set method is in some cases sensitive to the choice
of thickness of the interface. Although our one-dimensional experiments
shows nice convergence properties it might not be the case in general two-
dimensional (or three-dimensional) situation.

• Mathematical assumptions on Butler-Volmer relations are not fully resolved.
We have to assume, that mapping gMO/OE improve the normal trace of cur-
rent density and map it to space H1/2. Similarly, the current efficiency
is a non-linear function of the current density’s normal component, which
doesn’t make sense for distributions (H−1/2). Situation is better in finite

61



dimensional case, because current density has additional smoothness. How-
ever, the infinite dimensional abstract case remains open problem.

On the other hand, our general multiphase picture introduces new techniques
into the electrochemical world and allows more complex simulation. The advan-
tages and novelties of this model are

• Compact and consistent description of reactions. We present the reaction
schema and reaction pathways clearly explained. This is a rare contribution
in the field of nanopores modelling.

• Mixed formulation for discontinuous potential. The use of mixed formu-
lation for discontinuous potential in Butler-Volmer driven problems is a
novelty. In addition, mathematical side of the problem is also treated.

• Implicit geometry description. The characteristic level-set method allows
complex geometrical structures to be grown.

Developed model could be used for simulations under various conditions. How-
ever, there is a need to validate the model against experimental data.

Possible future extensions include: validation against experiments, coupling of
mixed formulation with high-field conduction law, comparison with other reaction
schema.
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