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Institute: Mathematical Institute of Charles University
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Introduction

Isogeometric analysis (IGA) is a numerical method for solving partial differential
equations and related problems. It seeks to overcome the gap between the worlds
of computer-aided design (CAD) and finite element analysis (FEA). These two
areas are closely related. A geometry of an object is usually designed in CAD
using NURBS functions and then if we need to perform some computation on it
with FEA, it is nescessary to approximate the geometry of the object. Nowadays,
the translation into analysis-suitable geometries is now estimated to take over 80%
of the overall analysis time. IGA unifies these areas by using a same function
space for the computation and the design.

Rather than choosing a function space for the computation and then approx-
imating the geometry, IGA uses the function space that describes the geometry.
Non-uniform rational B-splines (NURBS) are an elegant way how to represent
piecewise rational functions with a prescribed global continuity and have many
interesting properties, which can be benefitial also for the computation, for ex-
ample non-negativity, local support, or partition of unity property. This and
many more features make from NURBS a suitable function space for numerical
methods.

The aim of this master thesis is to get acquainted with a basics of IGA and
use it to solve some numerical problem. In particular, we descibe two Newton
type methods for solving the minimal surface problem and present a number of
numerical simulations to show the convergence properties. Special emphasis is
placed on closed domains created by a single NURBS patch. We present our own
method of modifying the NURBS basis to ensure its high regularity at a joining.

The first chapter is devoted to NURBS objects, their definition and basic
properties. In the second chapter we explain the concept of isogeometric analysis
and demonstrate its power in examples. We present our own method for solv-
ing PDEs on closed NURBS objects, which is based on the modification of the
NURBS basis functions in order to ensure the highest possible continuity of the
function space.

The third chapter covers the topic of isogeometric analysis on surfaces in R3

and defines the basics from the differential geometry and the calculus on surfaces.
Even though from the theoretical point of view there is a lot of differences between
solving problems on R2 domain and on surfaces, we show that IGA stays the same.
We also state the minimal surface problem that we are going to deal with in the
last two chapters, in which we present two numerical methods for solving the
minimal surface problem.

The first one is based on the partial differential equation for minimal surfaces
in Monge parametrization. The second one is more general and uses unique
advantages of IGA to minimize the area functional of the surface. Both methods
were implemented using GeoPDEs package for Octave and a number of numerical
examples is presented.
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1. Non-uniform rational
B-splines

Non-uniform rational B-splines (NURBS) are the cornerstone of IGA. They are
used to parametrize the computational domain and also serve as a finite dimen-
sional space, in which a solution is computed. NURBS are built from B-splines,
which elegantly represent piecewise polynomial functions with a prescribed global
continuity. Let us start with them and show basic properties most of which apply
to NURBS too.

1.1 B-splines

To construct B-spline basis functions of polynomial degree p we need to create a
knot vector, division of a parameter space.

Definition 1.1 (Knot vector). A non-decreasing sequence of values in a param-
eter space is called a knot vector, written

Ξ = [ξ1, ξ2, . . . , ξm], (1.1)

where ξi ∈ R, i = 1, . . . ,m. If the knot ξi appears in the sequence k times
(i.e. ξi = ξi+1 = . . . = ξi+k−1), it is called the multiple knot of multiplicity k.
Otherwise, it is a simple knot. If the knots are equally spaced, the knot vector is
called uniform, otherwise, it is called non-uniform.

In this thesis we frequently use the interval [0, 1] as the parameter space, in
which case ξ1 = 0 and ξm = 1.

Definition 1.2 (B-spline basis functions). Given the knot vector Ξ = [ξ1, . . . , ξm]
the B-spline basis functions of polynomial degree p are defined recursively as fol-
lows, starting with piecewise constant functions:

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,
(1.2)

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (1.3)

This is usually referred to as the Cox-de Boor recursion formula.

From the definition we can directly see that for degree p we get n = m−p−1
basis functions.

Example 1.1. Let

Ξ = [0, 1/10, 2/10, 3/10, 4/10, 5/10, 6/10, 7/10, 8/10, 9/10, 1] (1.4)

be the uniform knot vector. The B-spline basis functions of degree p = 0, 1, 2, 3, 4
given by the formula 1.2 are shown in figure 1.1. For degree p = 0, there are ten
basis functions, for degree p = 1, nine basis functions, and so on.
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Figure 1.1: B-spline basis functions of degree p = 0, 1, 2, 3, 4 given by a uniform
knot vector.

1.1.1 Important properties of B-spline basis functions

B-spline basis functions have several important properties. The proofs follow in a
quite straightforward way from the definition or can be found in [Piegl and Tiller,
1997, Section 2.2].

1. Ni,p(ξ) is a polynomial function of degree p in a knot span [ξi, ξi+1],
i = 1, . . . , n− 1.

2. Non-negativity: For every i, p and ξ, Ni,p(ξ) is non-negative.

6



3. Local support: To compute Ni,p(ξ) we use only p + 1 piecewise constant
functions Ni,0(ξ), . . . , Ni+p+1,0(ξ) that are characteristic functions of the in-
tervals [ξi, ξi+1), . . . , [ξi+p, ξi+p+1). Therefore, basis function Ni,p(ξ) is non-
zero only in the interval [ξi, ξi+p+1).

4. Low number of non-zero functions per knot span: On the other hand, given
a knot span [ξi, ξi+1), there are at most p + 1 functions of degree p that
uses this knot span in their computation, namely Ni−p,p(ξ), Ni−p+1,p(ξ),
Ni−p+2,p(ξ), . . . , Ni−1,p(ξ) and Ni,p(ξ). Therefore, at most p + 1 degree p
basis functions are non-zero on any knot span [ξi, ξi+1).

5. Partition of unity: The sum of all basis functions Ni,p(ξ) of degree p is 1,

n+p+1∑
i=1

Ni,p(ξ) = 1, ∀ξ ∈ [ξp, ξn+1). (1.5)

6. At a knot of multiplicity k, basis function Ni,p(ξ) is Cp−k continuous. Thus,
by increasing the multiplicity of the knot, continuity of the B-spline basis
functions decrease.

Example 1.2. Given the non-uniform knot vector Ξ = [0, 1/6, 1/3, 1/2, 1/2, 5/6, 1],
there are four B-spline basis functions of degree p = 2 and they are C1 continuous
at the knots 1/6, 1/3, 5/6, and C0 continuous at the knot 1/2. They are shown
in figure 1.2.
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Figure 1.2: B-spline basis functions of degree p = 2 given by a non-uniform knot
vector.

A knot vector is said to be open if its first and last knot values appear with
the multiplicicty p+1. Open knot vectors are standard in CAD. The basis formed
from an open knot vector has always only one basis function that is non-zero on
the boundary of the parameter space [ξ1, ξn+p+1] and its value is one, this property
is very useful while implementing IGA.

Example 1.3. Let Ξ = [0, 0, 0, 1/6, 1/3, 1/2, 1/2, 5/6, 1, 1, 1] be the non-uniform
open knot vector. There are eight B-spline basis functions of degree p = 2. They
are C1 continuous at knots 1/6, 1/3, 5/6, C0 continuous at knot 1/2. They are
shown in figure 1.3.

Note that for a given knot vector Ξ = [ξ1, . . . , ξm] and a degree p there are at
most p+1 non-zero basis functions of degree p for every knot span. First and last
knot spans [ξ1, ξ2], resp [ξm−1, ξm], have only one non-zero basis function. Second

7



��� ��� ��� ��� ��� ���

���

���

���

���

���

���

Figure 1.3: B-spline basis functions of degree p = 2 given by a non-uniform open
knot vector.

and last but one knot spans [ξ2, ξ3], resp [ξm−2, ξm−1], have only two non-zero
basis functions, and so on. The intervals [ξ1, ξp+1] and [ξm−p, ξm] do not have the
”full support” of basis functions.

Thus, the B-spline basis creates a basis of a space of piecewise polynomial
functions of degree p in [ξp+1, . . . , ξm−p], that have prescribed continuity at each
knot.

1.2 B-spline curves and surfaces

1.2.1 B-spline curves

B-spline curves are special cases of parametrized curves, let us recall the definition.

Definition 1.3 (Parametrized curve). Let I ⊂ R be an open interval. Para-
metrized curve in R3 (resp. R2) is a smooth mapping γ : I → R3 (resp. R2).
The set Γ = γ(I) is called the image of the curve γ. Parametrized curve is called
regular in ξ0 ∈ I, if γ̇(ξ0) 6= 0. Parametrized curve is regular if it is regular at
every ξ ∈ I.

A B-spline curve is in each of its three components a linear combination of
B-spline basis functions. Coefficients of that linear combination are called control
points.

Definition 1.4 (B-spline curve). Given n B-spline basis functions of degree p
Ni,p(ξ), i = 1, . . . , n, and corresponding control points Pi ∈ R3 (resp. R2), i =
1, . . . , n, a piecewise polynomial B-spline curve is given by

γ(ξ) =
n∑
i=1

Ni,p(ξ)Pi ξ ∈ [ξp+1, . . . , ξm−p]. (1.6)

Piecewise linear interpolation of the control points gives the so-called control
polygon.

To construct a B-spline curve we need to know a set of n control points, a knot
vector of m knots, and a degree p, where n, m and p must satisfy m = n+ p+ 1.
Therefore, if we want to create a B-spline curve of degree p with n control points,
we have to provide m = n + p + 1 knots. On the other hand, if a knot vector
of m knots and n control points are given, the degree of the resulting curve is
p = m− n− 1.

8



Open curves

If the knot vector has no particular structure, the curve will not interpolate the
first and the last control points and is called an open B-spline curve. These curves
are called open.

Example 1.4. Let

Ξ =

[
0,

1
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2
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3
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3
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,

4
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8

10
,

8

10
,

9

10
, 1

]
(1.7)

be the knot vector. The B-spline basis of degree p = 3 defined by the knot vector
Ξ is shown in figure 1.4.
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Figure 1.4: B-spline basis functions of degree p = 3 given by a non-uniform knot
vector.

With ten control points

P1 = [3, 3], P2 = [1, 1],
P3 = [−1, 3], P4 = [−3, 3],
P5 = [−2, 1], P6 = [−4,−1],
P7 = [0, 0], P8 = [4,−1],
P9 = [5, 0], P10 = [4, 2].

(1.8)

we can construct a B-spline curve using formula 1.6, where ξ ∈ [2/10, 8/10], see
figure 1.5.

-4 -2 2 4

-1

1

2

3

Figure 1.5: A B-spline curve of degree p = 3 given by a non-uniform knot vector.

Clamped curves

If the knot vector is open (it means that the first and the last knots have the
multiplicity p + 1), the curve will be interpolatory in the first and the last con-
trol points and is called a clamped B-spline curve. Every open curve can be
transformed to a clamped curve and conversely.
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Example 1.5. Let

Ξ =

[
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(1.9)

be the open knot vector. The B-spline basis of degree p = 3 defined by the knot
vector Ξ is shown in figure 1.6.
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Figure 1.6: B-spline basis functions of degree p = 3 given by an open non-uniform
knot vector.

With ten control points

P1 = [2, 2], P2 = [1, 1],
P3 = [−1, 3], P4 = [−3, 3],
P5 = [−2, 1], P6 = [−4,−1],
P7 = [0, 0], P8 = [4,−1],
P9 = [5, 0], P10 = [4.25, 1.5].

(1.10)

we can construct a B-spline curve using formula 1.6, where ξ ∈ [2/10, 8/10], see
figure 1.7.

-4 -2 2 4

-1

1

2

3

Figure 1.7: A B-spline curve of degree p = 3 given by an open non-uniform knot
vector.

Closed curves

By repeating some points or knots, the curve can be closed, in this case starting
and ending point of the curve join together. In the following chapters we are
going to deal with problems in closed domains and closed B-spline curves are the
starting point.

There are several possibilities how to construct a closed B-spline curve depend-
ing on the used basis functions. Suppose we want to construct a closed B-spline

10



curve of degree p defined by n distinct control points P1, P2, . . . , Pn. We can do
that by using an uniform knot vector and repeating of first p control points or by
modifying some basis functions and creating a closed basis. The same curve can,
of course, be also constructed as a clamped curve by using an open knot vector.

1. Wrapping control points

Suppose we want to construct a B-spline curve of degree p given by n distinct
control points P1, P2, . . . , Pn. If we are not interested in having a particular
structure of the knot vector, we can do that by wrapping the control points.
For a curve of degree p we need to repeat first p control points, i. e.
we have a sequence of n + p control points P1, P2, . . . , Pn, P1, . . . , Pp, and
design a uniform knot vector Ξ = [0, 1/(n+ 2p), 2/(n+ 2p), . . . , 1] of length
m = n+ 2p+ 1. This knot sequence gives us n+ p B-spline basis functions
of degree p. The resulting curve is Cp−1 continuous at the joining.

Example 1.6. A closed B-spline curve of degree p = 3 is given by nine
distinct control points

P1 = [1/2, 0], P2 = [1, 1/2], P3 = [1, 1],
P4 = [0, 1/2], P5 = [−1, 1], P6 = [−1, 0],
P7 = [−1/2, 1/2], P8 = [0,−1/2], P9 = [1/2,−1].

(1.11)

First we need to design a uniform knot vector Ξ = [0, 1/15, 2/15, . . . , 1]
of length sixteen. Having this knot sequence in hand, we can construct
basis functions. Because all knots has the multiplicity only one, the basis
functions of degree p = 3 are C2 continuous at each knot.
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Figure 1.8: B-spline basis functions of degree p = 3 given by a uniform knot
vector.
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Figure 1.9: B-spline basis functions of degree p = 3 given by a uniform knot
vector on the curve domain.
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We have twelve basis functions and twelve control points (we repeat the
first three control points). Now we can construct a curve given by formula
1.6. This curve is closed and C2 continuous at the joining. Its domain is
[1/5, 4/5].

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1.10: A closed curve created by repeating of control points.

2. Closed basis functions

The other approach is based on choosing basis functions in such way that
the repeating of control points is not needed anymore. A curve si given by
formula 1.6, in the special case discussed in the previous section, we have
n+p B-spline basis functions N1,p, . . . , Nn+p,p of degree p for a curve defined
by n distinct control points P1, . . . , Pn. It gives us

γ(ξ) =

n+p∑
i=1

Ni,p(ξ)Pi, (1.12)

where Pn+1 = P1, . . . , Pn+p = Pp. We can rewrite this formula equivalently
as

γ(ξ) =

n+p∑
i=1

Ni,p(ξ)Pi (1.13)

=

p∑
i=1

(Ni,p(ξ) +Ni+n,p(ξ))Pi +
n∑

i=p+1

Ni,p(ξ)Pi (1.14)

=
n∑
i=1

Bi(ξ)Pi, (1.15)

where the new basis Bi is defined as

Bi(ξ) =

{
Ni,p(ξ) +Ni+n,p(ξ) if i = 1, . . . , p,

Ni,p(ξ) if i = p+ 1, . . . , n.
(1.16)

With this basis only original n control points are needed.
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Example 1.7. A closed B-spline curve is given by nine distinct control points,
same as in example 1.6. A uniform knot vector Ξ has sixteen knots and
defines twelve basis functions N1,3, . . . , N12,3 of degree p = 3 that are C2

continuous at each knot. By summing N1,3 +N10,3, N2,3 +N11,3, N3,3 +N12,3

we get the new basis of length nine as you can see in fingures 1.11 and 1.12.
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Figure 1.11: Summed B-spline basis functions of degree p = 3 given by a uniform
knot vector.
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Figure 1.12: Summed B-spline basis functions of degree p = 3 given by a uniform
knot vector on the curve domain.

The curve in figure 1.13 is given by formula 1.13. This curve is again closed,
C2 continuous at the joining and its domain is [1/5, 4/5].

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1.13: Closed curve created by summing the basis functions.
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For a uniform knot vector, the same can be done by so called ”wrapping
knots”. It means to omit the last p knots and add the beginnings on the
interval [ξ1, . . . , ξp+1] to the end. If we imagine that the domain is a circle
and not a line, the basis functions naturally continue and have the same
continuity as they had with the original knot vector, i. e. they are Cp−1

continuous at the joining.

Example 1.8. We would like to create the same curve as in examples 1.6
and 1.7 by ”wrapping knots”. For this we design the knot vector Ξ =
[0, 1/15, 2/15, . . . , 12/15] by omitting last three knots. In figures 1.14, 1.15
and 1.16 we can see the original basis functions of degree p = 3 created by
the knot vector Ξ, the shifted basis functions and their summing respec-
tively, plotted on the curve domain.
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Figure 1.14: Original B-spline basis functions of degree p = 3 given by a uniform
knot vector on the curve domain.
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Figure 1.15: Shifted B-spline basis functions of degree p = 3 given by a uniform
knot vector on the curve domain.
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Figure 1.16: Closed B-spline basis functions of degree p = 3 given by a uniform
knot vector on the curve domain.

The curve created by this basis and control points given in example 1.6 is
of course the same as in figure 1.13, because the basis is the same.
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Unlike in the methods discussed above, a knot vector does not have to be
uniform when ”wrapping knots”. It allows us to create higher variety of
closed curves. The only restriction is that the beginning of a knot vector
Ξ = [ξ1, . . . , ξm] has to fit the end of it in the following sense

ξ1 = ξm−p − (ξm − ξp+1) (1.17)

ξ2 = ξm−p+1 − (ξm − ξp+1) (1.18)
... (1.19)

ξp = ξm−1 − (ξm − ξp+1). (1.20)

This closed B-spline basis is the ideal basis for computation, because it gives
us a desired continuity of a space at the joining.

Example 1.9. The basis is given by a knot vector

Ξ = [−2/3,−2/3,−1/2, 0, 1/6, 1/3, 1/3, 1/3, 1/2, 1]. (1.21)

In figure 1.17 we see the original basis functions, the shifted ones are in figure
1.18 and by summing them respectively we get the closed basis shown in
figure 1.19.
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Figure 1.17: Original B-spline basis functions of degree p = 3 given by a non-
uniform knot vector on the curve domain.
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Figure 1.18: Shifted B-spline basis functions of degree p = 3 given by a non-
uniform knot vector on the curve domain.

The curve given by the closed basis and the control points 1.22 is in figure
1.20.

P1 = [1, 0], P2 = [1, 1], P3 = [0, 1/2],
P4 = [−1, 1], P5 = [−1,−1/2], P6 = [−1/2, 0].

(1.22)
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Figure 1.19: Closed B-spline basis functions of degree p = 3 given by a non-
uniform knot vector on the curve domain.
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Figure 1.20: A closed curve created by closed B-spline basis functions.

3. Clamped closed curves

The same closed curve can be constructed as a clamped curve using a basis
formed from an open knot vector. Open knot vectors are standard in CAD
and often the only possible way how to construct the geometry. But this
B-spline basis has discontinuities at the joining and, thus, it is not suitable
for computation in closed domains. In the following chapter we show an
elegant way how to get a closed basis for solving problems on closed domains
from a B-spline basis defined by an open knot vector.

1.2.2 Surfaces

The notion of a B-spline curve can be extend to a B-spline surface in a straight-
forward way using a tensor product of B-spline basis in two parametric directions.
Before the definition of a B-spline surfaces, let us recall the definition of surface
first.

Definition 1.5 (Surface). Set Σ ⊂ R3 is called Cm regular surface if for every
point s ∈ Σ, there are W ⊂ R3 open, s ∈ W , U ⊂ R2 open and regular mapping
σ : U → Σ ∩W , such that σ ∈ Cm(U) and σ is a homeomorphism of U onto
Σ∩W . Mapping σ is called surface patch or parametrization of Σ. The set σ(U)
is called image of the patch σ. A collection of such surface patches whose images
cover the whole Σ is called an atlas of Σ. A set of all surface patches σ : U → R3

defining Cm regular surface is denoted Rm(U).
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B-spline surfaces are constructed from a tensor product of B-spline basis in
two parametric directions.

Definition 1.6 (B-spline surface). Given n B-spline basis functions of degree p
Ni,p(ξ), i = 1, . . . , n, m B-spline basis functions of degree q Mj,q(η), j = 1, . . . ,m,
and a control net {Pi,j} ⊂ R3, i = 1, . . . , n, j = 1, . . . ,m, a B-spline surface is
defined by

σ(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j ξ ∈ [ξ1, ξn+p+1], η ∈ [η1, ηm+p+1]. (1.23)

In fact, B-spline surfaces can be seen as a special case of surface patches, if
they fulfill the conditions from definition 1.5.

Example 1.10. Let

Ξ = [0, 0, 0, 0, 1, 1, 1, 1], (1.24)

H = [0, 0, 0, 1, 1, 1], (1.25)

be the knot vectors. A B-spline basis in the first parametric direction has degree
p = 3 and is defined by knot vector Ξ (see figure 1.21). In the second parametric
direction, a B-spline basis has degree p = 2 and is given by knot vector H (see
figure 1.22).
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Figure 1.21: B-spline basis functions of degree p = 3 given by knot vector Ξ.

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

Figure 1.22: B-spline basis functions of degree p = 2 given by knot vector H.

With a grid of twelve control points

P11 = [0, 0, 1], P12 = [0, 1, 2], P13 = [0, 2, 2],
P21 = [1, 0, 2], P22 = [1, 1, 2], P23 = [1, 2, 2],
P31 = [2, 0, 1], P32 = [2, 1, 1], P33 = [2, 2, 1],
P41 = [3, 0, 0], P42 = [3, 1, 0], P43 = [3, 2, 1],

(1.26)

we can construct a B-spline surface using formula 1.23, where ξ ∈ [0, 1] and
η ∈ [0, 1], see figure 1.23.
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Figure 1.23: The B-spline surface of degree [3, 2] given by the knot vectors Ξ and
H.

1.3 Refinement techniques

One of the advantages of B-splines (and NURBS) is the fact that a number of
degrees of freedom can be rised without affecting an underlying geometry of a
computational domain. This process can be seen as an enlargement of vector
space that is defined by the original basis of an object. The refined basis is
defined in such way that the original space is included and form a subspace of
the refined one.

Several refinement techniques can be used to get a desirable number of de-
grees of freedom: Knot insertion (similar to h-refinement for finite elements),
degree elevation (similar to p-refinement for finite elements) and also so-called
k-refinement. In this section we shortly summarize the refinement techniques.
For more details see [Chapter 5][Piegl and Tiller, 1997].

1.3.1 Knot insertion

The first technique is called knot insertion allows us to insert as many new knots
as we wish without changing a curve (or a surface in two dimentions). All we need
to do to get the same curve for this new knot vector is to choose control points
appropriately. Let’s have an degree p, an original knot vector Ξ = {ξ1, . . . , ξn+p+1}
and a new extended knot vector Ξ̄ = {ξ̄1 = ξ1, ξ̄2, . . . , ξ̄n+m+p, ξ̄n+m+p+1 = ξn+p+1}
such that Ξ ⊂ Ξ̄. The new n+m control points P̄ = [P̄1, . . . , ¯Pn+m]T are a linear
combination of the original control points P = [P1, . . . , Pn]T given by

P̄ = TpP , (1.27)
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(a) Original curve and its control
points.
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(b) Origial basis.

Figure 1.24: The original curve and its basis.

where the coefficients of the linear combination are defined recursively in a similar
way as the B-spline basis functions

T 0
ij =

{
1 if ξ̄i ∈ [ξj, ξj+1],

0 otherwise,
(1.28)

T q+1
ij =

ξ̄iq − ξj
ξj+q − ξj

T qij +
ξj+q+1 − ξ̄i+q
ξj+q+1 − ξj+1

T qi,j+1 for q = 0, . . . , p− 1. (1.29)

This process will not change the shape of the curve, because the original space
in witch the curve is defined is a subspace of the new one. The new knot vector
defines n+m B-spline basis functions of degree p. If the new knots are distinct and
are not present in the original knot vector, the basis functions are Cp−1 continuous
at them. Knot insertion can be done in more dimentions independently as the
resulting basis is the tensor product of one dimentional basis.

Example 1.11. Given a knot vector

Ξ = [0, 0, 0, 1/6, 1/3, 1/2, 1/2, 5/6, 1, 1, 1], (1.30)

same as the open knot vector in example 1.2, and corresponding control points

P1 = [1, 0], P2 = [1, 1], P3 = [0, 1/2], P4 = [−1, 1]
P5 = [−1,−1], P6 = [−1/2, 0], P7 = [0,−1/2], P8 = [1/2, 0],

(1.31)

we can construct a B-spline curve of degree p = 2 from figure 1.24a.
If we insert a knot 2/3 into a knot vector Ξ, i. e. new knot vector is

Ξi = [0, 0, 0, 1/6, 1/3, 1/2, 1/2, 2/3, 5/6, 1, 1, 1], (1.32)

and choose the control points appropriately, we get the same curve and enriched
basis (figure 1.25) with nine basis functions. These basis functions are C1 contin-
uous at knots 1/6, 1/3, 2/3, 5/6, and C0 continuous at 1/2.
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(a) Curve and its control points after
the knot insertion.
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(b) Basis after the knot insertion

Figure 1.25: The curve and its basis after knot insertion.

1.3.2 Degree elevation

The second technique how to rise a number of degrees of freedom of a B-spline
basis is based on raising the polynomial degree of the basis functions. The basis
funtion is Cp−k continuous at the knots of multiplicity k. During the process
of degree elevation the multiplicity of each knot must be increased by one to
preserve discontinuities in the derivatives already existing in the original curve.
No new knot is added, but the control points have to be changed. It is done by
dividing the curve into Bezier segments, increasing the degree of each segment
and combining them back together into a single B-spline or NURBS curve.

Example 1.12. Let us have the same original basis and curve as in example 1.11.
If we elevate the degree p to 3 and choose appropriate control points, the shape of
the curve will not change, only the basis will change (figure 1.26). The B-spline
basis is defined by the knot vector

Ξe = [0, 0, 0, 0, 1/6, 1/6, 1/3, 1/3, 1/2, 1/2, 1/2, 5/6, 5/6, 1, 1, 1, 1], (1.33)

and consists of thirteen basis functions that are C1 continuous at knots 1/6, 1/3,
5/6 and C0 continuous at a knot 1/2.

1.3.3 k-refinement

With knot insertion we can get as many basis functions as we wish. These basis
functions are at most Cp−1 continuous across element boundaries (it depends on
the multiplicity of each knot). Then, if we elevate degree to q the continuity
across element boundaries will remain the same as before.

If we first elevate the degree to q and then we insert an unique knot value
ξ̄, the continuity at the knot ξ̄ will be Cq−1. This process is called k-refinement
and it allows us to get the highest continuity possible for new knots with given
polynomial degree.

20



-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

(a) Curve and its control points after
the degree elevation.
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(b) Basis after the degree elevation.

Figure 1.26: The curve and its basis after degree elevation.
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Figure 1.27: Degree elevation after knot insertion.

Example 1.13. In figures 1.27 and 1.28 we can spot the difference between de-
gree elevation after knot insertion and degree elevation before knot insertion (k-
refinement).

Let us have the original B-spline basis and the curve from example 1.25. If
we first insert a knot 2/3 and then elevate the degree p to 3 (figure 1.27), we get
fifteen basis functions given by a knot vector

Ξie = [0, 0, 0, 0, 1/6, 1/6, 1/3, 1/3, 1/2, 1/2, 1/2, 2/3, 2/3, 5/6, 5/6, 1, 1, 1, 1].
(1.34)

These basis functions are C1 continuous at knots 1/6, 1/3, 2/3, 5/6 and C0 con-
tinuous at a knot 1/2.

On the other hand, if we first elevate the degree p to 3 and then insert a knot
2/3 (k-refinement, figure 1.28), we get fourteen basis functions with C2 continuity
at a 2/3, C1 continuity at knots 1/6, 1/3, 5/6 and C0 continuity at a knot 1/2.
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Figure 1.28: Knot insertion after degree elevation (k-refinement).

1.4 NURBS

Even though B-splines allow us to construct very wide range of curves and sur-
faces (all piecewise polynomial curves and surfaces in particular), some basic
shapes cannot be covered by them. For example, it is well known that piecewise
polynomial parametrization of a circle does not exist. By weightening B-spline
basis functions we get a rational basis functions which preserve all properties of
B-splines. These are called non-uniform rational B-splines.

Definition 1.7. Given a set of positive weights wi ∈ R, i = 1, . . . , n, NURBS
basis functions in one parametric direction are defined as

Rp
i (ξ) =

Ni,p(ξ)wi∑n
î=1Nî,p(ξ)wî

, (1.35)

where Ni,p(ξ) are standard B-spline basis functions.

Given a set of positive weights wi,j ∈ R, i = 1, . . . , n, j = 1, . . . ,m, NURBS
basis functions in two parametric direction are defined as

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j∑n
î=1

∑m
ĵ=1 Nî,p(ξ)Mĵ,q(η)wî,ĵ

, (1.36)

where Ni,p(ξ) and Mj,q(η) are standard B-spline basis functions.

The continuity of NURBS basis functions as well as their local support prop-
erty follows directly from the definition similarly as for the B-splines. The func-
tions are clearly non-negative and form the partition of unity.

Example 1.14. Given a knot vector

Ξ = [0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1], (1.37)

and degree p = 2, the corresponding B-spline basis is shown in figure 1.29.

With given positive weights {1, 1/
√

2, 1, 1/
√

2, 1, 1/
√

2, 1, 1/
√

2, 1} we can
construct a NURBS basis using formula 1.35, see figure 1.30.
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Figure 1.29: B-spline basis functions of degree p = 2 given by a non-uniform knot
vector.
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Figure 1.30: NURBS basis functions of degree p = 2 given by a non-uniform knot
vector and a set of weights.

1.4.1 NURBS curves and surfaces

NURBS curves and surfaces are defined in a similar way as their B-spline coun-
terparts. We can see NURBS curves as projections of B-spline curves in four
dimensions (resp. three dimensions). This approach is useful while inserting
knot or elevating the degree of the NURBS curve. It is done by converting the
NURBS curve into a B-spline curve in higher dimension, performing the knot in-
sertion or the degree elevation, and projecting the B-spline curve back to NURBS
curve.

Definition 1.8 (NURBS curves, surfaces). Given n NURBS basis functions
Rp
i (ξ), i = 1, . . . , n, and corresponding control points Pi ∈ R3(resp.R2), i =

1, . . . , n, a piecewise polynomial B-spline curve is given by

γ(ξ) =
n∑
i=1

Rp
i (ξ)Pi. (1.38)

Given NURBS basis functions of degree p, q Rp,q
i,j (ξ, η), i = 1, . . . , n, j =

1, . . . , n, and a control net {Pi,j} ⊂ R3, i = 1, . . . , n, j = 1, . . . ,m, a NURBS
surface is defined by

σ(ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Pi,j. (1.39)

Example 1.15. The NURBS basis created in example 1.14 is the basis that we
need for a construction of a circle. With following control points the formula 1.38
gives the expected result, see figure 1.31.

P1 = [1, 0], P2 = [1, 1], P3 = [0, 1],
P4 = [−1, 1], P5 = [−1, 0], P6 = [−1,−1],
P7 = [0,−1], P8 = [1,−1], P9 = [1, 0],

(1.40)
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Figure 1.31: Circle.

Example 1.16. The NURBS basis in two dimention of degree p = 2 and q = 1 is
given by knot vectors

Ξ = [0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1], (1.41)

H = [0, 0, 1, 1], (1.42)

(1.43)

and weights

{{1, 1/
√

2, 1, 1/
√

2, 1, 1/
√

2, 1, 1/
√

2, 1}, {1, 1/
√

2, 1, 1/
√

2, 1, 1/
√

2, 1, 1/
√

2, 1}}.
(1.44)

This corresponds to a NURBS basis from figure 1.30 in first parametric direction
and B-spline basis in second parametric direction is shown in figure 1.32.
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Figure 1.32: B-spline basis functions of degree q = 1.
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With control points

P11 = [1, 0, 1], P12 = [1, 0, 0],
P21 = [1, 1, 1], P22 = [1, 1, 0],
P31 = [0, 1, 1], P32 = [0, 1, 0],
P41 = [−1, 1, 1], P42 = [−1, 1, 0],
P51 = [−1, 0, 1], P52 = [−1, 0, 0],
P61 = [−1,−1, 1], P62 = [−1,−1, 0],
P71 = [0,−1, 1], P72 = [0,−1, 0],
P81 = [1,−1, 1], P82 = [1,−1, 0],
P91 = [1, 0, 1], P92 = [1, 0, 0],

(1.45)

the formula 1.39 gives the cylinder, see figure 1.33.

Figure 1.33: Cylinder.

1.5 Construction techniques

Construction of a geometry is not only a very important aspect of IGA, but also
its big advantage. The development of IGA was motivated by the gap between
finite element analysis and computer-aided design. We want to mention some of
the methods used in geometry, but we will not get into details. Many domains
can be created by a single patch and for the sake of simplicity we restrict to them.

Only piecewise rational curves and surfaces can be represented as NURBS
objects. However, the rest of them can be approximated or interpolated with
high accuracy. The interpolation of a curve can be done using Lagrange/Hermite
polynomials or spline interpolation. The approximation involves Bezier methods.
A description of these methods is above the scope of this thesis, if interested, see
[Salomon, 2006].

1.5.1 Surfaces from given boundary curves

We often know boundary curves of a surface but not the whole surface. The
domains in R2 are fully determined by the boundary, but we need to create the
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parametrization of a surface in R2 for computation. The methods how to choose
internal control points to get the best possible surface for computation (or at
least a regular surface) are extensively studied nowadays. We present some of the
simple methods that are used in this thesis.

Ruled surfaces

A ruled surface is a surface that can be swept out by moving a line in space. The
surface can be given by two arbitrary curves γ1(ξ) and γ2(ξ) and linear blending
of them gives its parametrization in the form

σ(ξ, η) = (1− η)γ1(ξ) + ηγ2(ξ). (1.46)

Coons surface

Linear Coons surface is derived as a generalization of a ruled surface. This surface
patch is defined by four boundary curves γ1(ξ), γ2(ξ), δ1(η) and δ2(η) that meet
at four points P1 = γ1(0) = δ1(0), P2 = γ2(0) = δ1(1), P3 = γ2(1) = δ2(1) and
P4 = γ1(1) = δ2(0).

First we construct two ruled surfaces

σ1(ξ, η) = (1− η)γ1(ξ) + ηγ2(ξ), (1.47)

σ2(ξ, η) = (1− ξ)δ1(η) + ξδ2(η). (1.48)

The idea is to create a final surface σ(ξ, η) as a sum of these two ruled surfaces.
But we do not get the right curve at the boundary by only summing σ1 and σ2.
Thus, we need to substract a term given by four corner points P1, P2, P3 and P4

σ12(ξ, η) = P1(1− ξ)(1− η) + P2(1− ξ)η + P3ξη + P4ξ(1− eta) (1.49)

The resulting surface

σ(ξ, η) = σ1(ξ, η) + σ2(ξ, η)− σ12(ξ, η) (1.50)

is known as linear Coons surface. With different blending functions we can get
Coons surfaces of higher degree. For more details see [Salomon, 2006] or [Farin,
1992].

Note that we do not have to get a regular surface patch with this method.
Some details about sufficient and necessary conditions for the regularity of Coons
patch in planar case can be found in [Randrianarivony and Brunnett, 2004].
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2. Isogeometric analysis

The basic idea behind isogeometric analysis is to use the basis that exactly repre-
sents the geometry also as the basis for a solution space of the numerical method.
In classical FEA we choose the basis to approximate the unknown solution and
then we use it to approximate the known geometry. But we can choose the basis,
which is capable to exactly represent the geometry, and use it for the solution
space too. This approach allows us to work with domains that are surfaces in
R3 with the same simplicity as with classical domains in R2. We can even use
the fact that we have the actual surface available and develop methods based on
surface properties, see chapter 5.

Traditional finite element methods rely on polynomials mainly because of
their simplicity. They are easy to program, easy to understand and easy to prove
theorems with. It is known that sufficient convergence conditions for a wide class
of problems are satisfied by basis which is C1 on the element interiors, C0 on the
element boundaries and complete. And these conditions are fulfilled by B-spline
(NURBS) basis too, see [Cottrell et al., 2009, pg. 70].

With the parametrization and NURBS basis we can construct functions in
the computational domain Ω ⊂ R2 or R3. Having a NURBS basis {N̂i(ξ), i =
1, . . . , n ξ ∈ [0, 1]2} defining the parametriation σ : [0, 1]2 → Ω, as follows

σ(ξ) =
n∑
i=1

N̂i(ξ)Pi. (2.1)

The function û : [0, 1]2 → R in the parametric domain is

û(ξ) =
n∑
i=1

N̂i(ξ)ai, (2.2)

where the coefficients ai are called control variables. The function u : Ω →
R in a computational domain is the composition of û with the inverse of the
parametrization σ, i. e. u = û ◦ σ−1.

2.1 Boundary value problem

The usual process of solving the differential equation on the computational do-
main Ω with isogeometric analysis is as follows:

1. Create the geometry of Ω using NURBS (B-splines).

2. Refine the domain to get the desired number of degrees of freedom.

3. Get the weak formulation of the equation.

4. Approximate the solution space with the finite dimensional space
(Galerkin’s method).

5. Compute the matrix and the right-hand side.

6. Solve the matrix equations.
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To demonstrate this process we use the Poisson’s equation. Find u : Ω→ R such
that

−∆u = f in Ω, (2.3)

u = g on ΓD, (2.4)

∂u

∂n
= h on ΓN , (2.5)

where ΓD∩ΓN = {} and ΓD∪ΓN = ∂Ω, f : Ω→ R, g : ΓD → R and h : ΓN → R.

2.1.1 Weak formulation

The method begins with finding a variational (weak) formulation of the problem.
We get the variational form by multiplying the equation by a test function v and
integrating it over the whole domain Ω as follows

−
∫

Ω

∆uv dx =

∫
Ω

fv dx. (2.6)

Using the Green’s theorem we get∫
Ω

∇u · ∇v dx−
∫
∂Ω

v∇u · n dS =

∫
Ω

fv dx. (2.7)

This must to hold for an arbitrary test function v from some space. If we choose
the function v to be zero on the Dirichlet part of boundary, we can continue∫

Ω

∇u · ∇v dx =

∫
Ω

fv dx +

∫
ΓN

vh dS. (2.8)

Furthermore, the functions u and v and their first derivatives has to be in L2(Ω)
space to have finite integrals in the equation, i.e. u, v ∈ H1(Ω), where H1(Ω) is
Sobolev space. Therefore, we define the space of test functions V as follows

V = {v|v ∈ H1(Ω), v|ΓD
= 0}, (2.9)

and space of trial functions S among which we are looking for the solution as

S = {u|u ∈ H1(Ω), u|ΓD
= g}, (2.10)

because Dirichlet’s boundary condition must be fulfilled for the solution.
The equation is usually written in the form

a(u, v) = L(v), (2.11)

where

a(u, v) =

∫
Ω

∇u · ∇v dx, (2.12)

L(v) =

∫
Ω

fv dx +

∫
ΓN

vh dS. (2.13)

The problem is to find u ∈ S such that the equation 2.11 holds for all v ∈ V .

28



There are some properties of a and L that are usefull in many cases. The
operator a is symetrical, i. e. a(u, v) = a(v, u) for all u ∈ S and v ∈ V , and
bilinear, i. e.

a(c1u1 + c2u2, v) = c1a(u1, v) + c2a(u2, v) ∀u1, u2 ∈ S, v ∈ V , c1, c2 ∈ R.
(2.14)

The operator L is linear, i. e.

L(c1v1 + c2v2) = c1L(v1) + c2L(v2) ∀ v1, v2 ∈ V , c1, c2 ∈ R. (2.15)

2.1.2 Galerkin’s method

The idea behind Galerkin’s method is to construct finite dimensional subspaces
of S and V denoted Sh and Vh. In the classical finite elements these spaces are
spans of a polynomial basis, but in the case of isogeometric analysis these will be
spaces spanned by the NURBS basis that defines the geomery.

If we have the given function gh ∈ Sh such that gh|ΓD
= g, trial space Sh can

be characterized as a translation of the test space Vh in a following sense. For
every uh ∈ Sh there exists a unique u0

h ∈ Vh such that

uh = u0
h + gh. (2.16)

Finding such function gh called lifting is not possible for every g. Usually it is
necessary to consider gh as an approximation of g, for example L2 projection.

Now we can write the Galerkin’s form of the problem: Given gh, h and f , find
uh = u0

h + gh, where u0
h ∈ Vh, such that

a(uh, vh) = L(vh) ∀ vh ∈ Vh. (2.17)

Using the bilinearity of a we can rewrite it as: Find u0
h ∈ Vh, such that

a(u0
h, vh) = L(vh)− a(gh, vh) ∀ vh ∈ Vh, (2.18)

the approximation of solution is then uh = u0
h + gh.

2.1.3 Matrix equations

Because the spaces constructed in previous section are finite dimensional, this
method leads to a system of linear algebraic equations. Having NURBS basis
functions in a parametric space {N̂i(ξ), i = 1, . . . , ndof ξ ∈ [0, 1]2} that defines
the geometrical mapping σ : [0, 1]2 → Ω as in 2.1, the test space Vh is a span of
their counterparts Ni = N̂i ◦ σ−1 : Ω → R in the physical space. The support
of NURBS basis functions is local and only a few of them are non-zero on the
boundary of the domain. Let us denote D the set of boundary degrees of freedom,
i. e. indices of functions that are non-zero on the Dirichlet boundary ΓD, D =
{i ∈ {1, . . . , ndof}|Ni|ΓD

6= 0}, and I be the set of internal degrees of freedom, i.
e. I = {i ∈ {1, . . . , ndof}|Ni|ΓD

= 0}.
Thus, for all vh ∈ Vh there exist constants βi, i ∈ I such that

vh(x) =
∑
i∈I

βiNi(x). (2.19)
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The function gh is defined in a similar way by the coefficients γi, i ∈ D. In
practise we choose gh such that γi = 0 for i ∈ I because the functions Ni, i ∈ I
have no efect on the value on the Dirichlet boundary ΓD. Therefore,

gh(x) =
∑
i∈D

γiNi(x). (2.20)

And we are looking for a solution uh ∈ Sh in a form

uh(x) = u0
h(x) + gh(x) =

∑
i∈I

αiNi(x) +
∑
i∈D

γiNi(x). (2.21)

Now, we can insert vh and uh into equation 2.18 and get

∑
i∈I

βi
∑
j∈I

αja(Ni, Nj) =
∑
i∈I

βi

(
L(Ni)−

∑
j∈D

γja(Ni, Nj)

)
(2.22)

for all βi, i ∈ I, because of the linearity of a and L. Constants βi are arbitrary,
thus the following must hold∑

j∈I

αja(Ni, Nj) = L(Ni)−
∑
j∈D

γja(Ni, Nj) ∀Ni, i ∈ I. (2.23)

Let us denote

mij = a(Ni, Nj) =

∫
Ω

∇Ni · ∇Nj dx, (2.24)

fi = L(Ni)−
∑
j∈D

γja(Ni, Nj) (2.25)

=

∫
Ω

f · v dx +

∫
ΓN

v · h dS−
∑
j∈D

γj

∫
Ω

∇Ni · ∇Nj dx, (2.26)

and M = (mij)i,j∈I , F = (fi)i∈I and α = (αi)i∈I . The integrals have to be
computed numerically using numerical quadrature.

Now, we can rewrite equations 2.23 as a matrix problem

Mα = F. (2.27)

Solving this with respect to α gives us the solution

uh(x) =
∑
i∈I

αiNi(x) +
∑
i∈D

γiNi(x). (2.28)

2.2 GeoPDEs package for isogeometric analysis

All methods presented in this thesis are implemented using GeoPDEs package
(version 3.0.1) for isogeometric analysis in Octave/Matlab. This package provides
a common framework for implementing and testing new isogeometric methods
for solving partial differential equations and it is flexible enough to allow users to
implement new and more general methods.
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The GeoPDEs package is meant to serve as a starting point for anyone who
wish to get acquainted with the practical aspects of IGA implementation. It is
created with a special emphasis on the independence of individual parts in degree
to make it easier for users to focus on the aspects of IGA related algorithms they
are interested in and deal as little as possible with other parts of the code. It
was implemented mainly as a fast prototyping tool with the intention to use it
as a way to share ideas related to IGA. It is an open and free software especially
optimized to work in the free Octave interpreter to maximize its accessibility.

Because of the reasons above we chose to use GeoPDEs to implement the
algorithms described in this thesis. We can get a general idea about the IGA
implementation from the following example of solving Poisson’s equation.

Example 2.1. The domain Ω (see figure 2.1) is defined as an interior of a closed
curve Γ which is consists of four parts. Γ1 is a straight line from [−1, 0] to [3/2, 0],
Γ2 is a circular arc of radius one and a center in point [−1 −

√
2/2,
√

2/2] from
[−1, 0] to [−1,

√
2] and Γ3, Γ4 are B-spline curves of degree p = 2 given by a knot

vector Ξ3, resp. Ξ4, and control points P3, resp. P4, where

Ξ3 = [0, 0, 0, 1, 1, 1], (2.29)

P3 = {[−1,
√

2], [0,
√

2], [1/2, 1]}, (2.30)

Ξ4 = [0, 0, 0, 1/2, 1, 1, 1], (2.31)

P4 = {[1/2, 1], [1/2, 3/5], [3/2, 1/5], [3/2, 0]}. (2.32)

Neumann boundary is ΓN = Γ1 and Dirichlet boundary is ΓD = Γ2 ∪ Γ3 ∪ Γ4.

-1.0 -0.5 0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 2.1: Domain Ω is the interior of the closed curve created from parts Γ1

(red), Γ2 (green), Γ3 (blue), Γ4 (yellow).

Let us define the source term and boundary conditions as follows

f = (x2 + y2) sin(xy), (2.33)

g = (sin(xy) + y) |ΓD
, (2.34)

h = −1. (2.35)

With this simple setting the solution of the given problem is u = sin(xy) + y.
Parametrization of Ω can be done using the Coons patch mentioned in section

1.5. Then we get a NURBS surface of degree p = 2 in both parametric directions
defined by knot vectors
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Ξ1 = [0, 0, 0, 1, 1, 1], (2.36)

Ξ2 = [0, 0, 0, 1/2, 1, 1, 1], (2.37)

weights, and twelve control points. The domain is created by following code
using NURBS toolbox.

1 crv1 = n r b l i n e ([−1 , 0 , 0 ] , [ 1 . 5 , 0 , 0 ] ) ;
2 crv2 = n r b c i r c (1 , [(−1− s q r t (2 ) /2) , s q r t (2 ) /2 , 0 ] ,
3 −pi /4 , p i /4) ;
4

5 knt = [ 0 0 0 1 1 1 ] ;
6 c t r l = ze ro s (4 , 3) ;
7 c t r l ( : , 1) = [−1 , s q r t (2 ) , 0 , 1 ] ;
8 c t r l ( : , 2) = [ 0 , s q r t (2 ) , 0 , 1 ] ;
9 c t r l ( : , 3) = [ 0 . 5 , 1 , 0 , 1 ] ;

10 crv3 = nrbmak ( c t r l , knt ) ;
11

12 knt = [ 0 0 0 0 .5 1 1 1 ] ;
13 c t r l = ze ro s (4 , 4) ;
14 c t r l ( : , 4) = [ 0 . 5 , 1 , 0 , 1 ] ;
15 c t r l ( : , 3) = [ 0 . 5 , 0 . 6 , 0 , 1 ] ;
16 c t r l ( : , 2) = [ 1 . 5 , 0 . 2 , 0 , 1 ] ;
17 c t r l ( : , 1) = [ 1 . 5 , 0 , 0 , 1 ] ;
18 crv4 = nrbmak ( c t r l , knt ) ;
19

20 omega = nrbcoons ( crv1 , crv3 , crv2 , crv4 ) ;

Listing 2.1: Domain construction

To get more degrees of freedom, we elevate the degree to p = 3 in both
parametric directions and then insert knots

Ξ′1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]/10, (2.38)

Ξ′2 = [1, 2, 3, 4, 6, 7, 8, 9]/10, (2.39)

respectively to preserve the highest possible continuity of the basis. This
is done using functions nrbdegelev and nrbkntins. Resulting NURBS ob-
ject is transformed to the structure geometry, which stores information about
the parametrization and its derivatives. For more detailed description look at
[de Falco et al., 2011].

1 omega = nrbdege lev (omega , [ 1 , 1 ] ) ;
2

3 new knots1 = l i n s p a c e (0 , 1 , 9 + 2) ;
4 new knots1 = new knots1 ( 2 : end−1) ;
5 new knots21 = l i n s p a c e (0 , 0 . 5 , 4 + 2) ;
6 new knots22 = l i n s p a c e ( 0 . 5 , 1 , 4 + 2) ;
7 new knots2 = [ new knots21 ( 2 : end−1) , new knots22 ( 2 : end−1) ]
8

9 omega = nrbknt ins ( omega , {new knots1 , new knots2 }) ;
10

11 geometry = geo load ( omega ) ;

Listing 2.2: Refinement.
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Next step is to define a quadrature rule in each element for numerical in-
tegration. We use Gaussian quadrature of the same degree as NURBS surface
that describes the domain. Structure msh represents information important for
the quadrature such as coordinates of quadrature nodes and its corresponding
weights. Structure space stores information about test (and trial) functions
evaluated in quadrature nodes.

1 knots = geometry . nurbs . knots ;
2

3 [ qn , qw ] = msh set quad nodes ( knots ,
4 msh gauss nodes ( geometry . nurbs . order ) ) ;
5 msh = msh car te s ian ( knots , qn , qw , geometry ) ;
6

7 space = sp nurbs ( geometry . nurbs , msh) ;

Listing 2.3: Mesh and space definition.

Once we have the basic data structures, we can assemble the stiffness ma-
trix mat and the right-hand side rhs using functions op_gradu_gradv_tp, resp.
op_f_v_tp, provided by GeoPDEs package. In GeoPDEs, there are several dif-
ferent functions to compute matrices and right hand sides for different PDE
problems, or they can be modified to fit our needs.

1 f = @(x , y ) ( ( x . ˆ2 + y . ˆ 2 ) .∗ s i n ( x .∗ y ) ) ;
2 h = @(x , y ) (−x .∗ cos ( x .∗ y ) − 1) ;
3 g = @(x , y ) ( s i n ( x .∗ y ) + y ) ;
4

5 mat = op gradu gradv tp ( space , space , msh) ;
6 rhs = o p f v t p ( space , msh , f ) ;

Listing 2.4: Matrix and right-hand side construction.

Vector rhs is only one part of the right-hand side. The term describing
Neumann boundary conditions is missing. Neumann boundary Γ1 is the side
number 3 in the code. We add the last integral from equation 2.8 to the rhs as
follows.

1 f o r i s i d e = [ 3 ]
2 hs ide = @( vararg in ) h( vararg in { :} , i s i d e ) ;
3 do f s = space . boundary ( i s i d e ) . do f s ;
4 rhs ( do f s ) = rhs ( do f s ) + o p f v t p ( space . boundary ( i s i d e ) ,
5 msh . boundary ( i s i d e ) , h s ide ) ;
6 end

Listing 2.5: Apply Neumann boudary condition.

Last step to assemble matrix equation is to apply Dirichlet boundary con-
ditions. To do that it is necessary to find a projection of g onto the discrete
space and get its control variables g_h, identify Dirichlet degrees of freedom and
substract the Dirichlet part.

1 [ g h , d r c h l t d o f s ] = s p d r c h l t l 2 p r o j ( space ,
2 msh , g , [ 1 , 2 , 4 ] ) ;
3

4 i n t d o f s = s e t d i f f ( 1 : space . ndof , d r c h l t d o f s ) ;
5

6 rhs ( i n t d o f s ) = rhs ( i n t d o f s ) − mat( i n t d o f s ,
7 d r c h l t d o f s ) ∗g h ;

Listing 2.6: Apply Dirichlet boundary condition.
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Then we can initialize a solution vector u (vector of control variables of the
solution) and set it equal to g_h for Dirichlet degrees of freedom. The rest of
control variables is computed as a solution of the matrix problem 2.27.

1 u = ze ro s ( space . ndof , 1) ;
2

3 u( d r c h l t d o f s ) = g h ;
4 u( i n t d o f s ) = mat( i n t d o f s , i n t d o f s ) \ rhs ( i n t d o f s ) ;

Listing 2.7: Compute the solution.

We know that the exact solution of this problem is u = sin(xy) + y, thus, we
can compute L2 norm of the error, which is 5.2233 · 10−06.

Figure 2.2: Solution of Poisson problem from example 2.1.

2.3 Domains created by closed NURBS basis

functions

Even though working with domains created by a single patch may seem like a
big restriction, we do not have to restrict to surfaces homeomorfic to a disc.
We can simply create geometries with one hole by attaching two boundary sides
together. At this joining we need to define some boundary conditions to ensure
the continuity of the solution. We can go even further and require the same
continuity of functions as in the other parts of the computational domain.

2.3.1 Closed B-spline curves

Every closed B-spline curve can be also constructed as a clamped curve using an
open knot vector. Open knot vectors are standard in CAD and it is the only
possible way how to construct geometries in GeoPDEs package that we use to
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perform the computation. This restriction is embedded deeply in the structure
of the code and it would be very difficult to change it. But in the case of closed
domains we need to ensure at least continuity or even higher regularity at the
joining, thus, closed B-spline basis functions as a basis for a discrete space would
be the ideal choice.

In this section, we show the way how to modify the B-spline basis created by
an open knot vector to a closed B-spline basis and thus ensure higher regularity
of the solution. This problem of defining a basis at the joining is closely related
to the problem of finding an appropriate basis on the adjoining patch faces in
the case of multipatch domain. Ensuring higher regularity in that case is one of
the difficult tasks in IGA, which is extensively studied nowadays, see for example
[Kapla et al., 2015]. For a special case of joining two patch faces of one patch,
we were able to find an elegant solution.

Last but not least, it is straightforward to construct a closed B-spline basis
(as shown in the previous section), but that procedure of summing shifted basis
is not aplicable for NURBS because of the denominator. On the other hand,
the method discussed bellow is aplicable for NURBS too and allows us to ensure
higher continuity at the joining as simply as in the case of B-spline basis functions.

We would like to modify a B-spline basis of degree p constructed from the
open knot vector Ξ = [ξ1, ξ2, . . . , ξm], where ξ1 = ξ2 = . . . = ξp+1 and ξm−p =
. . . = ξm−1 = ξm, in such way, that the values and derivatives up to degree p− 1
are the same at the knots ξ1 and ξm. And even more, we require the resulting
basis to be exactly the closed B-spline basis defined by a knot vector

Ξc = [ξm−2p− (ξm− ξ1), ξm−2p+1− (ξm− ξ1), . . . , ξm−p−1− (ξm− ξ1), ξp, . . . , ξm−p].
(2.40)

Let us first investigate how these derivatives look like.

Lemma 2.1 (Derivatives of B-spline basis functions). Let Ξ = [ξ1, ξ2, . . . , ξm] be
a knot vector and Ni,p be the B-spline basis function associated to a knot vector
Ξ. Then the derivative of Ni,p(ξ) is given by

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (2.41)

Proof of this lemma can be found in [Piegl and Tiller, 1997, Section 2.3]. We
can generalize this formula to higher derivatives by differentiating both sides of
formula 2.41.

Lets start with a degree p and a knot vector Ξ. The basis of degree p created
by the knot vector Ξ is

B = {N1,p, . . . , Nn,p}, (2.42)

where n = m− p− 1.

1. Continuity

Let us recall that only one basis function N1,p, resp. Nn,p, is non-zero at the
parametric value ξ1, resp. ξm, and its value is 1. Thus, we want to replace
N1,p and Nn,p by a linear combination N = A1N1,p + AnNn,p satisfying

A1 = A1N1,p(ξ1) = N(ξ1) = N(ξm) = AnNn,p(ξm) = An. (2.43)
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In other words, we are solving equation

A1 − An = 0. (2.44)

The solution is for example A1 = An = 1.

2. Continuity of the first derivatives

With respect to formula 2.41, the only basis functions with non-zero deriva-
tives at the knot ξ1 are N1,p and N2,p, because the only basis function of
degree p − 1 given by the knot vector Ξ, which is non-zero at the knot ξ1,
is N2,p−1 and its value is 1. Thus,

d

dξ
N1,p(ξ1) = − p

ξp+2 − ξ2

, (2.45)

d

dξ
N2,p(ξ1) =

p

ξp+2 − ξ2

. (2.46)

(2.47)

For the knot ξm it works respectively. The only basis functions with non-
zero derivatives are Nn−1,p and Nn,p with values

d

dξ
Nn−1,p(ξm) =

p

ξm−p−1 − ξm−1

, (2.48)

d

dξ
Nn,p(ξm) = − p

ξm−p−1 − ξm−1

. (2.49)

(2.50)

Therefore, to ensure continuity of first derivatives we are looking for a linear
combination N = A1N1,p + A2N2,p + An−1Nn−1,p + AnNn,p such that

N ′(ξ1) = N ′(ξm), (2.51)

i. e.

− p

ξp+2 − ξ2

A1+
p

ξp+2 − ξ2

A2−
p

ξm−p−1 + ξm−1

An−1−
p

ξm−p−1 − ξm−1

An = 0.

(2.52)
Solving system of linear equations 2.44 and 2.52 gives us continuous func-
tions with continuous first derivatives.

3. Continuity of higher derivatives

Requirement of continuity for higher derivatives up to p − 1 will allways
give us one more equation and two more variables. By solving this system
we ensure the smoothness of the basis, but there are more conditions for
the basis: Positivity, local support and partition of unity property.

Let us explain how to choose the linear combinations to fullfill all these con-
ditions on the example.

36



��� ��� ��� ��� ��� ���

���

���

���

���

���

���

Figure 2.3: B-spline basis functions defined by an open uniform knot vector.

Example 2.2. The basis of degree p = 3 is given by a uniform open knot vector

Ξ = [0, 0, 0, 0, 1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, 8/9, 1, 1, 1, 1]. (2.53)

It consists of twelve basis functions

B = {N1,3, N2,3, N3,3, N4,3, N5,3, N6,3, N7,3, N8,3, N9,3, N10,3, N11,3, N12,3}, (2.54)

shown in a figure 2.3.
Their values and values of first and second derivatives at the first and the last

knots are following

B(0) = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, (2.55)

B(1) = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, (2.56)

d

dξ
B(0) = {−27, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, (2.57)

d

dξ
B(1) = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−27, 27}, (2.58)

d2

dξ2
B(0) = {486,−729, 243, 0, 0, 0, 0, 0, 0, 0, 0, 0}, (2.59)

d2

dξ2
B(1) = {0, 0, 0, 0, 0, 0, 0, 0, 0, 486,−729, 243}. (2.60)

We would like to replace functions N1,3, N2,3, N3,3, N10,3, N11,3, N12,3 with three
other functions B1, B2, B3 given as a linear combination

A1N1,3 + A2N2,3 + A3N3,3 + A10N10,3 + A11N11,3 + A12N12,3 (2.61)

fulfilling the following system of linear equations

 1 0 0 0 0 −1
−1 1 0 0 1 −1
2 −3 1 −1 3 −2



A1

A2

A3

A10

A11

A12

 =

0
0
0

 . (2.62)

Moreover, we know that the first function has the support [0, 1/9] ∪ [2/3, 1],
thus A2 and A3 have to be zero. All the possible solutions are a(1, 0, 0, 6, 2, 1) for
a > 0 to ensure the positivity of the new basis. The support of the second function
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is [0, 2/9]∪ [7/9, 1], thus A3 and A10 have to be zero and all possible solutions are
b(1, 1, 0, 0, 1, 1) for b > 0. Finally, the third function has support [0, 1/3]∪ [8/9, 1],
thus A10 and A11 have to be zero and we get a solution c(1, 2, 6, 0, 0, 1) for c > 0.

It remains to choose the values a, b, c and they are given by the fact that the
functions have to create the partition of unity, i. e. sum of coefficients for each
basis function N1,3, N2,3, N3,3, N10,3, N11,3, N12,3 have to be one. It means a = 1/6,
b = 2/3 and c = 1/6.

The new basis is B′ = {B1, B2, B3, N4,3, N5,3, N6,3, N7,3, N8,3, N9,3}, where

B1 =
N1,3

6
+N10,3 +

N11,3

3
+
N12,3

6
, (2.63)

B2 =
2N1,3

3
+

2N2,3

3
+

2N11,3

3
+

2N12,3

3
, (2.64)

B3 =
N1,3

6
+
N2,3

3
+N3,3 +

N12,3

6
. (2.65)

(2.66)

It is shown in figure 2.4.
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Figure 2.4: Linear combination of B-spline basis functions defined by an open
uniform knot vector.

This can be done also for non-uniform knot vectors.

Example 2.3. The basis of degree p = 3 is given by a non-uniform knot vector

Ξ = [0, 0, 0, 1/6, 1/3, 1/3, 1/3, 1/2, 1, 1, 1]. (2.67)

It consists of nine basis functions, see figure 2.5.
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Figure 2.5: B-spline basis functions defined by an open non-uniform knot vector.

With the right choice of control points (2.68) and this basis we can get exactly
the same curve as in example 1.9.
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P1 = [11/20, 29/40], P2 = [2/5, 7/10], P3 = [0, 1/2],
P4 = [−1, 1], P5 = [−1,−1/2], P6 = [−1/2, 0],
P7 = [1, 0], P8 = [1, 4/5], P9 = [11/20, 29/40].

(2.68)

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Figure 2.6: Clamped closed curve.

The values and values of first and second derivatives of basis functions at the
first and the last knots are following

B(0) = {1, 0, 0, 0, 0, 0, 0, 0, 0} (2.69)

B(1) = {0, 0, 0, 0, 0, 0, 0, 0, 1} (2.70)

d

dξ
B(0) = {−12, 12, 0, 0, 0, 0, 0, 0, 0} (2.71)

d

dξ
B(1) = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−4, 4} (2.72)

d2

dξ2
B(0) = {72,−108, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0} (2.73)

d2

dξ2
B(1) = {0, 0, 0, 0, 0, 0, 0, 0, 0, 6,−14, 8} (2.74)

Again, to create a basis that is C2 continuous at the joining, we need to replace
functionsN1,3, N2,3, N3,3, N7,3, N8,3, N9,3 with three other functionsB1, B2, B3 given
as a linear combination

A1N1,3 + A2N2,3 + A3N3,3 + A7N7,3 + A8N8,3 + A9N9,3 (2.75)

fulfilling the following system of linear equations

 1 0 0 0 0 −1
−3 3 0 0 1 −1
36 −54 18 −3 7 −4



A1

A2

A3

A7

A8

A9

 =

0
0
0

 . (2.76)
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According to the desired support the solution is

a(1, 0, 0, 20, 4, 1), (2.77)

b(1, 4/5, 0, 0, 8/5, 1), (2.78)

c(1, 4/3, 20/9, 0, 0, 1), (2.79)

where a, b and c are given by the partition of unity property as a = 1/20, b = 1/2
and c = 9/20.

It gives us the new basis B′ = {B1, B2, B3, N4,3, N5,3, N6,3}, where

B1 =
N1,3

20
+N7,3 +

N8,3

5
+
N9,3

20
, (2.80)

B2 =
N1,3

2
+

2N2,3

5
+

4N8,3

5
+
N9,3

2
, (2.81)

B3 =
9N1,3

20
+

3N2,3

5
+N3,3 +

9N9,3

20
. (2.82)

(2.83)

It is shown in figure 2.7.
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Figure 2.7: Linear combination of B-spline basis functions defined by an open
non-uniform knot vector.

This basis is exactly the same as the closed B-spline basis from example 1.9.

2.3.2 Closed NURBS curves

For a NURBS basis it is not possible to get the ideal closed basis by ”wrapping
knots”. On the parts of the domain where is not the ”full support”, i.e intervals
[ξ1, ξp] and [ξm−p, ξm], B-spline basis functions don’t form a partition of unity and
thus the weightening function deforms the NURBS.

Nevertheless, when creating a closed curve, we would like to have a basis with
higher regularity at the joining for the computation. We can do that by modifying
the basis created by an open knot vector in the same way as for the B-splines.

Example 2.4. The basis for a circle is a NURBS basis of degree two given by the
knot vector

Ξ = [0, 0, 0, 1/4, 1/4, 1/2, 1/2, 1/3, 3/4, 3/4, 1, 1, 1], (2.84)

and weights {1, 1/
√

2, 1, 1/
√

2, 1, 1/
√

2, 1, 1/
√

2, 1}, see example 1.14.
It consists of nine basis functions

B = {R2
1, R

2
2, R

2
3, R

2
4, R

2
5, R

2
6, R

2
7, R

2
8, R

2
9}, (2.85)
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Their values and values of first derivatives at the first and the last knots are
following

B(0) = {1, 0, 0, 0, 0, 0, 0, 0, 0}, (2.86)

B(1) = {0, 0, 0, 0, 0, 0, 0, 0, 1}, (2.87)

d

dξ
B(0) = {−4

√
2, 4
√

2, 0, 0, 0, 0, 0, 0, 0}, (2.88)

d

dξ
B(1) = {0, 0, 0, 0, 0, 0, 0,−4

√
2, 4
√

2}. (2.89)

(2.90)

To ensure continuity and continuity of first derivatives, we need to replace func-
tions R2

1, R2
2, R2

8 and R2
9 by two other functions B1, B2 given by a linear combi-

nation

A1R
2
1 + A2R

2
2 + A8R

2
8 + A9R

2
9 (2.91)

where A = (A1, A2, A8, A9) is the solution of

MA = 0, (2.92)

where M is a matrix (
1 0 0 −1
−1 1 1 −1

)
. (2.93)

The conditions on a local support and a partition of unity gives the two solutions

B1 =
R2

1

2
+R2

8 +
R2

9

2
, (2.94)

B2 =
R2

1

2
+R2

2 +
R2

9

2
. (2.95)

The new basis B′ = {B1, B2, R
2
3, R

2
4, R

2
5, R

2
6, R

2
7} is shown in figure 2.8.
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Figure 2.8: Linear combination of NURBS basis functions.

2.3.3 Closed objects in isogeometric analysis

Now we have almost everything ready to perform the isogeometric analysis on
closed objects. In the parametric direction perpendicular to joining sides we
modify the basis to ensure the highest possible continuity. Thus, we have this
continuity at the joining also for the solution.
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For practical reasons we do not modify the basis functions N̂i in a parameter
space, but directly the basis functions Ni in the computational domain that are
the composition of N̂i and the inverse of the geometrical mapping σ

Ni = N̂i ◦ σ−1. (2.96)

This we can do, because the parametrization has required continuity at the join-
ing.

Moreover, we do not modify the functions themselves, but the matrix and
the right-hand side. Because of the bilinearity of a and the linearity of L from
Galerkin’s method, there is no difference between modifying the basis functions
and modifying the equation.

We show how to do that on an example.

Example 2.5 (Poisson’s equation on annulus). The problem states: Find u : Ω→
R such that

−∆u = x+ y in Ω, (2.97)

u = 0 on ∂Ω, (2.98)

where Ω is an annulus, where the inner circle has radius one and the outer circle
has radius two.

First we construct the domain as a ruled surface between the two circles. We
increase the degree p to 2 and add three more knots uniformly in the second
(linear) direction. This will give us 54 degrees of freedom given by nine basis
functions in the first parametric direction and six basis functions in the second
parametric direction, shown in figures 2.9, 2.10.

1 R = 2 ;
2

3 c i r c 1 = n r b c i r c (1 , [ 0 0 0 ] , 0 , 2∗ pi ) ;
4 c i r c 2 = n r b c i r c (R, [ 0 0 0 ] , 0 , 2∗ pi ) ;
5 s r f = nrbru led ( c i r c1 , c i r c 2 ) ;
6

7 s r f = nrbdege lev ( s r f , [ 0 , 1 ] ) ;
8

9 nk = 3 ;
10 new knots2 = l i n s p a c e (0 , 1 , nk + 2) ;
11 new knots2 = new knots2 ( 2 : end−1) ;
12 new knots1 = [ ] ;
13

14 s r f = nrbknt ins ( s r f , {new knots1 , new knots2 })

Listing 2.8: Domain construction.

The Dirichlet boundary condition is given only on two sides of the domain and
if we do not specify any condition for the joining sides, we do not get a continuous
solution, see figure 2.11.

We need to modify the basis (the equations) to work with the continuous
basis. It is done in the first parametric direction as shown in example 2.4.
We take the degrees of freedom representing first (int_boundary_1), second
(int_boundary_2), eighth (second_row_1) and ninth (second_row_2) functions
and modify the matrix and the right-hand side according to the linear combina-
tion given by formula 2.94.
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Figure 2.9: NURBS basis functions in the first parametric direction.
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Figure 2.10: NURBS (B-spline) basis functions in the second parametric direc-
tion.

Figure 2.11: Solution of Poisson’s equation on an annulus, no conditions at the
joining.
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1 in t boundary 1 = space . boundary (1 ) . do f s ;
2 in t boundary 2 = space . boundary (2 ) . do f s ;
3

4 second row 1 = int boundary 1 + 1 ;
5 second row 2 = int boundary 2 − 1 ;
6

7 r1 = mat( int boundary 1 , : ) ;
8 r2 = mat( second row 1 , : ) ;
9 r8 = mat( second row 2 , : ) ;

10 r9 = mat( int boundary 2 , : ) ;
11

12 mat( int boundary 1 , : ) = ( r1 ./2 + r8 + r9 . / 2 ) ;
13 mat( int boundary 2 , : ) = ( r1 ./2 + r2 + r9 . / 2 ) ;
14

15 c1 = mat ( : , int boundary 1 ) ;
16 c2 = mat ( : , second row 1 ) ;
17 c8 = mat ( : , second row 2 ) ;
18 c9 = mat ( : , int boundary 2 ) ;
19

20 mat ( : , int boundary 1 ) = ( c1 ./2 + c8 + c9 . / 2 ) ;
21 mat ( : , int boundary 2 ) = ( c1 ./2 + c2 + c9 . / 2 ) ;
22

23 p1 = rhs ( int boundary 1 ) ;
24 p2 = rhs ( second row 1 ) ;
25 p8 = rhs ( second row 2 ) ;
26 p9 = rhs ( int boundary 2 ) ;
27

28 rhs ( int boundary 1 ) = ( p1 ./2 + p8 + p9 . / 2 ) ;
29 rhs ( int boundary 2 ) = ( p1 ./2 + p2 + p9 . / 2 ) ;
30

31 i n t d o f s = s e t d i f f ( i n t d o f s , second row 1 ) ;
32 i n t d o f s = s e t d i f f ( i n t d o f s , second row 2 ) ;
33

34 u = ze ro s ( space . ndof , 1) ;
35

36 u( i n t d o f s ) = mat( i n t d o f s , i n t d o f s ) \ rhs ( i n t d o f s ) ;

Listing 2.9: Modification of the matrix and the right-hand side.

With this matrix we get the right solution, which is C1 continuous at the
joining, see figure 2.12.
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Figure 2.12: Solution of Poisson’s equation on an annulus.
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3. Surfaces in R3

One of the main advantages of IGA is the fact that there is practically no dif-
ference between domains that are subsets of R2 and domains that are surfaces in
R3. It allows us to solve PDEs on surfaces with the same simplicity as in R2. In
this chapter we define the basics from the diffrential geometry and the calculus
on regular surfaces and show the way how to solve problems on surfaces. We also
state the problem of minimal surfaces, which we are going to deal with in the
following chapters.

3.1 Differential geometry

Let σ : U → R3 be a surface patch of the surface Σ = σ(U).

Definition 3.1 (Tangent space). We call w ∈ R3 a tangent vector to a surface
Σ at a point s ∈ Σ, if there exists curve γ such that Γ ⊂ Σ, γ(ξ0) = s and
γ̇(ξ0) = w. The tangent space TsΣ of Σ at s is the set of all tangent vectors to
Σ at s.

Tangent space TsΣ is a two dimensional subspace of R3 for an arbitrary s ∈ Σ.
If σ is a surface patch of Σ and s = σ(ξ0, η0) for some ξ0, η0, then vectors σξ(ξ0, η0)
and ση(ξ0, η0) are the basis of tangent space TsΣ, see [Pressley, 2010, Proposition
4.4.2].

Definition 3.2 (First fundamental form). Let Σ ⊂ R3 be a surface and s ∈ Σ.
The scalar product on TsΣ is defined as a restriction of a scalar product on R3

Is(w1,w2) = w1 ·w2, (3.1)

where w1,w2 ∈ TsΣ. This symetric bilinear form is called first fundamental form
of the surface Σ in s.

Lemma 3.1 (First fundamental form expressed in patch coordinates). Let σ(ξ, η)
be a surface patch of the surface Σ. Then first fundamental form of Σ expressed
with respect to the basis {σξ,ση} is given by the symetric matrix

G =

(
g11 g12

g21 g22

)
=

(
σξ · σξ σξ · ση
ση · σξ ση · ση

)
. (3.2)

The proof of correctness of definition 3.2 and lemma 3.1 can be found in
[Pressley, 2010, pg. 122].

Definition 3.3 (Unit normal). Let σ(ξ, η) be a surface patch of the surface Σ.
In each point we define the unit normal vector n as

n =
σξ × ση
‖σξ × ση‖

. (3.3)

Definition 3.4 (Second fundamental form). Let Σ be a surface, s ∈ Σ and ns
be a unit normal vector of Σ in s. Second fundamental form of the surface Σ is
defined as the quadratic form on TsΣ given by

IIs(w) = γ̈(ξ0) · ns, (3.4)

where w ∈ TsΣ and γ is an arbitrary curve such that γ(ξ0) = s and γ̇(ξ0) = w.
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Lemma 3.2 (Second fundamental form expressed in patch coordinates). Let
σ(ξ, η) be a surface patch of the surface Σ. Then second fundamental form of Σ
expressed with respect to the basis {σξ,ση} is given by the symetric matrix

H =

(
h11 h12

h21 h22

)
=

(
σξξ ·N σξη ·N
σηξ ·N σηη ·N

)
. (3.5)

The proof of correctness of definition 3.4 and lemma 3.2 can be found in
[Bekrová, 2014, pg. 6].

Now we can define the notion of a curvature of surface.

Definition 3.5 (Normal curvature). Let Σ be a surface, s ∈ Σ and w ∈ TsΣ
non-zero. Normal curvature of surface Σ in s in a direction w is defined as

κn =
IIs(w)

Is(w)
. (3.6)

Definition 3.6 (Main curvatures). Minimum κ1 and maximum κ2 of the normal
curvature are called the main curvatures and corresponding directions are called
the main directions.

Definition 3.7 (Gauss and mean curvature). At every point we define the Gauss
curvature K and the mean curvature H of surface as

K = κ1κ2, H = κ1 + κ2, (3.7)

where κ1 and κ2 are the main curvatures of surface.

Lemma 3.3 (Gauss and mean curvature expressed in surface patch). Let Σ be a
surface given by a surface patch σ and G and H are matrices of first and second
fundamental form respectively. Then the Gauss curvature is given by

K =
h11h22 − h2

12

g11g22 − g2
12

=
det H

det G
. (3.8)

And the mean curvature is given by

H =
h11g22 − 2h12g12 + h22g11

g11g22 − g2
12

=
h11g22 − 2h12g12 + h22g11

det G
. (3.9)

Proof of this lemma can be found in [Pressley, 2010, Corollary 8. 1. 3].

3.2 Calculus on surfaces

Definition 3.8. Let f : Σ → R be a function defined on the surface Σ. We say
f is differentiable at s ∈ Σ, if f ◦σ : U → R is differentiable at σ−1(s). Function
f is differentiable if it is differentiable at all points of Σ.

The simplest concept to start with is the tangential derivative on surface.
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Definition 3.9 (Tangential derivative). Let f : Σ → R be a differentiable func-
tion defined on the surface Σ. The tangential derivative of f at s ∈ Σ is defined
as the linear operator DΣf(s) : TsΣ→ R given by

DΣf(s)[v] =
d

dt
f(γ(t))|t=0, (3.10)

where v ∈ TsΣ and γ is an arbitrary curve on Σ such that γ(0) = s and γ ′(0) = v.

Now we can define the surface gradient for differentiable functions on the
surface, also reffered to as the tangential gradient.

Definition 3.10 (Surface gradient). Let f : Σ → R be a differentiable function
defined on the surface Σ. We call ∇Σf : Σ → R3 the surface gradient which
assigns the vector ∇Σf(s) in TsΣ ⊂ R3 such that

∇Σf(s) · v = DΣf(s)[v], (3.11)

for all v ∈ TsΣ to each point s ∈ Σ.

It can be shown that for a function f : R3 → R there is a connection between
standard and surface gradient. The following holds

∇Σf = ∇f − n(n · ∇f), (3.12)

where n is the unit normal of Σ. Thus, for functions defined in R3 the surface
gradient is the normal projection of the standard gradient. For the proof, see
[Walker, 2015, Section 4.2.3].

In the similar way as in Euclidian calculus, we can define divergence.

Definition 3.11 (Surface divergence). Let f : Σ → R3 be a differentiable vector
field defined on the surface Σ. Surface divergence operator is defined as

divΣf = trace(∇Σf). (3.13)

In calculus on surfaces, the counterpart to the Laplacian is the Laplace-
Beltrami operator. Laplacian is a divergence of gradient, thus the Laplace-
Beltrami operator is defined in the similar sense.

Definition 3.12 (Laplace-Beltrami operator). Let f : Σ→ R be a differentiable
function defined on the surface Σ. Laplace-Beltrami operator is defined as

∆Σf = divΣ(∇Σf). (3.14)

Variant of Green’s theorem holds for surface differential operators too.

Theorem 3.4 (Tangential Green’s theorem). Let f : Σ → R be a differentiable
function and v : Σ → R3 be a differentiable vector field on the surface Σ. Then
the following holds∫

Σ

f (divΣv +∇Σf · v) dS =

∫
Σ

Hfv · n dS, (3.15)

where H is the mean curvature of the surface Σ.

For the proof of this theorem, see [Delfour and Zolesio, 2011, Chapter 9,
Section 5.5].
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3.3 Poisson’s equation on surface

To demonstrate the power of the isogeometric analysis while solving PDEs on
surfaces, we again use Poisson’s equation. Find u : Σ→ R such that

−∆Σu = 1 in Σ, (3.16)

u = 0 in ∂Σ, (3.17)

where Σ is a skew quadrilateral defined by four points [0, 0, 0], [1, 0, 1], [1, 1, 0]
and [0, 1, 1], depicted in figure 3.1.

Figure 3.1: Skew quadrilateral.

3.3.1 Weak formulation

First we need to find a week formulation of equation 3.16. Same as in the planar
case, we multiply it by a test function v and integrate it over the domain

−
∫

Σ

∆Σuv dx =

∫
Σ

v dx. (3.18)

Using tangential Green’s theorem 3.4, we get∫
Σ

∇Σu · ∇Σv dS−
∫

Σ

Hv∇Σu · n dS =

∫
Σ

v dx, (3.19)

where the second integral on the left hand side vanishes, because ∇Σu · n = 0.
Thus, we get exactly the same problem as in R2: Find u ∈ S, such that∫

Σ

∇Σu · ∇Σv dS =

∫
Σ

v dx, (3.20)

for all v ∈ V , where S = V = {v|v ∈ H1(Σ), v|∂Σ = 0}.
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3.3.2 Discretization

As usual in IGA, the discrete space is constructed from the basis functions that
define the computational domain. Surface Σ is bilinear and very simple. It is
constructed from a B-spline basis (figure 3.2) of order one given by a knot vector

Ξ = [0, 0, 1, 1] (3.21)

and control points
P1 = [0, 0, 0], P2 = [1, 0, 1]
P3 = [1, 1, 0], P4 = [0, 1, 1].

(3.22)
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Figure 3.2: Original basis for construction of a skew quadrilateral in one para-
metrical direction.

It gives us only four degrees of freedom, all defined by Dirichlet boundary
condition. Thus, we need to enrich the basis by refinement. First we elevate the
order to p = 3 and then insert nine new knots uniformly. The new knot vector is
then

Ξ = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10]/10, (3.23)

the new basis in one parametric direction looks like in figure 3.3.
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Figure 3.3: Basis for construction of a skew quadrilateral in one parametric di-
rection after refinement.

With a tensor product of this basis in the first and the second parametric
direction we have 169 degrees of freedom and only 48 are given by Dirichlet
boundary condition. Using this descrete setting, the solution is in figure 3.4.
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Figure 3.4: Solution of Poisson’s equation on a skew quadrilateral.

3.3.3 Implementation

In the code, only very little changes.

1 knt = { [ 0 , 0 , 1 , 1 ] , [ 0 , 0 , 1 , 1 ]}
2 c t r l = ze ro s (4 , 2 , 2) ;
3 c t r l ( : , 1 , 1) = [ 0 , 0 , 0 , 1 ] ;
4 c t r l ( : , 2 , 1) = [ 1 , 0 , 1 , 1 ] ;
5 c t r l ( : , 1 , 2) = [ 0 , 1 , 1 , 1 ] ;
6 c t r l ( : , 2 , 2) = [ 1 , 1 , 0 , 1 ] ;
7

8 s r f = nrbmak ( c t r l , knt ) ;
9

10 s r f = nrbdege lev ( s r f , [ 2 , 2 ] ) ;
11

12 new knots = l i n s p a c e (0 , 1 , 9 + 2) ;
13 new knots = new knots ( 2 : end−1) ;
14

15 s r f = nrbknt ins ( s r f , {new knots , new knots }) ;
16

17 geometry = geo load ( s r f ) ;
18 knots = geometry . nurbs . knots ;
19

20 [ qn , qw ] = msh set quad nodes ( knots ,
21 msh gauss nodes ( geometry . nurbs . order ) ) ;
22 msh = msh car te s ian ( knots , qn , qw , geometry ) ;
23

24 space = sp nurbs ( geometry . nurbs , msh) ;
25

26 mat = op gradu gradv tp ( space , space , msh) ;
27

28 rhs = ze ro s ( space . ndof , 1) ;
29 const = ones (msh . nqn , msh . n e l d i r (2 ) ) ;
30 f o r i e l = 1 : msh . n e l d i r (1 )
31 msh col = msh eva luate co l (msh , i e l ) ;
32 s p c o l = s p e v a l u a t e c o l ( space , msh col , ’
33 value ’ , true , ’ g rad i en t ’ , t rue ) ;
34 rhs = rhs + o p f v ( sp co l , msh col , const ) ;
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35 end
36

37 d r c h l t d o f s = [ ] ;
38 f o r i s i d e = 1 :4
39 d r c h l t d o f s = union ( d r c h l t d o f s ,
40 space . boundary ( i s i d e ) . do f s ) ;
41 end
42

43 i n t d o f s = s e t d i f f ( 1 : space . ndof , d r c h l t d o f s ) ;
44

45 u = ze ro s ( space . ndof , 1) ;
46 u( i n t d o f s ) = mat( i n t d o f s , i n t d o f s ) \ rhs ( i n t d o f s ) ;

Listing 3.1: Implementation of Poisson’s equation on the surface.

3.4 Minimal surface problem

We are asking a question: How does a surface that minimizes its area for a given
boundary curve look like? How can we describe such a surface mathematically?

Let π be a simple closed curve in R2, we denote its interior as U = int(π).
Consider a surface patch σ : U → R3 of the surface Σ. For the sake of simplicity
we restrict ourselves to surfaces which can be parametrized by a single patch, i.
e. Σ = σ(U). Curve π corresponds to a closed curve γ = σ ◦ π on the surface
Σ. We define area functional A as an area of the surface Σ as follows

Area(Σ) = A(σ) =

∫
Σ

1 dS =

∫
U

√
det G dξ dη, (3.24)

where G is the matrix of the first fundamental form of Σ expressed in the
parametrization σ.

Let us recall that by symbol Rm(U) we denote a set of all surface patches
σ : U → R3 defining Cm regular surface (see definition 1.5).

Having S(γ) = {σ ∈ Rm(U),σ ◦π = γ}, finding the surface of minimal area
can be formulated as: Find surface σ∗ satisfying

σ∗ = arg min
σ∈S(γ)

A(σ). (3.25)

A necessary condition to minimize the functional A(σ) is clearly A′(σ∗) = 0.
It can be shown that this leads to the condition of zero mean curvature for every
point of the surface Σ. Such surfaces are called minimal. We will analyze this in
more detail in the chapter 5.

Definition 3.13 (Minimal surface). Surface Σ is called minimal, if its mean
curvature H vanishes for every s ∈ Σ.

Each surface that minimizes its area for a given boundary curve is a minimal
surface, but the opposite is not true, because minimal surfaces minimize their
area only locally. The well known example is the catenoid surface.

Because of its geometrical nature, minimal surface problem is very suitable to
demonstrate the power of the isogeometric analysis.
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3.4.1 Examples of minimal surfaces

Catenoid

Catenoid is obtained by revolving the graph x = cosh z around the z axis. In
fact, it is the only non-trivial minimal surface among all surfaces of revolution.
It can be proved that every minimal surface of revolution is either a part of a
catenoid or a subset of a plain (for more details see [Pressley, 2010, pg. 312]). It
can be parametrized by

σ(ξ, η) = (cosh ξ cos η, cosh ξ sin η, ξ). (3.26)

For computing the first and the second fundamental form we need to differ-
entiate the parametrization σ.

σξ = (sinh ξ cos η, sinh ξ sin η, 1), (3.27)

ση = (− cosh ξ sin η, cosh ξ cos η, 0), (3.28)

σξ × ση = (− cosh ξ cos η,− cosh ξ sin η, sinh ξ, cosh ξ), (3.29)

N =
1

cosh ξ
(− cos η,− sin η, sinh ξ), (3.30)

σξξ = (cosh ξ cos η, cosh ξ sin η, 0), (3.31)

σξη = (− sinh ξ sin η, sinh ξ cos η, 0), (3.32)

σηη = (− cosh ξ cos η,− cosh ξ sin η, 0) (3.33)

Using formula from lemma 3.1 and 3.2 we get

G =

(
cosh2 ξ 0

0 cosh2 ξ

)
, H =

(
−1 0
0 1

)
(3.34)

Using formula for a mean curvature H from lemma 3.3 gives us

H =
− cosh2 ξ + cosh2 ξ

cosh4 ξ
= 0. (3.35)

Thus, we see that the catenoid is indeed a minimal surface.
Let’s fix a > 0 and consider only the part of the catenoid with |z| < a. The

resulting surface Σ has a boundary consisting of two circles Γ± of radius cosh a
in the planes z = ±a with centres on the z axis. Is the minimal surface Σ also
a surface with the minimal area for this boundary? The area of the surface Σ is,
by formula 3.24,

Area(Σ) =

∫ a

−a

∫ 2π

0

√
det G dξ dη =

∫ a

−a

∫ 2π

0

cosh2 ξ dξ dη = 2π(a+sinh a cosh a).

(3.36)
Another surface with a boundary consisting of the same two circles Γ± is obviusly
a surface Σ0 consisting of the two discs x2+y2 ≤ cosh2 a in the planes z = ±a. The
area of the surface Σ0 is 2π cosh2 a. So the minimal surface Σ does not minimize
the area among all surfaces with the boundary Γ±, if cosh2 a < a+ sinh a, i. e.

1 + e−2a < 2a. (3.37)
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Functions 1 + e−2a and 2a are monotonically decreasing, resp. increasing, so they
intersect in only one point a = a0

.
= 1.278. Thus, for a > a0 the catenoid is not

an area minimizing surface. It can be shown that if a < a0 the catenoid has the
least area among all surfaces with the boundary consisting of circles Γ±.

Figure 3.5: Catenoid.

Enneper’s surface

Another famous minimal surface is Enneper surface given by a parametrization

σ(ξ, η) =

(
ξ − ξ3

3
+ ξη2,−η − ξ2η +

η3

3
, ξ2 − η2

)
. (3.38)

Its derivatives and unit normal vector are following

σξ = (1− ξ2 + η2,−2ξη, 2ξ), (3.39)

ση = (2ξη,−1− ξ2 + η2,−2η), (3.40)

σξ × ση = (2ξ(1 + ξ2 + η2), 2η(1 + ξ2 + η2), (−1 + ξ2 + η2)(1 + ξ2 + η2)),(3.41)

N =
1

1 + ξ2 + η2
(2ξ, 2η,−1 + ξ2 + η2), (3.42)

σξξ = (−2ξ,−2η, 2), (3.43)

σξη = (2η,−2ξ, 0), (3.44)

σηη = (2ξ, 2η,−2) (3.45)

From this and formulas from lemma 3.1 and 3.2 we get the first and the second
fundamental form

G = (1 + ξ2 + η2)2

(
1 0
0 1

)
, H =

(
−2 0
0 2

)
(3.46)
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(a) ξ ∈ [−1/2, 1/2], η ∈ [−1/2, 1/2], (b) ξ ∈ [−1, 1], η ∈ [−1, 1].

(c) ξ ∈ [−3/2, 3/2], η ∈ [−3/2, 3/2]. (d) ξ ∈ [−2, 2], η ∈ [−2, 2].

Figure 3.6: Enneper surface on different domains

Formula for a mean curvature H from lemma 3.3 gives H = 0. We verified
that the surface given by parametrization 3.38 is minimal. Enneper surface on
different domains is depicted in figure 3.6.

This surface is polynomial, thus it can be parametrized also as a B-spline
surface using tensor product of a B-spline basis of order p = 3 given by a knot
vector

Ξ = [0, 0, 0, 0, 1, 1, 1]. (3.47)

For a given part of the surface ξ ∈ [a, b], η ∈ [c, d] we can find appropriate control
points by solving a system of linear equations.
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4. Minimal surfaces as functions
over R2

In a special case when a minimal surface can be parametrized as a function
over R2 domain Ω, we can find a partial differential equation which has to be
fulfilled to minimize the area funcional. In the following chapter we work with
the parametrization in the co called Monge parametrization

σ(x, y) = (x, y, u(x, y)), (4.1)

where x, y ∈ Ω.

4.1 Minimal surface equation

We use the Euler-Lagrange equation (see [Lanczos, 1970, pg. 60]) to determine
a stationary point of the area functional. The area functional 3.24 for Monge
parametrization becomes

A(u) =

∫
Ω

√
1 +∇u2 dx dy, (4.2)

which minimizes the area of a surface over Ω with the fixed u = uD on ∂Ω because
of the strict convexity of the functionalA. We get the following partial differential
equation

− ∂

∂x

ux√
1 +∇u2

− ∂

∂y

uy√
1 +∇u2

= 0. (4.3)

This can be written also in a compact way as

− div(q(u)∇u) = 0, (4.4)

where

q(u) =
1√

1 + |∇u|2
. (4.5)

Writing explicitly the derivative we get

−
uxx
√

1 +∇u2 − ux 2uxuxx+2uyuxy√
1+∇u2

1 +∇u2
−
uyy
√

1 +∇u2 − uy 2uyuyy+2uxuyx√
1+∇u2

1 +∇u2
= 0. (4.6)

This can be put to the well known form

(1 + u2
y)uxx− 2uxuyuxy + (1 + u2

x)uyy

(1 +∇u2)3/2
= 0. (4.7)

This is exactly the formula for the mean curvature H for Monge parametrization.
Thus, we see directly that u satisfying this equation has the zero mean curvature
H.
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Therefore, to find a minimal surfaces we have to solve the problem: Find a
solution of the following non-linear minimal surface equation

−div(q(u)∇u) = 0 in Ω (4.8)

u = uD on ∂Ω (4.9)

where

q(u) =
1√

1 + |∇u|2
(4.10)

and uD is a given function. That we will do approximately.

4.1.1 Existence and uniqueness of the solution

It is well known that the classical solution of equation 4.8 with uD ∈ C(Ω) does
exist only for convex domains Ω. The situation is different for a weak solution.
If almost all points of the boundary ∂Ω are convex, there exists a weak solution
for all uD ∈ C(Ω). On the other hand, if the nonconvexity of the boundary is
essential, we can find a boundary condition uD ∈ C(Ω), such that there exists no
week solution. For more details, see [Soucek, 1971].

4.2 Newton method

We use Newton method at PDE level inspired by one of the methods for solving
non-linear problems with finite elements presented in the book [Logg et al., 2012,
Section 1.2.3]. We seek for the solution of non-linear PDE in the form

uk+1 = uk + δu, (4.11)

where uk is the initial approximation and δu is a small perturbation. The problem
for δu is non-linear, therefore, we suppose that δu is small enough to linearize q.

q(uk+1) = q(uk) + q′(uk)δu+O((δu)2) ≈ q(uk) + q′(uk)δu. (4.12)

By omitting non-linear terms in PDE we get

− div(q(uk)∇uk)− div(q(uk)∇δu)− div(q′(uk)δu∇uk) = 0 (4.13)

The weak form of this equation is derived from equation 4.8 by multiplying it by
a test function v and integrating it over Ω∫

Ω

(q(uk)∇δu · ∇v + q′(uk)δu∇uk · ∇v) dx dy = −
∫

Ω

q(uk)∇uk · ∇v dx dy

(4.14)
In our case

q′(uk)δu = −(q(uk))
3∇uk · ∇δu. (4.15)

Therefore, the variational problem reads: Find δu in V such that ak(δu, v) =
Lk(v) holds for all v in V , where

ak(δu, v) =

∫
Ω

(
q(uk)∇δu · ∇v − (q(uk))

3(∇uk · ∇δu)(∇uk · ∇v)
)

(4.16)

Lk(v) = −
∫

Ω

q(uk)∇uk · ∇v (4.17)

V = {v ∈ H1(Ω) : v = 0 on ∂Ω} (4.18)
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This gives us the following algorithm.

Algorithm 4.1 (Newton method). Let u0 be an initial solution such that u0|∂Ω =
uD and k = 0.

1. Find δu ∈ V such that ak(δu, v) = Lk(v) for all v ∈ V.

2. Define uk+1 = uk + δu.

3. Increase k and go to step 1.

4.3 Discretization

To compute a numerical solution, we need to adapt algorithm 4.1 to discrete
settings. Having a NURBS basis {N̂i(ξ), i = 1, . . . , n, ξ ∈ [0, 1]2}, let the domain
Ω be parametrized as

σ(ξ) =
n∑
i=1

N̂i(ξ)Pi. (4.19)

Let us denote I = {i ∈ {1, . . . , n}, N̂i|∂Ω = 0}. We replace space V by an
isogeometric discrete space Vh = span{Ni = N̂i ◦ σ−1, i ∈ I}. The discrete form
of algorithm 4.1 is then

Algorithm 4.2 (Discrete Newton method). Let u0 be an initial solution such
that u0|∂Ω = uD and k = 0.

1. Find δu ∈ Vh such that ak(δu,Ni) = L(Ni) for all i ∈ I.

2. Define uk+1 = uk + δu.

3. Increase k and go to step 1.

Note that it is not necessary to have u0 in the space of NURBS functions, but
we do that for the simplification of the implementation. As usual for a Newton
method, the choice of u0 is crutial for a convergence.

4.4 Numerical results

In this section we present a number of numerical simulations to show convergence
properties of this method in different situations. The algorithm was implemented
using GeoPDEs package for Octave. NURBS functions used for the geometry
were used to compute a solution. Residual of the weak equation was used as a
stopping criterion.

ri =

∫
Ω

q(uk)∇uk · ∇Ni dx dy, i ∈ I, (4.20)

res =

√∑
i∈I

r2
i . (4.21)
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(a) Exact Enneper surface with its con-
trol points.

(b) Initial surface with its control
points.

Figure 4.1: Exact and initial surfaces, example 4.4.1.

Tolerance was set to 10−5. Several ways how to choose the initial solution are
shown. The mesh size, i. e. maximal distance between two adjacent knots in the
parameter space, is denoted by h.

The discrete space has high regularity (we use NURBS of degree 3), which
allows us to compute the mean curvature of the surface directly using its repre-
santation in Monge parametrization given by the left-hand side of equation 4.7.
This gives us a good measure of an approximation error even if we do not know
the exact solution. Minimal surface has a zero mean curvature, thus, we can
measure a quality of approximation by different norms of a mean curvature H
evaluated point wise. If we denote Σ the surface defined by the solution u, we
can consider different types of an error:

• L1 error
1

|Σ|

∫
Ω

|H| dx, (4.22)

• L2 error (
1

|Σ|

∫
Ω

|H|2 dx

)1/2

, (4.23)

• L∞ error

‖H‖L∞(Ω). (4.24)

4.4.1 Enneper surface

Enneper surface is a B-spline surface of degree p = 3 and its exact parametrization
is known (figure 4.1a). Thus, we can measure the actual error of the approxima-
tion. Given four boundary curves, we can construct an initial surface as Coons
patch. Unfortunately, in this case, we get the exact Enneper surface. Therefore,
we set the third coordinates of four inner control points to a = 1/2 (figure 4.1b).
If we set for example a = 2/3, the method diverges.
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(a) Initial solution in Ω. (b) Initial surface.

(c) Initial distribution of H. (d) Initial distribution of an error.

Figure 4.2: Initial solution, surface and its properties, example 4.4.1.

Domain Ω is created by setting the third coordinate of all control points of the
initial surface to zero. The control variables of an initial solution are the third
coordinates. The initial surface area is 1.493 and distributions of an initial mean
curvature H and an initial error are in figure 4.2.

We run the simulation for several different h. B-spline basis in one parametric
direction for a given h is shown in figure 4.3. The basis is same in both parametric
directions.

The results for different h are summarized in table 4.1 and the distribution of
a mean curvature H is shown in figure 4.4. Even for h = 1/4 we get very good
results. We can observe that for smaller h we get worse values of H. It may be
caused by the fact that the exact solution is given by very little number of degrees
of freedom, thus, we get the solution quickly with small h. We stop the iterations
in case that res is less than 10−5. The final residuals for h = 1/4, 1/8, 1/16, 1/32
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(a) B-spline basis for h = 1/4.
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(b) B-spline basis for h = 1/8.
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(c) B-spline basis for h = 1/16.
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(d) B-spline basis for h = 1/32.

Figure 4.3: B-spline basis in one parametric direction for different h, example
4.4.1.

h ‖I‖ i |Σ| L1 error L2 error L∞ error ‖u− ue‖L2(Ω)

1/4 25 4 1.372 3.32 · 10−7 5.01 · 10−7 1.37 · 10−6 3.96 · 10−6

1/8 81 4 1.372 2.34 · 10−6 5.05 · 10−6 2.10 · 10−5 2.41 · 10−6

1/16 289 4 1.372 5.45 · 10−6 1.82 · 10−5 1.44 · 10−4 9.40 · 10−6

1/32 1098 4 1.372 6.58 · 10−6 3.21 · 10−5 3.84 · 10−4 2.94 · 10−5

Table 4.1: Summary of the results for the Enneper surface.

are 3.72·10−08, 1.87·10−07, 3.26·10−07, 3.33·10−07 respectively. Thus, the difference
in errors is under our resolving abilities.

The distribution of the error is the same for all refinements we tried (figure
4.5). You can see the final solution in figure 4.6.
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(a) Distribution of H for h = 1/4. (b) Distribution of H for h = 1/8.

(c) Distribution of H for h = 1/16. (d) Distribution of H for h = 1/32.

Figure 4.4: Distribution of a mean curvature H for different h, example 4.4.1.
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Figure 4.5: Distribution of an error, example 4.4.1.

4.4.2 Skew quadrilateral

Minimal surface with boundaries given by a skew quadrilateral is probably the
most frequent example of a minimal surface. Unfortunately, the skew quadrilat-
eral itself is very close to the minimal surface. Thus, to test our algorithm we add
aditional control points in the middle. The initial surface (figure 4.7) is given by
knot vectors Ξ = H = [0, 0, 1/2, 1, 1] and control points

P11 = [0, 0, 0], P12 = [1/2, 0, 1/2], P13 = [1, 0, 1],
P21 = [0, 1/2, 1/1], P22 = [1/2, 1/2, 3/4], P23 = [1, 1/2, 1/2],
P31 = [0, 1, 1], P32 = [1/2, 1, 1/2], P3,3 = [1, 1, 0].

(4.25)

If the middle control point P22 is too far away, e. g. [1/2, 1/2, 1], the method
diverges.

Domain Ω is created by setting the third coordinate of all control points of the
initial surface to zero. The control variables of an initial solution are the third
coordinates. The initial surface area is 1.342 and a distribution of an initial mean
curvature H is in figure 4.8.

We elevate the degree to p = 3 in both parametric directions and run the
simulation for several h. B-spline basis in one parametric direction for different
h is shown in figure 4.9. The basis is same in both parametric directions.

The results for different h are summarized in table 4.2 and the distribution of
a mean curvature H is shown in figure 4.10. We can observe that a convergence
is fast and the results improve with smaller h. You can see the final solution in
figure 4.11.
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(a) Final solution in Ω for h = 1/32. (b) Final surface for h = 1/32.

Figure 4.6: Final solution and surface, example 4.4.1.

Figure 4.7: Initial surface with its control points, example 4.4.2.

h ‖I‖ i |Σ| L1 error L2 error L∞ error
1/4 49 3 1.279 2.11 · 10−2 3.27 · 10−2 1.28 · 10−1

1/8 121 3 1.279 5.21 · 10−3 8.16 · 10−3 4.52 · 10−2

1/16 289 3 1.279 1.36 · 10−3 1.96 · 10−3 1.29 · 10−2

1/32 1098 3 1.279 3.84 · 10−4 5.20 · 10−4 3.44 · 10−3

Table 4.2: Summary of the results for the skew quadrilateral minimal surface.
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(a) Initial solution in Ω. (b) Initial surface.

(c) Initial distribution of H.

Figure 4.8: Initial solution, surface and its properties, example 4.4.2.
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(a) B-spline basis for h = 1/4.
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(b) B-spline basis for h = 1/8.
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(c) B-spline basis for h = 1/16.
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(d) B-spline basis for h = 1/32.

Figure 4.9: B-spline basis in one parametric direction for different h, example
4.4.2.
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(a) Distribution of H for h = 1/4. (b) Distribution of H for h = 1/8.

(c) Distribution of H for h = 1/16. (d) Distribution of H for h = 1/32.

Figure 4.10: Distribution of a mean curvature H for different h, example 4.4.2.

(a) Final solution in Ω for h = 1/32. (b) Final surface for h = 1/32.

Figure 4.11: Final solution and surface, example 4.4.2.
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(a) Initial solution in Ω.

(b) Initial surface.

(c) Initial distribution of H.

Figure 4.12: Initial solution, surface and its properties, example 4.4.3.

4.4.3 Sinus ruled surface

In this example a boundary condition is defined as the restriction of function
f(x, y) = sin(x) to the rectangular domain Ω = [0, 2π]×[0, 3]. We create a domain
Ω, elevate the degree to p = 3 in both parametric directions and refine basis
functions by a desired h. Then we approximate the boundary condition by L2

projection and create an initial surface as a ruled surface between two sinusoidal
curves. The initial surface area differes between 22.912 and 22.921, it depends
on the accuracy of the L2 projection given by the refinement. Distribution of an
initial mean curvature H is in figure 4.12.

We run the simulation for several h. B-spline basis in one parametric direction
is the same as for the Enneper surface (figure 4.3). The basis is same in both
parametric directions.

The results for different h are summarized in table 4.3 and the distribution of
a mean curvature H is shown in figure 4.13. We observe a fast convergence and
an improvement of the results with smaller h. You can see the final solution in
figure 4.14.
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h ‖I‖ i |Σ| L1 error L2 error L∞ error
1/4 25 3 21.398 4.45 · 10−2 6.18 · 10−2 3.45 · 10−1

1/8 81 3 21.417 1.07 · 10−2 1.65 · 10−2 1.27 · 10−1

1/16 289 4 21.418 2.69 · 10−3 4.43 · 10−3 4.35 · 10−2

1/32 1098 4 21.418 6.77 · 10−4 1.11 · 10−3 1.24 · 10−2

Table 4.3: Summary of the results for the minimal surface with sinus boundaries.

(a) Distribution of H for h = 1/4.

(b) Distribution of H for h = 1/8.

(c) Distribution of H for h = 1/16.

(d) Distribution of H for h = 1/32.

Figure 4.13: Distribution of a mean curvature H for different h, example 4.4.3.
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(a) Final solution in Ω for h = 1/32.

(b) Final surface for h = 1/32.

Figure 4.14: Final solution and surface, example 4.4.3.

Figure 4.15: Initial surface with its control points, example 4.4.4.

4.4.4 Surface over a circular sector

Another minimal surface is an example of NURBS surface. Domain Ω is a circular
sector with the central angle 7π/4. The control variables of an initial solution
are set to values 0, 1/2, 0,−1/2, 0, 1/2, 0,−1/2, 0 along the circular arc, as shown
in figure 4.15. If we set the control variables of an initial solution for example to
0, 1, 0,−1, 0, 1, 0,−1, 0 along the circular arc, the method diverges.

The initial surface area is 2.954 and the distribution of an initial mean curva-
ture H is in figure 4.16.

We elevate the degree to p = 3 in both parametric directions and run the sim-
ulation for several h. NURBS basis in the first parametric direction for different
h is shown in figure 4.17. In the second parametric direction basis is the same
B-spline basis as in the case of the Enneper surface (figure 4.3).

The results for different h are summarized in table 4.4 and the distribution of
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(a) Initial solution in Ω. (b) Initial surface.

(c) Initial distribution of H.

Figure 4.16: Initial solution, surface and its properties, example 4.4.4.
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(a) NURBS basis for h = 1/4.
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(b) NURBS basis for h = 1/8.
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(c) NURBS basis for h = 1/16.
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(d) NURBS basis for h = 1/32.

Figure 4.17: NURBS basis in the first parametric direction for different h, example
4.4.4.

h ‖I‖ i |Σ| L1 error L2 error L∞ error
1/4 55 3 2.901 1.59 · 10−1 2.23 · 10−1 5.44 · 10−1

1/8 135 3 2.901 5.25 · 10−2 7.91 · 10−2 4.62 · 10−1

1/16 391 3 2.901 1.79 · 10−2 3.82 · 10−2 4.62 · 10−1

1/32 1287 3 2.901 5.39 · 10−3 1.81 · 10−2 4.62 · 10−1

Table 4.4: Summary of the results for the surface over circular sector

a mean curvature H is shown in figure 4.18. We observe a convergence, but the
results are not as good as for other surfaces above. You can see the final solution
in figure 4.19.
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(a) Distribution of H for h = 1/4. (b) Distribution of H for h = 1/8.

(c) Distribution of H for h = 1/16. (d) Distribution of H for h = 1/32.

Figure 4.18: Distribution of a mean curvature H for different h, example 4.4.4.

73



(a) Final solution in Ω for h = 1/32. (b) Final surface for h = 1/32.

Figure 4.19: Final solution and surface, example 4.4.4.
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5. Minimal surfaces in general
parametrization

In the previous chapter we described a method how a minimal surface can be
approximated in a special case of Monge parametrization. Now we focus on
athe general problem of finding a minimal surface in general parametrization.
Isogeometric tools allow us to use numerical schemes that would be very difficult
to obtain with standard finite elements. We work with actual smooth surface,
thus, we can directly use surface characteristics as curvature or normal.

The following method is inspired by the article [Chicco-Ruiz et al., 2016]
enriched by our own implementation using GeoPDEs package in Octave. This
approach is using the original problem of finding a surface with minimal area for
a given boundary and is not even restricted to surfaces homeomorfic to a disc (i.
e. it can be used to compute for example a catenoid).

5.1 Minimizing the area functional

In this chapter we use a following convention. The fields defined on surface Σ
given by parametrization σ : U → R3 are denoted with lowercase letters. The
corresponding uppercase letters reffer to their pull-backs on U . For example if
v is a field defined on Σ, its pull-back V on U is defined as a composition with
σ, F = f ◦ σ. Let us remind you that the symbol Rm(U) denotes the set of all
surface patches σ : U → R3 defining Cm regular surface (see definition 1.5). For
the rest of the chapter we suppose that m ≥ 1 is a fixed constant.

We begin with area functional A defined by formula 3.24. For a given closed
Jordan curve γ and a family of parametrizations S(γ) = {σ ∈ Rm(U),σ|∂U = γ}
find a parametrization σ∗ ∈ S(γ) satisfying

σ∗ = arg min
σ∈S(γ)

A(σ). (5.1)

Finding the global minimizer can be difficult, thus, we focus on a simpler as-
sociated problem of finding critical points of the area functional A, i. e. find
σ ∈ S(γ) such that A′(σ) = 0, where A′ denotes the Fréchet derivative of A.

Definition 5.1 (Fréchet derivative). Let V be a Banach space. Function F :
U → R is called Fréchet differentiable at x ∈ U if there exists a bounded linear
operator A : V → W such that

lim
h→0

‖F (x+ h)− F (x)− Ah‖W
‖h‖V

= 0. (5.2)

Equivalently, the first order expansion holds

F (x+ h) = F (x) + Ah+ o(h). (5.3)

If there exists such an operator A, it is unique, so we write F ′(x) = A and call it
the Fréchet derivative of F at x.
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Function F that is Fréchet differentiable at any point from U is said to be C1

continuous, if the function

F ′ : U → B(V ;W) (5.4)

x 7→ F ′(x) (5.5)

is continuous.

In our case the space V is a space Cm(U,R3). We are interested in derivatives
of the functional A for σ ∈ S(γ) in the directions of vector increments

V = {V ∈ Cm(U,R3) : V|∂U = 0}, (5.6)

with the norm
‖V‖V = max

|α|≤m
max
x∈U
|DαV(x)|. (5.7)

Thus, the Fréchet derivativeA′(σ) is defined as the only bounded linear functional
from V to R such that

A(σ + V) = A(σ) +A′(σ)[V] + o(‖V‖V) (5.8)

for all V ∈ V with ‖V‖V sufficiently small.
Now let’s see explicitly how the derivative of A actually looks like. The prove

of the folloving lemma can be found for example in [Chicco-Ruiz et al., 2016,
Appendix A.2].

Lemma 5.1 (First variation of area functional). Let σ ∈ Rm(U) be a surface
patch and Σ = σ(U) its image. If A(σ) is the area functional of Σ, then

A′(σ)[V] =

∫
Σ

divΣv dS, ∀V ∈ V . (5.9)

Moreover, if σ is piecewise C2 continuous the derivative can be written also
as

A′(σ)[V] =

∫
Σ

(n · v)H dS, (5.10)

where H is the mean curvature of Σ.

Every surface with a minimal area has to have a vanishing first derivative of
the area functional. This leads to the condition H = 0, thus, we see that all
surfaces with minimal area are also minimal surfaces.

Minimizing the area functional leads to a problem of finding zeros of another
functional F : S(γ)→ V ′ defined as

F (σ)[V] := A′(σ)[V] =

∫
Σ

divΣv dS, ∀V ∈ V . (5.11)

We reffer to F as curvature functional.
Now we can redefine our problem as a zero curvature problem: Find σ∗ ∈ S(γ)

such that

F (σ∗)[V] =

∫
Σ

divΣv dS = 0, ∀V ∈ V . (5.12)
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5.2 Newton method

We would like to develop Newton’s type algorithm to find zeros of the functional
F . With the derivative of F it is possible to apply Newton method directly on
problem 5.12.

Algorithm 5.1 (Direct Newton method). Let σ0 ∈ Rm be an initial surface and
k = 0.

1. Find Uk ∈ V such that

F ′(σk)[V][Uk] = −F (σk)[V] ∀V ∈ V . (5.13)

2. Define σk+1 = σk + Uk.

3. Increase k and go to step 1.

The exact formula for derivative of F is complicated and we will not use
it directly. This method does not work in general, because we use all possible
movements including the tangential ones. It can lead to the non-invertibility of
F ′(σ) in some cases. An example can be found in [Chicco-Ruiz et al., 2016,
Appendix A.6]. Thus, from now on we will consider only normal perturbations.

The key observation is that problem 5.12 can be rewritten as follows: Find
σ∗ ∈ S(γ) such that

F (σ∗)[ΨN∗] = 0 ∀Ψ ∈ V , (5.14)

where N∗ = Nσ∗ is a pull-back of a normal n∗ to the surface Σ∗ = σ∗(U) and V
is the space of scalar functions

V = {Ψ : U → R; Ψ ∈ Cm(U),Ψ|∂U = 0}. (5.15)

Suppose we have some surface σ ∈ S(γ) with normal N and that there exists
Φ ∈ V such that σ∗ = σ+ΦN. Now the problem 5.14 has a following form: Find
Φ ∈ V such that

F (σ + ΦN)[ΨN∗] = 0 ∀Ψ ∈ V . (5.16)

By using Taylor’s formula to approximate the left-hand side we get

F (σ)[ΨN∗] + F ′(σ)[ΦN][ΨN∗]. (5.17)

We suppose that σ and σ∗ are so close that N ∼ N∗ and we get a linear problem:
Find Φ ∈ V such that

F ′(σ)[ΦN][ΨN] = −F (σ)[ΨN] ∀Ψ ∈ V . (5.18)

Based on previous thoughts we can build another iterative algorithm.

Algorithm 5.2 (Modified Newton method). Let P be a projection from Cm−1 to
Cm and σ0 ∈ Rm(U) be an initial surface and k = 0.

1. Find Φk ∈ V such that

F ′(σk)[ΦkNk][ΨNk] = −F (σk)[ΨNk] ∀Ψ ∈ V . (5.19)

2. Define σk+1 = σk + P (ΦkNk).

3. Increase k and go to step 1.
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Using only normal perturbations leads also to a simplified formula for deriva-
tive of the functional F .

Lemma 5.2 (Derivative of curvature functional for normal perturbations). Let
σ ∈ Rm(U) with m ≥ 2 and Σ = σ(U) its image. Then

F ′(σ)[ΦN][ΨN] =

∫
Σ

(∇Σφ · ∇Σψ + 2Kφψ) dS, ∀Φ,Ψ ∈ V , (5.20)

where φ and ψ are push-forwards of Φ and Ψ, respectively, and K is Gauss
curvature of Σ.

This lemma is also proved in [Chicco-Ruiz et al., 2016, Appendix A.4].

5.3 Discretization

We want to adapt algorithm 5.2 to a discrete setting. We do that by replacing
spaces S(γ) and V by isogeometric spaces. Initial surface patch σ0

h is a NURBS
surface chosen in such way that σ0

h|∂U = γ or at least its good approximation. It
is given by a formula

σ0
h(ξ) =

n∑
i=1

Ni(ξ)Pi, (5.21)

where Ni, i = 1, . . . , n are NURBS basis functions. Let us denote I = {i ∈
{1, . . . , n};Ni|∂U = 0} and D = {i ∈ {1, . . . , n};Ni|∂U 6= 0}. We replace the
space V by an isogeometric discrete space Vh = span{Ni; i ∈ I} and the space
S(γ) by a space of NURBS surfaces with the same boundary as σ0

h(ξ)

Sh(γ) =

{
n∑
i=1

Ni(ξ)Bi;Bi ∈ R3 ∧Bi = Pi, i ∈ D

}
. (5.22)

The discrete version of algorithm 5.2 is then following.

Algorithm 5.3 (Discrete Newton method). Let Ph be a projection from Cm−1 to
Sh(γ), σ0

h be an initial surface and k = 0.

1. Find Φk ∈ V such that

F ′(σk
h)[ΦkNk][ΨNk] = −F (σk

h)[ΨNk] ∀Ψ ∈ V . (5.23)

2. Define σk+1
h = σk

h + Ph(Φ
kNk).

3. Increase k and go to step 1.

The choice of σ0
h is crucial for a convergence of Newton method. Thus, it is

important to choose it to be close to a solution of the problem and sufficiently
smooth.
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5.4 Numerical results

In this section we present number of numerical simulations to show the conver-
gence properties of this method in different situations. The algorithm was im-
plemented using GeoPDEs package for Octave. NURBS functions derived from
the geometry were used to compute the solution. Distance between norms of
curvature functional was used as an stopping criterion.

|‖F (σk−1)‖∞ − ‖F (σk)‖∞| < ε. (5.24)

The norm of F is defined as

Fi =

∫
Σ

Hni dS, (5.25)

‖F‖∞ = max
i∈I
|Fi|, (5.26)

where ni = Ni ◦ σ−1 is a push-forward of NURBS basis functions Ni. Tolerance
ε was set to 10−5. Several ways how to choose an initial solution are shown. The
mesh size, i. e. maximal distance between two adjacent knots in the parameter
space, is denoted by h.

The discrete space has high regularity (we use NURBS of degree p = 3), which
allows us to compute the mean curvature of the surface directly using formula
for H from lemma 3.3. This gives us a good measure of an approximation error
even if we do not know the exact solution. Minimal surface has a zero mean
curvature, thus, we can measure a quality of approximation by different norms
of a mean curvature H evaluated point wise. If we denote σ(U) = Σ, we can
consider different types of an error:

• L1 error
1

|Σ|

∫
Σ

|H| dS, (5.27)

• L2 error (
1

|Σ|

∫
Σ

|H|2 dS

)1/2

, (5.28)

• L∞ error
‖H‖L∞(Σ). (5.29)

5.4.1 Catenoid

One of the most famous minimal surfaces is undoubtedly catenoid (see section
3.4.1). This surface of revolution is a surface minimizing its area among all
surfaces with the same boundary if the distance d between two unit circles fullfils
the inequality

1 + e−d < d. (5.30)

The critical point is approximately 1.278. In our example we choose a cylinder
with height d = 1.25 as the initial surface. If d is too far from the critical point
(1.35 already), the method diverges. Initial surface area is 7.854 and a mean
curvature is −1 at each point of the surface (figure 5.1).
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(a) Initial surface. (b) Initial distribution of H.

Figure 5.1: Initial surface and a mean curvature distribution, example 5.4.1.
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(a) NURBS basis for h = 1/4.
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(b) NURBS basis for h = 1/8.

Figure 5.2: NURBS basis in the first parametric direction for different h, example
5.4.1.

We elevate a degree to p = 3 and run the algorithm for several h. The original
basis in the first parametric direction is the same as in example 4.4.4 from the
previous chapter, for different h the basis is shown in figure 4.17. We modify
the basis in the first parametric direction to ensure C1 continuity at the joining,
using the method described in section 2.3.1. Instead of working with a basis
B = {R3

1, R
3
2, . . . , R

3
n−1, R

3
n}, we use a modified basis B′ = {B1, B2, R

3
3, . . . , R

3
n−2},

where

B1 =
R3

1

2
+R3

n−1 +
R3
n

2
, (5.31)

B2 =
R3

1

2
+R3

2 +
R3
n

2
. (5.32)

Basis B′ is C1 continuous at the joining. The modified basis functions for the
first parametric direction for h = 1/4 and h = 1/8 are shown in figure 5.2. For
h = 1/16 and h = 1/32 the basis looks alike.

In the second parametrical direction the basis is the same as for the Enneper
surface 4.4.1 from the previous chapter, for different h the basis is shown in figure
4.3.

The results for different h are summarized in table 5.1. The distribution of
a mean curvature H is shown in figure 5.3. We observe a fast convergence. You
can see the final solution in figure 5.4.
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h ‖I‖ i |Σ| ‖F‖∞ L1 error L2 error L∞ error
1/4 55 7 7.228 1.93 · 10−3 2.34 · 10−2 2.71 · 10−2 5.41 · 10−2

1/8 135 5 7.228 2.91 · 10−5 3.09 · 10−3 4.57 · 10−3 1.31 · 10−2

1/16 391 5 7.228 3.14 · 10−6 7.12 · 10−4 1.02 · 10−3 2.99 · 10−3

1/32 1287 5 7.228 1.96 · 10−7 1.73 · 10−4 2.49 · 10−4 7.30 · 10−4

Table 5.1: Summary of the results for the catenoid.

(a) Distribution of H for h = 1/4. (b) Distribution of H for h = 1/8.

(c) Distribution of H for h = 1/16. (d) Distribution of H for h = 1/32.

Figure 5.3: Distribution of a mean curvature H for different h, example 5.4.1.

Figure 5.4: Final surface for h = 1/32, example 5.4.1.
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Figure 5.5: Closed boundary curve.

(a) Initial surface. (b) Initial distribution of H.

Figure 5.6: Initial surface and a mean curvature distribution, example 5.4.2.

5.4.2 Generalized catenoid

In this example the modification of the basis is crutial. We start with the gene-
ralized cylinder. Let us have a closed B-spline curve of degree p = 3 given by the
open knot vector

Ξ = [0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1], (5.33)

and seven control points

P1 = [−5/6, 19/12], P2 = [−2/3, 11/6], P3 = [0, 3/2],
P4 = [1, 1/2], P5 = [−1, 0], P6 = [−1, 4/3],
P7 = [−5/6, 19/12].

(5.34)

This curve is shown in figure 5.5. The boundary is formed from this curve in a
plane z = 0 and another one in a plane z = 1/2. We choose the initial surface be
a rulled surface between them, see figure 5.6. The initial surface area is 2.273.

We elevate a degree to p = 3 and run the algorithm for several h. The
original basis in both parametric directions is then the same as in example
4.4.1 from the previous chapter, for different h the basis is shown in figure
4.3. We modify the basis in the first parametric direction to ensure C2 conti-
nuity at the joining, using the method described in section 2.3.1. Instead of
working with a basis B = {N1,3, N2,3, . . . , Nn−1,3, Nn,3}, we use a modified basis
B′ = {B1, B2, B3, N4,3, . . . , Nn−3,3}, where
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(a) B-spline basis for h = 1/4.
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(b) B-spline basis for h = 1/8.
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(c) B-spline basis for h = 1/16.
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(d) B-spline basis for h = 1/32.

Figure 5.7: B-spline basis in the first parametric direction for different h, example
5.4.2.

h ‖I‖ i |Σ| ‖F‖∞ L1 error L2 error L∞ error
1/4 20 14 2.221 4.43 · 10−2 7.48 · 10−1 9.26 · 10−1 2.25
1/8 72 6 2.209 8.67 · 10−3 4.84 · 10−1 6.51 · 10−1 3.06
1/16 272 4 2.206 1.52 · 10−3 1.64 · 10−1 3.20 · 10−1 1.81
1/32 1056 4 2.206 2.49 · 10−5 2.50 · 10−2 5.58 · 10−2 4.54 · 10−1

Table 5.2: Summary of the results for the generalized catenoid.

B1 =
N1,3

6
+Nn−2,3 +

Nn−1,3

3
+
Nn,3

6
, (5.35)

B2 =
2N1,3

3
+

2N2,3

3
+

2Nn−1,3

3
+

2Nn,3

3
, (5.36)

B3 =
N1,3

6
+
N2,3

3
+N3,3 +

Nn,3

6
. (5.37)

(5.38)

Basis B′ is C2 continuous at the joining. The modified basis functions for the
first parametric direction for different h are shown in figure 5.7.

The results for different h are summarized in table 5.2. The distribution of a
mean curvature H is shown in figure 5.8. We observe a convergence improving
with the refinement. You can see the final solution in figure 5.9.
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(a) Distribution of H for h = 1/4. (b) Distribution of H for h = 1/8.

(c) Distribution of H for h = 1/16. (d) Distribution of H for h = 1/32.

Figure 5.8: Distribution of a mean curvature H for different h, example 5.4.2.

Figure 5.9: Final surface for h = 1/32, example 5.4.2.
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(a) Initial surface. (b) Initial distribution of H.

Figure 5.10: Initial surface and a mean curvature distribution, a = 1/2, example
5.4.3.

h ‖I‖ i |Σ| ‖F‖∞ L1 error L2 error L∞ error
1/4 25 6 1.373 1.34 · 10−2 4.84 · 10−1 1.24 19.08
1/8 81 5 1.372 9.86 · 10−4 1.11 · 10−1 2.62 · 10−1 2.25
1/16 289 – – – – – –
1/32 1098 – – – – – –

Table 5.3: Summary of the results for the Enneper surface, a = 1/2.

5.4.3 Enneper surface

With this method we can also solve the examples from the previous chapter. In
the case of the Enneper surface we get a bit different behavior. If we set the third
coordinates of four inner control points to a = 1/2, the method diverges for a
finer mesh. The initial surface and its mean curvature are shown in figure 5.10.

The summary of the results is in table 5.3 and the distribution of a mean
curvature H is shown in figure 5.11. Divergence (or not very good convergence
in case of h = 1/4 and h = 1/8) is probably a consequence of higher complexity
of the method. We do not look for a solution in a z direction, but in a normal
direction of the surface. But the control points of our initial surface are exact
in x and y coordinates, thus, by moving in a normal direction we move further
from the exact solution in x and y directions. This probably leads to such a poor
results for the Enneper surface. Final surface for h = 1/8 is in figure 5.12.

If we choose an initial surface to be closer to a solution by setting a = 1/3,
we get the convergence. In this case the initial surface area is 1.424 and the
distribution of a mean curvature is in figure 5.13.

The results are summarized in table 5.4 and a mean curvature distribution is
in figure 5.14. For this initial surface the method converges despite of the fact
that we move the surface in a normal direction. The final solution is shown in
figure 5.15.

The above surface could be calculated with higher accuracy by the method
from the previous chapter too. But an advantage of this method is the fact,
that surface do not have to be a function over R2 domain. It is the case of the
Enneper surface considered on larger parametric domain. As an initial surface we
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(a) Distribution of H for h = 1/4. (b) Distribution of H for h = 1/8.

Figure 5.11: Distribution of a mean curvature H for different h, a = 1/2, example
5.4.3.

Figure 5.12: Final surface for h = 1/8, a = 1/2, example 5.4.3.

(a) Initial surface. (b) Initial distribution of H.

Figure 5.13: Initial surface and a mean curvature distribution, a = 1/3, example
5.4.3.

h ‖I‖ i |Σ| ‖F‖∞ L1 error L2 error L∞ error
1/4 25 5 1.372 8.08 · 10−3 2.18 · 10−1 3.47 · 10−1 2.35
1/8 81 4 1.372 8.44 · 10−5 3.10 · 10−2 5.89 · 10−2 3.67 · 10−1

1/16 289 4 1.372 8.62 · 10−6 6.50 · 10−3 1.35 · 10−2 1.00 · 10−1

1/32 1098 4 1.372 5.42 · 10−7 1.57 · 10−3 3.25 · 10−4 2.45 · 10−2

Table 5.4: Summary of the results for the Enneper surface, a = 1/3.
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(a) Distribution of H for h = 1/4. (b) Distribution of H for h = 1/8.

(c) Distribution of H for h = 1/16. (d) Distribution of H for h = 1/32.

Figure 5.14: Distribution of a mean curvature H for different h, a = 1/3, example
5.4.3.

Figure 5.15: Final surface for h = 1/32, a = 1/3, example 5.4.3.
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(a) Initial surface. (b) Initial distribution of H.

Figure 5.16: Initial surface and a mean curvature distribution, larger domain,
example 5.4.3.

h ‖I‖ i |Σ| ‖F‖∞ L1 error L2 error L∞ error
1/4 25 8 64.392 1.42 · 10−1 7.42 · 10−2 2.11 · 10−1 4.94
1/8 81 8 64.352 3.47 · 10−3 2.02 · 10−2 1.47 · 10−1 9.17
1/16 289 5 64.350 5.22 · 10−5 4.29 · 10−3 4.67 · 10−2 3.03
1/32 1098 5 64.350 7.91 · 10−7 1.50 · 10−3 5.22 · 10−2 13.41

Table 5.5: Summary of the results for the Enneper surface considered on larger
parametric domain.

use the exact solution (or Coons patch given by the boundary) with lifted four
inner control points to a = 2/3 again. The initial surface area is 64.390 and the
initial surface with its mean curvature is in figure 5.16.

Summary of the results is in table 5.5 and a mean curvature for different h is
in figure 5.17. We observe a convergence in L1 and L2 error, but L∞ error stays
rather high even for the finest mesh. Final surface is shown in figure 5.18.
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(a) Distribution of H for h = 1/4. (b) Distribution of H for h = 1/8.

(c) Distribution of H for h = 1/16. (d) Distribution of H for h = 1/32.

Figure 5.17: Distribution of a mean curvature H for different h, larger domain,
example 5.4.3.

Figure 5.18: Final surface for h = 1/32, larger domain, example 5.4.3.
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Figure 5.19: Initial surface with its control points.

(a) Initial surface. (b) Initial distribution of H.

Figure 5.20: Initial surface and a mean curvature distribution, example 5.4.4.

5.4.4 Skew quadrilateral

We tested our algorithm also on a minimal surface given by a boundary of a skew
quadrilateral. If we choose the same initial surface as in the previous chapter,
the method diverges. In this case it is not caused by a distance from the exact
solution, but probably by the fact, that the initial surface (and thus the solution
space) is not smooth enough. If we first elevate the degree to p = 3 and then uplift
the inner control points and use this as an initial surface (see figure 5.19), there
is no problem with a convergence. The initial surface with its mean curvature is
in figure 5.20a, the initial surface area is 1.316.

Table 5.6 presents the results for different h. The distribution of a mean
curvature H is shown in figure 5.21 and the final surface is in figure 5.22.
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h ‖I‖ i |Σ| ‖F‖∞ L1 error L2 error L∞ error
1/4 25 5 1.280 4.24 · 10−3 1.33 · 10−1 2.01 · 10−1 1.29
1/8 81 4 1.279 6.33 · 10−5 1.93 · 10−2 3.49 · 10−2 4.29 · 10−1

1/16 289 4 1.279 4.23 · 10−6 3.96 · 10−3 7.50 · 10−3 1.00 · 10−1

1/32 1098 4 1.279 3.01 · 10−7 9.58 · 10−4 1.81 · 10−3 2.31 · 10−2

Table 5.6: Summary of the results for the skew quadrilateral minimal surface.

(a) Distribution of H for h = 1/4. (b) Distribution of H for h = 1/8.

(c) Distribution of H for h = 1/16. (d) Distribution of H for h = 1/32.

Figure 5.21: Distribution of a mean curvature H for different h, example 5.4.4.
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Figure 5.22: Final surface for h = 1/32, example 5.4.4.

h ‖I‖ i |Σ| ‖F‖∞ L1 error L2 error L∞ error
1/4 25 5 21.456 7.84 · 10−2 2.25 · 10−1 2.58 · 10−1 5.94 · 10−1

1/8 81 5 21.420 1.27 · 10−2 8.18 · 10−2 1.11 · 10−1 4.61 · 10−1

1/16 289 4 21.418 9.81 · 10−5 1.34 · 10−2 1.97 · 10−2 8.64 · 10−2

1/32 1098 4 21.418 3.14 · 10−6 2.70 · 10−3 4.02 · 10−3 1.84 · 10−2

Table 5.7: Summary of the results for the surface with sinus boundaries.

5.4.5 Sinus ruled surface

Sinus ruled surface was used to test this algorithm too. The initial surface is the
same as in example 4.4.3 from the previous chapter. It is shown in figure 5.23.

The results are summarized in table 5.7 and the ditribution of a mean curva-
ture for different h is shown in figure 5.24. You can see the final surface in figure
5.25.

On this example we can compare the methods from chapter 5 and 6. As we
could expect, a performace of the method from chapter 5 is better for each tested
h in every type of error, but the difference is not great. Thus, in case of a minimal
surface that can be parametrized as a function over R2, it is slightly better to
use method 4.2. On the other hand, method 5.3 allows us to solve more general
problems.
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(a) Initial surface.

(b) Initial distribution of H.

Figure 5.23: Initial surface and a mean curvature distribution, example 5.4.5.
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(a) Distribution of H for h = 1/4.

(b) Distribution of H for h = 1/8.

(c) Distribution of H for h = 1/16.

(d) Distribution of H for h = 1/32.

Figure 5.24: Distribution of a mean curvature H for different h, example 5.4.5.
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Figure 5.25: Final surface for h = 1/32, example 5.4.5.
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Conclusion

We explained the concept of isogeometric analysis. Special emphasis was put
on closed NURBS objects created by a single patch. Our own method how to
modify the NURBS basis to ensure the highest possible continuity at a joining
was described. We put this in context with the calculus on surfaces and used it to
solve the minimal surface problem by two different Newton type methods. The
first one was based on the classical approach using partial differential equations,
in the second one we used unique advantages of isogeometric analysis to directly
minimize the area functional. We implemented both methods using GeoPDEs
package for Octave and presented a number of numerical examples.
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