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Abstract: Low-energy resonant processes in collisions of electrons, atoms, ions
and molecules significantly contributed to the evolution of the early Universe.
Much attention has not yet been paid to processes involving lithium atoms and
ions. In this thesis, we present the theoretical description of two associative
detachment processes of Li with H− and H with Li− within the nonlocal res-
onant theory. The nonlocal resonant models were constructed from potential
energy curves computed by the MOLPRO package of ab initio programs and
from electron-molecule scattering data obtained from R-matrix calculations by
the UK molecular R-matrix suite of codes. The Lippman-Schwinger equation
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We developed a new method, which is based on the singular value decomposi-
tion method and separates the coupling potential. We predict several orders of
magnitude difference between the temperature-dependent rate constants of the
studied collisions at temperatures below 1000 K.
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Introduction

Resonant processes of electrons, atoms, ions and molecules play an important
role in many fields of physics, such as plasma physics, astrophysics, laser physics
and so on. The proper theoretical description of such processes is desired.

Our theoretical work is primarily motivated by astrophysical applications in
the description of the early Universe in the so-called recombination era. The
recombination era was a time period in the evolution of our Universe when its
temperature decreased low enough to enable a survival of atoms. During this
period, the Universe was changing from a fully ionized plasma to a nearly neutral
gas. Chemical reactions, which at first involves free electrons, atoms and ions and
later molecules, started to occur. The atomic and molecular processes contributed
to the formation of the first stars since they served together with the adiabatic
expansion of the Universe as cooling mechanisms of gravitational collapse. Before
the recombination began, only few species of nuclei existed. Most protons and
neutrons occurred as nuclei of H and 4He with trace amounts of deuterium, 3He,
and 7Li. The processes involving lithium atoms and ions were often ignored in the
past. Even models that included lithium chemistry used only rough estimates of
rate constants. Therefore, their contribution to the evolution of the early Universe
is not fully understand.

In this thesis, we present the theoretical description of two associative de-
tachment processes of Li with H− and H with Li− within the nonlocal resonant
theory. These reactive collisions have been studied to our knowledge neither
from the theoretical nor experimental point of view so far. The nonlocal res-
onant theory provides the most advanced description of coupling of electronic
and nuclear motions in the presence of electronic continuum. Specifically, we
construct the nonlocal resonant models from ab initio quantum chemistry data
and electron-molecule scattering data provided by K. Houfek, and we calculate
the corresponding cross sections and rate constants. We discuss in detail the
sensitivity of the results to various numerical and physical parameters. We also
develop a new method which approximates the discrete-state-continuum-coupling
potential, a function of energy and space variables, as the sum of separable terms.

More detailed information about chemistry in the early Universe can be found
in review papers by Lepp et al. [1] and by Glover et al. [2]. The nonlocal resonant
theory is well explained in the review paper by Domcke [3] and book [4] and in
references therein.

Now, we briefly describe the content of individual chapters of the thesis. We
give the brief derivation of the nonlocal resonant theory in general case in the
first chapter. In the second half of this chapter, we focus more on associative
detachment processes involving diatomic molecules. In the second chapter, we
discuss the ab initio data from quantum chemistry calculations and from electron-
molecule scattering. Then, these data are used in the construction of the nonlocal
resonant models for both of the studied collisions. We introduce the proposed sep-
aration method in the third chapter. We also test the method on the associative
detachment process of H with Br−. The fourth and fifth chapters are devoted to
the analysis of the obtained results for both the studied reactive processes. Their
sensitivity to the various parameters is discussed in detail.
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1. Description of low-energy
collisions

1.1 Introduction

In the first chapter, we look into the description of electron-molecule collisions
within the nonlocal resonant theory. The first half is dedicated to the brief
derivation of the general theory. The detailed derivation can be found in the
review paper by Domcke [3] and in book [4] (Chapters 4 and 5). The mentioned
paper and book serve as the primary references for this chapter. The second part
of the first chapter mainly focuses on the treatment of associative detachment
processes in the case of diatomic molecules and the construction of the nonlocal
resonant model for a given collision process.

We use atomic units (me = 1, |e| = 1, ~ = 1, 1/4πε0 = 1) in the entire thesis
if it is not stated otherwise.

1.2 Processes of interest

Specifically, the nonlocal resonant theory is suitable for the description of the
following low-energy processes, which involve a neutral molecule AB (A and B
can be polyatomic parts):

• vibrational excitation (VE)

e− + AB(νi)→ e− + AB(νf), (1.1)

where νi and νf denote the initial and final vibrational states respectively

• dissociative attachment (DA)

e− + AB→ A− + B (1.2)

• collision detachment (CD)

e− + AB→ e− + A + B (1.3)

and the closely related inverse processes to DA and CD

• associative detachment (AD)

A− + B→ e− + AB (1.4)

• three-particle recombination

e− + A + B→ e− + AB. (1.5)

5



1.3 Nonlocal resonant theory

1.3.1 Projection-operator approach

At the beginning, we outline the basic physical situation of the processes of in-
terest. In such molecular systems, a resonance state exists embedded in the
continuum for some nuclear configurations. This resonance typically disappears
for other configurations and it becomes a bound anion state, which causes the
failure of the Born-Oppenheimer approximation. The resonance is a quasi-stable
state, which means that the electron can be released from the system or captured
into the system depending on the type of the studied collision process. In fact,
a virtual state or broad resonance may be present in the system instead of the
resonance state.1 The so-called discrete state represents both the resonance (or
the virtual state) at some nuclear configurations and the bound anion state at
other positions of the nuclei. The discrete state is constructed so that the transi-
tion of the bound state to the resonance (or the virtual state) is smooth. Then,
the Born-Oppenheimer approximation can be restored for the discrete state.

The resonance can not be described by a square integrable function, and
so, it does not belong to the electronic Hilbert space. However, it can be well
approximated by such a function. Let us denote the discrete state by |d〉 with
a wave function ϕd(r;R) = 〈r|d〉, where r denotes coordinates of the incoming
electron. The wave function also parametrically depends on coordinates R of all
nuclei.

The Hamilton operator of an electron-molecule collision is given by

H = TN + V0(R) +Hel, (1.6)

where TN is the kinetic energy of the nuclei, V0(R) is the potential energy sur-
face of the molecule AB in the ground electronic state, and Hel is the electronic
Hamilton operator consisting of the kinetic energy of the incoming electron and
an effective interaction between the incoming electron and molecule. The interac-
tion is of many body (many electron) nature, but can be described by an effective
single electron potential (optical potential) [3, 5].

The nonlocal resonant theory is usually derived using the projection-operator
approach developed by Feshbach [6] for nuclear reactions and later used by
Fano [7] in atomic physics. In this approach, the electronic Hilbert space and
then the full Hilbert space are divided into two subspaces, a resonant part and
a background part, by projection-operators Q and P defined by

Q = |d〉〈d|, P = I −Q. (1.7)

The operator P can also be expressed using background scattering states
|k(+)〉 with wave functions ϕ

(+)
k (r;R) = 〈r|k(+)〉, where k is the wave vector of

the incoming electron and its magnitude equals k. These states diagonalize the
background part of the electronic Hamiltonian

PHelP |k(+)〉 =
1

2
k2|k(+)〉. (1.8)

1Hence, the title of the theory may be misleading.
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We assume the energy normalization of the scattering states

〈k(+)|k′(+)〉 = δ(εk − εk′)δ2(Ωk −Ωk′), (1.9)

where εk = k2/2 is electron energy, Ωk = k/k denotes the direction vector. Then,
the P operator has the form

P =

∫
dεkdΩk|k(+〉〈k(+|. (1.10)

Further, we use the following notation for matrix elements of the electronic
Hamiltonian:

• the discrete-state potential

Vd(R) = V0(R) + 〈d|Hel|d〉 (1.11)

• the discrete-state-continuum-coupling potential

V
(+)

dk (R) = 〈d|Hel|k(+)〉 (1.12)

• the diagonal background part

Vkk′(R) = 〈k(+)|(V0(R) +Hel)|k′(+)〉
= (V0(R) + εk) δ(εk − εk′)δ2(Ωk −Ωk′),

(1.13)

where the diagonal form comes from Equation (1.8). Depending on the studied
process, the coupling potential controls the electron release into the continuum
or the electron capture into the anionic state.

If we choose the discrete state properly, we can still use the Born-Oppenheimer
approximation

∂ϕd(r;R)

∂R
' 0,

∂ϕ
(+)
k (r;R)

∂R
' 0. (1.14)

These assumptions define the so-called diabatic approximation.
Further, we extent the Q and P operators to the full Hilbert space, which

consists of the electronic and nuclear part,

Q =

∫
dR|R〉Qel(R)〈R|, (1.15)

P =

∫
dR|R〉Pel(R)〈R|, (1.16)

where the electronic operators Qel and Pel are those defined earlier by Formu-
las (1.7). Equation (1.14) implies the following commutation relations

[TN, Q] = [TN, P ] = 0. (1.17)

The full Hamiltonian is given in the basis constructed from vectors |d〉, |k(+)〉
by

H =|d〉 (TN + Vd(R)) 〈d|

+

∫
dεkdΩk|k(+)〉

(
TN + V0(R) +

1

2
k2

)
〈k(+)|

+

(∫
dεkdΩk|d〉V (+)

dk 〈k
(+)|+ h.c.

)
.

(1.18)
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1.3.2 Equation for the nuclear motion

To derive the equation describing the relative motion of the nuclei in the Q sub-
space, we rewrite the full Hamiltonian given by Formula (1.6) into the suitable
form for the application of scattering theory

H = H0 + V (1.19)

with

H0 = HQ +HP, (1.20)

V = PHelQ+QHelP = HPQ +HQP, (1.21)

where we introduce the notation HQ = QHQ, HP = PHP , HPQ = PHQ, and
HQP = QHP . The second equality in Formula (1.21) comes from commutation
relations (1.17) and from the orthogonality of the Q and P subspaces, that is
QP = PQ = 0. The Lippman-Schwinger equation with Hamiltonian (1.19) reads

|Ψ(+)〉 = |Φ(+)〉+ (E −H0 + iη)−1 V |Ψ(+)〉, (1.22)

where |Ψ(+)〉 depends on both nuclear and electronic degrees of freedom, |Φ(+)〉
characterizes the initial state (electron-molecule collision or atom-ion collision),
η is a small positive parameter.

After substitution of H0 and V defined by Formulas (1.20) and (1.21) into
Equation (1.22), we multiply the resulting equation by Q and P operators. So,
we obtain the two following equations

Q|Ψ(+)〉 = Q|Φ(+)〉+GQHQPP |Ψ(+)〉, (1.23)

P |Ψ(+)〉 = P |Φ(+)〉+GPHPQQ|Ψ(+)〉, (1.24)

where

GQ = Q(E −HQ + iη)−1Q, (1.25)

GP = P (E −HP + iη)−1P. (1.26)

Next, we replace the term P |Ψ(+)〉 in Equation (1.23) by the right-hand side
of Equation (1.24), which reduces the considered scattering problem in the full
Hilbert space to the scattering problem in the small subspace Q

Q|Ψ(+)〉 = Q|Φ(+)〉+GQHQPP |Φ(+)〉+GQHQPGPHPQQ|Ψ(+)〉. (1.27)

It can be shown that the Q-space part of the wave function is governed by
the inhomogeneous Schrödinger equation with the effective Hamiltonian

Heff = HQ +HQPGPHPQ. (1.28)
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We can rewrite the effective Hamiltonian given above using the definitions of
projectors Q (1.7) and P (1.10) and full Hamiltonian (1.18) into

Heff = TN + Vd(R) + F (E), (1.29)

where F (E) is the energy-dependent complex nonlocal potential

F (E,R,R′) =

∫
dεkdΩkV

(+)
dk (R) (E − TN − V0(R)− εk + iη)−1 V

(+)∗
dk (R′).

(1.30)

Using the well-known formula from theory of distributions (x+ iη)−1 = p.v./x−
iπδ(x), where p.v. denotes the Cauchy principal value, we separate F (E) into
the Hermitian and anti-Hermitian parts

F (E,R,R′) = ∆(E − TN − V0(R),R,R′)− i

2
Γ(E − TN − V0(R),R,R′)

(1.31)

with

Γ(e,R,R′) = 2π

∫
dεkdΩkV

(+)
dk (R)δ (e− εk)V (+)∗

dk (R′), (1.32)

∆(e,R,R′) =
1

2π
p.v.

∫
dε

Γ(ε,R,R′)

e− ε
. (1.33)

Furthermore, we introduce the notation

Q|Ψ(+)〉 = |d〉〈d|Ψ(+)〉r = |d〉|ψ(+)〉, (1.34)

where the subscript r indicates the integration only over electronic degrees of
freedom. Thus, the state |ψ(+)〉 depends only on nuclear coordinates. Rewriting
Equation (1.27) with the use of the formulas above, we obtain the Lippman-
Schwinger equation describing the nuclear degrees of freedom

|ψ(+)〉 = |φ(+)〉+G
(+)
Q (E)F (E)|ψ(+)〉 (1.35)

where the state |φ(+)〉, which describes the initial state of the collision, is given
by

|φ(+)〉 = 〈d|Φ(+)〉r + 〈d|GQHQPP |Φ(+)〉r, (1.36)

and with the Green’s function

G
(+)
Q (E) = (E − TN − Vd(R) + iη)−1. (1.37)

In the case of the electron-molecule collision e−+AB (denoted by channel I),
the initial state is represented by

|Φ(+)
I 〉 = |νi〉|k(+)

i 〉 ⇒ |φ
(+)
I 〉 = G

(+)
Q V

(+)
dki
|νi〉, (1.38)
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where |νi〉 stands for the initial vibrational state of the molecule AB and ki is the
initial wave vector of the incoming electron.

For the ion-atom collision A−+B (channel II) the initial state is given by

|Φ(+)
II 〉 = |d〉|K(+)

i 〉 ⇒ |φ
(+)
II 〉 = |K(+)

i 〉, (1.39)

where Ki is the relative momentum of A− and B in the centre of mass of the con-
sidered process, |K(+)

i 〉 is then the corresponding scattering state in the discrete-
state potential Vd(R).

The resonant part of the T -matrix for the processes of interest reads

TVE = 〈Φ(−)
I |PHPQQ|Ψ(+)〉 = 〈νf|V (−)∗

dkf
|ψ(+)

I 〉, (1.40)

TDA = 〈Ψ(−)|QHQPP |Φ(+)〉 = 〈ψ(−)
II |V

(+)
dki
|νi〉, (1.41)

TAD = 〈Φ(−)
I |PHPQQ|Ψ(+)〉 = 〈νf|V (−)∗

dkf
|ψ(+)

II 〉, (1.42)

where

〈ψ(−)
II | = 〈K

(−)
f |+ 〈ψ

(−)
II |F (E)G

(+)
Q (E). (1.43)

The matrix element V
(−)

dk is defined similarly as V
(+)

dk given by Formula (1.12), but

with the use of scattering states |k(−)〉 = Ω̂−|k〉, where Ω̂− is the Møller operator.

1.4 Diatomic molecules and AD processes

The theory, which is briefly derived in the previous section, can be used to study
the processes of interest, where AB is in general polyatomic molecule. Next, we
restrict to the case of diatomic molecules since associative detachment collisions
of an atom with a negative ion are the main topic of the remaining chapters.

Up to the end of the first chapter, we discuss equations and formulas which
are actually needed to be solved in order to describe the mentioned collision
problem. We present equations without any derivation. The detailed derivation
can be again found in book [4] and references therein.

The nuclear degrees of freedom describing the relative motion reduce to one
variable,2 the internuclear distance R, in the case of diatomic molecules. The
partial wave expansion is used in order to get rid of angular variables. The
low-energy s-wave approximation for the released electron is also applied during
the derivation. The approximation assumes that the angular momentum of the
electron is negligible, and therefore, the angular momentum of the molecule is
conserved. The nuclear wave function ψJ(R), which depends only on the inter-
nuclear distance R, is then the unique solution of

ψJ(R) = φJ(R) +

∫ ∞
0

∫ ∞
0

dR′dR′′GJ(E,R,R′)FJ(E,R′, R′′)ψJ(R′′), (1.44)

2The translational motion of the centre of mass is transformed away.
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where J is the quantum number of the angular momentum of the molecule, φJ(R)
describes the initial partial scattering wave in the potential Vd(R), GJ(E,R,R′)
and FJ(E,R′, R′′) denote the radial J-terms in the partial wave expansion of the
Green’s function (for Vd(R)) and nonlocal potential (1.31) respectively. There is
no coupling of equations for different J because we neglect the electron angular
momentum in the s-wave approximation.

The nonlocal term FJ appearing in Equation (1.44) can be expanded into
eigenstates χνJ (including the continuum) with energies EνJ of the molecular
Hamiltonian [

TN + V0(R) +
J(J + 1)

2µR2

]
χνJ(R) = EνJχνJ(R), (1.45)

where µ is the reduced mass of the molecule. The nonlocal term then reads

FJ(E,R,R′) =
∑
ν

χνJ(R)

[
∆(E − EνJ , R,R′)−

i

2
Γ(E − EνJ , R,R′)

]
χνJ(R′)

(1.46)

with

Γ(ε, R,R′) = 2πVdε(R)V ∗dε(R
′), (1.47)

∆(ε, R,R′) =
1

2π
p.v.

∫
de

Γ(e, R,R′)

ε− e
. (1.48)

The function φJ(R) describing the initial state in the ion-atom collision obeys
the Lippman-Schwinger equation with the discrete-state potential Vd(R)

φJ(R) = ĵJ(KR)− 2µ

K

∫
dR′ĵJ(KR<)ĥJ(KR>)Vd(R′)φJ(R′), (1.49)

where K =
√

2µE, R< = min(R,R′), R> = max(R,R′), and the functions ĵJ , ĥJ
are the Ricatti-Bessel functions defined by Abramowitz and Stegun [8] on page
445.

If we are interested only in the total inelastic cross section, we can compute
the cross section from formulas for scattering in a complex potential [9]. First,
we define the scattering amplitude for each partial wave

aJ = −2µ

K
〈φJ |FJ |ψJ〉 = −2µ

K

∫
dRdR′φJ(R)FJ(E,R,R′)ψJ(R′). (1.50)

Then, the inelastic cross section is given by

σinel(E) =
4π

K2

∑
J

(2J + 1)
[
Im(aJ)− |aJ |2

]
. (1.51)

In this case, the scattering amplitude already includes the sum over vibrational
states of the molecule AB, that is over all possible final states of the molecule.

Another possibility of getting the total AD cross section is to sum contribu-
tions from individual vibrational states of the neutral molecule

sigmaAD(E) =
2π

KE

∑
J

∑
ν

(2J + 1) |〈χνJ |VdKν |ψJ〉|
2 (1.52)

where Kν is the magnitude of the momentum belonging to energy E −EνJ , that
is Kν = K

(J)
ν =

√
2µ(E − EνJ). We sum over all accessible vibrational states,

that is over those values of ν for particular J which fulfil EνJ ≤ E.
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1.5 Nonlocal resonant model

The nonlocal resonant model (NRM) of the given collision process is fully defined
by the following three functions:

• the potential V0(R) of the ground electronic state of the molecule AB,

• the discrete-state potential Vd(R) of the molecular anion AB−,

• the energy-dependent discrete-state-continuum-coupling potential Vdε(R).

All these functions can be obtained from ab initio calculations, quantum chem-
istry and electron-molecule scattering. The eigenphase sum δ(ε, R), provided by
the electron scattering calculations, can be split into a resonant term δres(ε, R)
and a background δbg(ε, R) term

δ(ε, R) = δres(ε, R) + δbg(ε, R). (1.53)

The background part is a smooth function in both energy and internuclear dis-
tance. The resonant part is given by the generalized3 Breit-Wigner formula [3]

δres(ε, R) = −tan−1

( 1
2
Γ(ε, R)

ε− Vd(R) + V0(R)−∆(ε, R)

)
, (1.54)

where Γ(ε, R) and ∆(ε, R) are the energy-dependent width and level-shift func-
tions, which are obtained from operators (1.47) and (1.48) at R′ = R.

At low energies the width function behaves according to the threshold law
introduced by Wigner [10]. In the case of the molecule AB with no electric dipole
moment, the threshold law reads

Γ ∝ ε(2l+1)/2, (1.55)

where l is the lowest integer allowed by the symmetry. If the molecule possesses
any dipole moment, there are two possibilities. If the dipole moment D is sub-
critical, that is D < Dcrit = 1.625 D, the width then behaves in the vicinity of
thresholds as follows [3, 4]

Γ ∝ εα, (1.56)

where α is the so-called threshold exponent depending on the internuclear distance

α =

√
d+

1

4
, (1.57)

where d is a dimensionless reduced dipole moment given by the lowest eigen-
value of an infinite-dimensional tridiagonal matrix [11]. If the dipole moment is
supercritical (D > Dcrit), the lowest eigenvalue d becomes a complex number [12]

d = −1

2
+ iξ, (1.58)

3The resonance width and level shift are energy-independent functions in the original Breit-
Wigner formula.
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where ξ is real. The resonance width oscillates with increasing frequency as
ε→ 0 [13]

Γ ∝ 1

1 + e2πξ + 2eπξcos(ξlnε+ γ)
, (1.59)

where γ depends on the dipole moment and short-range interaction. The width
function vanishes as ε→∞ and R→∞ in all above mentioned cases.

1.6 Local approximation

The effective energy-depended nonlocal potential is given by (we suppress the
index J)

WE(R,R′) = Vd(R)δ(R−R′) + F (E,R,R′), (1.60)

with

F (E,R,R′) = ∆(E,R,R′)− i

2
Γ(E,R,R′). (1.61)

The energy-independent local approximation also known as local complex
potential (LCP) [3] is defined by

Wloc(R) = Vloc(R)− i

2
Γloc(R), (1.62)

where

Vloc(R) = V0(R) + Eres(R), (1.63)

Γloc(R) = Γ(Eres(R), R,R), (1.64)

Eres(R) = Vd(R)− V0(R) + ∆(Eres(R), R,R). (1.65)

1.7 Rate constant

Rate constant (or rate coefficient) k characterizes the rate of a chemical reaction.
It is defined by the mean value of the product of the relative velocity v and the
temperature-averaged cross section σ(v, T ) of the reaction. In the thermalized
gas, the mean value is calculated assuming the Maxwell-Boltzmann distribution
ρ(v, T ) of velocities

ρ(v, T ) =

(
µ

2πkBT

)3/2

4πv2e
− µv2

2kBT , (1.66)

where kB is the Boltzmann constant. So, the rate constant is equal to

k(T ) =

∫ ∞
0

vσ(v, T )ρ(v, T )dv. (1.67)
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The interpretation of the rate constant is that it expresses the volume of the gas
which disappears per unit of time owing to the ongoing reactions.

Particularly, the temperature-dependent rate constant of an associative de-
tachment process is given by (expressed in terms of energy)

k(T ) =
8π

µ2

(
µ

2πkBT

)3/2 ∫ ∞
0

EσAD(E)e−E/kBTdE, (1.68)

where σAD(E) is the total AD cross section and T is the temperature of the
thermalized mixture of atoms and ions.
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2. Nonlocal resonant models of
Li and H processes

2.1 Introduction

We introduce the description of low-energy collisions within the nonlocal resonant
theory in the first chapter. In this and the following chapters, we apply the theory
to the calculation of cross sections of two associative detachment processes

Li + H− → LiH + e− (2.1)

and

Li−+ H→ LiH + e−. (2.2)

These two processes together with radiative association were the source of
lithium hydride molecule (LiH) in the early Universe [1, 2]. To our knowledge
there is neither experimental nor theoretical information on rate constants or
cross sections for these AD processes. The only independent information is the
estimate of the rate constants for cosmological simulations made by Stancil et
al. [14]. The comparison of the mentioned estimate with our results is discussed
in Chapters 4 and 5.

The second chapter is devoted to the construction of the nonlocal resonant
models from ab initio data for both processes of interest (2.2) and (2.1).

2.2 Potential energy curves

2.2.1 Computation methods

For the description of the studied collisions, we need potential energy curves of
the ground electronic state of the neutral molecule LiH (X1Σ+),1 the ground
(X2Σ+) and first excited (A2Σ+) electronic states of the molecular anion LiH−.
From the relative positions of the curves and electron affinities, we can determine
that the ground state of LiH− asymptotically goes to Li+H− as R → ∞, while
the first excited anion state goes to Li−+H. Therefore, X2Σ+ potential plays a
role in the Li+H− collision, and the A2Σ+ state is needed in the description of the
Li−+H channel. The ground state of LiH, of course, goes to the Li+H asymptote.

The fixed-nuclei potential curves for both the neutral molecule and molecular
anion provided by K. Houfek (personal communication, January 15, 2016) were

1The spectroscopic notation of molecular states: X means the ground electronic state, A
stands for the first excited electronic state, Σ denotes zero projection of electron orbital angular
momentum to the molecular axis, the left superscript determines the spin multiplicity of the
electron wave function. The molecule LiH has four electrons, that is an even number of electrons,
and therefore, it is a singlet state. The anion LiH− has one additional electron, hence a doublet
state. The plus sign denotes that there is the reflection symmetry with respect to a plain
containing nuclei. More information can be found, for example, in the book which deals with
atomic and molecular spectra written by Bernath [15].
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calculated similarly as results of Gadéa and Leininger [16] by the quantum chem-
istry codes MOLPRO developed by Werner et al. [17]. Specifically, the multi-
configurational self-consistent field method (MCSCF) [18] and the multireference
configuration interaction method (MRCI) [19] were used with the aug-cc-pVQZ
basis of Gaussian orbitals developed by Dunning [20]. The complete active space
in MCSCF consisted of ten active orbitals2 with four or five active electrons.3

In fact, the determination of the anion potentials occurred in two steps. First,
only the ground state was calculated. After that, both the ground and first ex-
cited states were computed. The first result for the ground state is more precise
than the second result because two states are optimized in the second case. Used
quantum chemistry methods are variational, that is the potential of the same
system which has lower energy is better. The difference in the energy of the
ground state between these two approaches is 41.1 meV at the largest computed
internuclear distance4 R = 40. This energy difference is not constant at vari-
ous internuclear distances. For example, the difference is 42.2 meV at R = 24,
44.1 meV at R = 15, 42.0 meV at R = 10.5, and 33.7 meV at R = 6.1. To get
more precise potential of the A2Σ+ state, we decided to shift all calculated data
for this state by the value at the largest computed R, that is by 41.1 meV.

The shift was the only intervention to the quantum chemistry data that we
made. In the description of the studied processes, we want to avoid similar in-
terventions as much as possible because we use the so-called ab initio approach.5

In this kind of approach, potential data or other data are determined from some
theoretical model describing interactions in the physical system of interest, where
we specify the studied system at the beginning of calculations. We try to avoid
any additional empirical tuning of the computed data. Specifically to our scat-
tering problem, we determine the number and type of the nuclei (Li and H), the
number of the electrons (four or five) and nuclear configurations (internuclear
distance) at the beginning of MOLPRO calculations.

2.2.2 Interpolation and extrapolation

The potential curves were calculated at internuclear distances from R = 1.5
to 40. We did not find an accurate fit with a simple function, and thus, we
decided to interpolate the data using cubic splines within the computed interval
and extrapolate at large and small internuclear distances, see Figure 2.1. The
quantum chemistry data are highlighted (full and empty circles). The neutral
potential (red) and the ground anion potential (green) come close to each other
at small internuclear distances but they never cross. The neutral potential and
the excited anion potential (blue) cross each other at the internuclear distance
Rc = 6.7. The neutral potential represents the continuum threshold.

Quantum chemistry methods are designed to calculate potential energy of
bound states of a given system. There exists no excited bound state of the LiH−

system in the region R < Rc. The result of the quantum chemistry calculation

2The symmetry group of heterogeneous diatomic molecules, which is in fact C∞v, is repre-
sented by the point group C2v in MOLPRO. This group has four irreducible representations
A1, B1, B2, A2. The number of active orbitals in each representation was 6,2,2,0.

3The systems are small enough to take all electrons active. There are no frozen core electrons.
4We remind that we use atomic units if it is not stated otherwise.
5It means ’from first principles of quantum mechanics’.
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represents the neutral molecule LiH with the free electron far from the molecule.
Therefore, the excited anion potential (A2Σ+ state) can not be obtain for these
nuclear configurations and the corresponding data (empty circles in Figure 2.1)
converge to the neutral potential. The convergence is limited by the finite basis
of Gaussian orbitals, which does not allow the electron to move sufficiently away
from the molecule, which explains the difference between positions of the empty
circles and the data belonging to the X1Σ+ state (red curve). The collapse of
the wave function to the state of the neutral molecule with the electron far away
is delayed because the self-consistency procedure may capture a false stationary
point. The current calculation was performed from outside (in the direction from
larger to smaller internuclear separations). This choice delays the collapse, that
is the change of the shape of the potential curve does not occur immediately at
the crossing point but at the point about R = 5.

As described above, the potential of the A2Σ+ state can not be obtained at
nuclear configurations with R < Rc = 6.7. In fact, quantum chemistry provides
the so-called adiabatic potentials, which do not exist in the electronic continuum.
The proper generalization is the use of diabatic potentials, that is the discrete-
state potentials Vd(R). Data of electron scattering from the molecule LiH are
needed to their construction, which we discuss later. The full circles in Figure 2.1
denote the data which were considered in the further use.
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Figure 2.1: The fixed-nuclei potential energy curves of the ground electronic
state of LiH (neutral potential, red curve), the ground (green) and first excited
(blue) electronic states of LiH−. Full and empty circles denote the quantum
chemistry data. The data represented by the full circles were considered fur-
ther. The empty circles represent the collapse of the anion wave function due
to the representation of autoionizing states in the finite basis used in the elec-
tronic structure calculation. These data are not used in further calculations.
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The extrapolation at large internuclear distances is given by the polarization
potential in the case of anion

Vion(R)
R→∞−−−→ − α

2R4
, (2.3)

where α is the polarizability of the atom in the A+B− collision, αLi=164.1 for
the Li+H− collision [21] and αH=4.5 for the Li−+H collision.

The neutral potential behaves like the dispersion (van der Waals) potential
at large R

V0(R)
R→∞−−−→ − C

R6
, (2.4)

where the constant C = 80 was obtained by the least-squares fitting in the region
from R = 33 to 40 (8 data points).

We use the Morse potential as the extrapolation function of the ground po-
tentials at small internuclear distances

D
(
e−A(R−B) − 1

)2
+ F. (2.5)

The values of parameters were again determined by the best least-squares fit. We
used six data points from the interval of internuclear distances [1.5, 2] in both
of the cases. We obtained the following results. For the neutral potential, we
have D = 0.0263, A = 0.832, B = 3.168, and F = −0.100356. In the case of
the ground anion potential, the constants are given by D = 0.0224, A = 0.828,
B = 3.256, and F = −0.082909. The constants F give correct extrapolations
when the corresponding potential vanishes as R → ∞. The mutual vertical
positions of the potentials are fixed by electron affinities, which are discussed in
the next section.

As we describe above, the extrapolation of the excited anion potential in the
region R < Rc = 6.7 can not be done without scattering data, which we discuss
later.

2.2.3 Electron affinities

We determined the electron affinities of lithium and hydrogen atoms from the
extrapolation functions as the difference of the neutral potential and appropriate
anion potential at R → ∞ (Table 2.1). The comparison with the experimental
values is also included in the table. Furthermore, the electron affinity of the
molecule LiH was calculated as the difference of energies of the ground vibrational
states of LiH and LiH−. These energies were computed by Fourier DVR method,
which we briefly discuss at the end of the next chapter in Section 3.7. Our result
of electron affinity of Li corresponds with experiment very well. This agreement
could not be attained without the shift of the excited anion potential data by
41.1 meV, which we describe at the end of Section 2.2.1. The errors of H and
LiH affinities are in the order of tens of meV, which is the typical error of this
kind of quantum chemistry calculations.

Authors of some other studies intentionally shift the potentials to agree with
experimental electron affinities. We do not shift the potentials because the magni-
tude of errors is reasonable and the adjustment of the parameters to experimental
data is against the idea of ab initio calculations discussed in Section 2.2.1.
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Table 2.1: The comparison of the elec-
tron affinities of Li, H and LiH obtained
from the quantum chemistry data with
experimental values in eV.

this work experimenta

EA(Li) 0.620 0.618
EA(H) 0.740 0.754
EA(LiH) 0.320 0.342

a The experimental results were measured
by Rienstra-Kiracofe et al. [22].

2.3 Dipole moment of LiH

The electric dipole moment of the molecule LiH was obtained within the electronic
structure calculation using the same level of approximation as for the potential
energy curves. Lithium hydride molecule possesses a permanent supercritical
dipole moment (Figure 2.2).
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Figure 2.2: The electric dipole moment of the molecule LiH. Cicles represent
the quantum chemistry data. The molecule posseses a supercritical dipole
moment. The dashed line denotes the value of the critical dipole moment.

2.4 Scattering data

The fixed-nuclei eigenphase sum of the scattered electron from the molecule LiH
was computed by K. Houfek (personal communication, July 19, 2016) using the R-
matrix method [23] as implemented in the UK molecular R-matrix suite of codes
[24, 25]. The target molecule (LiH) was described within the UK R-matrix suite
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of codes using the multi-configurational self-consistent field method (MCSCF),
particularly the complete active space self-consistent field method (CASSCF)
with 4 electrons in 8 active molecular orbitals was used. The target was described
by the cc-pVTZ basis of Gaussian orbitals [20], but the two most diffuse s and
the two most diffuse p Gaussian basis functions were changed to be less diffuse
to avoid problems with the linear dependence of the target basis and continuum
basis used in scattering calculations. As a model for scattering, the close-coupling
model [20] with only 1 target state and 10 virtual orbitals was used, which proved
to be sufficient, because it reproduced closely the anion potential energy curves
obtained from the MOLPRO calculations. The scattered electron was allowed in
the complete active space and 10 virtual orbitals of the target.

The energy-dependent eigenphase sum was computed at 14 internuclear dis-
tances (Figure 2.3). The results logarithmically diverge at zero energy, which cor-
responds to the supercritical dipole moment of LiH [26] and the infinite number
of bound states in e−+LiH collision complex according to Levinson’s Theorem.
Resonances, which are visible in the eigenphase sum, determine the position of
the excited anion potential at small internuclear distances (R < Rc = 6.7). There
are no resonances belonging to the ground anion state, because this state is not
embedded in the continuum at any internuclear distance (the anion potential
is bound at all R, see again Figure (2.1)). Nevertheless, we suspect a strong
non-adiabatic coupling between the ground anion state and the electron scatter-
ing continuum owing to the close proximity of the anion state to the continuum
threshold represented by the neutral potential. The nonlocal theory is capable of
the correct description of this situation.
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Figure 2.3: The fixed-nuclei eigenphase sum obtained from R-matrix cal-
culations of electron-molecule scattering at 14 internuclear distances (R =
2.0, . . . , 4.6 with step 0.2 from right to left).
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Two resonances appear in the eigenphase sum with R = 3.6, the dotted curve
in Figure 2.3, but there should be only one state embedded in the continuum, the
state which has the Li−+H asymptote as R→∞. We do not have any explana-
tion for this behaviour. It might have a relation to the numerical problems with
linear dependencies. There is even more serious problem. It was not possible to
obtain reliable data in the vicinity of the crossing of the ground and excited anion
potentials because of the mentioned numerical problems. The largest internuclear
distance at which it managed to compute the data is R = 4.6, which is quite far
from the crossing point Rc = 6.7. This region is significant for calculating quanti-
tatively correct cross sections of the Li−+H collision. We construct the nonlocal
model without the data in the vicinity of the crossing and we also omit the curve
with two resonances in the further investigation. The constructed model provides
some extrapolation to the vicinity of the crossing. We test the sensitivity of re-
sults to the uncertainty in the extrapolation by constructing several models in
Section 5.5.

2.5 Construction of NRMs

In theory, the nonlocal resonant model which describes both studied AD pro-
cesses (2.1) and (2.2) can be constructed. The extension of the nonlocal theory
for two and more discrete states is straightforward [27]. We decided to describe
both the collisions independently. The regions which are important for the non-
local dynamics are separated in both energy and internuclear distance.

The positions of resonances in the eigenphase sum are significant for the
Li−+H collision because they determine, as we mention earlier, the position of
the excited anion potential at R < Rc. In terms of internuclear distances, the
most important area for the nonlocal dynamics is the vicinity of the crossing of
the X1Σ+ and A2Σ+ potentials at Rc = 6.7.

The ground anion potential is not embedded in the electronic continuum, but
non-adiabatic effects can still play an important role in the region where the
anion and neutral potentials approach (R ≤ 2.5). Information about the Li+H−

channel should be encoded in the low-energy behaviour of the eigenphase sum.
We found out that the dipole moment of LiH is supercritical. To our knowl-

edge, the nonlocal dynamics with a supercritical dipole moment have been carried
out only for hydrogen fluoride (HF) molecule by Č́ıžek et al. [13]. The precise
behaviour of the resonance width given by Formula (1.59) is significant only in
the immediate vicinity of the threshold, and the best achievable resolution of
nowadays experiments is about 10 meV. Therefore, it was sufficient to obtain the
nonlocal model by fitting the energy-dependent level shift and resonance width by
smooth functions, that is the oscillating behaviour was omitted. The detailed in-
formation can be found in the cited paper or in the overview of electron scattering
by polar molecules by Fabrikant [12] and in references therein.

The full inclusion of a supercritical dipole moment into the nonlocal dynamics
is beyond the scope of this master thesis. Thus, we decided to follow the similar
approach as in the case of the HF molecule.

The nonlocal model is given by three functions V0(R), Vd(R), and Vdε(R), see
Section 1.5. The neutral potential V0(R) is determined directly from the quan-
tum chemistry calculations. The discrete-state potential Vd(R) and the coupling
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potential Vdε(R) can be obtained from fitting the eigenphase sum by general-
ized Breit-Wigner formula 1.54 and the appropriate background term. When
determining Vd(R), the anion potentials (local potentials) are used as well. The
reduced mass of the LiH molecule is equal to µ = 1605.5871 [28].

The choice of the background term is to a certain extent arbitrary. The back-
ground eigenphase sum is assumed to be a smooth and slowly varying function
of energy and space variables. On the other hand, all rapid changes should be
included in the resonant term.

We parametrize the width function by

Γ(ε, R) = a(R)

(
ε

b(R)

)α(R)

e−ε/b(R). (2.6)

The resonant part of the eigenphase sum given by Breit-Wigner formula (1.54) is
then parametrized only by functions a(R), b(R), α(R), and the potential Vd(R),
because the level-shift function ∆(ε, R) is computed from the resonance width
Γ(ε, R) according to Formula (1.48) at R′ = R, and the neutral potential is
known from quantum chemistry. The parameters need to be determined from
the fit of the eigenphase sum.6

Now, we outline the fitting procedure of the R-dependent parameters a(R),
b(R), α(R), Vd(R), and parameters of the background. The particular choices
of the background terms as well as the obtained results from this procedure are
discussed for both the studied processes in two following sections. We proceed
similarly as Č́ıžek et al. [29].

The ab initio eigenphase data were first fitted by means of the least squares
by the sum of the resonant and background terms for each of 13 internuclear
distances separately. So, we obtained 13 data points for each parameter. The
next step is to approximate these data by suitable functions. This task was not
easy to perform because no clear trend was often observable in the data, which
was partly caused by a quite large number of the parameters. Not all parameters
are independent of each other. The inclusion of the threshold exponent α(R) into
the fitting procedure caused both an increase in the total number of parameters
but also the occurrence of correlations among the parameters describing the reso-
nance width in Formula (2.6). In addition, we did not always have the good first
guess of the parameters to start the non-linear fit. Thus, reasonable fits were
determined by several trial and error steps, which included fixed-R fitting and
enforcing smoothness of R-dependencies of the parameters. Despite all efforts,
the agreement of the eigenphase sum obtained from the fitted models with the
ab initio data is not ideal. Furthermore, we did not use the information about
the dipole moment of LiH in this procedure at all. Next, we discuss the details
of the resulting fits for both of the states in following two sections.

2.6 NRM of the Li+H− collision

To obtain the nonlocal model of Li+H− collision (2.1), we need to fit the eigen-
phase sum in the low-energy region (up to energy about 1.4 eV), but not in the

6In the case of polar molecules with a subcritical dipole moment, the threshold exponent
α(R) is fully determined from the dipole moment. Here, we include the determination of the
threshold exponent to the fitting procedure.
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immediate vicinity of the threshold.
We chose a linear function in both energy and internuclear distance as the

background term with coefficients abg, bbg, and cbg

δbg(ε, R) = abgε+ bbgR + cbg. (2.7)

To fit the low-energy behaviour with Breit-Wigner formula (1.54) was quite
difficult. To reduce the number of free parameters, we fixed the threshold ex-
ponent to be constant α(R) = 0.1 at all internuclear distances. The local anion
potential of the X2Σ+ state is well known from the electronic structure calcula-
tions, and thus, we determined the discrete-state potential as

Vd(R) = Vloc(R)−∆(Vloc(R)− V0(R), R), (2.8)

where Vloc(R) denotes a local potential, in this case the potential of the ground
state of LiH− (X2Σ+ state).

Values of the parameters were obtained by the fitting procedure described in
the previous section. The background parameters are given by

abg = −15.14, (2.9)

bbg = 0.275, (2.10)

cbg = −2.612, (2.11)

and the R-dependent functions in the resonance width given by Formula (2.6)
have the forms

α(R) = 0.1, (2.12)

a(R) = 3.0e−0.025R2

, (2.13)

b(R) = 0.00114R + 0.00088. (2.14)

We compared the resulting eigenphase sum with the ab initio data at 13 values
of internuclear distance, see Figure 2.4. The model eigenphase sum represented
by red curves is finite at zero energy instead of the logarithmic divergence of the
ab initio data (circles). We expect that this flaw in the model influences the final
cross sections only on about 10 meV vicinity of the thresholds, and it do not
influence the integral cross section and rate constant significantly.

Unexpected resonances appear at larger energies in the eigenphase sum ob-
tained from the nonlocal model. Their physical origin and meaning is unknown
to us. We emphasise that the use of the nonlocal theory is not typical in the
case of the Li+H− collision. In the usual situation, an anion state is bound for
some nuclear configurations and it disappears in the continuum as a shape reso-
nance for other configurations. Here, the anion state is bound at all internuclear
distances.
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We at least explain the origin of the odd resonances from the mathematical
point of view. Before we get to it, we show the relevant potentials in the de-
scription of the Li+H− collision (Figure 2.5). The separation of the discrete-state
potential (black curve) from the local anion potential (green) occurs at a fairly
large internuclear distance (R ≈ 15). Typically, a discrete-state potential first
distinctly differs from a local potential in the vicinity of the crossing point.
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Figure 2.4: The comparison of the eigenphase sum from the ab initio cal-
culations (circles) with the results from the constructed nonlocal model (red
curves) at 13 internuclear distances (R = 2.0 to 4.6 with step 0.2 from bot-
tom to top, R = 3.6 is omitted). The inset shows the immediate vicinity of
the threshold, where the scattering data logarithmically diverge. The model
eigenphase sum is finite at the threshold. The unexptected resonances appear
at energies above 1.5 eV.

Now, we describe the origin of the resonances. If the argument of tan−1 in
Breit-Wigner formula (1.54) changes the sign, a resonance appears in the eigen-
phase sum. The resonance here means the change of the value by π. To ensure
the continuity of the eigenphase sum, we subtract π from tan−1 if the argument
is positive. The width of a resonance is given by Γ(ε, R)/2 and its position is
Vd(R) − V0(R) + ∆(ε, R). The width function Γ(ε, R) is always positive, there-
fore, the resonance appears at energy which is the root of the denominator of the
argument at some fixed internuclear distance. The denominator as a function
of energy (at fixed R) has two roots independently of R (Figure 2.6). The left-
hand root describes the shape of the eigenphase sum in the low-energy region.
The other is responsible for the odd resonances at higher energies. At low en-
ergies, the behaviour of the denominator is mostly given by ∆(ε, R). The shape
of ∆(ε, R) at R = 4.6 is shown as the blue dashed curve in the latter figure.
The term −Vd(R) + V0(R) at some fixed R just cause a small vertical shift. The
term ε is substantial at large energies, where ∆(ε, R) exponentially decays, and
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it is responsible for the occurrence of the second root.
The problem with the resonances may be fundamental in situations similar to

the Li+H− case with the used parametrization of the width function. We need
a gradual decline in the eigenphase sum by π, which is achieved by the change
of the denominator from positive values to negative. But then, the second root
always exists due to the ε term and the fact that ∆(ε, R) vanishes. Thus, the
increase by π appears in the eigenphase sum since the change is from negative
values to positive.
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Figure 2.5: The discrete-state potential Vd for the Li+H− collision together
with the neutral potential V0 of the molecule LiH and the ground potential
Vloc of the molecular anion LiH−.

In addition, we found out that the positions of the resonances are sensitive
to the magnitude of the parameter a(R) given by Formula (2.13). When we
increase the magnitude, the positions move towards higher energies. This param-
eter changes the overall magnitude of the width and the level-shift functions.7

Therefore, the local minimum of the denominator is lower with greater a(R),
which results in the shift of the second root. The influence of the change of
a(R) on the shape of the eigenphase sum is negligible in the low-energy region,
because the positions of the respective roots change only slightly. The discrete-
state potential is interconnected with the level-shift function by Equation (2.8).
The difference Vloc(R)−V0(R) is negative since the anion state is bound, ∆(ε, R)
is also negative at ε < 0. Therefore, the potential is vertically shifted upwards
when the magnitude of a(R) is increased.

We chose the particular magnitude of a(R) (2.13) so that the resonances did
not appear in the energy region where we fitted the ab initio data, that is up
to energy about 1.4 eV. We did not move the resonances to very high energies

7The shift function is obtained from the resonance width using Formula (1.48) evaluated at
R′ = R.
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because the discrete-state potential would separate from the local potential at
even larger internuclear distances, see again Figure 2.5. We discuss different
choices of a(R) and their influence on AD cross sections in Chapter 4.
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Figure 2.6: The energy dependence of the denominator ε− Vd(R) + V0(R)−
∆(ε, R) of the argument in Breit-Wigner formula (1.54) at three fixed values
of the internuclear distance R = 3.0, 4.0, 4.6 (solid curves from bottom to top
respectively). The dashed blue curve represents the energy dependence of
∆(ε, R) at R = 4.6.

2.7 NRM of the Li−+H collision

Unlike the previous case, the situation is fairly typical in Li−+H channel (2.2).
We fitted the eigenphase sum in the entire interval where the ab initio data were
calculated. We put emphasis on the positions of resonances. The eigenphase sum
logarithmically diverges as ε→ 0. Thus, we chose the logarithmic dependence in
energy as the background term8

δbg(ε, R) = abg(R)log(ε) + bbg(R) (2.15)

with coefficients abg(R), bbg(R) depending in general on the internuclear distance.
We determined the parameters of the background term and the width function

given by Formula (2.6) by the fitting routine described in Section 2.5 as follows

abg(R) = −0.0835R− 0.390, (2.16)

bbg(R) = 0.0903(R− 2.973)2 − 4.693, (2.17)

8We can not choose the same background part in the previous model because the logarithm
describes the low-energy behaviour very well and there would be nothing left to include into
the resonant part.
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a(R) = (6.093R2 − 34.03R + 48.07)e−1.224R, (2.18)

b(R) = 0.171e−0.129R2

, (2.19)

α(R) = 0.5− 0.0250

1.0− 0.722R + 0.137R2
. (2.20)

The parameter a(R) possesses a local minimum, which is caused by two narrow
resonances at R = 2.6 and 2.8, the surrounding resonances are wider, see again
Figure 2.3.

The parameters above do not only serve as some interpolation of the data
from the fitting procedure, but also as an extrapolation in the vicinity of the
crossing, where no data are available from the reasons discussed in Section 2.4.
Dipole moment vanishes at R = 0 and as R→∞. The threshold exponent equals
(2l+1)/2 in that case (see Section 1.5). Thus, we chose the function α(R) so that
it fulfils this behaviour with l = 0, which is the lowest l allowed by symmetry in
the Li−+H collision.

The discrete-state potential was determined from two sets of data (Figure 2.7).
In the region R < Rc = 6.7, the position of the discrete-state potential is fixed by
ε− Vd(R) + V0(R)−∆(ε, R) = 0, which comes from Breit-Wigner formula (1.54)
and determines the energies of the resonances in the eigenphase sum (scattering
data in the figure). At R > Rc, the discrete-state represents the A2Σ+ state of
the molecular anion LiH−. Thus, we use the MOLPRO data in this region. The
final fit of the discrete-state potential, which was determined by means of the
least squares, reads

Vd(R) = 188.5e−3.233R + 0.325
1

R
e−0.237R − 2.25

[(R− 10.79)2 + 38.25]2 + 3627
.

(2.21)
The quantum chemistry data ensure the proper physical behaviour of the latter
potential as R→∞ (see Section 2.2.2).

The constructed nonlocal model does not follow the ab initio eigenphase sum
precisely (Figure 2.8). The horizontal difference in the position of the resonance
at R = 4.6 between the ab initio data (circles) and the result from the model (red
curves) is 54 meV. As we mention earlier, the R-dependent parameters serve as
extrapolation functions in the vicinity of the crossing at Rc = 6.7 since the largest
internuclear distance, where the scattering data (eigenphase sum) are available,
is R = 4.6. We test the sensitivity of the final cross sections to this extrapolation
in Chapter 5.

We briefly return to the discussion about the denominator in Breit-Wigner
formula (1.54) from the previous chapter. The qualitative behaviour of the de-
nominator is the same as in Figure 2.6 except that the shape is horizontally
shifted to the left. The denominator is finite and negative at the threshold and
it possesses only one root at fixed R, which causes the resonances visible in Fig-
ure 2.8.
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3. Separation of the coupling
potential

3.1 Introduction

In the third chapter, we discuss the separability and non-separability of the
discrete-state-continuum-coupling potential, which greatly influences computa-
tional times of the cross section calculation. The coupling potentials constructed
for both studied processes (2.1) and (2.2) are not separable in energy and space.
We present a new method which approximates non-separable potentials by the
sum of separable terms. We also test this method by calculation of the known
AD cross sections of the Br−+H collision. At the end of this chapter, we outline
some numerical methods and details which are related to the studied scattering
problems.

3.2 Separability of the coupling potential

We use the Schwinger-Lanczos algorithm proposed by Meyer et al. [30] to solve
Lippman-Schwinger equation (1.44). The application of nonlocal potential (1.46)
on a vector is needed in the algorithm. The potential F acts on a vector x as an
integral operator because of the nonlocality. Thus, the resulting vector y is given
by

y(R) =

∫
dR′F (E,R,R′)x(R′). (3.1)

In fact, this is typically the most time-consuming step in cross section calculations.
The use of the Schwinger-Lanczos algorithm is convenient because the nonlocal
potential is applied only 2Niter + 1 times, where Niter is the number of Lanczos
iterations (typically tens of iterations are needed).

If we use the nonlocal potential expressed by Formula (1.46) with a general
coupling potential, we have to evaluate Hermitian part (1.48) for each R, R′ and
E − EνJ in the calculation of y(R) (3.1). Cauchy principal value integral (1.48)
with the resonant width parametrized by Formula (2.6) can be computed analyt-
ically in terms of the incomplete gamma function and confluent hypergeometric
function [4]. Nevertheless, the calculation of y(R) would be very time-demanding.

The separability of the coupling potential Vdε is commonly assumed [31], that
is the coupling potential equals the product of a function depending on energy
and a function which only depends on the space variable

Vdε(R) = f(ε)g(R). (3.2)

Assuming the separability, we have the nonlocal potential expressed as1

F (E,R,R′) =
∑
ν

χν(R)
[
g(R)δ(E − Eν)g(R′)

− i

2
2πg(R)f(E − Eν)2g(R′)

]
χν(R

′),

(3.3)

1In this chapter we suppress the index J whenever it is possible without any confusion.

29



where the quantity δ depends only on energy and is given by

δ(E − Eν) = p.v.

∫
dε

f(ε)2

E − Eν − ε
. (3.4)

The latter two expressions are derived from Equations (1.46) to (1.48) and the
assumption of separability. We also assume that f is a real function. The applica-
tion of F is effective in this case. We just integrate the product g(R′)χν(R

′)x(R′)
over R′ for each ν, and we calculate δ term (3.4) only once for each energy E−Eν .

However, the constructed coupling potentials are not separable in energy and
space because the width function given by Formula (2.6) is not separable. We
approximate the non-separable coupling by the finite sum of separable terms

Vdε(R) =
∑
k

fk(ε)gk(R). (3.5)

In such case, the nonlocal potential is expressed by

F (E,R,R′) =
∑
ν

χν(R)
∑
k,k′

[
gk(R)δkk′(E − Eν)gk′(R′)

− i

2
2πgk(R)fk(E − Eν)fk′(E − Eν)gk′(R′)

]
χν(R

′)

(3.6)

with

δkk′(E − Eν) = p.v.

∫
dε
fk(ε)fk′(ε)

E − Eν − ε
. (3.7)

If the number of terms in expansion (3.5) is small, the calculation of y(R) (3.1)
is manageable.

We emphasise that the problem with Vdε(R) separation concerns only the
Hermitian part of the nonlocal potential because of integral (1.48). This integral,
a Hilbert transform, couples R and R′ for a general form of the coupling potential.
The anti-Hermitian part is always separated in R and R′ owing to Formula (1.47),
therefore we can integrate over R′ without any constrains.

Separable expansion (3.5) can be obtained by the approximation proposed
by Bateman [32], and used in nonlocal calculations, for example, by Houfek et
al. [33] or Horáček et al. [34]. We introduce the new method of Vdε(R) separation
in the next section.

3.3 Separation procedure

We assume that the coupling potential has the form

Vdε(R) =
1√
2π
a(R)1/2

(
ε

b(R)

)α(R)/2

e−ε/2b(R), (3.8)

which comes from Equations (1.47) and (2.6). The basic idea of our proposed
method is the evaluation of the potential on some energy and space grid (ε-grid
and R-grid). The resulting matrix is then decomposed by the singular value
decomposition method (SVD).
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We briefly review the singular value decomposition. The more detailed de-
scription can be found, for example, in Numerical Recipes [35]. Let us assume
that we have a real rectangular matrix A with dimensions m × n. Then, A is
decomposed by the SVD method to the product of three matrices

A = UΣV T . (3.9)

The matrices U and V have dimensions m×n and n×n respectively. The columns
of U are orthonormal, the same property holds for columns of V , the matrix Σ is
diagonal and square n× n. The numbers on the diagonal, the so-called singular
values, are real positive and sorted in the descending order by their magnitude.
In the quantum mechanics notation, we can rewrite decomposition (3.9) as

A =
n∑
k=1

σk|uk〉〈vk|, (3.10)

where uk and vk are the k-th columns of the matrices U and V respectively, σk
is the k-th singular value. The last expression is in the desirable form, the sum
of separable terms.

If we denote vk by fk and the product σkuk by gk, we achieve the separable
form of Vdε given by Formula (3.5). The only problem is that the functions fk and
gk are not given by analytic formulas but they are evaluated on the chosen grids.
In fact, the knowledge of gk only in mesh points is convenient. When we choose
the R-grid as the grid where the nonlocal dynamics is calculated, we can directly
use gk in the program code without any further interpolation or extrapolation.
On the other hand, we need functions fk in order to calculate integral (3.7). We
refer to the functions fk as the SVD energy functions. As mentioned earlier, there
exists an analytic expression used by Domcke and Mündel [36] of the following
integral

Del(ε, α) = p.v.

∫
dx
xαe−x

ε− x
, (3.11)

which we denote by Del(ε, α) for further use.
We empirically found out that the functions fk are oscillating with the number

of roots equal to k − 1, with the threshold behaviour εα at the origin, and with
an exponential decay at large energies. Thus, we suggest to fit the functions fk
by

f̃k(ε) = εαkpk(ε)e
−bkε, (3.12)

where pk(ε) is a polynomial with degree Nk. With this assumption, we approxi-
mate energy-dependent Hermitian part (3.7) by

δkk′(E − Eν) = p.v.

∫
dε
fk(ε)fk′(ε)

E − Eν − ε
' p.v.

∫
dε
f̃k(ε)f̃k′(ε)

E − Eν − ε
. (3.13)

The last integral can be calculated from the analytical expression of integral
Del(ε, α) (3.11), since the product of f̃k and f̃k′ has the same structure as func-
tion f̃k (3.12) itself with the polynomial pk(ε)pk′(ε), parameters αk + αk′ and
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bk + bk′ . We denote the coefficients of the latter polynomial by c
(kk′)
i , i =

0, . . . , Nk +Nk′ , where Nk +Nk′ is its degree. We substitute expression (3.12) for
the functions f̃k(ε) and f̃k′(ε) into Formula (3.13). Then, we obtain the following
formula by using a linear substitution and the integral linearity

δkk′(ε) =
1

(bk + bk′)αk+αk′

Nk+Nk′∑
i=0

c
(kk′)
i

(bk + bk′)i
Del [(bk + bk′)ε, i+ αk + α′k] . (π)

3.4 Fitting of the SVD energy functions

Now, we deal with the fitting of the SVD energy functions fk by Formula (3.12).
One obvious possibility is to use a non-linear least-squares approach. This may
be tricky because the number of parameters to find is2 Nk + 3, and the degree Nk

of the polynomial can be fairly large (over ten). In that case, the localization of
the minimum in a multidimensional parameter space is difficult, especially, if we
do not have the good first guess to start iterations of the fitting procedure.

We propose another fitting routine, which gives satisfying results. We make
use of the fact that Nk + 1 of the total Nk + 3 parameters are linear. We man-
ually fit the low-energy behaviour, that is we determine the parameter αk in
Formula (3.12). We fix this parameter in the further investigation. Then, we
choose an interval in which we expect the parameter bk lies and we fix bk at the
lowest value. When we fix both of the non-linear parameters, we can determine
the remaining quantities by a linear fit using QR decomposition [35].

Again, we briefly review the QR decomposition method. A rectangular real
matrix B can be decomposed into the product of two matrices3 Q and R

B = QR, (3.15)

where Q is orthogonal with the same dimension as B, that is4 QTQ = I, and R is
upper triangular.

We rewrite the form of fitting function (3.12) into

f̃k(ε) =

Nk∑
n=0

c(k)
n φn(ε), (3.16)

where c
(k)
n are coefficients of the polynomial pk(ε) and φn(ε) = εαkεne−bkε. Next,

we construct the matrix B. Its elements are given by

Bij = φj(εi), i = 1, . . . , Nε, j = 0, . . . , Nk, (3.17)

where Nε is the number of energy mesh points (Nε � Nk). We want to find such

coefficients c
(k)
n which best approximate the function fk at mesh points

Bc(k) ' fk. (3.18)

2The polynomial has the degree Nk, which means it is defined by Nk + 1 parameters, and
then, we have to add parameters αk and bk.

3In this section, R denotes a matrix and not internuclear distance.
4But QQT 6= I because the matrix Q is rectangular.
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In other words, the vector c(k) solves

Bc(k) = PQRfk, (3.19)

where the right-hand side PQRfk is the orthogonal projection of the vector fk to
the range of the matrix B. We use the QR decomposition, and thus, we have
B = QR. The projector PQR can be then represented by PQR = QQT . If we
multiply both sides of Equation (3.19) by Q−1(= QT ) from the left, we obtain

Rc(k) = QTfk. (3.20)

Since the matrix R is upper triangular, the last equation is solved by the back
substitution.

The parameter αk is well determined by the manual fit, but bk is not optimal
so far. We repeat the procedure for many values of bk in the chosen interval. We
choose an equidistant grid on this interval and we calculate the vector c(k) for
each point. After that, the best bk is determined as the value which minimize the
quantity

Nε∑
i=1

(
fk(i)− f̃k(εi)

)2

. (3.21)

We briefly discuss the effectiveness of the described procedure. First of all,
it is important to realize that the separation of the coupling potential does not
depend on the partial wave J or collision energy E. Therefore, the separation
and fitting of fk are done only once for all J and all E at the beginning of cross
section calculations. In addition, the computation of the linear fit is not very time-
demanding since the number of parameters is low. We see further that maximal
polynomial degree is about Nk ≈ 14. The computational time is typically in the
order of seconds when the calculation is performed on a regular PC.

We summarize the separation procedure. The coupling potential Vdε(R) is
decomposed by the SVD method on chosen grids. The SVD expansion is cut
at a certain point, only few terms are left. Each function fk(ε) is fitted by
Formula (3.12). The parameter αk is determined from the manual low-energy fit
and its value is fixed. The parameters c(k) and bk are obtained from the cycle
of linear fits. It is necessary to choose convenient values of the degree Nk of the
polynomial pk(ε) before the procedure starts.

3.5 Comparison with the Bateman approxima-

tion

We briefly compare the Bateman approximation with the developed method. The
first Bateman approximation [32] of a function V (x, y) reads

V1(x, y) =
V (x, y1)V (x1, y)

V (x1, y1)
, (3.22)

and the M -th approximation is given by

VM(x, y) = VM−1(x, y) +
WM−1(x, yM)WM−1(xM , y)

WM−1(xM , yM)
(3.23)
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with

WM−1(x, y) = V (x, y)− VM−1(x, y). (3.24)

Houfek et al. [33] proposed to choose the points (xi, yi), i = 1, . . . ,M only on the
diagonal x = y as follows. The point (x1, y1) is the point where the maximum
of |V (x, y)| occurs, and analogously further, |Wi−1(x, y)| have the maxima at the
points (xi, yi).

The Bateman approximation was used by Houfek et al. [33] to separate the
energetic term δ in the Hermitian part of the nonlocal potential in the R and R′

variables

∆(E,R,R′) = g(R)δ(E,R,R′)g(R′). (3.25)

The symmetry ∆(E,R′, R) = ∆(E,R,R′) is used by considering the points only
on the diagonal (x = y). On the other hand, we separate directly the coupling
potential Vdε(R), which possesses no such symmetry. The good choice of the
points (xi, yi) may be problematic in general case, that is without the symmetry.

The Bateman approximation has to be performed for each collision energy
while the SVD separation is done once at the beginning of the calculation. How-
ever, our procedure is not fully automatic and it requires manual interventions,
which may not be worth saving some computational time.

The advantage of the SVD method is the better control of the separation
precision. The magnitude of contributions of individual terms in SVD expan-
sion (3.10) is given by the singular values, because the columns uk and vk are
normalized. In contrast to the convergence of the SVD expansion with respect to
the L2-norm, the M -th Bateman approximation minimizes the residue of M − 1-
th approximation (WM−1(x, y)) with respect to the absolute value (maximum
norm).

We conclude this discussion by saying that the comparison of both the meth-
ods on a particular example is desirable, but we will no longer deal with it in this
thesis.

3.6 Test of the separation method

We illustrate the described separation method on the associative detachment
process

Br−+ H→ HBr + e−. (3.26)

The cross sections of this collision, which were computed by the use of the Bate-
man approximation, are available to us. Here, we compare these results with the
cross sections obtained with the coupling separated by the SVD method.

We present the nonlocal resonant model of process (3.26), which was con-
structed by Č́ıžek et al. [29]. The reduced mass of the molecule HBr is 1813.0066
and the electron affinity of the bromine atom equals 3.373 eV.

The potential curve of the ground electronic state of HBr is given by the Morse
potential

V0(R) = 0.144
(
e−1.92(R−R0) − 2e−0.96(R−R0)

)
, (3.27)
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where R0 = 2.67 is the equilibrium distance.
The dipole moment of HBr is subcritical, and thus, the threshold exponent is

given by the interpolation formula

α(R) =
1

2
+ a1M

2 + a2M
4 + a3M

6 + a4M
8 (3.28)

with the following constants5 a1 = −0.101157, a2 = −1.4833×10−2, a3 = 7.486×
10−3, and a4 = −3.735 × 10−3, M is the R-dependent dipole moment of HBr,
which is represented by the Padé approximation

M = M0(1 + x)3

(
1 +

7∑
i=1

eix
i

)−1

, (3.29)

where x = (R − R0)/R0, M0 = 0.81788, e1 = 2.199, e2 = 0.808, e3 = 1.483,
e4 = 3.868, e5 = −2.612, e6 = 13.209, and e7 = 0.255.

The discrete-state potential is given by

Vd(R) = 9.934e−1.535R − 2.25[(R− 1.437)2 + 2.884]−2. (3.30)

The width function has the following form

Γ(ε, R) = g(R)2 [β(R)ε]α(R) e−β(R)ε (3.31)

with

g(R) =

{
0.8688− 0.1835R, R < 4.7345

0, R ≥ 4.7345
, (3.32)

β(R) = 4.865R− 4.788. (3.33)

The background term of the eigenphase sum is equal to

δbg(ε, R) =
π

2

(
1

2
− α(R)

)
+ a(R)εα(R) + b(R)ε, (3.34)

where

a(R) = 0.437R− 4.483, (3.35)

b(R) = −2.0281. (3.36)

Now, we have to evaluate the coupling potential, which can be obtained from
width (3.31) by using Formula (1.47), on some energy and space grids. We
chose the interval where the coupling is non-zero as the R-grid with 1000 mesh
points, that is the interval [0, 4.7375]. The nonlocal dynamics is also calculated
on this grid. The energy grid [0.1, 100] eV with the logarithmic distribution of 600
energies turned out to be optimal since it seems that the low-energy behaviour and

5There is a typo in the sign of a4 in cited paper [29].
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also the exponential decay6 are well captured on this grid. The nonlocal model
was constructed from the low-energy data but the evaluation at large energies is
necessary. We have to describe the whole shape of functions fk in order to get the
correct Hermitian part of the nonlocal potential given by integral transform (3.7).
So, we have to choose the grid where the exponential decay is recognizable.

We fitted the first ten energy functions of the separable expansion of Vdε(R).
We found out that six terms are sufficient to the good description of the AD
cross sections. We discuss converging properties of the SVD expansion later.
The fits are illustrated in Figure 3.1, which shows the first six SVD functions
at mesh points (circles) and the resulting fits (curves). The parameters of the
fitted functions together with the singular values σk are listed in Table 3.1. The
particular values of the polynomial coefficients c

(k)
n are not listed. As an example

we show only the polynomial coefficients of the sixth energy function

p6(ε) = 0.05− 2.2ε+ 16.3ε2 − 40.7ε3 + 48.2ε4 − 33.2ε5

+ 14.6ε6 − 4.0ε7 + 0.6ε8 − 0.04ε9.
(3.37)

The other polynomials similarly change sings. The absolute value of the largest
coefficient does not exceed the value of one hundred.
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Figure 3.1: The SVD energy-dependent functions fk of the Br−+ H collision at
logarithmically-distributed mesh points (dots) compared with the functions f̃k obtained
by the fitting procedure (curves) for k = 1, 2, 3 (left) and k = 4, 5, 6 (right). The func-
tions k = 4, 5, 6 have one more maximum, and then, they exponentially decay to zero.

Table 3.1: Parameters of the
fitted SVD energy functions f̃k
with k = 1, . . . , 6 for the test
example, the Br−+H collision.

k Nk αk bk σk
1 4 0.222 1.6 49.68
2 5 0.170 1.6 14.82
3 6 0.138 1.7 5.09
4 7 0.135 1.9 1.53
5 8 0.085 1.9 0.42
6 9 0.035 1.8 0.10

6In fact, the exponential decay is not fully captured for k = 4, 5, 6 on this energy grid.
However, we later see that the precision of the obtained results is sufficient.
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We also investigated the influence of the chosen energy and space grids to the
shape of the functions fk. These functions are fairly independent of the choice of
the space grid, whether we change the endpoints of the R-grid or the number of
grid points. They do not dramatically depend on the ε-grid either. The functions
are just rescaled in the vertical axis when we modify the number of mesh points.
Roots of fk are shifted closer to the origin when we decrease the lower endpoint
of the ε-grid.

Next, we compare the eigenphase sum constructed directly from the nonlocal
model with the eigenphase sum calculated from the coupling approximated by
the sum of six separable terms (Figure 3.2). We calculated the AD cross sections
with the same approximation of Vdε(R) for the partial waves J = 0, . . . , 19 (Fig-
ure 3.3), and we compared the results with the cross sections computed by M.
Č́ıžek (personal communication, March 28, 2017) with the use of the third Bate-
man approximation. The difference is almost indistinguishable on the showed
scale.
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Figure 3.2: The comparison of eigenphase sum of the Br−+H collision con-
structed directly from the nonlocal model [29] (red curves) with the eigenphase
sum computed from the separated coupling potential (dots) at 13 values of the
internuclear distance (R = 2.0, 2.1, 2.3, 2.4, 2.5, 2.6, 2.6729, 2.8, 2.9, 2.95, 3.0,
and 3.1 from bottom to top). The ab initio data are not shown.

In the end, we discuss the convergence of the Vdε(R) separation with the
increasing number of SVD terms Nc. We calculated the cross section for the
partial wave J = 19 with Nc = 2, . . . , 6 (Figure 3.4), and we compare the results
with the Bateman approximation. The relative difference between the Bateman
approximation and the curve with Nc = 6 is much less than 1 %. In fact, we
computed the cross section up to Nc = 10. But the differences of these results and
the calculation with Nc = 6 are negligible. It seems that the developed method
works well and we can use it in the investigation of the processes of interest.
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Figure 3.3: The AD cross sections of the Br−+ H collision computed by
two methods of the coupling separation, the third Bateman approximation
(black) and the SVD method with six separable terms (red), for partial waves
J = 0, . . . , 19 (from bottom to top) in the logarithmic scale. The curves
obtained by the different methods are almost indistinguishable on this scale.
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3.7 Numerical details

In the last section of this chapter, we very briefly mention some numerical meth-
ods used in cross section calculations within the nonlocal resonant theory. The
detailed description is again included in book [4] and references therein.

Lippman-Schwinger equation (1.44) with the nonlocal potential is solved. We
first need to obtain the initial state φJ(R) and be able to act with the integral
kernel on a vector. The initial state satisfies Lippman-Schwinger equation (1.49),
which is the Fredholm integral equation of the second kind. The equation is
rewrite to the Volterra equation of the second kind. Then, an effective algorithm
provides the regular φJ(R) and irregular φ

(irr)
J (R) solutions, and also the local

part of the T -matrix. The local Green’s function GJ is given from these two
solutions by

GJ(E,R,R′) = −2µ

K
φJ(R<)φ

(irr)
J (R>), (3.38)

where R< = min(R,R′) and R> = max(R,R′).
The Fourier DVR method is used to calculate vibrational states χνJ(R) (1.45)

of the neutral molecule, which are contained in the expansion of nonlocal poten-
tial (3.6). The expansion is cut off at some point, that is only finite number of vi-
brational states is considered. The molecule is closed into a box. The vibrational
functions are expressed as an expansion in the Fourier basis. The coefficients of
the Fourier expansion are then determined as the eigenvectors of the molecular
Hamiltonian expressed in the Fourier basis. The energies of the vibrational states
correspond to the eigenvalues. The idea of the DVR method [37] is so that ma-
trix elements of the potential energy are obtained using a matrix transformation,
which diagonalizes the operator x̂ in the basis. The DVR method give the correct
discretization of the continuum, which contributes to cross sections [38].

Finally, Equation (1.44) is solved by the Schwinger-Lancozs algorithm (SL)
developed by Meyer et al. [30], which is based on the Schwinger variational princi-
ple and the Lanczos algorithm from matrix iteration methods. The SL algorithm
also provides the resonant part of the T -matrix.

In some cases, it is possible to accelerate the convergence of the SL algorithm
by the energy-dependent local approximation investigated by Horáček et al. [39].
In the Lippman-Schwinger equation, the effective potential is partitioned as

V = Vd + FJ . (3.39)

Another partitioning can accelerate the convergence

V = V ′d + F ′J , (3.40)

where V ′d = Vd + F loc
J and F ′J = FJ − F loc

J with the energy-dependent local
approximation defined by

F loc
J (E,R) =

∫
dR′FJ(E,R,R′). (3.41)

This approach is equivalent to a certain form of preconditioning well known in
iterative matrix methods.
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When we analyse the studied processes in the next chapters, we also discuss
the sensitivity of cross sections to major numerical parameters, which are listed
in Table 3.2 together with the explanation of their meaning.

Table 3.2: Major numerical parameters of nonlocal calculations and their mean-
ing.

Rmin the lower endpoint of the nonlocal grida

Rmax the upper endpoint of the nonlocal grid
RDVR the upper endpointb of the DVR gridc

NR the number of mesh points of the nonlocal grid
Nv the number of vibrational states in the expansion of F
Nc the number of separable terms in the SVD approximation of Vdε

a The grid where the nonlocal dynamics is solved.
b The lower endpoint of the DVR grid is the same as Rmin.
c The grid where the vibrational states are computed by the Fourier DVR method.

40



4. Li+H− collision

4.1 Introduction

After the development of the separation procedure, we are finally able to calculate
AD cross sections of the studied processes. This chapter is devoted to the analysis
of Li+H− collision (2.1). First, we discuss the separation of the discrete-state-
continuum-coupling potential. Second, we show and discuss the obtained cross
sections and we examine their sensitivity to various numerical parameters. Third,
we present two additional nonlocal resonant models of the Li+H− channel, which
are consistent with the ab initio data, and we compare the results. In the end,
we discuss rate constants and their comparison with the estimate used previously
for cosmological simulations [1].

4.2 Coupling separation

To separate the coupling potential Vdε(R), we follow the procedure outlined in
Section 3.3. We found out that the appropriate energy grid is [0.001,10] eV with
the logarithmic distribution of 600 energies. The low-energy behaviour and the
exponential decay of the SVD energy functions fk are well recognizable on the
chosen mesh. The space grid is again selected as the grid where the nonlocal
dynamics takes place. We discuss the particular choice later.

We show the best obtained fit of the first six SVD functions fk in Figure 4.1.
The parameters Nk, αk, and bk of fits by function (3.12) and the singular values
σk are listed in Table 4.1.

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  0.5  1  1.5  2  2.5

k=1

k=2

k=3

Li+H
-

S
V

D
 e

n
er

g
y

 f
u

n
ct

io
n

 f
k

Energy (eV)

-0.1

-0.05

 0

 0.05

 0.1

 0  0.5  1  1.5  2  2.5  3  3.5  4

k=4

k=5

k=6

Li+H
-

S
V

D
 e

n
er

g
y

 f
u

n
ct

io
n

 f
k

Energy (eV)

Figure 4.1: The SVD energy-dependent functions fk of the Li+H− collision at
logarithmically-distributed mesh points (dots) compared with the functions f̃k obtained
by the fitting procedure (curves) for k = 1, 2, 3 (left) and k = 4, 5, 6 (right).

In contrast to the test example, the parameter bk has much higher values,
compare the results in Tables 3.1 and 4.1. The reason for the mentioned be-
haviour comes from the comparison of the energy functions in these two cases,
compare Figures 3.1 and 4.1. The oscillations are located in much smaller energy
region (several eV) in the Li+H− channel than it is in the test case (tens of eV).
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Apparently for this reason, the polynomial coefficients are very large in the ab-
solute value in the Li+H− case. For example, the polynomial of the sixth term
in the separable expansion is given by

p6(ε) = 0.05− 0.21× 103ε+ 0.13× 106ε2 − 0.29× 108ε3

+ 0.32× 1010ε4 − 0.22× 1012ε5 + 0.97× 1013ε6

− 0.30× 1015ε7 + 0.63× 1016ε8 − 0.92× 1017ε9

+ 0.89× 1018ε10 − 0.55× 1019ε11 + 0.19× 1020ε12

− 0.30× 1020ε13.

(4.1)

The coefficients of the highest powers reach values in the order of 1020 in the
absolute value. The exponential decay has to be strong enough to compensate the
polynomial growth, which implies the large values of bk, but it overly suppresses
the oscillations at higher energies. Therefore, a high-degree polynomial is needed
to describe the full range where the functions are non-zero.

The described behaviour of the polynomial coefficients may cause numerical
problems. The fitted functions are used to calculate energy-dependent part (3.13)
of the nonlocal potential, where the multiplication of two energy functions occurs.
The resulting product, which is a quite small number, is obtained as the sum of
Nk + Nk′ + 1 terms with alternating signs. In addition, some of these terms are
fairly large. The rounding error of the sum may be significant compared to the
magnitude of the result. This kind of error is called ’smearing error’ in numerical
analysis. To avoid these problems we calculate the polynomial multiplication in
the quadruple precision (twice more precise than the standard double precision).
We performed some numerical tests and we found out that we are capable of
calculating the mentioned product in the quadruple precision with the error less
than 10−8 for polynomials with the maximal degree about Nk ≈ 15. The error is
determined as the difference between two calculations for tests of precision. We
multiply the polynomials, and then, we calculate the result at some energy, or
we can first calculate the values of both polynomials at the given energy, and
afterwards, we multiply these two numbers. The second method is much less
burdened by rounding errors, because we sum fewer and smaller terms, but the
latter method is not applicable in calculation of cross sections, because we need
the analytical formula of the resulting polynomial in order to be able to compute
the energy-dependent part of F .

We calculated the AD cross section for the partial wave J = 0 with the
number of separable terms Nc = 2, . . . , 6 (Figure 4.2).1 The separable expansion
converges faster than it is in the test example, see Section 3.6, four terms are
sufficient. The relative differences between the cross sections with Nc = 4 and
the best result with Nc = 6 are less than 1.4 % in the entire interval where the
cross section was computed (from 1 meV to 1 eV). The largest difference occurs
around local maxima of the cross section. The figure shows the region below the
first local maximum.2 For the most energies the difference is much less than 1 %.
Therefore, we use only four terms in the next calculations in order to shorten the

1Here, there is no reason to omit the eigenphase sum at R = 3.6 since we do not compare the
results with the ab initio data and the model predicts the curve at this R without the second
resonance, see Section 2.4.

2The maximum occurs above the first Wigner cusp. We explain this term in the next section.
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computational time. The time complexity is quadratic in the number of separable
terms Nc, since we sum over k, k′ in the expansion of the nonlocal potential given
by Formula (3.6).

The eigenphase sum determined from the separable approximation of Vdε(R)
with four terms agrees with the direct results from the nonlocal model very well
(Figure 4.3).

Table 4.1: Parameters of the fit-
ted SVD energy functions f̃k with
k = 1, . . . , 6 for the Li+H− colli-
sion.

k Nk αk bk σk
1 4 0.049 123.5 166.39
2 5 0.046 132.5 24.28
3 7 0.040 131.0 6.09
4 9 0.030 125.0 1.69
5 11 0.036 126.0 0.50
6 13 0.040 123.5 0.15
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Figure 4.2: The convergence of the AD cross section of the Li+H− collision
for the partial wave J = 0 with the increasing number of separable terms
Nc = 2, . . . , 6. The figure depicts one of energy regions where differences
among the curves are largest.
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Figure 4.3: The comparison of the eigenphase sum of the Li+H− collision
constructed directly from the nonlocal model (red curves) with the eigenphase
sum computed from the separated coupling potential with four SVD terms
(dots) at 14 values of the internuclear distance (R = 2.0 to 4.6 with step 0.2
from bottom to top).

4.3 AD cross sections

We first show the obtained AD cross sections for the individual partial waves
J = 0, . . . , 60 together with the total AD cross section. All final results were
calculated with the optimal values of numerical parameters, which are listed in
Table 4.2 (their meaning is in Table 3.2). Here, we interpret various phenomena
and structures visible in the shape of the cross sections. In the next section, we
also discuss the choice of the optimal numerical parameters and their influence
to the cross sections.

Table 4.2: The optimal numeri-
cal parameters of nonlocal calcula-
tions for the Li+H− collision.

parameter partial waves J
Rmin = 0.01 0, . . . , 35
Rmin = 0.05 36, . . . , 48
Rmin = 0.10 49, . . . , 60
Rmax = 20 all
RDVR = 20 all
NR = 6000 all
Nv = 90 all
Nc = 4 all
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For clarity, we split up the results into Figures (4.4) and (4.5), which depict
the AD cross sections for the partial waves J = 0, . . . , 12 and J = 18, . . . , 60
respectively in the logarithmic scale. The total AD cross section (green) deter-
mined as the sum of all partial contributions is shown as well in both the figures.
The number of computed partial waves is sufficient to obtain the converged total
AD cross section in the entire considered energy interval (from 1 meV to 1 eV).
The partial waves J = 13, . . . , 17 are not shown. Their shape is similar to the
curves J = 0, . . . , 12.
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Figure 4.4: The AD cross sections of the Li+H− collision for the partial
waves J = 0, . . . , 12 (from bottom to top, each other curve is dashed, J = 0
red) together with the total AD cross section (green) in the logarithmic scale.

The nonlocal resonant model of the Li+H− collision does not correspond with
the ab initio data at very low energies, see Section 2.6 and Figure 2.4. This
disagreement influences the shape of the cross sections in the immediate vicinity
(about 10 meV) of vibrational thresholds. These sharp structures in the cross
sections are discuss in detail below.

The presented results may not be valid at energies above the dissociation
limit, which is given by the electron affinity of the hydrogen atom3 0.740 eV in
this case. Above this limit, the dissociation channel opens

Li + H− → Li + H + e−. (4.2)

The process is necessary to consider in the description of associative detachment
at these energies. We show the results above the dissociation threshold up to
1 eV but we keep in mind that their validity is questionable.

The overall shape of the cross sections is given by the attraction of the ground
anion potential at large internuclear distances, see again Figure 2.1. Thus, the

3We use the electron affinities obtained from the MOLPRO calculations, see Section 2.2.3.
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particle4 with small energy reaches the region where the electron detachment may
occur, that is the region where the coupling potential is non-zero. The mutual
vertical shift, which is well visible for lower partial waves in Figure 4.4, is caused
by the multiplicative factor 2J + 1, which appears in the cross section formula,
see Formulas (1.51) or (1.52). The partial waves J = 0, . . . , 18 seem to diverge at
zero energy.5 On the other-hand, the cross sections J ≥ 19 rise from zero. This
behaviour is related to the height of the centrifugal barrier. We return to this
problem later.
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Figure 4.5: The AD cross sections of the Li+H− collision for the partial waves
J = 18, . . . , 60 (from left to right, each other curve is dashed) together with
the total AD cross section (green) in the logarithmic scale. For comparison,
the partial wave J = 0 (red) is shown as well.

Two types of structures are visible in the cross sections, Wigner cusps and
orbital resonances. The Wigner cusps are the sudden change of cross sections at
the opening of a new vibrational excitation channel, that is a new final state of
the molecule LiH comes to existence. Sharp peaks visible in higher partial waves
(J ≥ 20 in Figure 4.5) are called the orbital resonances. We explain the origin of
both the structures using an effective potential

V
(J)

eff (R) = V (R) +
J(J + 1)

2µR2
, (4.3)

where we add the centrifugal term proportional to R−2 to a potential V (R), which
represents the neutral potential V0(R) in the interpretation of the Wigner cusps

4The description of the scattering problem of two colliding particles is reformulated to scat-
tering of one particle with the reduced mass by an effective spherical, in our case nonlocal,
potential.

5The cross sections are shown in the logarithmic scale.
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and the local anion potential Vloc(R) (the potential of the X2Σ+ state) in the
case of the orbital resonances.

The local anion potential is attractive at large internuclear distances, see
again Figure 2.5. Therefore, quasi-stable states with positive energies6 may exist
in the effective potential with the local potential for J > 0. The particle can
tunnel through the centrifugal barrier and reach the inner potential well, which
we graphically illustrate below. Then, if the collision energy is close to the energy
of some quasi-stable state, the particle is trapped in this state. The state is
not bound, and thus, the particle can again escape by the tunnel effect, but
the probability of the detachment to some vibrational state of LiH increases as
the particle orbits the scattering centre, which implies the rapid increase in the
magnitude of AD cross sections at collision energies close to the energies of the
quasi-stable states.

We graphically illustrate the described structures in terms of potentials (Fig-
ure 4.6) and later on an example for a particular partial wave. The Wigner cusps
appear in the cross section if the collision energy, which is measured from zero
fixed by the asymptote of Vloc(R) as R → ∞ (highlighted by the green hori-
zontal line), is close to some vibrational state of LiH (horizontal dashed lines).
Local minima of effective neutral potentials (red curves) rise with increasing J .
Thus, the energies of vibrational states rise as well, which explains the shift of the
Wigner cusps towards higher energies in higher partial waves. The cusp appears
at 6 meV in the partial wave J = 10, that is at lower energy than the energy
of the lowest Wigner cusp in the partial wave J = 0. This is caused by the fact
that the energy of the corresponding vibrational state is negative for J < 10 and
it becomes positive in partial waves J ≥ 10.

The bottom of the neutral potential well is so high for partial waves J ≥ 49
that energy of the ground vibrational state is positive. The associate detachment
channel is closed at collision energies which are lower than the energies of these
ground states. In other words, AD cross section is strictly zero at these energies
because there is no possible final state of the molecule LiH. Therefore, high partial
waves start at finite value of cross section, which is barely visible in Figure 4.5.

The orbital resonances are caused by the presence of quasi-stable states of
effective local potentials (blue curves in Figure 4.6). The centrifugal barrier exists
for each J > 0, and the corresponding effective potential is attractive at some
internuclear distances even for the largest considered partial wave J = 60. If the
barrier is high enough, states with positive energies exist.

Now, it is convenient to return to the problem regarding the low-energy be-
haviour of the cross sections that we start talking about few paragraphs above.
The incoming particle first needs to overcome the centrifugal barrier because the
coupling potential is located at small internuclear distances up to 10-15 bohrs.
The barrier is located at similar or larger R, especially for low partial waves.
We provide further details later when we deal with the optimal size of the non-
local grid. If the collision energy is small compared to the centrifugal barrier,
the influence of the quantum tunnel effect is weak and the particle bounce back
with high probability. In that case, the cross section is substantially suppressed.
The height of the centrifugal barrier increases with the increasing value of J , and
thus, the initial growth of the cross sections is shifted to larger energies. There

6Zero energy is fixed by Vloc(R)→ 0 as R→∞.
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is no visible initial growth in the partial waves J = 1, . . . , 18 because the height
of the barrier is less than 1 meV. The AD cross section of the partial wave J = 0
truly diverges since there is no centrifugal barrier. Therefore, the total AD cross
section divergences at zero energy as well.
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Figure 4.6: The illustration of the structures in the AD cross sections using
effective neutral and anion potentials with the centrifugal barrier (red and
blue curves for J = 0, 20, 40, 60 from bottom to top respectively). Horizontal
dashed lines denote vibrational levels in the neutral potential (J = 0). The
green line highlights zero energy.

To illustrate the origin of the Wigner cusps and orbital resonances even more
transparently, we give a particular example in the case of the partial wave J = 45
in Figure 4.7, which consists of two parts. The left-hand figure depicts neutral and
local effective potentials with J = 45 (red and blue curves respectively).The right-
hand figure shows the AD cross section J = 45 rotated by 90 degrees counter-
clockwise, that is the energy axis is vertical. Dotted horizontal lines indicate the
connection of the structures with the positions of quasi-stable and vibrational
states. To estimate the positions of the quasi-stable anion states, we again used
the Fourier DVR method with the box [0.01,17.70].

We conclude the discussion by mentioning the local complex approximation
introduced in Section 1.6 in the case of the Li+H− collision. The neutral and anion
potentials do not cross. The anion state is bound at all internuclear distances.
In this situation, it can be shown that Eres(R) defined by Equation (1.65) is
negative for each R. The anti-Hermitian component Γ(ε, R,R′) of the nonlocal
potential vanishes at negative energies, which implies that imaginary part (1.64)
of the local complex potential vanishes as well. So, we can not compute AD cross
sections in this approximation.

In general, the correct overall qualitative but usually not quantitative be-
haviour of AD cross sections and even the orbital resonances can be described in
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the local approximation. Wigner cusps come from the description within the non-
local theory since the potential of the local approximation is energy-independent.
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Figure 4.7: The demonstration of the orbital resonances and Wigner cusps in
the AD cross section of the Li+H− collision for the partial wave J = 45. The
left-hand figure shows neutral and local effective potentials in this case (red
and blue), vibrational energies of the neutral potential with J = 45 (dashed
horizontal lines), quasi-stable levels of the anion potential with J = 45 (solid
horizontal lines). The right-hand figure depicts the AD cross section of the
partial wave J = 45 (green curve) rotated by 90 degrees counter-clockwise.
Dotted horizontal lines indicate the connection between the structures in the
cross section and the vibrational and quasi-stable levels in the potentials.

4.4 Numerical tests

It turned out that the Schwinger-Lanczos algorithm converges very slowly in this
case, see Table 4.3, where we list examples of the needed numbers of iterations.
These results were obtained with the use of the preconditioning described in
Section 3.7. The iterations stop when the relative error of two consecutive results
for the T -matrix is less than 10−13. The sufficient number of iterations is typically
up to 20 in similar scattering problems.

In addition to the high number of iterations, the relatively large number of
mesh points and vibrational states were required, which significantly increased
computational times, which can be seen in Table 4.4, where we show indicative
times in hours that elapsed during the calculations with the use of preconditioning
and without it. The preconditioning was not always beneficial. Each calculation
was performed on one CPU core of a computer cluster with the optimal numerical
parameters at 1000 logarithmically-distributed energies in the energy interval
[0.001,1] eV. Higher partial waves take less time that the lower ones since the

calculation stops when the cross section is less than 10−8 Å
2
.
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Table 4.3: Numbers of the Schwinger-
Lanczos iterations in nonlocal calcu-
lations of the Li+H− collision for the
partial waves J = 0, 20, 40 at various
energies.

E (eV) J = 0 J = 20 J = 40
1.000 196 230 158
0.320 146 101 75
0.100 102 85 67
0.032 79 66 167
0.010 72 79 —
0.003 69 101 —
0.001 69 80 —

Table 4.4: Computational times of cross sec-
tion calculations of the Li+H− collision for the
partial waves J = 0, 20, 40 at 1000 logarithmi-
cally distributed energies in the energy interval
[0.001,1] eV.

J preconditioning no preconditioning
0 8.5 h 11.8 h

20 8.6 h 9.9 h
40 6.6 h 4.9 h

Now, we come to the sensitivity of the cross sections to numerical parameters
listed in Table 3.2. We justify the choice of the optimal parameters, which are
listed in Table 4.2. We already discuss the convergence of the cross sections with
the increasing number of separable terms in the Vdε(R) separation. Four terms
are sufficient, see Section 4.2.

The correct boundary condition of a regular solution is that the corresponding
wave function vanishes at R = 0, that is the proper choice of the lower endpoint
of the nonlocal grid would be Rmin = 0. But non-zero value of Rmin is convenient
because the centrifugal term diverges as R → 0. A small non-zero value has no
influence on cross sections. Small internuclear distances are classically forbid-
den regions since potentials are repulsive there, and thus, the regular solution
is exponentially suppressed and the irregular solution is exponentially enhanced.
We verified that the results are not truly sensitive to the particular values of
Rmin listed in Table 4.2. It is necessary to increase Rmin for large J since the
exponential suppression/enhancement of wave functions is too strong that causes
numerical overflow.

The nonlocal potential is non-zero only in the finite interval of internuclear
distances in the test example, see Equations (3.31) and (3.32). The upper end-
point of this interval is the natural choice of the upper endpoint of the nonlocal
grid Rmax. In the Li+H− collision, we constructed discrete-state potential (2.8)
from the knowledge of the local potential. The discrete-state potential is non-
smooth if the coupling completely vanishes at a finite distance. Therefore, the
nonlocal model was constructed to exponentially decay to zero as R → ∞, see
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Formula (2.13). The upper endpoint needs to be chosen in the region where the
coupling is negligible. The magnitude of the width and level-shift functions is
about 10−4 and 10−8 at R = 15 and 20 respectively.

The upper endpoint RDVR of the DVR grid and the number Nv of vibrational
states are closely related to the value of Rmax. We ran series of tests for the cross
section J = 0, where we fixed RDVR and performed several calculations with
various Rmax, Nv = 150, and with a constant step of the equidistant nonlocal
mesh (Table 4.5). To ensure the same description of the vibrational states within
the DVR method with different values of RDVR, we changed the total number
of calculated vibrational states NDVR and we kept the ratio RDVR/NDVR to be
constant. The number NDVR designates the total number of vibrational states
that are calculated but only Nv states are used in the expansion of the nonlocal
potential given by Formula 3.6.

Table 4.5: Test calculations of the
cross section J = 0 of the Li+H−

collision with various values of RDVR,
NDVR, and Rmax.

RDVR NDVR Rmax

20 160 15, 18, 20
25 200 15, 18, 20, 25
30 240 15, 18, 20, 25, 30

From the tests described above, we found out that the computed cross sections
are fairly independent with respect to RDVR. The relative errors are in hundredths
of percent. The sufficient upper endpoint turned out to be Rmax = 20, which is
illustrated in Figure 4.8, where the energy region around the first Wigner cusp
of the cross section J = 0 is shown. We chose Rmax = 20 and RDVR = 20 as the
optimal values.

The above calculations were all carried out with Nv = 150. Further, we test
the sensitivity of the cross section for the partial wave J = 0 to different numbers
of vibrational states (Figure 4.9). There exist 24 vibrational states with energies
below the dissociation limit but their number depends on the total number of
computed vibrational states NDVR and on the upper endpoint of the DVR grid
RDVR. We obtained 24 bound states with NDVR = 160 and RDVR = 20. We
need at least Nv = 90 states to obtain the converged cross sections up to 1 eV.
So, the continuum-discretized states greatly contributes at energies below the
dissociation limit. We remind that the results above the limit are questionable
because we did not consider the dissociation channel given by Equation (4.2).

In theory, cross sections calculated from the T -matrix by Formula (1.51) and
from individual vibrational contributions by Formula (1.52) give the same results.
However, the latter formula is better from the numerical point of view. The first
mentioned formula is numerically unstable since the subtraction of typically close
numbers occurs (Figure 4.10). The numerical instability is clearly visible in the
left-hand part of the figure. Sum over vibrational contributions (1.52) is not only
stable but also provides more accurate results with fewer mesh points because
the rounding errors of the T -matrix approach are not negligible.

At last, we discuss the proper choice of the number NR of nonlocal mesh
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points. We calculated the cross section J = 22 with various values of NR (Fig-
ures 4.11 and 4.12). The first figure depicts the region around the orbital reso-
nance. The region above the second Wigner cusps is shown in the other figure.
It is sufficient to choose NR = 6000, which corresponds to the equidistant grid
step 1/3× 10−3. The relative difference between the curves with NR = 6000 and
8000 is much less than 1 %.
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Figure 4.8: The sensitivity of the AD cross section of the Li+H− collision
for the partial wave J = 0 to the upper endpoint of the nonlocal grid Rmax =
15, 18, 20 in the logarithmic scale. The showed region is located around the
first Wigner cusp, where the differences are the largest.
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4.5 Test of physical parameters

The choice of the discrete state is arbitrary to a certain extent. In theory, various
nonlocal models are consistent since the change in the discrete state is com-
pensated with the corresponding change of the level-shift function or rather the
change of the Hermitian part of the nonlocal potential. In practise, the model
is often not constructed by the projection-operator approach but rather from ab
initio data, and thus, the consistency does not have to be preserved. Here, we
test this arbitrariness in the choice of the discrete state by presenting two addi-
tional nonlocal resonant models, which give the very similar eigenphase sum as
the original model constructed in Section 2.6, but the shapes of the discrete-state
potential Vd(R) sufficiently differ.

We describe the appearance of the unexpected resonances in the eigenphase
sum and their behaviour with variations of the parameter a(R) in Section 2.6. The
modifications of the model concern especially the parameter a(R). We decrease its
magnitude as much as possible in order to avoid the appearance of the resonances
at energies below 1 eV. To achieve even the lower value of a(R) without the
resonances below 1 eV, we modified the threshold exponent α(R) in one of the
models as well (Table 4.6). We refer to these three nonlocal models by the
designations NRM1, NRM2 and NRM3. The NRM1 denotes the original model.

Table 4.6: The parameters a(R) and
α(R) of the original (NRM1) and two
additional (NRM2 and NRM3) nonlocal
resonant models of the Li+H− collision.

model a(R) α(R)
NRM1 3.0 exp(−0.025R2) 0.10
NRM2 2.0 exp(−0.025R2) 0.10
NRM3 1.8 exp(−0.025R2) 0.05

The significant change in the eigenphase sum of the models NRM2 and NRM3
is the shift of the resonances towards lower energies. The differences in the
shape at energies below 1 eV are minor (Figure 4.13). The modification of the
original model have also influence on the shape of the discrete-state potential
(Figure 4.14).

We separated the coupling potentials Vdε(R) of the additional models as de-
scribed in Section 4.2. In fact, we only manually changed the parameter α1 in
the first separable term in the case of the NRM3. Then, the fitting procedure
provided reasonable separations. We also verified that the convergence of the
separable expansion is preserved. To shorten computational times we reduce the
number of mesh points to NR = 4000 and we calculated cross sections only at
500 logarithmically-distributed energies compared to the original 1000 energies.
The choice of NR = 4000 is well justifiable since the relative error of the cross
section J = 22 with NR = 6000 and 4000 is at most 1 %. The other parameters
were chosen as before, see Table 4.2.

The resulting total AD cross sections differ minimally, which can be seen in
Figure 4.15, where the results are shown up to 50 meV, or rather in Figure 4.16,
where we depict the more detailed comparison at very low energies. The relative
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difference between the NRM1 and NRM2 is about 2 %, between the NRM1 and
NRM3 is less than 1 %. The differences may be mostly caused by the choice of
fewer mesh points. The lesser energy resolution may be responsible for differences
in positions of the orbital resonances. To describe the resonance well, we should
calculate the cross sections at more energies, but it would significantly increase
computational time.7

Furthermore, we compared individual partial waves. There is no distinct
difference between their shapes even at low energies. Such difference would not
be reflected in the total cross section.

The good agreement of the results for all proposed models indicates that the
descriptions within the nonlocal theory with different discrete states are equiva-
lent in this case.

-3

-2

-1

 0

 1

 2

 0  0.2  0.4  0.6  0.8  1  1.2

Li+H
-

R=2.0

R=4.6

E
ig

en
p
h
as

e 
su

m
 (

ra
d
)

Electron energy (eV)

NRM1
NRM2
NRM3

Figure 4.13: The comparison of the eigenphase sum determined from the
three nonlocal resonant models NRM1, NRM2, and NRM3 of the Li+H− col-
lision at 14 values of internuclear distance (R = 2.0 to 4.6 with step 0.2 from
bottom to top). For clarity, only the most bottom and most top curves are
shown in the case of the original model NRM1. The difference of the other
curves is similar to the difference between NRM2 and NRM3.

7In fact, the computational time does not depend linearly on the number of energies owing to
the use of the logarithmic distribution. More data points are located in the low-energy region,
where calculations typically require fewer iterations of the Schwinger-Lanczos algorithm.
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Figure 4.16: The detailed comparison of the total AD cross sections of the
Li+H− collision calculated from the nonlocal resonant models NRM1 (original
model), NRM2, and NRM3.

4.6 Rate constant

In the last section of the fourth chapter, we discuss the AD rate constant of the
Li+H− collision calculated by Formula (1.68). Sharp peaks, which originate from
orbital resonances, appear in the total AD cross section. The precise integration
of a function with sharp peaks may be problematic because their description is
limited due to a relatively small energy resolution. The peaks do not appear to be
so high, see Figure 4.17, where we show the integrand of the rate constant integral
including all constants. There is a possibility that we miss the real maxima of
the peaks, and thus, they may be significantly higher. To get an idea about the
contribution of the peaks to the integral, we computed the approximate area of
the peaks. We use the trapezoidal rule on the non-equidistant grid to calculate
the result. We determined the contribution of the peaks as the difference of the
whole area beneath the integrand (beneath the red curve in Figure 4.18) and the
area without the peaks (beneath the green curve). The relative areas of the peaks
determined by trapezoids with respect to the whole integral are about 1.2 % and
0.8 % at temperatures T = 100 K and 200 K respectively.

The real area may differ but we assume that the difference is not by several
orders of magnitude. The assumption is made up from the analysis of one par-
ticular peak. We recalculated the orbital resonance appearing in the partial wave
J = 30, which is responsible for the peak in the left-hand side of Figure 4.18, at
more energies to determine the precise height (Figure 4.19). The difference of the
height of the last calculation and the original result is insignificant, it is about
5 %.

We conclude the discussion about the integration by saying that the area of
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the peaks is probably slightly larger, but still the original energy resolution is
large enough to describe the peaks with the maximal relative error about tens of
percent. Thus, we assume that the contribution of the peaks to the result is not
substantial.

Finally, we calculated the temperature-dependent rate constants for all three
nonlocal models (Figure 4.20). The results for the NRM1 and NRM2 are almost
indistinguishable in the used scale because the relative errors are the same as the
errors of the total cross sections, see Section 4.5. The determination of the rate
constant is restricted by the interval [0.001,1] eV, where the cross sections were
calculated. The part of the integrand located above 1 eV starts to significantly
contribute to the result at temperatures T ≥ 1500 K. On the other hand, there
is a problem with the divergence of the total AD cross section at zero energy
at very low temperatures. Extrapolation of the total cross section beyond the
energy interval can be used, but we will not deal with it any longer.8

The temperature-independent rate constant of the Li+H− collision was esti-
mated by Stancil et al. [14] as 4 × 10−10 cm3s−1. The estimation was based on
associative detachment processes of Na− and K− ions with hydrogen atom exper-
imentally investigated by Fedchak et al. [40]. Our temperature-dependent result
is smaller but of the same order of magnitude at temperatures up to 1000 K.

 0

 1

 2

 3

 4

 5

 6

 7

 5  10  15  20  25  30

Li+H
−

T=100 K

T=200 K

C
o
n
st

 ×
 E

σ 
ex

p
(−

E
/k

B
T

) 
(1

0
−

7
 c

m
3
s−

1
H

a−
1
)

Energy (meV)

Figure 4.17: The integrand of the rate constant integral of the Li+H− colli-
sion at the temperatures T = 100 K and 200 K (red and blue curves respec-
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8The more detailed analysis of the rate constant at low and high temperatures should be done
before we publish the results. However, the publication should be preceded by the clarification
of the uncertainties in the scattering data.
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5. Li−+H collision

5.1 Introduction

In the last chapter of this thesis, we focus on the detailed description of the second
studied process, Li−+H collision (2.2). We start again with the separation of the
discrete-state-continuum-coupling potential. Then, we discuss AD cross sections
and the choice of optimal numerical parameters. We propose three new nonlocal
models to test the extrapolation in the vicinity of the crossing. We also compare
the nonlocal results with the local approximation, which can be computed in this
case. In the end, we present rate constants determined from both nonlocal and
local results.

5.2 Coupling separation

It turned out that the proposed separation method does not work very well in
this case. The sum of separable terms does not converge fast enough. Here, we
explain the probable source of the failure of this procedure.

We separated the coupling potential using the SVD method on energy and
space grids as in the previous process. The energy grid was chosen as [0.1,100] eV.
We fitted the first ten SVD energy functions fk, see Table 5.1, where the result-
ing parameters αk, bk, Nk together with the singular values σk are listed. The
polynomials of the functions k = 5, . . . , 10 have the same degree Nk = 13. The
restriction of the polynomial degree is caused by rounding errors. These errors
appear in the calculation of the Hermitian part of the nonlocal potential for
Nk > 13 at some energies, which is described in more detail in Section 4.2. The
reached precision of the fit k = 1, . . . , 4 is comparable with the precision of the
fit for the Li+H− collision. The fits of k = 6, . . . , 10 are not so precise, see below,
because of the numerical limitations of the polynomial degree.

Table 5.1: Parameters of the fit-
ted SVD energy functions f̃k with
k = 1, . . . , 10 for the Li−+H colli-
sion.

k Nk αk bk σk
1 1 0.226 3.0 155.20
2 7 0.020 8.4 9.15
3 9 0.005 10.1 2.71
4 11 0.200 17.8 1.12
5 13 0.200 20.2 0.47
6 13 0.200 21.5 0.19
7 13 0.010 47.7 0.09
8 13 0.010 43.8 0.05
9 13 0.010 47.7 0.02

10 13 0.010 50.1 0.01
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We found out that the cross sections do not convergence fast enough with
the increasing number of separable terms (Figure 5.1). Even with the most con-
sidered separable terms (Nc = 10), the resulting cross section still significantly
differs from the result calculated with the non-separated coupling potential (top
black curve). We give more details about calculations without a separable ap-
proximation later.
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Figure 5.1: The non-convergence of the cross section of the Li−+H collision
for the partial wave J = 0 with the increasing number of separable terms
Nc = 6, . . . , 10 compared to the same cross section computed without any
separable approximation (top black curve) in the logarithmic scale.

One possibility, which may cause the convergence problem, is that the approx-
imation converges very slowly with the increasing number of terms, and we are
just not able to reasonably fit more separable terms. This conjecture is based on
the comparison of convergence speeds of SVD expansions. The first six singular
values descend to zero as fast as in both of the previous cases, compare the last
columns of Tables 3.1, 4.1 and 5.1. But then, the convergence is slowed down. In
the Li+H− and Br−+H collisions, the tenth and fifteenth singular values are in
the order of 10−3 and 10−6 respectively while they are only in the order of 10−1

and 10−3 respectively in the Li−+H channel.
However, we are not convinced that the slow SVD convergence is the main

reason of the failure of the separation method. We assume that the insufficiently
precise description of the low-energy behaviour of the functions fk is mostly re-
sponsible for it. Positions of resonances in the eigenphase sum are well described
by the separable approximation (Figure 5.2), but the difference in the low-energy
region is apparent, especially at internuclear distances close to the crossing (Fig-
ure 5.3). The presented curves were calculated with six separable terms. The
agreement at low energies is not considerably improved with more terms. The
various approximations of the cross section J = 0 most differ at vibrational
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thresholds, see again Figure 5.1. The difference reduces with increasing energy to
the point where the next vibrational threshold appears. This behaviour indicates
that the low-energy description causes the disagreement in the cross sections.
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Figure 5.2: The comparison of the eigenphase sum of the Li−+H collision
constructed directly from the nonlocal model (red curves) with the eigenphase
sum computed from the separated coupling potential with six terms (dots) at
14 values of the internuclear distance (R = 2.0 to 4.6 with step 0.2 from right
to left).

The low-energy behaviour of the functions fk is poorly recognizable for k ≥ 3
even if the lower endpoint of the energy grid is fairly low (10−6 eV or lower). Thus,
the manual fit of the parameter αk misrepresents the proper shape (Figure 5.4).
The first two fits (k = 1, 2) describe well the low-energy behaviour. In the third
term, the slight disagreement appears at the lowest energies. The fits k ≥ 4
describe the behaviour very roughly. It seems that the functions fk diverge at
zero energy for some k, but the choice of negative values of αk did not solve the
convergence problem. The functions rapidly change in a small low-energy region,
which is difficult to describe and it causes the large magnitude of the polynomial
coefficients, which implies a strong exponential decay. We also encounter this
polynomial behaviour in the Li+H− channel, see Section (4.2). The cross sections
are also fairly sensitive to the magnitude of the parameters αk, especially in the
vicinity of vibrational thresholds.

The source of the low-energy behaviour is probably encoded in the nonlocal
model and it may have a connection with the supercriticality of the dipole moment
of LiH. We suspected that the local minimum in the parameter a(R) given by
Formula (2.18) caused the problems, but the non-convergence persists even if we
replace a(R) with a similar monotonous function. We did not encounter similar
difficulties in the previous processes. The low-energy behaviour is quite apparent
and reasonably well approximated by manual fitting.
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Figure 5.4: The illustration of the low-energy behaviour of the SVD energy func-
tions fk of the Li−+H collision (dots) compared with the fitted functions f̃k(curves) for
k = 1, 2, 3 (left) and k = 4, 5, 6 (right).

Another indication of the non-correct separation of Vdε(R) is the comparison
of two formulas for AD cross sections. The coupling potential was approximated
by the separable expansion with Nc = 10, and then, we calculated the AD cross
section J = 0 from the T -matrix by Formula (1.51) and as the sum of individual
vibrational contributions by Formula (1.52). The second result differs less from
the cross section calculated without any Vdε(R) approximation (Figure 5.5). Our
explanation of this phenomenon is the following. If we determine the cross section
from the T -matrix, we use only the separable expansion of Vdε(R). In the second
case, the wave function ψJ(R) is also computed from the separation form, but
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the matrix element 〈χνJ |Vdkν |ψJ〉 is obtained from the non-separated Vdε(R),
which seems to partly compensate the inaccuracy of the separation. We remark
that both the formulas give the same results in the Li+H− collision except the
numerical instabilities of the formula which uses the T -matrix.
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Figure 5.5: The comparsion of the cross section of the Li−+H collision for
the partial wave J = 0 determined from the T -matrix (red), from the sum of
individual vibrational contributions (green) and without any separable approx-
imation (black). The coupling potential was approximated by ten separable
terms in the first two cases.

The conclusion of the above discussion is that the separation method with the
proposed fitting procedure can not be used in the case of the Li−+H collision.
One possibility is to enhance the fitting procedure, a full non-linear fit might
provide better results, or abandon the method and use another approach, for
example the mentioned Bateman approximation [33, 34]. We decided to use the
most straightforward but not effective approach, that is we do not approximate
the coupling potential at all.

The nonlocal potential is given by the expansion over vibrational states by
Formula (1.46). The calculation of the anti-Hermitian part is simple. We just
substitute particular values of R and R′ into the definition by Formula (1.47).
The evaluation of the Hermitian part is little more complicated. The Hermitian
component is equal to

∆J(E,R,R′) =
∑
ν

χνJ(R)∆(E − EνJ , R,R′)χνJ(R′), (5.1)

where

∆(E − EνJ , R,R′) = p.v.

∫
dε
Vdε(R)Vdε(R

′)

E − EνJ − ε
. (5.2)
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The coupling potential is given from the width function by Formula (3.8). We
substitute this expression into the last integral and we introduce the notation
a = a(R), a′ = a(R′), b = b(R), b′ = b(R′), α = α(R), α′ = α(R′), and B =
(1/b+ 1/b′)/2. Then, the Hermitian part can be calculated using

∆(E − EνJ , R,R′) =
1

2π

√
aa′

bαb′α′B
−(α+α′)/2Del [B(E − EνJ), (α + α′)/2] , (5.3)

where the analytic formula for integral Del(E,α) (3.11) is used.
The direct calculation of the nonlocal potential is not very effective but it

is manageable in this case. In fact, we see later that the calculation of cross
sections takes less time than it is in the Li+H− collision, where the separable
approximation is used.

5.3 AD cross sections

Here, we present the AD cross sections of the Li−+H channel calculated with
the optimal values of numerical parameters (Table 5.2). The choice of these
parameters is described in the next section.

Table 5.2: The optimal numeri-
cal parameters of nonlocal calcula-
tions for the Li−+H collision.

parameter partial waves J
Rmin = 0.01 0, . . . , 35
Rmin = 0.05 36, . . . , 48
Rmin = 0.10 49, . . . , 60
Rmax = 10 all
RDVR = 20 all
NR = 800 all
Nv = 60 all

We calculated the AD cross sections of the Li−+H collision for the partial waves
J = 0, . . . , 60, see Figures 5.6 and 5.7, where the partial waves J = 0, . . . , 10
and J = 0, 20, 30, . . . , 50, 60 are shown respectively in the logarithmic scale. In
addition, the total AD cross section (green) obtained as the sum of all computed
partial contributions is depicted in both of the figures as well.

We note that the results do not have to be valid at energies above the disso-
ciation limit, where the dissociation channel, which is given by Equation 4.2 but
with Li−+H on the left-hand side, is not considered. The dissociation threshold is
determined by the electron affinity of lithium atom EA(Li)=0.62 eV in this case
obtained from the MOLPRO calculations, see Section 2.2.3.

There is a distinct difference in the shapes of the presented results when we
compare them to the AD cross sections of the Li+H− channel, see Figures 4.4
and 4.5. Here, all partial waves rapidly grow with increasing energy at first.
Then, some kind of saturation occurs, that is the cross sections does not increase
anymore, they are nearly constant. The overall shape is again closely related to
the behaviour of the local anion potential (the potential of the A2Σ+ state) or
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rather the potential of the discrete state in this case, which is repulsive at all
internuclear distances, see again Figure 2.7.
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Figure 5.6: The AD cross sections of the Li−+H collision for the partial
waves J = 0, . . . , 10 (from bottom to top, each other curve is dashed, J = 0
red) together with the total AD cross section (green) in the logarithmic scale.
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Figure 5.7: The AD cross sections of the Li−+H collision for the partial
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Zero energy, from which the collision energy is measured, is fixed by the
asymptote of the discrete-state potential as R → ∞. The electron detachment
may occur if the ingoing particle reaches the region near the crossing point Rc =
6.7, where the coupling is located, see Figure 5.8. At energies below the energy
of the crossing point Ec = Vd(Rc) = 0.26 eV, the quantum tunnel effect is not
very effective, and thus, the cross sections are suppressed at these energies. The
tunnel effect becomes more effective with increasing energy, which explains the
rapid growth of the cross sections. If the collision energy is higher than the
crossing energy (E > Ec), every ingoing particle reaches the inner region. Then,
the occurrence of the electron detachment depends on the particular shape and
magnitude of the coupling potential. Therefore, the cross sections are saturated at
high energies. The energy of the crossing point rises with increasing J according
to the formula

E(J)
c = Ec +

J(J + 1)

2µR2
c

, (5.4)

but the position of the crossing point remains the same because the neutral
potential is modified by the centrifugal term as well. Thus, the initial growth is
shifted to higher energies for higher partial waves.
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Figure 5.8: The effective neutral and discrete-state potentials of the Li−+H
collision for J = 0, 20, 40, 60 (red and blue curves from bottom to top re-
spectively). Horizontal dashed lines denote vibrational levels including the
discretized continuum in the neutral potential (J = 0).

Orbital resonances can not be observed in cross sections of the Li−+H collision
since the potential is repulsive, and therefore, a local minimum is not presented,
that is no quasi-stable states with positive energies exist. On the other hand,
Wigner cusps exist and the threshold behaviour is very apparent in this case.
We graphically illustrate their origin in the case of the partial wave J = 0 in
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Figure 5.9, where the left-hand part depicts the potentials in the vicinity of the
crossing and the right-hand part shows the AD cross section of the partial wave
J = 0 rotated by 90 degrees counter-clockwise.
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Figure 5.9: The illustration of the origin of Wigner cusps in the AD cross
section of the Li−+H collision for the partial wave J = 0. The left-hand fig-
ure shows the vicinity of the crossing of the neutral potential (red curve) and
the discrete-state potential (blue), vibrational energies of the neutral poten-
tial are represented by solid horizontal lines. The right-hand figure depicts
the cross section of the partial wave J = 0 (green) rotated by 90 degrees
counter-clockwise. Dotted horizontal lines indicate the connection between
the threshold behaviour in the cross section and the vibrational levels in the
potential. The most bottom showed vibrational state is the fifteenth state
designated by ν = 15 (the ground state is counted as zeroth).

5.4 Numerical tests

The Schwinger-Lanczos method works very well in this case. The necessary num-
ber of iterations is about twelve iterations or less. Even five or four iterations
are sufficient at very low energies (E ≤ 0.2 eV). All presented cross sections were
computed as the sum of individual vibrational contributions by Formula (1.52).
Results obtained from T -matrix (1.51) agree with the other formula very well.
The relative errors are in the order of 10−5 or less. No numerical instabilities
were encountered in contrast to the previous case.

A relatively small number of mesh points and vibrational states were required
(particular choices are discuss below), which speeds up the calculations compared
to the Li+H− collision (Section 4.4). However, the lack of use of Vdε(R) separable
approximation very significantly prolongs computational times. Nevertheless, the
times are still shorter than in the Li+H− calculations, see Table 5.3 and compare
the results with Table 4.4. The calculations were performed with the optimal
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parameters listed in Table 5.2 at 1000 energies logarithmically distributed in the
interval [0.1,1.0] eV on one CPU core of a computer cluster. Higher partial waves
take less time since the calculation stops if the cross section is less than 10−10 Å2.
The acceleration of Lanczos iterations by the preconditioning is not significant.
For comparison, the calculations of the partial wave J = 0 with one, five and ten
separable terms were performed and they took only 4 s, 37 s and 155 s respectively.
Unfortunately, these results are not valid because of the non-convergence of the
separable expansion. Thus, the use of some separable approximation of Vdε(R) is
very desirable.

Table 5.3: Computational times of cross
section calculations of the Li−+ H collision
for the partial waves J = 0, 20, 40 at 1000
logarithmically-distributed energies in the en-
ergy interval [0.1,1.0] eV.

J preconditioning no preconditioning
0 5.75 h 5.80 h

20 4.98 h 5.16 h
40 2.62 h 2.62 h

Further, we briefly discuss the sufficient number of mesh points NR, the upper
endpoints of the nonlocal grid Rmax and DVR grid RDVR, and the number of
vibrational states Nv. The lower endpoint of the nonlocal grid Rmin needs to be
chosen non-zero from the same reason as before, see Section 4.4.

We found out that Rmax = 10 is the minimal size of the nonlocal grid that can
be used. Only the region above the dissociation limit in the AD cross section for
the partial wave J = 0 is sensitive to the change of RDVR (Figure 5.10). It seems
that the oscillations above the limit, which is denoted by the vertical dotted line,
converge to a smooth curve with the increasing size of DVR grid. We selected
RDVR = 20 as the optimal endpoint.

As we mention earlier, the smaller numbers of vibrational states and mesh
points are sufficient. The results are converged with respect to the number of
vibrational states with Nv = 60 in the entire considered energy interval (Fig-
ure 5.11). The relative difference between the curves with NR = 800 and 1, 500 is
less than 1 %, therefore, we use NR = 800 as the optimal number of mesh points
(Figure 5.12). The chosen number of points on the grid with Rmax = 10 corre-
sponds to the equidistant step 1.25 × 10−2, which is smaller than the sufficient
step 1/3× 10−2 used in calculations of cross sections of the Li+H− collision, see
Section 4.4.
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Figure 5.10: The AD cross section of the Li−+H collision for the partial wave
J = 0 with the upper endpoints of the nonlocal grid Rmax = 10 and the DVR
grid RDVR = 10, 15, 20. The vertical dotted line denotes the dissociation limit,
which is given by the electron affinity of lithium atom 0.62 eV determined from
the MOLPRO calculations.
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Figure 5.11: The convergence of the AD cross section of the Li−+H collision
for the partial wave J = 0 with the increasing number of vibrational states
Nv = 20, 30, 40, 50, 60. The vertical dotted line denotes the dissociation limit,
which is given by the electron affinity of lithium atom 0.62 eV determined from
MOLPRO calculations.
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Figure 5.12: The AD cross section of the Li−+ H collision for the par-
tial wave J = 0 calculated with the numbers of mesh points NR =
300, 500, 800, 1000, 1500. The showed region is located in the vicinity of the
Wigner cusp, where the differences are the largest.

5.5 Test of physical parameters

In this section, we present three additional nonlocal resonant models. The forms
of the resonance width and the background term (Formulas (2.6) and (2.15))
of the new models are preserved. We changed only the R-dependent coefficients,
which were originally obtained from the interpolation of the R-dependent data by
suitable functions, see Sections 2.5 and 2.7. However, the choice of these functions
was quite ambiguous. In fact, the data sometimes resembled randomly distributed
points without any particular trend, especially for the threshold exponent α(R).
Therefore, we present the new models and test the sensitivity of cross sections to
these modifications.

We refer to the new models as the NRM2, NRM3, and NRM4 models. The
model NRM1 is the designation for the original nonlocal model presented in
Section 2.7.

All coefficients of the model NRM2 differ from the original dependencies ex-
cept for the parameter a(R), which is the same. The coefficients, which were
obtained by the fitting procedure described in Section 2.5, are given by

abg(R) = 0.0254(R− 3.776)4 − 0.678, (5.5)

bbg(R) = 0.289(R− 2.956)2 − 4.742, (5.6)

a(R) = (6.093R2 − 34.03R + 48.07)e−1.224R, (5.7)
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b(R) = 0.670e−0.863R, (5.8)

α(R) = 0.164R− 0.337. (5.9)

The discrete-state potential was also slightly modified

Vd(R) = 160.7e−3.169R + 0.319
1

R
e−0.233R − 2.25

[(R− 14.45)2 + 94.91]2 + 33.18
.

(5.10)
In the remaining models, we just modified the original model by changing the

threshold exponent α(R).
For the model NRM3, we have

α(R) =
1

2π
tan−1 [9.87(R− 3.463)] +

1

4
, (5.11)

and we fixed the exponent to be constant α(R) = 0.1 in the last model NRM4.
In the case of the NRM3 and NRM4 models, the eigenphase sum only slightly

differs from the original model NRM1. The eigenphase sums obtained from the
models NRM1 and NRM2 differ more distinctly (Figure 5.13).

-4

-3

-2

-1

 0

 1

 2

 3

 0  1  2  3  4  5  6

R
=

4
.6

R
=

3
.0

R
=

2
.4

Li
-
+H

E
ig

en
p
h
as

e 
su

m
 (

ra
d
)

Electron energy (eV)

NRM1
NRM2

Figure 5.13: The comparison of the eigenphase sum of the Li−+H collision
obtained from the nonlocal models NRM1 (red) and NRM2 (blue) with the
ab initio data (dots) at 13 values of the internuclear distance (R = 2.0 to 4.6
with step 0.2 from right to left, R = 3.6 is omitted).

We calculated the AD cross section for the partial waves J = 0, . . . , 60 for
all additional models. The modification of the threshold exponent in the models
NRM3 and NRM4 do not have a large impact on the shape of the cross sections
expect for a very abrupt threshold behaviour of the results from the NRM4,
see Figures 5.14 and 5.15, where the partial wave J = 0 and the total AD cross
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section are shown respectively. Although, the fitted eigenphase sums of the NRM1
and NRM2 are very similar, the results noticeably differ. The real difference is
distorted due to the use of the logarithmic scale. The total AD cross section for
the NRM2 is more than twice the size of the total cross section obtained from
NRM1. Furthermore, sharp threshold structures are significantly suppressed in
the results obtained from the NRM2. The explanation of the disagreement is
following. The R-dependent coefficients of the resonance width serve as well as
an extrapolation in the vicinity of the crossing point, where no ab initio data
are available (Section 2.4). To compare the models we calculated the eigenphase
sum at internuclear distances closer to the crossing point Rc = 6.7, specifically
at R = 5.0, 5.5, 6.0, and 6.5, see Figure 5.16, where the resonant eigenphase sum
(without the background) is shown. The mutual differences get bigger as we
approach to the crossing point. The eigenphase sums for the models NRM3 and
NRM4 slightly differ from the original model NRM1, which is consistent with the
very similar shape of the corresponding total cross sections.
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Figure 5.14: The AD cross section of the Li−+H collision for the partial wave
J = 0 obtained from all proposed nonlocal models NRM1 (original model),
NRM2, NRM3, and NRM4 in the logarithmic scale.
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Figure 5.15: The total AD cross section of the Li−+H collision obtained
from all proposed nonlocal models NRM1 (original model), NRM2, NRM3,
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Figure 5.16: The resonant eigenphase sum of the Li−+H collision obtained
from the nonlocal models NRM1 (original model, solid curves) and NRM2
(dashed) at the internuclear distances R = 5.0, 5.5, 6.0, 6.5 (from right to left),
which are close to the crossing point at Rc = 6.7, where no scattering data are
available.
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The vicinity of the crossing point is usually important in order to obtain the
quantitatively correct results. We can estimate the influence of the immediate
vicinity from classical physics. Let us consider a classical particle with the reduced
mass of LiH (µ = 1605.5871 [28]) and with certain energy E moving in the
potential of the discrete state Vd(R). The particle bounces back at the point
where E = Vd(R). We compute time which the particle spends in the region
R < Rc and we compare it with mean lifetime of the resonance at such R0, where
E = Vd(R0). If the time is greater or equal to the mean lifetime, we can assume
that the particle probably decays. Then, the region of R0 < R < Rc is substantial
in the description of associative detachment processes and the region R < R0 is
only reached by tunnelling.

The calculation is quite simple. The kinetic energy of the considered particle
is given by

Tkin(R) = E − Vd(R) =
1

2
µv(R)2. (5.12)

The velocity v(R) of the particle then equals

v(R) =

√
2(E − Vd(R))

µ
(5.13)

The particle spends time τ between points R1 and R2 as follows

τ =

∫ R2

R1

dR

v(R)
=

∫ R2

R1

√
µ

2(E − Vd(R)
dR. (5.14)

Mean lifetime τres [5] of a resonance with a width Γ is given by

τres =
~
Γ
. (5.15)

The known resonance which is the nearest to the crossing point is the reso-
nance which appears in the eigenphase sum at R = 4.6, see Figures 2.3 or 5.13.
The resonance is not well described by the fitted model. To obtain more pre-
cise width, we fitted the eigenphase sum at R = 4.6 by the energy-independent
Breit-Wigner formula with a logarithmically-dependent background term

δ(ε) = Alog(ε) +B − tan−1

(
Γ/2

ε− ER

)
, (5.16)

where ER determines the position of the resonance and constants A, B are pa-
rameters of the background. The coefficients were determined by means of the
least squares. Specifically, we are interested only in the width, which is equal to
Γ = 7.44× 10−3 eV. Thus, the mean lifetime1 equals τres = 0.88× 10−13 s.

We considered the energy of the particle E and the points R1, R2 to be equal
to E = Vd(R = 4.6) = 0.642 eV, R1 = 4.6 and R2 = Rc = 6.7. The time which
the particle spends in this region is τ = 0.20× 10−13 s.

1Here, we list necessary physical constants and unit conversions [41]: the reduced Planck
constant ~ = 6.58×10−16 eV·s, the mass of electron me = 9.11×10−31 kg, 1 eV = 1.60×10−19 J,
and 1 bohr = 0.53× 10−10 m.
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We keep in mind that the result is just an estimate based on classical physics
but it provides a good insight into the scattering problem. The time which the
particle spends in the region where the nonlocal potential is mostly located is
less than the mean lifetime of the resonance at R = 4.6, since the resonance is
very narrow. We conclude that the electron autodetachment is not very efficient
in this region of internuclear distances and the quantum mechanics description
involving details of the coupling potential and nonlocal effects is important to
obtain the exact magnitude of the cross sections.

5.6 Local approximation

The cross sections given by the models NRM3 and NRM4 differ only slightly from
the original model NRM1. Therefore, we consider only the NRM1 and NRM2 in
the further discussion.

The local approximation (LCP) is defined by Equations (1.62) to (1.65).
In this collision, we can calculate cross sections within this approach. Equa-
tion (1.65), which gives resonant energy, is a non-linear equation and it does
not have a unique solution in the vicinity of the crossing in the case of polar
molecules [3]. Three roots exist there. These solutions represent poles of the
K-matrix and they define the position of the resonance of LiH− in the continuum
(R < Rc) and the position of the bound state at R > Rc. To find the resonant
energy, that is to solve Equation (1.65), the bisection method [35] was used.

We determined the local complex potentials for the models NRM1 and NRM2.
The real part defined by Formula (1.63) and the imaginary part −Γloc/2 given
by Formula 1.64 can be seen in Figures 5.17 and 5.18. The potential energy
curve of the anion state given by poles of the K-matrix is continuous. The ’bend
back’ of the potential given by three solutions of Equation (1.65) is caused by the
long-range dipole interaction. In fact, if the dipole is supercritical, the point of
turnover on the threshold (neutral potential) is at R→ 0. We do not observe this
behaviour here since our models do not include the proper threshold behaviour
of a supercritical dipole moment (threshold exponent is complex). The ’loops’
in the imaginary part around the crossing point Rc = 6.7 are again caused by
the non-uniqueness of the solution of Equation (1.65). We refer the reader to
the cited review by Domcke [3], where situations for differently strong dipoles are
discussed in great detail as well as the comparison with poles of the S-matrix.

To be able to calculate cross sections in the local approximation, we omitted
the region where three solutions exist and we interpolated the potentials by cubic
splines in this interval. We entirely ignored the ’loop’ in the imaginary part.

We solved the radial Schrödinger equation2 [42] with the local complex po-
tential Wloc(R) defined by Equations (1.62) to (1.65)[

d2

dR2
+K2 − J(J + 1)

R2
− 2µWloc(R)

]
uJ(R) = 0, (5.17)

where K =
√

2µE is the wave number belonging to energy E. The radial wave
function uJ(R) obeys the boundary condition uJ(R = 0) = 0. The Schrödinger
equation was solved using the Numerov algorithm [43]. Cross sections can be

2The Lippman-Schwinger equation with the same potential can be solved as well.
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again determined by Formula (1.51) from scattering in a complex potential. In
this case, the scattering amplitude aJ [9] is equal to

aJ = eiγsinγ, (5.18)

where γ is complex phase shift, which can be computed from asymptotic be-
haviour

uJ(R)
R→∞−−−→ sin

(
KR− π

2
J + γ

)
. (5.19)
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Figure 5.17: The real part of the local complex potential determined as poles
of the K-matrix for the models NRM1 (black solid) and NRM2 (black dashed)
of the Li−+H collision in the vicinity of the crossing of the neutral potential
(red) and the discrete state potential (blue solid curve for NRM1, blue dashed
for NRM2).

We calculated the AD cross sections in the local approximation for the partial
waves J = 0, . . . , 60 for the models NRM1 and NRM2. The results for the original
model NRM1 can be seen in Figure 5.19. The local result is smaller almost by
one order of magnitude in comparison with the nonlocal total cross section from
the same model. As we mention earlier, the qualitative shape is well described
by the local approximation but no Wigner cusps appear owing to the energy
independence of the local complex potential.

In the end, we compare the nonlocal and local results (Figure 5.20). There is
no such distinct difference in the nonlocal and local result in the case of NRM2.
The nonlocal cross section is approximately three times larger at high energies
and it is even smaller at very low energies. It seems that the nonlocal effects
are essential. The local approximation gives quantitatively very different results.
However, the omission of the ’loops’ in Γloc may have significant consequences to
the magnitude of the local cross sections.
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Figure 5.18: The imaginary part of the local complex potential −Γloc/2 of
the Li−+H collision for the models NRM1 (solid curve) and NRM2 (dashed).
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Figure 5.19: The AD cross sections of the Li−+H collision for the partial
waves J = 0, . . . , 60 obtained from the local approximation (first from bottom
to top, then from left to right, J = 0 red, every fifth is dashed starting from
J = 5), the total local AD (blue) and the total nonlocal AD (green) cross
sections in the logarithmic scale. All curves are determined from the original
model NRM1.
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of the Li−+H collision obtained from the models NRM1 and NRM2 in the
logarithmic scale.

5.7 Rate constant

We end the analysis of the Li−+H collision by the discussion of rate constant. In
this case, there is no problem with the integration of sharp peaks since orbital
resonances do not exist. We are limited by the energy interval [0.1,1] eV, where
the cross sections were calculated, only at high temperatures because the total
cross section is an increasing function of energy. The region above 1 eV starts to
contribute at temperatures T ≥ 1500 K (Figure 5.21). Some extrapolation of the
cross section above 1 eV (perhaps a constant function) can be used but again we
will no longer deal with it.

The rate constant of the Li−+H collision rapidly increases at low temperature,
which is related to the behaviour of the cross section, see Figure 5.22, where we
compare the nonlocal and local results (the vertical axis is in the logarithmic
scale).

The temperature-independent rate constant of the Li−+H collision was esti-
mated by Stancil et al. [14] to the same value 4× 10−10 cm3s−1 as in the case of
the Li+H− collision. We predict much smaller rate constant (by many orders of
magnitude) at temperatures below 1000 K. At temperatures above 1500 K the
results from nonlocal calculations are probably not very different from the esti-
mate, but as we mention, data for cross sections at higher energies are needed,
which involves the inclusion of the dissociation channel to our description of the
studied process. The differences among the nonlocal and local results are given by
the various magnitude of the cross sections. The uncertainty of the rate constant
with respect to the different nonlocal models persists and it have to be removed
in future work by better description of the vicinity of the crossing, which mainly
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depends on obtaining the scattering data in this region.
The significant difference between the rate constants of the studied AD pro-

cesses, compare the results in Figures 4.20 and 5.22, is expected from the shapes
of the anion potentials. The ground anion potential (X2Σ+ state), which partic-
ipates in the Li+H− collision, is attractive at some nuclear configurations. On
the other hand, the first excited anion potential (A2Σ+ state), which is involved
in the description of the Li−+H channel, is repulsive at all internuclear distances,
which corresponds with the suppression of the cross section and rate constant at
low energies and temperatures respectively.
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Conclusion

In this master thesis, we performed the first calculation of the cross sections and
temperature-dependent rate constants of the associative detachment processes of
Li with H− and H with Li− within the nonlocal resonant theory but without
the full inclusion of the low-energy behaviour of scattering quantities due to the
supercritical dipole moment of the molecule LiH. The calculations involved the
construction of the nonlocal resonant models from the potential energy curves
of LiH and LiH− and from the eigenphase sum of electron-LiH scattering.

The separability of the nonlocal potential (or coupling potential) is necessary
to the effective calculation of cross sections but the constructed coupling poten-
tials are not separable in energy and space variables. Therefore, we developed
the new method, which approximates these couplings by the sum of several sep-
arable terms, to shorten computational times. The proposed procedure written
in Fortran 95 consists of two steps. First, the coupling is evaluated on the prop-
erly chosen energy and space grids and the resulting matrix is decomposed by
the singular value decomposition method. In the second step, the SVD energy-
dependent functions are fitted by an appropriate simple function, which allows us
to use the analytic formula of integral transform in the evaluation of the nonlocal
potential.

The separation method worked very well in the case of the Br−+H collision
(test example) and the Li+H− collision, but it turned out to be unusable for
the Li−+ H collision because of the problems in the fitting procedure, which
may be related to the supercriticility of the dipole moment of LiH. We performed
these calculations without any coupling separation, which results in the significant
but manageable increase of computational time. The improvement of the fitting
procedure is possible. The replacement of the polynomial in the fitting function
by a rational function may provide a comparable approximation of the data with
better numerical stability and possibly with less parameters.

The use of the nonlocal theory was not typical in the case of the Li+H−

channel because the corresponding state of LiH− is not embedded in the electronic
continuum. The anion state is bound for all nuclear configurations but the non-
adiabatic coupling is involved due to the close proximity of this anion state to
the continuum threshold. We found out that the description of this collision with
various choices of the discrete state is equivalent since the final results differ only
slightly.

In the Li−+H channel, we found out the uncertainty given by a factor two in
the magnitude of the results for two different nonlocal models, which are consis-
tent with the ab initio data. The difference is mainly caused by the fact that,
unfortunately, no scattering data from the vicinity of the crossing of the neu-
tral and anion potentials were available to us, and the models provide different
extrapolations in this region. The local approximation is not capable of the quan-
titatively correct description of the cross sections in the Li−+H case. The results
differ several times from the nonlocal calculations.

In contrast to data used in cosmological simulations [1], our calculations pre-
dict the considerable difference in the magnitude of the rate constants of the
studied collisions. The result of the Li+H− collision is a decreasing function of
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temperature. Its magnitude is smaller but of the same order of magnitude at
temperatures below 1000 K as the temperature-independent estimate, the only
available independent result. The rate constant of the Li−+H collision rapidly
increases with temperature and it is smaller by several orders of magnitude than
the result of the other channel at temperatures below 1000 K.

In future we plan to improve the scattering data close to the crossing point and
to fully include the supercritical dipole moment to the description of processes
within the nonlocal resonant theory. It means that we have to most likely consider
the infinite series of bound dipole states in the system of LiH+e−, which requires
the change of the parametrization of the electronic Hamiltonian. The resonant
part should remain unchanged but the background part should be expanded by
energies of the dipole bound states, which implies the appearance of an coupling
of the discrete and dipole states. It is possible that considering only one dipole
state would be sufficient because the dipole energies converge exponentially fast
to the threshold energy.
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