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Introduction
This year marks the centennial of Albert Einstein’s introduction of the cosmolo-
gical constant Λ into his general theory of relativity. At that time the large-scale
structure of the universe was assumed to be static, but the original 1915’s field
equations did not permit a static cosmological model Einstein desired – a problem
remedied by the very addition of the cosmological constant. While later devel-
opments in astronomy persuaded him to abandon this cosmological model and
the constant itself, recent years have turned Einstein’s self-perceived mistake into
another of his achievements, as cosmologists have found another use for the con-
stant: not to make the universe static, but to make it less static than it was
considered to be for the most of the twentieth century, in accordance with obser-
vations concluding that the expansion of the universe is accelerating for seemingly
no good reason.

Soon after the cosmological term was added to the equations, Dutch math-
ematician, physicist, and astronomer Willem de Sitter discovered the de Sitter
space-time, also reaching its hundredth anniversary this year. It is an exact solu-
tion to the vacuum Einstein field equations with a positive cosmological constant.
As it was suggested by Einstein himself that the value of the constant is positive,
de Sitter did not consider an analogue with a negative cosmological constant.
Therefore, this so-called anti-de Sitter solution did not emerge until years later.
Interestingly, it seems as if it appeared from nowhere, since its discovery cannot
be traced anywhere in the literature, possibly due to the formal similarity of the
space-time with the original de Sitter one.

This thesis, however, deals with a more general space-time then that of de
Sitter, specifically the Kerr–Newman–(anti-)de Sitter space-time. It is an exact
solution to the Einstein–Maxwell equations with a non-zero cosmological constant
of either sign and involves a massive, rotating and charged black hole. It can be
considered an amalgamation of the aforementioned (anti-)de Sitter background
with the asymptotically flat Kerr–Newman black hole, which was discovered in
1965 by American physicist Ezra T. Newman as an electrically-charged variant
of the previous 1963’s rotating solution bearing the name of Roy Kerr, a math-
ematician from New Zealand. By setting different parameters of the metric equal
to zero, it is possible to obtain each of the solutions above from the examined
general one as a limiting case, as well as the oldest nontrivial exact space-time and
the “mother of all black holes”: the 1916’s Schwarzschild solution, discovered by
German physicist and astronomer Karl Schwarzschild; its charged extension:
the Reissner–Nordström metric, found independently by German aeronautical
engineer Hans Reissner in 1916, German mathematician, theoretical physicist
and philosopher Hermann Weyl in 1917 and Finnish theoretical physicist Gun-
nar Nordström in 1918; and their counterparts with a non-zero cosmological
constant. Finally, by eliminating all parameters, the most radical limit leads to
the Minkowski space-time – the stage of special relativity –, named after German
mathematician Hermann Minkowski.

However beautiful and interesting they may be, exact solutions are merely an
approximation to realistic physical situations found in the universe, since we must
keep in mind the non-linearity of the Einstein equations, but they certainly offer
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us a deeper insight into the theory of relativity. One important example is the
Kerr space-time, as it can be used to model the vicinity of rotating astrophysical
objects. Moreover, even the simpler Schwarzschild solution can be used to explain
one of the fundamental mysteries incompatible with classical mechanics, showing
the need for a better theory, namely the perihelion precession of Mercury – even
though Einstein’s original explanation relied on his own approximate solution to
the field equations. Our space-time, being a generalisation of both Schwarzschild
and Kerr solutions, can be also used in such a context. However, one must keep
in mind that electric charge is usually considered negligible in real black holes,
as macroscopic objects tend to be neutral (a limit that can be performed easily
in the chosen metric). As for the cosmological constant, even though a positive
cosmological constant corresponds to current observations, its observed value is
small and its effects only dominate the influence of the black hole itself over
larger distances. However, far from the black hole one cannot assume that the
model poses a viable approximation of real situations, because one cannot neglect
the influence of other astrophysical matter there, exerting gravitational effects of
its own. Nonetheless, adding the cosmological constant is a step towards higher
precision of the model regardless of the distance from the singularity.

Although the cosmological constant is considered to be positive, for the sake
of completeness we shall not prefer one sign over the other in our investigations.
Considering a cosmological constant of the opposite sign may have its uses as well,
for example in the so-called AdS/CFT correspondence in string theory [1, 2].

The thesis is divided into three parts followed by three appendices. While the
main topic of the work is motion of charged test particles in the examined space-
time, in the first part of the presented thesis we study some general properties of
the metric itself: Firstly, we verify that the Einstein–Maxwell field equations are
indeed satisfied. Then, we delve into the problem of extremal scenarios when gen-
erally different horizons merge. We manage to find the conditions the parameters
of the metric must satisfy in order to produce a certain horizon arrangement, we
draw conformal diagrams of the extremal scenarios and compare our results with
those for extremal Kerr–Newman black hole. We close the chapter by observing
some effects of frame-dragging.

In the second part, we primarily examine motion of charged test particles
in the Lagrangian formalism. Problems of motion of charged particles in the
Kerr–Newman solution and of uncharged particles in the Kerr–(anti-)de Sitter
space-time have recently been studied [3, 4], albeit using the Hamilton–Jacobi
equation. We aim to undertake the next logical step of bringing both charged
particles and a non-vanishing cosmological constant into play, focusing solely on
the equatorial plane and the space-time’s axis. After establishing the formalism
and determining the integrals of motion, we first study the problem of static
particles. Next, we examine stationary circular orbits and the effective potential
for equatorial motion. The chapter ends with radial motion on the axis, where
we manage to find an interesting alternative effective potential to describe the
turning points. For photon motion, we utilise the near-horizon approximation to
find null geodesics in a horizon’s neighbourhood.

In the considerably shorter third part, we set out to investigate the null
geodesic tunnelling method as proposed by Maulik K. Parikh and Frank Wil-
czek [5]. The method models black hole radiation using a semi-classical approx-
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imation of quantum mechanics. Unlike the earlier works by Stephen W. Hawking
based on the quantum field theory [6, 7], this approach enforces the conservation
of energy through the back-reaction of the metric and can, therefore, lead to more
relevant results. As an added bonus, the calculations required by the tunnelling
method are also much simpler than those in Hawking’s works. After introducing
the method, we shall try to apply it to the horizons in the Kerr–Newman–(anti-
)de Sitter space-time in hopes of determining their temperatures, pointing out
various inconsistencies plaguing the literature along the way.

Finally, the first two appendices are dedicated to alternative approaches to the
studied problem of motion: One analyses an (almost) equivalent Lagrangian and
the other derives the Carter constant using the Hamilton–Jacobi equation without
further drawing any consequences for particle motion. Last but not least, the
final appendix is mathematical, introducing methods of determining the number
of positive roots a polynomial has.

Tensor & unit formalism
Tensors are used to describe physical quantities in the general theory of relativity.
We shall make use of the standard tensor index notation, where the upper indices
are contravariant (“vector”) and the lower are covariant (“covector”).

As usual, Greek indices range from 0 to 3 and Latin indices from 1 to 3, the
zeroth index corresponding to the time-like coordinate. For the sake of clarity, in
specific cases we shall write the symbol denoting the given coordinate, not the
corresponding number.

In the presented formulae we work with the usual Einstein summation con-
vention where one should automatically assume summation over two opposite
identical indices in a tensor or a product of tensors unless specifically stated
otherwise.

The used signature of the metric tensor is ( − + + + ). Time-like vectors,
therefore, have negative magnitude.

This thesis uses the geometrized unit system in which the speed of light c
and the gravitational constant G are set equal to unity. When assigning specific
values to physical quantities, we shall either express them as a multiple of another
quantity of the same dimension, or we shall make use of an arbitrary unit of length
denoted u.
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1. The space-time
The space-time we shall be investigating is the Kerr–Newman–(anti-)de Sitter
solution with the standard Boyer-Lindquist-type coordinates [8]. The line element
reads

ds2 = − ∆r

Ξ2ρ2

(
dt− a sin2 θ dφ

)2
+ ρ2

∆r

dr2 + ρ2

∆θ

dθ2+

+ ∆θ sin2 θ

Ξ2ρ2

(
adt− (r2 + a2)dφ

)2
,

(1.1)

where
ρ2 = r2 + a2 cos2 θ ,

∆r = (r2 + a2)(1 − 1
3Λr2) − 2mr + q2 ,

∆θ = 1 + 1
3Λa2 cos2 θ ,

Ξ = 1 + 1
3Λa2 .

(1.2)

This space-time describes a rotating electrically-charged black hole with mass m,
angular momentum per unit energy1 a and charge q in a background universe with
a non-zero cosmological constant Λ. The space-time has a ring singularity located
at r = 0, θ = π/2. It is a stationary and axially-symmetrical electrovacuum
solution of the Einstein–Maxwell equations with the four-potential2

A = − qr

Ξρ2

(
dt− a sin2 θ dφ

)
. (1.3)

In order to retain the Lorentzian signature of the metric for all θ ∈ [0, π], we
require

1
3Λa2 > −1 ⇔ Ξ > 0 . (1.4)

∆θ(θ) is then always positive. If Λ > 0, this condition is irrelevant as it is fulfilled
for any a.

These coordinates make it very easy to see that setting a particular set of
parameters equal to zero indeed yields a simpler “household-name” space-time:
e.g. one gets the Reissner–Nordström solution by considering Λ = a = 0.

The solution can contain up to four distinct horizons, which can be found as
the roots of ∆r(r). Aside from the inner and outer black hole horizons RI and RO,
which can be found in space-times of the Kerr and Reissner–Nordström families
even for a vanishing Λ, for a positive Λ two so-called cosmological horizons RC−
and RC+ appear. If all four horizons are present, it holds that

RC− < 0 < RI < RO < RC+ . (1.5)

However, for a particular combination of the space-time’s parameters, certain
horizons may merge, leading to extremal scenarios, or disappear altogether.

1The orientation of the φ coordinate is chosen in such a way that angular momentum a is
positive.

2[8] erroneously states that the inclusion of a non-zero cosmological constant to the Kerr–
Newman solution does not require any changes in the four-potential, while, in fact, it needs
to be divided by Ξ(Λ). In the case of Λ = 0, it holds that Ξ = 1 and we correctly obtain the
original Kerr–Newman four-potential.
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The addition of the cosmological constant to the Kerr–Newman solution is
a much more dramatic change than the transition from the Kerr to the Kerr–
Newman space-time by adding charge, not only because of the addition of the two
horizons for Λ > 0. Due to the presence of the cosmological term, this solution is
not asymptotically flat. Current observations [9] suggest that we live in a universe
with a positive cosmological parameter

ΩΛ ≡ Λc2

3H2
0

= 0.6911 ± 0.0062 , (1.6)

where H0 = (67.74 ± 0.46) km s−1 Mpc−1 is the present-day Hubble parameter.
From there, we get

Λ = (1.11 ± 0.02) 10−52 m−2 . (1.7)
However, the most massive astrophysical black holes ever observed have masses
of the order of [10]

MBH
max = 1010M⊙ ≈ 1.5 × 1013 m . (1.8)

As astrophysical black holes satisfy a . m, then

Λa2 . Λm2 . Λ
(
MBH

max

)2
≈ 2.5 × 10−26 ≪ 1 (1.9)

and Λ can therefore be treated locally as a perturbation of the Kerr–Newman
metric. Nonetheless, its addition has far-reaching consequences for the space-
time. For it to have a measurable effect, we need Λr2 > 1, which occurs for
sufficiently large radii.

Unlike the standard Euclidean spherical coordinates, the Boyer-Lindquist ra-
dial coordinate r is extended into negative values. These are hidden behind the
black hole horizons (if there are any) within the inner region of the black hole. It
is natural for us to assume that we live in the outer region3. We shall, therefore,
place greater emphasis on positive values of r.

The equatorial plane, which lies at θ = π/2, is the plane of reflection symmetry
of the space-time: In the corresponding symmetry transformation, the spatial
components of xµ transform as x⃗ = (r, θ, φ) → x⃗′ = (r, π − θ, φ). The only
functions of θ that gµν and Aµ contain are cos2 θ and sin2 θ. As both of these
functions are even with respect to the symmetry in question, the whole space-
time is indeed symmetric as well.

Later on, when charts with spatial slices of the space-time begin to appear,
the axes will be labelled with coordinates obtained using the standard Cartesian
transformation relations4

x = r sin θ cosφ ,
y = r sin θ sinφ ,
z = r cos θ .

(1.10)

Typically, we shall be interested in the equatorial plane at θ = π/2 with
x = r cosφ ,
y = r sinφ ,
z = 0 ,

(1.11)

3A static observer in the area with negative r would be, among other things, always subjected
to a naked singularity.

4We shall only draw charts of the area with r > 0.
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or slices with constant φ: Due to the axial symmetry of the space-time, we can
take φ = 0 and use

x = r sin θ ,
y = 0 ,
z = r cos θ .

(1.12)

In fact, in this case x corresponds to the cylindrical radial coordinate, i.e. it
determines the distance from the axis of symmetry.

1.1 Verification of the Einstein–Maxwell
equations

Being an exact solution of the Einstein–Maxwell equations, the Kerr–Newman–
(anti-)de Sitter space-time should satisfy both Einstein’s equations of the gravit-
ational field with the cosmological term

Gµν + Λgµν = 8πTµν (1.13)

and Maxwell’s equations

F µν
;ν = 4πJµ , (1.14)

F[µν;ρ] = 0 . (1.15)

The latter of Maxwell’s equations is satisfied immediately from the definition of
the electromagnetic field tensor Fµν ≡ Aν;µ −Aµ;ν . For the four-potential given by
(1.3), the only non-vanishing independent elements of the electromagnetic tensor
are

Ftr = q

Ξρ4

(
−r2 + a2 cos2 θ

)
, Ftθ = q

Ξρ4

(
ra2 sin 2θ

)
,

Fφr = q

Ξρ4

(
(r2 − a2 cos2 θ)a sin2 θ

)
, Fφθ = q

Ξρ4

(
−r(r2 + a2)a sin 2θ

)
.

(1.16)

Since the Kerr–Newman–(anti-)de Sitter space-time represents an electrova-
cuum, its stress-energy tensor is the electromagnetic one,

Tµν ≡ 1
4π

(
F α

µ Fνα − 1
4gµνF

αβFαβ

)
. (1.17)

When substituted into, Einstein’s equations (1.13) for our space-time hold true
and Maxwell’s equation (1.14) gives us a vanishing four-current Jµ. This correctly
corresponds to electrovacuum – the source of gravity and the electromagnetic field
is located within the singularity (which cannot be reasonably described using
tensors such as Jµ) and, as such, there should be no currents in the “outer”
space-time. All things considered, the Kerr–Newman–(anti-)de Sitter space-time
and the corresponding electromagnetic field (1.16) is indeed an exact solution of
the Einstein–Maxwell equations.
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1.2 Extremal horizons
Before we move on to study electrogeodesics, it may be worthwhile to study the
allowed extremal scenarios. Not only can these special conditions make our pursuit
of electrogeodesics mathematically easier since their parameters are constrained
and the resulting expressions can be reduced in some cases, but also – and more
importantly – they offer us a less complicated view of the examined space-time,
which might in turn help us understand the more general cases. A black hole
becomes extremal only under a certain combination of its parameters, which
reduces the number of degrees of freedom of the space-time. The description of
an extremal black hole is then simpler than that of a non-extremal black hole
or a naked singularity, which may lead to the anticipated simplification of the
equations of motion. Extremal black holes can be recognised from the behaviour
of their horizons: in extremal situations at least two of the originally separate
horizons merge. Therefore, in order to construct extreme black holes out of the
Kerr–Newman–(anti-)de Sitter space-time, we first need to analyse the horizons.

The horizons of the studied space-time are the roots of ∆r(r) = 0 with ∆r(r)
given by (1.2). A form that is somewhat more convenient for our purposes is

∆r(r) = −Λ
3

(
r4 +

(
a2 − 3

Λ

)
r2 + 6m

Λ r − 3(a2 + q2)
Λ

)
. (1.18)

Since ∆r(r) is a polynomial of degree four, ∆r(r) = 0 is a quartic equation with
up to four different complex roots.

The absolute term, a2+q2, is greater than zero for all real a, q except a = q = 0.
The leading term’s coefficient, −Λ/3, determines the polynomial’s behaviour and
the coefficient’s sign gives the polynomial’s sign for r → ±∞. For Λ > 0 the
polynomial tends to −∞ and – because all polynomials are continuous – it has
at least one positive and at least one negative root. However, for Λ < 0 the
polynomial tends to +∞ and it may not have any real roots. The case of Λ = 0
shall not be discussed in this work. The properties of the Kerr–Newman solution
are well known and its electrogeodesics have already been examined [3].

In order to get the conditions the parameters need to satisfy for the space-time
to become that of a specific extremal black hole, it is useful to compare (1.18)
with the required factorisation of the polynomial. The most general one would
be

∆r(r) = −Λ
3 (r − A)(r −B)(r − C)(r −D) , (1.19)

where A,B,C and D are a set of generally but not necessarily different complex
numbers, which, if real, would represent the horizons. After multiplying all the
factors together, the coefficients in the resulting polynomial must be equal to
those in the original one. We then get four equations, one for every power of
r (not counting a trivial one for r4), which should impose four conditions on
the “unknowns”: the positions of the horizons and the four parameters of the
space-time – mass m, angular momentum per unit energy a, charge q and the
cosmological constant Λ. The number of variables varies depending on our desired
choice of horizon multiplicities, with every distinct horizon position representing
a new variable. The total count of variables is at least five (for a single horizon
of multiplicity four) and at most eight (for four horizons of multiplicity one).
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Since we only have four conditions, every solution will contain at least one free
parameter. The free parameters will be chosen separately for every case in such a
way that allows for the most elegant description of results5. However, even these
parameters may need to satisfy certain requirements (in the form of inequalities,
not equalities) in order to represent physically acceptable results.

Such a general factorisation as the one above (especially with complex vari-
ables) does not impose any conditions on the physical parameters of the metric at
all, we need to be more specific. Optimally, we would be able to express A,B,C
and D using all the space-time parameters as free parameters and then study the
values of the parameters that would allow A,B,C and D to be real and therefore
represent physical horizons. For our space-time, however, such a task proves to
be significantly more difficult than it is useful, as we are – for the time being –
not interested in non-extremal black holes. That being said, this does not mean
there is nothing to be gained from it. Should we only take the very first step and
compare the coefficient at r3 in the general factorisation with the corresponding
coefficient in (1.18), we immediately get

A+B + C +D = 0 , (1.20)
a simple condition that the roots of ∆r need to satisfy. This relation holds no
matter whether the roots are real (and therefore represent the horizons) or not.
As stated previously, our intention to study extremal black holes implies that
there will be fewer horizons, but some will be of higher multiplicity than one. In
this case, if the roots are real, the last equation translates to∑

i

miRi = 0 , (1.21)

where Ri is the position of horizon i and mi is its multiplicity. It is interesting to
note that this relation does not depend on the parameters of the space-time as
long as we study the Kerr–Newman–(anti-)de Sitter solution.

Now, let us begin investigating specific scenarios. We shall investigate every
single type of extremal black hole with no disappearing horizons6: 4, 3+1, 2+2
and 2+1+1. Afterwards, we shall proceed to examine extremal models with at
least one horizon disappearing. These models include horizons 3, 2+1 and 2. The
effects of parameter perturbations will be investigated next, followed by conformal
diagrams of the extremal scenarios. The section ends with a brief comparison of
our extremal models with those of the Kerr–Newman family with emphasis on
the astrophysically-relevant cases.

1.2.1 The inadmissible scenarios: horizons 4 & 2+2
First, for the sake of completeness, we shall list the unphysical extremal black
holes of the Kerr–Newman–(anti-)de Sitter space-time, beginning with the most
extremal black hole, where all the four horizons merge. The corresponding fac-
torisation is then considerably simpler than the general one,

∆r(r) = −Λ
3 (r − A)4 = −Λ

3 (r4 − 4Ar3 + 6A2r2 − 4A3r + A4) , (1.22)

5That being said, it is preferable to keep Λ as a free parameter, because from the astrophysical
point of view its value is known and fixed.

6We shall adopt a simple labelling convention of the situations, wheremi1+mi2+... represents
a scenario of horizons with multiplicities mi1 , mi2 , ...
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where A is the unknown position of the assumed extremal horizon, a real number.
Comparing the coefficients with (1.18), we get the following equations

r3 : −4A = 0 , r2 : 6A2 = a2 − 3
Λ ,

r1 : −4A3 = 6m
Λ , r0 : A4 = −3(a2+q2)

Λ .
(1.23)

Solving these equations, we find out that this particular extremal black hole would
only occur when m = 0, a2 = 3/Λ and q2 = −3/Λ with Λ as the sole remaining
free parameter. The horizon would then be located at A = 0, which is consistent
with (1.21) and quite dubious in itself. The conditions above can never actually
be met: for Λ > 0 charge q is purely imaginary whereas for Λ < 0 it is angular
momentum a that is purely imaginary, which contradicts our common experience
and is not easy to interpret. Hence, this extremal black hole never occurs.

A similar situation arises in the case of two horizons both of multiplicity two,
where complex numbers are unavoidable as well. The factorisation is

∆r(r) = −Λ
3 (r −B)2(r − C)2 =

= −Λ
3
(
r4 − 2(B + C)r3 + (B2 + 4BC + C2)r2 − 2BC(B + C)r +B2C2

)
.

(1.24)

In the same way as before we can find out that, using Λ and a as the free para-
meters, this scenario requires m = 0 and

q2 = − Λ
12

( 3
Λ + a2

)2
. (1.25)

The horizons would then be located at

B =
√

3
2Λ − a2

2 = −C , (1.26)

assuming B > C without loss in generality, which is possible due to the symmetry
of the factorisation with respect to B and C. From these last two results we can
easily see that this black hole is unphysical too – for B and C to be real, we
inevitably need Λ to be positive. However, q2 would then be negative, which
means that q would be, once again, purely imaginary.

1.2.2 Horizons 1+3
A scenario that leads to real results is that of two horizons, one of multiplicity
one (denoted R1) and the other of multiplicity three (R3). The factorisation is

∆r(r) = −Λ
3 (r −R1)(r −R3)3 =

= −Λ
3
(
r4 − (3R3 +R1)r3 + 3(R2

3 +R1R3)r2 − (R3
3 + 3R1R

2
3)r +R1R

3
3

)
.

(1.27)
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By comparing this formula with (1.18) in the same manner as before we obtain
these results:

a2 = 3
Λ − 6R2

3 , R3 = 3
√

3
4
m

Λ ,

q2 = ΛR4
3 − a2 , R1 = −3R3

(1.28)

withm and Λ being the free parameters. Note that the condition (1.21) is satisfied,
R1 + 3R3 = 0. For arbitrary7 real m > 0 and Λ ̸= 0 both horizons are real.
However, an additional condition needs to be imposed on the ratio of m and Λ to
make sure that a and q are both real: it must hold true that a2 ≥ 0 and q2 ≥ 0,
which means

0 ≤ 3
Λ − 6

(3
4
m

Λ

)2
3

≤ Λ
(3

4
m

Λ

)4
3
. (1.29)

The first inequality is equivalent to

0 < Λ ≤ 2
9

1
m2 ≈ 0.22/m2 , (1.30)

while the second one to

Λ ≥ 16(26
√

3 − 45)
3

1
m2 ≈ 0.18/m2 . (1.31)

Fortunately, both conditions are compatible. Hence, for any m > 0 the corres-
ponding range of acceptable values of Λ is

Λ ∈
[

16(26
√

3 − 45)
3m2 ,

2
9m2

]
, (1.32)

or, inversely,

m2 ∈
[

16(26
√

3 − 45)
3Λ ,

2
9Λ

]
. (1.33)

Now that we know Λ > 0 it is clear that R3 is positive and R1 negative.
On the following page, in The Little Prince-esque figure 1.1 one can see the

course of ∆r(r) in the vicinity of the horizons for a set of space-time parameters
satisfying the conditions above.

Having considered Λ and m as the free parameters, we were actually not
prohibited from using any other pair of the space-time parameters to fulfil this
function, even though it may have led to more complicated expressions. For ex-
ample, in order to compare the space-time with the non-extremal Kerr solution,
it may be advantageous to have m and a as free parameters, because these also
are the free parameters in the Kerr solution. Let us then reformulate the 1+3
horizon problem using m and a as the free parameters:

To do so, we shall use formulae (1.28). From the top right one we get

Λ = 3
4
m

R3
3
, (1.34)

7If the mass is equal to zero, we get one horizon of multiplicity four, which, as we have
already discussed, is not an acceptable solution.
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Figure 1.1: The course of ∆r(r) corresponding to the 1+3 scenario with paramet-
ers {Λ,m, a, q} = {10−3 u−2, 14 u, 11.09 u, 10.34 u}. The values of the free para-
meters (underlined) are precise, the values of the dependent parameters are roun-
ded to two decimal places.

and, after substituting this Λ into the top left formula, we obtain an equation for
R3 as a function of m and a

R3
3 − 3

2mR
2
3 − 1

4ma
2 = 0 , (1.35)

which clearly has a positive root (Λ is, therefore, positive as well, consistently
with the previous approach). It can be found using Cardano’s formula8,

R3 = m

2
(
x+ 1 + x−1

)
(1.36)

with
x = m2/3

(m2 + a2 + a
√

2m2 + a2)1/3
. (1.37)

Again, the bottom two equations in (1.28),

q2 = ΛR4
3 − a2 = 3

4mR3 − a2 ,

R1 = −3R3 ,
(1.38)

allow us to find q2 and R1, this time as functions of m and a, after substituting
for R3 from the expression above. Once more, an additional condition needs to
imposed on the free parameters to make sure that q is indeed real,

a2 ∈
[
0, 3

16(3 + 2
√

3)m2
]

(1.39)

for arbitrary m > 0. Interestingly, for a vanishing a (i.e. an extremal Reissner–
Nordström–de Sitter black hole) it holds that x = 1 and the position of the triple

8The other roots are not real.
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horizon is simply R3 = 3
2m, which is closer to the singularity than the horizon

of the Schwarzschild black hole of the same mass at 2m, but farther away than
that of an extremal Reissner–Nordström black hole at m. As for all a = 0 limits,
in this case the singularity reduces into a point and it is not possible to travel
between the regions of positive and negative r.

The values used in figure 1.1 satisfy all of the relations above.

1.2.3 Horizons 1+1+2
Another physical scenario is that of three horizons, two of which are of multi-
plicity one (denoted R1 and R′

1), while the last is of multiplicity two (R2). The
corresponding factorisation is then

∆r(r) = −Λ
3 (r −R1)(r −R′

1)(r −R2)2 . (1.40)

After expanding the polynomial and comparing it with (1.18) we find out that
for fixed free parameters a, q and Λ (within their respective allowed ranges),
there are multiple different sets {R1, R

′
1, R2,m} that solve the equations. Due

to the symmetry of the equations with respect to R1 and R′
1, it is possible to

interchange these values in any of the following. The symmetrical counterparts
of a given solution will be discarded without loss in generality. It is possible to
express the results in terms of the four following functions of the free parameters:

α± =
√

Λ
3

(
6 − 2a2Λ ±

√
9 − 42a2Λ + a4Λ2 − 36Λq2

)
,

β± = sgn(Λ)
√

Λ
6

(
3 − a2Λ ±

√
9 − 42a2Λ + a4Λ2 − 36Λq2

)
.

(1.41)

Using these functions, the four independent results are listed in table 1.1

# ΛR1 ΛR′
1 ΛR2 3Λ2m

1 α+ + β− −α+ + β− −β− −α2
+β−

2 α+ − β− −α+ − β− +β− +α2
+β−

3 α− + β+ −α− + β+ −β+ −α2
−β+

4 α− − β+ −α− − β+ +β+ +α2
−β+

Table 1.1: Horizons 1+1+2

Every solution fulfils (1.21), R1 +R′
1 + 2R2 = 0.

As in the previous cases further conditions need to be imposed on the free
parameters to make sure that the results describe physically acceptable situations:
we need the arguments of the square roots in (1.41) to be greater than or equal
to zero while keeping the parameters real at the same time. This ensures that the
results are real as well. Moreover, we demand m to be non-negative, m ≥ 0, as
negative mass contradicts our common experience9. We also need to dismiss the

9Nevertheless, the existence of exotic matter with negative mass is allowed by the Einstein–
Maxwell equations, although it would have some unusual properties. While it can be frequently
encountered in theoretical work regarding wormholes, both exotic matter (in macroscopic quant-
ities) and the wormholes themselves are yet to be proven to exist.
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case of α± = 0 as that would result in creating another horizon of multiplicity
two at R1 = R′

1. Two horizons of multiplicity two have already been discussed
and rejected before. This requirement clearly means that Λ ̸= 0. Of course, Λ = 0
would reduce (1.18) to a quadratic polynomial, which cannot have three different
roots we now desire.

The first two solutions contain only α+ and β−, while the second two only
α− and β+, which means we must study the appropriate parameter ranges sep-
arately for each pair of solutions. As ∀β± ̸= 0 : sgn(β±) = sgn(Λ), it follows
from the condition m ≥ 0 that the odd-numbered solutions represent space-times
with negative Λ and the even-numbered ones represent positive Λ. When β± van-
ishes, so does the difference between the two solutions in each pair 1, 2 and 3, 4.
These special cases of solutions satisfying β± = 0 represent a massless black hole
regardless of the sign of Λ.

After examining the above-mentioned requirements it turns out that Λ has to
be positive, because negative Λ prevent α+ and β+ from being real. For instance,
for α+ to be real, the following inequality needs to be satisfied:

Λ
3

(
6 − 2a2Λ +

√
9 − 42a2Λ + a4Λ2 − 36Λq2

)
> 0 . (1.42)

If we consider a negative Λ, the term in the parentheses must now be negative
for the whole expression to be positive,

6 − 2a2Λ +
√

9 − 42a2Λ + a4Λ2 − 36Λq2 < 0 . (1.43)

However, the left-hand side of the inequality is now clearly positive, as −2a2Λ > 0
for a negative Λ, which means this condition cannot be satisfied. A very similar
argument holds for β+ as well, except it is now acceptable to have β+ = 0. We
then get

3 − a2Λ +
√

9 − 42a2Λ + a4Λ2 − 36Λq2 ≤ 0 . (1.44)

The left-hand side is once again a sum of positive numbers – including a positive
constant – and, as such, it is necessarily greater than zero. Thus, for a negative
Λ, we cannot consider any solutions containing α+ and/or β+. However, a quick
look at table 1.1 shows that the first two solutions contain α+, while the second
pair contains β+. Negative Λ are thus inadmissible in any of the solutions.

Furthermore, since Λ is positive, the odd-numbered solutions can only be
realised when the corresponding β± vanish (so that m ≥ 0), but – as there
is no difference between an odd-numbered solution and its corresponding even-
numbered one when β± = 0 – we can disregard these solutions for now, since they
would already be contained as limits in the physical solutions #2 and #4.10

Next, let us focus on q2 for a fixed positive Λ and a fixed allowed a2, which
shall be discussed afterwards. The “inner” square root of α± and β± is the same
for all the functions, √

9 − 42a2Λ + a4Λ2 − 36Λq2 . (1.45)
10β− = 0 requires a = q = 0, which is indeed an extreme case of solution #2. However, β+

does never vanish, and solution #3 is unphysical no matter the parameters.
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It also happens to contain the only term with q2 in any of the functions. To see
that q2 is well behaved, we only need to make sure that the argument of the
square root is non-negative, which is satisfied for

q2 ∈
[
0, 9 − 42a2Λ + a4Λ2

36Λ

]
. (1.46)

Analysing the last remaining parameter a2 is somewhat more tricky. We shall
begin as we did with q2. The “inner” square root gives us the condition

a2 ∈
[
0, 21 − 6

√
12 + Λq2

Λ

]
∪
[

21 + 6
√

12 + Λq2

Λ ,∞
)
. (1.47)

Since we have already included the interdependency of q2 and a2 in the range
of q2, let us eliminate q2 in the range of a2 by considering the largest interval
possible,

a2 ∈
[
0, 21 − 12

√
3

Λ

]
∪
[

21 + 12
√

3
Λ ,∞

)
(1.48)

for q2 = 0. For these a2, any q2 satisfying (1.46) are acceptable. Unlike q2, a2 does
appear in α± and β± outside the examined square root as well, so we may need
to further reduce the allowed range of a2 to make sure that α± and β± are real.
For solution #2 we require α+ and β− to be concurrently real, which leads to a
system of two inequalities,

6 − 2a2Λ +
√

9 − 42a2Λ + a4Λ2 − 36Λq2 > 0 ,

3 − a2Λ −
√

9 − 42a2Λ + a4Λ2 − 36Λq2 ≥ 0 .
(1.49)

Summing these, we obtain a remarkably simpler inequality

9 − 3a2Λ > 0 , (1.50)

whence
a2 ∈

[
0, 3

Λ

)
. (1.51)

For solution #4, the initial set of inequalities only differs in the sign of the square
root. Therefore, the square root is eliminated in the process of summing as well,
and the admissible range of a2 remains the same.

Both conditions (1.48) and (1.51) combined, considering that

21 − 12
√

3 < 3 < 21 + 12
√

3 , (1.52)

we obtain
a2 ∈

[
0, 21 − 12

√
3

Λ

]
. (1.53)

To summarise, the only two physical solutions #2 and #4 both require the
space-time parameters to be

Λ > 0 ,

a2 ∈
[
0, 21 − 12

√
3

Λ

]
,

q2 ∈
[
0, 9 − 42a2Λ + a4Λ2

36Λ

]
.

(1.54)
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A particular choice of solution is determined by the value of the remaining para-
meter m,

m#2 = α2
+β−

3Λ2 ,

m#4 = α2
−β+

3Λ2 .

(1.55)

Take note that for a = q = 0 it holds that

m#2

⏐⏐⏐
a=q=0

= 0 , (1.56)

meaning we obtain the de Sitter space-time. Hence, if we are interested in an
extremal solution, we should avoid setting both of these parameters equal to zero
in scenario #2, but setting any one of them to zero is allowed. For solution #4
it is possible to have a = q = 0, as then

m#4

⏐⏐⏐
a=q=0

= 1
3
√

Λ
(1.57)

and we obtain the extremal Schwarzschild–de Sitter space-time with the expected
mass [8]. Take note that in this limit the singularity reduces into a point and it
is not possible to travel between the regions of positive and negative r.

Last but not least, we shall discuss the relative positions of the horizons in
solutions #2 and #4. For a (necessarily) positive Λ it holds that α± > 0 and
β± ≥ 0. It immediately follows that in both solutions the double horizon’s position
R2 is non-negative11,

R2 = β∓

Λ ≥ 0 , (1.58)

while R′
1 is negative,

R′
1 = −α± + β∓

Λ < 0 . (1.59)

The remaining horizon,
R1 = α± − β∓

Λ , (1.60)

is so far a mystery to us. We do not know its sign, nor whether it is greater than
R2 or not. As of now, we are only certain that R1 > R′

1.
Let us first deal with the relation of R1 and R2. If we want these positions to

be equal, we need to satisfy α± = 2β∓, which leads to

±
√

9 − 42a2Λ + a4Λ2 − 36Λq2 = ∓2
√

9 − 42a2Λ + a4Λ2 − 36Λq2 . (1.61)

For either of the solutions this means that the square root is equal to zero, which
happens for

q2 = 9 − 42a2Λ + a4Λ2

36Λ , (1.62)

with Λ and a2 satisfying (1.54). For this choice of q2, R1 = R2 ≡ R3 are the same
for both solutions,

R3 =
√

3 − a2Λ
6Λ , (1.63)

11In what follows, if there are signs “±” or “∓” present in any of the expressions, the upper
sign holds for solution #2 and the lower for #4.
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and the other horizon is located at R′
1 = −3R3. It should be noted that this result

is consistent with (1.28) for two horizons of multiplicities one and three, albeit
expressed in terms of different free parameters. Expressing R3 as a function of m
and Λ is a matter of rewriting m appropriately using values from table 1.1:

m = α2
±β∓

3Λ2 = 4
3
β3

∓
Λ2 = 4

3ΛR3
3 , (1.64)

where we used that α± = 2β∓ and R2 ≡ R3 = β∓/Λ. One can now easily see that

R3 = 3
√

3
4
m

Λ . (1.65)

As expected, this result is the same as (1.28). It is also clear that R1 ≡ R3 is now
non-negative.

If we want R1 to be greater than R2, we require α± > 2β∓. This leads to an
analogy of (1.61), only with a “>” sign. As the square root is non-negative, it is
obvious that R1 > R2 holds for solution #2. For this solution, that means R1 is
surely positive, but its upper boundary is yet unknown to us. Similarly, R1 < R2
is true for solution #4 only, but that does not tell us whether R1 may be negative.

For solution #2, determining the largest R1 possible for a fixed Λ > 0 can be
done by computing the derivatives of R1 with respect to a2 and q2. For parameters
satisfying (1.54), both derivatives are negative, which means that in order to get
the largest R1, we need to set a = q = 0. For this choice of parameters, we get
Rmax

1 =
√

3/Λ, the horizon position in the de Sitter solution [8]. Consequently,
with Λ approaching zero, we can see that limΛ→0+ Rmax

1 = ∞.
Focusing on solution #4, R1 = 0 requires α− = β+, which is (disregarding the

case Λ = 0) equivalent to a2 = −q2, the only real solution of which is a = q = 0,
a limit allowed in this scenario, leading to the extremal Schwarzschild–de Sitter
space-time with the double horizon at R2 =

√
1/Λ as expected [8]. A negative R1

would require α− < β+ ⇔ a2 < −q2, which is impossible to satisfy. Thus, R1 can
never be negative in either of the solutions.

To conclude, the possible range of the values of R1 for solution #2 is

R1,#2 ∈ [R2,∞) , (1.66)

whilst for #4,
R1,#4 ∈ [0, R2] , (1.67)

where R1,#4 = 0 ⇔ a = q = 0. For both solutions, R1 = R2 is realised when

q2 = 9 − 42a2Λ + a4Λ2

36Λ . (1.68)

On the following page, figure 1.2 shows the course of ∆r(r) near the horizons
for a set of parameters corresponding to solution #2 and #4 respectively. Both
figures are consistent with our analytical results.

1.2.4 Extremal black holes with disappearing horizons
To complete our discussion of extremal Kerr–Newman–(anti-)de Sitter black
holes, we need to consider scenarios with disappearing horizons when at least
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#2, {Λ,m, a, q} = {10−3 u−2, 10.72 u, 10 u, 5 u}
#4, {Λ,m, a, q} = {10−3 u−2, 11.22 u, 7 u, 3 u}

Figure 1.2: The course of ∆r(r) corresponding to the two 1 + 1 + 2 horizon
scenarios. The values of the free parameters (underlined) are precise, the value of
m is rounded to two decimal places.

two of the non-disappearing horizons merge. There may be up to three extremal
scenarios of this type: a single horizon of multiplicity three, a single horizon of
multiplicity two, and horizons 2+1. While physical horizons are given as real roots
of ∆r, disappearing horizons are complex roots. This single piece of information
allows us to eliminate two of the three scenarios we set out to investigate. Re-
call that before we delved into individual cases of extremal black holes, we had
discovered a simple relation that the roots of ∆r need to satisfy: their sum must
be equal to zero, (1.20). This means that it is not possible to have a black hole
with a single disappearing horizon, as a sum of three real numbers and a complex
one can only be equal to zero when the imaginary part of the complex number
is zero as well, which is not possible for a disappearing horizon. Consequently,
the extremal black holes of types 3 and 2+1 never occur, as they shed only one
horizon. The last scenario of a single horizon of multiplicity two, however, needs
to be investigated further.

Perhaps the easiest approach to studying this situation is to return to the
1+1+2 scenario. The factorisation we used, (1.40), is the most general factorisa-
tion for our current problem as well, as long as we allow the generally different R1
and R′

1 to have complex values. The four sets of solutions are listed in table 1.1.
The structure of these expressions is quite helpful to our cause: if α± is complex
with β∓ real at the same time, R2 is real and the remaining roots R1 and R′

1 have
a non-zero imaginary part. Looking at the definition of these functions (1.41),

α± =
√

Λ
3

(
6 − 2a2Λ ±

√
9 − 42a2Λ + a4Λ2 − 36Λq2

)
,

β± = sgn(Λ)
√

Λ
6

(
3 − a2Λ ±

√
9 − 42a2Λ + a4Λ2 − 36Λq2

)
,

(1.41)

we can see that the inner square root of both of these functions must be real for
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β± to be real. As it is not complex, a complex α± must be purely imaginary as a
square root of a negative number. This implies that the black hole mass m, pro-
portional to α2

± as given in table 1.1, is a real number. It is therefore worthwhile
to occupy ourselves with this scenario as it can represent a physically reason-
able situation. However, this does not necessarily mean that it is mathematically
possible to fulfil the conditions...

Let us first discuss the case of a positive Λ. Recall that both physical solutions
#2 and #4 for horizons 2+1+1 required a positive Λ. We also determined a range
of parameters for which both α± and β∓ are simultaneously real, (1.54). Looking
back on how we derived these conditions, we can see that trying to find the
conditions leading to α2

± < 0 and β∓ > 0 follows the same line of reasoning until
(1.49) for solutions containing α+ and β− (that is, #1 and #2) or its variant with
the opposite signs by the square root for #3 and #4. Changing the sign of the
first inequality in both cases (i.e. requiring α2

± < 0), however, renders both sets of
inequalities unsolvable for real parameters. Therefore, this type of extremal black
hole forbids a positive Λ.

For a negative Λ, the situation is quite different. We already know that a
negative Λ never allows both α± and β∓ to be real at the same time. We have
also found out that β+ unavoidably requires a positive Λ in order to be real, which
instantly eliminates solutions #3 and #4 as they contain β+. All that remains
is to analyse β− and α+ assuming a negative Λ. It is obvious that we need not
worry about the inner square root, as its argument is now certainly positive for
arbitrary a and q. Real β− requires

Λ
6

(
3 − a2Λ −

√
9 − 42a2Λ + a4Λ2 − 36Λq2

)
≥ 0 , (1.69)

which is for Λ < 0 equivalent to

3 + a2|Λ| −
√

9 + 42a2|Λ| + a4|Λ|2 + 36|Λ|q2 ≤ 0 , (1.70)

where we replaced Λ with −|Λ| for the sake of clarity. After transferring the square
root to the right side and taking the square of the inequality (which is possible
as both sides as positive), we get

(a2 + q2)|Λ| ≥ 0 , (1.71)

which is satisfied for all a and q. As far as α+ is concerned, the inequality that
would cause α+ to be purely imaginary is

−|Λ|
3

(
6 + 2a2|Λ| +

√
9 + 42a2|Λ| + a4|Λ|2 + 36|Λ|q2

)
< 0 , (1.72)

which is evidently again true for arbitrary a and q. Apart from these (remarkably
permissive) constraints that arose from our desire to create an extremal black hole
of this type, we must not forget that the more fundamental condition (1.4) needs
to be met for any Kerr–Newman–anti-de Sitter space-time with Λ < 0, including
this one. Hence, an extremal black hole with a single horizon 2 is achievable for
a negative Λ, arbitrary q and a2 ∈ [0, 3/|Λ|). The corresponding solution with a
non-negative mass m is #2. For it, the mass is given as

m = α2
+β−

3Λ2 , (1.73)
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and both α2
+ and β− are now non-positive. The double horizon’s position,

R2 = β−

Λ =
√

3 − a2Λ −
√

9 − 42a2Λ + a4Λ2 − 36Λq2

6Λ , (1.74)

is non-negative and is equal to zero only when a = q = 0. Similarly as before,
this limit corresponds to the anti-de Sitter space-time with m = 0, which is not
a proper extremal KN(a)dS scenario. At least one of the parameters must be
non-zero if we want to obtain the examined extremal scenario.

As always, figure 1.3 shows the course of ∆r(r) in the vicinity of the horizon
for a set of parameters fulfilling the conditions above.
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Figure 1.3: The course of ∆r(r) in the vicinity of the horizon for a space-time
with parameters {Λ,m, a, q} = {−10−3 u−2, 24.12 u, 10 u, 20 u} corresponding to
the scenario of a single horizon of multiplicity two. The values of the free para-
meters (underlined) are precise, the value of m is rounded to two decimal places.

1.2.5 Extremal naked singularities
A naked singularity is a singularity that lies in the causal past of a future null
infinity. For practical purposes, our interpretation is that it is a singularity visible
by a reasonable observer, which means there is no event horizon between the
observer and the singularity. For an asymptotically flat space-time, “a reasonable
observer” usually is a static observer in flat spatial infinity. However, our examined
space-time is not asymptotically flat and for Λ > 0 it does not even allow for a
static observer in infinity, as this observer’s four-velocity would become space-
like for a negative ∆r, which can be easily seen from the metric (1.1). For our
purposes, a reasonable observer shall rest at the farthermost area with positive r
where ∆r is positive.12

12Except for some cases with a = q = 0, ∆r is also positive around the singularity at r = 0.
As it is the innermost area of the black hole, it is obvious we shall not place our static observer
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It could be deemed inappropriate to talk about naked singularities without
any mention of the cosmic censorship hypothesis. This hypothesis, which postu-
lates that singularities need to be “clothed” in horizons in order to preserve the
deterministic nature of the universe, refuses to accept the very concept of naked
singularities.

In simpler cases (e.g. the Kerr–Newman solution), a naked singularity typically
has no horizons. However, in the Kerr–Newman–(anti-)de Sitter solution we may
find a naked singularity with horizons. In the following we shall discuss the even
more special case of extremal naked singularities.

The one extremal black hole that seems offhand suspicious of this indecent
exposure is the scenario of horizon 2 with Λ < 0, as it already lacks two of
the four horizons. However, the singularity at r = 0 is hidden behind a double
horizon R2 > 0 for arbitrary a and q with the exception of the degenerate case
of a = q = 0 when R2 = 0. Furthermore, the reasonable observer (as discussed
before) can be situated in the area containing radial infinity, as for a negative Λ,
∆r is surely positive for r → ∞. Therefore, apart from the mentioned singular
case, the cosmic censorship hypothesis – which to date remains to be a conjecture,
not an undisputed fact – is not violated.

Nevertheless, we have already encountered two naked singularities according
to our definition above. In scenarios 1+3 and 1+1+2 (with the double horizon
being the outermost one), we have found out that the singularity is contained
in the only stationary area and shall never be hidden behind a horizon for the
reasonable observer. Therefore, according to the cosmic censorship conjecture,
the only astrophysically-relevant extremal Kerr–Newman–(anti-)de Sitter black
holes are scenarios 1+2+1 (with the double horizon in the middle) and 2.

1.2.6 Extremal black holes: summary
To sum up, we have found out that is it possible to construct four types of
extremal black holes out of the Kerr–Newman–(anti-)de Sitter space-time, namely
(−1 ⊕ 3−), (−1 ⊕ 2 + 1−), (−1 ⊕ 1 − 2−) and (⊕2+). The updated designations
of the models now also show the alignment of the horizons in order of increasing
r and the ± signs tell us whether the area between given horizons (or, a horizon
and positive or negative infinity) is stationary (+) or not (−). As has already
been stated, stationarity is determined by the sign of ∆r(r). The asymptotics
of the polynomial is given by its leading term −Λr4/3 and as such its sign in
radial infinity of either sign is −sgn(Λ). Upon reaching a root of odd multiplicity
the polynomial’s sign changes, while upon reaching a root of even multiplicity it
remains the same. That presents us with a simple key to find the stationary areas
of a given scenario13. Moreover, a circle denotes the location of the singularity at
r = 0. By comparing a given scenario with the most general one (−1⊕1−1+1−),
where the horizons are RC− < 0 < RI < RO < RC+, it is easy to see which
horizons merge and which disappear, if any. In the following, functions α± and

there, because from this hypothetical observer’s perspective, any black hole – even the most
general one with four different horizons – would be a naked singularity. We position the observer
farther away from the singularity in order to have the maximum possible number of horizons
dividing them.

13The ± signs for a given scenario are also evident from the chart of ∆r(r) in the corresponding
section.
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β± are defined as14

α± =
√

1
3Λ

(
6 − 2a2Λ ±

√
9 − 42a2Λ + a4Λ2 − 36Λq2

)
,

β± =
√

1
6Λ

(
3 − a2Λ ±

√
9 − 42a2Λ + a4Λ2 − 36Λq2

)
.

(1.75)

Scenario (−1 ⊕ 3−) (naked)
Free parameters Λ & m

Horizon positions:
R1 = −3R3 ,

R3 = 3
√

3
4
m

Λ .
(1.76)

Corresponding space-time parameters:

Λ > 0 ,

m2 ∈
[

16(26
√

3 − 45)
3Λ ,

2
9Λ

]
,

a2 = 3
Λ − 6R2

3 ,

q2 = ΛR4
3 − a2 .

(1.77)

Free parameters m & a
Horizon positions:

R1 = −3R3 ,

R3 = m

2
(
x+ 1 + x−1

)
,

(1.78)

with
x = m2/3

(m2 + a2 + a
√

2m2 + a2)1/3
. (1.79)

Corresponding space-time parameters:

m > 0 ,

a2 ∈
[
0, 3

16(3 + 2
√

3)m2
]
,

Λ = 3
4
m

R3
3
,

q2 = 3
4mR3 − a2 .

(1.80)

Scenario (−1 ⊕ 2 + 1−)
Horizon positions:

R1− = −α+ − β− ,

R2 = β− ,

R1+ = +α+ − β− .

(1.81)

14Please note that knowing sgn(Λ) beforehand, we have slightly redefined the functions in
order to further simplify the resulting expressions.
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Corresponding space-time parameters:

Λ > 0 ,

a2 ∈
[
0, 21 − 12

√
3

Λ

]
,

q2 ∈
[
0, 9 − 42a2Λ + a4Λ2

36Λ

]
,

m = Λα2
+β−

3 .

(1.82)

Setting both a = q = 0 leads to the non-extremal de Sitter space-time.
Scenario (−1 ⊕ 1 − 2−) (naked)

Horizon positions:
R1− = −α− − β+ ,

R1+ = +α− − β+ ,

R2 = β+ .

(1.83)

Corresponding space-time parameters:

Λ > 0 ,

a2 ∈
[
0, 21 − 12

√
3

Λ

]
,

q2 ∈
[
0, 9 − 42a2Λ + a4Λ2

36Λ

]
,

m = Λα2
−β+

3 .

(1.84)

Scenario (⊕2+)
Horizon position:

R2 = β− . (1.85)
Corresponding space-time parameters:

Λ < 0 ,

a2 ∈
[
0, 3

|Λ|

)
,

q2 ∈ [0,∞) ,

m = Λα2
+β−

3 .

(1.86)

Setting both a = q = 0 leads to the non-extremal anti-de Sitter space-time.

1.2.7 Perturbing the parameters
With a vanishing Λ extremal space-times from the Kerr(–Newman) or Reissner–
Nordström families form the boundary between the two-horizon scenarios and
naked singularities with no horizons. It is logical to assume that extremal scenarios
play a similar role for a non-vanishing Λ as well, even though the broader palette
of parameters makes the situation more difficult to analyse here.
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We shall tackle the problem by computing the derivatives of ∆r with respect
to the space-time parameters. If we know how ∆r changes in the vicinity of
the extremal horizon after performing a perturbation in a given parameter, we
can easily deduce the horizon configuration of the perturbed extremal scenario,
as the multiple root of ∆r either continuously separates into individual ones, or
disappears altogether15. Three of the four derivatives can be analysed effortlessly:

∂∆r

∂q
= 2q , (1.87)

meaning that ∆r increases when the absolute value of q increases,

∂∆r

∂Λ = −1
3
(
a2 + r2

)
r2 , (1.88)

meaning that ∆r decreases when Λ increases, and

∂∆r

∂m
= −2r , (1.89)

which means that ∆r decreases with increasing m in the region with r > 0, where
extremal horizons are invariably located. The sign of the remaining derivative

∂∆r

∂a
= 2a

(
1 − 1

3Λr2
)

(1.90)

is not immediately evident.
For scenario (⊕2+) with Λ < 0 the derivative is manifestly positive every-

where. For the remaining extremal scenarios we shall insert the radius of the
extremal horizon. For (−1 ⊕ 3−), we obtain

∂∆r

∂a

⏐⏐⏐⏐⏐
(−1⊕3−)

= 1 −
(

Λm2

48

)1/3

, (1.91)

which means that if Λm2 < 48, the derivative is strictly greater than 0 at the
extremal horizon (and, therefore, at least in its immediate vicinity as well). This
requirement is weaker then the one already imposed on Λm2 in the extremal
scenario, see (1.77). Hence, the derivative is indeed positive. For the last two
extremal cases, the derivative becomes

∂∆r

∂a

⏐⏐⏐⏐⏐(−1⊕2+1−)
(−1⊕1−2−)

= 1
18

(
15 + Λa2 ±

√
9 − 42Λa2 + Λ2a4 − 36Λq2

)
. (1.92)

For the plus sign the derivative is manifestly positive (recall that Λ > 0 in these
scenarios). Further, it holds that

15 + Λa2 >
√

9 − 42Λa2 + Λ2a4 − 36Λq2 , (1.93)
15In any of the extremal scenarios, we need not worry about some other complex roots

suddenly becoming real when perturbing the parameters, because there either are none, or, in
scenario (⊕2+), the two complex roots result from the (negative) sign of Λ. Changing the sign
of Λ is a dramatic change in the space-time and cannot be considered a perturbation.
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as can be confirmed by taking the square and transferring all terms to one side.
After dividing by 36, we obtain the clearly true inequality

6 + 2Λa2 + Λq2 > 0 . (1.94)

Thus, the derivative is positive for the minus case as well. All things considered,
despite initial uncertainty it holds that

∂∆r

∂a
> 0 (1.95)

at the extremal horizon in each extremal scenario.
To sum up, in the neighbourhood of the extremal horizon the value of ∆r

increases with increasing a and |q| and decreases with increasing Λ and m for all
extremal scenarios.

In table 1.2 one can see how the extremal scenarios change with parameter
perturbations. Determining the perturbed scenario is only a matter of imagination
when looking at the chart of the corresponding extremal case.

Extremal Increased ∆r Decreased ∆r

(−1 ⊕ 3−) (−1 ⊕ 1−) (−1 ⊕ 1−)
(−1 ⊕ 2 + 1−) (−1 ⊕ 1−) (−1 ⊕ 1 − 1 + 1−)
(−1 ⊕ 1 − 2−) (−1 ⊕ 1 − 1 + 1−) (−1 ⊕ 1−)

(⊕2+) (⊕) (⊕1 − 1+)

Table 1.2: Perturbations of the extremal scenarios with respect to a change in ∆r

at the radius of the extremal horizon. ∆r increases with increasing a and |q| and
with decreasing Λ and m.

1.2.8 On conformal diagrams
As folk wisdom has it, “A picture is worth a thousand words”. Indeed, a visual
representation may facilitate understanding of a space-time and allow us to com-
pare different solutions at a glance. An especially convenient way of visualising
space-times is provided by Penrose conformal diagrams, which capture the causal
structure. Their common feature is that light rays are slanted at a 45◦ angle, time-
like world lines form acute angles with the vertical axis and space-like world lines
with the horizontal axis. Therefore, conformal diagrams are a natural general-
relativistic extension of a Minkowski space-time diagram from the special theory
of relativity.

Conformal diagrams can be constructed after performing a series of coordin-
ate transformations of the metric, followed by a final, conformal transformation.
While coordinates of the initial metric may generally take on arbitrarily high
values, coordinates of the final metric always have finite bounds. This allows us
to draw originally infinite lines of what was r ∈ (−∞,∞) before the transforma-
tions as finite line segments on a single sheet of paper. However, armed with the
knowledge gained through our previous examination of the space-time, we can
draw the diagrams immediately without actually performing any of the mentioned
transformations. The key is as follows:
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Conformal diagrams are composed of squares or triangles, edges of which
are comprised of horizons, singularities or original coordinate infinities. In our
notation of extremal space-times, each of these shapes corresponds to one of
the ± signs in the space-time designation, and each of its edges corresponds
to one of the neighbouring two symbols, which may be a number representing
a horizon of the given multiplicity, a parenthesis representing a radial infinity,
or (for “⊕” and for θ = π/2) the singularity. The singularity is always time-like
(that is, drawn vertically), as it is located in a stationary area of every investigated
extremal space-time. The character of both radial infinities (positive and negative)
is determined by the sign of the cosmological constant Λ: a positive Λ > 0 implies
a space-like boundary, a negative Λ < 0 implies a time-like boundary, and a
vanishing Λ = 0 (now irrelevant to us) implies a null boundary [8].

The perhaps easiest approach to drawing the diagram is to start with a “piece”
containing a radial infinity and imagine a particle emanating from it. A time-like
particle goes predominantly upwards16 in the diagram, its world line forms an
angle of less than 45◦ with the vertical axis. While we know which piece follows
after crossing a horizon, one might be unsure of its relative rotation with respect
to the previously placed pieces of the diagram – and that is the moment when
the imagined particle comes in handy. In stationary areas of the space-times, the
particle is allowed to turn back (not necessarily geodesically) and cross the same
horizon once again – which means that the square or triangle being placed must
have the other edge with the same horizon positioned directly above the first
instance of the given horizon. On the other hand, non-stationary areas do not
allow the particle to return, which means that there cannot be the same horizons
in both the lower and the upper halves of the piece.

Another thing to keep in mind is that the examined space-times contain a ring
singularity in the equatorial plane only. Therefore, we have to draw two diagrams,
one for θ = π/2, where nothing can cross singularities at r = 0, and another for
θ ̸= π/2, where lines of r = 0 can hypothetically be crossed and observers may
find themselves in “the other half” of the space-time with r < 0. In the diagrams,
these areas (which invariantly have a simpler structure than the areas with r > 0)
are greyed out17. For a given θ, every point in the diagrams actually corresponds
to a circle with φ ∈ [0, 2π).

When drawing the diagrams, it is clear that one may often extend the diagram
infinitely in one or more directions, which would lead to a so-called maximal ana-
lytical extension of the diagram. The extension is performed so that there would
be no endpoints of geodesics outside the singularity or coordinate infinities18.
The overlying idea is that, theoretically, as observers pass through horizons, they
might actually end up in another iteration of the space-time. An observer relent-
lessly passing through the black hole horizons while avoiding the singularity or the
cosmological horizons (when applicable) may therefore visit an unlimited number

16Alternatively, one may also imagine a particle that travels backwards in time (moves down-
wards in the diagram) and follow the same instructions. The causal structure of every examined
space-time is symmetric with respect to the particle’s proper time. The metric, however, is not
– reversing the flow of time would change the sign of a.

17Take note that even though for Λ > 0 these areas are represented as squares with two r = 0
lines, it is not possible to connect both of these with a time-like world line.

18Without the maximal analytical extension geodesics could also end at the horizons in the
diagrams, whereas they are known to traverse them in finite proper time.
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of iterations of the space-time. The following figures represent a “unit cell” of the
extremal Kerr–Newman–(anti-)de Sitter space-times. The maximal analytical ex-
tension can be performed by simply copying and subsequently joining the cells
at the appropriate loci:

• For (⊕2+) (figure 1.4) along the R2 horizons (vertically).

• For (−1 ⊕ 3−) (figure 1.5) along the r = 0 lines in chart (b) (horizontally).

• For (−1 ⊕ 2 + 1−) (figure 1.6) along the R2 horizons in both charts (vertic-
ally) and along the r = 0 lines in chart (b) (horizontally).

• For (−1 ⊕ 1 − 2−) (figure 1.7), the situation is more complicated. Copies of
diagrams (a) and (b) are to be joined along the R2 horizons (horizontally). If
the same r = 0 line is approached from two different neighbouring copies of
the respective diagram, one must consider each side of the line to belong to
the respective iteration of the space-time – the lines are not shared, despite
their ambiguous position in the charts. A particle cannot pass through these
lines to another copy of the space-time. Instead, for θ = π/2, it falls into
the singularity, or, for θ ̸= π/2, it moves into a copy of diagram (c), which
are to be joined with (b) at r = 0 in planes different from the plane of
the (b) diagrams. Equally, a particle passing through an r = 0 line in a (c)
diagram must appear in a (b) diagram, i.e. passing through an r = 0 line
for θ ̸= π/2 means going from (b) to (c) or vice versa. Perhaps the most
compact way to construct the maximal extension is by establishing a plane
of diagrams (b) with “rolls” of a single diagram (c) glued to every r = 0
line, see figure 1.8.
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Figure 1.4: Conformal diagrams of a scenario (⊕2+) black hole (Λ < 0) for a
given θ.
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Figure 1.5: Conformal diagrams of a scenario (−1 ⊕ 3−) black hole (Λ > 0) for a
given θ.
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Figure 1.6: Conformal diagrams of a scenario (−1 ⊕ 2 + 1−) black hole (Λ > 0)
for a given θ.
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Figure 1.7: Conformal diagrams of a scenario (−1 ⊕ 1 − 2−) black hole (Λ > 0)
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planes.
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(c) (c) (c)

(b)

Figure 1.8: Scheme of the maximal analytical extension of the conformal diagram
for scenario (−1 ⊕ 1 − 2−) for θ ̸= π/2. White dots represent the r = 0 lines in
the (b) and (c) diagrams. Particles trying to move through the r = 0 lines “bounce
off” the dots and move from diagram (b) to (c) or vice versa. (The particles are,
of course, unaware of the bending of the (c) diagrams, they are only concerned
with their position on the flat two-dimensional chart.)

1.2.9 Comparison with extremal Kerr–Newman scenarios
It may be of astrophysical relevance to compare our results for the Kerr–Newman–
(anti-)de Sitter extremal black holes with the simpler Kerr–Newman case. For
Λ = 0, horizon locations are given by

∆r

⏐⏐⏐
Λ=0

= r2 − 2mr + a2 + q2 = 0 . (1.96)

Unlike the considerably more difficult case with a general Λ, the roots of a quad-
ratic polynomial are easy to find,

r± = m±
√
m2 − a2 − q2 . (1.97)

Extremal Kerr–Newman black holes with r+ = r− then obviously satisfy

m2 = a2 + q2 . (1.98)

One can ask whether the inclusion of a non-zero cosmological constant may
allow an extremal black hole to become “over-rotating” and/or “over-charged” in
comparison with an extremal Kerr–Newman black hole of the same mass m, i.e.
whether it is possible to have

m2 < a2 + q2 (1.99)

for an extremal black hole. A Kerr–Newman space-time satisfying this inequality
would be that of a naked singularity.

The electric charge of astrophysical black holes is usually considered negligible
compared to their mass. However, for angular momentum this is not true as ob-
servations [11, 12, 13] suggest the existence of black holes nearing extremality19

with a ≈ m. Not considering the cosmological term, the cosmic censorship hy-
pothesis demands that astrophysical black holes satisfy a ≤ m. Does a non-zero
cosmological constant allow for a non-naked black hole with a > m?

The Kerr–Newman–(anti-)de Sitter extremal scenarios corresponding to the
Kerr–Newman case are (−1 ⊕ 2 + 1−) and (⊕2+), as the other ones are naked.
Astrophysically relevant is the former scenario, as it includes a positive Λ in

19This is especially true for the black hole in Cygnus X-1 with m ≈ 15M⊙ and a to m ratio
thought to be up to 0.99.
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accordance with current observations, while the latter includes a negative Λ.
Conveniently, the expression for mass m(Λ, a, q) is the same in both cases, as
shown previously. Considering the form of the allowed intervals of a and q in
both cases, it may be advantageous to introduce a new parametrisation with
x ≡ Λa2 and y ≡ Λq2. With this reparametrisation, we do not need to analyse
a three-dimensional problem but rather a two-dimensional one, as the expression
we are going to study is

a2 + q2

m2 = 486(x+ y)(
6 − 2x+

√
9 − 42x+ x2 − 36y

)2 (
3 − x−

√
9 − 42x+ x2 − 36y

) ,
(1.100)

where for (−1 ⊕ 2 + 1−), x and y must satisfy

x ∈
[
0, 21 − 12

√
3
]
,

y ∈
[
0, 9−42x+x2

36

]
,

(1.101)

while for (⊕2+),
x ∈ (−3, 0] ,
y ∈ (−∞, 0] .

(1.102)

Considering astrophysical black holes, one usually expects m, a ≫ q as mac-
roscopic objects tend to be electrically neutral. We thus have |x| ≫ |y| and as
such we can ignore the terms with y in (1.100) from now on:

a2 + q2

m2 ≈ a2

m2 = 486x(
6 − 2x+

√
9 − 42x+ x2

)2 (
3 − x−

√
9 − 42x+ x2

) .
(1.103)

Now, we need to compare this function with 1 to find out whether the black
hole is over-rotating (a2 > m2) or not (a2 < m2). What originally seemed as a
three-dimensional problem has now been reduced a single-variable one.

Essentially, we could approach the problem by searching for extremes and
regions of monotony by deriving the function. However, the function is not par-
ticularly suited to be analysed in such a way, as solving d(a2/m2)/dx = 0 requires
finding the roots of a fourth-order polynomial. Instead, let us inspect figure 1.9
on the following page showing the course of a2/m2 for x ∈ [−3, 21 − 12

√
3]:

The right part of the chart with x > 0 is valid for the case of (−1 ⊕ 2 + 1−),
while the noticeably larger left part with x < 0 is valid for (⊕2+). They coincide
at x = 0 ⇔ a = 0, with

lim
a→0

a2

m2 = 1 , (1.104)

as can be seen after rationalising the denominator in (1.103) or from the Taylor
series at x → 0,

a2

m2 =
3
(
27 + 297x− 99x2 − x3 + (9 − 42x+ x2)3/2

)
2(3 + x)4

= 1 + 2
3x+ 7

9x
2 + O(x3) .

(1.105)

Regarding (−1 ⊕ 2 + 1−), from figure 1.9 we can see that an extremal black
hole necessarily is over-rotating for any permitted value of x > 0. The upper limit
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Figure 1.9: The dependence of a2/m2 on x ≡ Λa2 for the permitted values of x
for the Kerr–Newman–like extremal black holes of the Kerr–Newman–(anti-)de
Sitter family with xmax = 21 − 12

√
3.

is
lim

a→amax

a2

m2 = 3
16(3 + 2

√
3) ≈ 1.21 , (1.106)

with a2
max = (21 − 12

√
3)/Λ. Astrophysical black holes thus can satisfy a > m

without being naked singularities, but do they in reality?
Considering the cosmological constant of our universe (1.7), we can see that

(omitting the considerably smaller error intervals)

amax

⏐⏐⏐
Λ=1.11×10−52 m−2

≈ 4.4 × 1025 m (1.107)

with corresponding mass

m ≈ 4.0 × 1025 m ≈ 2.7 × 1022M⊙ (1.108)

given by (1.82). However, as has already been mentioned the most massive black
holes ever observed have masses of the order of 1010M⊙, (1.8), which is well below
our result computed using amax by 12 orders of magnitude. A looming prospect of
a similarly-substantial difference between the corresponding angular momentum
and amax threatens the existence of measurably over-rotating black holes, as –
if our anticipation proves to be true – we could effectively consider the limit
a → 0 and get the usual result for an extremal Kerr black hole (1.104). Indeed,
by expressing a from the formula for m in (1.82) for the measured value of Λ,
q = 0 and

MBH
max ≈ 1.5 × 1013 m (1.109)

we obtain
aBH

max ≈ 1.5 × 1013 m . (1.110)
Our numerical computations show that both values are actually equal in at least
the first 15 significant digits (coinciding with machine epsilon for double precision
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arithmetics), and we get almost precisely(
aBH

max
MBH

max

)2

= 1 . (1.111)

As expected, aBH
max is smaller than amax by 12 orders, and we can thus effect-

ively consider the limit a → 0 for any observed black hole, which means that
astrophysical black holes indeed satisfy

a2

m2 ≤ 1 , (1.112)

as is valid for black holes of the Kerr–Newman type as well. A theoretical de-
viation from this condition is negligible and would require inconceivably precise
observations in order to be measured. However, even though we have not found
any yet, one should never exclude the possibility of the existence of black holes
massive enough to be actually able to satisfy a2/m2 > 1...

On the other hand, for (⊕2+) we can see from chart 1.9 that every extremal
black hole (excluding those with x = 0) actually satisfies a < m. The limit of
maximal rotation is

lim
a2→−3/Λ

a2

m2 = 27
64 ≈ 0.42 , (1.113)

which, perhaps paradoxically, represents the lowest ratio of a2/m2 possible for
this type of extremal black holes.

As a side note, it might seem confusing that the limiting values of a2/m2

(1.106) and (1.113) do not depend on Λ, which means we cannot do a feasible
limit of Λ → 0 to obtain the Kerr–Newman result of a2/m2 = 1. We attribute
that to the fact that the maximal permitted values of a2 – for which these limits
hold – are in both cases proportional to 1/Λ. Therefore, if we consider the limit
of Λ → 0 in these maximal angular momenta, they diverge to infinity. If we want
to perform the limit of Λ → 0 while keeping a finite at the same time, the best
way to do this is to do the limit of x → 0 in (1.103), which we have already
determined (as it is the same limit as for a → 0) to be

lim
Λ→0

a2

m2 = 1 , (1.114)

as is to be expected.

1.3 Frame-dragging
Frame-dragging is an effect common to all space-times of the Kerr family with
rotating singularities, as the black hole appears to twist the space-time in the
direction of its rotation. Observers then have the tendency to co-rotate with
the black hole. This effect is typically more prominent in regions closer to the
singularity. The mathematics in this section are not going to be fundamentally
different from the “pure” Kerr solution taught in the relativistic course, but as
the studied space-time is defined by a larger set of parameters, we may immerse
ourselves in a plethora of different charts examining the influence of the sign of
Λ on frame-dragging, or the multitude of extremal scenarios, for instance.
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One of the main consequences of frame-dragging is that areas where static
observers20 can and cannot exist are not necessarily separated by horizons, un-
like the Schwarzschild or Reissner–Nordström solutions, but rather by a different
surface (or, a set of surfaces) called the static limit. Due to the normalisation
equation

gµνu
µuν = −1 , (1.115)

which shall be discussed in greater detail in the next chapter, the static observer’s
four-velocity is

uµ =
(

1√
−gtt

, 0, 0, 0
)
, (1.116)

whence one immediately sees that static observers are to be found only in areas
satisfying

gtt ≡ −∆r(r) + ∆θ(θ)a2 sin2(θ)
Ξ2ρ2(r, θ) < 0 . (1.117)

Disregarding the manifestly non-negative denominator (which vanishes only for
the singularity), the static limits are given by

−∆r(r) + ∆θ(θ)a2 sin2(θ) = 0 . (1.118)

The static limits and the horizons overlap only on the space-time’s axis, where
the second term vanishes and static particles require simply ∆r(r) > 0. In the
equatorial plane at θ = π/2 static particles are allowed in a smaller region where
∆r(r) − a2 > 0. The part of the stationary area of the space-time not allowing
for static observers bounded by the static limits and, if applicable, the horizons
is called the ergosphere.

Next, focusing solely on the equatorial plane in the following, frame-dragging
is also the cause of a certain asymmetry of the allowed values of the observer’s
angular velocity

Ω ≡ dφ
dt = dφ

dτ
dτ
dt = uφ

ut
. (1.119)

The extremal values of Ω at a given r are attainable only by observers whose
spatial motion is restricted to the φ-direction, their four-velocity thus being

uµ = (ut, 0, 0, uφ) = ut(1, 0, 0,Ω) . (1.120)

From the normalisation equation (1.115) we obtain(
ut
)2 (

gtt + 2gtφΩ + gφφΩ2
)

= −1 , (1.121)

that is, (
ut
)2

= 1
−gtt − 2gtφΩ − gφφΩ2 . (1.122)

For this ut to be well-defined the right-hand side must be positive, which is assured
if Ω lies between the two roots of the denominator

Ωmax
min

=
−gtφ ±

√
(gtφ)2 − gttgφφ

gφφ

= ω ±
√
ω2 − gtt

gφφ

, (1.123)

20Here, static observers are simply those who have constant spatial coordinates. However,
actually defining proper staticity is somewhat more complicated. It shall be examined more
thoroughly in the corresponding section of the next chapter.
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where we denoted

ω ≡ − gtφ

gφφ

=
a
(
(r2 + a2)∆θ(θ) − ∆r(r)

)
(r2 + a2)2∆θ(θ) − a2 sin2(θ)∆r(r)

. (1.124)

The value of ω is constant on a given horizon R, as the θ dependence drops out
due to ∆r(R) = 0, leaving

ω
⏐⏐⏐
horizon

≡ ΩH = a

R2 + a2 . (1.125)

Take note that while a time-like observer cannot achieve the extreme values of
Ω, they actually represent the only two possible angular velocities of massless
photons orbiting the black hole at a given radius, as can be seen from (1.121)
after considering that the four-velocity of a photon is normalised to zero instead
of −1.

For the equatorial plane at θ = π/2, we have

ω =
a
(
r2 + a2 − ∆r(r)

)
(r2 + a2)2 − ∆r(r)a2 (1.126)

and

Ωmax
min

=
a
(
r2 + a2 − ∆r(r)

)
± r2

√
∆r(r)

(r2 + a2)2 − ∆r(r)a2 . (1.127)

Only on the horizons it holds that Ωmin = Ωmax = ω ≡ ΩH . Unsurprisingly, both
extremal Ω are ill-defined in the non-stationary areas of the space-time where
∆r is negative. Furthermore, the expressions above are well-defined in areas with
gφφ > 0 only, because for gφφ = 0 the values of ω and Ωmin diverge and for
gφφ < 0 it holds that Ωmax < Ωmin and the actual angular velocity must, in
fact, lie outside of the interval defined by these values, as high absolute values
of Ω now keep the observer more time-like. And, much more importantly, closed
time-like curves exist in regions with gφφ < 0, which is yet another reason to
be suspicious of these areas. Sometimes called “time machines”, these curves
allow observers following them (not necessarily on a geodesic) to travel backwards
in time, possibly violating causality. Fortunately, according to the chronology
protection conjecture nature seems to have its way of disarming these curves.
Further, a different hypothesis called chronological censorship says that closed
time-like curves (or at least parts of them) are always hidden below a horizon,
which means that an observer living in the outer part of the space-time can never
experience any violation of causality due to the hidden time machine. Specifically
for the Kerr–Newman solution the hypothesis is known to hold, as the problematic
curves can be found only below the inner black hole horizon [14, 15].

Now, let us investigate closed time-like curves with the added ingredient of a
non-zero cosmological constant. In the equatorial plane, we have

gφφ

(
r, θ = π

2

)
= −∆r(r)a2 + (r2 + a2)2

Ξ2r2 = 1
Ξ2r2

(
Ξr4 + Ξa2r2 + 2ma2r − a2q2

)
.

(1.128)
One can immediately see that gφφ is negative in the vicinity of the singularity,
and it is not due to the cosmological constant Λ (included in Ξ), but rather due
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to the singularity’s charge q. Closed time-like curves in the area with r > 0 are
thus present in the Kerr–Newman solution as well, while in the original Kerr
solution the phenomenon is confined to the area with r < 0. Concentrating on
the area with r > 0, it is obvious now that gφφ has exactly one positive root,
because all the terms of the polynomial in the parentheses sans the absolute one
are positive21. Does the inclusion of Λ make it possible for the radius at which
gφφ = 0 to appear in any stationary area in the space-time, further complicating
the analysis of the space-time? Fortunately not:

In the equatorial plane, it holds that

g2
tφ − gttgφφ = ∆r

Ξ4 , (1.129)

which we have already used in deriving (1.127). On the horizons (where ∆r = 0)
in the equatorial plane, gtt reduces to

gtt = a2

Ξ2r2 > 0 . (1.130)

Inserting this result into the previous equation, we have

g2
tφ − a2

Ξ2r2 gφφ = 0 (1.131)

on the horizons, which means that gφφ must be positive. This also means that –
at least in the equatorial plane – the only positive root of gφφ must be located in
the area between the singularity and the first positive horizon, if there are any for
the examined combination of the space-time parameters. In fact, the entire region
with negative gφφ must be hidden below the horizons (if there are any) regardless
of the choice of θ with the exception of θ ∈ {0, π} (the axis of the space-time),
where gφφ ≡ 0 ∀r. Again, for any θ ∈ (0, π) there is at most one positive root of
gφφ, as terms containing r are once more positive,

gφφ(r, θ) = sin2 θ

Ξ2ρ2(r, θ)

(
Ξr4 + Ξa2(1 + cos2 θ)r2 + 2ma2(1 − cos2 θ)r+

+ Ξa4 cos2 θ + a2q2(cos2 θ − 1)
)
.

(1.132)

Take note that for a certain θ, the function may be positive in the entire r > 0
area, because the terms not depending on r in the parentheses may be positive
for a constant θ ̸= π/2, provided that (Ξa2 + q2) cos2 θ > q2. Now, we can prove
that the positive root of gφφ (if there is any for a given θ) is confined between
r = 0 and the first horizon (if applicable) for any θ by computing the value of
gφφ(r̄, θ) for r̄ satisfying gφφ(r̄, θ = π/2) = 0 and showing it is positive. The only
positive root for a general θ ∈ (0, π) cannot therefore lie farther away from r = 0
than the root of gφφ(r, θ = π/2) in the equatorial plane, where it is indeed located
between the singularity and the first horizon (if applicable) as shown above. As
the horizons are spherical in our coordinates, the surface gφφ(r, θ) = 0 and the
horizons then cannot cross. From (1.128) it follows that the root of gφφ(r, π/2)
satisfies the relation

Ξr̄4 + Ξa2r̄2 + 2ma2r̄ − a2q2 = 0 . (1.133)
21Recall that from condition (1.4) we have Ξ > 0.
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Now, after rearranging (1.132) to

gφφ(r, θ) = sin2 θ

Ξ2ρ2(r, θ)

( (
Ξa2r2 − 2ma2r + Ξa4 + a2q2

)
cos2 θ+

+ Ξr4 + Ξa2r2 + 2ma2r − a2q2
)
,

(1.134)

we can see that terms not proportional to cos2 θ vanish for r̄ due to equation
(1.133). To see that the rest of the expression is positive for r̄ as promised, we
shall once again take advantage of the relation above and substitute for the only
negative term in the polynomial multiplying the cosine, −2ma2r. We obtain a
remarkably simple result

gφφ(r̄, θ) = sin2 θ cos2 θ

Ξρ2(r̄, θ)
(
a2 + r̄2

)2
, (1.135)

which is indeed positive. The chronological censorship is observed.
Thus, the dubious volume with gφφ ≤ 0 is yet another nuisance plaguing

the area containing the singularity, the other being that all observers in this area
would be exposed to a naked singularity. Even though it is invariantly a stationary
part of the space-time, as ∆r(r = 0) = a2 + q2 > 0 unless a = q = 0, it is hardly
an ideal place for a physical observer to live in.

We may take one step further and prove that closed time-like curves must lie
at smaller r than the ergosphere with gtt > 0, as has already been proved for
the Kerr–Newman space-time [16]. To our knowledge, this property has not been
shown previously for the space-time at hand. Take note that the ergosphere may
be comprised of not only the area around the horizons, but it may also consist
of one additional region with toroidal topology for scenarios with disappearing
black hole horizons. The root of gφφ, however, would lie below that “island” as
well: the full expression for gtt is

gtt(r, θ) = 1
3Ξ2ρ2(r, θ)

(
Λa4(1 − cos2 θ) cos2 θ − 3a2 cos2 θ+

+ Λr4 + (Λa2 − 3)r2 + 6mr − 3q2
)
.

(1.136)

In the following, we shall see that for any given θ /∈ {0, π} (i.e. not on the
space-time’s axis, where gφφ ≡ 0) it holds that gφφ(r̃, θ) > 0 with r̃(θ) satisfying
gtt(r̃, θ) = 0. Expressing m from this equation and inserting into gφφ(r̃, θ) (1.132),
we obtain

gφφ(r̃, θ) = sin2 θ

3Ξ2

(
(6 − 3 cos2 θ)a2 + (2 − cos2 θ)Λa4 cos2 θ + 3∆θ(θ)r̃2

)
. (1.137)

Returning once more to (1.4), we can see that

3Ξ = Λa2 + 3 > 0 . (1.138)

After multiplying the first term by cos2 θ the inequality still stands, as we are
reducing the absolute value of the only term that may be negative. We thus have

3∆θ = Λa2 cos2 θ + 3 > 0 . (1.139)
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The term with r̃2 in (1.137) is therefore manifestly positive even for a negative
cosmological constant22. Further, after multiplying the inequality by a2 > 0, we
can substitute in the second term in (1.137) and obtain

gφφ(r̃, θ) > sin2 θ

3Ξ2

(
(6 − 3 cos2 θ)a2 + (2 − cos2 θ)(−3a2) + 3∆θ(θ)r̃2

)
=

= sin2 θ

Ξ2 ∆θ(θ)r̃2 > 0
(1.140)

as promised. Hence, the only positive root of gφφ (if there is such a root in the first
place for the given θ) must be located closer to r = 0 than all positive roots of
gtt. Since gtt(r = 0, θ) < 0, the regions with gφφ < 0 and gtt > 0 do not intersect.
Closed time-like curves must indeed lie below the innermost ergosphere.

Take note that there are no closed time-like curves in the θ-direction only, as

gθθ = ρ2

∆θ

> 0 ∀θ, r . (1.141)

Returning to the equatorial plane, one may also be interested in the limits of
the above-mentioned angular velocities for extreme r. For r → 0+ one has

lim
r→0

Ωmin = lim
r→0

Ωmax = lim
r→0

ω = 1
a

(1.142)

regardless of the choice of Λ. For r → ∞ one has

lim
r→∞

ω = Λa
3Ξ (1.143)

and
lim

r→∞
Ωmax

min
= Λa±

√
−3Λ

3Ξ , (1.144)

where the latter limit requires a non-positive Λ, which is consistent with (1.127)
after considering that ∆r(r) → −∞ for Λ > 0. Take note that Λ is important
for the asymptotic behaviour of these functions, but m and q are irrelevant. For
Λ = 0 the latter limits vanish. Somewhat counterintuitively, for Λ < 0 it holds
that limr→∞ ω < 0. The limit of Ωmax is, however, always positive for negative
Λ, as can be easily seen from (1.123) considering that – as we now know – the
second term in the square root is negative for sufficiently large r and negative Λ.

Let us end the chapter with some figures illustrating our results. In figure 1.10
we can see constant t and φ slices of Kerr–Newman–anti-de Sitter space-times
(Λ < 0) of all three horizon configurations. The figures depict the horizons and
the static limits of the space-time with the non-stationary areas, the ergosphere
and the area containing closed time-like curves highlighted. Take note that the
size of the ergosphere varies with the space-time parameters and it may disappear
altogether for a naked singularity even for a non-vanishing a. Next, figure 1.11
contains slices of two Kerr–Newman–de Sitter space-times. The two solutions
are both of the most general family containing four non-degenerate horizons,
but their ergospheres are different: for one space-time the ergospheres by the
cosmological and the outer black hole horizons are disjoint, for the other they

22Ensuring ∆θ > 0 was, in fact, the main motivation for introducing the condition (1.4).
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are interconnected, which has implications for the possibility of the existence
of static observers in the equatorial plane. The remaining horizon combinations
are omitted, as the inner part of the pictures would look similarly to 1.10. The
last two figures are charts of the allowed angular momenta along with ω for the
equatorial plane of the space-times portrayed in the previous figures23. Notice
that the space-time with the interconnected ergosphere does not permit static
observers in the equatorial plane, while the other solution does.

23Contrary to our usual practice, the axes are scaled to multiples of a instead of m to better
display the limits for r → 0.
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(a) Scenario (⊕1 − 1+), {Λ,m, a, q} = {−10−3 u−2, 65 u, 40 u, 20 u}.
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(b) Scenario (⊕2+), {Λ,m, a, q} = {−10−3 u−2, 60.78 u, 40 u, 20 u}. The value of m is
rounded to two decimal places.
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(c) Scenario (⊕), {Λ,m, a, q} = {−10−3 u−2, 55 u, 40 u, 20 u}.

Figure 1.10: Examples of structure of the space-time for all three possible horizon
configurations with Λ < 0, sections with constant t and φ. Black circles represent
the horizons, dotted curves the static limits. Light gray colour represents the
ergosphere, dark gray the area with ∆r < 0 and black the area with closed time-
like curves. Coordinates x and z are given by (1.12).
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(a) Interconnected ergosphere, {Λ,m, a, q} = {10−3 u−2, 11 u, 10 u, 5 u}.
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(b) Disjoint ergosphere, {Λ,m, a, q} = {10−3 u−2, 9 u, 7 u, 5 u}.

Figure 1.11: Examples of structure of the space-time for horizon configuration
(−1 ⊕ 1 − 1 + 1−) with Λ > 0, sections with constant t and φ. Black circles
represent the horizons, dotted curves the static limits. Light gray colour represents
the ergosphere, dark gray the area with ∆r < 0 and black the area with closed
time-like curves. Coordinates x and z are given by (1.12).
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(a) Scenario (⊕1 − 1+), {Λ,m, a, q} = {−10−3 u−2, 65 u, 40 u, 20 u}.
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(b) Scenario (⊕2+), {Λ,m, a, q} = {−10−3 u−2, 60.78 u, 40 u, 20 u}. The value of m is
rounded to two decimal places.
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(c) Scenario (⊕), {Λ,m, a, q} = {−10−3 u−2, 55 u, 40 u, 20 u}.

Figure 1.12: Examples of boundaries of the allowed angular velocities for observers
in the equatorial plane for all three possible horizon configurations with Λ < 0.
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(a) Interconnected ergosphere, {Λ,m, a, q} = {10−3 u−2, 11 u, 10 u, 5 u}.
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(b) Disjoint ergosphere, {Λ,m, a, q} = {10−3 u−2, 9 u, 7 u, 5 u}.

Figure 1.13: Examples of boundaries of the allowed angular velocities for observers
in the equatorial plane for horizon configuration (−1 ⊕ 1 − 1 + 1−) with Λ > 0.
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2. Electrogeodesics
One of the main goals of the thesis is to investigate motion of test particles in the
Kerr–Newman–(anti-)de Sitter space-time, focusing especially on charged ones.
As only the electromagnetic force can affect particles in this space-time1, motion
is electrogeodesical for charged particles or geodesical for uncharged ones.

In our investigation, we shall make use of the formalism of Lagrangian mech-
anics. In it, the dynamics of a system is described by an appropriate Lagrangian
L, a scalar function of the particle’s coordinates and velocity. For us, one of the
possible Lagrangian densities (see Appendix A) reads

L = 1
2gµν ẋ

µẋν + κẋµAµ , (2.1)

where κ is the particle’s charge-to-mass ratio and xµ is its four-position. ẋµ is the
total derivative of xµ with respect to a variable (denoted p in the general case)
we shall use to parametrise motion, ẋµ = dxµ/dp. The most natural choice of the
parameter in question is the particle’s proper time τ , which measures proper dis-
tance along the trajectory and is invariant under coordinate transformations. ẋµ

then becomes the particle’s four-velocity uµ and it can be expected that consider-
ing this parametrisation would lead to the simplest possible form of the equations
of motion, since the first term in the Lagrangian (2.1) measures essentially the
invariant distance along the path. However, not always can τ be used: perhaps
most notably it is true for photons, whose proper time is constant. One can easily
derive a relation between dp and dτ ,

√
−gµν ẋµẋν =

√
−gµν

dxµ

dp
dxν

dp = dτ
dp . (2.2)

In the case of p = τ , we obtain the standard formula for the normalisation of the
four-velocity for a time-like particle (that is, a particle moving slower than light)
we have already used in the previous chapter,

gµνu
µuν = −1 . (2.3)

The equations of motion are Lagrange’s equations of the second kind,

d
dp

(
∂L
∂ẋα

)
− ∂L
∂xα

= 0 . (2.4)

For our Lagrangian and for a general parameter p, the partial derivatives are
∂L
∂xα

= 1
2gρσ,αẋ

ρẋσ + κẋβAβ,α ,

∂L
∂ẋα

= gαβẋ
β + κAα .

(2.5)

The Lagrange equations further contain

d
dp

(
∂L
∂ẋα

)
= gαβẍ

β + gαβ,γẋ
βẋγ + κAα,βẋ

β , (2.6)

1It goes without saying that gravitation influences particle motion as well, but it is not
considered a force per se in general relativity.
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the second term of which can be recast as

gαβ,γẋ
βẋγ = 1

2 (gαβ,γ + gαγ,β) ẋβẋγ (2.7)

due to the symmetry of ẋβẋγ in the two indices. After rearranging the terms and
indices, the Lagrange equations become

gαβẍ
β + 1

2 (gαβ,γ + gαγ,β − gβγ,α) ẋβẋγ + κ (Aα,β − Aβ,α) ẋβ =
= gαβẍ

β + Γαβγẋ
βẋγ + κFβα u

β = 0 ,
(2.8)

where Γαρσ are the Christoffel symbols of the first kind,

Γαρσ = 1
2 (gαρ,σ + gσα,ρ − gρσ,α) . (2.9)

Finally, after multiplying the result by gαµ, using the antisymmetry of F µ
β and

renaming the indices for aesthetic reasons, we obtain the preferred form of the
equations of motion,

Dẋµ

dp ≡ ẍµ + Γµ
ρσẋ

ρẋσ = κF µ
ν ẋ

ν . (2.10)

In this formula the astute reader recognises the geodesic equation with an added
force term κF µ

ν ẋ
ν corresponding to the electromagnetic interaction [17]. The

parameter p is an affine parameter, as the equation is in its purest, simplest form.
For massive particles the equations can be written using the proper time τ as

Duµ

dτ ≡ duµ

dτ + Γµ
ρσu

ρuσ = κF µ
ν u

ν . (2.11)

While the electrogeodetic equation usually operates with τ as its parameter,
is it really necessary to use exclusively τ as the parameter for massive particles?
No, as it turns out, we do not need to use τ – but it makes our life considerably
easier. Let us try to go from equation (2.11) back to (2.10) by considering a
different parameter (not necessarily affine) as a function of the proper time, p(τ).
Subsequently, the conditions p(τ) must fulfil for it to be an affine parameter as
well shall manifest themselves. It holds that

d
dτ = dp

dτ
d
dp . (2.12)

Substituting τ → p(τ) in (2.11), we obtain

d2xµ

dp2

(
dp
dτ

)2

+ dxµ

dp
d2p

dτ 2 + Γµ
ρσ

dxρ

dp
dxσ

dp

(
dp
dτ

)2

= κF µ
ν

dxν

dp
dp
dτ . (2.13)

We now aim to find such a parameter p(τ) for which the last equation would be
a multiple of (2.10). The equations of motion would then be the same and p(τ)
would be, alongside τ itself, an affine parameter. Our new p(τ) must eliminate
the additional second term on the left side of the equation and change all the
original terms by the same coefficient. After considering that the term with κ is

47



multiplied by a different power of dp/dτ than the other terms, we find out that
the only possible affine reparametrisation is

p(τ) = τ + τ0 , (2.14)

an addition of a constant. On the other hand, a standard geodesic equation for
an uncharged particle with κ = 0 allows for a linear rescaling of τ , p(τ) = aτ + b
with a and b constant2. Therefore, disregarding the trivial additive constant, the
only affine parameter for massive particles is τ and the normalisation of the four-
velocity (2.3), of course, holds. If we wanted to use another parameter, we would
need to resort to using the more complex equation (2.13), which would further
convolute an already difficult mathematical problem.

For photons, the affine parameter shall be denoted λ in the following. It has
no relation to photon proper time, because the proper time is constant and no
function of it can be used to parametrise photon motion. The normalisation of
the analogue of the four-velocity for photons is

gµν
dxµ

dλ
dxν

dλ ≡ gµν ẋ
µẋν = 0 . (2.15)

2.1 Integrals of motion
Seeing that the metric gµν (1.1) and the four-potential Aµ (1.3) do not depend on
coordinate time t and angle φ, neither is L a function of these variables. These two
coordinates are therefore cyclic and are associated with conservation of certain
quantities, constants of motion: energy E and angular momentum L parallel to
the axis of rotation of the black hole. For a general parametrisation

−E ≡ ∂L
∂ṫ

= gttṫ+ gtφφ̇+ κAt ,

L ≡ ∂L
∂φ̇

= gtφṫ+ gφφφ̇+ κAφ .
(2.16)

Specifically, for a parametrisation using proper time τ ,

−E = gttu
t + gtφu

φ + κAt ,

L = gtφu
t + gφφu

φ + κAφ .
(2.17)

Take note that while we use the standard sign convention, the signs of these
constants may be chosen arbitrarily. Selecting the opposite sign of a constant
would require changing the sign before odd powers of the redefined constant in
formulae containing it. Further, notice that these constants actually are the t and
φ components of the generalised four-momentum of the particle pα ≡ ∂L/∂ẋα.

We called the constants of motion the energy E and the angular momentum
L purely out of analogy with asymptotically flat space-times. In such cases in-
terpreting the integrals of motion is done by projecting the four-momentum of
the particle on the four-velocity of a privileged observer: a static observer in flat

2If we used this particular transformation for our electrogeodesics, we would obtain the
standard electrogeodesic equation but for a different particle with κ′ = κ/a.
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spatial infinity3. However, with a non-zero Λ, our space-time is not endowed with
such observers and interpreting the integrals of motion cannot be done in such a
way. Nonetheless, when referring to them by name, we shall use the above terms
out of lack of a more proper nomenclature.

Another famous integral of motion is the Carter constant. It is, however,
difficult to obtain the constant from the Lagrangian formalism and one resorts to
the Hamilton–Jacobi equation. Even though we focus on relativistic Lagrangian
mechanics, for the sake of completeness we chose to dedicate Appendix B to the
Hamilton–Jacobi equation and the Carter constant.

Last but not least, since the Lagrangian does not depend explicitly on τ , the
value of the Hamiltonian is a constant of motion too. Also calculated in Appendix
B, it turns out that the value is a multiple of the normalisation of ẋα.

2.2 On the normalisation equation
Before moving on to solving the electrogeodesic equations, it may prove useful to
examine the normalisation equation

gµνu
µuν = −1 . (2.3)

It is a non-linear first-order differential equation that provides a condition on the
particle’s four-velocity.

Eventually, when we begin solving the equations numerically, we will need to
choose the initial four-velocity in such a way that fulfils the normalisation. Is the
normalisation then preserved after an integration step or does the four-velocity
need to be normalised after every step again and again? Let us find out:

d
dτ (gµνu

µuν) = D
dτ (gµνu

µuν) = gµν

(
Duµ

dτ uν + uµ Duν

dτ

)
=

= 2gµνu
µ Duν

dτ = 2κgµνu
µF ν

ι u
ι = 2κFµιu

µuι = 0 .
(2.18)

First, we used that the total and absolute derivative are interchangeable upon
acting on a scalar. In the next two steps, we remembered that every metric is
covariantly constant, gµν;α = 0, and symmetric, gµν = gνµ. After that, we inserted
the equations of motion (2.11) and noticed that we are left with a product of
Fµι, antisymmetric in µ and ι, and uµuι, which are symmetric in their indices.
Therefore, the sought derivative is equal to zero, and we should never need to
reapply the normalisation equation at any point after setting the initial four-
velocity. However, as numerical computations are always affected by rounding
errors, it is definitely worthwhile to check the normalisation occasionally and
adjust the four-velocity accordingly, if needed.

Another related question is whether we cannot replace one of the four electro-
geodesic equations with the normalisation when solving the system. The electro-
geodesic equations are second order, and replacing one of them with the normal-
isation would not only possibly simplify the system (for numerical and analytical
computations alike), but also lower the number of the needed initial conditions by

3Knowing the physical interpretation, the signs of the constants can no longer be chosen
arbitrarily.
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one component of the starting four-velocity. Our lives would then become easier
by not having to worry about the normalisation of the initial four-velocity in
numerical simulations. The procedure of proving interchangeability of one of the
electrogeodesic equations and the normalisation equation is similar to the previ-
ous calculation, but with a twist. The fixed index of the equation to be swapped
out shall be ℵ4, the remaining three indices shall be represented by Latin script.
The other three electrogeodesic equations are assumed to hold.

0 = 1
2

D
dτ (gµνu

µuν) = gµνu
µ Duν

dτ = gµℵu
µ Duℵ

dτ + gµau
µ Dua

dτ =

= gµℵu
µ Duℵ

dτ + κgµau
µF a

ι u
ι = gµℵu

µ Duℵ

dτ + κFaιu
auι =

= gµℵu
µ Duℵ

dτ + κFaℵu
auℵ + ✘✘✘✘✘

κFabu
aub = uℵ

(
Duℵ

dτ + κF ℵ
a ua

)
=

= uℵ

(
Duℵ

dτ − κF ℵ
a u

a

)
= uℵ

(
Duℵ

dτ − κF ℵ
µ u

µ

)
,

(2.19)

where in the last two steps we exclusively used the antisymmetry of the electro-
magnetic tensor. From this result follows that for a non-zero uℵ its corresponding
electrogeodesic equation (2.11) is satisfied automatically if the remaining three
equations and the (derivative of the) normalisation equation hold. This also means
that we cannot swap out equations corresponding to vanishing components of the
covariant four-velocity. For example, for motion restricted to the equatorial plane
at θ = π/2 we have uθ = 0, and (as gθt = gθr = gθφ ≡ 0) also uθ = 0. The cor-
responding equation of motion for θ must, therefore, be preserved. Actually, this
may be in our best interests, as for these initial conditions the equation simplifies
into d2θ/dτ 2 = 0, a trivial equation ensuring (and assuring us) that the particle
stays in the equatorial plane.

Take note that the zeroes in the last two numbered equations have slightly
different origins: In the first one, we computed the time derivative of the left-
hand side of the normalisation equation to find out whether we would need to
renormalise the four-velocity after each step in numerical computations. We found
out that the normalisation is preserved even without our intervention. In the
second equation, we assumed the normalisation equation to hold at any time
(with or without our help in the simulations), and we simply performed the time
derivative of both sides of the equation, whence came the initial zero.

The above conclusions hold for photons as well, because we are dealing only
with the derivatives of the normalisation, its actual value is irrelevant as long as
it is constant. Assuming κ = 0 only makes the proofs shorter.

Now, let us begin investigating specific types of motion. As we aim to provide
analytical results, we shall focus on the equatorial plane and on the space-time’s
axis only. These special values of θ simplify the equations enough for us to be
able to make some interesting discoveries, which we will often demonstrate using
numerical methods. Greater emphasis shall be put on the area with positive r.
First, we shall deal with static particles.

4We use the Hebrew letter aleph to emphasise that there is never any summation to be
performed over this index.
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2.3 The static case
To say the first thing that comes to mind, a static particle is a particle that does
not move through space. However, as early as in elementary school pupils are
taught that motion is relative: we need to specify an object regarding to which
our examined particle is at rest. In classical physics, the situation is quite simple:
we define a Cartesian coordinate system with the other object at its origin, and
say that the particle is at rest with respect to the object when its Cartesian
coordinates are constant. In general relativity, defining a static particle is a some-
what trickier matter. One can examine particles that would be static in a certain
set of coordinates, but general relativity allows for unlimited transformations of
coordinate systems, and a static particle in one set of coordinates may not be
static in another one. For rotating black holes, however, one can look at the
particle’s angular momentum to characterise staticity with an invariant property.
Thus the concept of a zero angular momentum observer, or simply ZAMO, is
introduced: It is an observer who orbits5 the black hole in such a way his angular
momentum vanishes. A particle coinciding with this observer could be considered
to be somewhat more invariantly static with respect to the rotating black hole
in question. As has already been discussed, L cannot be easily interpreted as the
angular momentum of the particle due to the space-time’s non-zero cosmological
constant. However, in the limit of Λ = 0 the interpretation holds and it is natural
to extend the definition of ZAMOs to the case of L = 0 in our space-time as well.

In this section, we shall approach the problem of static particles from both
points of view. First, we shall investigate particles static in our coordinate sys-
tem, as it could be considered an extension of the classical spherical coordinate
system (at least in the stationary areas of the space-time) and it is, therefore,
not entirely unreasonable to say that this is the system in which a “truly” static
particle ought to have constant spatial coordinates, that is, its world line should
be xµ = (t, r0, θ0, φ0) with constant r0, θ0 and φ0. The spatial components of the
particle’s four-velocity vanish, ui = 0. From the normalisation of the four-velocity
(2.3), we get ut = 1/

√
−gtt(r0, θ0). We thus have a constant four-velocity

uµ =
⎛⎝ 1√

−gtt(r0, θ0)
, 0, 0, 0

⎞⎠ (2.20)

and, as such, the total derivatives of its components with respect to τ are equal
to zero6. This ansatz is applicable only in the stationary areas of the space-time
where gtt < 0. At the static limit, defined previously as the surface satisfying
gtt = 0, ut would diverge. In the dynamic areas this uµ does not describe a
time-like particle.

Inserting the above four-velocity into the equations of motion, we see that two
of the four are reduced into the identity 0 = 0, namely those corresponding to

5In our coordinates, by “orbiting” we mean a time-like circular motion in the φ coordinate
with constant r and θ.

6This is not equivalent to saying that the particle’s four-acceleration Duµ/dτ vanishes. For
an electrogeodesic, the four-acceleration is equal to the force term κFµ

ν u
ν .
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the t and φ components of the four-acceleration. The remaining two equations,

−Γr
ttu

t + κF r
t = 0 ,

−Γθ
ttu

t + κF θ
t = 0 ,

(2.21)

impose conditions on the position of static particles7.
The problem of solving the four non-linear second-order differential equations

of motion to find four functions of proper time describing the particle’s position
xµ(τ) is hereby reduced to solving a set of two algebraic equations for two con-
stants r0 and θ0 (due to the axial symmetry of the space-time, φ0 would then
be arbitrary). Even though the situation becomes considerably simpler, finding a
general solution still remains nontrivial.

A further simplification of the problem – which may be our best hope for
deriving any analytical results – consists in selecting a particular θ0 for which we
shall try to find a corresponding r0. The two values of θ0 we are going to look
into are 0 ⇔ π (equivalent due to the reflection symmetry of the space-time)
and π/2. The former represents particles on the black hole’s axis of rotation, the
latter particles in the equatorial plane. As it turns out, when substituted into
(2.21), both of these values reduce the second equation to an identity. Therefore,
we need to solve one equation to find a single constant, r0. The subscript “0”
shall be omitted in the following.

2.3.1 The axis
For θ ∈ {0, π}, the remaining equation of motion is[

Λsr7 − κqΛr6 + 3Λa2sr5 − 3(ms− κq)r4+

+ 3
(
(a4Λ + q2)s− 2κqm

)
r3 + κq(a4Λ + 3q2)r2+

+ a2
(
(a4Λ + 3q2)s+ 6κqm

)
r+

+ 3a2
(
a2ms− κq(a2 + q2)

) ][
(a2 + r2)3s

]−1
= 0

(2.22)

with

s =

√ ∆r(r)
ρ2(r, θ = 0) . (2.23)

If we didn’t insist on preserving the Lorentzian signature of the metric by fulfilling
(1.4), s would need to be multiplied by sgn(Ξ). The left-hand side of the equation
is well-defined only in the stationary areas of the space-time where ∆r > 0, which
corresponds to our original ansatz for uµ.

Even with all the simplifications we have made, finding an analytical solution
for r for a general space-time is still very difficult. However, we may choose a

7Perhaps more precisely, considering the four-velocity of the static particle as an initial
condition, the two vanishing equations of motion say that two components of uµ are constant
at the beginning of the observed motion. The remaining two equations must be met in order to
ensure that all four components of uµ are not changing at the initial time. Since the space-time
is stationary, a four-velocity constant at the initial time then remains constant indefinitely. The
same is also true for stationary circular orbits in the next chapter.
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different approach to this problem and look for a “properly-charged” particle
that would remain still at a given r in a given space-time. While (2.22) is a
complicated irrational equation in r, it is linear in κ and easy to solve:

κ = −Λr5 + 2a2Λr3 − 3mr2 + (a4Λ + 3q2)r + 3a2m

3q(r + a)(r − a)s . (2.24)

If q ̸= 0, this expression is well-defined in the stationary areas of the space-time
with the possible exception of r = ±a, which may or may not be in the stationary
area8. A problem with q = 0 is to be expected, as for an uncharged black hole
the charge of the particle is irrelevant. Fine-tuning of κ then cannot help in any
way to make the particle static. The case of r = ±a is more interesting:

For r = ±a, the terms with κ in (2.22) vanish, and the rest of the equation is
remarkably reduced into

4a4Λ + 3q2

a3 = 0 . (2.25)

If the space-time’s parameters fulfil this condition, any particle can remain at
rest at r = ±a regardless of its charge9. The problem with a = 0 in the condition
is of no relevance, as that would mean our desired static particles are in the
singularity10 at r = ±a = 0. Assuming a ̸= 0, we may recast requirement (2.25)
as

Λ = −3
4
q2

a4 , (2.26)

whence it is obvious that Λ has to be non-positive. That unfortunately prohibits
astrophysical black holes from having any particles at rest at r = ±a as the
universe is thought to have a positive Λ, cf. (1.7). Comparing with (1.4), we can
easily find a condition on the ratio of a2 and q2,

q2 < 4a2 . (2.27)

Whether r = ±a is in the stationary area of the space-time, as required by our
ansatz, is given by the sign of ∆r(r = ±a). In particular, if we inquire about
static particles, we have

∆r(r = ±a)
⏐⏐⏐⏐
Λ=− 3

4
q2
a4

= 2a2 + 3
2q

2 ∓ 2ma . (2.28)

The negative solution is thus always in the stationary area, while the positive one
further requires

m <
4a2 + 3q2

4a . (2.29)

8In order to avoid confusion, let us point out that positive values of r are not “above”
and negative “below” the black hole on its axis – that is determined by θ. As has already
been mentioned before, due to the reflection symmetry of the space-time we now concurrently
examine both θ = 0 and π, i.e. both “above” and “below”. Negative r represent the analytically
extended part of the space-time.

9Take note that the particle may even be uncharged.
10The Kerr–type rotating black holes have a ring singularity located in the equatorial plane

at θ = π/2, not on their axis. However, for a = 0 one has a non-rotating black hole with a point
singularity at r = 0 regardless of θ.
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Take note that while these static positions may exist in the Kerr and the
KNadS solutions, not only are they nowhere to be found in the KNdS space-
time, as we have already commented, but they also do not exist in the asymp-
totically flat Kerr–Newman solution, as can be seen from (2.26): non-zero a and
q manifestly require a non-zero Λ as well. Likewise, the same can also be said of
the Kerr–(anti-)de Sitter solutions, because having a non-zero Λ and vanishing q
violates (2.26) as well.

Now that we have established the possibility of the existence of static un-
charged particles, we are left with the question what holds them in place, be-
cause it is neither electromagnetism (as the particles stay in place regardless of
their charge) nor a repulsive cosmological constant (as the required negative Λ
is actually attractive, to make the situation even more puzzling) in a kind of an
equilibrium with gravity. It turns out [18, 19] that repulsive gravity is a common
occurrence in naked-singularity space-times (among them e.g. a Kerr naked sin-
gularity). If the above conditions on the parameters result in a naked singularity,
it is natural to assume that we have just discovered yet another manifestation of
this phenomenon. In order to prove that, we need to return to ∆r one more time:

∆r(r)
⏐⏐⏐⏐
Λ=− 3

4
q2
a4

= (r2 + a2)
(

1 + q2

4a4 r
2
)

− 2mr + q2 . (2.30)

Inserting inequality (2.29) into ∆r (keeping in mind that for −m we have to
change the inequality sign), we obtain

∆r(r)
⏐⏐⏐⏐
repulsion

> (r2 + a2)
(

1 + q2

4a4 r
2
)

− 4a2 + 3q2

2a r + q2 =

= (r − a)2(q2r2 + 2aq2r + 4a4 + 4a2q2)
4a4 .

(2.31)

The resulting polynomial acting as a lower bound has a double root at r = a
and the remaining roots are not real11. Since the polynomial is positive at r = 0
and r → ±∞, it is obvious that it is positive almost everywhere, with the sole
exception of r = a, where it is equal to zero. Due to the presence of the strict
inequality in (2.31), we have

∆r(r)
⏐⏐⏐⏐
repulsion

> 0 ∀ r , (2.32)

which means that the polynomial has no real roots. A space-time allowing for
static uncharged particles at positive r thus has no horizons and therefore indeed
contains a naked singularity12. A sample course of ∆r(r) near the function’s
minimum for parameters satisfying the aforementioned conditions is shown in
figure 2.1 on the following page. Take note that inequality (2.29), instrumental
in proving that the space-time is that of a naked singularity, is not required by
static particles at r = −a. However, for r < 0 the only stationary area invariantly
contains the singularity, meaning these particles experience a naked singularity
as well.

11The quadratic polynomial q2r2 + 2aq2r + 4a4 + 4a2q2 has a negative discriminant
−4(4a4q2 + 3a2q4).

12For the Kerr solution this observation can be done directly from (2.29), which for q = 0
reduces into m < a, the known condition for the singularity’s nakedness.
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Figure 2.1: The course of ∆r(r) corresponding to the scenario of repulsive gravity
with parameters {Λ,m, a, q} = {−7.5 × 10−7 u−2, 25 u, 100 u, 10 u}. The values of
all parameters are precise, the free parameters are underlined.

Before moving on to the equatorial plane, let us have a quick look at the
integrals of motion (2.17). For θ ∈ {0, π}, we obtain

E = ∆r(r)ut + Ξqrκ
Ξ2ρ2(r, θ = 0) ,

L = 0
(2.33)

regardless of the particle’s uφ, as the φ coordinate is degenerate on the axis,
gφµ = 0 ∀µ. To evaluate E for static particles, ut is to be substituted from
(2.20) and for r ̸= ±a, κ is given by (2.24). This fortunate result means that
particles static on the space-time’s axis in our coordinate system also fulfil the
other staticity condition and are ZAMOs13.

2.3.2 The equatorial plane
For θ = π/2 we need to solve a seemingly simpler equation than in the previous
case,

∆r(r)
∆r(r) − a2

[
Λs̃r5 − qκΛr4 −

(
3ms̃+ qκ(a2Λ − 3)

)
r2+

+ 3q(qs̃− 2κm)r + 3q3κ
][
r4s̃

]−1
= 0

(2.34)

with

s̃ =

√ ∆r(r) − a2

ρ2(r, θ = π/2) . (2.35)

13Even though their angular momentum vanishes as well, radially-moving particles are not
ZAMOs, as ZAMOs are by definition allowed to move in the t and φ directions only.
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This time, the left-hand side of the equation is not well-defined everywhere in the
stationary area of the space-time, but rather only in a smaller area satisfying

∆r > a2 ⇔ gtt

⏐⏐⏐
θ=π/2

< 0 . (2.36)

It is to be expected that for a general θ, static particles would not persist in the
whole stationary area due to frame-dragging. The axis is spared from this effect,
which is the reason we did not need to restrict ourselves to a smaller part of the
stationary area in the previous case. As was already discussed near the end of the
previous chapter, the condition gtt = 0 gives the static surface, which separates
areas where static observers in our coordinates can (gtt < 0) and cannot (gtt > 0)
exist.

Once again, finding the static particle’s κ is considerably easier than solving
the equation of (no) motion for r,

κ = −Λr4 − 3mr + 3q2

3qrs̃ . (2.37)

A divergence for q = 0 is to be expected. There are no other problems with this
expression outside the singularity and the area where gtt > 0.

Unlike the preceding case, there is no particular r in the allowed area for which
the term with κ in equation (2.34) vanishes. This can also be seen from (2.37),
where this particular r would cause a division by zero as in the previous case.

For θ = π/2 and uφ = 0, the integrals of motion (2.17) are

E = (∆r(r) − a2)ut + Ξqrκ
Ξ2ρ2(r, θ = π/2) ,

L =
a
(
(∆r(r) − r2 − a2)ut + Ξqrκ

)
Ξ2ρ2(r, θ = π/2) ,

(2.38)

with ut given by (2.20) and κ by (2.37). This time, angular momentum L is
generally non-vanishing (unless we consider the limit of a = 0) and, therefore,
not all static particles in our coordinates are ZAMOs. To determine which static
particles indeed are ZAMOs, we can set L = 0 and obtain an additional condi-
tion on the position of the static particles. Solving the equation directly is once
again quite troublesome, but with a little trick we can acquire a less complicated
condition on r rather effortlessly: We shall solve the equation for κ instead of r
and by subsequently comparing the obtained value to the original one (2.37) we
procure the sought condition. From L = 0 we get

κ = Λr4 + Λa2r2 + 6mr − 3q2

3qrs̃ (2.39)

and by comparing the two, we immediately see that r needs to satisfy

2Λr3 + Λa2r + 3m = 0 , (2.40)

which means that there may be up to three different radii at which we can find
static ZAMOs fulfilling the electrogeodesic equations. Unfortunately, for Λ > 0
(and thus also for our universe) this condition manifestly forbids the existence of
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such particles in the area with r > 0. On the other hand, for Λ < 0 the polynomial
always has exactly one positive root, as can be shown using either Descartes’ rule
of signs or the more intricate theorem of Sturm. Both theorems are presented and
(2.40) is thoroughly analysed in Appendix C. However, one must bear in mind
that condition (2.40) does not mean that the positive root satisfies ∆r(r)−a2 > 0
as required by s̃. This inequality is to be viewed as an additional constraint on the
space-time if it were to contain static electrogeodesic ZAMOs in the equatorial
plane. Indeed, this condition is not necessarily satisfied for every space-time for
the positive root of (2.40): e.g. for {Λ,m, a, q} = {−10−3 u−2, 10 u, 1 u, 1 u} the
positive root is r/m ≈ 2.47, where (∆r − a2)/m2 ≈ 2.39. However, after consid-
ering a new mass m = 25 u the positive root r/m ≈ 1.34 is below the static limit
with (∆r − a2)/m2 ≈ −0.21.

A method allowing us to investigate orbiting ZAMOs shall be introduced in
section 2.4.3 dealing with the effective potential in the equatorial plane. Unfor-
tunately, due to the complexity of the equations it seems it can be applied in
numerical computations only...

2.4 Motion in the equatorial plane

2.4.1 Stationary circular orbits
In astronomy, perhaps the most interesting kind of motion is the orbital motion
around a celestial object. From the rings of Saturn to the rotation of the galactic
spiral arms, these orbits are amongst the most common types of motion to be
observed.

First, let us focus on stationary circular orbits. They are characterised by
constant non-zero ut and uφ with vanishing ur and uθ. Then, duα/dτ in the
equations of motion (2.11) must be equal to zero. World lines of these particles are
xµ = (t, r0, θ = π/2, φ) with constant r0 and θ = π/2. We choose to study particles
in the equatorial plane as it is the plane of the reflection symmetry of the space-
time. We thus expect that if there is a plane where stationary circular orbits exist,
it is this one, as the particle cannot be forced to leave the plane electrogeodesically
due to the aforementioned symmetry. Furthermore, note that there is no such
thing as non-stationary circular electrogeodetic orbit in the equatorial plane in
our space-time due to its rotational symmetry.

Inserting these conditions into the equations of motion, three of them turn
into an identity. The last one,

−Γr
ρσu

ρuσ + κF r
ν u

ν = 0 , (2.41)

can be viewed as a differential equation for t(τ) and φ(τ), or, equivalently, as
a simpler algebraic equation for constant ut and uφ. The equation ensures that
dur/dτ vanishes throughout the motion, forcing the particle to remain at a cir-
cular orbit. So far, we have one equation for two unknowns. In order to get a
unique solution, we need to complete the system by adding another equation: the
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normalisation of four-velocity14 (2.3),

gµνu
µuν = −1 . (2.3)

The two equations are quadratic in both ut and uφ, which means they can have
up to four unique solutions for a given space-time at a given r. The real solutions
may represent physical orbits. Trying to solve the equations for ut and uφ directly
by expressing one quantity (as a function of the other one) from one equation
and inserting into the other could, however, lead to some misleading results, as
expressing the other quantity would require taking the square of the remaining
equation in order to eliminate a square root brought in by solving the previous
quadratic equation for the inserted quantity. Taking the square of an equation
has the unfortunate possible consequence of doubling the number of roots, half
of which may not actually satisfy the original equation. How to recognise these
superfluous results?

As a matter of fact, with a convenient substitution

Ω ≡ dφ
dt = dφ

dτ
dτ
dt = uφ

ut
, (2.42)

which we have already worked with in the last section of the previous chapter,
we can avoid taking the questionable square of an equation entirely. For qκ ̸= 0
one power of ut can be easily factored out in equation (2.41) for motion with
four-velocity uµ = ut(1, 0, 0,Ω). We are then left with a linear equation yielding

ut = 3Ξqκr(aΩ − 1)
(Λr4 − 3mr + 3q2)(aΩ − 1)2 + 3r4Ω2 . (2.43)

After inserting ut into the normalisation we obtain a rather lengthy fourth-order
polynomial equation for Ω,[

9a2q2
(
a4 + 2a2r2 + r4 − a2∆r

)
κ2+

+
(
3(2Λa2 + 3)r8 − 18ma2r5 + 18a2q2r4 + a4A

) ]
Ω4−

−
[
18aq2

(
2a4 + 3a2r2 + r4 − 2a2∆r

)
κ2+

+ 4a
(
3Λr8 − 9mr5 + 9q2r4 + a2A

) ]
Ω3+

+
[
9q2

(
6a4 + 6a2r2 + r4 − 6a2∆r

)
κ2+

+ 6
(
Λr8 − 3mr5 + 3q2r4 + a2A

) ]
Ω2−

−
[
18aq2

(
2a2 + r2 − 2∆r

)
κ2 + 4aA

]
Ω+

+
[
9q2

(
a2 − ∆r

)
κ2 + A

]
= 0 ,

(2.44)

with
A = Λ2r8 − 6Λmr5 + 6Λq2r4 + 9m2r2 − 18mq2r + 9q4 . (2.45)

14In context with what has been said in section 2.2, we are effectively exchanging one of the
equations of motion-turned-identities corresponding to a non-zero component of uα (that is, ut

or uφ) for the normalisation equation.
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Needless to say, we shall not write down a general solution of this equation for Ω
due to its immense length, as usual for quartic equations. However, the solutions
become considerably shorter for the Reissner–Nordström–(anti-)de Sitter space-
time,

Ω
⏐⏐⏐
a=0

= ±
√

6
6r2

√
−2Λr4 − 3q2κ2 + 6mr − 6q2 ± 3|qκ|

√
4r2 − 12mr + (8 + κ2) q2 ,

(2.46)
where all four sign combinations may represent physical orbits. Take note that Ω
does not depend on the sign of the particle’s charge κ, as there are no odd powers
of κ present in the polynomial above. On the other hand, ut and, by extension,
uφ ≡ utΩ are affected by the sign.

Another thing to keep in mind is that while we can have four real different
admissible values of Ω, their corresponding ut may not necessarily be positive,
which further reduces the number of physical solutions. Particles with ut < 0 are
thought to move backwards in time and, therefore, shall be considered unphysical.
The problem is illustrated in figure 2.2 on the following page.

For qκ = 0 one must be more careful. A naive limit in the previous result
cannot be used here, as both powers of ut can be eliminated from equation (2.41).
We are left with a quadratic equation for Ω, meaning that the extra two angular
velocities arise from the electromagnetic interaction of the particle and the black
hole. It is then possible to obtain ut from the normalisation of the four-velocity
after inserting Ω. In the following, we shall consider only κ = 0, as κ is always
paired with q in the equations of motion, while the opposite is not true. If q = 0, κ
disappears from the equations as well and the limit may be, therefore, performed
in the result for a vanishing κ regardless of its actual value.

Expressing Ω from (2.41) with κ = 0 gives us15

Ω
⏐⏐⏐
κ=0

= a(Λr4 − 3mr + 3q2) ± r2√−3Λr4 + 9mr − 9q2

3 (Ξr4 −ma2r + a2q2) . (2.47)

The normalisation equation yields

ut
⏐⏐⏐
κ=0

= ± Ξr√(
a2∆r(r) − (a2 + r2)2

)
Ω2 + 2a

(
a2 + r2 − ∆r(r)

)
Ω +

(
∆r(r) − a2

) ,
(2.48)

whence one can see that if there are real ut for a given set of parameters, we can
always choose the positive one regardless of the sign of r.

The Schwarzschild limit of the angular velocity yields the simplest relativistic
analogue of the Kepler’s third law [20]

Ω
⏐⏐⏐
Λ=a=q=0

= ±
√
m

r3 . (2.49)

2.4.2 Photon orbits
The equations are somewhat simpler for photons. Motion of photons (i.e. mass-
less and uncharged particles) is governed by the geodesic equations (photon κ

15Interestingly, this can be obtained by setting κ = 0 in 2.44. However, using (2.43) to get ut

would incorrectly lead to ut = 0.
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(a) The dependence of Ω on r for the four coloured solutions to the equations of motion.
The solutions tend to the extreme angular velocities Ωmin or Ωmax, represented by the
black dash-dotted curves. The dotted curve is that of ω ≡ −gtφ/gφφ. The r/m axis is
shorter than in the second figure, as the rest of the chart would be uneventful: all four
coloured Ω remain real and very close to the corresponding extreme value. Notice how
inconspicuously the boundary between 4 and 3 physical solutions looks. We would not
be able to draw the line solely from our knowledge of the four values of Ω without also
knowing their corresponding ut.
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(b) The dependence of ut on r for the four solutions. One can clearly see that real Ω
permit negative ut.

Figure 2.2: The dependence of the allowed angular velocities Ω and their cor-
responding ut on r for space-time {Λ,m, a, q} = {−0.04 u−2, 90 u, 3 u, 20 u} and
particle κ = 25. Pairs of corresponding Ω and ut are drawn with matching colours
in the two charts. The black vertical lines divide areas with a different number of
permitted physical (i.e. ut > 0) angular velocities for the given particle at a given
r, the numbers themselves are written in boldface at the bottom of the charts.
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vanishes). For stationary orbits in the equatorial plane we have

−Γr
ρσ

dxρ

dλ
dxσ

dλ = 0 , (2.50)

where λ is some affine parameter, and their normalisation equation is

gµν
dxµ

dλ
dxν

dλ = 0 (2.51)

instead of −1. Considering

Ω ≡ dφ
dt = dφ

dλ

(
dt
dλ

)−1

, (2.52)

dt/dλ can actually be eliminated from both of these equations, and we are left
with a set of two equations for the angular velocity of an orbiting photon Ω and
the corresponding radius of the orbit r. There are two angular velocities solving
the equations,

Ω± =
a (r2 + a2 − ∆r(r)) ± r2

√
∆r(r)

(r2 + a2)2 − ∆r(r)a2 , (2.53)

which are equal to Ωmax/min (1.127), the two extreme values of the permitted
angular velocities for a given r, with r satisfying

3Ξ2r4 + 6m
(
Λa2 − 3

)
r3 +

(
27m2 − 4Λa2q2 + 12q2

)
r2 −

− 12m
(
a2 + 3q2

)
r + 12q2

(
a2 + q2

)
= 0 .

(2.54)

As r are the roots of a fourth-degree polynomial, there are at most four different
stationary photon orbits in the space-time.

For the Schwarzschild solution the only (double) non-zero root of the polyno-
mial above is the well-known [20]

r
⏐⏐⏐
Λ=a=q=0

= 3m, (2.55)

which always lies in the stationary area of the space-time, with the corresponding
velocities16

Ω±

⏐⏐⏐
Λ=a=q=0

= ± 1
3
√

3m
. (2.56)

Furthermore, since Λ is always paired with a2 in (2.54), the radii do not depend
on Λ in the Reissner–Nordström–(anti-)de Sitter space-time. For a = 0 there are
two double roots of (2.54),

r±

⏐⏐⏐
a=0

= 3
2m± 1

2

√
9m2 − 8q2 , (2.57)

as long as 9m2 > 8q2. However, one must keep in mind that these radii must
further satisfy ∆r|a=0(r±) > 0 in order to represent a permitted photon orbit, as
Ω± (2.53) would otherwise contain a non-zero imaginary part17. For 9m2 = 8q2 the

16These are also the limit of r → 3m in (2.49).
17In the non-stationary areas of the space-time the ansatz for the photon four-velocity satisfies

the normalisation equation if and only if ut = Ω = 0, which does not represent a physically
reasonable particle.
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photon orbit is located at r = 3m/2, coinciding with the position of the the triple
horizon of an extremal Reissner–Nordström–de Sitter solution. However, apart
from the condition 9m2 = 8q2, the extremal scenario also requires a particular
Λ = 2/(9m2). Finally, there are no photon orbits if 9m2 < 8q2. Moreover, take
note that even though r± do not depend on Λ for a non-rotating black hole18, the
angular velocities, given by

Ω±

⏐⏐⏐
a=0

= ±
√

−Λr4 + 3mr − 3q2
√

3r2
, (2.58)

do. One can also see that for a vanishing a, we have

Ω−

⏐⏐⏐
a=0

= −Ω+

⏐⏐⏐
a=0

(2.59)

for massless and massive particles alike, because for a = 0 there is no frame-
dragging present to tip the balance towards one direction or the other.

2.4.3 Effective potential
Perfectly circular orbits, as interesting as they may be, represent only one type
of particle motion in the equatorial plane. Real particles, however, tend to move
in the radial direction as well. One way of dealing with this motion is to establish
an effective potential. We shall do so by means of the integrals of motion (2.17).

Using them, one can easily find

ut = Ξ
r2∆r

(
− Ξ

(
a2∆r − (a2 + r2)2

)
E + aΞ

(
∆r − (a2 + r2)

)
L− (a2 + r2)rqκ

)
(2.60)

and

uφ = Ξ
r2∆r

(
− aΞ

(
∆r − (a2 + r2)

)
E + Ξ

(
∆r − a2

)
L− arqκ

)
. (2.61)

Take note that even though we now have ut and uφ as functions of r, E, L and
κ, so far we know nothing about ur. Therefore, although one may be tempted to
say that the integrals of motion give us a simple way of finding the four-velocities
corresponding to circular orbits, particles with these ut and uφ actually may not
be orbiting the black hole at all, depending on the initial conditions. To find ur,
we shall insert the other components of the four-velocity into the normalisation
equation (2.3), keeping in mind that we are interested in particles with uθ = 0,
to obtain

1
2 (ur)2 = −V (r;E,L, κ) , (2.62)

where V is the sought effective potential,

V (r;E,L, κ) = Ξ2

2r4

((
∆r(r)−(a2 + r2)

)
(aE − L)2 −

(
a2 + r2

)
r2E2 + r2L2

)
+

+ qκ

2r3

(
2Ξ
(
a2 + r2

)
E − 2ΞaL− qκr

)
+ ∆r(r)

2r2 .

(2.63)
18Whether r± lie in the stationary area or not, however, does depend on Λ.
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If a particle of given E, L and κ is to be allowed to exist at a given r, its ur must
be real, or, equivalently, its corresponding effective potential must be negative.

Ideally, one would now separate the characteristics of the particle and the
dependence on r and recast (2.62) as

1
2 (ur)2 + V(r) = f(E,L, κ) , (2.64)

because that would allow us to draw a chart of V for a given space-time and
compare it with f(E,L, κ) (which may also depend on the space-time’s paramet-
ers) for different particles to find turning points for a given particle or stationary
circular orbits at a glance. Actually, we would be content even if f did not contain
every information about the particle uniquely, however convenient that would be.
The more parameters that can be moved over to f there are, the less often we
need to redraw the potential when we change the particle. E.g., even if we could
not separate E and L from the dependence on r, we would still be able to draw
the potential for a class of particles characterised by their E and L and easily
find the effect of κ by comparing the curve with f . Unfortunately, not even that
is possible here. We thus need to replot V every time we change the space-time
(as expected) or the particle (very inconvenient). The value of such graphs is,
therefore, severely diminished. Nonetheless, interesting analytical results can be
obtained even without such separation.

For a given particle the turning points, where ur vanishes, are located at

V (r;E,L, κ) = 0 . (2.65)

After multiplying V by r4 it is clear that we are looking for the roots of a sixth-
degree polynomial. The leading term of the polynomial, proportional to Λr6,
clearly comes from the last term in (2.63). Setting Λ = 0 would simplify the
polynomial dramatically to a fourth-order one, although its general solution would
still be overly long to be included here.

To obtain circular orbits, one further needs to set

d
drV (r;E,L, κ) = 0 . (2.66)

We are thus presented with a set of two equations, both of which must be satisfied
for a given particle to orbit at some r. We may understand these equations as
conditions on E and L for a particle with a given κ to orbit at a given r. One
can then find ut and uφ from (2.60) and (2.61). Obtaining E and L from the po-
tential for a general space-time, unfortunately, once again needs to be performed
numerically, as the equations are quadratic in both unknowns.

Furthermore, we can use the potential to determine the stability of said orbits.
As the sign in the definition of V is the same as in classical mechanics, stable
orbits are located in the minima of the potential (i.e. d2V/dr2 > 0) and unstable
in the maxima (d2V/dr2 < 0). Examples of V for a stable and an unstable orbit
are shown in figure 2.3 on the next page. In subfigure 2.3a one can also see that
V < 0 may be satisfied even for unphysical particles travelling backwards in time,
which need to be numerically eliminated by computing ut from E, L and κ in a
given interval of r.
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(a) Stable orbit at rO ≈ 6.8m for space-time {Λ,m, a, q} = {−10−3 u−2, 27 u, 17 u, 3 u}
and particle with κ = 200 and uφ = 4×10−4 corresponding to E ≈ 7.469 and L ≈ 138.1.
RH is the position of the outer black hole horizon. The dotted curve of ut shows that
a negative V is not enough to guarantee the possibility of the existence of a particle
with given {E,L, κ} at a particular r, as physical particles further require ut > 0.
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(b) Unstable orbit at rO = 8m for {Λ,m, a, q} = {1.7 × 10−6 u−2, 100 u, 27 u, 0.24 u}
and particle with κ ≈ −1520 and uφ = 4 × 10−4 corresponding to E ≈ 0.1969 and
L ≈ 216.3. RH is the position of the outer black hole horizon and R′

H of the cosmological
horizon. ut, not present in the chart, is positive everywhere in the selected range of r.

Figure 2.3: Examples of the effective potential V corresponding to a stable and
an unstable circular orbit.
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The stable case was perturbed in figure 2.4 and the unstable in figure 2.5 on
the following two pages. In these simulations, the perturbations were performed
by changing the initial position of the particles whilst keeping the initial spatial
components of their four-velocities the same (their integrals of motion, however,
changed nonetheless). Alternatively, one could perturb their initial four-velocity,
or a combination thereof. Regardless of which method is used, if it leads to a
change in the particle’s E or L, it results in a change of the curve of V . If
the perturbed particle finds itself in a place where the perturbed potential is
positive, an unphysical perturbation has been made. An example of an unphysical
perturbation would be slightly changing the radial position of a particle that is
originally located on a stable orbit without changing the integrals of motion, as
V > 0 in the vicinity of stable orbits.

As in the classical case, when a particle moves towards an unstable orbit in a
potential permitting it, it starts to wind on the orbit while never quite matching
it19. For a particle nearing the unstable orbit at rO, the Taylor series of the
effective potential

V (r → rO) = 1
2V

′′(rO) (r − rO)2 + O
(
(r − rO)3

)
(2.67)

loses its absolute and linear terms, as circular orbits satisfy V = V ′ = 0. The
leading term’s coefficient V ′′(rO)/2 is negative, because we are dealing with an
unstable orbit located in the maximum of the potential. Inserting the series into
(2.62), we obtain

ur ≡ dr
dτ ≈ −

√
|V ′′(rO)| (r − rO) , (2.68)

where we have chosen the minus sign after taking the square root, as it corres-
ponds to particles moving towards the orbit. The differential equation can be
solved easily by performing separation of variables, yielding

r(τ) ≈ rO +Ke−
√

|V ′′(rO)| τ (2.69)

as the leading terms in the vicinity of the unstable orbit20. Here, K is the constant
of integration depending on the initial conditions (recall that rO is the position
of the circular orbit, not the initial position of the particle). As expected, the
approaching particle reaches the orbit in τ → ∞, although it gets arbitrarily
close in finite time21. The situation is shown in figure 2.6 on page 68 where
the initially equidistantly positioned particles with the same κ and integrals of
motion eventually follow the circular orbit almost perfectly. The figure also shows
the correspondence of a numerical trajectory to the analytical result (2.69).

19For stable orbits no radial motion of the given particle may occur in the vicinity of the
orbit.

20In the same way one can see that if V ′(rO) did not vanish and V ′(rO) (r − rO) was the
leading term in the series of V (r → rO), then the particle would begin moving into the allowed
area with r(τ) ≈ rO − V ′(rO) τ2/2 in the vicinity of rO (constant of integration vanishes after
setting r(τ = 0) = rO), confirming that circular orbits indeed require V ′(rO) = 0.

21When performing numerical simulations examining this type of motion, the physical in-
stability makes the model prone to misleading results stemming from rounding errors, as some-
times the particle may “bounce off” or “trespass through” the minimum of the potential in spite
of what has been said above.
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(a) The course of the effective potential V in the vicinity of the perturbed particle’s
position. In the r direction the particle oscillates between the two points corresponding
to V = 0 on the highlighted line segment.
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(b) The perturbed particle’s trajectory in the equatorial plane for φinit = 0 integrated
for ∆τ = 600m so that over one full circle around the central mass would be complete.
The trajectory does not close after one circle as evidenced by the subtle broadening of
the curve in the right part of the chart. Gray colour represents the non-stationary area
of the space-time with ∆r < 0. Coordinates x and y are given by (1.11).

Figure 2.4: A perturbation to the stable circular orbit from 2.3a for space-time
{Λ,m, a, q} = {−10−3 u−2, 27 u, 17 u, 3 u}. The particle’s initial radial position is
now rinit = 1.01rO and the spatial components of its initial four-velocity remain
the same, resulting in slightly different E ≈ 7.470 and L ≈ 138.5.
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(a) The course of the effective potential V in the vicinity of the perturbed particle’s
position for k = 3. In the r direction the particles move away from the starting point at
V = 0 on the highlighted line. The constants of motion are E ≈ 0.1970 and L ≈ 216.8
for the blue particle and E ≈ 0.1968 and L ≈ 215.8 for the red one.
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(b) The trajectories of multiple perturbed particles in the equatorial plane for φinit = 0
integrated until they reach a horizon. The curves are numbered by k characterizing
their initial perturbation, the full lines for k = 3 correspond to the chart above. Gray
colour represents the non-stationary area of the space-time with ∆r < 0. The inner
black hole horizon is not visible unless zoomed in. Coordinates x and y are given by
(1.11).

Figure 2.5: A perturbation to the unstable circular orbit from 2.3b for space-time
{Λ,m, a, q} = {1.7 × 10−6 u−2, 100 u, 27 u, 0.24 u}. The particle’s initial radial po-
sition is now rinit = rO ± δr with δr = 10−krO. The blue curves correspond to the
plus sign, the red ones to the minus sign. In all cases the spatial components of
the initial four-velocity remain the same as in the unperturbed model, resulting
in slightly different E and L (varies for each case).
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(a) The winding of particles (blue) around the unstable orbit (black) at rO = 8m in the
equatorial plane of space-time {Λ,m, a, q} = {1.7 × 10−6 u−2, 100 u, 27 u, 0.24 u}. Each
particle satisfies κ ≈ −1520, E ≈ 0.1969 and L ≈ 216.3, corresponding to the potential
shown in 2.3b. The initial radii of the particles are whole number multiples of m in
the area between the outer black hole horizon and the cosmological horizon, starting
at 3m and ending at 12m. The full line corresponds to the chart below, the marks on
it represent the particle’s position at τ = 10m and τ = 20m. Gray colour represents
the non-stationary area of the space-time with ∆r < 0. The inner black hole horizon is
not visible unless zoomed in. Coordinates x and y are given by (1.11).
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(b) The correspondence of rO − r for the innermost particle from the previous chart
(the blue curve) to (2.69) with K evaluated at three different τ0 corresponding to
the starting point of the trajectory and the two marks. As expected, the closer to rO
we choose the initial condition in (2.69), the closer the analytical result follows the
numerical trajectory. The green and blue curves almost precisely overlap.

Figure 2.6: Winding of particles around an unstable orbit in the equatorial plane.
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As a side note, κ seems to have a considerable effect on the stability of orbits,
see figure 2.7 below, where we consider two particles with the same integrals
of motion but with different charge-to-mass ratios in the same space-time. One
particle may enjoy the security of a stable orbit, while the orbit the other particle
is allowed to follow is an unstable one.
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κ ≈ −0.030
κ ≈ −0.027

Figure 2.7: A comparison of two effective potentials in a space-time with paramet-
ers {Λ,m, a, q} = {10−8 u−2, 1 u, 75 u, 5 u} for two particles with the same E = 1
and L = 15 but different κ. The blue particle can be in a stable orbit at r/m ≈ 26,
the red one in an unstable one at r/m ≈ 44.

The limits of the effective potential are

lim
r→±∞

V = −sgn(Λ)∞ (2.70)

and
lim
r→0

V = ∞ , (2.71)

which means that the singularity can be viewed as an infinite potential barrier
(recall that radial particle motion requires V < 0). This seems to be yet another
manifestation of the already-discussed repulsive gravity.

Similarly, one can also derive an effective potential for photons satisfying

1
2 (ṙ)2 = −Vγ(r;E,L) . (2.72)

After inserting κ = 0 and assuming gµν ẋ
µẋν = 0 in the derivation, we obtain

Vγ(r;E,L) = Ξ2

2r4

( (
∆r(r) − (a2 + r2)

)
(aE − L)2 −

(
a2 + r2

)
r2E2 + r2L2

)
,

(2.73)
a result already known and thoroughly analysed in previous literature [21, 22]. As
for massive particles, we can use the potential to determine the radii of photon
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orbits. After expressing E from Vγ = 0 and inserting it into dVγ/dr = 0, we
correctly obtain (2.54), provided that both E and L are non-vanishing. Vanishing
integrals of motion for photons,

gttṫ+ gtφφ̇ = 0 ,
gtφṫ+ gφφφ̇ = 0 ,

(2.74)

mean that ṫ and φ̇ are equal to zero, because the determinant of the system is
generally non-zero,

det
(
gtt gtφ

gtφ gφφ

)
= −∆r(r)

Ξ4 . (2.75)

The determinant vanishes only on the horizons, which are not suited to be ana-
lysed in the used coordinates. We would, therefore, be dealing with an unphysical
photon frozen in time. The second derivative of Vγ, after inserting E obtained
from dVγ/dr = 0, reduces into

d2Vγ

dr2

⏐⏐⏐⏐⏐⏐
orbit

= − 4Ξ2L2(3mr − 4q2)
r2 (Ξr2 + 3mr − 2q2)2 , (2.76)

which means that stable orbits (d2Vγ/dr > 0) are those satisfying

r <
4
3
q2

m
(2.77)

if there are any in the given space-time, while unstable orbits satisfy the opposite
inequality.

The r → 0 limit of Vγ is the same as for V ,

lim
r→0

Vγ = ∞ , (2.78)

but the limits for radial infinities are finite for photons,

lim
r→±∞

Vγ = −Ξ2

3
(
Λ(aE − L)2 + 3E2

)
. (2.79)

Nevertheless, finiteness of the potential is irrelevant when determining if a particle
can escape into infinity or not, as only the sign of the potential matters.

Additionally, one may use the effective potential to find ZAMOs, i.e. particles
on stationary circular orbits with L = 0. Once again, we have two equations at
our disposal, V = 0 and dV/dr = 0, this time somewhat simplified due to the
vanishing L. Recall that when we analysed static particles, we found out what
the particle’s charge-to-mass ratio κ must be for the particle to remain static at
a given r both at the axis and in the equatorial plane. Naturally, one would try
to use the equations to obtain E and κ, the two non-vanishing characteristics of
the particle, similarly to the static case. Unfortunately, that would again require
us to deal with equations that are quadratic in both unknowns, leaving us unable
to analytically decide which solutions are physical and which are not. Once more
the task is to be solved numerically only22.

22One could solve the equations analytically for κ and m, but expressing one property of the
particle and one property of the space-time does not seem to be beneficial in any way.
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Last but not least, inserting the four-velocity of a static particle into E and
L, the resulting potential expectedly vanishes. Expressing κ from dV/dr = 0, we
obtain the known result from the previous chapter (2.37). Unfortunately, finding
the static particle’s stability from the second derivative of V requires us to deal
with a polynomial of order eight in r, necessitating numerical computations for
every given scenario.

2.5 Radial motion along the axis of rotation
Another type of motion of interest is the purely-radial one. As the examined space-
time is not spherically symmetric, the direction of particle’s motion matters. Due
to frame-dragging, the rotation of the black hole pushes nearby particles in its
direction. Consequently, we shall focus on radial motion along the black hole’s
rotation axis for now, as it is the only particle direction never affected by dragging.

The axis position is θ ∈ {0, π}, which of course shall also be the θ component
of our particle’s four-position xµ. Due to the space-time’s symmetries, both values
of θ are equivalent and interchangeable in any of the results. Apart from the initial
θ, the only other condition we impose on our particle is that uθ = 0 at an arbitrary
initial time. The remaining components of the four-velocity are not expected to
be constant.

In the following, we denote

ρ2
0(r) ≡ ρ2(r, θ = 0) = r2 + a2 . (2.80)

After inserting the appropriate value of θ into the equations, the θ equation
reduces significantly into

duθ

dτ + 2r
ρ2

0(r)
uruθ = 0 . (2.81)

Consequently, a particle that does not move in the θ direction at a given initial
time remains forever bound to the axis, as expected from the symmetry of the
problem. Thus, we can safely disregard this equation.

As it turns out, we can also disregard the equation for φ. Of course, the φ
coordinate is degenerate at the axis, nonetheless the corresponding electrogeodesic
equation is not, perhaps surprisingly, an identity of the type 0 = 0. However,
seeing that the metric tensor does not depend on φ and

gφµ

⏐⏐⏐
θ∈{0,π}

= 0 ∀µ , (2.82)

the value of uφ is utterly irrelevant in the remaining equations and, as such, shall
not be of our concern.

This time, the remaining two equations,

d2t

dτ 2 = −Γt
ρσ(r)dxρ

dτ
dxσ

dτ + κF t
ν (r)dxν

dτ ,

d2r

dτ 2 = −Γr
ρσ(r)dxρ

dτ
dxσ

dτ + κF r
ν (r)dxν

dτ ,

(2.83)

must inevitably be viewed as a set of differential equations for the t and r com-
ponents of xµ, because we have to contend with varying r on the right-hand sides
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of the equations. In the general case, solving the equations seems impossible, in-
stead a more useful variant of the effective potential has been developed and shall
be discussed later on in the chapter. But first, a brief detour on the subject of
photons...

2.5.1 Null geodesics & near-horizon approximation
The equation for dr/dt can be obtained directly from the normalisation

gµν
dxµ

dλ
dxν

dλ = 0 (2.84)

after considering
dr
dλ = dr

dt
dt
dλ , (2.85)

which allows us to eliminate dt/dλ from the equation.
The result is remarkably simple,

dr
dt = ± ∆r(r)

Ξρ2
0(r)

(2.86)

and it represents the speed of light in our coordinates (generally not equal to one)
for photons on the axis.

After setting a = q = 0 we obtain the known result for the Schwarzschild–
anti-de Sitter geometry [23]

dr
dt

⏐⏐⏐⏐
a=q=0

= ±
(

1 − 2m
r

− 1
3Λr2

)
. (2.87)

Also considering Λ = 0, the Schwarzschild limit is [24]

dr
dt

⏐⏐⏐⏐
Λ=a=q=0

= ±r − 2m
r

. (2.88)

To transfer to the Minkowski space-time of special relativity, we further set m = 0
and obtain

dr
dt

⏐⏐⏐⏐
Λ=m=a=q=0

= ±1 (2.89)

as is to be expected, because the used coordinates become the standard spherical
coordinates after setting all parameters of the metric equal to zero.

Interestingly, result (2.86) holds for hypothetical charged massless particles
as well, because the particle’s charge does not enter the normalisation equation,
which is sufficient to get dr/dt for radial motion on the axis. While the charge
has no effect on the magnitude of the three-velocity, which is invariantly given
by the speed of light for massless particles, for a general θ it would influence
the null particle’s trajectory by bending it. Due to the symmetries of the space-
time, however, no bending can occur for radially-moving particles on the axis,
meaning it is indeed possible to consider dθ = 0 in the normalisation equation to
characterise radial motion. Nevertheless, the charge does enter the electrogeodesic
equation, changing dr/dλ and dt/dλ, but, again, not dr/dt. Hence, for these
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particles an outside observer cannot really say anything about the charge solely
by observing the particle’s trajectory.23

In the general case dr/dt cannot be integrated to obtain r = r(t) in terms of
elementary functions. However, should we take interest in null geodesics in the
neighbourhood of a given horizon, we can perform the near-horizon approximation
to obtain the leading term in r(t) by integrating the leading term of the Taylor
series of dr/dt at the horizon of multiplicity m located at r = Rm. As the leading
term’s power depends on the multiplicity, we shall make use of the factorisation
of ∆r(r) once more, considering

∆r(r) = δm(r)(r −Rm)m , (2.90)

where
δm(r) = −Λ

3

4−m∏
i=1

(r − ri) , (2.91)

with ri ̸= Rm being the remaining roots of ∆r(r)24. If there are any, multiple
roots are to be counted individually in δm. At r = Rm, δm is also equal to

δm(Rm) = 1
m!

dm

drm
∆r(r)

⏐⏐⏐⏐⏐
r=Rm

. (2.92)

In the following, it will become clear that we usually only need to know the
value of δm at a horizon. It is then advantageous to use the latter expression for
evaluating δm(Rm), as the former assumes and requires Λ ̸= 0, because it stems
from a factorisation of a fourth-order polynomial ∆r(r). For Λ = 0 the order of the
polynomial reduces to two and the factorisation becomes inaccurate, requiring a
redefinition of δm. However, the second formula holds (only on a horizon!) even in
the limit of a vanishing cosmological constant. Moreover, in the second expression
we do not need to know the values of the other roots of ∆m(r).

Further denoting
ζm(r) ≡ δm(r)

Ξρ2
0(r)

, (2.93)

we obtain
dr
dt = ±ζm(r) (r −Rm)m = ±ζm(Rm) (r −Rm)m + O

(
(r −Rm)m+1

)
. (2.94)

The leading term can be then integrated trivially by separation of variables.
For the case of a horizon of multiplicity one25 we get

t ≈ ± 1
ζ1(R1)

ln(r −R1) + t0 , (2.95)

23Similarly, in the equatorial plane no amount of charge can deflect orbiting massless particles
away from it. While the expression for the angular velocity (2.53) remains the same, as it can
also be extracted from the normalisation equation, the permitted radii of charged photon orbits
shift, since we needed to complete the system by including the (electro)geodesic equation to
obtain the polynomial for r (2.54).

24These roots may be complex and, therefore, not represent physical horizons. Furthermore,
there is always at least one root r1 ̸= Rm, because it is impossible to have a quadruple horizon
in our space-time as discussed previously.

25The remaining horizons may or may not be of a higher multiplicity or disappearing.
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where t0 is a constant of integration determined by the initial conditions (so that
the photon would be reasonably close to the horizon at t0 for the approximation
to hold), or

r ≈ exp
[

± ζ1(R1) (t− t0)
]

+R1 , (2.96)

Unfortunately, for the most general case of four distinct roots of ∆r(r) we are
unable to write reasonable analytic expressions for R1 and δ1(r). For extremal
scenarios, however, the positions of the horizons are known to us and we are able
to express r(t) completely in terms of the space-time’s parameters. Nonetheless,
the exponential dependence of r on t holds for both non-extremal and extremal
space-times alike as long as we are studying motion near a horizon of multiplicity
one.

Motion near double horizons, appearing in three of the four possible extremal
scenarios, has a different functional dependence,

t ≈ ∓ 1
ζ2(R2) (r −R2)

+ t0 , (2.97)

leading to
r ≈ ∓ 1

ζ2(R2) (t− t0)
+R2 . (2.98)

Finally, for the triple horizon we obtain

t ≈ ∓ 1
2ζ3(R3) (r −R3)2 + t0 , (2.99)

or
r ≈ ± 1√

∓2ζ3(R3) (t− t0)
+R3 . (2.100)

The triple horizon’s position is (1.76)

R3 = 3
√

3
4
m

Λ , (2.101)

and, after considering all the properties of the extremal scenario, ζ3 becomes

ζ3(R3) = 2
3

Λ2R3

(ΛR2
3 − 1) (5ΛR2

3 − 3) < 0 , (2.102)

depending on only two space-time’s parameters, Λ and m. The sign can be easily
inferred from the manifestly negative sign of δ3(R3) = −4ΛR3/3, since it holds
that sgn

(
ζm(r)

)
= sgn

(
δm(r)

)
. Knowing the sign of ζ3(R3), the interpretation of

the four possible sign combinations in r(t) is now clear: the upper sign in t(r)
describes photons nearing the triple horizon and the lower one photons moving
away from it in order for the photons to move towards the coordinate future.
This sign translates to the sign inside the square root in r(t). The outer sign
reflects whether the photon is above the horizon or not. For r > R3 the sign of
the first term in r(t) must be positive for both incoming and outgoing particles
alike so that the proper dependence of r on necessarily increasing t is achieved.
For r < R3 the sign must be negative.
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2.5.2 Effective potential & static particles revisited
The same method for establishing an effective potential as for equatorial motion
works here as well. The situation here is, however, somewhat simpler, since we
have to consider only two components of the four-velocity instead of the three
above. Moreover, only one constant of motion is relevant here as L vanishes. From
the equation for E (2.17) we obtain

ut = Ξ
∆r

(
Ξρ2

0(r)E − rqκ
)
. (2.103)

Substituting into the normalisation equation, we obtain, similarly as before,

1
2 (ur)2 = −V (r;E, κ) , (2.104)

where the effective potential is

V (r;E, κ) = − 1
2ρ4

0(r)

(
Ξρ2

0(r)E − rqκ
)2

+ ∆r(r)
2ρ2

0(r)
. (2.105)

As for equatorial motion, the turning points are the solutions to V (r) = 0, which
again requires us to look for the roots a polynomial of degree six. Once more, un-
fortunately, the potential is also unable to differentiate between physical particles
travelling forwards (ut > 0) and backwards (ut < 0) in time, as is shown in figure
2.10 later on in this section on page 80. This time, however, we will find a way
around the problem.

Recall that for equatorial motion, if it further holds that dV/dr = 0, then there
are stationary circular orbits at the corresponding r, with the sign of d2V/dr2

determining their stability. For motion bound to the axis, if V and dV/dr con-
currently vanish, a static particle may be located at the corresponding r, and
the second derivative again tells us whether the position is stable (minimum of
V ⇔ d2V/dr2 > 0) or not (maximum of V ⇔ d2V/dr2 < 0). Unlike the
previous case, this time we actually can solve the first two equations analytically
for E and κ. As V is quadratic in E, there are two solutions to V (E) = 0, one of
which is

E =
(

∆r

s
+ qκr

)(
Ξρ2

0(r)
)−1

, (2.106)

with

s =

√∆r(r)
ρ2

0(r)
. (2.107)

After inserting this E into dV/dr = 0, the corresponding κ turns out to be

κ = −Λr5 + 2a2Λr3 − 3mr2 + (a4Λ + 3q2)r + 3a2m

3q(r + a)(r − a)s . (2.108)

In this expression the attentive reader certainly recognises our previous result
(2.24), confirming the equivalence of the two approaches.

However, the other solution to V (E) = 0, differing by the sign of the term
∆r/s, would lead to an opposite sign of κ. Not only this result was not discovered
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when we first tackled the problem in the corresponding chapter, it is also not cor-
roborated by performed numerical simulations, which confirm the original result
only, see figure 2.8 below. This unphysical κ originates from taking the square
of ut (2.103), originally linear in E, in the normalisation equation. Indeed, the
correct E for static particles (or the turning points, for that matter) may be ob-
tained directly from the definition of the integral of motion (2.17) after inserting
the four-velocity of a static particle (2.20)26. The unphysical root is invariantly
lesser than the physical one as ∆r/s is positive: s is positive by definition and ∆r

must be positive too, because no turning points may be located in non-stationary
areas of the space-time (with gtt > 0), where the ansatz for a static particle
(2.20) violates the normalisation of the four-velocity. As it is a result of taking
the square of ut, the unphysical E actually corresponds to static particles travel-
ling backwards in time with ut = −1/√−gtt < 0, which can be easily proved by
inserting this ut into (2.17).

2 3 4 5 6 7 80

1

2

3

4

RH R0

r/m

t/
m

+κ
−κ
γ

Figure 2.8: The world lines of a particle with κ ≈ −182 given by (2.108) and
its oppositely-charged twin for {Λ,m, a, q} = {−10−3 u−2, 27 u, 14 u,−4 u}. As ex-
pected, the blue particle remains static at the initial position R0, while the red one
does not, as it moves towards the outer black hole horizon at RH . Note that even
though a part of the red particle’s world line satisfies |dr/dt| > 1, the particle
does not move faster than light, as the speed of light in the used coordinates is
generally not equal to one. The dotted curve is the world line of a photon released
simultaneously obtained by integrating (2.86) to demonstrate that effect.

As a matter of fact, we can use relation (2.106) to establish a “lite” effective
potential W (r;κ) able to determine the dependence of the locations of the turning
points on E for particles of a certain κ in a given space-time27. The turning points

26Take note that a similar approach is not applicable in the case of equatorial motion, as
particles at the turning points are generally still moving in space in the φ direction.

27In principle, we could have similarly obtained E as a root of V in the equatorial plane, how-
ever, there were not any means of determining which root of V was the physical one analytically
due to the presence of L. Nonetheless, it seems that one may do that easily in the Hamilton–
Jacobi formalism and subsequently obtain a separated effective potential in the equatorial plane
as well [25].
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are solutions to
E = W (r;κ) , (2.109)

with
W (r;κ) =

(
∆r(r)
s(r) + qκr

)(
Ξρ2

0(r)
)−1

. (2.110)

Similarly, one can establish a potential of the same kind for the unphysical
particles travelling backwards in time using the aforementioned second root of
V (E), obtaining

W (r;κ) =
(

−∆r(r)
s(r) + qκr

)(
Ξρ2

0(r)
)−1

. (2.111)

In the following, we shall focus primarily on W , but the same analysis leading to
similar results can be performed for W as well.

It is not immediately clear whether the allowed areas for a given E are “above”
or “below” the curve of the lite potential, i.e. whether it should hold that E ≥ W
or E ≤ W . For the original effective potential the allowed areas are for V ≤ 0.
Since V (2.105) is quadratic in E and the leading term’s coefficient is negative,
the allowed E for a given r must lie outside the open interval defined by the
roots of V (E). Moreover, since the lesser root is unphysical (as explained above),
the allowed E are greater than or equal to the greater root of V , which is, by
definition, W . Thus, for a particle with the charge-to-mass ratio κ and energy E
to be located in the allowed area, it must hold that

E ≥ W (r;κ) (2.112)

as in the classical case. This result is further corroborated by numerical sim-
ulations, see figure 2.9 on the next page with an example of the two effective
potentials for a particle moving on the axis along with its world line. For the
stated reasons, for particles travelling backwards in time it must hold that

E ≤ W (r;κ) . (2.113)

Similarly as if we used the original potential V , static particles can be found
using dW/dr = 0. This time, however, we do not need another equation to elim-
inate E as it is already absent from the condition. Solving the equation for κ
leads, once again, to the well-known result (2.24). The equivalence of using the
first derivative of V and W is not difficult to prove:

Disregarding κ, a constant parameter mathematically irrelevant in the proof,
there are two conditions V (r;E) must satisfy for static particles,

V (r;E) = 0 ⇔ E = W (r) (2.114)

and
d
drV (r;E) = 0 . (2.115)

Considering VW ≡ V
(
r,W (r)

)
≡ 0 and taking its first derivative, we obtain28

dVW

dr = ∂VW

∂r
+ ∂VW

∂W

dW
dr = 0 , (2.116)

28Take note that dV/dr = 0 because we are assuming static particles, but dVW /dr = 0
because VW is by definition identically equal to zero. While higher derivatives of V are not
necessarily vanishing, higher derivatives of VW are.
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(a) The world line of the particle integ-
rated for ∆τ ≈ 464m corresponding to
∆t = 300m.
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(b) The two effective potentials.

Figure 2.9: An example of particle motion on the space-time’s axis for space-time
{Λ,m, a, q} = {−10−3 u−2, 1 u, 0.21 u, 0.12 u} and a particle with κ = 531 and
E ≈ 2.71.

which means that
∂VW

∂r
= −∂VW

∂W

dW
dr . (2.117)

As W (r) = E for the studied static particles, it holds that

∂VW

∂W
= ∂V

∂E
. (2.118)

From the definition of VW it follows that

∂VW

∂r
= ∂V

∂r
≡ dV

dr . (2.119)

We choose to write the total derivative of V with respect to r instead of the
partial one, as we consider r to be the only “true” variable in V (r;E, κ), the
others being fixed parameters for the given potential. We thence obtain

∂V

∂E

dW
dr = −dV

dr = 0 , (2.120)

which means that simultaneously satisfying E = W and dW/dr = 0 indeed means
we are dealing with a static particle. However, not all static particles necessarily
need to satisfy these relations, as the latter one may seemingly be replaced by
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∂V/∂E = 0 leading to the same result. Upon closer inspection, however, for
E = W the partial derivative remarkably reduces into

∂V

∂E

⏐⏐⏐⏐⏐
static

= −Ξs (2.121)

with s defined by (2.107), which means that for the examined particles with
E = W the derivative is equal to zero only on the horizons.

Similarly, stability may be read off d2W/dr2. Considering the second derivative
of VW ≡ 0, we get

d2VW

dr2 = ∂2VW

∂r2 + ∂2VW

∂W∂r

dW
dr + ∂2VW

∂r∂W

dW
dr + ∂2VW

∂W 2

(
dW
dr

)2

+ ∂VW

∂W

d2W

dr2 = 0 .

(2.122)
The middle three terms vanish for static particles, as dW/dr = 0, and we are left
with

∂2VW

∂r2 = −∂VW

∂W

d2W

dr2 , (2.123)

which, in the same way as above, can be recast as

d2V

dr2 = −∂V

∂E

d2W

dr2 . (2.124)

Once again the second derivatives of V and W (assuming static particles) are
directly proportional to each other with the same positive constant of propor-
tionality (as for static particles −∂V/∂E = Ξs > 0). The minima of V satisfying
V (r) = 0 thus always translate into the minima of W satisfying W (r) = E (for
stable particles) and the same goes for the maxima (for unstable particles).

Unfortunately, for static particles whose staticity is guaranteed by their κ
(2.108) neither of the two potentials presents us with a second derivative simple
enough to determine the stability of the particles analytically. When examining
a particular scenario one has to determine the stability numerically.

On the following page, figure 2.10 illustrates most of what has been said above.
We can see the two effective potentials for a static particle both having the same
type of extreme (a minimum corresponding to a stable position). Moreover, the
examined V permits the existence of particles travelling backwards in time, which
clearly correspond to the potential W .

Take note that unlike V , the lite potential W may not be a continuous func-
tion29. Due to the presence of the square root in s, W is not defined in the
non-stationary areas of the space-time where ∆r < 0.

All things considered, using the lite potential W seems advantageous over
using V . The main drawback of W appears to be the absence of an analogy of
the classical formula

v =
√

2m(E − V ) , (2.125)
where v represents the velocity and m the mass of the particle, to determine ur

directly from W , as the derivation of W required a vanishing ur. The original
effective potential V can, therefore, still be of use.

29Therefore, saying that static particles can be found at the extremes of W may be somewhat
misleading, as discontinuous functions have local extremes located at the boundary of their
domain, where the first derivative, in fact, typically does not vanish.
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Figure 2.10: The two effective potentials for the static particle in figure 2.8 char-
acterised by κ ≈ −182 and E ≈ 7.89 located in the space-time with paramet-
ers {Λ,m, a, q} = {−10−3 u−2, 27 u, 14 u,−4 u}. The particle remains static at R0
where the potentials V and W have their minima (hence, the particle is in a
stable equilibrium). The other radius at which V = 0 also satisfies W = E. As
expected, this radius is the boundary of the area where non-physical particles
travelling backwards in time (ut < 0) can exist. RH is the outer black hole ho-
rizon’s position. The curve of W is dotted near the static position so that one
could see the minimum of V more clearly.

Returning to static particles, the other result from the corresponding section
can be replicated as well: Both potentials agree on the fact that r = ±a can house
static particles regardless of their κ. The first derivatives of the two potentials
with respect to r for r = ±a are

dV
dr = ∓ 1

12
4Λa4 + 3q2

a3 (2.126)

and
dW
dr = ∓

√
1

2
√

6
4Λa4 + 3q2

Ξa2
√

−2Λa4 + 6a2 ∓ 6am+ 3q2 . (2.127)

The derivatives vanish for
Λ = −3

4
q2

a4 , (2.128)

consistent with (2.26). Provided that V = 0 ⇔ E = W , that is,

E = 1
6Ξa

(
±3qκ+

√
12(3 − Λa2)a2 ∓ 36am+ 18q2

)
=

= 2a
4a2 − q2

(
±qκ+

√
4a2 ∓ 4am+ 3q2

)
,

(2.129)
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both derivatives are indeed proportional through

∂V

∂E
= − Ξ√

6a

√
−2Λa4 + 6a2 ∓ 6am+ 3q2 = 1

8a3

(
q2 − 4a2

)√
4a2 ∓ 4am+ 3q2 ,

(2.130)
where the last two formulae are given both before and after inserting the required
Λ. For the second expression in ∂V/∂E to be negative as required, it must hold
that

q2 < 4a2 , (2.131)
a condition also known to us from section 2.3.1, (2.27). Furthermore, in order to
be positive for r = a, the square root requires

m <
4a2 + 3q2

4a , (2.132)

a requirement we have already encountered as well30, (2.29). This result was
previously obtained by requiring the static particle to be in a stationary area of
the space-time for r = a. As before, for r = −a no such condition is necessary.
Interestingly, E disappears from dV/dr after setting r = ±a without any further
intervention, which means that we do not have to solve V = 0 if we are not
interested in E itself (or in ∂V/∂E as we were).

Unlike the previous case where staticity was guaranteed by κ, we are able
to analyse the stability analytically here. Even though κ was irrelevant in the
question of staticity, it turns out that it plays a crucial role for the stability of these
particles: after substituting for Λ and, in the case of d2V/dr2, also E (interestingly,
it does not disappear this time), the second derivatives of the potentials for r = ±a
are

d2V

dr2 = − 1
4a4

(
∓2am− 2q2 ± qκ

√
4a2 ∓ 4am+ 3q2

)
(2.133)

and
d2W

dr2 = −2
a

∓2am− 2q2 ± qκ
√

4a2 ∓ 4am+ 3q2

(4a2 − q2)
√

4a2 ∓ 4am+ 3q2 . (2.134)

Again, the two derivatives satisfy (2.124). Therefore, the threshold κ for which
the particle stability changes is

κ±
thr = 2 (am± q2)

q
√

4a2 ∓ 4am+ 3q2 . (2.135)

For r = +a stable positions (in the minima of the potentials) require qκ < qκ+
thr

and unstable qκ > qκ+
thr. Curiously, for r = −a the inequalities are swapped and

stable orbits require qκ > qκ−
thr, unstable qκ < qκ−

thr. The situation for r = a is
illustrated in terms of V on the following page in figure 2.11.

Further, an analogy of winding of incoming particles around an unstable orbit
in the equatorial plane is present here as well, as derivation of equation (2.69) is
exactly the same. Therefore, particles moving towards an unstable static position
tend to reach it in infinite proper time, even though they get arbitrarily close
in finite time. Figure 2.12 on page 83 illustrates both this fact and the instabil-
ity itself, as the eventually incoming particles are originally perturbations of an
unstable static case with the same E and κ.

30Recall that all the conditions combined led to a naked singularity space-time.
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Figure 2.11: The effective potentials V in the vicinity of r = a in the
space-time with parameters {Λ,m, a, q} = {−4/7203 u−2, 20 u, 21 u, 12 u} allow-
ing for static particles at r = ±a for three particles differing by their charge and
E. κ+

thr = 47/
√

129 ≈ 4.14, given by (2.135), is the charge-to-mass ratio of the
black particle with E ≈ 1.88 and it represents a marginally stable static position.
The blue particle with lower qκ and E ≈ 1.75 is in a stable static position and
the red particle with higher qκ and E ≈ 2.01 is in an unstable static position, in
accordance with our analytical results.

The limits of V are
lim

r→±∞
V = −sgn(Λ)∞ (2.136)

and
lim
r→0

V = 1
2

(
1 + q2

a2 − Ξ2E2
)
. (2.137)

This time, unlike in the equatorial plane, there is no infinite potential barrier at
r = 0 unless a = 0. Of course, the physical situation is different, as for rotating
black holes of the Kerr family there is no singularity at the axis in our coordinates.
If we considered a non-rotating central mass, the ring singularity would be reduced
into a point one accessible from all angles and the limit of the potential would be
the same as in the equatorial plane. For W , we have

lim
r→±∞

W =
√

−sgn(Λ) ∞ , (2.138)

meaning that for Λ < 0 the limit is ∞ and for Λ > 0 the potential W is not well-
defined for r → ±∞, as is to be expected since the radial infinities are located in
the non-stationary part of the space-time. For r → 0, we have

lim
r→0

W =
√
a2 + q2

Ξa , (2.139)

which is the greater root of (2.137), in agreement with our definition of W . Again,
the limit diverges to ∞ for a = 0 and it is finite otherwise.

82



-12 -10 -8 -6 -4 -2 0 2 4 6 810

5

10

15

20

25

r/a

t/
a

1.1 a
1.0 a
0.9 a

Figure 2.12: The world lines of particles with κ = 2κ+
thr given by (2.135) and

E ≈ 3.16 in space-time {Λ,m, a, q} = {−4/7203 u−2, 20 u, 21 u, 12 u} correspond-
ing to an unstable static position at r = a. The black particle at a remains static,
while the perturbed particles at 1.1 a and 0.9 a first move away from the static
position considerably and then approach it in infinite proper time. As the space-
time is that of a naked singularity, there are no horizons for the particles to cross.
Notice that the red particle reaches r = 0. The ring singularity is located in the
equatorial plane and not on the axis, and it cannot, therefore, obstruct particle
motion in the depicted case. The particle then traverses into the area with r < 0
and later returns back to “our” half of the space-time.

We may establish an effective potential for photons on the axis as well, satis-
fying

1
2 (ṙ)2 = −Vγ(r;E) . (2.140)

The potential
Vγ(r;E) = −1

2Ξ2E2 (2.141)

is constant and non-zero, as for photons on the axis E reduces to

E = −gttṫ ̸= 0 . (2.142)

Since there are no solutions to Vγ = 0, there are no turning points and, unsur-
prisingly, also no static positions for photons. Defining an analogue of W would,
therefore, be both impossible and pointless. Take note that as the potential is
constant, so is

ṙ = ±ΞE , (2.143)
which in the limit of a = 0 becomes ṙ = ±E, as known for the Schwarzschild–
anti-de Sitter space-time [23]. This result does not contradict the previous non-
constant dr/dt ̸= ṙ (2.86), as t is not an appropriate affine parameter to be used
in the equations of motion for photons.

83



Finally, due to the relative simplicity of the problem a remark on the topic of
the physicality of perturbations can be made here. Recall that for motion in the
equatorial plane when we first toyed with perturbations to show the difference
between stable and unstable orbits, we commented that there may be unphysical
perturbations that change the potential in such a way that would not allow the
perturbed particle to exist there. This time, one can easily see that accelerat-
ing the particle in the r direction is never an unphysical perturbation for static
particles:

The normalisation of the four-velocity for static particles gives us
(
ut

stat

)2
= − 1

gtt

= 1
|gtt|

. (2.144)

After adding the radial component, we have
(
ut

pert

)2
= − 1

gtt

− grr

gtt

(ur)2 = 1
|gtt|

+ |grr|
|gtt|

(ur)2 >
(
ut

stat

)2
. (2.145)

The relevant integral of motion on the axis reduces to

E = −gttu
t − κAt = |gtt|ut − κAt , (2.146)

whence one can easily see that

Epert > Estat , (2.147)

the energy of the perturbed particle increases by adding the radial component of
the four-velocity. Further, for static particles we know that

∂V

∂E
= −Ξs < 0 , (2.148)

which means that if we perturb ur of a static particle the potential V decreases
as E increases. Therefore, the original static position may never become suddenly
forbidden and a perturbation of this kind is, unsurprisingly, always physical.
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3. Quantum tunnelling & horizon
temperature
Within classical general relativity, the fate of an object that collapses to form
a black hole is sealed – there is no turning back and once the horizon forms
nothing can escape beyond it to the outside world. However, when studying the
behaviour of quantized test fields on the fixed background of black-hole space-
times, Stephen Hawking [6, 7] discovered that the virtual pairs of particles and
antiparticles that flutter into their fleeting existence in the vicinity of the horizon
can become separated with one of them escaping to infinity and the other –
having negative energy to enable the escape of its luckier sibling – swallowed by
the black hole, reducing thus the hole’s energy. Although the process is extremely
slow (the energy flux is inversely proportional to the square of the black hole’s
mass) it dramatically changes the final state of collapsing objects and the causal
structure of the space-time as a whole. It has not been observed in the universe so
far, but detection of an equivalent phenomenon has been reported in the so-called
analogue black holes [26, 27, 28].

However, working out the details of QFT on a curved background is an un-
easy task and it was thus a welcome surprise when it was discovered that the
temperature of the horizon can be calculated based on the assumption that it
is due to particles tunnelling through it [5]. This approach relies on the WKB
approximation and enumerates the action of a particle moving through the space-
time. Provided the particle stays clear of all coordinate singularities, the action
is real for classically allowed trajectories and can be used to find the trajectory
itself as a function of an affine parameter. Yet one can also calculate the action
for paths that are forbidden in classical general relativity, such as a path crossing
the black hole horizon from the inside towards the asymptotic region outside. It
turns out that the action is divergent across the horizon, which calls for a reg-
ularisation eventually yielding an imaginary contribution. Proceeding then with
the standard WKB approximation, we realize that the probability of the particle
to tunnel out through the horizon is proportional precisely to the exponential of
this imaginary part of the action, which, in turn, depends on the energy of the
tunnelling particle. In the leading order, the resulting spectrum is the same as
that of black-body radiation obtained by QFT calculations, as both are yielding
the same temperature. However, the tunnelling method further gives corrections
of higher order, unobtainable by the QFT calculations. It is due to the fact that
the original Hawking’s derivation was performed on a fixed background not losing
energy during the black hole’s evaporation, thus violating energy conservation,
which, on the other hand, is one of the key ingredients of the tunnelling method.
The radiation then contains correlations that may carry the information content
of the black hole [5, 29, 30].

There are two equivalent main routes one can take when adopting the tunnel-
ling approach: the null path and the Hamilton-Jacobi method, both evaluating
the action for the tunnelling particle [30]. While the latter method seems to be
somewhat more robust, the formalism of the former is more in line with the one
used by us in the previous chapter. Therefore, in order to obtain the temperatures
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of the horizons occurring in the Kerr–Newman–(anti-)de Sitter solution, we shall
make use of the null geodesic method.

3.1 The null geodesic method fundamentals
The WKB approximation is a semi-classical approximation of quantum mechanics
and one of the cornerstones of the tunnelling methods. It notices that without
loss in generality the wave function of a system ψ(x⃗, t) can be written down as

ψ(x⃗, t) = exp
(
i

~
S(x⃗, t)

)
(3.1)

with S(x⃗, t) being a complex function. After performing an expansion in ~/i in
S,

S(x⃗, t) =
∞∑

n=0

(
~
i

)n

Sn(x⃗, t) , (3.2)

and inserting the series into the Schrödinger equation, it turns out that the zeroth
order S0 – which is the most important order in the limit of negligible ~ corres-
ponding to classical mechanics – is the classical action, also denoted I in the
literature on horizon tunnelling. This is due to the fact that the resulting equa-
tion for S0 is identical to the Hamilton–Jacobi equation for the classical action.
We now apply this expansion to the problem of propagation of particles across a
region where classical motion is prohibited by, for instance, energy conservation.
We apply boundary conditions on both sides of the corresponding potential bar-
rier with no ingoing modes on the outer side. If we continue the solution smoothly
on both sides of the barrier we find that there is a non-zero probability for the
particle to appear on the outer side of the barrier. To the lowest order in ~ and
considering ~ = 1 in the following, the exponential part of the emission rate is
then found to be

Γ ∝ e−2Im S0 , (3.3)

allowing us to obtain the inverse temperature βR of horizon R by identifying the
result with the expected Boltzmann factor

Γ ∝ e−βRω , (3.4)

where ω is the energy of the particle.
The null geodesic method, proposed by Maulik K. Parikh and Frank Wil-

czek originally with the Schwarzschild solution in mind [5], consists in comput-
ing the action corresponding to a shell respecting the space-time’s symmetry and
crossing the horizon from the inside to the stationary area of the space-time on a
(radial) null geodesic path, taking with itself a portion of the original black hole’s
mass m denoted ω in the form of its energy1. The total energy of the space-time
plus the emitted particle is fixed and the shell travels on a geodesic with m re-
placed by m−ω, the original black hole’s mass minus the escaped energy. Due to
the black hole’s energy loss, the horizon’s position changes accordingly, which is

1The shell’s energy must by considerably smaller than the black hole’s mass for the WKB
approximation to hold, ω ≪ m [31]. This means the last stages of the black hole’s evaporation
cannot be described in this way.
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critical in the calculations. While the typical wavelength of the radiation is said
to be of the order of the black hole’s size, due to blue shift it is reasonable to
use the point particle approximation near the horizons, allowing us to consider
a single particle with energy ω instead of a shell. While it may seem that the
method oddly ignores massive particles by considering a null path, it is actu-
ally not true, as close to the horizon massive particles asymptotically follow null
geodesics as well. More often than not, due to their favourable properties (such
as regularity across horizons), the preferred coordinates in which the geodesics
are given are Painlevé-Gullstrand’s ones. Expressing the geodesic in coordinate
time, r̂ ≡ dr/dt, the inaugural paper [5] introduced the following procedure for
evaluating the imaginary part of the action:

It holds that

ImS0 = Im
∫ rout

rin
prdr = Im

∫ rout

rin

∫ pr

0
dp′

rdr , (3.5)

as the other parts of the action except for the radial one are real (at least in
the case of Schwarzschild geometry covered with regular coordinates across the
horizon). To proceed with the integration, the authors invoked the Hamiltonian
formalism. As explained in a previous paper [32], instead of using a Hamiltonian
describing only the particle (or the shell) and containing just its degrees of free-
dom, to ensure the conservation of energy one needs to consider both the particle
and the black hole in the Hamiltonian. Starting from the full action, an effect-
ive action containing only the non-gravitational degrees of freedom was derived.
From the action’s integrand (that is, the Lagrangian), one can see the particle’s
effective Hamiltonian is equal to the ADM mass of the black hole, given by the
mass parameter of the metric for the Schwarzschild solution. Using the relevant
Hamilton canonical equation

r̂ = dH
dpr

⏐⏐⏐⏐⏐
r=const.

(3.6)

the authors obtained

ImS0 = Im
∫ m−ω

m

∫ rout

rin

dr
r̂

dH . (3.7)

The value of the Hamiltonian H is taken as m before the emission of the particle
and m − ω afterwards, as the mass parameter in the metric diminishes by the
emitted particle’s energy. After a simple substitution in the integral, one finally
obtains

ImS0 = Im
∫ +ω

0

∫ rout

rin

dr
r̂[m− ω′] (−dω′) . (3.8)

The square bracket in r̂[m− ω′] is there to remind us to consider geodesics with
a diminished mass parameter.

To obtain the imaginary part of the integral, one has to consider an appro-
priate regularisation of the otherwise divergent real integral. The original paper
suggests using the so-called Feynman prescription, shifting the integrand’s denom-
inator – which vanishes on the horizon, leading to the aforementioned divergence
– into the complex plane. Considering a limit to zero in the imaginary term, the
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evaluation of the integral over r is done using the Sokhotski–Plemelj theorem,
which in the integral form for a < 0 < b reads [33]

lim
ϵ→0+

∫ b

a

f(x)
x± iϵ

dx = v.p.
∫ b

a

f(x)
x

dx∓ iπf(0) , (3.9)

where v.p. denotes the Cauchy principal value of the integral. Take note that in
the Schwarzschild case, it holds that rin > rout, as the forbidden trajectory is
thought to start just inside the initial position of the horizon (in the standard
coordinates rin = 2m − δ for δ ≪ m) and to end just outside the final position
(rout = 2(m− ω) + δ). Consequently, the limits of integration must be switched
in order to use the formula, adding a further minus sign in the computation. For
the subsequent integration over ω no similar trick is required. However, if r̂ is
complicated enough, it may not be possible to evaluate the integral in terms of
elementary functions.

From (3.9) it is obvious that there are two non-equivalent ways of performing
the regularisation, leading to a different sign of the imaginary part. Ignoring
antiparticles for now, the correct prescription is said to be ω → ω − iϵ, where
ϵ > 0, “so as to ensure that positive energy solutions decay in time.” Apart from
this cryptic message there is no other clue given to explain the choice of the
sign. In subsequent papers, various authors approach the problem of the sign
selection differently: some repeat the original statement without adding anything
new [30, 34]2, some prefer not to talk about the sign at all [35, 36, 37, 38] and
some come up with explanations seemingly unrelated to the original one [39, 40].
It may be entirely possible that some authors choose the sign in such a way
that ensures the positivity of the resulting temperature, meaning a preferred
result influenced the computation! We deemed the situation unsatisfactory and
attempted to understand the quoted argument better.

The key to understanding the suggested prescription seems to lie in the WKB
approximation. The temporal part of the wave function is

ψ(x⃗, t) ∝ exp (−iωt) . (3.10)

Shifting the energy ω → ω ± iϵ leads to

ψ(x⃗, t) ∝ exp (±ϵt) exp (−iωt) . (3.11)

For a wave function to describe decay, it is logical to assume its amplitude should
decrease in time. This indeed corresponds to the choice of the minus sign in the
shift in energy3. In the limit of ϵ → 0+, the wave function describes a stable
particle.

Regarding antiparticles, one should properly consider not only the case of
a particle tunnelling from the inside of the black hole, but also tunnelling of

2What is more, after repeating the original argument [30] suggests that one should use
ω → ω+ iϵ! This curious disagreement with the inaugural paper was probably meant to amend
for a missing minus sign in (2.13), because otherwise the temperature would be negative. In
fact, the authors apparently forgot to switch the limits of integration rin > rout so that they
could use the Sokhotski–Plemelj formula, which would lead to the positive sign of temperature
only if the prescription ω → ω − iϵ was used.

3For antiparticles the opposite sign was proposed, presumably because they are thought to
travel backwards in time. Indeed, limt→−∞ ||ψ||2 = 0 only if the plus sign is used.
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a nascent antiparticle into it, which is a classically forbidden process as well.
However, it has been found [5] that considering both processes affects only the pre-
factor in Γ and has no effect on the resulting temperature whatsoever, meaning
that in practical calculations antiparticles can be safely disregarded.

Furthermore, it is a well known fact that considering coordinates that are
singular across the horizon (as we intend to do), one obtains half the correct in-
verse temperature. The reason is that for singular coordinates even the classically
permitted trajectories of particles falling into the black hole produce a divergent
action, which needs to be regularised in the same way as the action of the outgo-
ing particles, leading to a non-vanishing imaginary part. The resulting tunnelling
rate is then proportional to the quotient of the exponential factors [30, 40, 41],
leading to

Γ ∝ exp
(

− 2(ImSout − ImSin)
)
, (3.12)

where Sout and Sin are respectively the action for outgoing and incoming particles.
Using regular coordinates, one obtains ImSin = 0 and the corresponding expo-
nential factor is equal to one.

Before we continue further, it needs to be said that, as with most new theories,
the method is not without its opponents, the most vocal of which appears to be
Vladimir A. Belinski [42]. The main points of his criticism seem to be as follows:

• First, no geodesic can reach a future horizon from the inside and cross it.
That is correct, but the method does not rely on analytic extension of the
geodesic across the horizon. Instead, we end the classical geodesic below
the horizon and continue it above, arbitrarily close to the horizon in both
cases, connecting the two points via a full quantum-mechanical solution.

• Further, it is asserted that the used coordinate system should be irrelevant.
We have already covered the difference between coordinates that are regular
and singular across the horizon, but the request is more profound than
that: we should be able to consider an arbitrary coordinate transformation
that could lead to multiple parts of the action being complex. The original
formula for the imaginary part of the action (3.5) is, however, manifestly
non-covariant, as it assumes the only complex part is the one corresponding
to the radial coordinate, which is indeed problematic4. To remedy this,
a generalisation of the null geodesic method has been suggested [30, 40],
replacing the original integral (3.5) with that of the full Liouville differential
one-form

ϖ = pµdxµ , (3.13)

providing us with a covariant formula. The generalised method gives the
same results if the r component of the four-momentum is the only one
gaining an imaginary part upon crossing the horizon.

• Next, there is a related question whether the temporal part of the action
should be taken into consideration when evaluating the imaginary part, a
problem more visible when angular momentum also comes into play. We
shall briefly discuss that later.

4Take note that the other approach to tunnelling, the Hamilton–Jacobi method, is covariant,
and it generally seems more robust [30].
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• Finally, as any point of the horizon is a regular point of the space-time, the
equivalence principle allows us to introduce locally flat coordinates with
vanishing Christoffel symbols there, which supposedly means that no ra-
diation should emanate from there, because that would mean there is a
source of radiation in the Minkowski space-time as well. However, even in
a globally flat space-time an accelerated observer would be immersed in a
heat bath of a temperature given by his or her acceleration with respect to
the (both locally and globally) flat space-time [43], a phenomenon called
the Unruh effect. A static outside observer (perhaps trying to figure out
the horizon’s temperature) is accelerated with respect to the locally flat
frame momentarily static with respect to the horizon, which results in the
thermal radiation seen by the observer. With the last point, Belinski actu-
ally attacks not only the tunnelling methods, but the whole concept of the
Hawking radiation itself!

From the perspective of what has been said, some points of the criticism do not
appear entirely convincing, while some do, mainly the issue of covariance and the
temporal part of the action. At any rate, most of the scientific community seems
to have accepted the tunnelling approach as a valid perspective on the thermal
aspects of the horizon.

Now, let us apply what has been said to the horizons in our space-time, in
hopes of obtaining their temperatures...

3.2 Horizon temperatures

3.2.1 Horizons of multiplicity one
With the Kerr–Newman–(anti-)de Sitter space-time being an asymptotically non-
flat stationary solution with multiple horizons, there are several pitfalls that may
endanger our quest for horizon temperatures:

For one, while the θ coordinate was entirely ignored by radial geodesics in the
static Schwarzschild solution, it does affect them in our space-time. However, the
temperature (or, equivalently, surface gravity) should be constant on the whole
horizon, as one must assume thermodynamic equilibrium in order to speak about
temperature in the first place, which means a particular choice of θ in the geodesic
should not affect the resulting temperature. Since we have already analysed null
radial geodesics on the axis in section 2.5.1, we shall make use of our previous
results and consider tunnelling of particles on the axis. The θ independence of the
temperature in the Kerr family of black holes is also supported in the literature
even if the temperature is obtained by the means of tunnelling [30, 37].

Further, as our space-time is not asymptotically flat, it does not have a well-
defined ADM mass. Instead, we shall use the generalised Komar mass [44]

M = m

Ξ2 , (3.14)

as it is equivalent to the ADM mass if both exist (in asymptotically flat stationary
space-times). On the subject of the invariant mass there is a curious inconsistency
in the literature, with some authors using the above value [34, 45, 46, 47] and
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some m/Ξ [35, 48]. Interestingly, as it turns out the multiplicative factor even-
tually drops out during the evaluation, meaning neither set of papers necessarily
contains erroneous results.

Next, using the full expression for r̂ (2.86) would make it difficult to perform
the regularisation, as the denominator in the full 1/r̂, ∆r(r), is not in the form
allowing for the use of the Sokhotski–Plemelj theorem. Instead, one must use the
factorisation (2.94)5. At least for now, let us consider a horizon of multiplicity
one only. Extremal horizons shall be discussed later. All things considered, the
integral we want to evaluate is

ImSr
out = sgn(r̂) Im

∫ +ω

0

∫ rout

rin

dr
ζ1(r) (r −R[m− ω′])

(
−dω′

Ξ2

)
, (3.15)

where the index r stresses that we are dealing with the radial part of the action.
One needs to include the sign of r̂ to make sure that the particle indeed tunnels
out of the horizon (e.g. considering the inner black hole horizon, a particle tunnels
out towards smaller r, sgn(r̂) < 0). ω is the reduction of the space-time’s mass
parameter during the tunnelling process, the particle’s energy is ω/Ξ2. Here, it
should be noted that in our treatise we assume that it is possible for a particle
carrying a part of the space-time’s energy to tunnel through any horizon, including
the cosmological ones. We are not investigating the process of pair creation and
its feasibility in the vicinity of any of the four horizons.

Using the factorisation, it is not immediately clear how the shift in energy
ω′ → ω′ − iϵ translates into the integrand’s denominator r −R ± iϵ, because we
do not have an expression for R for a general space-time6. Fortunately, having an
explicit formula for R is not needed, as we can infer the sign of the dependence
of R on ω′ from looking at the derivative of ∆r with respect to m,

∂∆r

∂m
= −2r . (3.16)

As m decreases by ω′, ∆r increases in the area with r > 0 and decreases every-
where else. The change in the positions of the horizons is then clear: provided
the space-time contains all of them, the outer black hole horizon moves towards
smaller r, while the other three horizons move towards higher r. The situation for
a generic (−1 ⊕ 1 − 1 + 1−) scenario is illustrated on the following page in figure
3.1, where a decrease in m corresponds to going from the red curve to the blue
one. Corresponding horizons of multiplicity one in extremal or naked singularity
space-times follow the same rules.

Knowing how the horizons change with a decreased mass parameter, one can
see that the leading term in the Taylor series in ω′ for the outer black hole
horizon’s position must be negative, while for the remaining three horizons it
must be positive. Considering ω′ → ω′ − iϵ, it is clear that the leading order in
iϵ must have the opposite sign. Ignoring the leading term coefficient’s absolute
value, as it is irrelevant in the limit of ϵ → 0+, one must consider R → R + iϵ
for the outer black hole horizon and R → R− iϵ otherwise. In the following, the
sign of the appropriate shift in R shall be denoted sgn(ImR).

5As it is actually the integral of a delta function, the imaginary term in the theorem makes
it irrelevant whether one uses the first or the second expression in (2.94).

6In the extremal scenarios, however, we do know the horizons’ positions explicitly.
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Figure 3.1: The course of ∆r(r) in the vicinity of the horizons for two space-times
with the same {Λ, a, q} = {5 × 10−5 u−2, 40 u, 20 u} but with different values of
m, both corresponding to the most general horizon configuration. The quantities
are expressed using a instead of m, as the value of a is the same for both curves.

The integration over r is then a trivial application of the Sokhotski–Plemelj
theorem (3.9). One must only keep in mind that the regularised denominator
contains −R instead of +R when selecting the sign of the imaginary part and add
sgn(rout − rin) to include the switch of the integration limits whenever rin > rout.
We obtain

ImSr
out = −sgn(r̂) sgn(ImR) sgn(rout − rin) π

Ξ2

∫ ω

0

Ξρ2
0(R[m− ω′])

∆′
r(R[m− ω′]) dω′ , (3.17)

where we further used the definition of ζ1 (2.93) and (2.92) to replace δ1 with ∆′
r

now that the functions are evaluated on a horizon.
Next, we need to compute the integral over ω′. However, the lack of a general

formula for R again proves to be an unwelcome complication. Instead, we shall
perform a series expansion in ω to obtain the temperature. Unfortunately, the
mentioned higher-order corrections shall be lost in the process. Seeing that for a
well-behaved f we have∫ ω

0
f(m− ω′) dω′ =

∫ ω

0

(
f(m) + O(ω′)

)
dω′ = f(m)ω + O(ω2) , (3.18)

we can write

ImSr
out = −sgn(r̂) sgn(ImR) sgn(rout − rin) πρ

2
0(R[m])

Ξ∆′
r(R[m]) ω + O(ω2) . (3.19)

For classically allowed particles crossing the horizon in the opposite direction,
one must take the opposite sign of r̂ and, as the black hole’s mass increases after
swallowing a particle m → m + ω, the remaining two sgn functions in ImSr

out
change their signs as well, correctly leading to the discussed factor two in

ImSr
tot = ImSr

out − ImSr
in = ImSr

out − (−1)3ImSr
out + O(ω2) = 2ImSr

out + O(ω2) .
(3.20)
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Finally, omitting O(ω2) in the following, by comparing

exp(−2ImSr
tot) = exp(−βω/Ξ2) , (3.21)

where we used that the particle’s energy is ω/Ξ2 (thus eliminating the factor 1/Ξ2

from ImSr
tot as promised), one arrives at the result

βR = −sgn(r̂) sgn(ImR) sgn(rout − rin) 4πΞρ2
0(R)

∆′
r(R) . (3.22)

Now we must check if the inverse temperature is positive for all the four
possible horizons of multiplicity one in the space-time as it should be. If not, our
procedure would be manifestly flawed. The sign of βR is

sgn(βR) = −sgn(r̂) sgn(ImR) sgn(rout − rin) sgn(∆′
r(R)) , (3.23)

where sgn(∆′
r(R)) can be easily read off figure 3.1 for each horizon. Inspecting

table 3.1 below, where the signs of the sgn functions are written, one can see that
our procedure gives βR > 0 consistently for every horizon of multiplicity one,
much to our delight.

R sgn(r̂) sgn(ImR) sgn(rout − rin) sgn(∆′
r(R)) sgn(βR)

RC− + − + + +
RI − − + − +
RO + + − + +
RC+ − − + − +

Table 3.1: Signs of the inverse temperature for the four possible horizons of mul-
tiplicity one (RC− < 0 < RI < RO < RC+).

To sum up, the inverse temperature of a horizon of multiplicity one was found
to be

βR = 4πΞρ2
0(R)

|∆′
r(R)| . (3.24)

This result, however, is not in accordance with what seems to be a general con-
sensus on the KN(a)dS horizon temperature, as the common result does not
contain the Ξ factor7 [35, 41, 45, 46, 47, 48, 49, 50]. Nonetheless, our result does
occasionally appear in the literature as well, although it is indisputably in the
minority [34]. It seems that this disagreement is a coordinate effect: the extra Ξ
factor comes from the radial null geodesic r̂ (2.86), which was obtained directly
from the metric. The only paper in agreement with us uses the same metric as
we do, but more commonly a rescaled time coordinate dT = dt/Ξ is used. It then
holds dr/dT = Ξ dr/dt, eliminating the Ξ factor in βR in the end. The other
coordinates appear to be preferred due to the normalisation of the Killing vector
fields [35, 49], which is – as usual – considerably more complicated in space-times
that are not asymptotically flat. The Killing vector corresponding to the time

7Alas, in the limit of vanishing Λ or a the difference disappears, as Ξ → 1. Hence, we
cannot check where the discrepancy arises from in an asymptotically flat space-time with clear
interpretation of the quantities involved in the calculation.
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coordinate is typically normalised to −1 at radial infinity. It can then be iden-
tified with the four-velocity of a static observer at flat radial infinity, which is
the observer with respect to whom one defines surface gravity, and, equivalently,
horizon temperature. This normalisation is not achievable for our space-time with
a non-zero Λ, which means that the notion of temperature is ill-defined in space-
times that are not asymptotically flat, as they lack a preferred observer in the
definition of surface gravity. The two cited papers justified their choice of the nor-
malisation by saying the conserved quantities then generate the so(3,2) algebra,
which is apparently relevant in the context of the analogue of our space-time in
supergravity [51]. Having said that, it is now clear that it is important to have
a consensus on a preferred normalisation of the Killing vectors, as space-times
that are not asymptotically flat lack an obvious choice of it. At any case, consid-
ering an unusual normalisation does not invalidate our derivation or our result,
however, one needs to specify the coordinates which were used to obtain it.

The previous method can be generalised to include not only the conservation
of energy but also angular momentum [34, 37, 38, 39, 52, 53, 54, 55]. A decrease in
the space-time’s energy also results in a decrease in its total angular momentum
am/Ξ2 if a is constant. As φ is a cyclic coordinate in the Lagrangian, it has
been suggested that one should use the reduced action to eliminate this degree of
freedom (as usual, we were not able to find an explanation anywhere in the liter-
ature). The corresponding reduction of the action yields a shift in the exponent
of the tunnelling probability which is proportional to the conserved angular mo-
mentum of the particle and the angular velocity of the black hole horizon. This,
however, has no effect on the temperature of the horizon and the above result
still holds, as the same shift should be considered in the Boltzmann exponential
as well. However, t also is a cyclic coordinate in the Lagrangian, and none of the
cited papers seems to acknowledge that fact. This is related to one of the points
of Belinski’s criticism: that the imaginary contribution of the temporal part in
the action tends to be ignored in the literature. Further, considering the reduced
action seems incompatible with the covariant generalised null geodesic method
integrating ϖ (3.13), as that would lead to an opposite sign of the angular part
in the action.

The last two paragraphs discussed two encountered problems that were com-
pletely different in their nature. The first paragraph was about a problem with
the definition of the horizon temperature that is unavoidable in any method try-
ing to compute it. The second one, however, should be understood as a criticism
of the very method of null geodesics, as we were not able to solve the issues at
hand to our satisfaction. It almost appears that after seeing that a naive applica-
tion of the formalism yields correct results, some problems with the method have
been conveniently swept under the rug. The other approach, the Hamilton–Jacobi
method, relies on reconstructing the entire action and it is devoid of the presen-
ted problems [30]. Using this method for performing computations concerning
tunnelling is strongly recommended.

As a side note, the result (3.24) seems to imply that neighbouring horizons
may not be of the same temperature, which means they are not in a thermody-
namic equilibrium – which means that it is also inappropriate to speak about
temperature in the first place, as it is meant to describe equilibria! A radiation
flux from the hotter horizon towards the colder one could be, in theory, detected
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by an observer living between them. This classical viewpoint, however, neglects
the importance of observers in general relativity. While temperature is typically
given with respect to a static observer in infinity, a different observer generally
measures a different temperature [56]. Especially in our case, where it is unknown
which observer can measure our result to begin with (because for space-times that
are not asymptotically flat the notion of temperature is not considered with re-
spect to a given observer but rather a particular normalisation of the Killing
vectors, as discussed above), the conditions neighbouring horizons must satisfy
in order to be in an equilibrium are unclear.

3.2.2 Extremal horizons
As far as the extremal horizons are concerned, performing a corresponding limit
in βR gives a divergent inverse temperature

lim
∆′

r(R)→0
βR = ∞ , (3.25)

so the temperature of an extremal horizon is zero, as expected for the Kerr–
Newman–(anti-)de Sitter solution8 [47].

On the following page, figure 3.2 shows this divergence considering space-times
with fixed {Λ, a, q} but with varying m. In each subfigure, for one particular value
of m the space-time becomes extremal and the inverse temperatures of the horizon
of multiplicity two in 3.2a and of the horzion of multiplicity three in 3.2b diverge.

However, the problem of the extremal horizon temperature could be ap-
proached more thoroughly than by simply performing a limit in the temperature
derived for horizons of multiplicity one. It is believed that no emission of neut-
ral particles can occur for extremal space-times if it leads to a naked singularity
[37, 57], which is the case for all possible horizons of multiplicity two in our metric
as seen in the section on parametric perturbations 1.2.7. However, neutral tun-
nelling from the horizon of multiplicity three does not lead to a naked singularity
but to a horizon of multiplicity one, which perhaps makes performing the above
limit more justified for this horizon. In any case, it seems that the proper way to
treat extremal horizons would be by considering emission of particles preserving
the extremality [37]. Even though we shall not follow this path to its end we
shall lay the groundwork for this approach, perhaps as a foundation for future
research...

The Kerr–Newman–(anti-)de Sitter space-time is characterised by four para-
meters. Three of them – mass m, angular momentum per unit energy a and
charge q – are properties of the black hole, while the last one – the cosmological
constant Λ – is an attribute of the background9. A tunnelling particle cannot be
expected to alter Λ, but it is able to take a portion of m, a and q with it. As
extremality depends on a delicate combination of the space-time’s parameters, it
is necessary for the particle to carry more than just mass. In order to keep Λ fixed,
it must be considered as one of the free parameters of the extremal scenario. For-
tunately, upon inspecting our results summarised in section 1.2.6, one sees that

8Note that extremal horizons in different space-times can have non-zero temperatures [35].
9This distinction is somewhat arbitrary, as the parameters simply characterize the solution

of the Einstein equations, but one usually considers the universe a collection of separate local
sources and a shared cosmological background.
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(a) Inverse horizon temperatures βR for {Λ, a, q} = {−10−3 u−2, 10 u, 20 u} as functions
of m. For m = 24.12 u, the extremal scenario (⊕2+) separates the horizonless scenario
(⊕) for m < m and the scenario with both black hole horizons (⊕1 − 1+) for m > m.
The outer black hole horizon is denoted RO, the inner RI. As Λ < 0, there are no
cosmological horizons.
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(b) Inverse horizon temperatures βR for {Λ, a, q} = {10−3 u−2, 11.09 u, 10.34 u} as func-
tions of m. For almost every m in range the space-time is that of a naked singu-
larity (−1 ⊕ 1−) with no black hole horizons, but with both cosmological horizons
RC+ > 0 > RC−. However, for m = 14 u the positive cosmological horizon is of multi-
plicity three, corresponding to scenario (−1⊕3−), and its inverse temperature diverges.

Figure 3.2: Inverse temperatures βR (3.24) of extremal horizons.
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every scenario has already been prepared with Λ as one of its free parameters.
All the double-horizon scenarios were discovered using a and q as the remaining
free parameters, which means the tunnelling particle does not need to carry away
portions of both a and q along with a part of m(Λ, a, q); it is possible (but not
necessary) to ignore one of these parameters. The part of the black hole’s mass
the particle carries away is determined by the (arbitrary) portions of a and q it
also takes so that extremality is preserved. For the triple-horizon scenario, there
is only one other free parameter (we have chosen m), which means the particle
needs to take away parts of all the three remaining parameters m, a and q.

Moreover, if the particle carries a portion of a and q, one should be more
careful using the Hamilton canonical equations. Altering a may further convolute
the already-troublesome issue with the angular part of the action mentioned in
the previous section, and tunnelling charge seems to necessitate the introduction
of a canonical momentum conjugate to the four-potential into the reduced action
[53, 54].

As far as r̂ is concerned, we already know that considering a charged massless
particle changes nothing in r̂, as the expression was derived from the normal-
isation equation, which does not contain the particle’s charge-to-mass ratio κ.
Considering our r̂ for radial motion on the axis, it is questionable how such a
particle could carry away part of the black hole’s angular momentum, which
would already be problematic if we wanted to include the conservation of angular
momentum properly in the previous case of non-extremal horizons. There, the
particle does not affect angular momentum per unit energy a, but as it decreases
the black hole’s energy it must somehow decrease the total angular momentum
as well. On the other hand, a particle that decreases a in such a way that the
total angular momentum is constant should definitely move on the already-used
radial geodesic (2.86).

Another thing that would need to be examined is how the extremal horizon’s
position changes after performing an appropriate decrease in the values of the
black hole’s parameters. For scenario (−1 ⊕ 3−) it is clear that the horizon’s
radius decreases with decreasing m, but for the three double-horizon scenarios it
is not immediately apparent.

Finally, in order to perform the integration over r in the near-horizon approx-
imation of 1/r̂, one would not be able to use the Sokhotski–Plemelj theorem as
presented (3.9). Instead, we would need to find analogous formulae with higher
powers of x.
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Conclusion
This thesis is a comprehensive review of the properties of a special class of solu-
tions to Einstein-Maxwell equations involving a non-zero cosmological constant,
namely the Kerr–Newman–(anti-)de Sitter family of space-times. After verify-
ing compliance with the Einstein–Maxwell equations, we looked into their causal
structure and presented all the four possible extremal scenarios. The conditions
imposed on the parameters in the metric and the resulting positions of the ho-
rizons are compactly summarised in section 1.2.6 and the effects of parametric
perturbations can be found in table 1.2 on page 25. We also gave the relevant
Penrose diagrams for these solutions, beginning on page 28. After a brief compar-
ison of the extremal Kerr–Newman–(anti-)de Sitter scenarios with those from the
simpler Kerr space-time we concluded that the observed value of the cosmological
constant does not allow real black holes to be over-rotating to a measurable de-
gree. Next, we investigated the concept of frame-dragging and the related notion
of ergosphere, proving that closed time-like curves must lie below the innermost
ergosphere hidden under the first positive horizon (if applicable) in the process.

In the following and most extensive section, we dealt with the motion of test
particles, both neutral and charged, in these backgrounds. Following our deriv-
ation of the equations and integrals of motion in the Lagrangian formalism, we
showed that an equation of motion corresponding to a non-vanishing compon-
ent of uµ is interchangeable with the normalisation equation. Afterwards, we
investigated static particles using the equations of motion. A charge-to-mass ra-
tio allowing massive particles to stay at a given point in the used coordinates was
discovered both on the axis (2.24) and in the equatorial plane (2.37). Moreover,
we found out that static particles of arbitrary charge may be located on the
axis at r = ±a for certain naked-singularity space-times with a negative cosmo-
logical constant. We also determined when these particles become zero angular
momentum observers: a particle bound to the axis is always a ZAMO, and static
particles in the equatorial plane must satisfy (2.40). Next, we focused on the
equatorial plane, first specifying the necessary conditions the angular velocity
of a particle must satisfy in order to stay in a stationary circular orbit with a
given radius in section 2.4.1. However, after performing a few numerical exper-
iments it became clear that the conditions are not sufficient, as we discovered
some world lines satisfying the equations that have a negative time component
of their four velocity, meaning these particles travel backwards through time,
contrary to our common experience. The inability to distinguish between normal
and antichronical particles was also detected in the effective potential, which we
established after a short discussion of photon orbits. The effective potential was
defined as ṙ2/2 = −V so that it behaved similarly as in classical mechanics for
both massive particles (2.63) and photons (2.73). Unfortunately, we were unable
to separate the characteristics of the particle and the dependence on the radial
coordinate in V . Finally, we focused on radial motion on the axis. First, we ex-
amined radial null geodesics and performed the near-horizon approximation in
section 2.5.1, which proved to be relevant in the following chapter on quatum
tunnelling. Next, we performed a thorough analysis of the effective potential for
charged massive particles (2.105). We were able to separate the integral of motion
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classically corresponding to energy from the potential, defining the so-called lite
potential (2.110) satisfying W ≤ E in the classically allowed areas. The lite po-
tential was shown to be equivalent to the original one when examining the turning
points, staticity and stability of static particles. Additionally, the lite potential
was also found to ignore the problematic antichronical particles, for which one
can derive an analogous lite potential (2.111). Using the effective potentials, we
were able to reobtain our previous results for static particles both on the axis
and in the equatorial plane. For static particles at r = ±a on the axis we were
further able to show that their stability depends on their charge-to-mass ratio,
which, interestingly, was irrelevant in the question of their staticity. The effective
potential (2.141) showed there are no turning points for photons on the axis.

In the final chapter we introduced the null geodesic tunnelling method of
calculating the temperature of horizons. We applied our previous results to find
the inverse temperature of horizon R of multiplicity one (3.24), a result depending
on the choice of coordinates due to the lack of a static observer in radial infinity
in the examined space-time. We also summarized the inconsistencies present in
the literature on the subject along with the issues arising from this approach and
suggested ways of dealing with some of them. However, all things considered it
should be noted that the method does indeed seem to have its flaws (most notably
the lack of covariance and the inconsistent treatment of cyclic coordinates in the
literature) and appears inferior to the Hamilton–Jacobi approach. We thoroughly
recommend abandoning the null geodesic method of quantum tunnelling in favour
of its more reliable sibling.

The thesis also comprises three appendices. Appendix A introduces an al-
ternative Lagrangian and compares it with the one used in the second chapter.
In the end, the obtained equations of motion were the same. Even though we
know they hold for massive and massless particles alike, the alternative deriv-
ation strangely seemed to forbid massless particles. Appendix B shows how to
deal with the electrogeodesic equations based on the Hamilton–Jacobi equation
and calculates the corresponding conserved quantity, the Carter constant, for
the general Kerr–Newman–(anti-)de Sitter space-time. Appendix C is a succinct
look at the methods of determining the number of real roots of polynomials. We
presented Descartes’ rule of signs and Sturm’s theorem and applied both to an
appropriate polynomial from chapter 2, with both yielding the same result.

In the future, there are several ways in which our current work may be ex-
tended. Regarding particle motion, now that we have exhausted the Lagrangian
formalism it seems logical to make use of the more robust Hamilton–Jacobi equa-
tion, germinating the seeds planted in appendix B. The papers that were among
the sources of inspiration for this thesis [3, 4] took advantage of this equation to
obtain a considerably more complete picture of motion (albeit in simpler scen-
arios) than we managed to do, and in principle the same could be performed for
charged particles in the Kerr–Newman–(anti-)de Sitter space-time as well. Like-
wise, considering the Hamilton–Jacobi approach to quantum tunnelling seems
preferable over the null geodesic method due to covariance of the former. How-
ever, the most immediate next step in following up on the thesis seems to be to
thoroughly investigate the problem of extremal horizons in the tunnelling meth-
ods, based on the groundwork laid in section 3.2.2, albeit with the null geodesic
method in mind.
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A. A tale of two Lagrangians
The Lagrangian of a system is not a unique function; any system may be rep-
resented be a number of Lagrangians yielding the same equations of motion. In
particular, a free particle is commonly represented by two Lagrangian densities
[17],

L0 = 1
2gµν ẋ

µẋν , (A.1)

L̃0 = −
√

−gµν ẋµẋν . (A.2)

For charged particles, an interaction part of the Lagrangian is to be added to the
above [17, 58],

Lint = κẋµAµ . (A.3)
First, let us verify that the second Langrangian L̃ = L̃0 + Lint gives the same

equations of motion: The partial derivatives of the Lagrangian are

∂L̃
∂xα

= 1
2
gρσ,αẋ

ρẋσ

√−gµν ẋµẋν
+ κẋβAβ,α ,

∂L̃
∂ẋα

= gαβẋ
β

√−gµν ẋµẋν
+ κAα .

(A.4)

Inserting these into the Lagrange equations of the second kind,

d
dp

(
∂L̃
∂ẋα

)
− ∂L̃
∂xα

= 0 , (A.5)

and using √
−gµν ẋµẋν =

√
−gµν

dxµ

dp
dxν

dp = dτ
dp , (A.6)

we find
d
dp

(
dp
dτ gαβẋ

β + κAα

)
− 1

2
dp
dτ gρσ,αẋ

ρẋσ − κẋβAβ,α = 0 . (A.7)

Knowing that
dp
dτ ẋ

µ = dp
dτ

dxµ

dp = dxµ

dτ = uµ , (A.8)

we multiply the previous equation by dp/dτ to obtain
d
dτ

(
gαβu

β + κAα

)
− 1

2gρσ,αu
ρuσ − κuβAβ,α =

= gαβ
duβ

dτ + gαβ,γu
βuγ + κAα,βu

β − 1
2gρσ,αu

ρuσ − κuβAβ,α = 0 .
(A.9)

We then get1

gαβ
duβ

dτ =
(1

2gρσ,α − gαρ,σ

)
uρuσ + κFαβu

β . (A.10)

1Please take note that, somewhat deceptively, duµ/dτ is not the four-acceleration of the
particle. Actually, it is not a tensor at all! The four-acceleration would, in fact, be Duµ/dτ ,
where an absolute derivative is used instead of a total one. The presence of a non-covariant
total derivative also means that we cannot carelessly lower the index in duµ/dτ using the
metric without a compensation of some sort.

101



It is evident that uρuσ is symmetrical in ρ and σ. We can therefore take only the
symmetrical part of gαρ,σ with respect to ρ and σ, which leads to

gαβ
duβ

dτ = −Γαρσu
ρuσ + κFαβ u

β . (A.11)

Finally, by multiplying the equation by gµα, we rediscover the electrogeodesic
equations,

duµ

dτ = −Γµ
ρσu

ρuσ + κF µ
ν u

ν , (A.12)

or, equivalently,
Duµ

dτ = κF µ
ν u

ν . (A.13)

The integrals of motion E and L become

−Ẽ ≡ ∂L̃
∂ṫ

= gttṫ+ gtφφ̇√−gµν ẋµẋν
+ κAt ,

L̃ ≡ ∂L̃
∂φ̇

= gtφṫ+ gφφφ̇√−gµν ẋµẋν
+ κAφ .

(A.14)

Take note that unlike the original E and L these expressions cannot be used for
massless photons. For massive particles parametrised by τ , the integrals of motion
become the original ones (2.17).

Even though we have eventually obtained the same results as far as massive
particles as concerned, there are some differences between the two Lagrangians.
First, the computation was more straightforward with the original L and we ob-
tained the affine form of the electrogeodesic equation rather effortlessly. However,
nowhere during the derivation was there any indication that the only permissible
affine parametrisation for massive particles was their proper time τ , as we man-
aged to prove in the corresponding chapter. Here, keeping a general p was out of
the question if we wanted to simplify the equations into the preferred form; for
that we needed to eliminate the general parameter p from the equations in favour
of the affine parameter τ . The chief reason for this move was the presence of the
square root of the normalisation in the denominator of the partial derivatives of
L̃, which also prohibits photons from being described by this Lagrangian, as these
terms would diverge. Nonetheless, naively transferring from massive particles to
photons in the result by simply swapping the corresponding quantities (τ → λ,
uµ → ẋµ) and setting κ = 0 works fine despite the prohibitive derivation, as, in
the end, we are still dealing with the same electrogeodesic equations as obtained
originally.
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B. The road not taken
The Hamilton–Jacobi equation and the Carter constant

In the part of the thesis dedicated to electrogeodesics we utilise the Lagrangian
formalism. A frequently used alternative [3, 4] is the Hamilton–Jacobi equation,
which can give us another constant of motion, the Carter constant. Even though
we chose to proceed differently in the main body of work, let us, for the sake of
completeness, derive the constant here, without further drawing any conclusions
for particle motion from it.

The relativistic Hamilton–Jacobi equation reads

H
(
xα,

∂S

∂xα

)
+ ∂S

∂λ
= 0 , (B.1)

where H is the Hamiltonian function of the system and S is the action, λ is
the variable used to parametrise motion1. Notice that the components of the
four-momentum pα naturally appearing in the Hamiltonian H (xα, pα) are substi-
tuted for the derivatives of the action as an important application of canonical
transformations of Hamiltonian mechanics.

First, let us derive the Hamiltonian

H ≡ ẋαpα − L
⏐⏐⏐
Insert ẋα=ẋα(pβ)

. (B.2)

As the Lagrangian is not an explicit function of λ, neither is the Hamiltonian and
its value is a constant of motion. The Lagrangian we shall use is

L = 1
2gµν ẋ

µẋν + κẋµAµ . (B.3)

The generalised four-momentum is

pα ≡ ∂L
∂ẋα

= gαµẋ
µ + κAα . (B.4)

pα defined in this way is primarily a transformation of ẋα and becomes the physical
four-momentum only if ẋα = uα, hence the word “generalised”. To express ẋα as
a function of pα, let us multiply the previous equation by gαβ, leading to

ẋβ = pβ − κAβ . (B.5)

The Hamiltonian then becomes

H = ẋα (gαµẋ
µ + κAα) − L = 1

2gµν ẋ
µẋν =

= 1
2gµν (pµ − κAµ) (pν − κAν) = 1

2g
µν (pµ − κAµ) (pν − κAν) .

(B.6)

1In order to avoid confusion with the four-momentum pα, we avoid using p as the parameter
in this section.
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As it is proportional to the normalisation of (the used analogue of) the four-
velocity, it is easy to see that the Hamiltonian of the charged particle is indeed
constant. The Hamilton–Jacobi equation then becomes

1
2g

µν

(
∂S

∂xµ
− κAµ

)(
∂S

∂xν
− κAν

)
+ ∂S

∂λ
= 0 . (B.7)

As for the action, from section 2.1 we already know that two components of the
generalised four-momentum are constant, as they correspond to cyclic coordinates
in the Lagrangian,

−pt ≡ E = const. ,
pφ ≡ L = const. ,

(B.8)

meaning that the action is separated in these coordinates. Assuming further separ-
ability in the remaining two coordinates, the action becomes

S = −1
2δλ− Et+ Lφ+R(r) + Θ(θ) , (B.9)

where
δ = gµν ẋ

µẋν . (B.10)
The term with λ is separated too, as the Hamiltonian does not depend expli-
citly on λ. Its coefficient can be obtained by integrating (B.1) after substituting
H = δ/2 from (B.6). For massive particles parametrised by their proper time,
δ = −1 is the normalisation of the four-velocity. Unlike the Lagrangian formal-
ism, however, these equations do not coerce us into using the proper time, as a
different (non-affine) parameter does not complicate the form of the Hamilton–
Jacobi equation, it only changes the value of δ.

Next, we need to insert S into the Hamilton–Jacobi equation (B.7). After a
straightforward computation, we separate the terms with r and θ and rewrite the
equation as

− δa2 cos2 θ + ∆θ(θ)
(
Θ′(θ)

)2
+ Ξ2

∆θ(θ) sin2 θ

(
L− Ea sin2 θ

)2
=

= δr2 − ∆r(r)
(
R′(r)

)2
+ Ξ2

∆r(r)

(
La− E(a2 + r2) + r

Ξqκ
)2

≡ K .

(B.11)

Due to the equation being separable, S is indeed separable in every variable as
assumed originally and the values of both sides of the equation must be equal
to a constant of motion K, called the Carter constant. To analyse motion itself,
one must first obtain R(r) and Θ(θ) from the Carter constant, if only in an
integral form, and, in doing so, the full expression for S. Then, derivatives of S
with respect to the constants of motion δ, E, L and K are constants themselves,
yielding a simpler set of equations to describe motion. But that is a story for
another time perhaps...

After setting q or κ equal to zero, the Carter constant (B.11) reduces to the one
derived in [4] with δ → −δ, as the referred paper uses the opposite signature of
the metric. Interestingly, our original result is then reobtained after substituting

E → E − r

Ξρ2(r, θ)qκ ,

L → L− ar sin2 θ

Ξρ2(r, θ)qκ .
(B.12)

The additional variable dependence gets subtracted on both sides of the equation.

104



C. Positive roots of polynomials
During the course of this thesis we encountered a significant number of polynomi-
als. It is a well known fact that finding roots is easy for polynomials of degree up
to two. For third-degree polynomials one can use Cardano’s formulae, as we on
one occasion did, but these are somewhat more complicated. The highest generic
polynomials whose roots can be found analytically are those of degree four, but
the resulting expressions are very convoluted and usually of no use to us. It is
often said that before his untimely demise at age 20 due to a gunshot wound
sustained in a duel, Évariste Galois managed to prove that there shall never be
a radical formula for the roots of generic polynomials of degree five and higher.
In reality, however, while parts of the Frenchman’s work also concerned solvab-
ility of polynomials, the proof was discovered a couple of years prior in 1824 by
Norwegian mathematician Niels Henrik Abel (who also died young at 26) [59].

Sometimes, however, we do not need to know the values of the roots, as we
would be content simply knowing how many of them are positive. During our
research, we came across two theorems that can aid us in our quest to determine
this number. However, as it turns out, in most cases neither of these is of any
assistance to us, as the older one only gives the upper bound on the number of
positive roots and the newer one is quite difficult to apply in itself. Nonethe-
less, months after we first considered using them in more difficult situations, we
obtained equation (2.40) for the roots of the polynomial

p(r) = 2Λr3 + Λa2r + 3m (C.1)

with m > 0, a2 > 0 and Λ ̸= 0, which happened to be the perfect candidate
for both of these theorems to be put into practice, as we were mainly interested
in the number of positive roots1. Now, without further ado, let us introduce the
two theorems and demonstrate them on the polynomial in question. Proofs and
additional information are to be found in the cited bibliography.

Descartes’ rule of signs [60] was first published in La Géométrie, an ap-
pendix to 1637’s Discours de la méthode by René Descartes2. The rule says
that the number of sign changes in the sequence of the coefficients in polynomial
p(x) (omitting zeroes) gives the upper bound on the number of positive real roots
(including multiplicities). Moreover, the exact quantity may be lower by an even
number only. Thus, the rule does give the exact result if and only if there are
less than two sign changes, which makes it more difficult for the rule to be useful
for polynomials of higher degrees, where one can expect multiple sign changes. If
needed, this rule can also give the upper bound on the number of negative real
roots by considering polynomial p(−x) instead of p(x).

Now, for the currently studied polynomial (C.1), we need to consider two
cases with respect to the sign of Λ. In table C.1 we wrote down the signs of the

1Recall that equation (2.40) gave the positions of static ZAMOs in the equatorial plane for
space-times with a > 0. For space-times with a = 0 no such condition was necessary, as all
static particles were ZAMOs automatically.

2As a short philosophical intermezzo, let us mention that the book is also the source of
the famous quotation “I think, therefore I am” in its French original “Je pense, donc je suis”.
Interestingly, the Latin variant “Cogito ergo sum” did not appear until seven years later in
Descartes’ Principia philosophiae, which was written in Latin, unlike the previous work.
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individual coefficients for a given sign of Λ. From the table one can immediately
see that for a positive Λ the polynomial has no positive roots, while for a negative
Λ it has one.

Term Λ > 0 Λ < 0
r3 + −
r2 0 0
r1 + −
r0 + +

Sign changes: 0 1

Table C.1: Descartes’ rule applied on (C.1)

Sturm’s theorem [61], first published by French mathematician Jacques
Charles François Sturm in 1835 (almost 200 years after Descartes’ work), gives
the exact number of real roots in an almost arbitrary real interval (a, b) ⊂ R,
with the only condition that a and b are not roots of the polynomial themselves.
The theorem is, therefore, much more robust than the rule of signs, which only
estimates (not necessarily precisely) the number of roots on a half of the real
axis, but it is also understandably more complicated, which excludes the use of
the theorem in most of the thesis3.

Before we present the theorem itself, we first need to introduce a so-called
Sturm sequence of polynomials for p(x). The standard sequence4 begins with
p0(x) = p(x) and p1(x) = p′(x), with the remaining polynomials defined as

pi+1(x) = pi(x)qi−1(x) − pi−1(x) = −rem(pi−1, pi)(x) (C.2)

for i ≥ 1, with qj being the quotient and rem(pj, pj+1) the remainder of polynomial
division of pj by pj+1. The degree of polynomials in the sequence is decreasing and
the sequence ends with the last non-zero remainder. Further, let us denote δ(x0)
the number of sign changes in the standard sequence at x = x0, again ignoring
zeroes. The theorem then states that the number of distinct real roots (that is,
excluding multiplicities) in real interval (a, b) satisfying p(a) ̸= 0 and p(b) ̸= 0 is
equal to δ(a) − δ(b). In order to obtain the number of positive roots, one should
set a = 0 and formally b = ∞; for δ(∞) one only needs to consider the leading
terms in the polynomials of the Sturm sequence.

For (C.1) the standard sequence is

p0(r) = 2Λr3 + Λa2r + 3m,

p1(r) = 6Λr2 + Λa2 ,

p2(r) = −2
3Λa2r − 3m,

p3(r) = −Λa2 − 243m2

2Λa4 .

(C.3)

3If polynomials’ coefficients were numbers, the theorem would be applied quite easily. Un-
fortunately, we want to deal with letters...

4A Sturm sequence is defined by the properties of the polynomials. The provided formulae
are one way of constructing the sequence.
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The results, consistent with Descartes’ rule, are written in table C.2 for both
signs of Λ.

Λ > 0 Λ < 0
Polynomial Sign at 0 Sign at ∞ Sign at 0 Sign at ∞

p0 + + + −
p1 + + − −
p2 − − − +
p3 − − + +

Sign changes: δ(0) = 1 δ(∞) = 1 δ(0) = 2 δ(∞) = 1
Positive roots: δ(0) − δ(∞) = 0 δ(0) − δ(∞) = 1

Table C.2: Sturm’s theorem applied on (C.1)

Take note that considering the amount of information one can extract about
the roots, there are other methods somewhere in between these two, such as
the Budan–Fourier theorem [60], which gives the upper bound on the number of
roots in an interval. We elected to examine the two methods only, as the former
one represents the most effortless yet imprecise way of estimating the number
of positive roots, while the latter one is the precise (and for our needs usually
unusable) method.
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Newman black holes. General Relativity and Gravitation 45 (2013) 79.

[40] Vanzo, L. On tunneling across horizons. Europhysics Letters 95 (2011)
20001.

[41] Ma, Z. Z. Hawking temperature of Kerr-Newman-AdS black hole from tun-
neling. Physics Letters B 666 (2008) 376.

[42] Belinski, V. A. On tunnelling through the black hole horizon. Physics Let-
ters A 376 (2012) 207.

[43] Unruh, W. G. Notes on black-hole evaporation. Physical Review D 14
(1976) 870.

[44] Aliev, A. N. Electromagnetic Properties of Kerr–anti-de Sitter Black Holes.
Physical Review D 75 (2007) 084041.

[45] Sekiwa, Y. Thermodynamics of de Sitter Black Holes: Thermal Cosmolo-
gical Constant. Physical Review D 73 (2006) 084009.

[46] Dehghani, M. H., KhajehAzad, H. Thermodynamics of a Kerr Newman
de Sitter black hole. Canadian Journal of Physics 81 (2003) 1363.

110



[47] Caldarelli, M. M., Cognola, G., Klemm, D. Thermodynamics of Kerr-
Newman-AdS Black Holes and Conformal Field Theories. Classical and
Quantum Gravity 17 (2000) 399.

[48] Li, H. et al. Hawking radiation of Kerr-Newman-de Sitter black hole.
European Physical Journal C 63 (2009) 133.

[49] Hawking, S. W., Hunter, C. J., Taylor-Robinson, M. M. Rotation and
the AdS/CFT correspondence. Physical Review D 59 (1999) 064005.

[50] Jiang, Q. Q., Wu, S. Q. Hawking radiation from rotating black holes in
anti-de Sitter spaces via gauge and gravitational anomalies. Physics Letters
B 647 (2007) 200.
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