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Introduction
Chemistry on the scale of atoms and molecules can be successfully described by quantum
mechanics. The evolution of quantum systems is determined by time-dependent Schrö-
dinger equation. An important role in microworld is played by stationary states, which
remain stationary in sense of any observable variable. However according to quantum
field theory they are not stationary and spontaneously decay into ground state, the
stationary state with the lowest energy. Stationary states can be found as solution of
time-independent Schrödinger equation.1 In general it is difficult (if not impossible) to
find analytical solution and we have to rely on computing methods. From the time
of formulation of the quantum mechanics there have been developed wide spectrum of
methods, each with its own limitation. A large portion of the methods is dependent on
the choice of basis and can obtain accurate results using huge set of basis functions and
sufficiently large computational time. In some sense the choice of basis brings a certain
degree of arbitrariness. Therefore our attention was focused on methods, where choice
of basis is not necessary and they are independent of basis. One example of another
approach are methods based on the simulations of samples.

In this thesis we have studied methods, where wave function is represented by
samples. Even though the similar methods are well-studied, to our knowledge this spe-
cific approach is rare and we could not find any related literature. With Monte Carlo
implementation of imaginary time propagation (ITP) methods we simulated propaga-
tion of initial wave function to the ground state. Inevitable part of the study is devel-
opment of methods for calculation of energy of wave function represented by samples.
Developed methods have been applied on systems with different difficulties: dimension-
ality and singular potential.

The first chapter is dedicated to short introduction to key elements of the quantum
mechanics and in more detail to ITP methods. We summarised results in this field
and reconfirmed some of them. We compared various methods based on different order
approximants in one dimension.

The second chapter contains development of computational algorithms for calcu-
lation of energy, implementation of ITP methods for wave function represented by
samples and brief insight into one-dimensional optimization.

The third chapter summarises results of ITP method for 4 systems: 6-dimensional
harmonic oscillator, anharmonic oscillator and hydrogen atom. We compared conver-
gence for different systems and precision of energy calculation methods.

Note to the reader: To achieve more fluent reading of main text the extensive
derivations of formulas and mathematically rigorous justifications have been moved
into Appendices and footnotes depending on the range of text. The variables in text
are dimensionless and correspond to transformation of units to characteristic units for
given system.2

1This holds for explicitly time-independent Hamiltonian.
2For example, the characteristic units of atoms and molecules are atomic units.

2



1. Theoretical Background
At the beginning it is instructive to provide a brief recapitulation of concepts and
principles of the quantum mechanics [1], which will be useful subsequently.

1.1 Quantum Mechanics
In formalism of non-relativistic quantum theory the state of a system is completely
described by the state vector |ψ⟩ from the Hilbert space H . The state at instant t is
denoted as |ψ(t)⟩. The evolution of the state in the quantum mechanics is described
by the time-dependent Schrödinger equation with the formal solution1

i
∂

∂t
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩ =⇒ |ψ(t)⟩ = e

−i

∫ t

0
dτ Ĥ(τ)  

=:Û(t)

|ψ(0)⟩ , (1.1)

where Ĥ(t) is Hamiltonian of the system (in general time-dependent) and Û(t) the time
evolution operator.

We assume non-relativistic time-independent Hamiltonian Ĥ on the Hilbert space
H = L2(RN ), which is separable to the kinetic T̂ and potential energy V̂

Ĥ(t) = Ĥ = T̂ + V̂ ,

T̂ = −1
2∆N , V̂ = V (x) , (1.2)

where ∆N =
N∑
i=1

∂2

∂x2
i

is the Laplace operator in N -dimensional space2 and x ∈ RN is

N -dimensional position vector3.
We denote the momentum eigenvectors |p⟩ by N -dimensional momentum vector

p ∈ RN . In position representation they can expressed as

⟨x|p⟩ = 1
(2π)N/2

eip·x . (1.3)

For explicitly time-independent Hamiltonian Ĥ there are important states |E,α⟩
called the stationary states4, which are eigenvectors of the Hamiltonian Ĥ (solution of
the time-independent Schrödinger equation)

Ĥ|E,α⟩ = E|E,α⟩ . (1.4)

In formalism of spectral decomposition the eigenvectors |E,α⟩ of Hermitian operator
Ĥ (or set of operators called complete set of commuting observables (CSCO))5 form

1In suitable units we can assume ℏ = 1.
2The kinetic energy of particles with different masses mi can be linearly transformed into desired

form as
T̂ =

∑
i=1

− 1
2mi

∂2

∂x2
i

√
mixi→xi=========

∑
i=1

−1
2
∂2

∂x2
i

.

One has to bear in mind the change of coordinates also in the potential energy.
3The position of M particles in 3D space can be denoted by 3M -dimensional position vector.
4The symbol α denotes other necessary labels of different degenerate stationary states from same

subspace.
5For instance, in the Hilbert space H = L2(R3) the CSCO {T̂ , L̂2, L̂z} forms an orthonormal basis

|E, l,m⟩.
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orthonormal basis6

⟨E′, α′|E,α⟩ = δ(E − E′)δα′α , Î =
∑∫
E,α

dE |E,α⟩⟨E,α| . (1.5)

The orthonormal basis (1.5) guarantees unique decomposition of any state |ψ⟩ into the
eigenvectors |E,α⟩

|ψ⟩ =
∑∫
E,α

dE ⟨E,α|ψ⟩|E,α⟩ (1.6)

and the evolution of the state |ψ⟩ for time-independent Hamiltonian Ĥ can be described
as

Û(t)|ψ⟩ = e−itĤ |ψ⟩ (1.6)=
∑∫
E,α

dE ⟨E,α|ψ⟩e−itE |E,α⟩ .

The variational principle in the quantum mechanics ensures that energy of any
state |ψ⟩ is greater or equal to the ground state energy E0. Using decomposition (1.6)
we can write

⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(1.6)= 1
⟨ψ|ψ⟩

∑∫
E′,α′

dE′∑∫
E,α

dE ⟨ψ|E′, α′⟩ ⟨E′, α′|Ĥ|E,α⟩  
E δ(E−E′)δα′α

⟨E,α|ψ⟩

≥ 1
⟨ψ|ψ⟩

∑∫
E′,α′

dE′∑∫
E,α

dE ⟨ψ|E′, α′⟩E0 δ(E − E′)δα′α⟨E,α|ψ⟩

= E0
⟨ψ|ψ⟩

∑∫
E,α

dE ⟨ψ|E,α⟩⟨E,α|ψ⟩ (1.5)= E0 . (1.7)

Let Â be time-independent operator, then the expectation value of its commutator
with time-independent Hamiltonian Ĥ for any eigenstate |E,α⟩ is zero (the hypervirial
theorem)7

⟨[Â, Ĥ]⟩ = 0 .

For the operator Â = p̂ · x̂ the commutator reads

[p̂ · x̂, Ĥ] = p̂ · [x̂, Ĥ]  
ip̂/m

+ [p̂, Ĥ]  
−i∇V

·x̂ = i(2T̂ − ∇V · x̂) ,

and we obtain special case of the hypervirial theorem – virial theorem

⟨∇V · x̂⟩ = 2⟨T̂ ⟩ .

For homogeneous potential8 with degree of homogeneity n the relation becomes

n⟨V ⟩ = 2⟨T̂ ⟩ .
6The symbol

∑∫
E,α

dE denotes summation over bound states and integration over scattering states.

7On eigenstates the Hamiltonian behaves like multiplicative constant, which is always commutative
with anything.

8Examples of homogeneous potentials: N-dimensional harmonic oscillator (n = 2) and Coulomb
potential (n = −1). In case of Coulomb potential the number of particles or different charges does not
matter.
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1.2 The Imaginary Time Propagation Methods
The formal substitution it → τ in time-dependent Schrödinger equation (1.1) for time-
independent Hamiltonian Ĥ leads to heat or diffusion type equation with analogous
formal solution

− ∂

∂τ
|ψ(τ)⟩ = Ĥ|ψ(τ)⟩ =⇒ |ψ(τ)⟩ = e−τĤ |ψ⟩ .

The unique decomposition (1.6) into the orthonormal basis (1.5) is still valid and we
can write for imaginary time evolution of the state |ψ⟩

e−τĤ |ψ⟩ (1.6)=
∑∫
E,α

dE ⟨E,α|ψ⟩e−τE |E,α⟩ .

We can see, that with increasing parameter τ the coefficients of the excited states are
exponentially decreasing relatively to the coefficient of the ground state |E0⟩

⟨Ei, α|ψ⟩e−τEi

⟨E0|ψ⟩e−τE0
= ⟨Ei, α|ψ⟩

⟨E0|ψ⟩
e−τ(Ei−E0) .

The basic idea of the imaginary time propagation (ITP) methods is to apply (repet-
itively) the operator (or its approximation) e−τĤ on the initial wave function |ψ0⟩ with
non-zero overlap with the ground state ⟨E0|ψ0⟩ ≠ 0. In each iteration the ground state
component in wave function is relatively to other components amplified. Repeating
this process the wave function converges to the ground state.

Similarly formulated problems arise in many fields of mathematics and physics, e.g.
already mentioned quantum mechanics [2–5], classical mechanics [6–10] or statistical
mechanics [11, 12]. The common element is the evolution operator e−τ(T̂+V̂ ), where T̂
and V̂ are non-commuting operators.9 Thus the development of the ITP methods is
beneficial for several areas.

There have been attempts to use the imaginary time evolution operator e−τĤ dir-
ectly, e.g. [13]. But generally the eigenvectors and eigenvalues of the operator Ĥ are
not known, therefore the direct formalism of spectral decomposition cannot be applied.
Instead we are forced to use approximations of the imaginary time propagator.

1.2.1 Approximations of the Imaginary Time Propagator

In position representation, the operator e−τV̂ can be computed exactly. The operator
e−τT̂ is exactly known in momentum representation, but can be easily transformed
into position representation, more in Appendix A.1. Hence it is convenient to build
approximations using operators e−τT̂ and e−τV̂ . But there is restriction Re(τ) ≥ 0,
because otherwise the operator e−τT̂ is ill-defined. Also, the condition Re(τ) ≥ 0 for
the operator e−τV̂ is often necessary, otherwise the operator e−τV̂ causes infinities and
instabilities10.

9The meaning of terms τ , T̂ and V̂ can differ from field to field. For instance, in quantum statistical
mechanics the variable τ = β = 1/(kBT ) has meaning of the inverse temperature.

10For instance, the operator e−τV̂ for LHO potential V (x) = 1
2x

2 and Re(τ) < 0 goes rapidly to
infinity for x → ±∞ and produces vector outside of the Hilbert space.
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Approximations without Gradient

The general form of the approximants is a linear combination of products of operators
e−τT̂ and e−τV̂ (sometimes denotes as multi-product expansion [14])

e−τĤ =
∑
i

ci
∏
j

e−τai,j T̂ e−τbi,j V̂ + o(τn) , (1.8)

where ci, ai,j and bi,j are fixed constants and n is the order of approximation in terms of
parameter τ . However the most common approximants have form of a single product
of operators e−τT̂ and e−τV̂ (sometimes denoted as factorization [6], decomposition
scheme [9], or splitting [5])

e−τĤ =
∏
i

e−τaiT̂ e−τbiV̂ + o(τn) . (1.9)

We tried to systematically find for given decomposition form the highest order
approximants. We used program Mathematica [15] with extra packages: VEST [16]
(Einstein summation convention, simplification of complex operator products), and
NCAlgebra, Version 4.0.6 [17] (non-commutative algebra, expansion and simplification
of non-commutative terms). Our process of finding coefficient ai and bi can be described
as follows:

1. We expressed operator products in terms of Einstein notation operators. For
instance T̂ V̂ ψ = −V,iψ,i − 1

2V ψ,ii.

2. We expanded the approximant (1.9) in terms of τ (the n-th order) and operator
products. For instance e−τa1T̂ e−τb1V̂ = 1̂ − a1τ T̂ − b1τ V̂ + o(τ1).

3. We substituted operator products with Einstein notation operators, compared
both sides term by term and obtained equations for coefficients ai and bi.

4. We solved equations. If there were left some free variables, we returned to the
2nd step for the (n+ 1)-th order.

For simple schemes11 V T and TV we obtain the simplest straightforward the 1st
order approximation (called the Trotter decomposition or the Lie splitting)

e−τĤ = e−τT̂ e−τV̂ + o(τ1) = e−τV̂ e−τT̂ + o(τ1) .

The schemes V TV and TV T lead to the 2nd order approximation (called Strang
splitting)

e−τĤ = e− τ
2 T̂ e−τV̂ e− τ

2 T̂ + o(τ2) = e− τ
2 V̂ e−τT̂ e− τ

2 V̂ + o(τ2) .
If we restrict ourselves to real positive coefficients ai > 0 and bi > 0 (to avoid ill-

definedness and infinities), it have been shown, that the product can be at most the 2nd
order approximation (non-existence theorem of positive decomposition) [18–20]. This
is in agreement with our results. The higher schemes V TV . . . and TV T . . . produce
negative or complex coefficients. For instance for the scheme V TV TV we obtained the
3rd order approximation with complex coefficients (agrees with [21])

e−τĤ = e−τb1V̂ e−τa1T̂ e−τb2V̂ e−τa2T̂ e−τb3V̂ + o(τ3)

b1 = 1
12
(
3 ±

√
3i
)
, a1 = 1

6
(
3 ±

√
3i
)
, b2 = 1

2 , a2 = 1
6
(
3 ∓

√
3i
)
, b3 = 1

12
(
3 ∓

√
3i
)
.

11For convenience we denote particular decomposition schemes by the order of operators in exponents,
e.g. e−τa1T̂ e−τb1V̂ e−τa2T̂ → TV T .
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It has been shown how to construct approximations with real coefficients (also
negative) of any order (fractal decomposition, jump composition) [22,23]. As mentioned
above, negative imaginary time propagation is not well-defined and cannot be used.
Similarly there have been studied complex coefficients schemes for Re(ai) ≥ 0 [5,21,24,
25].

Even though the single-product expansions are generally more common, there are
studies of multi-product expansions [14, 26]. But Sheng showed that sum (1.8) for
positive coefficients ai,j > 0, bi,j > 0 and ci > 0 can be maximally the 2nd order
approximation [18].

Approximations with Gradient

When the kinetic T̂ and potential V̂ operators have form of the Laplace operator and
multiplication with function V (x) (equation (1.2)), one may observe12 that the operator
[V̂ , [T̂ , V̂ ]] is also multiplication with a function

[V̂ , [T̂ , V̂ ]] = ∇V · ∇V .

This also implies 2 useful corollaries:

• Some commutators in expansion of the operator e−τ(T̂+V̂ ) are zero. For instance

[V̂ , [V̂ , [T̂ , V̂ ]]] = 0 .

• Besides operators e−τT̂ and e−τV̂ we can construct the operator e−τ3[V̂ ,[T̂ ,V̂ ]].

To find any other useful operators we studied which linear combinations (LC) of
products of operators T̂ and V̂ lead to operator with similar behaviour (multiplication
with a function). Again we used program Mathematica [15] with package VEST [16].

For the LC of a single operators and products of 2 operators we obtain only trivial
cases

V̂ = V , V̂ 2 = V 2 .

For the LC of products of 3 operators we get the already known LC

[V̂ , [T̂ , V̂ ]] = V,iV,i .

The LC of products of 4 operators leads to 2 obvious LCs

V̂ [V̂ , [T̂ , V̂ ]] = V V,iV,i , [V̂ , [T̂ , V̂ ]]V̂ = V V,iV,i .

The LC of products of 5 operators produces 7 obvious LCs

V̂ 2[V̂ , [T̂ , V̂ ]] = V 2V,iV,i , V̂ [V̂ , [T̂ , V̂ ]]V̂ = V 2V,iV,i , [V̂ , [T̂ , V̂ ]]V̂ 2 = V 2V,iV,i ,

T̂ [V̂ [V̂ , [T̂ , V̂ ]]] = 0 , [V̂ [V̂ , [T̂ , V̂ ]]]T̂ = 0 ,
V̂ [V̂ [V̂ , [T̂ , V̂ ]]] = 0 , [V̂ [V̂ , [T̂ , V̂ ]]]V̂ = 0 ,

and one new useful operator

[V̂ , [T̂ , [V̂ , [T̂ , V̂ ]]]] = 2V,iV,jV,ij .

We can see simple pattern and generate other operators by recursive definition13

Ĉ0 := V̂ , Ĉi+1 := [V̂ , [T̂ , Ĉi]] = ∇V · ∇Ci .

12Or not.
13In fact we can generate more operators by formula [Ĉi, [T̂ , Ĉj ]] and plugging in any already gener-

ated operator.
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We may ask, how to define operators Ĉi for negative i? We will start with operator
Ĉ−1. The straightforward condition on operator Ĉ−1 is equation

C0 = ∇V · ∇C−1 . (1.10)

Let C−1 be a solution to equation (1.10). But this solution is not unique. Let W be
function with gradient ∇W orthogonal to the gradient of potential ∇V everywhere

∇V · ∇W = 0 .

Then the function C−1 + αW for any coefficient α ∈ R is also a solution to equation
(1.10). One may notice a property of operators Ĉi, which is common for all operators
with non-negative i and can help to define functions C−i uniquely. Gradients ∇Ci are
collinear with gradient of potential ∇V . This implies, that any tangent gradient (like
the gradient ∇W ) should be zero.

∇Ci−1 ∼ ∇V ∧ Ci = ∇V · ∇Ci−1 =⇒ ∇Ci−1 = Ci
∇V · ∇V

∇V . (1.11)

The equation (1.11) can be integrated back and the function Ci−1 is determined up to
a constant.

It is instructive to calculate a few functions Ĉi for some potential. For Coulomb
potential V = −1/r in 3D space we get the following sequence (Table 1.1). For Coulomb
potential we have problem with operator e−τV̂ because it produces divergent state
vector at origin r = 0, which cannot be normalised and thus is outside of the Hilbert
space H .14

. . . C−3 C−2 C−1 C0 C1 C2 C3 C4 . . .

. . . −r8/80 −r5/10 −r2/2 −1/r 1/r4 −4/r7 28/r10 −280/r13 . . .

Table 1.1: Functions Ci.

As before, the general form of approximation consists of products of operators e−τT̂ ,
e−τV̂ and e−τ2i+1Ĉi . However, the nature of the operators e−τ2i+1Ĉi implies that they
can improve only approximations of the (2i+ 1)-th order or higher. It is important to
remark, that for Coulomb potential the combination of operators e−τV̂ and e−τ3Ĉ1 (see
Table 1.1) will avoid the infinity at origin and we obtain a normalisable state vector.

Same as before, the most common approximants are single products. We use the
same process to find the coefficients of different schemes. We get the following approx-

14Let ⟨x|ψ⟩ be spherically symmetric initial wavefunction with Taylor expansion at origin

⟨x|ψ⟩ =
+∞∑
i=0

ai

i! r
i .

Then the integral of |e−τV̂ ψ|2 over ball BR(0) with radius R and center at origin is convergent only if
ai = 0 for all i ∈ N. This is not in general possible to ensure.
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imations

e−τĤ = e− 1
6 τV̂ e− 1

2 τT̂ e− 2
3 τV̂ e− 1

2 τT̂ e− 1
6 τV̂ e− 1

72 τ
3Ĉ1 + o(τ3) ,

e−τĤ = e− 1
48 τ

3Ĉ1e− 1
3 τT̂ e− 3

4 τV̂ e− 2
3 τT̂ e− 1

4 τV̂ + o(τ3) ,

e−τĤ = e− 1
6 τV̂ e− 1

2 τT̂ e− 2
3 τV̂ e− 1

72 τ
3Ĉ1e− 1

2 τT̂ e− 1
6 τV̂ + o(τ4) ,

e−τĤ = e− 1
6 τV̂ e− 1

144 τ
3Ĉ1e− 1

2 τT̂ e− 2
3 τV̂ e− 1

2 τT̂ e− 1
6 τV̂ e− 1

144 τ
3Ĉ1 + o(τ4) ,

e−τĤ = e− 1
6 τV̂ e−c1τ3Ĉ1e− 1

2 τT̂ e− 2
3 τV̂ e−c2τ3Ĉ1e− 1

2 τT̂ e− 1
6 τV̂ e−c1τ3Ĉ1 + o(τ4) ,

e−τĤ = e− 3−
√

3
6 τT̂ e− 1

2 τV̂ e− 2−
√

3
48 τ3Ĉ1e− 1√

3
τT̂ e− 1

2 τV̂ e− 2−
√

3
48 τ3Ĉ1e− 3−

√
3

6 τT̂ + o(τ4) ,

where c1 = 1
16

(
1
9 − 8c2

)
and c2 ∈

⟨
0, 1

72

⟩
. To have one pseudopotential V + 6c1τ

2C1

we can choose c1 = 1
432 and c2 = 1

108 . The 4th order approximations are in agreement
with literature [9].

Chin showed that using the operators Ĉi and positive coefficients it is not possible to
get higher than the 4th order approximation [27]. Combination of complex coefficients
Re(ai) > 0 and operators Ĉi was also studied [5].

1.2.2 Related Methods

Besides the ITP methods there are other similar methods based on application of
operators which amplify the ground state. One of the methods is the inverse iteration
method applying operator (Ĥ − λ)−1. Repeated application of the operator converges
to eigenvector with energy Ei nearest to the parameter λ. Its convergence depends
on how accurately we know the energy Ei. Good estimation of Ei ensures quicker
convergence than ITP methods [28].

Other methods are based on application of operator e−τnĤn , where n ≥ 2. We can
carefully choose the origin of potential to shift energy spectrum so that energy of any
state is positive (E0 ≥ 0). In the limit τ → +∞ the wave function converges to the
ground state

|ψ⟩ → ⟨E0|ψ⟩e−τnEn
0 |E0⟩ .

The approximation of the operator e−τnĤn has to be a linear combination of products
of operators e−τT̂ and e−τV̂ .15 We found an approximant of the 2nd order for operator
e−τ2Ĥ2

e−τ2Ĥ2 = 2e− 1
2 τT̂ e−τV̂ e− 1

2 τT̂ − e−τT̂ e−2τV̂ e−τT̂ + o(τ2) .

1.2.3 Comparison of Different Approximants

To show how the order of approximants affects the convergence, we simulated numer-
ically the ITP method on 1D grid. We used 2 model potentials: linear harmonic
oscilator (LHO) and double-well potential (2WP). The ground state and its energy for
these models are known.

As the initial wave function ϕ0(x) we chose

ϕ0(x) = max
{

0, 1 − (x− 1)2
}
.

In the Table (1.2) we list the used approximants.
15In the linear order of τ the expansion has to cancel out. In case of one product, this would lead to

negative coefficients, which are not desirable.
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VLHO(x) = 1
2x

2 − 1
2

ψ0,LHO(x) = 1
(π)1/4

e− x2
2

E0,LHO = 0 −1

0

1

2

−3 −2 −1 0 1 2 3
x

VLHO(x)
ψ0,LHO(x)

V2WP(x) = 1
2
(
x6 − 3x3

)
ψ0,2WP(x) = Ne− x4

4

E0,2WP = 0 −1

0

1

2

−3 −2 −1 0 1 2 3
x

V2WP(x)
ψ0,2WP(x)

Figure 1.1: Potential VLHO/2WP(x), ground state ψ0,LHO/2WP(x) and the ground state energy
E0,LHO/2WP. The normalizing constant is N ≈ 0.6811.
i n scheme Gi(τ)
1 1 TV e−τT̂e−τV̂

2 1 V T e−τV̂e−τT̂

3 2 TV T e− 1
2 τT̂e−τV̂e− 1

2 τT̂

4 2 V TV e− 1
2 τV̂e−τT̂e− 1

2 τV̂

5 4 V TV CTV e− 1
6 τV̂e− 1

2 τT̂e− 2
3 τV̂e− 1

72 τ
3Ĉ1e− 1

2 τT̂e− 1
6 τV̂

6 4 V CTV TV C e− 1
6 τV̂e− 1

144 τ
3Ĉ1e− 1

2 τT̂e− 2
3 τV̂e− 1

2 τT̂e− 1
6 τV̂e− 1

144 τ
3Ĉ1

7 4 V CTV CTV C e− 1
6 τV̂e− 1

432 τ
3Ĉ1e− 1

2 τT̂e− 2
3 τV̂e− 1

108 τ
3Ĉ1e− 1

2 τT̂e− 1
6 τV̂e− 1

432 τ
3Ĉ1

8 4 TV CTV CT e− 3−
√

3
6 τT̂e− 1

2 τV̂e− 2−
√

3
48 τ3Ĉ1e− 1√

3
τT̂e− 1

2 τV̂e− 2−
√

3
48 τ3Ĉ1e− 3−

√
3

6 τT̂

Table 1.2: Reference number i, order n, scheme of approximant Gi(τ).

We used grid with 1000 equidistant points on the interval ⟨−6, 6⟩. The operators
have been applied numerically: operators e−τV̂ and e−τ3Ĉi by multiplying in each point,
operator e−τT̂ using the formula

⟨x|e−τT̂ |ϕi⟩ =
∫ +∞

−∞
dx′⟨x|e−τT̂ |x′⟩⟨x′|ϕi⟩

(A.8)=
∫ +∞

−∞
dx′ 1

(2πτ)1/2
e− (x−x′)2

2τ ϕi(x′) .

In each iteration we varied τ to find the minimal energy, which is according to vari-

10−8

10−6

10−4

10−2

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

E
−
E

0

τ

i = 0
...

i = 9

Figure 1.2: Energy difference E −E0 of state ϕi+1(x) = Ĝ6(τ)ϕi(x) for LHO (i-th iteration).
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ational principle (1.7) an upper bound for the ground state energy E0. The principle of
the method can be seen in Figure 1.2. In each iteration the wave function is normalised.

The evolution of the wave function ϕi(x) after each iteration can be seen in Figure
1.5 (LHO) and 1.6 (2WP). We can clearly distinguish between approximants of different
order. The 4th order operators Ĝ5(τ) to Ĝ8(τ) are better than the 2nd order operators
Ĝ3(τ) and Ĝ4(τ), which are better than the 1st order operators Ĝ1(τ) and Ĝ2(τ). This
property is visible for both potentials.

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1 2 4 8

LHO

E
−
E

0

i

10−3

10−2

10−1

100

1 2 4 8

2WP

i

Ĝ1(τ)
Ĝ2(τ)
Ĝ3(τ)
Ĝ4(τ)
Ĝ5(τ)
Ĝ6(τ)
Ĝ7(τ)
Ĝ8(τ)

Figure 1.3: Conv. (log − log plot) of the energy difference E − E0 depending on i number of
iterations for operators Ĝj(τ) (LHO – left, 2WP – right). The lines serve as a visual aid to
compare convergence of different operators.

10−8

10−6

10−4

10−2

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

E
−
E

0

τ

i = 0
...

i = 9

Figure 1.4: Energy difference E −E0 of state ϕi+1(x) = Ĝ8(τ)ϕi(x) for LHO (i-th iteration).

To visualise the rate of convergence we plotted dependence of the energy difference
E − E0 on the number of iterations i into log − log plot (Figure 1.3). We can see
different convergence rate for different order operators. We can see unusual behaviour
for operator Ĝ8(τ) in LHO potential. To understand this behaviour we replotted Figure
1.2 for our case in Figure 1.4. We can see different trend of lines in Figures 1.2 and 1.4.
This is special case of LHO. The ground state wave function is Gaussian function, the
the operators e−τV̂ and e−τĈ1 are Gaussian functions. Also the operator e−τT̂ produces
from Gaussian functions Gaussian functions of different width. Therefore it is possible
for same bigger τ to obtain ground state Gaussian function. But this problem occurs
only for purely quadratic potentials. This explains the first rapid convergence. The
second constant trend can be explained as effect of the rounding error at level ≈ 10−9.
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Figure 1.5: Progress of states ϕi+1(x) = Ĝj(τ)ϕi(x) for different operators Ĝj(τ) for LHO.

12



0.0

0.2

0.4

0.6

0.8

1.0

−2 −1 0 1 2
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Figure 1.6: Progress of states ϕi+1(x) = Ĝj(τ)ϕi(x) for different operators Ĝj(τ) for 2WP.

13



2. Computational Methods
If the Hamiltonian Ĥ has the form like in equation (1.2) with real-valued potential
V (x), the solution of the time-independent Schrödinger equation can be restricted
to real-valued wave functions. Let be ψE,α(x) complex-valued solution of the time-
independent Schrödinger equation (1.4) with energy E. Then the function ψ∗

E,α(x) is
also solution (

ĤψE,α(x)
)∗

= (EψE,α(x))∗

Ĥψ∗
E,α(x) = Eψ∗

E,α(x) .

Then we can replace 2 complex-valued solutions ψE,α(x) and ψ∗
E,α(x) with 2 real-valued

solutions1,2
ψE,α(x) + ψ∗

E,α(x)
2 ,

ψE,α(x) − ψ∗
E,α(x)

2i .

This is useful property, because we can restrain ourselves onto real-valued wave function
without loss of generality.

The Copenhagen interpretation of quantum mechanics shows standard probabilistic
interpretation of squared absolute value of wave function |ψ(x)|2 as probability density
ρ(x)

d (probability) = |ψ(x)|2 dV = ρ(x)dV .

This allows to represent function |ψ(x)|2 with randomly generated samples {xi}.3 For
some potentials the ground state wave function is not only real-valued, but also positive-
valued function. This is not general rule. As a counterexample we can use any system
with more than 2 fermions (with spin 1/2). The wave function of fermions is antisym-
metric in any permutation of 2 particles. However if ψ0(x) is positive-valued function,
we could ask if we can use not the function ψ0(x)2, but the function ψ0(x) as prob-
ability density.4 And samples will represent the function ψ0(x) and not the function
ψ0(x)2.

The function ψ0(x) can represent probability density iff∫
RN

dRN ψ0(x) = I < +∞ . (2.1)

To show rough justification that the integral (2.1) is finite, we will first focus on the
1D potential V (x). For the potential V (x) we require the condition5

lim
x→±∞

V (x) − E0 = C± > 0 ,

where E0 is ground state energy. We can apply WKB approximation for region where
V (x) − E0 < 0 (classical motion)

ψ0(x) ≈ A0
e+i
∫

dx
√

2(E0−V (x))

[2(E0 − V (x))]1/4
(2.2)

1We need to renormalise new solutions.
2One can notice that if the solution ψE,α(x) is real-valued, we obtain pair ψE,α(x) and 0.
3This is for example used in some Monte Carlo methods.
4This probability density does not correspond to real probability of occurrence of particle in infin-

itesimal space dV .
5The constant C± can be +∞.
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and for regions where V (x) − E0 > 0 (quantum tunneling regions)

ψ0(x) ≈ A+e+
∫

dx
√

2(V (x)−E0) +A−e−
∫

dx
√

2(V (x)−E0)

[2(V (x) − E0)]1/4
. (2.3)

The divergence of the integral I can be caused by 2 problems: infinite wave function at
region of classical motion6, or too slow decay of wave function into infinity x → ±∞.
For reasonable potential V (x) the wave function (2.2) is finite and hence does not
create infinity in integral I.7 In quantum tunneling regions (2.3) there are 2 solution,
one growing to infinity for x → ±∞ and one decaying to zero for x → ±∞. The
growing term has constant A± equal to zero (otherwise the wave function could not be
normalised). The condition (2.1) for finite C± guarantees at least exponential decay
e∓

√
2C±x in marginal regions, which is sufficient for integral I to be finite. The infinite

C± guarantees even quicker decay.
Similar reasoning can be used for N -dimensional spherically symmetric potentials.

The N -dimensional Schrödinger equation can be transformed into one-dimensional
Schrödinger equation (more in Appendix A.3). For general case it is harder to obtain
justification. Even though this is not rigorous justification, it gives some qualitative
insight that it is possible for function ψ0(x) to represent probability density. But this
can be overcame with introduction of positive and negative samples.

2.1 Calculation of Energy
When we are applying operator Ĝi(τ) on the wave function, we want to get closest to
ground state as possible. Good indicator is energy of state E = ⟨ψ|Ĥ|ψ⟩

⟨ψ|ψ⟩ (variational
principle, equation (1.7)). It can be also used to set optimal parameter τ in one
iteration. However the wave function8 ψ(x) is represented by n point-like samples
{xi}ni=1, effectively represented by wave function

ψ(x) ≈ 1
n

n∑
i=1

δN (x − xi) , (2.4)

where δN (·) is N -dimensional Dirac delta distribution. To evaluate energy E we need
to evaluate three integrals: ⟨ψ|ψ⟩, ⟨ψ|T̂ |ψ⟩ and ⟨ψ|V̂ |ψ⟩.9 Application of the kinetic
energy T̂ = −1

2∆N on the N -dimensional Dirac delta distribution δN (x−xi) is not well-
defined action. To overcome this problem there have been developed several different
approaches.

2.1.1 Method A

This method is based on estimation of value of wave function and can be used to
evaluate the norm ⟨ψ|ψ⟩ and the potential energy integral ⟨ψ|V̂ |ψ⟩.

6The infinite value is not sufficient, it has to be infinite integral on finite interval.
7The finite wave function integral over classical motion interval IC can be dominated as⏐⏐⏐⏐∫

IC

dxψ(x)
⏐⏐⏐⏐ ≤
∫

IC

dx max
x∈IC

{|ψ(x)|} = max
x∈IC

{|ψ(x)|}λ(IC) < +∞ ,

where λ(IC) is Lebesgue measure of the interval IC (fancy word for length).
8We denote the wave function as ψ(x) and not ψ0(x), because in following sections we will talk

about energy evaluation on positive-valued function in general. Not only for the ground state.
9We need to remember that the samples are samples of function ψ(x) not the function ψ2(x). This

means that the function ψ(x) is normalised and the integral ⟨ψ|ψ⟩ is not in general equal to 1.
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In position representation the potential energy can be evaluated as

⟨ψ|V̂ |ψ⟩ =
∫
RN

dxV (x)ψ(x)2 .

In standard Monte Carlo simulation for samples {xi}ni=1 of function ψ(x)2 we could
estimate the potential energy integral ⟨ψ|V̂ |ψ⟩ as

⟨ψ|V̂ |ψ⟩ ≈ 1
n

n∑
i=1

V (xi) .

However in case of samples of function ψ(x) we need the value of the wave function
ψ(xi)

⟨ψ|V̂ |ψ⟩ ≈ 1
n

n∑
i=1

V (xi)ψ(xi) .

In Appendix A.2 we showed that ψ(xi) can be estimated by ψ̃(xi) as (equation (A.11))

ψ̃(xi) = 1
n

n(xi, r)N
SN−1rN

1
1 + (V (xi) − E) r2

N+2
, (2.5)

where the radius of neighbourhood r was left as free parameter. In Figure 2.1 we
demonstrate how to choose radius r optimally. The quantity ⟨ψ̃(xi)⟩ is expected value
of estimator ψ̃(xi). We want radius r to be as big as possible to get large n(xi, r),
because the relative error of estimate is approximately 1/

√
n(xi, r) (reddish band shows

the error of ⟨ψ̃(xi)⟩). On the other hand we want radius r to be as small as possible
because the value ψ(x) is changing from place to place and we are effectively calculating
averaged wave function ψ(x).10

ψ(xi)

ropt
0 0 r

⟨ψ̃(xi)⟩

Figure 2.1: Choice of optimal radius ropt.

We set some maximal number of samples nmax and find nmax closest samples, the
furthest in radius rmax. The number n(xi, r) is approximately scaling as rN

n(xi, r)
nmax

= rN

rNmax
.

The condition of optimal radius is relative error 1/
√
n(xi, r) equal to relative first

correction
1√

n(xi, ropt)
= |V (xi) − E|

r2
opt

N + 2 .

10This can be understood in term of Taylor series (A.9) in Appendix A.2, where residual term is
rising with radius r.
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From last two equations we can express the optimal radius ropt as

ropt =
[

(N + 2)rN/2
max

|V (xi) − E|n
1/2
max

] 2
4+N

. (2.6)

We can see that for V (xi) ≈ E the optimal radius goes to infinity. We can expect that
in regions where the potential energy V (x) is further from value E we need smaller
number of samples.

We define estimators of norm integral Ñ , potential integral and calculated potential
energy Vcal as

Ñ := 1
n

n∑
i=1

ψ̃(xi) ,

Ṽ := 1
n

n∑
i=1

V (xi)ψ̃(xi) ,

Vcal := Ṽ

Ñ
.

To demonstrate this method we sampled few analytic potentials (more in Appendix
A.3): gamma distribution function and Gaussian distribution function.

In N = 2 dimensions we generated 1000 independent samples for gamma (a = 2,
b = 1) and Gaussian distribution function (a = 2, σ = 1). The maximal number of
samples was set nmax = 100. In Figure 2.2 we plotted calculated and exact value of
wave function ψ(xi) with and without the correction (equation (2.5)). The samples
are coloured according to number of samples in neighbourhood used to calculation ns.
This number is also important in view of that the estimated relative error is 1/√ns.
The correction improved results, but the difference is not very noticeable.

We can also observe one important property. For gamma distribution the corres-
ponding potential is Coulomb potential. Because it is unbound in origin we observe
drop in number ns. This is in agreement with equation (2.6). This can be seen in Figure
2.2 in top right plot. This means that the samples with the highest weight (ψ(xi)) have
great error. On the other hand for Gaussian distribution the corresponding potential
is (in origin) finite LHO and this behaviour is not present. The quadratic potential
of LHO is also unbounded and this causes error for big radii, but these samples have
small weight (ψ(xi)). In same Figure we can see calculated potential energy Vcal with
estimated error compared to exact ratio ⟨V ⟩

⟨ψ|ψ⟩ . Error was calculated from error of each
sample 1/√ns. We can expect the error to be approximately 1/√nmax or higher.

In N = 3 dimensions we generated 1000 samples for gamma (a = 3, b = 1) and
Gaussian distribution function (a = 3, σ = 1). The maximal number of samples was set
nmax = 100. In Figure 2.3 we plotted analogous graphs to Figure 2.2. The correction
strongly improved results in contrast to 2D case. In case of 3 dimensions we observe
same problem with Coulomb potential as in case of 2 dimensions.

For 4-dimensional and 5-dimensional case we generated 1000 samples for gamma
(a = 4, b = 1) and Gaussian distribution function (a = 4, σ = 1) with nmax = 100. The
graphs in Figure 2.4 are analogous to previous graphs. The correction helps to improve
results, but they are scattered. However this seems does not effect the calculated
potential energy. The samples are mostly under the precise value therefore they does
not effect the calculated potential energy very much.

This method has 2 drawbacks: computational time rises as ∼ n2 with number of
samples and this method does not provide calculation for the kinetic energy. Therefore
there have been developed other methods.
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Figure 2.2: The dependance of calculated (coloured dots) and exact (black line) value of
wave function ψ(xi) on radius r with and without correction for gamma distribution (Coulomb
potential) and Gaussian distribution (LHO), samples in 2D plane (2 right graphs) and calculated
potential energy Vcal with estimated error compared to ratio ⟨V ⟩

⟨ψ|ψ⟩ for gamma and Gaussian
distribution. The symbol # is run number. The average result with extimated error band is
shown (green line and band).
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potential) and Gaussian distribution (LHO), samples in 3D space (2 right graphs) and calculated
potential energy Vcal with estimated error compared to ratio ⟨V ⟩
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distribution.
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Figure 2.4: The dependance of calculated (coloured dots) and exact (black line) value of
wave function ψ(xi) on radius r with and without correction for gamma distribution (Coulomb
potential) and Gaussian distribution (LHO) in 4D and 5D, the calculated potential energy Vcal

with estimated error compared with exact value ⟨V ⟩
⟨ψ|ψ⟩ .
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2.1.2 Method B

The Method B employs the convolution of sampled wave function with heat kernel and
can evaluate the norm ⟨ψ|ψ⟩, the kinetic energy integral ⟨ψ|T̂ |ψ⟩ and the potential
energy integral ⟨ψ|V̂ |ψ⟩.

Kinetic Energy

Usually to calculate the kinetic energy we need the second derivative of wave function,
but we represent the wave function with point-like objects: samples. Thus at first glance
it looks hopelessly. But the operator e−τT̂ will help to overcome this obstacle.11 The
basic idea is as follows: the wave function represented by samples can be understood
as linear combination of Dirac delta functions (equation (2.4)). Applying the operator
e−τT̂ on the linear combination of Dirac delta functions we will get linear combination
of Gaussian functions. We can calculate the kinetic energy of this linear combination
and using the limit τ → 0+ we can get the kinetic energy of the wave function ψ(x).

The kinetic energy of the vector e−τT̂ |ψ⟩ can be formally calculated as

− d
dτ

(
e−τT̂ |ψ⟩

)
= T̂ e−τT̂ |ψ⟩ .

This is justified in momentum representation as

− d
dτ ⟨p|e−τT̂ |ψ⟩ = − d

dτ e−τ p2
2 ⟨p|ψ⟩ = p2

2 e−τ p2
2 ⟨p|ψ⟩ = ⟨p|T̂ e−τT̂ |ψ⟩ .

In position representation we get

⟨x|T̂ e−τT̂ |ψ⟩ = − d
dτ ⟨x|e−τT̂ |ψ⟩ = − d

dτ

∫
RN

dx′ ⟨x|e−τT̂ |x′⟩⟨x′|ψ⟩

♡=
∫

RN
dx′

(
− d

dτ ⟨x|e−τT̂ |x′⟩
)

=
∫

RN
dx′ ⟨x|K̂0(τ)|x′⟩⟨x′|ψ⟩ ,

where in step ♡ we used Lebesgue’s dominated convergence theorem12 to justify the
11The operator e−τT̂ is heat distribution propagator.
12The exchange is justified if the derivative of integrated function is dominated by some integrable

function. If the function ⟨x′|ψ⟩ is finite everywhere, we can write⏐⏐⏐⏐⏐ d
dτ

(
e− |x−x′|2

2τ

(2πτ)N/2
ψ(x′)

)⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐N2τ 1

(2πτ)N/2
e− |x−x′|2

2τ ψ(x′)
⏐⏐⏐⏐+
⏐⏐⏐⏐ |x − x′|2

2τ2
1

(2πτ)N/2
e− |x−x′|2

2τ ψ(x′)
⏐⏐⏐⏐

≤ max
x′∈RN

|ψ(x′)| 1
(2πτ)N/2

(
N

2τ + |x − x′|2

2τ2

)
e− |x−x′|2

2τ .

The dominating function is integrable∫
RN

dx′
(
N

2τ + |x − x′|2

2τ2

)
e− |x−x′|2

2τ
t=x′−x=======

∫
RN

dt

(
N

2τ + t2

2τ2

)
e− t2

2τ = N

τ
(2πτ)N/2 < +∞ .

If the function ⟨x′|ψ⟩ is infinite at some compact region C, we can imply

ψ(x′) ∈ L2(RN ) =⇒ ψ(x′) ∈ L2(C) =⇒ ψ(x′) ∈ L1(C) .

Therefore we can choose dominating integrable function Mψ(x′), where

M = max
x′∈C

⏐⏐⏐⏐ 1
(2πτ)N/2

(
N

2τ + |x − x′|2

2τ2

)
e− |x−x′|2

2τ

⏐⏐⏐⏐ .
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interchange of derivative and integral. The matrix element ⟨x|K̂0(τ)|x′⟩ is

⟨x|K̂0(τ)|x′⟩ = e− ∆x2
2τ

(2πτ)N/2

1
2τ

(
N − ∆x2

τ

)
,

where ∆x = |x − x′|. Then in the limit τ → 0+ we can write

⟨ψ|T̂ |ψ⟩ = lim
τ→0+

⟨ψ|T̂ e−τT̂ |ψ⟩ = lim
τ→0+

∫
RN

dx

∫
RN

dx′ ⟨ψ|x⟩⟨x|K̂0(τ)|x′⟩⟨x′|ψ⟩ . (2.7)

For wave function ψ(x) represented by samples {xi}ni=1 we can write estimator of kinetic
energy as

⟨ψ|T̂ |ψ⟩ ≈ lim
τ→0+

1
n2

n∑
i=1

n∑
j=1

K0(τ,∆xij) ,

where we used more convenient notation K0(τ,∆xij) = ⟨xi|K̂0(τ)|xj⟩.
However we can notice that the operator K̂0(τ) in power expansion of τ

K̂0(τ) = T̂ e−τT̂ = T̂ − τ T̂ 2 + 1
2!τ

2T̂ 3 − 1
3!τ

3T̂ 4 + . . .

can be improved. In same matter as we could express ⟨ψ|T̂ e−τT̂ |ψ⟩, we can express
any power ⟨ψ|T̂ne−τT̂ |ψ⟩ and make correction to operator K̂0(τ). We define the higher
order operators K̂m(τ) as

K̂m(τ) := T̂ e−τT̂Tm(eτT̂ ) , (2.8)

where Tm(·) is Taylor series of the m-th order in variable τ . In Appendix A.4 we
calculated spacial matrix elements ⟨x|K̂m(τ)|x′⟩ for m > 0. Same procedure used
before for K̂0(τ) can be used to obtain more general form of equation (2.7)13

⟨ψ|T̂ |ψ⟩ = lim
τ→0+

∫
RN

dx

∫
RN

dx′ ⟨ψ|x⟩⟨x|K̂m(τ)|x′⟩⟨x′|ψ⟩ .

and estimator
⟨ψ|T̂ |ψ⟩ ≈ lim

τ→0+

1
n2

n∑
i=1

n∑
j=1

Km(τ,∆xij) . (2.9)

However the estimator (2.9) is biased and we would like to estimate the error of the
estimator. In Appendix A.5 we showed that the estimator T̂1 is unbiased (equation
(A.19)) estimator of the integral ⟨ψ|K̂m(τ)|ψ⟩

T̂1 := 2
n(n− 1)

n∑
i=1
j>i

Km(τ,∆xij) , (2.10)

and the estimator V̂T1 is unbiased estimator of the variance Var[T̂1]

V̂T1 := 4
n(n− 1)(n− 2)(3n− 5)

⎡⎢⎢⎣4
n∑
i=1
j>i

n∑
k=1
k ̸=j

Km(τ,∆xij)Km(τ,∆xjk)−

−n(n− 1)(4n− 5)
2 (T̂1)2 −

n∑
i=1
j>i

K2
m(τ,∆xij)

⎤⎥⎥⎦ . (2.11)

13The justification for interchange of derivative and integral is similar. The dominating integrable
function will have the form P (∆x2)e− ∆x2

2τ , where P (·) is polynomial.
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Potential Energy and Norm

In same manner we can use this technique to find integral ⟨ψ|ψ⟩ and ⟨ψ|V̂ |ψ⟩. We
define the approximants of unit operator Ĵm(τ)

Ĵm(τ) := e−τT̂Tm(eτT̂ ) , (2.12)

and approximants of potential operator V̂m(τ) as14

V̂m(τ) := V̂ e−τT̂Tm(eτT̂ ) .

In Appendix A.4 we calculated spacial matrix elements ⟨x|Ĵm(τ)|x′⟩. The spacial
matrix elements ⟨x|V̂m(τ)|x′⟩ are equal to

⟨x|V̂m(τ)|x′⟩ = V (x)⟨x|Ĵm(τ)|x′⟩ .

We can generalise the formulas (2.10) and (2.11)

X̂1 := 2
n(n− 1)

n∑
i=1
j>i

Xm(τ,∆xij) ,

V̂X1 := 4
n(n− 1)(n− 2)(3n− 5)

⎡⎢⎢⎣4
n∑
i=1
j>i

n∑
k=1
k ̸=j

Xm(τ,∆xij)Xm(τ,∆xjk)−

−n(n− 1)(4n− 5)
2 (X̂ )2 −

n∑
i=1
j>i

X2
m(τ,∆xij)

⎤⎥⎥⎦ ,
where for X ∈ {J, T, V } we introduce estimators X̂1 ∈ {Ĵ1, T̂1, V̂1} and estimators of
variance V̂X1 ∈ {V̂J1 , V̂T1 , V̂V1}. The energy can be estimated as

H1 := T1 + V1
J1

.

To demonstrate this method we will use analytic solvable system: Gaussian distri-
bution function.

For N = 2 dimensional Gaussian function (σ = 1, equation (A.21)) we generated
4000 samples. In Figure 2.5 we plotted dependence of calculated integral ⟨K̂m(τ)⟩
(coloured, equation (2.10)) with estimated error (equation (2.11)) and exact values of
integrals ⟨K̂m(τ)⟩ (black, equation (A.23)) for wide range of imaginary time τ .

For large τ the calculation is more precise, but the calculated value is further from
value ⟨ψ|T̂ |ψ⟩. For small τ the error is enormous. To choose optimal τ we propose fol-
lowing procedure: Set large τ and estimate integrals ⟨ψ|K̂m(τ)|ψ⟩ and ⟨ψ|K̂m+1(τ)|ψ⟩.
Decrease τ until the estimates of ⟨ψ|K̂m(τ)|ψ⟩ and ⟨ψ|K̂m+1(τ)|ψ⟩ are within the es-
timated error.

This procedure was used to find optimal τ and calculate the norm ⟨ψ|ψ⟩, the kinetic
energy integral ⟨ψ|T̂ |ψ⟩ and the potential energy integral ⟨ψ|V̂ |ψ⟩ (Figure 2.6).

14This definition is asymmetric, because the operators V̂ and T̂ are not commutative in general. One
might want to define another approximants as e−τT̂Tm(eτT̂ )V̂ . The difference between spacial matrix
elements would be

V (x)⟨x|Ĵm(τ)|x′⟩ vs. V (x′)⟨x|Ĵm(τ)|x′⟩ .
But when the integral will be evaluated on samples and summed over pair of samples, the result will
be same because the matrix elements ⟨x|Ĵm(τ)|x′⟩ are symmetric in exchange of variables x ↔ x′.

23



0.00

0.01

0.02

0.03

0.04

0.05

10−2 10−1 100 101 102

N = 2

⟨K̂
m

(τ
)⟩

τ

⟨K̂0(τ)⟩
⟨K̂1(τ)⟩
⟨K̂2(τ)⟩
⟨K̂3(τ)⟩
⟨K̂4(τ)⟩

0.00

0.01

0.02

0.03

0.04

0.05

10−2 10−1 100 101 102

Figure 2.5: The τ -dependence of estimated (coloured with error band) and exact integrals
⟨ψ|K̂m(τ)|ψ⟩ for N = 2 (4000 samples).
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Figure 2.6: The choice of optimal τ and calculation of the norm ⟨ψ|ψ⟩, the kinetic energy
integral ⟨ψ|T̂ |ψ⟩ and the potential energy integral ⟨ψ|V̂ |ψ⟩ for N = 2 (1000 samples).
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We expect that when the calculated kinetic energy and real value are not within the
error, then we need more samples of wave function for better representation of wave
function.15 Also when the sampled wave function and number of samples N does not
change a lot, we need to find optimal τ only once.

However there is a catch. With n samples the estimators X̂1 and V̂X1 need ap-
proximately n2 operations, because the estimators are evaluated on n(n− 1)/2 pairs of
samples. With rising number of samples the computational time rises unbearably. Also
the pairs of samples are not independent, because each sample is in (n − 1) pairs. To
solve this problem we need to generate independent pairs of samples. From n samples
we have n/2 pairs of samples. The corresponding estimators are defined as

X̂2 := 1
n

n∑
i=1

Xm(τ,∆xi) ,

V̂X2 := 1
n(n− 1)

n∑
i=1

[
Xm(τ,∆xi) − X̂2

]2
,

where for X ∈ {J, T, V } we estimators estimators X̂2 ∈ {Ĵ2, T̂2, V̂2} and estimators of
variance V̂X2 ∈ {V̂J2 , V̂T2 , V̂V2}.

We will not use all information from samples, but the estimators can be calculated
quicker. For the same computational time the estimator X̂2 from larger set of pairs of
samples gives more precise value with smaller error. The energy can be estimated as

H2 := T2 + V2
J2

.

In Appendix A.8 we discuss if and when does the energy defined as

⟨E⟩ := ⟨ψ|ĤĴm(τ)|ψ⟩
⟨ψ|Ĵm(τ)|ψ⟩

have the lower bound and what is its relation to the ground state energy E0.
For the ground state |E0⟩ the energy is equal to E0 for any τ

⟨E0|ĤĴm(τ)|E0⟩
⟨E0|Ĵm(τ)|E0⟩

= ⟨E0|E0Ĵm(τ)|E0⟩
⟨E0|Ĵm(τ)|E0⟩

= E0 . (2.13)

2.1.3 Method C

We define the averaged energy {H} as16

{H} :=

∫
RN

dx Ĥψ(x)∫
RN

dxψ(x)
.

15One may imagine wave function N cos2(10x)e−x2 . When the wave function is poorly sampled, the
samples looks like samples of function N

2 e−x2 . However the rapid changes in wave functions are more
common for excited states.

16We can notice that the definition can be expressed as averaged local energy weighed by wave
function ∫

RN

dx
Ĥψ(x)
ψ(x) ψ(x)∫

RN

dxψ(x)
.
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For separable Hamiltonian from equation (1.2) we can write

{H} =

∫
RN

dx

[
−1

2∆N + V (x)
]
ψ(x)∫

RN
dxψ(x)

=−1
2

∫
RN

dx ∇ · ∇ψ(x)∫
RN

dxψ(x)
+

∫
RN

dxV (x)ψ(x)∫
RN

dxψ(x)

♡= −1
2

∫
∂(RN )

∇ψ(x) · dΣ∫
RN

dxψ(x)
+

∫
RN

dxV (x)ψ(x)∫
RN

dxψ(x)
♠=

∫
RN

dxV (x)ψ(x)∫
RN

dxψ(x)
=: {V } ,

where in step ♡ we used Stokes’ theorem17, in step ♠ we used fact, that the wave
function ψ(x) vanishes to zero at boundary of space ∂(RN ) therefore the gradient
∇ψ(x) vanishes to zero too. We defined averaged potential energy {V }, which is
identical to {H}.

The averaged energy {H} can be evaluated on samples as

{H̃} = 1
n

n∑
i=1

V (xi) ,

with estimate of error V̂{H}

V̂{H} = 1
n(n− 1)

n∑
i=1

[
V (xi) − {H̃}

]2
.

In Appendix A.7 we showed that in the limit τ → +∞ the Method B becomes
the Method C in precise form and also in terms of estimators. Also in Appendix A.8
we showed that the averaged energy {H} is non-variational energy and the infimum is
min

x∈RN
{V (x)}.

For the ground state |E0⟩ the averaged energy {H} is equal to E0

{H} =

∫
RN

dx Ĥψ0(x)∫
RN

dxψ0(x)
=

∫
RN

dxE0ψ0(x)∫
RN

dxψ0(x)
= E0 .

2.1.4 Method D

This method (exponential decay method) uses change in number of samples in one iter-
ation and does not need to handle the individual samples. We start with the operator
Ĝi(τ) as the approximant of the operator e−τĤ .

e−τĤ |ψ⟩ = Ĝi(τ)|ψ⟩ +O(τn) .

We can write ∫
RN

dx ⟨x|e−τĤ |ψ⟩ =
∫
RN

dx ⟨x|Ĝi(τ)|ψ⟩ +O(τn) .

When the state |ψ⟩ is near the ground state |E0⟩ (or any eigenvector), then we can
approximate Ĥ|ψ⟩ ≈ E|ψ⟩.∫

RN
dx ⟨x|e−τĤ |ψ⟩ ≈ e−τE

∫
RN

dx ⟨x|ψ⟩ ≈
∫
RN

dx ⟨x|Ĝi(τ)|ψ⟩

17In this special case it is also called divergence theorem or Gauss’s theorem.
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We can express the energy as

E ≈ 1
τ

ln

⎛⎜⎜⎝
∫
RN

dx ⟨x|ψ⟩∫
RN

dx ⟨x|Ĝi(τ)|ψ⟩

⎞⎟⎟⎠ .

We denote the number of samples in the j-th iteration as nj . Then the estimator of
energy Ẽ can be expressed as

Ẽ = 1
τ

ln
(

nj
nj+1

)
.

However this method cannot be used in our case. In each iteration we chose optimal
τ , where the energy has minimum. At this point the operator Ĝi(τ) already fails to
approximate the exponential operator, because we do not observe exponential decay.
Second disadvantage is dependence on the evolution of wave function. Also for small
parameter τ the error is huge, for larger τ the relation is inaccurate.

2.2 Implementation of the Operators Ĝi(τ)

The approximants Ĝi(τ) consist of two types of operators in sense of action on wave
function: multiplication with non-negative real-valued function (operators e−τ2i+1Ĉi)
and convolution (operator e−τT̂ ).

2.2.1 Multiplication

Let the {xi}ni=1 be initial set of samples of wave function ψ(x) and we need samples of
wave function

⟨x|F̂ |ψ⟩ = F (x)ψ(x) ,
where F (·) is non-negative real-valued function.

Implementation: Each sample xi is duplicated ⌊F (xi)⌋ times and we add extra
duplicate with probability (F (xi) − ⌊F (xi)⌋).

The above mentioned procedure can be used to implement action of operators
e−τ2i+1Ĉi .

2.2.2 Convolution

Let the {xi}ni=1 be initial set of samples of wave function ψ(x) and we need samples of
wave function

⟨x|e−τT̂ |ψ⟩ (A.8)= 1
(2πτ)N/2

∫
RN

dy e− ||x−y||2
2τ ψ(y) . (2.14)

The samples can be understood as sum of Dirac delta distributions (equation (2.4)).
Then the relation (2.14) becomes

⟨x|e−τT̂ |ψ⟩ ≈ 1
n

n∑
i=1

1
(2πτ)N/2

e− ||x−xi||2
2τ .

Implementation: For each sample xi we generate random vector a from N -dimen-
sional Gaussian distribution ρG(a;

√
τ)

ρG(a;σ) = 1
(2πσ2)N/2

e− ||a||2

2σ2 ,

and we add vector a to vector xi to make new sample x′
i

x′
i = xi + a .
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2.3 Optimization
In our case we need a special type of optimization in one dimension. Usually the
optimised function is differentiable, the derivative is easy to evaluate and problem is
solved using Newton’s method. However the derivative of energy with respect to the
propagation imaginary time τ is difficult to evaluate. The effective algorithm, when we
can only evaluate the function at points, is golden-section search [29].

2.3.1 Golden-section search

Let

• I = (a, b) be given open interval,

• F ∈ C 0(I,R) be real-valued continuous function with one and only one local
minimum

(∃!c ∈ (a, b))(∃δ ∈ R)(δ > 0)(∀y ∈ Pδ(c))(F (x) > F (c)) ,

where Pδ(c) is deleted δ-neighbourhood of the point c.
The search for the minimum is based on principle divide et impera. In one iteration

we want to reduce the interval, where the minimum is located. Let (ai, bi) be interval
in the i-th iteration and we know 2 values of the function F (y) at endpoints ai and bi.
The knowledge of the third value of the function does not help to reduce the interval.
We need at least 4 values. Let yi,1, yi,2, yi,3, yi,4 be 4 points from interval (ai, bi)

ai = yi,1 < yi,2 < yi,3 < yi,4 = bi . (2.15)

Also we would like to recycle values of the function from previous iteration, because it
takes long computational time to evaluate one value. We restrict ourselves to propor-
tional division. If we chose for next iteration subinterval (ai+1, bi+1) = (yi,1, yi,3), we
obtain the following condition

yi,3 − yi,1
yi,4 − yi,1

= yi+1,3 − yi+1,1
yi+1,4 − yi+1,1

= yi,2 − yi,1
yi,3 − yi,1

. (2.16)

If we chose subinterval (ai+1, bi+1) = (yi,2, yi,4), the following condition arises

yi,4 − yi,2
yi,4 − yi,1

= yi+1,4 − yi+1,2
yi+1,4 − yi+1,1

= yi,4 − yi,3
yi,4 − yi,2

. (2.17)

It is convenient to introduce ratios Yj as

Yj = yi,j − yi,1
yi,4 − yi,1

.

From definition we get Y1 = 0 and Y4 = 1. Then the system of equations (2.16) and
(2.17) in new variables reads

Y3 = Y2
Y3
, 1 − Y2 = 1 − Y3

1 − Y2
.

We get 4 solutions

Y2 = 0 , Y3 = 0 ;
Y2 = 1 , Y3 = 1 ;
Y2 = −1 − φ , Y3 = −1 − φ ;
Y2 = 1 − φ , Y3 = φ ,
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where φ := (
√

5 − 1)/2 ≈ 0.618. First three solutions are in conflict with condition (2.15).
The only acceptable solution is division og the interval in the golden ratio18.

Implementation:

1. Let (a0, b0) = (a, b) be the initial interval.

2. Divide the interval (ai, bi) according to golden ratio

yi,0 = ai ,

yi,0 = ai + (1 − φ)(bi − ai) ,
yi,0 = ai + φ(bi − ai) ,
yi,0 = bi .

3. If i = 0, evaluate function F (y) at all 4 point y0,j . If i > 0, evaluate function
F (y) at 1 new point (yi,2 or yi,3).

4. If F (yi,2) < F (yi,3), then (ai+1, bi+1) = (yi,1, yi,3), else (ai+1, bi+1) = (yi,2, yi,4).19

5. Return to the second step.

The spirit of the golden-section search method is captured in Figure 2.7. Depending
on the value of the function at point yi,3 we can see choice of new subinterval. For each
case there is shown example functions FA(y) and FB(y). Golden-section in the next
iteration is also shown.

y
yi,1 yi,2 yi,3 yi,4

yi+1,1 yi+1,2 yi+1,3 yi+1,4

yi+1,1 yi+1,2 yi+1,3 yi+1,4

A:
B:

FA(y)

FB(y)

Figure 2.7: One iteration of the golden-section search.

18Origin of the name.
19In case of equality F (yi,2) = F (yi,3), the minimum lies in subinterval (yi,2, yi,3). However this

practically does not happen and each choice of new interval (ai+1, bi+1) covers the subinterval (yi,2, yi,3).
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3. Results and Discussion
To show the performance of proposed ITP methods, we choose systems with different
difficulties: dimensionality, unbounded potential (Coulomb potential).

3.1 Harmonic Oscillator
The 6-dimensional LHO has well-behaving potential, but the challenge is dimensional-
ity. The Hamiltonian Ĥ for 6-dimensional LHO is

Ĥ = −1
2∆6  
T̂

+1
2r

2  
V̂

,

where ∆6 is 6-dimensional Laplace operator and r := ||x|| is norm of position x ∈ R6.
The operator Ĉ1 is

Ĉ1 = ∇V · ∇V = r2 .

The ground state1 ψ0(x), energy E0 and radial distribution function2 ρ0(r) are known
(more in Appendix A.3)

ψ0(x) = 1
(2π)3 e− r2

2 , E0 = 3 , ρ0(r) = 1
8r

5e− r2
2 .

For the initial wave function ϕ0(x)

ϕ0(x) = 1
(2πσ2)3 e− ||x−a0||2

2σ2 , σ = 6
5 , a0 = 1

4(1, 1, 1, 1, 1, 1) ,

we evaluated integrals

⟨ϕ0|ϕ0⟩ = 1
(4πσ2)3 , ⟨ϕ0|T̂ |ϕ0⟩ = 3

2σ2
1

(4πσ2)3 ,

⟨ϕ0|V̂ |ϕ0⟩ =
(

3σ2

3 + ||a0||2

2

)
1

(4πσ2)3 ,

and initial energy

⟨ϕ0|Ĥ|ϕ0⟩
⟨ϕ0|ϕ0⟩

= 3
2σ2 + 3σ2

2 + ||a0||2

2 ≈ 3.389 .

To choose optimal τO for Method B we generated 5,000,000 samples and calculated
integrals ⟨ϕ0|Ĵm(τ)|ϕ0⟩, ⟨ϕ0|K̂m(τ)|ϕ0⟩, ⟨ϕ0|V̂m(τ)|ϕ0⟩ (compare with Figure 2.6). The
evaluated data are plotted in Figure 3.1. The optimal τ was set τO = 1.7 for approx-
imation m = 7.

In bottom plots in Figure 3.1 we check whether and how are calculated integrals
⟨ϕ0|Ĵ7(τO)|ϕ0⟩, ⟨ϕ0|K̂7(τO)|ϕ0⟩, ⟨ϕ0|V̂7(τO)|ϕ0⟩ and ⟨ϕ0|Ĥ7(τO)|ϕ0⟩ biased. As we ex-
pected, the positive integrals (⟨ϕ0|Ĵ7(τO)|ϕ0⟩, ⟨ϕ0|K̂7(τO)|ϕ0⟩) are underestimated and
negative integral (⟨ϕ0|V̂7(τO)|ϕ0⟩) overestimated. These biases cancel out a little bit in
⟨ϕ0|Ĥ7(τO)|ϕ0⟩, but the energy is overestimated. This is no surprise, because we know,
that we get exact energy for eigenstates. Also for variational energy it is better to be
overestimated.

1Mind the different normalization.
2One has to remember that the sampled function is ψ0(x) and not the function |ψ0(x)|2.
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Figure 3.1: The choice of optimal τO = 1.7 and the calculation of the norm ⟨ϕ0|ϕ0⟩, the
kinetic energy integral ⟨ϕ0|T̂ |ϕ0⟩ and the potential energy integral ⟨ϕ0|V̂ |ϕ0⟩ for 6-dimensional
LHO (5,000,000 samples, three upper plots). The chosen τO and exact values ⟨ϕ0|ϕ0⟩, ⟨ϕ0|T̂ |ϕ0⟩
and ⟨ϕ0|V̂ |ϕ0⟩ are marked with horizontal and vertical lines. The check for bias for calculated
estimators ⟨ϕ0|Ĵ7(τO)|ϕ0⟩, ⟨ϕ0|K̂7(τO)|ϕ0⟩, ⟨ϕ0|V̂7(τO)|ϕ0⟩ and ⟨ϕ0|Ĥ7(τO)|ϕ0⟩ for 20 runs (four
bottom plots).
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The ITP method itself comes next. We sampled initial wave function ϕ0(x). In each
iteration we applied operator Ĝ8(τ) on samples of function ϕi(x) (more in section 2.2).
We calculated the energy ⟨E⟩ using the Method B. Using the golden-section search we
optimised the energy ⟨E⟩ with respect to parameter τ until the energy difference was
within errors of energy. For optimised parameter τi we sampled wave function ϕi+1(x)
for next iteration

ϕi+1(x) = Ĝ8(τi)ϕi(x) .

Along the ITP method we evaluated the averaged energy {H} (Method C) and
estimated virial-like ratio p (for LHO the precise value for the eigenstate is 1, more in
1.1) as3

p = ⟨ϕi|V̂7(τO)|ϕi⟩ + ⟨E⟩⟨ϕi|Ĵ7(τO)|ϕi⟩
⟨ϕi|K̂7(τO)|ϕi⟩

.

However the integrals in relation are biased, therefore we can expect biased ratio p.
The process of optimization is documented in Figure 3.3. We can observe few

interesting behaviour: In one iteration the program rapidly improved the energy ⟨H⟩.
In two iterations we got to ground state energy within the error. The energy ⟨H⟩
never undergoes the ground state energy within the error. The energy ⟨H⟩ gives the
ground state energy with smaller systematic error compared with the averaged energy
{H}. After first iteration the virial ratio p stops to improve and never reaches the exact
value 1 within the error. This in agreement with theory, because virial theorem holds for
eigenstates and we are effectively evaluating the ratio p on wave function Ĵ7(τO)1/2|ψ0⟩.
Therefore idea of calculating only one of the integrals ⟨ϕ0|K̂7(τO)|ϕ0⟩ or ⟨ϕ0|V̂7(τO)|ϕ0⟩
and estimate the energy using the virial theorem would lead to results with systematic
error. The radial distribution function ρϕi

(r) improves significantly in the first iteration.
In following iterations it is slowly approaching the ground state radial distribution
function ρ0(r). For the 2nd and higher iterations the radial distribution functions
ρϕi

(r) and the ground state radial distribution function ρ0(r) are indistinguishable
from each other in the plot.

The ground state energy after 5 iterations was calculated as (3.0002 ± 0.0010),
which is in good agreement with exact value E0 = 3.

Because the ground state of LHO is known analytically, we can generate samples of
the ground state ψ0(x). In Figure 3.2 we check bias of integrals. As expected the first
three integrals are biased, but for the energy ⟨ψ0|Ĥ7(τO)|ψ0⟩ the ground state energy
E0 is within the errors (see equation (2.13)).

3One has to bear in mind that for ITP method we need to use offset potential Ṽ = V − ⟨E⟩, but
for virial ratio we need homogeneous function.
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Figure 3.2: The check for bias for estimators ⟨ψ0|Ĵ7(τO)|ψ0⟩, ⟨ψ0|K̂7(τO)|ψ0⟩, ⟨ψ0|V̂7(τO)|ψ0⟩
and ⟨ψ0|Ĥ7(τO)|ψ0⟩ for 20 runs.
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Figure 3.3: The ITP evolution of states |ϕi+1⟩ = Ĝ8(τ)|ϕi⟩ in each iteration optimised energy
⟨E⟩ with respect to parameter τ (Method B, 2 upper plots). We evaluated along optimation
the averaged energy {H} (Method C) and the virial ratio p (exact value for any eigenstate is
1) (2 middle plots). The radial distribution function ρϕi(r) after each iteration and the ground
state radial distribution function ρ0(r) (bottom plot).
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3.2 Anharmonic Oscillator
The harmonic oscillator is analytically solvable model and good first order approxim-
ation for various systems (e.g. molecular vibrations). However to obtain more precise
results we need to include into potential higher than quadratic terms. To study per-
formance of ITP method for such case we choose 3-dimensional octic potential with
Hamiltonian

Ĥ = −1
2∆3  
T̂

+
8∑
i=1

αir
i

  
V̂

,

where ∆3 is 3-dimensional Laplace operator, r := ||x|| distance from the origin and αi
constants. The operator Ĉ1 is

Ĉ1 = ∇V · ∇V =
( 8∑
i=1

αiir
i−1
)2

.

The coefficient was chosen from [30] as

α1 = − 3
2
√

2
α2 = 25

256 − 5
2
√

2
α3 = 15

64 − 3
√

2 α4 = 29
64

α5 = 1 α6 = 1 α7 = 1 α8 = 1

with known ground state ψ0(x), energy E0 and radial distribution function ρ0(r)

ψ0(x) = Ne− 5
16

√
2
r2− 1

4
√

2
r3− 1

4
√

2
r4−

√
2

5 r5
, E0 = 15

16
√

2
, ρ0(r) = 4πr2ψ0(x) ,

where N ≈ 0.23203.4 For the initial wave function ϕ0(x)

ϕ0(x) = 1
(2πσ2)3/2

e− ||x||2

2σ2 ,

we evaluated integrals

⟨ϕ0|ϕ0⟩ = 1
(4πσ2)3/2

, ⟨ϕ0|T̂ |ϕ0⟩ = 3
4σ2

1
(4πσ2)3/2

,

⟨ϕ0|V̂ |ϕ0⟩ = 1
(4πσ2)3/2

8∑
i=1

2
π1/2

αiσ
iΓ
(
i+ 3

2

)
,

and for optimal parameter σ = 0.55237 the initial energy

⟨ϕ0|Ĥ|ϕ0⟩
⟨ϕ0|ϕ0⟩

= 3
4σ2 +

8∑
i=1

2
π1/2

αiσ
iΓ
(
i+ 3

2

)
≈ 1.324 .

Following the same procedure we chose optimal parameter τO = 0.6 (3 upper plots
in Figure 3.4) and checked for biases of calculated variables (4 bottom plots in Figure
3.4). Biases for ⟨ϕ0|Ĵ7(τO)|ϕ0⟩ and ⟨ϕ0|K̂7(τO)|ϕ0⟩ are same as before. However the
values of ⟨ϕ0|V̂7(τO)|ϕ0⟩ and ⟨ϕ0|Ĥ7(τO)|ϕ0⟩ are underestimated.

Process of ITP method can be seen in Figure 3.5. We observe similar phenomena
as before: The energy ⟨H⟩ gives results with smaller systematic error than the aver-
aged energy {H}. The wave function rapidly converges to ground state and after few
iterations the radial distribution function of generated samples ρφi(r) and the ground
state radial distribution function ρ0(r) overlap.

The ground state energy after 5 iterations was estimated as (0.6631 ± 0.0012). This
in agreement with exact value E0 ≈ 0.6629.

4Evaluated numerically with the program Mathematica [15].
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Figure 3.4: The choice of optimal τO = 0.6 for 3-dimensional octic potential (5,000,000
samples) with marked precise values ⟨ϕ0|ϕ0⟩, ⟨ϕ0|T̂ |ϕ0⟩ and ⟨ϕ0|V̂ |ϕ0⟩ (three upper plots). The
check for bias for calculated estimators ⟨ϕ0|Ĵ7(τO)|ϕ0⟩, ⟨ϕ0|K̂7(τO)|ϕ0⟩, ⟨ϕ0|V̂7(τO)|ϕ0⟩ and
⟨ϕ0|Ĥ7(τO)|ϕ0⟩ for 20 runs (four bottom plots).
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energy {H} (Method C) (2 middle plots). The radial distribution function ρϕi

(r) after each
iteration and the ground state radial distribution function ρ0(r) (bottom plot).
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3.3 Hydrogen Atom
Compared to the example of the 6-dimensional LHO the hydrogen atom has lower
dimensionality, but on the other hand comes with the difficulties caused by the Coulomb
potential. The singularity in potential makes the 4th order approximant Ĝ8(τ) the
only reasonably usable operator for ITP method. The divergent part in e−τV̂ has to be
suppressed by stronger zero in e−τ3Ĉ1 . Every operator e−τV̂ has to have neighbouring
operator e−τĈ1 and the operators e−τV̂ and e−τĈ1 should not be the last one applied.

The Hamiltonian Ĥ for hydrogen atom in atomic units is

Ĥ = −1
2∆3  
T̂

−1
r
V̂

,

where ∆3 is 3-dimensional Laplace operator and r := ||x|| distance from the origin.
The operator Ĉ1 is (compare with Table 1.1)

Ĉ1 = ∇V · ∇V = 1
r4 .

The ground state ψ0(x), energy E0 and radial distribution function ρ0(r) are known
(more see Appendix A.3)

ψ0(x) = 1
8π e−r , E0 = −1

2 , ρ0(r) = 1
2r

2e−r .

For the initial wave function ϕ0(x)

ϕ0(x) = 1
(2πσ2)3/2

e− ||x−a0||2

2σ2 , σ = 6
5 , a0 = 1

4(1, 1, 1) ,

we evaluated integrals5

⟨ϕ0|ϕ0⟩ = 1
(4πσ2)3/2

, ⟨ϕ0|T̂ |ϕ0⟩ = 3
4σ2

1
(4πσ2)3/2

, ⟨ϕ0|V̂ |ϕ0⟩ ≈ −0.0117055 ,

and the initial energy
⟨ϕ0|Ĥ|ϕ0⟩

⟨ϕ0|ϕ0⟩
≈ −0.3802 .

Following the same procedure as before we continue with the next step: search for
the optimal τO. We generated 5,000,000 samples and estimated integrals ⟨ϕ0|Ĵm(τ)|ϕ0⟩,
⟨ϕ0|K̂m(τ)|ϕ0⟩, ⟨ϕ0|V̂m(τ)|ϕ0⟩ (Figure 3.6). The optimal τ was chosen τO = 2.3 for
approximation m = 7. In bottom plots we check for biases of estimators ⟨ϕ0|Ĵ7(τO)|ϕ0⟩,
⟨ϕ0|K̂7(τO)|ϕ0⟩, ⟨ϕ0|V̂7(τO)|ϕ0⟩ and ⟨ϕ0|Ĥ7(τO)|ϕ0⟩. We observe same biases as in case
of 6-dimensional LHO.

In Figure 3.6 we can see the process of optimization. We observe few effects of
unbounded Coulomb potential: The convergence is very slow and the optimal parameter
τ in every iteration is shorter and shorter. The averaged energy {H} starts at more
negative energies6 than E0 and then the values overshoot the energy E0 and converge to
value ≈ −0.497. The virial ratio p stops improve and never reaches the exact value −2
(similar behaviour as in case of 6-dimensional linear oscillator). The radial distribution
function ρϕi

(r) slowly approaches the ground state radial distribution function ρ0(r).
Even though the calculated energy is equal to E0 within the error, there is visible
difference between radial distributions functions ρϕi

(r) and ρ0(r).
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Figure 3.6: Optimization of τ and calculation of the integrals ⟨ϕ0|ϕ0⟩, ⟨ϕ0|T̂ |ϕ0⟩ and ⟨ϕ0|V̂ |ϕ0⟩
for hydrogen atom (5,000,000 samples, three upper plots). The chosen τO = 2.3 and exact values
⟨ϕ0|ϕ0⟩, ⟨ϕ0|T̂ |ϕ0⟩ and ⟨ϕ0|V̂ |ϕ0⟩ are marked with lines. The check for biases of estimators
⟨ϕ0|Ĵ7(τO)|ϕ0⟩, ⟨ϕ0|K̂7(τO)|ϕ0⟩, ⟨ϕ0|V̂7(τO)|ϕ0⟩ and ⟨ϕ0|Ĥ7(τO)|ϕ0⟩ for 20 runs (four bottom
plots).
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Figure 3.7: The check for biases of estimators ⟨ψ0|Ĵ7(τO)|ψ0⟩, ⟨ψ0|K̂7(τO)|ψ0⟩, ⟨ψ0|V̂7(τO)|ψ0⟩
and ⟨ψ0|Ĥ7(τO)|ψ0⟩ for 20 runs.

The ground state energy after 42 iterations was estimated as (−0.50005 ± 0.0007),
which is in good agreement with exact value E0 = −0.5.

For the hydrogen atom we can generate samples of the ground state ψ0(x). In Figure
3.7 we check for biases of integrals for the ground state. Same as for 6-dimensional linear
oscillator first three integrals are biased and the energy ⟨ψ0|Ĥ7(τO)|ψ0⟩ is equal to E0
within the error. This is in agreement with equation (2.13).

5The potential integral was evaluated numerically using the program Mathematica [15].
6This is in agreement with fact, that the averaged energy is bound by minimum of the potential:

−∞.
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Figure 3.8: The ITP evolution of states |ϕi+1⟩ = Ĝ8(τ)|ϕi⟩ in each iteration optimised with
respect to energy ⟨E⟩ (Method B, 2 upper plots). We evaluated along optimation the averaged
energy {H} (Method C) and the virial ratio p (for any eigenstate is equal to −2) (2 middle
plots). The radial distribution function ρϕi

(r) after each iteration and the ground state radial
distribution function ρ0(r) (bottom plot).
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Conclusions
In conclusion we would like to summerise achieved results. At first we computed approx-
imants of the imaginary time propagation operator for different schemes and compared
results with literature. To compare convergence of different approximants we simulated
ITP method on 1D grid for linear harmonic potential and double-well potential. As
expected higher order approximants showed quicker convergence.

We developed few method for energy calculation. The Method A showed that the
first order correction strongly improves results. However worse time complexity ∼ n2

compared with other methods condemned the Method A to failure. The Method B
provide more rigorous approach to energy calculation and the higher order methods
provide lower error. Computed results are consistent with theoretical values. For
ground state the Method B returns ground state energy. Also we can expect the
calculated energy to be bounded by ground state energy. The Method C also returns
correct energy for ground state, but is bounded by minimum of potential. We showed
that the Method C is limit case of the Method B.

For potentials without singularities (6-dimensional harmonic oscillator and anhar-
monic oscillator) we observe quick convergence to ground state in few iteration for given
error. Likewise higher dimensionality does not cause issues. The Method B provides
more accurate results than the Method C. For singular potential (Coulomb potential)
the ITP methods based on simpler V T -schemes are divergent and cannot be implemen-
ted. However the scheme TV CTV CT can be used and is executable. Even though the
convergence is slower, it can be improved by standard techniques for variance reduction
in Monte Carlo methods [31].

We can conclude that this method comes with some difficulties, but it converges to
ground state and can be easily implemented for massive parallel computations.
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A. Appendices
A.1 The Matrix Elements of the Operator e−zT̂

In this thesis we often work with the operator e−zT̂ , therefore we would like to explore its
properties: well-definedness, analyticity and evaluation of the spatial matrix elements.

The subject of our interest is N -dimensional kinetic energy T̂ = 1
2 p̂ · p̂ = −1

2∆N and
in general complex constant z ∈ C. In general, if eigenvectors |a⟩ of Hermitian operator
Â form orthogonal basis, we can additionally define operator f(Â) on eigenvectors |a⟩
and in formalism of spectral decomposition define operator f(Â) as follows1

Â|a⟩ = a|a⟩ =⇒ f(Â)|a⟩ = f(a)|a⟩ ,

Â =
∑∫
a

da a|a⟩⟨a| =⇒ f(Â) =
∑∫
a

da f(a)|a⟩⟨a| .

Similarly, the operator e−zT̂ is defined at improper eigenvectors |p⟩ of momentum
operator p̂ as2

p̂|p⟩ = p|p⟩ =⇒ e−zT̂ |p⟩ = e−z p2
2 |p⟩ . (A.1)

The momentum matrix elements ⟨p′|e−zT̂ |p⟩ are well-defined for any complex constant
z

⟨p′|e−zT̂ |p⟩ = e−z p2
2 ⟨p′|p⟩ = e−z p2

2 δN (p′ − p) ,

where δN (·) is N -dimensional Dirac delta distribution.
For the spatial matrix elements ⟨x′|e−zT̂ |x⟩ it is more complicated. The spectral

decomposition of the unit operator 1̂ in terms of eigenvectors |p⟩ leads to

⟨x′|e−zT̂ |x⟩=⟨x′|e−zT̂ 1̂|x⟩=
∫
RN

dp ⟨x′|e−zT̂ |p⟩⟨p|x⟩ (A.1)=
∫
RN

dp e−z p2
2 ⟨x′|p⟩⟨p|x⟩

(1.3)=
∫
RN

dp
e−z p2

2

(2π)N eip·∆x (♡)=

⎛⎜⎝∫ +∞

−∞
dp1

e−z
p2

1
2 +ip1∆x1

2π

⎞⎟⎠· · ·

⎛⎜⎝∫ +∞

−∞
dpN

e−z
p2

N
2 +ipN ∆xN

2π

⎞⎟⎠,
where ∆x := x′ − x. The step (♡) is justified if each of the one-dimensional integrals
is convergent in absolute value (Fubini’s theorem).3,4 Each one-dimensional integral is

1Only necessary condition for function f(·) is to be defined at eigenvalues.
2The symbol p2 denotes p2 = p · p.
3Fubini’s theorem (sometimes called the Fubini-Tonelli theorem.) Let
• (X,M1, µ1) and (Y,M2, µ2) be σ-finite measure spaces (this implies there is unique product

measure for measure space (X × Y,M1 × M2, µ)),
• f : M1 × M2 → R be measurable function,

and if any of three following integrals is finite∫
X

dµ1

(∫
Y

dµ2|f(x, y)|
)
,

∫
Y

dµ2

(∫
X

dµ1|f(x, y)|
)
,

∫
X×Y

dµ|f(x, y)| ,

then ∫
X

dµ1

(∫
Y

dµ2f(x, y)
)

=
∫

Y

dµ2

(∫
X

dµ1f(x, y)
)

=
∫

X×Y

dµf(x, y) .

4To be clear and mathematically rigorous: in our case the measures µ1, µ2 and µ are the Lebesgue
measures λ (which are σ-finite), the integrated function f(x) is complex-valued function (not real-
valued) and we should deal individually with integrals of real fRe(x) and imaginary part fIm(x),
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convergent in absolute value for Re(z) > 0

∫ +∞

−∞
dp

⏐⏐⏐⏐⏐⏐e
−z p2

2 +ip∆x

2π

⏐⏐⏐⏐⏐⏐ = 1
2π

∫ +∞

−∞
dp e−Re(z) p2

2
Re(z)>0======= 1√

2πRe(z)
< +∞ . (A.2)

For Re(z) ≤ 0 the integral (A.2) does not fulfil necessary condition for convergence: If
the limit lim

p→±∞
f(p) exists, it has to be zero.5

lim
p→±∞

e−Re(z) p2
2 =

⎧⎪⎪⎨⎪⎪⎩
0 if Re(z) > 0;
1 if Re(z) = 0;
+∞ if Re(z) < 0.

We will evaluate the one-dimensional integral by using basic tool of complex analysis:
Cauchy’s integral theorem6. First we will choose even part of integrated function (the
odd one will cancel out) and replace with twice as big integral from 0 to +∞ as follows

1
2π

∫ +∞

−∞
dp e−z p2

2 +ip∆x = 1
2π

∫ +∞

0
dp e−z p2

2 (eip∆x + e−ip∆x)  
f1(p)

. (A.4)

Let R > 0 and choose closed contour γ as can be seen in Figure A.1. The complex
constant z = |z|eiφ has phase φ ∈ (−π,+π⟩. Motivation behind this contour is to
choose line γ3 passing through the origin so, that constant in front of quadratic term in
exponent will be purely real. This corresponds to substitution p → pe−iφ

2 . Construction
of the line is shown in Figure A.1. Now it is useful to look at Cauchy integral of function
f1(p) over the contour γ (function f1(p) is analytic in whole complex plane):∫ R

0
dp f1(p) +

∫
γ2

dp f1(p) +
∫
γ3

dp f1(p) =
∮
γ

dp f1(p) (A.3)= 0 . (A.5)

but convergent integral in absolute value implies convergent real and imaginary part of integral, thus
convergent integral of function f(x).

+∞>

∫
X

dx|f(x)| =⇒

⎧⎪⎪⎨⎪⎪⎩
+∞ >

∫
X

dx|fRe(x)| =⇒ +∞ >

⏐⏐⏐⏐∫
X

dxfRe(x)
⏐⏐⏐⏐

+∞ >

∫
X

dx|fIm(x)| =⇒ +∞ >

⏐⏐⏐⏐∫
X

dxfIm(x)
⏐⏐⏐⏐
⎫⎪⎪⎬⎪⎪⎭=⇒ +∞>

⏐⏐⏐⏐∫
X

dxf(x)
⏐⏐⏐⏐ .

5 (
+∞ >

⏐⏐⏐⏐∫ +∞

−∞
dp f(p)

⏐⏐⏐⏐) ∧
(

∃ lim
p→±∞

f(p)
)

=⇒
(

lim
p→±∞

f(p) = 0
)

6Cauchy’s integral theorem. Let
• Ω ⊂ C be simply connected7open subset of the complex plane,
• f(p) be analytic function on Ω,
• γ be closed path in Ω,

then ∮
γ

dp f(p) = 0 . (A.3)

7The set is simply connected if 2 conditions are fulfilled:
1. Every two points of the set can be connected with continuous path from this set.
2. Every path between two fixed points can be continuously transformed into any other path between

same two points.
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Figure A.1: The contour of integration γ in complex p-plane.
We are interested in the limit R → +∞. For φ ∈

(
−π

2 ,+
π
2
)

the integral over the
contour γ2 tends to zero in the limit.

lim
R→+∞

⏐⏐⏐⏐∫
γ2

dp f1(p)
⏐⏐⏐⏐ ≤ lim

R→+∞

∫ R(1−i tan φ
2 )

R
dp
⏐⏐⏐⏐e−z p2

2 (eip∆x + e−ip∆x)
⏐⏐⏐⏐

q= p−R
iR

≤ lim
R→+∞

∫ tan φ
2

0
dq R

⏐⏐⏐⏐e−zR2
2 (1−iq)2

⏐⏐⏐⏐ ⏐⏐⏐eiR∆x(1−iq) + e−iR∆x(1−iq)
⏐⏐⏐

≤ lim
R→+∞

∫ tan φ
2

0
dq R

⏐⏐⏐⏐e−|z| R2
2 (cosφ+i sinφ)(1−iq)2

⏐⏐⏐⏐ (eR∆xq + e−R∆xq
)

= lim
R→+∞

∫ tan φ
2

0
dq Re−|z| R2

2 [cosφ(1−q2)+2q sinφ] (eR∆xq + e−R∆xq
)

≤ lim
R→+∞

⏐⏐⏐⏐tan φ2

⏐⏐⏐⏐R max
q∈⟨0,tan φ

2 ⟩

{
e−|z| R2

2 [cosφ(1−q2)+2q sinφ] (eR∆xq + e−R∆xq
)}

≤ lim
R→+∞

⏐⏐⏐⏐tan φ2

⏐⏐⏐⏐Re−|z| R2
2 cosφ

(
1 + eR∆x|tan φ

2 |) φ∈(− π
2 ,+

π
2 )

========== 0

Also for φ = ±π
2 and |z| > 0.

lim
R→+∞

⏐⏐⏐⏐∫
γ2

dp f1(p)
⏐⏐⏐⏐ q= p−R

iR

≤ lim
R→+∞

∫ ±1

0
dq R

⏐⏐⏐⏐e−zR2
2 (1−iq)2 (eiR∆x(1−iq) + e−iR∆x(1−iq)

)⏐⏐⏐⏐
≤ lim

R→+∞

(∫ ±1

0
dq R

⏐⏐⏐⏐e−zR2
2 (1−iq)2+iR∆x(1−iq)

⏐⏐⏐⏐+ ∫ ±1

0
dq R

⏐⏐⏐⏐e−zR2
2 (1−iq)2−iR∆x(1−iq)

⏐⏐⏐⏐)
= lim

R→+∞

(∫ ±1

0
dq Re(∓|z|R2+R∆x)q +

∫ ±1

0
dq Re(∓|z|R2−R∆x)q

)
= lim

R→+∞

(
1 − e−|z|R2±R∆x

±|z|R− ∆x + 1 − e−|z|R2∓R∆x

±|z|R+ ∆x

)
|z|>0===== 0

From equation (A.5) in limit R → +∞ we get

lim
R→+∞

∫ R

0
dp f1(p) = lim

R→+∞

∫ R(1−i tan φ
2 )

0
dp f1(p)

p=p′e−i
φ
2======== lim

R→+∞
e−iφ

2

∫ R

cos φ
2

0
dp′ f

(
p′e−iφ

2
)
.
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We undo the symmetrization from step (A.4) and rearrange quadratic term in exponent.

1
2π

∫ +∞

−∞
dp e−z p2

2 +ip∆x = e−iφ
2

2π

∫ +∞

−∞
dp′ e−|z| p′2

2 +ip′∆xe−i
φ
2

= e−iφ
2

2π

∫ +∞

−∞
dp′ e

− |z|
2

(
p′−i∆xe−i

φ
2
)2

− ∆x2
2z  

f2(p′)

(A.6)

Now we will need to use integral in complex plane again. Let R > 0 and choose
rectangular contour γ as in Figure A.2. One horizontal line is passing through origin,
the other one through point i∆xe−iφ

2 (compare with (A.6)).

Re(p′)

Im(p′)

0−R +R

i∆xe−iφ
2

γ1

γ2

γ3

γ4 γ := γ1 + γ2 + γ3 + γ4

Figure A.2: The contour of integration γ in complex p′-plane.

Cauchy integral of function f2(p′) over the contour γ gives (function f2(p′) is analytic
in whole complex plane)∫ R

−R
dp′ f2(p′)+

∫
γ2

dp′ f2(p′)+
∫
γ3

dp′ f2(p′)+
∫
γ4

dp′ f2(p′) =
∮
γ

dp′ f2(p′) (A.3)= 0 . (A.7)

Again we are interested in the limit R → +∞. The integrals over the contours γ2 and
γ4 go to zero in the limit.

lim
R→+∞

⏐⏐⏐⏐⏐
∫
γ2/4

dp′ f2(p′)
⏐⏐⏐⏐⏐ ≤ lim

R→+∞

∫
γ2/4

dp′ ⏐⏐f2(p′)
⏐⏐

p′=±R+iq======== lim
R→+∞

∫ ∆x

0
dq e− |z|

2 (R2−q2)±R∆x sin φ
2 −q∆x cos φ

2

≤ lim
R→+∞

∆xe− |z|
2 (R2−∆x2)±R∆x sin φ

2 = 0

From equation (A.7) and (A.6) in limit R → +∞ we get

1
2π

∫ +∞

−∞
dp e−z p2

2 +ip∆x = e−iφ
2

2π e− ∆x2
2z

∫ +∞

−∞
dp′ e− |z|

2 p
′2

  √
2π
|z|

= 1√
2πz

e− ∆x2
2z .

Inserting into N -dimensional integral we get

⟨x′|e−zT̂ |x⟩ = 1
(2πz)N/2 e− ∆x2

2z , (A.8)

where ∆x2 = ∆x · ∆x.
We can conclude a few properties. In limit |z| → 0 we get N -dimensional Dirac

delta distribution δN (∆x). For Re(z) > 0 the formula (A.8) is justified in sense of
Lebesgue integral and is well-defined. For Re(z) = 0 the matrix element (A.8) doesn’t
converge and is ill-defined, but can be evaluated in sense of Cauchy principal value. For
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Re(z) < 0 the matrix element is ill-defined and can’t be fixed. The matrix element is
analytic in terms of z. Therefore we could only evaluate the matrix element for z ∈ R+

and uniquely analytically continue the formula into half-plane Re(z) > 0 and obtain
same result. However we can analytically continue the formula for whole complex plane.
In fact, the second root in formula causes analytic continuation into Riemann surface
over 2 complex sheets. In sense of analytic continuation we can assign for the matrix
elements value (A.8) evem for Re(z) < 0. However the spatial matrix elements for
Re(z) < 0 cause problems like infinities or instabilities because of reasons mentioned
above. Our result is in agreement with [24].

A.2 Estimate of the Value of Wave Function
We want to estimate the value of wave function ψ(a) at a from n samples. It can
be can be estimated using density of samples in neighbourhood. The straightforward
estimate is

ψ(a) ≈ 1
n

n(a, r)
V(r) ,

where n(a, r) is number of samples in N -dimensional sphere S(a, r) with center a,
radius r and volume V(r).

Let’s assume that the wave function can be expressed as Taylor series in N dimen-
sions at point a as8

ψ(x) = ψ(a) + ∂iψ(a)(x − a)i + 1
2∂ijψ(a)(x − a)i(x − a)j + · · · , (A.9)

where ∂ij... are partial derivatives with respect to xi, xj , . . . and (v)i is the i-th coordin-
ate of vector v. The average number of samples ⟨n(a, r)⟩ in sphere S(a, r) is

⟨n(a, r)⟩ = n

∫
S(a,r)

dxψ(x) x→x+a======= n

∫
S(0,r)

dxψ(x + a) .

Using the Taylor series (A.9) we get

⟨n(a, r)⟩ = n

∫
S(0,r)

dx

[
ψ(a) + ∂iψ(a)(x)i + 1

2∂ijψ(a)(x)i(x)j + · · ·
]

(A.10)

The integral breaks down into simple following integrals∫
S(0,r)

dx =
∫

Ω
dΩ
∫ r

0
dρ ρN−1 = SN−1

rN

N
= V(r) ,∫

S(0,r)
dxxi

xi→−xi======= −
∫
S(0,r)

dxxi = 0 ,∫
S(0,r)

dxxixj
xi→−xi======= −

∫
S(0,r)

dxxixj = 0 , for i ̸= j ,∫
S(0,r)

dxx2
i = 1

N

∫
S(0,r)

dx x · x = 1
N

∫
Ω

dΩ
∫ r

0
dρ ρN+1 = SN−1

rN+2

N(N + 2) ,∫
S(0,r)

dxxixjxk
xi→−xi======= −

∫
S(0,r)

dxxixjxk = 0 , for i ̸= j ̸= k ,∫
S(0,r)

dxxix
2
j

xi→−xi======= −
∫
S(0,r)

dxxix
2
j = 0 , for i ̸= j ,∫

S(0,r)
dxx3

i
xi→−xi======= −

∫
S(0,r)

dxx3
i = 0 .

8We used Einstein summation convention.
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Inserting into (A.10) we get

⟨n(a, r)⟩ = n

[
ψ(a)SN−1

rN

N
+ 1

2∆Nψ(a)SN−1
rN+2

N(N + 2) +O(rN+4)
]
.

Let assume that the wave function ψ(x) is ground state.9 Then from the time-
independent Schrödinger equation (1.4) for Hamiltonian (1.2) we can write

1
2∆Nψ(x) = (V (x) − E)ψ(x) .

So we obtain the estimation with correction as

ψ(a) ≈ 1
n

n(a, r)
V(r)

1
1 + (V (a) − E) r2

N+2
, (A.11)

where V(r) = SN−1
rN

N .

A.3 Analytically Solvable Potentials
In this appendix we will review some solvable potentials, which can serve as good test
potentials. First we start with N -dimensional spherically symmetrical potential V (r).
We are looking for spherically symmetrical wave function ψ(r). The Laplace operator
∆N can be written in spherical coordinates as

∆Nf = 1
rN−1

∂

∂r

(
rN−1∂f

∂r

)
+ 1
r2 ∆SN−1f ,

where ∆SN−1 is Laplace-Beltrami operator on the (N−1)-dimensional sphere. Applying
all changes to the time-independent Schrödinger equation (1.4) for Hamiltonian (1.2)
we get10

− 1
2rN−1

d
dr

(
rN−1 dψ

dr

)
+ (V (r) − E)ψ(r) = 0 .

Using substitution ψ(r) = R(r)rm for m = −N−1
2 we obtain one-dimensional Schrö-

dinger equation with changed potential11

−1
2

d2R

dr2 +
[
V (r) + (N − 1)(N − 3)

8
1
r2 − E

]
R(r) = 0 . (A.12)

Now we can enter known spherically symmetrical wave function ψ(r) and obtain the
corresponding potential V (r). The input function will be radial distribution ρ(r), which
will be in following relation to ψ(r)

dp = ρ(r)dr = ψ(r)dr
∫

Ω
dΩrN−1 = ψ(r)rN−1SN−1dr , (A.13)

where Ω is spatial angle on (N − 1)-dimensional unit sphere, SN−1 surface of (N − 1)-
dimensional unit sphere. The function SN−1 can be expressed as

SN−1 = 2πN/2

Γ
(
N
2

) .
From (A.13) we get

ψ(r) = ρ(r)
rN−1SN−1

. (A.14)
9The wave function in simulation is near the ground state and we are doing estimation, so this

should be minor effect.
10The functions are function of one variable hence the partial derivatives become derivatives.
11The parameter m was chosen so that we can get rid of the first derivative.
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Gamma Distribution Function

For gamma distribution function ρΓ(r; a, b) for a > 0 and b > 0

ρΓ(r; a, b) = ra−1e−r/b

Γ(a)ba
(A.14)=⇒ ψ(r) = ra−Ne−r/b

Γ(a)baSN−1
=⇒ R(r) = ra− N+1

2 e−r/b

Γ(a)baSN−1

after substitution to (A.12) we get

V (r) − E = 1
2(a− 2)(a−N) 1

r2 − 1
b

(
a− N + 1

2

) 1
r

+ 1
2b2 .

Especially for a = N we get N -dimensional Coulomb potential

V (r) − E = −N − 1
2b

1
r

+ 1
2b2 .

Gaussian Distribution Function

For Gaussian distribution function ρG(r; a, σ) for a > 0 and σ > 0

ρG(r; a, σ) = 2ra−1e−r2/2σ2

Γ
(
a
2
)

2a/2σa
(A.14)=⇒ ψ(r) = 2ra−Ne−r2/2σ2

Γ
(
a
2
)

2a/2σaSN−1
=⇒R(r) = 2ra− N+1

2 e−r2/2σ2

Γ
(
a
2
)

2a/2σaSN−1

after substitution to (A.12) we get

V (r) − E = 1
2(a− 2)(a−N) 1

r2 + 1
2σ4 r

2 + 1
2σ2 (N − 2a) .

Especially for a = N we get N -dimensional LHO

V (r) − E = 1
2σ4 r

2 − N

2σ2 .

Let E = 0. Then the integrals ⟨ψ|ψ⟩, ⟨ψ|T̂ |ψ⟩ and ⟨ψ|V̂ |ψ⟩ are shown in Table A.1.

⟨ψ|ψ⟩ ⟨ψ|T̂ |ψ⟩ ⟨ψ|V̂ |ψ⟩

gamma
Γ(N2 )

2N+1Γ(N)πN/2bN
1

2b2
Γ(N2 )

2N+1Γ(N)πN/2bN
− 1

2b2
Γ(N2 )

2N+1Γ(N)πN/2bN

Gauss 1
(4πσ2)N/2

N

4σ2
1

(4πσ2)N/2 − N

4σ2
1

(4πσ2)N/2

Table A.1: Integrals ⟨ψ|ψ⟩, ⟨ψ|T̂ |ψ⟩ and ⟨ψ|V̂ |ψ⟩ for gamma and Gaussian distributions.

A.4 Approximants of the Kinetic Energy and the Unit
Operator

To evaluate matrix elements of operators K̂i(τ) it is useful to define operator M̂i(τ) :=
T̂ ie−τT̂ . For spatial matrix elements ⟨x′|M̂i(τ)|x⟩ we can write

⟨x′|M̂i+1(τ)|x⟩ = − d
dτ ⟨x′|M̂i(τ)|x⟩ . (A.15)
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Starting with M̂0 = e−τT̂ from (A.8) we can write

⟨x′|M̂0(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2 ,

⟨x′|M̂1(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2
1
2τ

[
N − ∆x2

τ

]
,

⟨x′|M̂2(τ)|x⟩ = e− ∆x2
4τ2

(2πτ)N/2
1

4τ2

[
N(N + 2) − 2(N + 2)∆x2

τ
+ ∆x4

τ2

]
,

⟨x′|M̂3(τ)|x⟩ = e− ∆x2
4τ2

(2πτ)N/2
1

8τ3

[
N(N + 2)(N + 4) − 3(N + 2)(N + 4)∆x2

τ
+

+3(N + 4)∆x4

τ2 − ∆x6

τ3

]
,

...

⟨x′|M̂i(τ)|x⟩ = e− ∆x2
4τ2

(2πτ)N/2
1

2iτ i

[(
i

0

)
[N + 2(i− 1)]!!

(N − 2)!! −
(
i

1

)
[N + 2(i− 1)]!!

N !!
∆x2

τ
+

+
(
i

2

)
[N + 2(i− 1)]!!

(N + 2)!!

(
∆x2

τ

)2

+ · · · + (−1)i
(
i

i

)(
∆x2

τ

)i⎤⎦ .

From definition (2.8) we can write for matrix elements ⟨x′|K̂m(τ)|x⟩

⟨x′|K̂m(τ)|x⟩ =
m∑
i=0

τ i

i! ⟨x′|M̂i+1(τ)|x⟩ . (A.16)
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We calculated first few matrix elements ⟨x′|K̂m(τ)|x⟩ as

⟨x′|K̂0(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2
1
2τ

[
N − ∆x2

τ

]
,

⟨x′|K̂1(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2
1
2τ

[
N(N + 4)

2 − (2N + 6)∆x2

2τ + ∆x4

2τ2

]
,

⟨x′|K̂2(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2
1
2τ

[
N(N + 4)(N + 6)

8 − (N + 6)(3N + 8)∆x2

8τ +

+(3N + 16)∆x4

8τ2 − ∆x6

8τ3

]
,

⟨x′|K̂3(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2
1
2τ

[
N(N + 4)(N + 6)(N + 8)

48 −

− (N + 6)(N + 8)(4N + 10)∆x2

48τ + (N + 8)(4N + 20)∆x4

32τ2 −

−(4N + 30)∆x6

48τ3 + ∆x8

48τ4

]
,

⟨x′|K̂4(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2
1
2τ

[
N(N + 4)(N + 6)(N + 8)(N + 10)

384 −

− (N + 6)(N + 8)(N + 10)(5N + 12)∆x2

384τ +

+ (N + 8)(N + 10)(5N + 24)∆x4

192τ2 −

−(N + 10)(5N + 36)∆x6

192τ3 + (5N + 48)∆x8

384τ4 − ∆x10

384τ5

]
.

From definition (2.12) we can write for matrix elements ⟨x′|K̂m(τ)|x⟩

⟨x′|Ĵm(τ)|x⟩ =
m∑
i=0

τ i

i! ⟨x′|M̂i(τ)|x⟩ . (A.17)
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We calculated first few matrix elements ⟨x′|Ĵm(τ)|x⟩ as

⟨x′|Ĵ0(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2 ,

⟨x′|Ĵ1(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2

[
(N + 2)

2 − ∆x2

2τ

]
,

⟨x′|Ĵ2(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2

[
(N + 2)(N + 4)

8 − (N + 4)∆x2

4τ + ∆x4

8τ2

]
,

⟨x′|Ĵ3(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2

[
(N + 2)(N + 4)(N + 6)

48 − (N + 4)(N + 6)∆x2

16τ +

+ (N + 6)∆x4

16τ2 − ∆x6

48τ3

]
,

⟨x′|Ĵ4(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2

[(N + 2)(N + 4)(N + 6)(N + 8)
384 −

− (N + 4)(N + 6)(N + 8)∆x2

96τ + (N + 6)(N + 8)∆x4

64τ2 −

−(N + 8)∆x6

96τ3 + ∆x8

384τ4

]
.

...

⟨x′|Ĵm(τ)|x⟩ = e− ∆x2
2τ

(2πτ)N/2
1

(2m)!!

[(
m

0

)
(N + 2m)!!

N !! −
(
m

1

)
(N + 2m)!!
(N + 2)!!

∆x2

τ
+

+
(
m

2

)
(N + 2m)!!
(N + 4)!!

(
∆x2

τ

)2

+ · · · + (−1)m
(
m

m

)(
∆x2

τ

)m⎤⎦ .
A.5 Estimators of the Kinetic Energy
We start from the biased estimator T̂0 from (2.9)

T̂0 := 1
n2

n∑
i=1

n∑
j=1

Km(τ,∆xij) . (A.18)

The expected value E [Km(τ,∆xij)] is

E[Km(τ,∆xij)] =

⎧⎨⎩
∫

RN ×RN
dxdyKm(τ, |x − y|)ϕ(x)ϕ(y) if i ̸= j;

Km(τ, 0) if i = j.
(A.19)

Then the expected value of estimator T̂0 is

E[T̂0] = n− 1
n

I1,m(τ) + 1
n
Km(τ, 0) ,

where for the convenience we denote I1,m(τ) :=
∫

RN ×RN
dxdyKm(τ, |x − y|)ϕ(x)ϕ(y).

To avoid duplicity and biased terms in estimator T̂0 in (A.18) we suggest new estimator

T̂1 := 2
n(n− 1)

n∑
i=1
j>i

Km(τ,∆xij) ,
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with expected value
E[T̂1] = I1,m(τ) .

The variance of new estimator T̂1 is

Var[T̂1] = E[(T̂1−E[T̂1])2] = 2
n(n− 1)

[
I2,m(τ) + 4

3(n− 2)I3,m(τ) − 1
3(4n− 5)I2

1,m(τ)
]
,

(A.20)
where we denote

I2,m(τ) =
∫

RN ×RN
dxdyK2

m(τ, |x − y|)ϕ(x)ϕ(y) ,

I3,m(τ) =
∫

RN ×RN ×RN
dxdydzKm(τ, |x − y|)Km(τ, |y − z|)ϕ(x)ϕ(y)ϕ(z) .

To estimate the error (square root of the variance) of estimator T̂1 from samples we
need to find expected value of product Km(τ,∆xij)Km(τ,∆xkl). The value depends
on difference of indices i, j, k and l, so we created scheme in Figure A.3 where we
distinguish different cases with color. We get

E[Km(τ,∆xij)Km(τ,∆xkl)] =

⎧⎪⎪⎨⎪⎪⎩
I2,m(τ) for ■;
I3,m(τ) for ■;
I2

1,m(τ) for ■.

1 j n 1 l n1
1

i

n

1

k

n

Figure A.3: Color scheme for indices i, j, k and l.

The total number of quadruple indices is
[
n(n−1)

2

]2
= n2(n− 1)2/4. The number of

different types of quadruples are

#(■) = 1
2n(n− 1) , #(■) = 1

3n(n− 1)(n− 2) , #(■) = 1
24n(n− 1)(n− 2)(3n− 5) .

The leading terms in variance (A.20) are terms I3,m(τ) and I2
1,m(τ). The number of

corresponding quadruples rises as ∼ n3 and ∼ n4 respectively. To avoid long computa-
tion time we provide three estimators Ŝ1, Ŝ2 and Ŝ3, which can be computed in ∼ n2

steps.

Ŝ1 := 2
n(n− 1)

n∑
i=1
j>i

K2
m(τ,∆xij)

Ŝ2 := (T̂ )2

Ŝ3 := 2
n(n− 1)(n− 2)

n∑
i=1
j>i

Km(τ,∆xij)(
n∑
k=1
k ̸=j

Km(τ,∆xjk))
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The expected values of estimators are

E[Ŝ1] := I2 ,

E[Ŝ2] := 2
n(n− 1)

[
I2,m(τ) + 4

3(n− 2)I3,m(τ) + 1
6(n− 2)(3n− 5)I2

1,m(τ)
]
,

E[Ŝ3] := I3,m(τ) + 1
n− 2I2,m(τ) .

Using linear combination of estimators Ŝ1, Ŝ2 and Ŝ3 we can match the expected
value of new estimator to be equal to Var[T̂ ] in (A.20) as

V̂T1 := 4
n(n− 1)(n− 2)(3n− 5)

⎡⎢⎢⎣4
n∑
i=1
j>i

n∑
k=1
k ̸=j

Km(τ,∆xij)Km(τ,∆xjk)−

−n(n− 1)(4n− 5)
2 (T̂1)2 −

n∑
i=1
j>i

K2
m(τ,∆xij)

⎤⎥⎥⎦ .
It is important to note, that the estimator V̂T1 is not guaranteed to be non-negative.

A.6 Gaussian Wave Function
Let the wave function be normalised N -dimensional Gaussian function

⟨x|ψ⟩ = 1
(2πσ2)N/2 e− |x|2

2σ2 . (A.21)

Then we can analytically calculate e−τT̂ |ψ⟩ as

⟨x|e−τT̂ |ψ⟩ =
∫
RN

dx′ ⟨x|e−τT̂ |x′⟩⟨x′|ψ⟩ (A.8)= 1
(4π2τσ2)N/2

∫
RN

dx′ e− |x′−x|2
2τ

− |x′|2

2σ2

= 1
(2πτ)N/2(2πσ2)N/2

∫
RN

dx′ e
− σ2+τ

2σ2τ

⏐⏐⏐x′−x σ2
σ2+τ

⏐⏐⏐2− |x|2

2(σ2+τ)

x′→x′+x σ2
σ2+τ=========== 1

[2π(σ2 + τ)]N/2 e− |x|2

2(σ2+τ) . (A.22)

Also we can calculate the matrix element ⟨ψ|M̂0(τ)|ψ⟩ as

⟨ψ|M̂0(τ)|ψ⟩ =
∫
RN

dx ⟨ψ|x⟩⟨x|e−τT̂ |ψ⟩

(A.21)=
(A.22)

1
(2πσ2)N/2

1
[2π(σ2 + τ)]N/2

∫
RN

dx e− |x|2(2σ2+τ)
2σ2(σ2+τ) = 1

[2π(2σ2 + τ)]N/2 .

Using the definition (A.15) and Lebesgue’s dominated convergence theorem12 we
can interchange derivative and integral and easily calculate all higher matrix elements

12The dominating integrable function will have the form P (∆x2)e−A∆x2 , where P (·) is polynomial.
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⟨ψ|M̂i(τ)|ψ⟩ as

⟨ψ|M̂1(τ)|ψ⟩ = − d
dτ ⟨ψ|M̂0(τ)|ψ⟩ = N

2
1

(2π)N/2
1

(2σ2 + τ)N/2+1 ,

⟨ψ|M̂2(τ)|ψ⟩ = N

2

(
N

2 + 1
) 1

(2π)N/2
1

(2σ2 + τ)N/2+2 ,

...

⟨ψ|M̂i(τ)|ψ⟩ =

(
N
2 + i− 1

)
!(

N
2 − 1

)
!

1
(2π)N/2

1
(2σ2 + τ)N/2+i .

From matrix elements ⟨ψ|M̂i(τ)|ψ⟩ we can using the equation (A.16) find the matrix
elements ⟨ψ|K̂m(τ)|ψ⟩ as follows

⟨ψ|K̂0(τ)|ψ⟩ = N

2
1

(2π)N/2
1

(2σ2 + τ)N/2+1 ,

⟨ψ|K̂1(τ)|ψ⟩ = N

2
1

(2π)N/2
1

(2σ2 + τ)N/2+1

[
1 +

τ(N2 + 1)
2σ2 + τ

]
,

⟨ψ|K̂2(τ)|ψ⟩ = N

2
1

(2π)N/2
1

(2σ2 + τ)N/2+1

[
1 +

τ(N2 + 1)
2σ2 + τ

+
τ2(N2 + 1)(N2 + 2)

2(2σ2 + τ)2

]
,

...

⟨ψ|K̂m(τ)|ψ⟩ = N

2
1

(2π)N/2
1

(2σ2 + τ)N/2+1 Tm,x

⎡⎢⎣ 1(
1 − x τ

2σ2+τ

)N/2+1

⎤⎥⎦
⏐⏐⏐⏐⏐⏐⏐
x=1

, (A.23)

where Tm,x [·]|x=1 is Taylor series of the m-th order in variable x evaluated for x = 1.
In the limit m → +∞ we can write

lim
m→+∞

⟨ψ|K̂m(τ)|ψ⟩ = N

2
1

(2π)N/2
1

(2σ2 + τ)N/2+1

⎡⎢⎣ 1(
1 − τ

2σ2+τ

)N/2+1

⎤⎥⎦
= N

2
1

(2π)N/2
1

(2σ2)N/2+1 ,

which is correct kinetic energy ⟨ψ|T̂ |ψ⟩ (compare with Table A.1). We get the correct
kinetic energy from every ⟨ψ|K̂m(τ)|ψ⟩ in the limit τ → 0+.

We can also calculate matrix elements ⟨ψ|Ĵi(τ)|ψ⟩ using the equation (A.17) as
follows

⟨ψ|Ĵ0(τ)|ψ⟩ = 1
(2π)N/2

1
(2σ2 + τ)N/2 ,

⟨ψ|Ĵ1(τ)|ψ⟩ = 1
(2π)N/2

1
(2σ2 + τ)N/2

[
1 +

τ(N2 )
2σ2 + τ

]
,

⟨ψ|Ĵ2(τ)|ψ⟩ = 1
(2π)N/2

1
(2σ2 + τ)N/2

[
1 +

τ(N2 )
2σ2 + τ

+
τ2(N2 )(N2 + 1)
2(2σ2 + τ)2

]
,

...

⟨ψ|Ĵm(τ)|ψ⟩ = 1
(2π)N/2

1
(2σ2 + τ)N/2 Tm,x

⎡⎢⎣ 1(
1 − x τ

2σ2+τ

)N/2

⎤⎥⎦
⏐⏐⏐⏐⏐⏐⏐
x=1

.
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In the limit m → +∞ we get (compare with Table A.1)

lim
m→+∞

⟨ψ|Ĵm(τ)|ψ⟩ = 1
(2π)N/2

1
(2σ2 + τ)N/2

⎡⎢⎣ 1(
1 − τ

2σ2+τ

)N/2

⎤⎥⎦ = 1
(4πσ2)N/2 .

The matrix elements ⟨ψ|V̂m(τ)|ψ⟩ have been also calculated using the technique of
derivative by parameter τ and linear combination. The resulting elements are

⟨ψ|V̂m(τ)|ψ⟩ = −⟨ψ|K̂m(τ)|ψ⟩ .

A.7 Relation Between Methods B and C
In this Appendix we will show that in the limit t → +∞ the Method B becomes the
Method C. For simplicity we begin with m = 0. We are interested in the limit

lim
τ→+∞

⟨ψ|Ĥe−τT̂ |ψ⟩
⟨ψ|e−τT̂ |ψ⟩

.

The numerator and denominator both go to zero in the limit. The most important
is the leading term. It is convenient to work with the operator e−τT̂ in eigenbasis of
improper eigenvectors |p⟩.

lim
τ→+∞

⟨ψ|Ĥe−τT̂ |ψ⟩
⟨ψ|e−τT̂ |ψ⟩

= lim
τ→+∞

∫
RN

dp ⟨ψ|Ĥ|p⟩⟨p|e−τT̂ |ψ⟩∫
RN

dp ⟨ψ|p⟩⟨p|e−τT̂ |ψ⟩
=

= lim
τ→+∞

∫
RN

dp ⟨ψ|Ĥ|p⟩
(
τ

2π

)N/2
e−τ p2

2 ⟨p|ψ⟩∫
RN

dp ⟨ψ|p⟩
(
τ

2π

)N/2
e−τ p2

2 ⟨p|ψ⟩
=

In the limit τ → +∞ the sequence of functions
(
τ

2π

)N/2
e−τ p2

2 becomes the N -dimen-
sional Dirac delta distribution δN (p).13

=

∫
RN

dp ⟨ψ|Ĥ|p⟩δN (p)⟨p|ψ⟩∫
RN

dp ⟨ψ|p⟩δN (p)⟨p|ψ⟩
= ⟨ψ|Ĥ|p = 0⟩�����⟨p = 0|ψ⟩

⟨ψ|p = 0⟩�����⟨p = 0|ψ⟩
= ⟨ψ|Ĥ|p = 0⟩

⟨ψ|p = 0⟩
=

We assume that the wave function |ψ⟩ in position representation has the form of real-
valued function ψ(x). Expressing the matrix elements in terms of spatial elements we
get

=

∫
RN

dx ⟨ψ|Ĥ|x⟩⟨x|p = 0⟩∫
RN

dx ⟨ψ|x⟩⟨x|p = 0⟩
=

∫
RN

dx Ĥψ(x)∫
RN

dxψ(x)
= {H} .

13This can be understood at lower level as follows: The function e−τ
p2
2 in the limit τ → +∞

suppresses matrix elements for all values p except for p = 0.
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Following the same procedure for any m we obtain same result

lim
τ→+∞

⟨ψ|Ĥe−τT̂Tm(eτT̂ )|ψ⟩
⟨ψ|e−τT̂Tm(eτT̂ )|ψ⟩

=

∫
RN

dp ⟨ψ|Ĥ|p⟩δN (p)Tm(eτ
p2
2 )⟨p|ψ⟩∫

RN
dp ⟨ψ|p⟩δN (p)Tm(eτ

p2
2 )⟨p|ψ⟩

♡= {H} ,

where in step ♡ we used that Tm(eτ
p2
2 )
⏐⏐⏐⏐
p=0

= 1.

This results holds also for estimators.

lim
τ→+∞

T2 + V2
J2

= lim
τ→+∞

n∑
i=1

⟨xi|K̂m(τ)|x′
i⟩ + ⟨xi|V̂m(τ)|x′

i⟩

n∑
i=1

⟨xi|Ĵm(τ)|x′
i⟩

= lim
τ→+∞

n∑
i=1

e−
∆x2

i
2τ

(2πτ)N/2
(N + 2m)!!
(2m)!!N !!

[ 1
2τ

N

N + 2 + V (xi) +O

(1
τ

)]
n∑
i=1

e−
∆x2

i
2τ

(2πτ)N/2
(N + 2m)!!
(2m)!!N !!

(
1 +O

(1
τ

))

= 1
n

n∑
i=1

V (xi) = {H̃} ,

where we used the leading terms in spacial matrix elements from Appendix A.4. We
can notice, that in the limit τ → +∞ the kinetic term is insignificant with respect to
the potential term as in {H}.

A.8 Variational Principle and Estimators of Energy
The estimators of energy can be sometimes used as variational energy, in sense that
their lower bound is ground state energy E0 or higher. In that case they can be used as
the upper bound for this energy and can be used as indicator in case of optimization.
To find lower bound of estimators, we use variational principle. In extreme the value
of estimator is fixed in respect to small perturbation |δψ⟩ in wave function |ψ⟩.

Method B

To find the lower bound for the Method B, we look at the ratio H(τ)

H(τ) = ⟨ψ|ĤĴm(τ)|ψ⟩
⟨ψ|Ĵm(τ)|ψ⟩

for fixed τ . We expand the variation δH(τ). The second and higher order terms (like
⟨δψ|δψ⟩) are omitted. We assume real-valued perturbation ⟨x|δψ⟩. This implies that
all matrix elements are real ⟨| · |⟩∗ = ⟨| · |⟩.

δH(τ) = ⟨ψ + δψ|ĤĴm(τ)|ψ + δψ⟩
⟨ψ + δψ|Ĵm(τ)|ψ + δψ⟩

− ⟨ψ|ĤĴm(τ)|ψ⟩
⟨ψ|Ĵm(τ)|ψ⟩

= ⟨ψ|ĤĴm(τ)|ψ⟩ + ⟨δψ|ĤĴm(τ) + Ĵm(τ)Ĥ|ψ⟩
⟨ψ|Ĵm(τ)|ψ⟩ + 2⟨δψ|Ĵm(τ)|ψ⟩

− ⟨ψ|ĤĴm(τ)|ψ⟩
⟨ψ|Ĵm(τ)|ψ⟩

= ⟨δψ|ĤĴm(τ) + Ĵm(τ)Ĥ − 2H(τ)Ĵm(τ)|ψ⟩
(⟨ψ|Ĵm(τ)|ψ⟩ + 2⟨δψ|Ĵm(τ)|ψ⟩)

(A.24)
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The necessary condition for variational extreme is δH(τ) = 0 for all |δψ⟩. From equa-
tion (A.24) we can see that, this is fulfilled iff

1
2
(
ĤĴm(τ) + Ĵm(τ)Ĥ

)
|ψ⟩ = H(τ)Ĵm(τ)|ψ⟩ . (A.25)

In other words the extremes of the ratio H(τ) are eigenvalues of operator
1
2

(
Ĵ−1
m (τ)ĤĴm(τ) + Ĥ

)
.14 For separable Hamiltonian Ĥ from equation (1.2) we can

write
1
2
(
Ĵ−1
m (τ)ĤĴm(τ) + Ĥ

)
= T̂ + 1

2
(
Ĵ−1
m (τ)V̂ Ĵm(τ) + V̂

)
.

For τ = 0 we get eigenvalues of Hamiltonian and the lower bound is ground state
energy E0

Ĵm(0) = 1̂ =⇒ Ĥ|ψ⟩ = H(0)|ψ⟩ =⇒ min{H(0)} = E0 .

For τ > 0 it is hard in general to solve the equation (A.25). For 1-dimensional LHO
for τ > 0 and m = 0 the ground state is

⟨x|ψ0⟩ = 1
(2πσ2)1/2

e− x2
2σ2 , σ2 = 1

2
(√

4 − τ2 − τ
)
,

with energy
H(τ) = 1

4(4 − τ2)1/2 .

For small τ ≪ 1 the lower bound changes in the second order

H(τ) = 1
2 − τ2

16 +O(τ4)) .

However we can see that for τ ≥
√

2 we don’t have the ground state.
In general we can expect that for small τ the ratio H(τ) has lower bound, which is

equal to ground state energy E0 to the second order. Also we expect that for higher m,
the operators Ĵm(τ) are better approximation of the unit operator 1̂ and therefore the
lower bound of the ratio H(τ) is equal to ground state energy E0 to the higher order.

Method C

For the Method C, we look at the averaged energy {H} = {V }.

{V } =

∫
RN

dxV (x)ψ(x)∫
RN

dxψ(x)

We variate the averaged energy δ{V } with perturbation ⟨x|δψ⟩.

δ{V } =

∫
RN

dx ⟨x|V̂ |ψ + δψ⟩∫
RN

dx ⟨x|ψ + δψ⟩
−

∫
RN

dx ⟨x|V̂ |ψ⟩∫
RN

dx ⟨x|ψ⟩
=

∫
RN

dx ⟨x|V̂ − {V }|δψ⟩∫
RN

dx ⟨x|ψ + δψ⟩

The necessary condition for variational extreme is δ{V } = 0 for all ⟨x|δψ⟩. This
happens iff the averaged energy is eigenvalue of the potential

V̂ |x⟩ = {V }|x⟩ .
14One has to remember, that the operator Ĵ−1

m (τ) for τ > 0 is not well-defined and we are talking
about formal solution. The original condition is equation (A.25).
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The eigenvectors of the potential V̂ are improper eigenvectors |x⟩, therefore the infimum
for {V } is

inf {{V }} = min
x∈RN

{V (x)} .

One may argue that the vector |x⟩ is improper therefore we will never reach the lower
bound, but we can construct the sequence of proper vectors

ψσ(x) = 1
(2πσ2)N/2 e− ||x−xmin||2

2σ2 ,

where xmin is position of the potential minimum. In the limit σ → 0+ the sequence
will lead the averaged energy {V } to value min

x∈RN
{V (x)}.
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