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1. Introduction

Our current electric grid was conceived more than a hundred years ago [1] as a col-
lection of centralised unidirectional systems designed to meet very simple energy
demands. However, the modern household is very different from its hundred-year-
old counterpart. Its energy demands grew from a couple of light bulbs and a radio
to include a large number and variety of appliances. Moreover, new renewable
energy sources such as wind turbines and solar panels are unpredictable when it
comes to their energy output profiles. This has rendered the grid inefficient if not
obsolete.

Smart Grid [2] is a set of technologies designed to eliminate or at least alleviate
these shortcomings. A common element to most definitions of Smart Grid is
the application of computer processing, automation and two-way communication
technology to the power grid, making it possible to adjust and control devices
individually from a central location.

One of the problems Smart Grid faces is forecasting energy consumption of
a household [3]. Reliable forecasts can be used by specialised algorithms to antic-
ipate peak consumptions and prevent penalties imposed by electricity companies
on exceeding the limit previously agreed in energy supply contract. These can
also help a village with its own energy sources to become less energy dependant
on outside suppliers by synchronizing individual households consumption profiles.

A common approach to forecasting energy consumption is time series analysis.
Time series is in essence a sequence of observations whose value varies through
time. Time series analysis tries to uncover or at least approximate the hidden
process that generated these observations. When the true nature of the underlying
process is exposed, it can be used to forecast its future behaviour [4].

Apart from load forecasting, there are many other problems in Smart Grid
suitable for time series analysis. For example, tracking the fluctuations of the
price of energy on the energy market can help a sophisticated system to adapt
by prepurchasing and storing temporarily cheap energy for later use or delaying
energetically expensive operations while the current price is high [5]. Also the
more the use of solar power as a source of electricity in Smart Grids increases, the
more important the forecasts of solar irradiance becomes. For instance, managing
and operating a solar power plants with energy storage system requires such
reliable forecast [6]. The same is true for wind-based power plants [7].

One of the most important factors to consider when analysing time series is the
quality and quantity of data provided for the training purposes. First of all, energy
demands are considered a private information, which results in them not being
readily available and thus lowering the quantity. Secondly, the quality of data goes
hand in hand with the purpose of the current electric grid. Because the grid is
currently only set up to transfer energy to its customers and bill them on a monthly
basis, there is no incentive for companies responsible for energy production to
provide anything more than total monthly loads aggregated across all devices and
appliances. Data of such a low granularity is of very limited use when it comes to
time sereis analysis. However, recent developments have introduced Smart Meter,
a device able to record and communicate energy consumption in intervals of an
hour or less to the central system [8]. This thesis seeks to, among others, utilise
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this feature.
The performance of various time series analysis techniques can be improved

by suitable preparation of the data in a process called preprocessing [9]. The
preprocessing is done before the analysis in order to simplify the patterns present
in the data by making them more consistent across the whole data set or by
removing known sources of variation. This leads to better analysis because simpler
patters are more easily reproduced in mathematical models. The effectiveness of a
preprocessing method may depend on the particularities and aims of analysis and
also on the characteristics of the data. One of the goals of this thesis is to examine
various preprocessing methods and their effectiveness as it relates to forecasting
energy load profiles.

No electromechanical device is perfect and Smart Meters are no exception.
The failure of this device results in missing observations. Another source of
missing observations are electrical outages that happen from time to time in any
electrified dwelling. The problems the missing observations introduce include
technical difficulties when creating and estimating various models, addition of a
substantial amount of bias to the analysis and reductions of the models’ accuracy.
For these reasons it is a common practice to estimate the values of missing
observations from the values of other observations in a process called imputation.
After missing observations are imputed, the analysis continues using standard
techniques for complete data. The more accurate the imputations are with respect
to real unobserved values, the better the analysis. Therefore, there is a need for
examining various imputation methods in terms of their respective accuracies.

1.1 Goals

We summarise the primary goals of this thesis in the following list:

� describe the theoretical background of various techniques used in time series
analysis

� compare various imputation methods,

� examine the accuracy of a variety of forecasting models with respect to load
forecasting,

� study the impact of preprocessing methods on the models’ accuracy.

1.2 Methods

There is a number of techniques frequently used in time series analysis. This
thesis focuses on a selection of statistical methods and machine learning models,
and compares their advantages, disadvantages and performance.

The statistical methods considered in this thesis are all based around state-
space models. State-space models [10] are a representation of physical systems.
They regard observations in time series as measurements of the hidden state of
the system (signal) corrupted by noise. The current state of the system is not
measured directly, but it is estimated from past noisy observations. State-space
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models contain a number of parameters that must be estimated before making
predictions. One advantage of state-space models and the statistical theory that
supports them is that this estimation can be done in an objective manner using
methods of statistical inference [4]. Another advantage of state-space models is
that their white-box nature. This means that one can gain an understanding of the
inner-workings of the hidden process by examining the equations and hidden-state
representation of a state-space model.

State-space models differ from one another by their representation of the hidden
state of the system. One type of state-space models considered in this thesis are
exponential smoothing (ES) models [11]. ES models decomposes the process or
time series into level, trend and seasonality components. These components are
not modelled separately, but are interconnected and affect each other.

On the other hand, another type of state-space models, called autoregressive
moving average (ARMA), tries to preprocess the time series in such a way as to
remove these components entirely. What is left is treated as a combination of
two regression models. The first one regresses current observation against past
observations. The second one is less intuitive. It regresses current observation
against past noise. The motivation stems from the assumption that whatever
corrupted the observations of system’s state by a large noise in recent past will
continue to affect the observations of system’s state in the near future. For example,
an unexpected electrical outage may cause big discrepancies between expected
load consumption derived from the state of the system and actual observed load
consumption. This outage is believed to cause similar discrepancies in the near
future.

ES and ARMA models use past observation as the only source of information
for the model of the system. However, time series in general and energy consump-
tion in particular are usually affected also by other sources. In our case the most
pertinent source of information is weather data [12]. In contrast, regression models
in general aim to expose the relationship between various sources of information
and explain their influence on the dependant variable but may fail to capture
the subtle dynamics of time series targeted by ES or ARMA models. For this
reason we also consider a combination of weather regression with ARMA model
called ARMA with exogenous inputs (ARMAX) in order to take advantage of
both approaches.

Machine learning [13] focuses on algorithms that are able to enhance their
performance by learning from past experiences. In time series analysis, a machine
learning method is iteratively presented with sample inputs (a number of past
data point) and the desired output (current data-point). The aim is to teach the
algorithm the general rule that maps the inputs to outputs. This thesis explores,
among others, the effectiveness of a type of machine learning algorithm called
neural networks.

Neural networks has been used to successfully solve multitude of engineering
problems, from predictions of heart attacks [14] and stock market prices [15] to
credid card fraud detection [16] and self-driving cars [17]. Their strength lies
mainly in their ability to model hidden nonlinear patterns that are too complex to
be detected by humans or other computer methods. Through an iterative process
of learning, neural network is taught various characteristics of a target system.
This also means that it is able to adapt automatically, making it in theory viable
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for predicting ever-changing household energy demands. However, neural network
are at a disadvantage when it comes to uncovering the inner-workings of the
process generating the time series undergoing analysis, because of their inherent
black-box nature.

1.3 Structure

The structure of this thesis is following. Chapter 2 contains notation and def-
initions used throughout this thesis. Chapter 3 describes load forecasting and
analyses the energy consumption data. In Chapter 2 we review published work
related to forecasting energy consumption. Then in Chapter 5 we present the
theory behind state-space models. This is followed by three chapters describing
different state-space models: Chapter 6 is dedicated to ES models, Chapter 7 fo-
cuses on ARMA models and Chapter 8 is devoted to ARMAX models. In contrast
to state-space models, the machine learning approach to time series analysis using
neural networks is described in Chapter 9. Chapter 10 focuses on methodology
used when conducting experiments whose results are presented in Chapter 11 for
imputation and Chapter 12 for forecasting. The conclusions from the results are
drawn in Chapter 13.
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2. Preliminaries

This chapter introduces the problem of time series analysis, notation and defini-
tions used throughout this thesis.

2.1 Notation

Throughout this thesis we use regular font for scalar values as in xt and bold
font for vectors as in x or θ. In particular, let 0k be a vector of k zeros. The
bold fond symbols and regular symbols are always related, meaning that xt is
always an element of x without specifically mentioning this fact. For simplicity,
unless stated otherwise, we consider all vectors to be column vectors, even when
writing x = (x1, x2, . . . , xk). When we want to specify a row vector we use
transposition operator denoted by ′ as in x′. Furthermore, let � denote the
Hadamard product (element-wise multiplication) of vectors x = (x1, x2, . . . , xk)
and y = (y1, y2, . . . , yk), i.e. x� y = (x1y1, x2y2, . . . , xkyk). We use bold capital
letters for matrices as in Z. Special case is the k × k identity matrix, which we
denote by Ik and an k×k matrix of zeros denoted by 0k×k. Regular capital letters
are used for sets as in B = {x1, x2, x3. . . . , xn}. Bold-font notation also applies
to functions, i.e. f : Rn → R is a scalar function but f : Rn → Rm is a vector
function. The notation P (xi) = P (x = xi) is adopted to refer to the probability of
random variable x having value xi and P (y = yi | x = xj) = P (yi | xj) denotes the
conditional probability of y = yi given x = xj. Also E(x) refers to the expected
value of x and V (x) in turn denotes its variance.

2.2 Time series analysis

Madsen [18] defines time series as an observed or measured realisation of an
underlying stochastic process. Time series analysis is then a collection of various
methods and techniques used to extract information from time series is order to
discover the true nature of this hidden process.

For convenience we not only use the term time series to refer to a particular
realisation, but also to the process behind this realisation. For example, when we
model time series y, we actually model the underlying stochastic process. Time
series y is just one of its realisation and we use it to estimate the particular form
and parameters of the equations in the model. Analogically, when we decompose
time series into one or more components, we in fact decompose the underlying
stochastic process into a number of separate or interconnected processes and model
each one of them.

Depending on the frequency at which the observations are recorded, time series
can be divided into two distinct groups:

� Discrete-time series with observation made at equally spaced points in time.
Observation are usually denoted using the subscript notation yt where t ∈ N.

� Continuous-time series with observations recorded continuously over some
time interval. Here the observations are denoted using the function notation
y(t) where usually t ∈ [0, 1].
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Depending on the type of observations one makes, both discrete-time and
continuous-time series can be further classified into following categories:

� univariate time series where we keep track of only one variable and the
observations are in the form of yt for discrete-time or y(t) for continuous-
time series;

� multivariate time series where we record the values of k variables at the
same time, i.e. observations are in the form of a vectors (yt,1, yt,2, . . . , yt,k)
for discrete-time and (y1(t), y2(t), . . . , yk(t)) for continuous-time series.

Further division can be made on the basis of what is observed. Time series
analysis can be applied to both real-valued continuous data and discrete numeric
data as well as discrete symbolic data (i.e. letters in a language).

In this thesis we focus on real-valued (kW) univariate discrete-time series. For
convenience, from now on whenever we use the term time series we specifically
refer to real-valued univariate discrete-time series.

Since y is discrete, we use t to refer to the discrete-valued time of y without
exceptions and assume t ∈ N at all times. An observations recorded at time t
then becomes yt. All observations are real-valued, meaning that ∀t ∈ N : yt ∈ R.
We use vector y to refer to time series composed of observation y1, y2, . . . as a
whole, i.e. y = (y1, y2, . . . ). Additionally, vector yt denotes time series recorded
up to time t and yt1:t2 represents time series observed between time t1 and t2,
which can be mathematically described by vectors yt = (y1, y2, . . . , yt) and yt1:t2 =
(yt1 , yt1+1, . . . , yt2).

In practice it is often important to consider the length of the time interval
between consecutive observations yt and yt+1. We use the term granularity or
resolution to refer to the length of this time interval.

Time series often display periodic fluctuations. For example retail sales tend
to peak every year before Christmas. We use the term seasonality to refer to these
periodic fluctuations and the term season to denote the observations recorded
during one period. Let also frequency denote the length of a season, i.e. number
of observations within the season. Throughout this thesis m ∈ N will denote the
frequency of time series. To continue the aforementioned example, retail sales
with monthly granularity exhibit seasonality with period of one year and frequency
m = 12. It is also possible for time series to exhibit multiple seasonalities. In
that case we use m1,m2, . . . to refer to their respective frequencies.

The main focus of this thesis is time series forecasting. Time series forecasting
exploits patterns found in the time series, seasonal or other, to forecast the future
behaviour of the underlying process. Mathematically, given time series yt the aim
is to obtain forecasts denoted by ŷt+1|t, ŷt+2|t, . . . The number of forecast to be
produced from yt is referred to as forecast horizon. We use h ∈ N to denote the
forecast horizon. Given time series yt and forecast horizon h, our focus is then
producing accurate forecasts in the form of vector ŷt+h|t defined as

ŷt+h|t = (ŷt+1|t, ŷt+2|t, . . . , ŷt+h|t).

The accuracy of forecasts is measured by the difference between forecasts and
actual observations (see Section 10.1). This differences are called residuals and are
computed by taking a simple difference εt+i = yt+i − ŷt+i|t where i = 1, 2, . . . , h.
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2.3 Deterministic and stochastic time series

Time series analysis is concerned with uncovering stochastic processes that man-
ifests themselves in the form of time series. When a process does not contain
any stochastic element and the observation yt+1 can be generated by a determin-
istic algorithm only from yt, the process and time series it generates is said to
be deterministic. For example time series sampled from sine wave is determinis-
tic. Deterministic time series are also assumed when using a naive method that
forecasts by repeating the previous observation (see Section 10.1.4).

On the other hand, when a process does contain stochastic elements, we say
that it and by extension its realisations are stochastic.

2.4 Stationarity

Time series y (and by extension the underlying process) is said to be stationary
if its mean, variation and autocovariance (covariance with itself, specifically with
past observations) remain invariant under translation trough time. Expressed
mathematically, y is stationary if for all t, i ∈ N, the following is satisfied:

E(yt) = µ

V (yt) = σ2

cov(yt, yt+i) = c(i)

where c is some function.
The stationarity condition is usually violated when dealing with energy con-

sumption data, as there is usually at least one type of seasonality (daily, weekly,
annual) and sometimes also trend. There are numerous techniques that one can
use to make a time series into a stationary one, i.e. transformations (see Section
10.3.3), deseasonalisation (see Section 10.4) or differencing (see Sections 7.1.4 and
7.1.5.

2.5 White noise process

Many models in time series analysis assume that the process generating time
series is composed of a deterministic process and one or more stochastic processes.
One of the most common stochastic process considered in such decompositions is
the white noise process.

White noise is a process whose realisations ε = (ε1, ε2, . . . ) are generated by
repeatedly drawing from normal distribution with zero mean and variance σ2.
Formally, for any t, i ∈ N white noise process satisfies the following

εt ∼ N (0, σ2)

E(εt) = 0

V (εt) = σ2

cov(εt, εt+i) = 0.
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Note that the white noise process is a stationary process.
White noise process ε is usually incorporated into a model by including only

the term εt in model’s equations. For convenience, instead of describing the
model’s equations using ” . . . where εt is the value of a white noise process ε at
time t” we simply write ” . . . where ε is a white noise process”, even if the term ε
is not present in model’s equations.

Since residuals of various regression based forecasting models are assumed
to be normally distributed [19], it is common practise to use past residuals to
generate the white noise process used in the model.

2.6 Lag operator and lag polynomials

In time series analysis we often need a shorthand notation to describe modified
time series lagging behind the original. Hamilton [4] suggests the unary lag
operator L, which takes an observation yt to produce the previous observation
yt−1, mathematically

L yt = yt−1.

The definition of L operator can be generalised to produce the next observation

L−1 yt = yt+1

and also applied repeatedly, which we denote by raising it to the corresponding
power:

Lk yt = L Lk−1 yt = yt−k.

Multiple lag operators can be combined to form a lag polynomial. For example,
let θi be a sequence of coefficients or parameters. Then we can write

θ0yt + θ1yt−1 + · · · = θ0 L0 yt + θ1 L yt + · · · =
∞∑
i=0

θi L
i yt = Θ(L)yt

where Θ(L) specifies the lag polynomial with coefficients θi.
For all intends and purposes lag polynomials can be multiplied comutatively

Θ(L)Φ(L) = Φ(L)Θ(L) and divided Θ(L)/Φ(L) in the same way as regular poly-
nomials [20].

2.7 Moving average smoothing

Moving average smoothing or smoother is a technique in time series analysis
designed to remove noise and better expose the underlying signal [21].

A moving average smoother takes a time series y and computes a new time
series y∗ = MASw(y) whose observations are a result of averaging several obser-
vations in the original time series. The observations whose average is used when
computing y∗i are located within a smoothing window of length w centred around
i, mathematically

MASw(y)t = y∗t =
1

w

t+dw/2e−1∑
i=t−bw/2c

yi (2.1)
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where bw/2c rounds w/2 down to the nearest integer and dw/2e rounds it up.
The smoothing window w is a parameter of the method and heavily influences

the result. The bigger the window the less noisy and more smooth the result is.
However, some features (peaks and valleys) of time series that are desirable to
preserve may also be smoothed away.

Note that for smoothing windows of odd lengths, the number of observations
prior to yt included in the averaging is the same as the number of observation after
yt. For example, MAS5 computes y∗t as (yt−2+yt−1+yt+yt+1+yt+2)/5. However,
windows of even lengths result in asymmetric averages not centred around t, e.g.
MAS4 computes y∗t as (yt−2 +yt−1 +yt+yt+1)/4. This can be remedied by taking
a moving average with window w2 = 2 after the first moving average with window
w1 = 4. The result then looks like

y∗t =
1

2

(
yt−2 + yt−1 + yt + yt+1

4
+
yt−1 + yt + yt+1 + yt+2

4

)
.

In literature this type of moving average smoothing is referred to as 2 × 4
double moving average smoothing and we denote this using the following notation:

MASw2×w1(y) = MASw2(MASw1(y))

Double moving average smoothing can be easily extended to triple etc. moving
average smoothing. Double and even triple moving averages are routinely used
in time series decomposition to isolate the trend component (see [21], [22], [11] or
[23]).
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3. Data analysis

In this chapter we focus on the problem of forecasting energy load profiles (Section
3.1), analysis of energy consumption data (Sections 3.2) and weather data (Section
3.3).

3.1 Energy consumption forecasting

Energy consumption forecasting is the practise of estimating the future magnitudes
of energy load over a future time period. Accurate forecasts can be utilised by
both producers and consumers of electicity [12] in a number of ways, including
the following:

� Financial planning: load forecasts can guide executives to make long term
revenue projections that are basis for acquisitions, new projects and their
budgets, technologies and human resources etc.

� Transmission and distribution: the transmission grid and accompanying sys-
tems must be regularly maintained and upgraded to meet the ever-changing
demand and improve reliability. Forecasts estimate when and by how much
the load will change as well as how the number of customers will grow.

� Demand side management: energy companies can make long term planning
according to the forecasts of end-user behaviour. On the other hand, con-
sumers can adjust the schedule of more energy-demanding tasks in a process
called load shifting.

� Maintenance: load patterns obtained from forecasts help system operators
plan maintenance outages.

Because load forecasting covers such a wide spread of applications, there are
many criteria that can be used to distinguish between them. The most important
is probably the length of forecast horizon, which segregates load forecasting into
following categories:

� very short term forecasting deals with forecast horizons from minutes up to a
few hours and can be used for example in scheduling of electricity generation
[24];

� short term forecasting includes forecast horizons measured in days and is
the primary focus of demand side management;

� medium term forecasting produces forecasts for horizons with length in
terms of weeks or a few months and can be used for outage and maintenance
planning, as well as load switching operations [25];

� long term forecasting uses months, quarters or even years as forecast horizons
to for instance develop future generation, transmission, and distribution
facilities [26].
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When dealing with shorter forecast horizons it is usually sufficient to consider
only past observation for relatively accurate predictions. However, as the forecast
horizon grows, the amount and the number of sources of information needed for
accurate forecasts increases [12], which is summarised in the following:

� very short term forecast only require past loads;

� short term forecasts may require weather information;

� medium term forecasts usually necessitate weather as well as economic
information;

� long term forecasts need weather, economic, demographic and sometimes
land use information.

Another important criterion is the desired granularity or resolution of forecasts
which retroactively affects the granularity of data suitable used for the analysis.
The granularity and forecast horizon are usually interdependent and range from
granularity in terms of minutes for very short term forecasting and hourly granu-
larity for short term forecasting to weekly and monthly granularity for medium
term forecasting and quarterly or annual granularity for long term forecasting.

There is no consensus regarding what the thresholds separating these categories
should be so the divisions presented above should only serve illustrative purposes
and may be inconsistent with divisions in some publications.

In this thesis we focus on half-hourly forecasts of energy load profiles one
day ahead, i.e. short term forecasts, because the ultimate goal is to use this
information in load shifting or cost optimisation. All observations are recorded
in kW. Given the history of energy consumption as time series y, we define load
profile for day d ∈ N0 as the vector y48d+1:48d+48 = (y48d+1, y48d+2, . . . , y48d+48).
The value y48d+1 refers to the average consumption between 00:00 and 00:30,
y48d+2 contains the average consumption between 00:30 and 01:00 and so on
until y48d+48, which represents the average consumption between 23:30 and 24:00.
The forecast of load profile for the next day based on yt is then produced as
ŷt+48|t = (ŷt+1|t, ŷt+2|t, . . . , ŷt+48|t).

3.2 Energy consumption data

One of the biggest problems related to Smart Grids and energy consumption anal-
ysis in particular is the scarcity and low quality of real world energy consumption
data. The energy companies are both unwilling and in many cases unable to
share the data because energy demands of a customer are considered a private
information. Even when this is not the case and the data is available, it is usually
of little use because of very low granularity. The reason for this is that because of
the current electric grid being designed only for a one-way transfer of energy from
supplier to customer, it suffices for an energy company to record only the total
amount of energy transferred to a customer during the whole month and bill him
accordingly. Naturally, the granularity of one observation per month is nowhere
near the requirements of load-shifting optimisation algorithms. Furthermore, the
quantity of the data should ideally span several years in order to capture the
intrinsic seasonality of energy demand that can be utilised in forecasting.

16



Therefore, the burden of collecting data suitable for load shifting lies usually
on the customer and in many cases a researcher has no choice but to perform
the observations himself. As this can be both expensive and time consuming,
one may resort to generating energy consumption artificially using some sort
of energy demand generator [27]. However, if we train a statistical or machine
learning model on artificial data, the model may learn the inner-workings of the
algorithm generating the data instead of the real world process behind energy
demands of a household. Evaluating the difference in performance of models
trained on artificially generated data versus models trained on real-world data
may be explored in future work.

Fortunately, from Georges Hebrail and Alice Barard we were able to obtain
high-granularity, high-quantity real-world data suitable for analysis [28]. The
data comes from a house in Sceaux (92330) which is 10 kilometres south of Paris.
The house uses gas-based heating system, has three floors and seven rooms and
is inhabited by a family of four or five: two parents working full time and two or
three children [29].

Energy consumption data contains 2075259 observations of power consumption
in kW sampled as a rate of one observation per minute, i.e. granularity of one
minute. The average power consumption per minute is 1.092 kW. The data
amounts to just over 1441 days or almost four years of energy consumption. The
models in this thesis were trained on data aggregated into half-hour time intervals
in a process called aggregation described in Section 10.3.1. Half-hour time intervals
were chosen because that is the granularity of available weather data, which we
describe later in Section 3.3.

One of the problems of this data is that it does not account for energy spent
on heating.

Another problem are missing observations. We use the term outage to refer to
any number of consecutive missing observations, i.e. outage o = 2 means that 2
consecutive observations are missing. We also consider outage o = 0 representing
no missing observations. Figure 3.1 contains a histogram of all outages and their
lengths present in the data.

We can see that the total number of missing observations is 25979, which
makes up approximately 1.25% of the data or just over 18 days. The missing
observations are spread across multiple outages, the longest one lasting for 5 days.
In Figure 3.2 we display the length of outages when the data is partitioned into
half hour intervals.

Because time series observations depend on previous observation, we cannot
simply discard missing observation, but instead fill them with valid values in a
process called imputation described in Chapter 11. When aggregating minutes
into half-hour time intervals, the process may discard valid observations in time
intervals containing only a few missing observation. For this reason we first impute
the data and then perform aggregation.

From now on we analyse imputed (Chapter 11) and aggregated (Section 10.3.1)
data with one observation per half-hour time interval.

As the histogram in Figure 3.3 shows, energy consumption approximately
follows a bimodal distribution with peaks around 0.35 kW and 1.4 kW.

Figure 3.4 is the result of averaging daily energy consumption profiles across
the whole datasets. A clear pattern with morning and evening peaks emerges. The
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Figure 3.1: Histogram of the number of outages of different lengths
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Figure 3.2: Histogram of the number of outages of different lengths when the data
is partitioned into half-hour intervals, each half-hour interval contains an outage
o = 0, 1, . . . , 30 illustrating how many minutes of that time interval are in fact
missing

smaller morning peak between 7:30 and 8:00 is probably the result of parents and
children waking up and getting ready for school and work. Then the load decreases
while the residents are away from home before peaking again between 20:30 and
21:00. This evening peak is probably caused by the necessity of artificial lighting
and various devices used during leisure activities like television and computers.
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Figure 3.3: Histogram of energy loads during half-hour time intervals, red line
represents the bimodal distributions that we fit to the data
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Figure 3.4: Average load profile.

During night, especially after midnight the power consumption is at its lowest
while the inhabitants are asleep and the next day the cycle starts anew. This
periodicity hints at daily seasonality: the same pattern repeated day after day.

Since business days in France span from Monday to Friday, it is natural to
expect energy consumption profiles during those days to be more stable and
predictable when compared to weekends. This is illustrated in Figure 3.5. Notice
that while evening peak is still prominent each day, the morning peak is all but
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Figure 3.5: Average load profile for each day of the week

absent on Sunday and Saturday. Instead the energy consumption gradually picks
up as the day progresses with a plateaux around noon. Also the evening peak on
Saturday occurs sooner than on the other days. The night between Saturday and
Sunday exhibits unusually high energy consumption when compared to school
nights as people are usually more prone to staying up late during weekend. We
conclude that business days can differ from weekends significantly. The differences
may also manifest themselves in some kind of weekly seasonality.

0 1 2 3 4 5 6 7 8 9
Lag (days)

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Figure 3.6: Autocorrelation with the previous nine days, one day corresponds to
data lagged by 48 half-hours or 24 hours
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One possible way of discovering patterns representing different types of sea-
sonality in our data is the autocorrelation function (ACF). ACF function of
time series is a correlation of time series as a function of its own lagged values.
Mathematically, it is defined as

ACFt(i) =
E((yt − µt)(yt−i − µt−i))

σtσt−i
(3.1)

where µt, µt−i are means and σt, σt−i are standard deviations of time series yt and
yt−i respectively.

Figure 3.6 displays the autocorrelation of our data plotted against lags as
high as nine days. Naturally the highest correlation arises between consecutive
observations. Then the ACF quickly plummets hitting correlations close to zero
for lags around six hours. There are multiple types of seasonality apparent from
Figure 3.6. The most noticeable is daily seasonality with peaks every 24 hours.
More prominent however is weekly seasonality, which is also confirmed by the
results of naive forecasting method in Section 10.1.4. Then there is also the case
of 12-hour seasonality. Nevertheless, as our task is to produce forecasts one day
ahead, we are unable to utilise 12-hour seasonality.
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Figure 3.7: Autocorrelation, only weekly lags displayed, one year is equal to 52
weeks

Figure 3.7 contains ACF plot for all lags, i.e. as many as there are observation
(2075259). For clarity we included only weekly lags. It is clear that there is
also annual seasonality present in the data, because ACF peaks around lags
corresponding to 52, 104 and 156 weeks.

From this we can conclude that our data contains multiple types of seasonality
including daily, weekly and annual. However, it is important to note that AFC
only captures linear relationship between lagged values and may possibly miss
some type of nonlinear relationship that may also be exploited by suitable models,
e.g. neural networks.
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3.3 Weather data

One of the main factors affecting energy consumption is the outside weather
conditions [30]. For this reason we collected historical weather data using Un-
derground Weather API [31]. The weather data comes from Orly airport near
Paris, which lies eight kilometres from the house in question and is the nearest
meteorological station [29]. Various weather characteristics are sampled at a rate
of one observation per 30 minutes.

From among many various weather characteristics provided by the Under-
ground weather API, we chose temperature (°C), relative humidity and wind
speed (km/h). We were unable to obtain solar irradiation from the API. The cri-
teria for choosing these characteristics were small number of missing observations,
the highest absolute correlation with energy consumption data from among all
available characteristics (-0.18 for temperature, 0.057 for wind speed and 0.055
for humidity) and small correlation among these variables (see Table 3.1)

Table 3.1: Correlation of selected weather characteristics

characteristic temperature (°C) humidity (%) wind speed (km/h)

temperature (°C) 1.000000 -0.592530 0.081844
humidity (%) -0.592530 1.000000 -0.207473
wind speed (km/h) 0.081844 -0.207473 1.000000
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Figure 3.8: Weather data across the years

Figure 3.8 illustrates how these characteristics develop through time. As we
can see the temperature rises and falls as expected with colder winters and warmer
summers. The humidity indicates drier summers and humid winters. Wind speed
resembles white noise.
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It is also important to note that using real weather data to produce forecasts
may introduce unwanted bias. Ideally, one should opt for using historical forecasts
of weather data instead of real weather data. However, we were unable to obtain
historical weather forecasts and were thus left with no choice.
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4. Literature overview

In this chapter we present previous studies examining a variety of both statistical
and machine learning methods applied to load forecasting.

Papalexopoulos and Hesterberg [32] examined the performance of a regression
based model on data collected by Pacific Gas and Electric Company in California.
The data for the estimation of the model included energy consumption and real
historical temperature (not historical forecasts) sampled at a rate of one obser-
vation per hour. Authors also demonstrate that contaminating the historical
weather data by a random noise in order to simulate historical forecasts results in
a less accurate model. In addition to energy consumption and temperature, the
regression model incorporated daylight saving time and holidays in the form of bi-
nary variables. One-day-ahead forecasts (forecast horizon h = 24) were produced
every midnight. The model performed with an average error of 12 MW.

A different model based on the Holt-Winters exponential smoothing was used
in a study conducted by Taylor [33]. The data consisted of half-hourly obser-
vations of energy consumption and forecasts are produced for forecast horizons
ranging from one half-hour (h = 1) to one day (h = 48). Taylor identified two
types of seasonality that are present in the data: daily and weekly. In order to
accommodate the second type of seasonality, Holt-Winters method was modified
and compared to both traditional Holt-Winters method and ARIMA model. Ac-
cording to mean absolute percentage error (MAPE), ARIMA model performed
the best. However, after fitting an additional AR model to the residuals of the
modified Holt-Winters method, the accuracy of forecasts surpassed that of ARIMA
for all forecast horizons. For even more accurate forecasts, Taylor recommends
combining several different methods in an ensemble.

Pappas et al. [34] conducted a study of ARMA models on energy consumption
data provided by Hellenic Public Power Corporation in Greece. The data was
sampled at a rate of one observation per day. Authors identified weekly and
annual seasonalities and removed them both through deseasonalisation before
fitting the model. Forecast were produced one day (forecast horizon h = 1) and
one week (forecast horizon h = 7) ahead. Paper also examines various criteria
used in estimation of ARMA models, namely the AIC, AICC, BIC and MMPF,
and their impact on the model’s performance. Authors concluded that the best
criterion was MMPF with MAPE of 1.87% followed by AICC with 1.98%.

Tassou and Marriot [35] studied the ability of neural networks to predict the
electricity consumption in a supermarket. They were especially interested in
identifying the most important inputs for prediction and also comparing neural
networks with multiple regression techniques. The power consumption in a super-
market is recorded every half-hour and together with environmental conditions is
used to train the network. Forecasts are made for an undisclosed number of half-
hours ahead. Neural networks with correlation coefficient (R2) of 95% outperform
regression analysis with 79% in this situation. The authors also pinpointed time
of day as the most important factor in determining energy consumption.

Kalogirou and Bojic [36] proposed a neural network to predict the energy
consumption of a passive solar building. In the design of a passive solar house,
the windows, walls and floors are built in such a way as to collect, distribute
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and store solar energy in the winter and reflect it in the summer. Passive solar
buildings differ from active solar buildings in that they do not use any mechanical
or electrical devices like boilers and pumps in their heating system [37]. Instead
they optimise characteristics such as size and placement of windows, shading,
insulation, thermal mass and glazing type. Authors’ objective was to build a
simulation software based on neural networks in order to model the thermal
behaviour of the building, because a trained neural networks is faster than a
traditional physical model based on differential equations. A physical model called
ZID, developed by Energy Management Centre of the University of Kragujevac,
was used to generate training samples of twelve hourly energy loads per day for
a summer and a winter season. This data was then used to train the network.
Authors examined a number of different types of neural networks with varying
number of layers. Paper concludes with presenting the result of a selected type
of network called Jordan Elman recurrent network, which was able to reach R2
value of 0.9991.

A different approach was proposed by Sulaiman, Jeyanthy and Devaraj [38].
Using data from Smart Meter they forecast hourly load for a day as a whole.
Smart Meters are able to provide high resolution data every few seconds. These
were then used to train neural networks with varying number of neurons. Data
was sampled at a rate of 24 observations per day and forecast were made one
day ahead, i.e. with forecast horizon h = 24. For the evaluation of forecasts
authors used hit rate as the accuracy measure. Forecast for a particular hour was
considered a hit if fell within ±10% of a true value that is above 1 kW and within
±100 W if it was below 1 kW. The best network achieved hit rate of 70.54%. The
paper also contains a comparison of hit rate of the network with respect to hour of
the day. It performed best in the night-time with little or no human interference.

Another comparison was conducted in a paper by Neto and Fiorelli [39]. Using
data from the Administration Building of the University of São Paulo in Brazil,
the authors compared the the accuracy of neural networks with that of a physical
model called EnergyPlus [40]. Energy consumption data was sampled at a rate
of one observation per hour and authors forecast one day ahead only for business
days (forecast horizon h = 24). Authors also performed parameter analysis to
assess the significance of individual factors for prediction. Their paper focuses
on two types of neural networks. The first was a simple network with only
temperature as its input, the second takes temperature, relative humidity and
also solar radiation into account. Moreover, different networks were used for
business days and weekends. Authors concluded that both neural networks and
EnergyPlus are suitable because for 80% of samples the absolute error was within
10% and 13% respectively. They identified external temperature, internal heat
gains and equipment performance as the most significant factors, while humidity
and solar radiation had negligible effects.
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5. State-space models

Originating in control engineering, state-space models are mathematical models of
physical systems that vary through time. In state-space models, a physical system
is thought of as having intrinsic unobservable state that changes as the system
evolves. Although the state is unobservable, it manifests itself as a sequence of
measurable quantities, usually contaminated by noise, that can be represented as
time series. State-space model is then a number of equations that capture both the
particularities of this manifestation as well as the evolution of the system’s state.
For example, for a physical system consisting of a satellite orbiting the Earth,
the intrinsic state consists of velocity, angular momentum, mass, atmospheric
drag and possibly other quantities, while from Earth only its position in orbit,
surely contaminated by noise, is observable. Throughout this chapter we use s
as the number of these hidden quantities. State-space model can help estimate
either past, current or future positions based on a sequence of observations and a
sequence of estimates of the satellite’s state.

This chapter presents an overview of the theory around state-space models
published mainly in book by Hamilton [4], Chatfield [41], Hyndman et al. [11],
Libert et al. [42] and Durbin and Koopman [43]. Its purpose is to serve as a
foundation for Chapters 6, 7 and 8, where the theory is put into practice.

The chapter is divided into five sections. In Section 5.1 the general form of
state-space model is introduced. Section 5.2 and Section 5.3 narrow the general
definition of state-space models to better suit the purpose of this thesis. While
describing the state-space models in these three sections we assume that various
parameters in their equations are known. The process of estimating these parame-
ters is presented in Section 5.4. Lastly, in Section 5.5 we describe how state-space
models are used in forecasting time series.

State-space models are able to accommodate continuous-time series and also
multivariate time series. However, for our purposes it is enough to consider only
state-space models for the case of univariate discrete-time series.

5.1 General state-space models

The basic idea behind state-space models is that at any time the measurement of
a signal is contaminated by noise, which can be intuitively expressed as:

observation = signal + noise. (5.1)

In state-space models the signal at time t is considered to be a combination of
a set of variables, called state variables. State variables are collected together to
form a state vector or simply state.

Let us consider an univariate time series y and let xt ∈ Rs be a state vector
at time t with s as the number of state variables. Then we may rewrite (5.1) as
the so-called observation equation

yt = wt(xt−1) + rt(xt−1)et (5.2)

where et represents the observation error or noise and wt, rt : Rs → R are assumed
to be known scalar functions. Function wt describes how the state variables are
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combined to produce the observation and function rt can be interpreted as the
effect the noise has on these state variables.

State-space models postulate that the state vectors satisfy the Markov prop-
erty :

∀t ∈ N : P (xt | xt−1,xt−2, . . . ,x0) = P (xt | xt−1).
This means that the future behaviour of the system is completely determined only
by the most recent values of state variables.

Since it is not always possible to observe the elements of the state vector xt
directly, state-space models make the assumption that the state vector evolves
according to the so called state equation

xt = ft(xt−1) + gt(xt−1)� ξt (5.3)

where ft, gt : Rs → Rs are vector function assumed to be known and ξt ∈ Rs is
a vector of disturbances. Function ft describes the process of transforming the
previous state-space vector xt−1 into the current one xt and function gt explains
how are each of the state variables affected by the noise.

The observation (5.2) and state (5.3) equations together with specified func-
tions wt, rt,ft, gt and the distribution of the error term et and disturbances ξt are
what constitute the general state-space model.

In the most general case, wt, rt,ft and gt are subject to change in time. How-
ever, often this is not the case and they can be assumed to be constant with
respect to t. They are then said to be time-invariant and we can replace them
by w, r,f , g in observation (5.2) and state (5.3) equations.

5.2 Innovations state-space models

Consider a state-space model with observation equation (5.2) and state equation
(5.3) in the following form:

yt = wt(xt−1) + rt(xt−1)εt (5.4)

xt = ft(xt−1) + gt(xt−1)εt (5.5)

where wt, rt : Rs → R, ft, gt : Rs → Rs and ε is a white noise process.
In this state-space model all disturbances ξt are modelled using the same white

noise process ε, which means that all sources of error now have the same origin.
Because ε represents what is new and unpredictable, it is sometimes called an
innovation and state-space model having these innovations as the single source
of randomness is therefore an innovations state-space model.

5.3 Linear state-space models

Linear state-space models are a special case of general state-space models in that
they assume that the observation equation (5.2) and state equation (5.3) can be
expressed as a linear combination of state variables:

yt = w′txt−1 + et

xt = Ftxt−1 + gt � ξt
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where wt, gt ∈ Rs, Ft ∈ Rs×s.
This is a general state-space model with constant rt(xt−1) = 1, constant

gt(xt−1) with respect to xt and linear functions ft(xt−1) = Ftxt−1, wt(xt−1) =
w′txt−1.

In this thesis the majority of state-space models can be expressed as time-
invariant linear innovations state-space models, which can be described using the
observation and state equations

yt = w′xt−1 + εt (5.6)

xt = Fxt−1 + gεt (5.7)

where w, g ∈ Rs, F ∈ Rs×s and ε is a white noise process.
Therefore, for convenience, when we use the term ”state-space model” in

other chapters, we specifically refer to time-invariant linear innovations state-
space models described by observation equation (5.6) and state equation (5.7).
Any deviations from this convention will be explicitly stated.

5.4 Estimation

One of the greatest advantages of the statistical theory behind state-space models
is that the methods of statistical inference can be used to estimate the parameters
of the models. Since the majority of state-space models in this thesis are linear
innovations state-space models, these parameters are wt,Ft and gt.

To estimate these parameters we use the maximum likelihood estimation. In
the context of state-space models, maximum likelihood estimation is an optimi-
sation algorithm that maximises the ”likelihood” of a time series y arising from
a particular model with respect to its parameters. This is described in Section
5.4.2. To compute this ”likelihood” the majority of state-space models in this
thesis use Kalman filter, see Section 5.4.1.

5.4.1 Kalman Filter

First introduced by Kalman in 1960 [44], Kalman filter is a method for estimating
system’s varying state. It improved upon other methods of the time by incorpo-
rating system’s state-space representation and multiple sequential observations
to form an estimate that is better than the estimate obtained using only one
observation.

All state-space models in this thesis that use Kalman filter are linear innova-
tions state-space models. Therefore, in this section we present a version of Kalman
filter adapted for this particular type of state-space models, but everything that
follows can be restated also for a general state-space model. Linear innovations
state-space model is, as the name suggests, a combination of linear and innova-
tions state-space model. It can be expressed using the following observation and
state equations:

yt = w′txt−1 + εt

xt = Ftxt−1 + gtεt
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where xt ∈ Rs is the state vector containing s state variables, wt, gt ∈ Rs,
Ft ∈ Rs×s and ε is a white noise process.

For the distributions of y and xt Durbin [43] proves that the following holds:

P (yt | xt−1,xt−2, . . . ,x0,yt−1) = P (yt | xt−1)
P (xt | xt−1,xt−2, . . . ,x0,yt−1) = P (xt | xt−1)

Let x̂t = E(xt | yt−1) be the state estimate and Vt = V (xt | yt−1) be the
state variance. The assumption of Kalman filter is that given yt−1 the state
vector xt is from normal distribution xt ∼ N (x̂t,Vt), where for the initial state
x0 ∼ N (x̂0,V0) both x̂0 and V0 are assumed to be known.

The objective of Kalman filter is to obtain x̂t and Vt from the previous esti-
mates x̂t−1 and Vt−1 so that it minimises

∑n
t=1(x̂t−xt)2. This is done by iterating

the following recursions:

rt = yt −w′tx̂t−1 (5.8)

kt = q−1t−1FtVt−1wt (5.9)

x̂t = Ftx̂t−1 + rtkt (5.10)

qt = w′tVt−1wt + σ2 (5.11)

Vt = FtVt−1(Ft − ktw′t)′ + σ2gtg
′
t (5.12)

where σ2 is the variance of ε, kt ∈ Rs and Vt ∈ Rs×s.
Vector kt is called Kalman gain and it describes relative certainty of the obser-

vations yt and current state estimate x̂t. A higher gain represents high confidence
in the current estimates, which results in more weight placed on recent observa-
tions and a more responsive filter. Low gain disregards the recent observations
and follows the state estimates x̂t, effectively smoothing out noise at the cost of
responsiveness. Kalman gain depends on two other parameters, qt and Vt.

qt is the estimated covariance of residuals rt that represents the variability in
observation yt. If qt is large then yt changes a lot and consequently the confidence
in yt is small which is represented by q−1t . As a result, the Kalman gain is lower
and the filter follows x̂t. On the other hand, for small qt the filter gravitates
towards new observations.
Vt is the state variance which represents the variability of state xt. If it is

large, the state is estimated to change wildly, which needs to be reflected in x̂t
by a higher value of the Kalman gain. In case of low Vt the filter tracks new
observations more closely.

In the case of time-invariant state-space models, the state variance Vt converges
to a constant matrix V [45], which is the solution to a type of discrete-time
algebraic Riccati equation:

V = FV F ′ − q−1FV ww′V F ′ + σ2gg′

where q = w′V w + σ2.
This results in considerable computational savings as the state covariance Vt

in (5.12) and qt in (5.11) no longer need calculating and the Kalman filter can be
reduced to the following:

rt = yt −w′x̂t−1
x̂t = F x̂t−1 + rtq

−1FV w
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5.4.2 Maximum likelihood estimation

Consider a sample zt = (z1, z2, . . . , zt) of t observations from a distribution with an
unknown probability density function f(zi). The main assumption of maximum
likelihood estimation is that f(zi) comes from a parametric model, a family of
probability distribution functions {f(zi | θ) : θ ∈ Θ} parametrised by vector
θ ∈ Rk from Θ ⊆ Rk [46]. Mathematically, f(zi) = f(zi | θ0) for some θ0 ∈ Θ.
The objective is to find parameters θ̂ as close to θ0 as possible.

The ”closeness” of θ and θ0 is evaluated using the likelihood function defined
as

L(θ, zt) = f(zt | θ)

where f(zt | θ) is the joint probability density function of f(z1 | θ), f(z2 |
θ), . . . , f(zt | θ). In essence L(θ, zt) describes how probable it is to obtain
zt from distribution f(z | θ).

Maximum likelihood estimations is then an optimisation algorithm tasked
with maximizing the likelihood function L(θ, zt) with respect to parameters θ.
The resulting θ̂ that best fit the data is obtained from

θ̂ = arg max
θ

L(θ, zt)).

The popularity of maximum likelihood estimation is due to the fact that it is
consistent [47], which means that provided large enough sample zt, it is possible
to approximate the parameters θ0 with arbitrary precision, i.e.

lim
t→∞

θ̂ = θ0.

Let θ be a collection of all the parameters of a linear innovations state-space
model, i.e. wt,Ft, gt,x0 including the variance of white noise σ2. Furthermore
let x0 ∼ N (x̂0,V0) where both x̂0 and V0 are known. Since the Markov property
applies for state-space models, the joint probability density function f(yt | θ) can
be expressed in the form of

f(yt | θ) = P (yt | θ) =
t∏
i=1

P (yi | yi−1,θ)

and consequently

L(θ,yt) =
t∏
i=1

P (yi | yi−1,θ).

In the case of linear innovations state space models taking the logarithm of
the previous equation translates into

logL(θ;yt) = −1

2

(
t log 2π +

t∑
i=1

log |qi|+
t∑
i=1

q−1i r′iri

)

where qi and ri are routinely computed by the Kalman filter.
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5.5 Smoothing, filtering and forecasting

Let us consider a linear innovations state-space model where we define ŷk|t =
E(yk | yt) as the conditional expectation of yk given yt. The process of evaluating
ŷk|t is called smoothing for k < t, filtering for k = t and forecasting for k > t.
Because our task is forecasting and because smoothing can introduce bias to the
time series, in this thesis we focus only on filtering and forecasting.

Filtering concerns updating the state vector to reflect new observations. It is
done using Kalman filter by doing additional iteration of Equations (5.8)-(5.12)
using the new observation. We use filtering in cross-validation described in Section
10.2 (the motivation is to lower the computational time of cross-validation: after
we forecast load profile for the next day, the model is filtered on the real profile
for that day without re-estimation).

Generaly, in forecasting we want to estimate the value of yt+h from yt. In
state-space models the point forecasts are obtained as conditional expectation
ŷt+h|t = E(yt+h | yt). According to Durbin [43], the point forecasts for ŷt+h|t =
(ŷt+1|t, ŷt+2|t, . . . , ŷt+h|t) can be obtained by iterating the respective observation
and state equations of the model for i = 1, 2, . . . , h while in each step letting
ŷt+i|t = w′t+ixt+i−1 and εt+i = 0.
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6. Exponential smoothing

Exponential smoothing (ES) is a popular technique used in time series forecast-
ing [43]. Originally, it was closely related to the moving average method (not to
be confused with moving average process), which in essence assigns equal weights
1
k

to k past observations. ES modifies this idea by assuming that the more recent
the observation, the more relevant the information it carries. This is modelled by
a weighting scheme that pairs more recent observations with larger weights and
as the distance between observations grows, the weights become exponentially
smaller.

More advanced ES methods postulate that the time series y can be decomposed
into one, two or three separate components: level l, trend b and seasonality s.
As it turns out, any ES method presented in this chapter can be represented as a
state-space model whose state consists of one or more of these components.

The theory and notation in this chapter is borrowed mainly from books by
Hyndman et al. [11] and Hyndman with Athanasopoulos [48]. The chapter is
divided into three sections. In Section 6.1 we present a number of ES methods
of increasing complexity, the motivation behind and distinctions between them.
Section 6.2 offers a different perspective of looking at ES, one that treats them as
a special case of state space models. We show that underneath any ES method
lies a state space model and demonstrate how to obtain it. We are careful to
make a clear distinction between ES methods and their state-space representation
called ES models. Lastly, Section 6.3 is dedicated to training of state-space models
before forecasts can be made. The experimental results for ES models is presented
in Section 12.1.

Forecasting with ES models also require various parameters and initial values
to be estimated. For clarity we list them all here and return to their estimation in
Section 6.3. The aforementioned parameters are α, β, β∗, γ, φ, and initial values
are l0, b0, s0, s−1, . . . , s−m+1.

6.1 ES methods

All ES methods in this chapter can be described using the component form.
Component form in general consists of a forecast equation and a number of
smoothing equations. Smoothing equations are designed to model the three
components of decomposed time series: level, trend and seasonality.

We divide ES methods into three categories called single ES methods, double
ES methods and triple ES methods according to the number of components (level,
trend, seasonality) they include in their equations.

6.1.1 Single ES

Single ES, also known as simple ES or first order ES, was first described by
Brown [49]. It is best suited for data that does not exhibit any trends or seasonal
patterns. In its simplest form ES forecasts the next observation ŷt+1|t from
previous observations yt as

ŷt+1|t = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + · · ·+ α(1− α)t−1y1.
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After realizing that ŷt+1− (1−α)ŷt|t−1 = αyt we arrive at the so-called component
form for single ES:

ŷt+h|t = lt (6.1)

lt = αyt + (1− α)lt−1 (6.2)

where 0 ≤ α ≤ 1 is the smoothing parameter and l is the level component. lt is in
essence the weighted average of the most recent observation yt and the previous
one step ahead in sample forecast ŷt|t−1. Equation (6.1) is the forecast equation
and Equation (6.2) is the smoothing equation for level component or simply level
equation. It is important to note that for forecast horizons with h > 1 this
definition results in the forecast function being ”flat” as ŷt+h|t = ŷt+1|t = lt. This
is because single ES works best when there is no trend or seasonality present in the
series and therefore should not be used as a stand-alone technique, but more as a
foundation for more general ES methods that can cope with trend and seasonality.
For this reason it is also not suitable for forecasting energy consumption data, as
we expect it to exhibit seasonality and also sometimes trend.

If follows that large α leads to more weight being assigned to more recent
observations and vice-versa. The influence of l0 on the outcome is usually negligible
as the corresponding weight it small. However, short time series or very small α
necessitate also l0 being chosen carefully. Values of both α and l0 can be hand-
picked or estimated objectively in a training process described in Section 6.3.

6.1.2 Double ES

Double ES is in some sources also referred to as second order ES. It encom-
passes all methods employing two components in their respective component
forms. Without any loss of generality, in this section we present methods using
level and trend components. How to incorporate seasonal component into ES
equations is described later in Section 6.1.3.

We divide double ES methods by the relationship between their level and
trend components into four subcategories.

Additive trend

The first double ES method was introduced by Holt [50] when he expanded upon
single ES to forecast time series exhibiting trend. He did this by adding a trend
component b to component form, which is now known as Holt’s linear trend
method:

ŷt+h|t = lt + hbt

lt = αyt + (1− α)(lt−1 + bt−1)

bt = β∗(lt − lt−1) + (1− β∗)bt−1
where 0 ≤ α, β∗ ≤ 1 are smoothing parameters, l is the level component and b is
the trend component. Here the forecast function is no longer flat, but linear with
respect to the length of forecast horizon h.

As in the case of single ES, lt is the weighted average of the most recent
observation yt and the previous one step ahead in sample forecast ŷt|t−1. On the
other hand, bt from trend equation is the weighted average of the most recent
trend lt − lt−1 and previous estimation of trend bt−1.
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Multiplicative trend

Another approach to double ES is to allow the relationship between level l and
trend b to be multiplicative rather than additive:

ŷt+h|t = ltb
h
t

lt = αyt + (1− α)(lt−1bt−1)

bt = β∗
lt
lt−1

+ (1− β∗)bt−1

where α, β∗ are smoothing parameters. In this method bt can be interpreted as
a growth rate. The forecast function here is exponential with respect to h as
opposed to linear.

Damped additive trend

Empirical evidence suggests that both linear and exponential methods tent to over-
forecast when it comes to longer forecast horizons. To mitigate this phenomenon
Gardner and McKenzie [51] introduced a new parameter 0 < φ < 1 to the linear
trend method:

ŷt+h|t = lt + φhbt

lt = αyt + (1− α)(lt−1 + φbt−1)

bt = β∗(lt − lt−1) + (1− β∗)φbt−1

where 0 ≤ α, β∗ ≤ 1 are smoothing parameters, l is the level and b is the trend
component and φh = (φ+ φ2 + · · ·+ φh).

While shorter forecast horizons h still produce trended forecasts, one can prove
[48] that longer horizons h result in forecasts approaching a constant, i.e. with
fixed t the following holds:

lim
h→∞

ŷt+h|t = lt + φ
bt

1− φ

Damped multiplicative trend

Similar approach was adapted by Taylor [52] while modifying double ES with
multiplicative trend to include damping parameter 0 < φ < 1:

ŷt+h|t = ltb
φh
t

lt = αyt + (1− α)(lt−1b
φ
t−1)

bt = β∗
lt
lt−1

+ (1− β∗)bφt−1

where 0 ≤ α, β∗ ≤ 1 are smoothing parameters, l is the level component, b is the
trend component and φh = (φ+ φ2 + · · ·+ φh).
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6.1.3 Triple ES

As the name suggests, triple or third order ES takes into account three components:
level, trend and seasonality. In literature it is also refereed to as Holt-Winters
method. In the same paper where he intruduced double ES [50], Holt also de-
scribed how to exploit the seasonality of time series if one is present. Independently
on Holt, a similar approach was presented also by Winters [53].

Although triple ES is able to capture the intrinsic seasonality of the energy
consumption data to some degree, it can only do so for one type of seasonality.
As the data usually contains multiple seasonalities (daily, weekly and annual),
either another type of forecasting technique or some sort of preprocessing must be
considered in order for ES to be efficient. The preprocessing techniques considered
for ES are described later in Section 10.3.

Additive seasonality

This method is useful when the nature of seasonality present in the time series
is additive, that is seasonal changes are not dependant on the level of the series,
they depend only on time.

To construct the component form we will extend double ES with linear trend,
but any of the previous methods can be modified analogically:

ŷt+h|t = lt + hbt + st−m+h

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

bt = β∗(lt − lt−1) + (1− β∗)bt−1
st = γ(yt − lt−1 − bt−1) + (1− γ)st−m

where 0 ≤ α, β∗, γ ≤ 1 are smoothing parameters, l is the level component, b is
the trend component, s is the seasonality component and m is the frequency of
the time series y.

Level component lt is now a weighted average of the last observation adjusted
for seasonality (yt − st−m) and the nonseasonal forecast (lt−1 + bt−1). Trend
component bt is the same as in linear double ES, i.e. the weighted average of the
most recent trend lt − lt−1 and previous estimation of trend bt−1, and seasonal
component st is a weighted average of last observation adjusted for level and trend
yt − lt−1 − bt−1 and seasonal component exactly one season ago st−m.

Multiplicative seasonality

For time series whose seasonal component is not only dependant on time but is
also proportional to the level of the series, a different approach is more suitable.

It is again possible to extend any of the double ES methods. For example
component form of double ES with damped multiplicative trend and multiplicative
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seasonality looks like this:

ŷt+h|t = ltb
φh
t st−m+h

lt = α(
yt
st−m

) + (1− α)lt−1b
φ
t−1

bt = β∗(
lt
lt−1

) + (1− β∗)bφt−1

st = γ(
yt

lt−1b
φ
t−1

) + (1− γ)st−m

where 0 ≤ α, β∗, γ ≤ 1 are the smoothing parameters, 0 ≤ φ ≤ 1 is the damping
parameter, l is the level component, b is the trend component, s is the seasonality
component and φh = (φ+ φ2 + · · ·+ φh).

6.2 ES models

In this section we demonstrate that under every ES method lies a state space
model. This enables us to optimise smoothing parameters and initial values of
components for a particular method and also compare ES methods with each
other in an objective manner. For each ES method we will consider two state
space models: one with additive and the other with multiplicative errors.

To demonstrate the process of converting an ES method into the underlying
state space model, we will use double ES with additive trends. However, this
procedure can be altered to suit any of the previous state space models.

6.2.1 Additive errors

Let us consider the component form of double ES with additive trend:

ŷt+h|t = lt + hbt (6.3)

lt = αyt + (1− α)(lt−1 + bt−1) (6.4)

bt = β∗(lt − lt−1) + (1− β∗)bt−1. (6.5)

From forecast equation (6.3) it follows that ŷt|t−1 = lt−1 + bt−1. Using this formula
one can rewrite level equation (6.4) as

lt = αyt + (1− α)ŷt|t−1.

In this form lt can be thought of as the weighted average between the most
recent observation yt and the previous one step ahead in sample forecast ŷt|t−1.
By rearranging this representation of level equation even further we get

lt = αyt + (1− α)ŷt|t−1

= ŷt|t−1 + α(yt − ŷt|t−1).

After we let εt = yt − ŷt|t−1 we obtain the error correction form of level equation:

lt = (lt−1 + bt−1) + αεt (6.6)
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In this form εt is one-step-ahead forecast error, or residual, that corrects the
estimated level. We can rearrange trend equation (6.5) in a similar manner:

bt = β∗(lt − lt−1) + (1− β∗)bt−1
= bt−1 + β∗(lt − (lt−1 + bt−1))

= bt−1 + β∗((lt−1 + bt−1) + αεt − (lt−1 + bt−1))

= bt−1 + αβ∗εt.

For convenience we let β = αβ∗ to produce error correction form of trend equation:

bt = bt−1 + βεt. (6.7)

Furthermore, from εt = (yt − ŷt|t−1) = yt − (lt−1 + bt−1) it follows that

yt = (lt−1 + bt−1) + εt (6.8)

If we combine the error correction forms of level (6.6) and trend (6.7) equations
with Equation (6.8), we obtain the spate-space model underlying the double ES
with additive trend. This can be demonstrated by defining state vector xt = (lt, bt)
and then transforming (6.8),(6.6) and (6.7) into the standard state-space notation
consisting of observation and state equations:

yt =

(
1
1

)′
xt−1 + εt

xt =

(
1 1
0 1

)
xt−1 +

(
α
β

)
εt.

In this model ε is modelled by the residuals and thus the state-space model is
fully specified.

6.2.2 Multiplicative errors

To derive error correction form with multiplicative errors for double ES with
additive trend, we again start with rearranging the level equation (6.4) in the
following manner:

lt = αyt + (1− α)(lt−1 + bt−1)

= αyt + (1− α)ŷt|t−1

= ŷt|t−1 + α(yt − ŷt|t−1)

= ŷt|t−1 + αŷt|t−1
yt − ŷt|t−1
ŷt|t−1

= ŷt|t−1(1 + α
yt − ŷt|t−1
ŷt|t−1

)

= (lt−1 + bt−1)(1 + αεt)

where εt = (yt − ŷt|t−1)/ŷt|t−1 is now the most recent relative one-step forecast
error. From here one can follow the same steps as before to get to the underlying
state-space model:

yt = (lt−1 + bt−1)(1 + εt)

lt = (lt−1 + bt−1)(1 + αεt)

bt = bt−1 + β(lt−1 + bt−1)εt
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or equivalently:

yt =

(
1
1

)′
xt−1 +

(
1
1

)′
xt−1εt

xt =

(
1 1
0 1

)
xt−1 +

(
1
1

)′
xt−1

(
α
β

)
εt (6.9)

with white noise process ε modelled by residuals.
Notice that this is a nonlinear innovations state-space model, which usually

means that it is difficult to handle while estimating and forecasting. However,
innovations form of state-space models enables us to compute forecasts and like-
lihood function with no additional effort compared to the additive error model
(see Section 6.3).

6.2.3 General state-space representation

The list of ES methods discussed so far is not exhaustive. By combining trend
types (none, additive, multiplicative, damped additive, damped multiplicative)
with variations in seasonality (none, additive, multiplicative) we can define fifteen
distinct methods, each of which has two underlying state-space models: one with
additive and one with multiplicative errors. Thus the total number of possible
models is thirty.

As we demonstrated in Sections 6.2.1 and 6.2.2, an innovations state-space
model lies underneath every ES method. If we define state vector as xt =
(lt, bt, st, st−1, . . . , st−m+1), the observation and state equation for the general rep-
resentation is of the form:

yt = w(xt−1) + r(xt−1)εt (6.10)

xt = f(xt−1) + g(xt−1)εt (6.11)

where ε are modelled by the residuals. For a model with additive errors we let
r(xt−1) = 1 to obtain yt = w(xt−1) + εt. On the other hand r(xt−1) = w(xt−1)
results in a model with multiplicative errors where yt = w(xt−1)(1 + εt).

Each of the thirty ES methods can be represented in the form of (6.10) and
(6.11). The ones with additive errors are presented in Table 6.1, while Table
6.2 contains those with multiplicative errors. To simplify the notation we use
β = αβ∗.

Numerical difficulties may arise when a combination of trend, seasonality
and error requires a division by a state component which may at some point
result in a division by zero. This issue pertains to models with additive errors
and either multiplicative trend or multiplicative seasonality and also includes
models with multiplicative errors, multiplicative trend and additive seasonality.
Another important fact about models with multiplicative error is that they are not
numerically stable when time series is not strictly positive, i.e. the data contains
zeros or negative values.

We can obtain point forecasts ŷt+h|t from ES models with the procedure
described in Section 5.5. These forecasts are identical to the point forecasts
generated by the corresponding ES method.
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Trend Seasonality
N A M

N
yt = lt−1 + εt

lt = lt−1 + αεt

yt = lt−1 + st−m + εt

lt = lt−1 + αεt

st = st−m + γεt

yt = lt−1st−m + εt

lt = lt−1 + αεt/st−m

st = st−m + γεt/lt−1

A

yt = lt−1 + bt−1 + εt

lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

yt = lt−1 + bt−1 + st−m + εt

lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

st = st−m + γεt

yt = (lt−1 + bt−1)st−m + εt

lt = lt−1 + bt−1 + αεt/st−m

bt = bt−1 + βεt/st−m

st = st−m + γεt/(lt−1 + bt−1)

Ad

yt = lt−1 + φbt−1 + εt

lt = lt−1 + φbt−1 + αεt

bt = φbt−1 + βεt

yt = lt−1 + φbt−1 + st−m + εt

lt = lt−1 + φbt−1 + αεt

bt = φbt−1 + βεt

st = st−m + γεt

yt = (lt−1 + φbt−1)st−m + εt

lt = lt−1 + φbt−1 + αεt/st−m

bt = φbt−1 + βε/st−m

st = st−m + γεt/(lt−1 + φbt−1)

M

yt = lt−1bt−1 + εt

lt = lt−1bt−1 + αεt

bt = bt−1 + βεt/lt−1

yt = lt−1bt−1 + st−m + εt

lt = lt−1bt−1 + αεt

bt = bt−1 + βεt/lt−1

st = st−m + γεt

yt = lt−1bt−1st−m + εt

lt = lt−1bt−1 + αεt/st−m

bt = bt−1 + βεt/(st−mlt−1)

st = st−m + γεt/(lt−1bt−1)

Md

yt = lt−1b
φ
t−1 + εt

lt = lt−1b
φ
t−1 + αεt

bt = bφt−1 + βεt/lt−1

yt = lt−1b
φ
t−1 + st−m + εt

lt = lt−1b
φ
t−1 + αεt

bt = bφt−1 + βεt/lt−1

st = st−m + γεt

yt = lt−1b
φ
t−1st−m + εt

lt = lt−1b
φ
t−1 + αεt/st−m

bt = bφt−1 + βεt/(st−mlt−1)

st = st−m + γεt/(lt−1b
φ
t−1)

Table 6.1: ES models with additive errors [11]



Trend Seasonality
N A M

N
yt = lt−1(1 + εt)

lt = lt−1(1 + αεt)

yt = (lt−1 + st−m)(1 + εt)

lt = lt−1 + α(lt−1 + st−m)εt

st = st−m + γ(lt−1 + st−m)εt

yt = lt−1st−m(1 + εt)

lt = lt−1(1 + αεt)

st = st−m(1 + γεt)

A

yt = (lt−1 + bt−1)(1 + εt)

lt = (lt−1 + bt−1)(1 + αεt)

bt = bt−1 + β(lt−1 + bt−1)εt

yt = (lt−1 + bt−1 + st−m)(1 + εt)

lt = lt−1 + bt−1 + α(lt−1 + bt−1 + st−m)εt

bt = bt−1 + β(lt−1 + bt−1 + st−m)εt

st = st−m + γ(lt−1 + bt−1 + st−m)εt

yt = (lt−1 + bt−1)st−m(1 + εt)

lt = (lt−1 + bt−1)(1 + αεt)

bt = bt−1 + β(lt−1 + bt−1)εt

st = st−m(1 + γεt)

Ad

yt = (lt−1 + φbt−1)(1 + εt)

lt = (lt−1 + φbt−1)(1 + αεt)

bt = φbt−1 + β(lt−1 + φbt−1)εt

yt = (lt−1 + φbt−1 + st−m)(1 + εt)

lt = lt−1 + φbt−1 + α(lt−1 + φbt−1 + st−m)εt

bt = φbt−1 + β(lt−1 + φbt−1 + st−m)εt

st = st−m + γ(lt−1 + φbt−1 + st−m)εt

yt = (lt−1 + φbt−1)st−m(1 + εt)

lt = (lt−1 + φbt−1)(1 + αεt)

bt = φbt−1 + β(lt−1 + φbt−1)εt

st = st−m(1 + γεt)

M

yt = lt−1bt−1(1 + εt)

lt = lt−1bt−1(1 + αεt)

bt = bt−1(1 + βεt)

yt = (lt−1bt−1 + st−m)(1 + εt)

lt = lt−1bt−1 + α(lt−1bt−1 + st−m)εt

bt = bt−1 + β(lt−1bt−1 + st−m)εt/lt−1

st = st−m + γ(lt−1bt−1 + st−m)εt

yt = lt−1bt−1st−m(1 + εt)

lt = lt−1bt−1(1 + αεt)

bt = bt−1(1 + βεt)

st = st−m(1 + γεt)

Md

yt = lt−1b
φ
t−1(1 + εt)

lt = lt−1b
φ
t−1(1 + αεt)

bt = bφt−1(1 + βεt)

yt = (lt−1b
φ
t−1 + st−m)(1 + εt)

lt = lt−1b
φ
t−1 + α(lt−1b

φ
t−1 + st−m)εt

bt = bφt−1 + β(lt−1b
φ
t−1 + st−m)εt/lt−1

st = st−m + γ(lt−1b
φ
t−1 + st−m)εt

yt = lt−1b
φ
t−1st−m(1 + εt)

lt = lt−1b
φ
t−1(1 + αεt)

bt = bφt−1(1 + βεt)

st = st−m(1 + γεt)

Table 6.2: ES models with multiplicative errors [11]



6.3 Training

In order to apply one of these state-space models in practice we need to choose
the type of model to be used (model selection), initial value of state vector x0

(initialisation) and values of smoothing parameters α, β, γ together with the value
of damping parameter φ (estimation). We use the term training to refer to these
three phases.

Throughout this section let xt = (lt, bt, st, st−1, . . . , st−m+1) be the state vector
with initial value x0 = (l0, b0, s0, s−1, . . . , s−m+1) and let θ = (α, β, γ, φ) denote
the vector of smoothing and damping parameters.

6.3.1 Initialisation

Contrary to other state-space models, ES models assume that the time series y
started with y1 and that there were no prior observations. That is why x0 can be
treated as additional parameters.

The initial value of state vector x0 is usually produced by a heuristic. Models
used in this thesis use initialisation procedure suggested by Hyndman et al. in
2008 [11]. It is summarised in Algorithm 1.

Algorithm 1 ES model initialisation

1: m← frequency of yt
2: bt ←MAS2×m(yt) . estimate the trend component

3: ydett ←

{
yt − bt, if additive trend

yt/bt, if multiplicative trend
. detrend time series

4: for each i = 1, 2, . . . ,m do . compute initial seasonal values
5: s−m+i ← E(ydeti , ydetm+i, y

det
2m+i, . . . , y

det
km+i, . . . ) . i.e. the initial seasonal

value for December is the
average of Decembers

6: end for
7: for each k = 0, 1, . . . do . for each season
8: for each i = 1, 2, . . . ,m do . for each observation in the season

9: ydeskm+i ←

{
ykm+i − s−m+i, if additive seasonality

ykm+i/s−m+i, if multiplicative seasonality
. produce

ydest

10: end for
11: end for
12: Fit a linear regression model β0 + β1t to ydest . see Section 8.1
13: l0 ← β0 . initial level is the intercept
14: b0 ← β1 . initial trend is the slope

The value of state vector x0 found by Algorithm 1 is refined further along the
smoothing parameters θ in the estimation phase.

6.3.2 Estimation

Once initialised, the parameters θ are estimated and the initial value of the
state-space vector x0 is modified using the likelihood function L(θ,x0,yt).
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Hyndman et al. [11] proved that if we introduce the following definition:

L∗(θ,x0,yt) = t log

(
t∑
i=1

ε2i
r2(xi−1)

)
+ 2

t∑
i=1

log |r(xi−1)|

with r(xt−1) from the general state-space representation of ES models (6.10), then
the following identity holds:

L∗(θ,x0,yt) = −2 logL(θ,x0,yt).

This means that we can obtain parameters θ and x0 by minimizing L∗ in

θ̂, x̂0 = arg min
θ,x0

L∗(θ,x0;yt).

In case of ES models this can be done without the Kalman filter by simply iterating
the respective observation and state equations in Table 6.1 or 6.2 to obtain the
values of εt and r(xi−1).

6.3.3 Model selection

The aim of model selection is to pick the best ES model for a particular problem
from among thirty in an objective manner. This requires some kind of a measure
of predictive accuracy. The fact that the formula for likelihood function is known
makes it possible to use AICc, the Akaike’s Information Criterion [54] corrected
for small sample bias. Suppose we estimate ES model to obtain θ̂ and x̂0. Then
AICc can be obtained as

AICc = L∗(θ̂, x̂0,yt) + 2k +
2k(k + 1)

n− (k + 1)

where k is the total number of parameters of an ES model, i.e. number of
parameters in θ̂ plus number of state variables in x̂0. The best model chosen for
forecasting is the one with the lowest AICc (see Section 10.2).
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7. Autoregressive moving average

In contrast to ES models that approach time series as a combination of level,
trend and seasonal components, autoregressive moving average (ARMA) process
attempts to separate time series into deterministic time series and stochastic time
series (defined in Section 2.3) and model each separately using linear regression
(see Section 8.1).

For the deterministic time series ARMA uses probably the most intuitive of
models: regression of yt against past observations yt−1, yt−2, . . .. This models the
autocorrelations in the data. For the stochastic time series ARMA uses regression
of yt against a white noise process εt. In practice the white noise process is usually
modelled by past residuals. The motivation is that when residual εt = yt − ŷt|t−1
is large (an unexpected outage occurred), the next observation yt+1 and therefore
the forecast ŷt+1|t should also be affected (outage still affects the load). The
deterministic model is called autoregressive process and the stochastic model is
referred to as moving average process.

The theory presented in this chapter is compiled mainly from two books by
Hamilton [4], [10], a book by Box and Jenkins [55] and a book by Hyndman et al.
[48]. The chapter is divided into three sections. Section 7.1 introduces a number
of ARMA processes of increasing complexity, their strengths and shortcomings.
In Section 7.2 we derive the state-space representation of ARMA processes called
ARMA models. State-space representation is utilised in Section 7.3, where we
train ARMA models before forecasting. The experimental results for models in
this chapter are presented in Section 12.2.

In this chapter we also we make a clear distinction between ARMA processes,
which are more intuitive to understand, and ARMA models, their state-space
representations, which enables us to compute likelihood and other statistical
properties and therefore can be estimated in an objective manner.

The main assumption of all ARMA processes is that the time series y under-
going analysis is stationary according to the definition described in Section 2.4.
Furthermore, since stationary time series have constant mean µ = E(y), we also
assume that y has been mean adjusted beforehand to produce y ← y − E(y).
To return the forecast ŷt+i|t back to the original scale we can simply reverse the
mean-adjustment by ŷt+i|t + E(y).

The equations describing various forecasting methods in this chapter contain a
number of parameters, namely the regression orders p, q, P,Q, differencing orders
d,D and regression parameters θ1, θ2, . . . , θq and φ1, φ2, . . . , φp. In Sections 7.1
and 7.2 we assume that the specific values of these parameters are known. The
process describing how they are acquired is described at the end of the chapter
in Section 7.3.

7.1 ARMA processes

This Section describes five different ARMA processes:

� moving average (MA) process,

� autoregressive (AR) process,
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� autoregressive moving average (ARMA) process,

� autoregressive integrated moving average (ARIMA) process,

� seasonal autoregressive integrated moving average (SARIMA) process.

The most simple ones are MA process and AR process. We consider these to
be a special case of a more general ARMA process that combines both of them.
Even the more sophisticated ARIMA process and SARIMA process are in essence
and ARMA process with additional data preprocessing build in. For this reason
we chose ARMA as the general term to refer to processes and models in this
chapter.

7.1.1 MA process

The idea behind MA process is that the observation yt is not only affected by the
error εt at time t, but also by errors encountered before time t. For example, in
load forecasting when the system experienced an unexpected outage at time t and
therefore the error εt = yt − ŷt|t−1 is large, we might very well expect the outage
to affect the system also at time t + 1. The number of previous errors that the
process takes into account is called the order of the process. An MA process of
order q, denoted by MA(q), can be then described by a regression-like equation

yt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

where εt, εt−1, . . . , εt−q are generated by a white noise process ε and θ1, θ2, . . . , θq
are MA parameters.

We can use lag operator L, described in Section 2.6, to rewrite the right hand
side of the previous equation into a more compact form

yt = Θ(L)εt (7.1)

where Θ(L) = 1 +
∑q

i=1 θi L
i is called the MA polynomial.

MA(q) process produces forecasts ŷt+h|t by iterating (7.1) for i = 1, 2, . . . , h
while ignoring the white noise process at each step by setting εt+i = 0.

The intuition behind MA process is that it serves as a short term memory of
time series y, because as h approaches q the effects of past residuals diminish and
when h > q they completely zero out to produce forecasts ŷt+h|t = E(yt) = 0

As discussed in [56], the residuals of a good forecasting method should resemble
a white noise process. MA processes therefore adopt the past residuals to generate
the white noise process in (7.1), i.e. εt = yt − ŷt|t−1.

7.1.2 AR process

AR process is a special case of linear regression that uses lags yt−1, yt−2, . . . as
predictors of dependant variable yt. The term autoregressive captures the fact
that it involves regression of the dependant variable against itself.

The total number of dependant variables in the process is called the order of
autoregressive process. For example, an AR of order p, denoted AR(p) is of the
following form:

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt
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where φ1, , φ2, . . . , φp are the AR parameters and ε is a white noise process.
If we again adopt the lag operator notation, we may rewrite the previous

equation as

Φ(L)yt = εt (7.2)

where Φ(L) = 1−
∑p

i=1 φi L
i is the AR polynomial.

Forecasts of ŷt+h|t are obtained in the same way as in MA process, i.e. iterate
(7.2) with εt+1, εt+2, . . . , εt+h = 0. As opposed to MA, AR process does not
converge to zero as h tends to p. For this reason AR process serves as the long
term memory of time series y.

7.1.3 ARMA process

ARMA process is, as the name suggests, a combination of AR and MA process. If
was first described by Whittle [57]. The justification for ARMA processes stems
from Wold’s decomposition theorem. It states that for any stationary time series
y there exists an infinite moving average representation MA(∞), which can be
formally expressed as:

yt =
∞∑
i=0

θi L
i εt + xt (7.3)

where L is the lag operator, θi are MA parameters satisfying
∑∞

i=0 θ
2
i < ∞ and

θ0=1, x is a deterministic time series and ε is a white noise process.
MA(∞) in Wold’s decomposition depends on an infinite number of parame-

ters θi. Since
∑∞

i=1 θ
2
i < ∞, it holds that limi→∞ θ

2
i = 0 and also limi→∞ θi = 0.

This means that the parameters in MA(∞) are gradually decaying and we can use
MA(q) to approximate MA(∞) with arbitrarily close precision. One can further
reduce the number of parameters (i.e. the order of MA process) by choosing an
appropriate representation of the deterministic time series x. For example, with
x constant in time we would need a higher order MA process than if x closely
resembles y as there are fewer discrepancies to account for. In the extreme case
of x = y an MA(0) process is sufficient.

ARMA processes utilises these observations by incorporating AR(p) process to
model the deterministic part x of Wold’s decomposition theorem. ARMA process
of orders p, q, denoted ARMA(p, q), is then a combination of AR(p) and MA(q)
and, if derived directly from Wold’s decomposition, can be represented by

yt = εt +

q∑
i=1

θi L
i εt +

p∑
i=1

φi L
i yt (7.4)

For convenience we use lag polynomials to rewrite this into a more concise form
commonly present in the majority of literature:

Φ(L)yt = Θ(L)εt (7.5)

where Φ(L) = 1−
∑p

i=1 φi L
i is the AR polynomial and Θ(L) = 1 +

∑q
i=1 θi L

i is
the MA polynomial.

Time series y with frequency m that displays autocorrelation (3.1) only at
lags that are multiples of m is called purely seasonal. Purely seasonal y with
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frequency m can be modelled by a purely seasonal ARMA process of orders P,Q,
denoted by ARMA(P,Q)m:

Φ(Lm)yt = Θ(Lm)εt

where Φ(Lm) = 1−
∑P

i=1 φi(L
m)i is the AR polynomial, Θ(Lm) = 1+

∑Q
i=1 θi(L

m)i

is the MA polynomial and ε is a white noise process.
Purely seasonal ARMA process is not very realistic. The reason for this

is that it in fact represents m identical but separate models for time series
(y1, y1+m, . . . , y1+km, . . . ), . . . , (ym, ym+m, . . . , ym+km, . . . ) that are completely de-
coupled from each other. In practice, time series usually cannot be partitioned in
such manner. However, the analysis of time series that exhibit some characteris-
tics of purely seasonal time series (e.g. our energy consumption data, see Figure
3.6 and 3.7) can benefit from combining ARMA with purely seasonal ARMA. In
this combination ARMA helps purely seasonal ARMA to model the interactions
between the separate time series while purely seasonal ARMA helps ARMA with
strong autocorrelations related to the frequency m. This combination is explored
further in Section 7.1.5.

Similarly to MA and AR processes, ARMA forecasts ŷt+h|t by iterating (7.5)
and letting εt+1, εt+2, . . . , εt+h = 0. From MA process ARMA also inherits past
residuals as the source of white noise, i.e. εt = yt − ŷt|t−1.

The only assumption of Wold’s decomposition theorem is that the time series
y is stationary. Therefore any stationary time series can be approximated by
ARMA(p, q) process of sufficiently high orders p, q. However, energy load data
are generally not stationary, there is usually daily, weekly and annual seasonality
and also an upward trend as the number of appliances in household rises. In the
following Sections 7.1.4 and 7.1.5 we discuss how to combat this problem.

7.1.4 ARIMA process

ARIMA process were first described by Box and Jenkins [55]. Similarly to ES
methods, they consider time series y to be made up of trend, seasonality and error
components. However, instead of modelling these components separately like ES
does, their approach is to remove the trend and seasonal components altogether
at the very beginning through differencing and seasonal differencing. The ”I” in
ARIMA stands for integrated, which is the opposite of differencing.

Differencing is an operation on time series designed to remove trend from time
series through stabilisation of its mean. Time series y is transformed into a dif-
ferenced time series 4y by taking the difference between the last two consecutive
observations:

4yt = yt − yt−1 = (1− L)yt.

This is also called first order differencing.
Sometimes first order differencing is not enough to make y stationary. In that

case the operation can be repeated to produce second order differencing :

42yt = 4yt −4yt−1 = yt − yt−1 − (yt−1 − yt−2) = yt − 2yt−1 + yt−2 = (1− L)2yt

Differencing can be repeated for as long as trend remains present in the time
series. Generally, k-th order differencing is of the form:

4kyt = (1− L)kyt
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ARIMA process of orders p, d, q, denoted ARIMA(p, d, q), is then in essence an
ARMA(p, q) process applied on d-th order differenced time series 4dyt:

Φ(L)4dyt = Θ(L)εt (7.6)

where Φ(L) = 1−
∑p

i=1 φi L
i is the AR polynomial, Θ(L) = 1 +

∑q
i=1 θi L

i is the
MA polynomial and ε is a white noise process.

Forecasting with ARIMA takes place in two steps. First the time series
y is differenced to produce stationary time series y∗ = 4dy. ARMA process
than produces forecasts ŷ∗t+h|t as was discussed in Section 7.1.3. Forecasts are
transformed back to the original scale by iterating

ŷt+i|t = ŷ∗t+i|t + (1− (1− L)d)ŷt+i|t

for i = 1, 2, . . . , h with ŷk|t = yk whenever k ≤ t.
ARIMA is well suited for some types of energy consumption data that exhibit

an upward trend (household becoming more and more electrified). However, one
disadvantage of ARIMA process is that it does have problems handling data with
prominent seasonality effects. This is addressed in the following Section 7.1.5.

7.1.5 SARIMA process

Energy consumption data usually feature one or more of daily, weekly and annual
seasonalities for which the differencing done with ARIMA process might not
be enough. SARIMA (Seasonal ARIMA) is the natural extension of ARIMA
that, in addition to the previously discussed differencing, also performs seasonal
differencing to make the data stationary.

Seasonal differencing is similar to differencing in that it is also an operation
performed on time series in order to make it stationary. The key difference is
that while differencing removes trend through stabilisation of mean, seasonal
differencing removes seasonality by stabilising autocovariance. Instead of taking
the difference between the last two consecutive observation, first order seasonal
differencing produces seasonally differenced time series 4my from y by taking
the difference between an observation and the corresponding observation from
previous season:

4myt = yt − yt−m = (1− Lm)yt

where m is the frequency of time series y. The general form of k-th order seasonal
difference is then:

4k
myt = (1− Lm)kyt

SARIMA process of orders p, d, q and seasonal orders P,D,Q with frequency m,
denoted SARIMA(p, d, q)(P,D,Q)m, can be mathematically expressed as:

Φ(Lm)Φ(L)4D
m4dyt = Θ(Lm)Θ(L)εt (7.7)

where Φ(Lm) = 1−
∑P

i=1 φi(L
m)i and Φ(L) = 1−

∑P
i=1 φi L

i are the AR polynomi-

als, Θ(Lm) = 1+
∑Q

i=1 θi(L
m)i and Θ(L) = 1+

∑Q
i=1 θi L

i are the MA polynomials
and ε is a white noise process.

One way to look at SARIMA(p, d, q)(P,D,Q)m process is that it is in fact
an ARMA(p + P, q + Q) process modelling stationary time series 4D

m4dyt with
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a lot of coefficients φi and θi set to zero. Another perspective of looking at
SARIMA(p, d, q)(P,D,Q)m is that it is an ARIMA(p, d, q) process

Φ(L)4dyt = Θ(L)ξt

whose errors ξ are modelled by SARIMA(P,D,Q)m process

Φ(Lm)4D
mξt = Θ(Lm)εt.

SARIMA is also very similar to ARIMA when producing forecasts. Forecasting
procedure is nearly identical to the one described in 7.1.4. ARMA process forecasts
ŷ∗t+h|t from the stationary time series y∗ = 4D

m4dy and forecasts are transformed
back to the original scale by iterating

ŷt+i|t = ŷ∗t+i|t + (1− (1− Lm)D(1− L)d)ŷt+i|t

for i = 1, 2, . . . , h with ŷk|t = yk whenever k ≤ t.
On one hand SARIMA can handle data exhibiting both trend and seasonality.

On the other hand it can effectively model only one type of seasonality, and energy
consumption data usually contain daily, weekly and annuals seasonalities. There
is a number of techniques to address this deficiency described in Chapter 8 and
Section 10.3.

7.2 ARMA models

Similarly to ES methods, all variations of ARMA process also have an underlying
state-space representation. This has a number of important implications. First of
all, state-space representation enables us to estimate parameters of a particular
model in a sophisticated manner. Second of all, we are able to objectively compare
models and select the best one.

Since MA and AR processes are a special case of ARMA and both ARIMA and
SARIMA processes are an ARMA process on differenced time series, it is sufficient
to define state-space representation only for a general ARMA(p, q) process.

Let y be a stationary time series modelled by ARMA(p, q) process. The general
form of the state-space model underlying this process can be then expressed as:

yt = w′xt−1 + εt

xt = Fxt−1 + gεt

where ε is a white noise process. The model is complete after we specify w,F
and g, which is the focus of this section.

There are many equivalent state-space representations of the ARMA(p, q)
process. In this section we present a formulation from Tsay [58]. Since from
Section 5.5 the forecasts of state-space model are in the form of ŷt+h|t = E(yt+h|yt),
Tsay defines state vector as xt = ŷt+k|t = (ŷt+1|t, ŷt+2|t, . . . , ŷt+k|t) where k =
max(p, q). Furthermore, let φi = 0 for i > p and θi = 0 for i > q. We can then
rewrite (7.5) as

Φ(L)yt = Θ(L)εt (7.8)

where both polynomials now have degree k, i.e. Φ(L) = 1−
∑k

i=1 φi L
i is the AR

polynomial and Θ(L) = 1 +
∑k

i=1 θi L
i is the MA polynomial.
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Since y is assumed to be stationary, according to [20] we can transform (7.8)
into

yt =
Θ(L)

Φ(L)
εt = Ψ(L)εt =

∞∑
i=0

ψi L
i εt (7.9)

where Ψ(L) = Θ(L)/Φ(L) is possibly infinite degree lag polynomial. This effec-
tively turns ARMA process into an MA(∞) process. We can expand Θ(L) =
Ψ(L)Φ(L) to produce

(1− θ1 L− · · · − θk Lk) = (1 + φ1 L + · · ·+ φk Lk)(ψ0 + ψ1 L + · · ·+ ψk Lk + . . . ).

If we define ψ0 = 1, we can also find ψ1, ψ2, . . . , ψk by equating coefficients of lags
L raised to the same power. Specifically, for 0 < i ≤ k the coefficient θi adjacent
to Li satisfies

−θi = ψi + φ1ψi−1 + · · ·+ φiψ0

and from that one can express ψi as

ψi = −θi −
i∑

j=1

φjψi−j (7.10)

Now we can combine (7.10) with (7.9) to find the relationship between state
vectors xt and xt+1. We begin by expressing yt+i for 0 < i ≤ k using (7.9) as

yt+i = εt+i + ψ1εt+i−1 + · · ·+ ψi−1εt+1 + ψiεt + . . . (7.11)

From Section 7.1.1 we know that for MA process to produce forecast ŷt+i|t, one
iterates (7.9) while letting εt+1, εt+2, . . . , εt+i = 0. This enables us to eliminate
ψ1, ψ2, . . . , ψi−1 from (7.11) and forecast ŷt+i|t as

ŷt+i|t = ψiεt + ψi+1εt−1 + ψi+2εt−2 + . . . (7.12)

We can follow similar steps when forecasting ŷt+i|t−1 with εt, εt+1, . . . , εt+i = 0 and
obtain

ŷt+i|t−1 = ψi+1εt−1 + ψi+2εt−2 + . . . (7.13)

By combining (7.12) with (7.13) we can derive the recursive relationship between
forecasts ŷt+i|t and ŷt+i|t−1:

ŷt+i|t = ŷt+i|t−1 + ψiεt. (7.14)

When we consider the special case of this equation where i = 0, using ψ0 = 1
we get a relationship between the current observation yt = ŷt|t and state variable
ŷt|t−1:

yt = ŷt|t−1 + εt. (7.15)

At this point we have everything we need to formulate the observation equation
by defining:

w = (1, 0, . . . , 0)

For the state equation let us assume that we know the values of state variables
in xt−1 and want to use them to obtain the next state vector xt:

xt−1 = ŷt+k|t−1 = (ŷt|t−1, ŷt+1|t−1, . . . , ŷt+k−1|t−1)

xt = ŷt+k|t = (ŷt+1|t, ŷt+2|t, . . . , ŷt+k|t).
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The recursive relationship (7.14) together with (7.10) gives us the values of the
first k−1 elements ŷt+1|t, ŷt+2|t, . . . , ŷt+k−1|t in xt immediately. For the last element
ŷt+k|t we utilise the summation form of ARMA process (7.4) and simplify if by
letting εt+1, εt+2, . . . , εt+k = 0 in

ŷt+k|t = εt+k +
k∑
i=1

θiεt+k−i +
k∑
i=1

φiŷt+k−i|t =

=
k∑
i=1

φiŷt+k−i|t + θkεt =

=
k∑
i=1

φi(ŷt+k−i|t−1 + ψk−iεt) + θkεt =

=
k∑
i=1

φiŷt+k−i|t−1 +

(
k∑
i=1

φiψk−i + θk

)
εt =

=
k∑
i=1

φiŷt+k−i|t−1 + ψkεt

From here we can proceed to the formulation of state equation by defining:

F =


0 1 0 . . . 0
... 0 1

...
...

. . .

0 0 . . . 1
φk φk−1 . . . φ1

 =

(
0k−1 Ik−1

φ̃′

)
g =


ψ1

ψ2

ψ3
...
ψk


where φ̃ is a vector of AR parameters φi in reverse order.

The resulting linear innovations state-space model for ARMA(p, q) process is
then expressed by the following observation and state equations:

yt = (1, 0, . . . , 0)′xt−1 + εt (7.16)

xt =

(
0k−1 Ik−1

φ̃′

)
xt−1 + (ψ1, ψ2, . . . , ψk)

′εt (7.17)

where k = max(p, q) and ε is a white noise process.
Forecasts of ARMA models are obtained the same way as for state-space models

(see Section 5.5) and are identical to the ones obtained by ARMA processes, i.e.
forecast ŷt+h|t is the result of iterating (7.16) and (7.17) with εt+1, εt+2, . . . , εt+h = 0.
As the source of white noise the past residuals εt = yt − ŷt|t−1 are used.

7.3 Training

Let us consider stationary time series y with frequency m that we want to model
with ARMA(p, q) model and let k = max(p, q). As was the case with ES models,
training consists of three phases: initialisation, estimation and model selection.

In initialisation phase (Section 7.3.1) the starting value of state vector x0 =
(ŷ1|0, ŷ2|0, . . . , ŷk|0) is set. The second phase (Section 7.3.2) explains the estimation
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of the parameters denoted by θ = (φ1, φ2, . . . , φk, ψ1, ψ2, . . . , ψk) where φi =
0 whenever i > p. Model selection (Section 7.3.3) for ARMA(p, q) model is
synonymous with selecting the orders p, q. This is also the phase where general
SARIMA(p, d, q)(P,D,Q) model is reduced to ARMA(p + P, q + Q) model by
selecting the appropriate order of both types of differencing d and D.

7.3.1 Initialisation

ARMA models postulate that the process generating y started in infinite past.
Furthermore y is adjusted for mean and assumed to be stationary, which means
E(y) = 0. For this reason the initialisation consist of simply letting x0 = 0k.

7.3.2 Estimation

As was the case with ES models, the theory behind state-space representation of
ARMA processes enable us to estimate their parameters using statistical inference.
Maximum likelihood estimation is again the method of choice for ARMA models
used in this thesis.

If we assume that the orders of ARMA(p, q) are known. The parameters of this
model θ can be then estimated using the Kalman filter and maximum likelihood
estimation as described in Section 5.4.

7.3.3 Model selection

Consider the most general SARIMA(p, d, q)(P,D,Q)m model where m is the
frequency of time series y. Model selection aims to find orders p, d, q, P,D,Q for
this model that minimises some sort of objective model selection criterion. This
takes place in two steps.

In the first step statistical tests are used to determine the minimal orders d,D
of differencing for y to be stationary. For the purposes of this thesis the KPSS test
[59] is used to determine the minimum d and the OCSB test [60] is used to find
the minimum D. After differencing, the SARIMA model is effectively reduced
to an ARMA model on the differenced time series, which we can estimate using
maximum likelihood estimation discussed previously in Section 7.3.2.

The second phase of model selection consist of computing model selection
criterion for a number of combinations of orders (p, q, P,Q). In this thesis we min-
imise the Akaike’s Information Criterion AICc. Given p, q, P,Q we first estimate
ARMA(p+ P, q +Q) as described in Section 7.3.2 to obtain vector of parameters
θ̂. Then the AICc can be computed using

AICc = −2 lnL(θ̂; y1, y2, . . . , yn) + 2l +
l(l + 1)

n− (l + 1)

where l = 2k is the length or dimension of θ̂, i.e. the number of parameters of
the model.

What exactly the combinations of orders (p, q, P,Q) under consideration are
can be specified by a number of strategies, in this thesis we use hill climbing [61].

Let us define an order landscape, a five dimensional space consisting of location
(the specific combination of orders p, q, P,Q) and elevation (AICc of the model).
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We define the neighbourhood function on locations (p, q, P,Q) as the set of locations

N(p, q, P,Q) = {(p± 1, q, P,Q), (p, q ± 1, P,Q), (p± 1, q ± 1, P,Q),

(p, q, P ± 1, Q), (p, q, P,Q± 1), (p, q, P ± 1, Q± 1)}

Hill climbing algorithm traverses through this order landscape by continually
moving in the direction of the steepest descent. Which direction to take in the
next step from location (p, q, P,Q) is determined by the elevation of the neighbours.
This means one needs to initialise, estimate and compute AICc for ARMA models
constructed from each of the neighbours in N(p, q, P,Q). The search is ended when
none of the neighbours have lower elevation than the current location. Starting
location is (0, 0, 0, 0)

The main advantage of hill climbing is that is considerably speeds up model
selection process, because the search is not exhaustive and not all combinations of
orders are considered. Slower model selection may not be an issue when training
ARMA models only once. However, it has a much bigger impact when training
multiple times (Section 10.2) and for different combinations of data preprocessing
(Section 10.3).

The drawback of hill climbing is that the selected model is not necessarily the
best one as hill climbing can get stuck in local optima.

The entire model selection process is used when selecting the best model in
time series cross-validation (see Section 10.2).
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8. Autoregressive moving average
with exogenous inputs

The models presented in Chapters 6 and 7 allow only for the inclusion of infor-
mation from the past observations. However, there may be other information
pertinent to modelling the time series in question. For short term forecasting of
energy consumption data the weather has probably the most significant impact
[12], as the conditions outside the house may alter the behaviour of the occupants
(stay at home on rainy weekends) and also energy spent on heating. Information
about national and school holidays may also help forecasting. There is also a
possibility to use artificially constructed variables to model multiple seasonalities,
something that ETS and ARMA models are incapable of.

Regression analysis is a statistical process of constructing mathematical mod-
els to explain relationships that may exist between dependent and independent
variables [62]. More specifically, regression analysis aims to explain how the values
of dependant variables reflect changes in any of the independent variables with
the other independent variables being fixed. For the purposes of this thesis it is
sufficient to consider regression with only one dependant variable representing
energy load. As the term ”independent” is rather overloaded in statistics and
other mathematical disciplines, we refer to independent variables as predictors.
In our case all the predictors are in the form of time series.

While regression allows for the inclusion of a wide variety of relevant informa-
tion in the form of predictors, it forgoes modelling the subtle dynamics of time
series which can be handled for example by ARMA models.

Therefore, in this chapter we combine regression with ARMA models to take
advantage of their different approaches and cancel out or at least mitigate their
respective shortcomings. We refer to this combination first as ARMAX processes
and later as ARMAX models (ARMA with eXogenous inputs).

In order to produce forecasts of the dependant variable, first the forecasts of
predictors must be obtained. It is important to note that the manner of obtaining
forecasts of predictors can introduce unwanted bias to the model. For example,
as we were unable to obtain historical weather forecasts and were forced to use
real weather data instead, the results may be skewed.

This chapter is divided into four sections. In Section 8.1 we describe the general
form of linear regression and also Fourier regression. In Section 8.2 we combine
linear regression with ARMA process into ARMAX process. ARMAX process is
then subsequently transformed into ARMAX model by deriving its state-space
representation in Section 8.3. And finally this state-space representation is used
while training the models in Section 8.4. The experimental results for models in
this chapter are presented in Section 12.3.

We also differentiate between ARMAX processes and ARMAX models. AR-
MAX process describes the straightforward combination of regression and ARMA
process. ARMAX model is used for ARMAX process in its state-space represen-
tation. Also throughout this chapter all the parameters used in various equations
describing forecasting methods are assumed to be known. These include the
regression orders p, q, P,Q, differencing orders d,D and regression parameters
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β0, β1, . . . , βl, θ1, θ2, . . . , θq and φ1, φ2, . . . , φp. The process of obtaining their spe-
cific values is described at the end of the chapter in Section 8.4.

8.1 Linear regression

Linear regression is a special case of regression where the dependant variable y is
assumed to be a linear combination of predictors (time series) z(1), z(2), . . . ,z(l).
The number of predictors l is problem dependant. In general, linear regression
can be expressed as

yt = β0 + β1z
(1)
t + β2z

(2)
t + · · ·+ βlz

(1)
t + ξt (8.1)

where β0, β1, . . . , βl are model parameters and ξ is a white noise process capturing
the deviation of the real data from the modelled relationship. The parameter β0
is in literature usually referred to as the intercept.

If we define vectors β = (β0, β1, . . . , βl) and zt = (1, z
(1)
t , z

(2)
t , . . . , z

(l)
t ), we can

rewrite linear regression (8.1) using a more convenient notation

yt = z′tβ + ξt. (8.2)

When using linear regression to produce point forecasts it is necessary to first
obtain the forecasts for predictors. In case of time related predictors like national
holidays the forecasts are straightforward. Otherwise they need to be forecast
separately, as is the case for weather data. Once forecasts for predictors up to
ẑt+h|t = (1, ẑ

(1)
t+h|t, ẑ

(2)
t+h|t, . . . , ẑ

(l)
t+h|t) are obtained, forecasts of dependant variable

up to ŷt+h|t are produced by iterating (8.2) with ŷt+i|t = ẑ′t+i|tβ and ξt+i = 0 for
i = 1, 2, . . . , h.

8.1.1 Fourier regression

One of the main disadvantages of ETS and ARMA models was their inability to
model multiple seasonalities of energy consumption data. If we were to capture
these seasonalities with linear regression and model the remaining deviations with
ARMA models, maybe the forecasts would improve. To do this we use Fourier’s
theorem.

Fourier’s theorem or Fourier’s decomposition [63] states that any (reasonably
well-behaved) function can be decomposed into simple trigonometric functions.
Mathematically speaking, Fourier proved that function f(x) periodic on the in-
terval 0 ≤ x ≤ T can be written as

f(x) = α0 +
∞∑
i=1

(
αi cos i

2π

T
x+ βi sin i

2π

T
x

)
(8.3)

where αi and βi are Fourier coefficients. In practise the infinite sum in Equation
(8.3) is approximated by a finite

∑k
i=1

(
αi cos i2π

T
x+ βi sin i

2π
T
x
)

and the number
of summands k is refered to as the Fourier order.

We adapt a discrete type of Fourier’s decomposition by formulating it as
linear regression. Let y be time series containing multiple seasonalities with
corresponding frequencies M = (m1,m2, . . . ,ml). For each of these frequencies
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we use a separate Fourier’s decomposition, which results in l decompositions with
orders k1, k2, . . . , kl. These are combined into a linear regression in the following
form:

yt = α0 +
∑
m∈M

km∑
i=1

(
αm,i cos i

2π

m
t+ βm,i sin i

2π

m
t

)
+ ξt (8.4)

where αm,i and βm,i are regression parameters and ξ is a white noise process
accounting for deviations from the decomposition. The total number of parameters
in Fourier’s regression is therefore 1 + 2 ·

∑
m∈M km .

8.2 ARMAX process

In this thesis linear regression is not used to forecast energy consumption directly
as the available weather data is hardly enough to forecast energy profile of the
whole next day. Instead we use a combination of linear regression and ARMA.

Let zt = (1, z
(1)
t , z

(2)
t , . . . , z

(l)
t ) be a vector with observations from l separate

predictors z(1), z(2), . . . ,z(l) at time t. For example z(1) can be predictor represent-
ing outside temperature, z(2) can represent outside humidity and z(3) the wind
speed. Let us for a moment assume that the dependant time series y and every
predictor z(1), z(2), . . . ,z(l) is stationary.

ARMAX stands for ARMA with eXogenous (or eXternal) regressors and it
is a combination of ARMA and linear regression. In the linear regression the
errors ξ are assumed to be a white noise process. ARMAX process of orders
p, q, denoted ARMAX(p, q), models errors ξ with an ARMA(p, q) process instead.
Mathematically, this can be expressed as

yt = z′tβ + ξt (8.5)

Φ(L)ξt = Θ(L)εt (8.6)

where β = (β0, β1, . . . , βl) are regression parameters, Φ(L) = 1−
∑p

i=1 φi L
i and

Θ(L) = 1 +
∑q

i=1 θi L
i are the AR and MA polynomials and ε is a white noise

process.

If time series y or any predictor from z(1), z(2), . . . ,z(l) is nonstationary, dif-
ferencing described in Sections 7.1.4 or 7.1.5 is performed. In order to preserve
the relationship between y and the predictors and ensure interpretability, all of
the time series in y, z(1), z(2), . . . ,z(l) are differenced to the same degree. The re-
sulting process is referred to as ARIMAX(p, d, q) or SARIMAX(p, d, q)(P,D,Q)m
depending on the types and orders of differencing d,D and the frequency of time
series m.

As was the case with linear regression, for forecasts up to ŷt+h|t the forecasts

of predictors up to ẑt+h|t = (1, ẑ
(1)
t+h|t, ẑ

(2)
t+h|t, . . . , ẑ

(l)
t+h|t) must be known. Then we

can simply iterate (8.5) and (8.6) with εt+1, εt+2, . . . , εt+h = 0. When forecasting
with ARIMAX and SARIMAX, forecasts are not produced directly because the
differencing needs to be taken into account, which is described in Sections 7.1.4
and 7.1.5.
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8.3 ARMAX models

One of the advantages of state-space models is that separate state-space models can
be easily combined into one. This enables us to combine state-space representation
of linear regression with state-space representation of ARMA to produce ARMAX
models.

As was the case with ARIMA and SARIMA, ARIMAX and SARIMAX can be
considered an ARMAX with additional preprocessing. For this reason we present
state-space representation only for ARMAX process. Consider ARMAX(p, q)
process with l predictors described by Equations (8.5) and (8.6).

First we derive the state-space representation for the linear regression part of
ARMAX(p, q), i.e. the Equation (8.5). This can be easily put into state-space
representation by defining the state vector βt = β for all t and writing observation
and state equations as

yt = z′tβt−1 + ξt

βt = Il+1βt−1.

Using these steps any linear regression can be put into state-state form. We use
the term linear model to refer to state-space representation of linear regression.
Notice that linear model no longer satisfies time-invariant condition because zt
changes with time.

Now consider the ARMA part of ARMAX(p, q), i.e. the Equation (8.6) and
let us assume that the following is its state-space representation:

ξt = w′xt−1 + εt

xt = Fxt−1 + g′εt

The process of obtaining this representation is described in Section 7.2. Since βt =
β is constant, These two state-space models can be straightforwardly combined
into an ARMAX(p, q) model by defining the state vector as

x∗t =

(
β
xt

)
and then the observation and state equations as

yt =

(
zt
w

)′
x∗t−1

x∗t =

(
Il+1 0(l+1)×k

0k×(l+1) F

)
x∗t−1 +

(
0l+1

g

)
εt

where k = max(p, q).
Forecasts for this model are produced by first obtaining the future values

of predictors ẑt+h|t = (1, ẑ
(1)
t+h|t, ẑ

(2)
t+h|t, . . . , ẑ

(l)
t+h|t) and then following procedure

described in Section 5.5.

8.4 Training

In this section we describe the process of estimating various parameters that were
so far assumed to be known. Specifically, the orders for an ARMA model need
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to be selected, the parameters of this ARMA model and regression parameters
need to be estimated and the state vector needs to be initialised. However, before
all of this the type and number of predictors needs to be determined. For now
we assume them to be known and focus on the rest. We will return to them in
Section 12.3.

Consider the an ARMAX model ARMAX(p, q). Let x∗t = (β,xt) be its state
vector with regression parameters β = (β0, β1, . . . , βl), ARMA state vector xt
ARMA parameters θ = (φ1, φ2, . . . , φk, ψ1, ψ2, . . . , ψk) where k = max(p, q) and
φi = 0 whenever i > p . Section 8.4.3 describes model selection, i.e. the selection
of orders for p, q. It also reduces a general SARIMAX(p, d, q)(P,D,Q)m model into
a simpler ARMAX(p+ P, q +Q) model determining the appropriate differencing
orders d,D. In Section 8.4.1 the ARMAX model under consideration is initialised
by deriving the value of vector x∗0 = (β,x0) and subsequently estimated in Section
8.4.2 by finding the optimal θ̂ and also modifying the value of β.

8.4.1 Initialisation

The focus of initialisation is defining the value of state vector x∗0 = (β,x0). We
do this by ignoring the ARMA part of ARMAX for the moment and focusing on
the linear regression part.

In order to initialise β, consider the following form of linear regression:

yt = Zβ + ξt (8.7)

where

Z =



1 z
(1)
1 z

(2)
1 . . . z

(l)
1

1 z
(1)
2 z

(2)
2 . . . z

(l)
2

...
...

...
...

1 z
(1)
t z

(2)
t . . . z

(l)
t


The initialβ is estimated from (8.7) using maximum likelihood estimation. Accord-
ing to Pollock [64], for linear model maximum likelihood estimation is equivalent
to computing β using the following:

β = (Z ′Z)−1Z ′y

This initial β is further refined in the estimation phase that follows.
For the initialisation of x0, since linear regression assumes ξ to be a white

noise process (zero mean) and ARMA assumes the process started in infinite past,
we can let x0 = 0k.

8.4.2 Estimation

State-space representation of ARMAX enables us to estimate the parameters θ,β
in an objective manner using statistical inference. For the ARMAX models used
in this thesis we use the maximum likelihood estimation.

For a model ARMAX(p, q) with known orders p, q, parameters θ,β can be
estimated using the Kalman filter and maximum likelihood estimation. The
procedure is described in Section 5.4

59



8.4.3 Model selection

Model selection process of ARMAX models follows that of the ARMA models
explained in Section 7.3.3.

First SARIMAX(p, d, q)(P,D,Q) models is reduced to ARMAX(p+ P, q +Q)
model by determining the minimal differencing orders d,D to ensure that y and
all predictors z(1), z(2), . . . ,z(l) are stationary. The same orders of differencing are
used for all variables to preserve their relationship and ensure interpretability.

Then the the orders p, q, P,Q are selected using hill climbing. For each combi-
nation of orders the parameters β and θ are estimated. Let β̂ and θ̂ be the result
of the estimation process, i.e. parameters with the maximum likelihood.

The criterion used in hill climbing is again the Akaike’s Information Criterion
AICc. For ARMAX it is in the form of

AICc = −2 lnL(β̂, θ̂; y1, y2, . . . , yn) + 2r +
r(r + 1)

n− (r + 1)

where r = (l + 1) + 2k is the number of parameters of the model, i.e. the sum of
lengths or dimensions of β̂ and θ̂ respectively.

The entire model selection process is used when selecting the best model in
time series cross-validation (see Section 10.2).
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9. Artificial neural networks

Artificial neural networks, or simply neural networks, are a type of machine
learning algorithm that has been successfully deployed to solve a wide range of
problems, ranging from the predictions of heart attacks [14] and stock market
prices [15] to credid card fraud detection [16] and self-driving cars [17].

Originating from the work by McCulloch and Pitts [65], a neural network is a
mathematical model loosely based on brains of animals and humans. Similarly to
how a brain is composed of biological neurons, a neural network is a large collection
of interconnected processing units called artificial neurons. Individual neurons are
able to receive signals from surrounding neurons, transform it and then relay it to
other neurons. In order to control the intensity of passing signals, each connection
between the neurons, called synapse, is parametrised by a (synaptic) weight. In
most neural networks the neurons are usually designated as either input, hidden
or output neurons. The signal then usually passes from input neurons through
hidden neurons until it reaches output neurons.

The purpose of neural networks is to model complex systems described by
input/output relationships. The input is usually a description of a system state
(patient state, past stock prices, car velocity and its surroundings) and the output
is either future state of the system (tomorrow’s stock price) or hidden system
characteristic (patient healthy/ill) or the best course of actions (self-driving car).
Neural networks are designed to capture this relationship in the values of their
weights. One of the main reasons behind the popularity of neural networks is
their ability to capture various linear and nonlinear relationships [66].

Let vector x be an input and let w be a vector containing all the weights of
neurons in the network. We use the vector function fw parametrised by w to
describe the output on the network fw(x) given input x.

Weights w of a network are estimated in the process called training. In it
the network is gradually exposed to an increasing number of input/output pairs
from the available data that guide the estimation of weights w. After the training
process is complete, the network is ready to be applied in practice.

The theory behind neural networks presented in this chapter comes mainly
from books by Nielsen [67] and Mitchell [13]. The chapter is divided into four
sections. In Section 9.1 we describe artificial neurons, the building blocks of neural
networks. Section 9.2 presents multilayer neural networks. The parameters w
of neural networks are estimated in the training process explained in Section 9.3.
Lastly, Section 9.4 is dedicated to the application of neural networks on time
series data. The experimental results for neural networks are presented in Section
12.4.

The notation in this chapter can be in many instances simplified by the
”vectorisation” of scalar function φ, i.e. applying φ to each element of vector
x = (x1, x2, . . . , xk) to produce vector (φ(x1), φ(x2), . . . , φ(xk)). For this purpose
we define the result of element-wise application of function φ on vector x as
vector φ[x] = (φ(x1), φ(x2), . . . , φ(xk)). This notation also applies to derivations
of functions φ′[x] = (φ′(x1), φ

′(x2), . . . , φ
′(xk)). Note the difference between the

element-wise derivation φ′[x] and the transposition of vector φ[x]′.

We also take care to make a very clear distinction between parameters and
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hyperparameters. Parameters refer to all variables estimated by the network itself
from the data in the training process, namely the weights w. Hyperparameters
describes all variables that need to be set before the training process begin, such
as the number of neurons and structure (topology) of the network and other
variables modifying the training process such as learning rate λ. The values of
hyperparameters are in practice usually chosen using trial and error, grid search or
some sort of optimisation algorithm (genetic algorithms). This process is described
in more detail in Section 12.4.

9.1 Artificial neuron

Artificial neuron, or simply neuron, is an elementary unit of neural networks. In
essence it is a mathematical representation of a biological neuron. In a process
called transduction, biological neurons, such as pain receptors in the skin or
photoreceptors in the eye, convert a specific type of stimulus or signal received
via their receptors into an action potential [68]. Under specific conditions, such
as surpassing the pain threshold or sufficient light intensity, this action potential
can trigger a chain reaction propagating through other neurons until it reaches
the spine or the brain.

In the mathematical model the stimulus or signal is represented by vector
x = (x1, x2, . . . , xk) called the input vector. Artificial neuron can be then described
as

φ(w′x+ b)

where activation function φ : Rk → R is mathematical representation of action
potential, weight vector w = (w1, w2, . . . , wk) describes the sensitivity of the
neuron to various input signals and the bias b ∈ R represents the conditions
under which the action potential propagates.

x2 Σ φ

Activation
function

y

Output

x1

x3 1

Bias

Weights

w1

w2

w3

b

Inputs

Figure 9.1: Schema of a neuron with three inputs

A graphical representation of an artificial neuron can be found in Figure 9.1.
It also motivates a more convenient notation for neurons used for computational
purposes. Let us add an additional input x0 = 1 to the input vector x. Let also
add the associated weight w0 = b to the weight vector w. Artificial neuron then
becomes

φ(w′x)

where φ : Rk+1 → R is the activation function, x = (1, x1, x2, . . . , xk) is the vector
of inputs and w = (b, w1, w2, . . . , wk) is the vector of weights. For convenience let
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the value ξ = w′x be called the activation of neuron. We use the term output of
neuron to refer to the result of applying the activation function to the activation
of neuron, i.e. the value of φ(ξ).

The exact form of the activation function is problem specific. One of the
simplest activation functions is the binary step activation function

φ(ξ) =

{
0 : ξ < 0

1 : ξ ≥ 0.

One major disadvantage of binary step activation function is its instability,
meaning that a small change in inputs can lead to a big change in the output. A
more stable activation function commonly used in neural networks is the sigmoid
activation function

φ(ξ) =
1

1 + e−ξ

or the hyperbolic tangent function (tanh)

φ(ξ) =
2

1 + e−2ξ
− 1

where e is the Euler’s number.

9.2 Multilayer networks

Multilayer network (MLN) is a type of neural network where the neurons are
organised into layers. Each MLN consists of three types of layers. The first layer
is called the input layer, the last is referred to as the output layer and all other
layers in-between them are hidden layers. If an MLN contains only one hidden
layer, we refer to it as a single-layer network (SLN). A graphical representation
of an MLN with two hidden layers is pictured in Figure 9.2.

The input layer contains as many neurons as there are inputs. i-th neuron in
input layer is connected only to i-th input xi with the associated weight w = 1,
bias b = 0 and an identity activation function φ(wxi) = xi.

On the other hand, a neuron in a hidden layer is connected to every neuron
in the preceding input or hidden layer. The weight vectors of these neurons are
estimated in the learning process described in Section 9.3. Usually, all neurons
in one layer share the same type of activation function. The type of activation
function together with the number of hidden layers and the number of neurons in
each layer are hyperparameters that need to be optimised. This can be done using
trial and error method or an optimisation algorithm such as genetic algorithms.

The output layer contains as many neurons as there are outputs, one neuron
per output. A neuron in the output layer is connected to each neuron in the
preceding hidden layer. As in the previous case the weight vectors of neurons
in the output layer are estimated in the training process described in Section
9.3. The type of activation function is again shared and a hyperparameter to be
optimised.

The motivation behind MLN stems from a paper by Hornik [69], which proves
that any continuous function on compact subsets of Rn can be approximated with
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Figure 9.2: Schema of a multi-layer neural network with inputs x1, x2, x3, outputs
y1, y2 and two hidden layers

arbitrarily small precision by a SLN with finite number of neurons and nonconstant,
bounded, and monotonically-increasing continuous activation function.

Consider such an SLN consisting of one hidden layer l = 1 with kl neurons,
output layer o = l+1 with ko neurons and weights w. Let us partition the weights
in w into a collection of weight vectors corresponding to their respective neurons.
Mathematically, let wl,1,wl,2, . . . ,wl,kl be weight vectors for neurons in hidden
layer such that (wl,i)j represents the weight from the j-th neuron in the input
layer to the i-th neuron in the hidden layer. For the neurons in the output layer let
wo,1,wo,2, . . . ,wo,ko be weight vectors such that (wo,i)j represents the weight from
the j-th neuron in the hidden layer to the i-th neuron in the output layer. Let φl
be the activation function of neurons in the hidden layer and φo the activation
function of neurons in the output layer. Furthermore, let us define matrices

W (l) =


w′l,1
w′l,2

...
w′l,kl

 W (o) =


w′o,1
w′o,2

...
w′o,ko

 . (9.1)

In this representation W
(l)
i,j = (wl,i)j is the weight from the j-th neuron in the

input layer to the i-th neuron in the hidden layer and W
(o)
i,j = (wo,i)j the weight

from the j-th neuron in the hidden layer to the i-th neuron in the output layer.
Given an input vector x the output of this network fw is then defined as

fw(x) = φo[W
(o)φl[W

(l)x]].

9.3 Training

Suppose we have an MLN with weights w = (w1, w2, . . . , wn). As before we
divide the training process into three phases: initialisation, estimation, and model
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selection. The initialisation sets the initial value of w and in case on MLN
coincides with model selection. The estimation then adjusts the values of weights
w in order to approximate correct outputs.

There are two main approaches to estimating the weights of neural networks:
supervised and unsupervised learning. The correct approach depends mainly on
the type of network, which is influenced by the problem description.

All neural networks in this thesis use supervised learning. Supervised learning
uses data separated into pairs (x,d) of input x and output vectors d. We use
the term samples to refer to the pairs (x,d). The goal of training is to infer the
values of weights w so that given any input x, the corresponding output of the
network fw(x) is equal to d.

Since estimating the weights of a neural network is an NP-complete problem
[70], it is more practical to use various heuristics to approximate the solution. One
of the most popular heuristics used in practice and also the one used for networks
in this thesis is the gradient descent [71], which we describe in Section 9.3.1. Gra-
dient descent is an optimisation heuristic that minimises a loss function using the
gradient of said loss function to tune the weights w. Computing the gradient an-
alytically can be very time consuming. However, this process can be significantly
sped up using back-propagation algorithm described in Section 9.3.2. Moreover,
gradient descent can be further optimised by introducing adaptive learning rates
for each weight. Section 9.3.3 describes such a method. Section 9.3.5 is devoted to
the initialisation of weights w in order to guide gradient descent to reach better op-
tima and to reach them faster. It also serves as model selection procedure. Lastly,
in Section 9.3.4 we explain the common problems of training neural networks and
how to deal with them.

Throughout this section we use the term batch to refer to a finite set consisting
of a number of samples, i.e. B = {(x1,d1), (x2,d2), . . . , (xi,di), . . . }. For proofs
of various claims made in this Section we refer to the book by Nielsen [67].

9.3.1 Gradient descent

The basis of gradient descent is the minimisation of a loss function L(w, B)
parametrised by the network weights w = (w1, w2, . . . , wn). In this thesis we use
quadratic loss function, also called mean squared error (MSE). MSE is defined on
a batch B as

L(w, B) =
1

2|B|
∑

(x,d)∈B

(d− fw(x))2. (9.2)

The loss function is minimised iteratively over all samples (x,d) in the batch B.
In each iteration, called epoch, the weights w are updated in the opposite direction
of the gradient of the loss function. In the following we derive the update rule for
w in order to minimise L(w, B).

Let wt be the weights after t epochs and let wt+1 be the weights after t + 1
epochs. Let 4w = wt+1 − wt be the vector of changes in weights and 4L =
L(wt+1, B)− L(wt, B) the change in the loss function. The gradient of the loss
function with respect to weights wt is defined as

∇wL(wt, B) =

(
∂L(wt, B)

∂w1

,
∂L(wt, B)

∂w2

, . . . ,
∂L(wt, B)

∂wn

)
.
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The change in loss function can be then expressed as a dot product of vector 4w
and gradient ∇wL(w, B):

4L ≈ ∇wL(wt, B)′ ·4w

In order to minimise the loss function we want 4L < 0. This is satisfied after
we let 4w = −λ∇wL(wt, B), where 0 < λ is a parameter called learning rate,
because 4L ≈ ∇wL(wt, B)′(−λ∇wL(wt, B)) = −λ‖∇wL(wt, B)‖2 < 0. The
update rule for gradient descent then becomes

wt+1 ← wt − λ∇wL(wt, B). (9.3)

Depending on the batch size |B| in each epoch, gradient descent can be divided
into three main types:

� Batch gradient descent : batch |B| contains all available samples. It is
guaranteed to converge to global optimum for convex loss surfaces and local
optimum on nonconvex surfaces. It also perform redundant computations
on large datasets that contain many similar samples and can get stuck in
local optima.

� Stochastic gradient descent : batch contains only one randomly chosen sam-
ple, i.e. |B| = 1. It is usually much faster that batch gradient descent and
can escape local optimum and find a better solution. On the other hand,
stochastic descent is not guaranteed to reach global optimum.

� Minibatch gradient descent : batch contains a number (e.g. 50) of randomly
chosen samples. The exact batch size is a hyperparameter than can be
optimised. It is faster that batch descent with lesser risk of getting stuck in
local optima than stochastic descent. On the other hand, it is not guaranteed
to converge to global optimum.

For the neural networks used in this thesis we use minibatch gradient descent
with batch size optimised using grid search. The pseudo-code can be seen in
Algorithm 2.

Algorithm 2 Minibatch gradient descent optimisation

1: initialise network weights w0 with small random values, e.g. w0 ∼ N (0, ε)
2: for epoch t = 0, 1, . . . do
3: for each batch B of samples do
4: for each (x,d) ∈ B do
5: compute network output fwt(x) for input x
6: end for
7: compute loss function L(wt, B)
8: update weights wt+1 ← wt − λ∇wL(wt, B)
9: end for

10: end for

So far we ignored the most important part of gradient descent, which is the com-
putation of the very gradient∇wL(wt, B). Although this can be done analytically,
the sheer number of weights in w can render this approach all but impossible. In
the Section 9.3.2 we present a fast algorithm, called back-propagation, commonly
used for gradient computations.
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9.3.2 Back-propagation

Back-propagation is an efficient algorithm for computing gradients, popularised
by Rumelhart et al. in 1986 [72]. It is based on the chain rule, a mathematical
formula used for computing the derivative of the composition of two or more
functions [73]. Using the Leibniz’s notation the chain rule is in the form of

∂z

∂x
=
∂z

∂y

∂y

∂x

where z = f(y) and y = g(x).
Consider a network with input layer, hidden layers 1, 2, . . . , k and output layer

o = k + 1. For the purposes of back-propagation let us separate the network
parameters w into weight matrices for hidden layers W (1),W (2), . . . ,W (k) and
weight matrix for output layer W (o) (see Section (9.1)). Each matrix W (l) is a

matrix of weights from layer l − 1 to layer l where W
(l)
i,j is the weight from j-th

neuron in the layer l− 1 to i-th neuron in the layer l. Furthermore, let ξl,i be the
activation of neuron i in layer l and let ξl = (ξl,1, ξl,2, . . . , ξl,kl) be the activation
vector of layer l with kl neurons. Finally, let φl be the activation function of layer
l and let φl[ξl] be the output vector of layer l. The update rule from gradient
descent (9.3) can be then rewritten into

for each layer l : W
(l)
t+1 ←W

(l)
t − λ∇W (l)L(wt, B) (9.4)

where ∇W (l)L(wt, B) is a matrix of partial derivatives defined as

∇W (l)L(wt, B)i,j =

(
∂L(wt, B)

∂W
(l)
i,j

)

Back-propagation uses chain rule to compute ∇W (l)L(wt, B) for each weight
matrix W (l) separately, starting from the output layer and back-propagating
through hidden layers until it reaches the input layer.

Consider any sample from batch (x,d) ∈ B. If we define the loss function for
this sample as

L(wt,x,d) =
1

2
(d− fwt(x))2

the overall loss from (9.2) becomes

L(wt, B) =
1

|B|
∑

(x,d)∈B

L(wt,x,d).

Subsequently, the partial derivative of L(wt, B) with respect to weight W
(l)
i,j is

∂L(wt, B)

∂W
(l)
i,j

=
1

|B|
∑

(x,d)∈B

∂L(wt,x,d)

∂W
(l)
i,j

and as a consequence the gradient ∇W (l)L(wt, B) becomes

∇W (l)L(wt, B) =
1

|B|
∑

(x,d)∈B

∇W (l)L(wt,x,d). (9.5)
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This enables us to accumulate the gradient while iterating over a batch of samples
B and update the weights only after the iteration has ended.

To compute ∇W (l)L(wt,x,d) we utilise the chain rule. One element of matrix
∇W (l)L(wt,x,d) then becomes

∇W (l)L(wt,x,d)i,j =
∂L(wt,x,d)

∂W
(l)
i,j

=
∂L(wt,x,d)

∂ξl,i

∂ξl,i

∂W
(l)
i,j

. (9.6)

Furthermore, if we define the error δ
(l)
i of neuron i in layer l as

δl,i =
∂L(wt,x,d)

∂ξl,i

and use the fact that
∂ξl,i

∂W
(l)
i,j

= φl−1(ξl−1,j),

instead of (9.6) we can write

∇W (l)L(wt,x,d)i,j = δl,iφl−1(ξl−1,j). (9.7)

Consequently, is we define the error vector δl for layer l as

δl = (δl,1, δl,2, . . . , δl,k) =

(
∂L(wt,x,d)

∂ξl,1
,
∂L(wt,x,d)

∂ξl,2
, . . . ,

∂L(wt,x,d)

∂ξl,k

)
we can vectorise Equation (9.7) and express the gradient ∇W (l)L(wt,x,d) as

∇W (l)L(wt,x,d) = δlφl−1[ξl−1]
′. (9.8)

Using the chain rule one can prove that for the output layer o the error vector
δo can be computed directly from the network output fwt(x) and for neurons in
the hidden layers l = 1, 2, . . . the error vector δl can be obtained from the error
vector for the subsequent layer δl+1. Specifically, one can prove [67] that for the
output layer the error vector can be obtained as

δo = (fwt(x)− d)� φ′o[ξo]

and the error vector for hidden layer l = o−1, o−2, . . . , 2, 1 can be then computed
as

δl = (W (l+1))′δl+1 � φ′l[ξl]
where φ′o and φ′l are the derivations of activation functions for the output layer o
and the hidden layer l, respectively. In the case of sigmoid activation function the
derivation can be expressed as φ′(ξ) = φ(ξ)(1− φ(ξ)), in case of tanh activation
function it is φ′(ξ) = 1− φ(ξ)2.

The idea behind back-propagation algorithm is that for each sample (x,d) in
batch B we first compute the vector of activations ξ(l) for all layers l and then
compute the network output fwt(x) together with the loss L(wt,x,d) (forward
pass). Then, iterating over the layers backwards from output to input (backward
pass), for each layer l we compute the error vector δl. After backward pass has
finished and the error term δ is computed for every neuron in the network, we com-
pute ∇W (l)L(wt,x,d) from (9.8), then use it in (9.5) to compute ∇W (l)L(wt, B)
and finally update the weights layer by layer using (9.4).

The pseudo-code for minibatch gradient descent with back-propagation for
gradient computation is summarised in Algorithm 3
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Algorithm 3 Minibatch gradient descent with back-propagation for gradient
computation

1: initialise network weights w0 with small random values, i.e. wi ∼ N (0, ε)
2: for epoch t = 0, 1, . . . do
3: for each batch B of samples do
4: for each (x,d) ∈ B do
5: perform forward pass to obtain fwt(x) and L(wt,x,d)
6: for the output layer o set δo ← (fwt(x)− d)� φ′o[ξo]
7: for l = o− 1, o− 2, . . . , 1 do
8: δl ← (W

(l+1)
t )′δl+1 � φ′l[ξl]

9: ∇W (l)L(wt,x,d)← δlφl−1[ξl−1]
′

10: end for
11: end for
12: for each layer l do
13: ∇W (l)L(wt, B)← 1

|B|
∑

(x,d)∈B∇W (l)L(wt,x,d)

14: W
(l)
t+1 ←W

(l)
t − λ∇W (l)L(wt, B)

15: end for
16: end for
17: end for

9.3.3 Adaptive moment estimation

While using minibatch gradient descent in practice, one may encounter a number
of challenges. Firstly, it may be difficult to chose a suitable learning rate λ, as too
small a λ leads to very slow convergence to optimum while λ set too high can result
in oscillations around the optimum or even divergence from it. Additionally, the
same learning rate λ applies to all parameters in w to the same extent. However,
the nature of inputs x1, x2, . . . , xn of the input vector x and their influence on the
output fw(x) may differ significantly.

For these reason we use adaptive moment estimation (ADAM) [74] for neural
networks in this thesis. Apart from describing the method, in the paper the
authors of ADAM compare it to other common gradient descent modifications
and ADAM comes on top.

ADAM tackles the problem of minibatch gradient descent by including separate
learning rates for each weight in w. Furthermore, these learning rates are not
static but adaptive, meaning they change with the gradient.

This is done by keeping track of an exponentially decaying moving average of
past gradients

gt = β1gt−1 + (1− β1)∇wL(wt, B)

and also exponentially decaying moving average of past squared gradients

vt = β2vt−1 + (1− β2)∇w(L(wt, B))2

where 0 < β1, β2 < 1 are parameters and (L(wt, B))2 = L(wt, B) � L(wt, B).
Vector gt is the estimate of the mean (first moment) and vector vt is the estimate
of the variance (second moment) of the gradients. Authors suggest that the best
values for parameters are β1 = 0.9 and β2 = 0.999.
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The initial values are g0 = 0k and v0 = 0k. This means that during the first
couple of epochs the estimates gt and vt are biased towards zero. Authors of
ADAM mitigate this issue by computing bias-corrected first and second moments
estimates

g∗t =
gt

1− βt1
v∗t =

vt
1− βt2

where βt1, β
t
2 denote β1, β2 raised to the power of t.

Bias-corrected first and second moments estimates are then used to update
the weights using the following rule:

wt+1 = wt − λ
g∗t√
v∗t + ε

where λ and ε are parameters for which authors recommend values λ = 0.001 and
ε = 10−8.

9.3.4 Generalisation and overfitting

One of the most important aspects of the quality of machine learning models,
including neural networks, is their ability to generalise [13]. Generalisation is the
ability of a model to perform well on insofar unseen instances beyond the data it
was trained on.

The generalisation abilities of a machine learning model are usually measured
by splitting all the available data into disjunct training set T and validation set V .
In the case of neural networks both T and V are sets consisting of samples (x,d).
Model is then trained using only data from the training set. The generalisation
abilities of the model are evaluated by comparing the performance on the training
set with the performance on the validation set.

Ideally, the model is able to perform as well on the validation set as on the
training set. However, in some cases it learns not only the general patterns but also
the random noise present in the training set. In machine learning this phenomenon
is refereed to as overfitting. Overfitting with respect to neural networks can be
defined as the situation in which for network with weights w there exist weights
w∗ such that L(w, T ) ≤ L(w∗, T ) but L(w, V ) > L(w∗, V ) [13].

A common overfitting prevention technique is early stopping [75]. While the
network is trained on the training set T , after each epoch t both L(wt, T ) and
L(wt, V ) are evaluated. The training is stopped when L(wt, V ) increases during
each of k consecutive epochs, where k is a hyperparameter subject to optimisation.

9.3.5 Initialisation and model selection

Random weight initialisation performed at the beginning of gradient descend
algorithms can have significant impact on both the speed of convergence and the
quality of found local optima as demonstrated by Glorot and Bengio [76].

For this reason we consider restarting neural network with the same topology
and hyperparameters multiple times. After every network is trained on training
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set T , their loss function L is evaluated on the validation set V and the best
network (lowest L) is chosen to make forecast (see Section 10.2). For this reason
the initialisation of MLN in fact coincides with model selection.

Glorot and Bengio in [76] also introduce a new random initialisation scheme
and compare it to others. Their scheme performs the best and for this reason we
chose to also use it. Weights in layer l are drawn from uniform distribution U
with the interval scaled with respect to the number of neurons in the preceding
layer l− 1 and layer l. Mathematically, for initial weight matrix W

(l)
0 the random

initialisation scheme can be described as

W
(l)
0 ∼ U

(
−
√

6

i+ j
,

√
6

i+ j

)
where i is the number of neurons in layer l and j the number of neurons in layer
l − 1.

9.4 Time series data

The goal of an MLN is, after being trained on a set of samples (x,d), to produce
correct fw(x∗) given an insofar unseen input x∗. Traditionally, each feature xi
of the inputs is considered to be drawn independently from some probability
distribution. However, in the case of time series data the independence property
is violated as there is a significant correlation between consecutive observations.

For this reason MLNs use the rolling window method [77] when dealing with
time series data yt. The method can be described in the following steps:

(1): The values of window size w, window shift s and forecast horizon h are
chosen. Window size w is a hyperparameter that needs to be estimated prior
to training, but window shift s and forecast horizon h are usually problem
specific.

(2): y is transformed into a set of samples (ysi+1:si+w,ysi+w+1:si+w+h), where i =
0, 1, . . ..

(3): The samples are separated into training and validation sets.

(4): The network is trained on the training set and its loss evaluated on the
validation set until at least one of the stopping criteria is met.

(5): Forecasts are produced as ŷt+h|t = f(yt−w+1:t).

It may also be beneficial to encode the date as part of the inputs. This is done
using dummy variables. A dummy variable takes values 0 or 1 to indicate the
presence or absence of some categorical effect. In our case the categories include
day of the week (Sunday, Monday, . . . ) and month (January, February, . . . ). This
means 19 additional inputs.

In some cases it may be beneficial to include other time series (weather data)
as part of the input, akin to predictors or explanatory variables in regression. In
our case, since historical forecast were unavailable to us, we used 48 real weather
observations corresponding to each half-hour of the day for which the network is
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supposed to forecast energy consumption. Mathematically, xT with T > t is time
series for a weather attribute (e.g. temperature, humidity or wind speed) and we
want to forecast load profile ŷt+h|t, the network input consists of concatenated
vectors xt+1:t+h and yt−w+1:t. Note that this undoubtedly introduces some bias
to our forecasts.
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10. Methodology

The focus of this chapter is the methodology used while conducting experiments
and comparing imputation and forecasting models.

This chapter is divided into three sections. In Section 10.1 we list various
accuracy measures used to compare both imputation and forecasting models.
This is followed by Section 10.2 where we describe how the data is split into
training and testing sets and how the models are evaluated. Lastly, in Section
10.3 we list a number of preprocessing methods designed to extract or separate
useful information even before the training process.

10.1 Accuracy measures

Our primary concern is to compare models using the accuracy of their forecasts.
It is difficult to define accuracy as the specific purpose of forecasting may dictate
what aspects of forecasts are more important than others. Therefore, in this
section we present four accuracy measures that we used jointly to compare the
models.

In all of the accuracy measures we use ŷ to refer to forecasts produced by
the model under consideration and y to denote the true observations. It is
also important to note that since energy consumption of a household cannot be
negative, we replaced all negative values in ŷ by zeros.

10.1.1 SRMSE

SRMSE (Scaled RMSE) is derived from RMSE (root mean squared error), which
measures accuracy as a standard deviation of forecasts when compared to the
actual values:

RMSE(model) =
√
E((y − ŷ)2)

RMSE is a very popular measure, largely due to its relevance in the theory of
statistical modelling [78].

One disadvantage of RMSE is that it is scale-dependant and cannot be used
to compare models used on different datasets or differently preprocessed datasets.
For this reason we adopt a scaled variant of RMSE called SRMSE:

SRMSE(model) =
RMSE(model)

E(y)

which has the range of (0,∞) and does not have this shortcoming.

10.1.2 SMAPE

SMAPE (symmetric MAPE) is a modification of MAPE (mean absolute percent-
age error), which measures accuracy as a ratio of errors to the actual value:

MAPE(model) = E

(
|y − ŷ|
|y|

)
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with the range of (0,∞).
MAPE has the advantage of being scale-independent, which means it can be

used to compare models across various datasets or preprocessing methods. On the
other hand, MAPE has several drawbacks. The first one is that it cannot handle
zero values in the data. Secondly, for any small values close to zero MAPE tends
to explode. Furhermore, Armstrong [79] brought attention the intrinsic bias of
MAPE. It turns out that MAPE favours forecasts that are below the actual value
ŷt < yt compared to the forecasts above it ŷt > yt.

SMAPE is a common modification of MAPE designed to remove this bias. It
can be expressed as

SMAPE(model) = E

(
|y − ŷ|
|y|+ |ŷ|

)
with the range of (0, 1).

While still being scale-independent, SMAPE also inherits other problems of
MAPE. Although less severe, forecasting small values around zero can cause
destabilisation of SMAPE value by a division by a number close to zero, because
if yt is close to zero, ŷt is also likely to be close to zero.

10.1.3 SMAE

SMAE (scaled MAE) is based on MAE (maximum absolute error) that simply
records the highest absolute error encountered during forecasting:

MAE(model) = max(|y − ŷ|).

To compare models across differently scaled datasets, we modified MAE by
scaling it with respect to mean of time series y:

SMAE(model) =
MAE(model)

E(y)

with the range of (0,∞).

10.1.4 MASE

MASE (mean absolute scaled error) was proposed by Hyndman and Koehler [78]
to solve common problems the other accuracy measures face. MASE scales the
forecast errors based on mean absolute error of a seasonal naive forecasting method.
Forecasts of seasonal naive forecasting method, denoted as ŷ∗, are just observations
made exactly one season ago, i.e. ŷ∗t = yt−m where m is the frequency of y. MASE
can then be expressed as

MASE(model) =
E(|y − ŷ|)
E(|y − y∗|)

with the range of (0,∞). MASE < 1 means that the method under consideration
is better than the seasonal naive method while MASE > 1 indicates the opposite.

The advantages of MASE is that it is scaled, unbiased and it has no problems
with values near zero.
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When there are multiple seasonalities in the data as is the case with energy
consumption, there are also multiple seasonal naive forecasting methods to con-
sider. In order to select the best one, we compare MASE for methods with daily
m = 48 and weekly m = 7 · 48 seasonalities against each other and list the MASE
results in Table 10.1. SRMSE, SMAPE and MAE are summarised in Table 10.2.

Table 10.1: MASE of naive methods

true daily weekly
forecast

daily 1 1.0439
weekly 0.9776 1

Table 10.2: Experimental results for naive fore-
casting methods

frequency SRMSE SMAPE SMAE

daily m = 48 0.9567 0.2938 6.9203
weekly w = 7 · 48 0.9356 0.2945 7.0187

”wa”, ”ha”, ”bc” and ”des” indicate the type of preprocess-
ing used (week adjustement, hour adjustement, Box-Cox
transformation, deseasonalisation).
Results are sorted in ascending order first by SRMSE.

It is clear that forecasts using weekly seasonality are better according to
SRMSE and MASE and worse according to SMAPE and SMAE. From this point
forward we chose weekly seasonality for evaluating other models.

10.2 Time series cross-validation

Forecasting energy consumption of a real house requires a model to be able to
generalise beyond the data used to train it and effectively adapt to unforeseen
conditions. If a model performed well on training data but fails to archive compa-
rable performance while incorporated into a real household, then it is overfitted
compared to a different model that does worse on training data but better in real
situations [13].

One of the most intuitive approaches to combat the overfitting problem is
called cross-validation [80]. Cross-validation splits the data randomly into two
parts: training set and validation set. Training set is used to train various models,
the performance of which it subsequently evaluated on the validation set. The
drawback of this approach is that because a big portion of data is dedicated to
validation, the overall performance of model may be negatively impacted as there
are not enough training samples. On the other hand, if the validation set is too
small, it may fail to fairly represent the statistical properties of the whole dataset
and result in poor estimates of performance.

A popular technique to better utilise available data is a k-fold cross-validation
[61]. It works by splitting data randomly into k equal-sized partitions and then
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performing k rounds of training. In each round one partition is chosen to act as
the validation set and the other k−1 partitions are used for training. However, the
random nature of splitting in k-fold cross-validation is not suitable for time series
data, as it is not being drawn independently from the same probability distribu-
tion but rather exhibits a significant sequential correlations between consecutive
observations.

Correlation of consecutive observation is taken into account by the rolling
window method [77]. First, the size of a window w and forecast horizon h is
chosen. Then the models are trained on the first w samples yw and forecast
ŷw+h|w. The process continues by shifting the window by s observations, training
on ys+1:s+w and forecasting ŷs+w+h|s+w. The process is repeated until there is
nothing left to forecast. The performance of models is evaluated by comparing
the forecasts accumulated during the process with actual observations.

Time series cross-validation used in this thesis is a combination of k-fold
cross-validation and rolling window technique and can be described as follows.
The initial split of data consists of training time series yt and testing time series
yt+1:T . The training time series contain observation for the first three years (1071
days to be exact, i.e. t = 1071 · 48), while the testing time series comprises the
last year (precisely 369 days, i.e. T = (1071 + 369) · 48). The testing time series
is subsequently split into equal-sized (except possibly the last one) partitions
yt+ikh+1:t+ikh+kh where i = 0, 1, . . . is the partition number and k denotes the
number of days in a partition. Depending on whether one partition represents
one week (k = 7) or one month (k = 28), we refer to it as weekly cross-validation
or monthly cross-validation. Since we are interested in day-ahead forecasts, let
the forecast horizon be equal to the number of observations per day, i.e. h = 48.
Cross-validation continues by iterating over these partitions, at each step i training
the model on yt+ikh and forecasting ŷt+ikh+kh|t+ikh day by day. After forecasts
ŷt+idh+h|t+idh for a day d = 0, 1, . . . , k − 1 are produced, the model is filtered on
the real observation yt+idh+1:t+idh+h (see Section 5.5). For MLN filtering is ignored
and may be the subject of future work. The training procedure executed at each
step i is described in Section 6.3 for ES models, Section 7.3 for ARMA models,
Section 8.4 for ARMAX models and Section 9.3 for MLN models. The entire
process of time series cross-validation is summarised in Algorithm 4. The best
model in line 10 refers to the model with lowest AICc in case of ES (Section 6.3.3),
ARMA (Section 7.3.3) and ARMAX (Section 8.4.3) models or network with the
lowest loss (Section 9.3.5).

This procedure accomplishes two things. Not only does it help prevent over-
fitting, but is also simulates how would models be applied in real households.
They would be pretrained in a factory using some template data and then inte-
grated into a household where they would be forced to adapt to real conditions
by retraining themselves.

10.3 Preprocessing

Energy consumption data can often contain complex trend and seasonal patterns
that cannot be easily captured using mathematical models. Some models may
even make some assumptions about the data that are not generally true. Other
models may become biased because of different scales of observations’ attributes.
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Algorithm 4 Time series cross-validation

1: T : total number of observations in time series
2: t : number of observations for training set
3: k : number of days (forecast horizons) in one partition
4: h : forecast horizon
5: the data is split into training yt and testing yt+1:T time series
6: testing time series yt+1:T is split into partitions i = 0, 1, . . ., each partition i

is in the form of yt+ikh+1:t+ikh+kh

7: for each partition i = 0, 1, . . . do
8: train models on the training set yt+ikh and select the best model
9: for each day d = 0, 1, . . . , k − 1 in partition yt+ikh+1:t+ikh+kh do

10: use the best model to forecast load profile ŷt+idh+h|t+idh
11: the model is filtered on the real load profile yt+idh+1:t+idh+h

12: end for
13: add partition yt+ikh+1:t+ikh+kh to the training set
14: end for

Preprocessing of the historical data before analysis can mitigate these problems
[9]. Generally, the purpose of preprocessing the data is to simplify the patterns
contained within the data by removing known sources of variation or by making
the patterns more consistent across the whole data set. Simple patters are more
easily reproduced in mathematical models which leads to better forecasts.

In this section we describe the preprocessing methods used in this thesis. Their
impact on a particular model can be inferred from the respective experimental
results.

Generally, preprocessing works by extracting various parameters from the data
and using them to transform the data and also revert the transformation. Since
the data is usually split into training set and testing set, preprocessing the data
before this split happens may introduced unwanted bias to the testing set. For
this reason the time series cross-validation algorithm 4 is modified to include
preprocessing at every step:

All preprocessing methods listed in this section follow the aforementioned pro-
cedure. The only exceptions are aggregation (Section 10.3.1) and time adjustment
(Section 10.3.2) for obvious reasons.

10.3.1 Aggregation

Our energy consumption data is of a very fine granularity: one observation per
minute. However, optimisation algorithms for load shifting usually operate on
longer time itervals, i.e. fifteen minutes, half-hour or hour [81]. Since the available
weather data is sampled at a rate of one observation per half-hour, we decided
to aggregate the minute intervals into half-hour intervals by averaging the values.
This means that each day consists of 48 time intervals that need to be forecast
simultaneously from previous days. A sample of the data can be seen in Table 10.3.
Each column represents the average energy consumption of the next half-hour
and each row corresponds to one day.

Aggregation is performed right after imputation. Before aggregating we also
removed observation related to incomplete first and last days.
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Algorithm 5 Time series cross-validation with preprocessing

1: T : total number of observations in time series
2: t : number of observations for training set
3: k : number of days (forecast horizons) in one partition
4: h : forecast horizon
5: the data is split into training yt and testing yt+1:T time series
6: testing time series yt+1:T is split into partitions i = 0, 1, . . ., each partition i

is in the form of yt+ikh+1:t+ikh+kh

7: for each partition i = 0, 1, . . . do
8: preprocessing parameters p are extracted from training set yt+ikh
9: preprocess training set yt+ikh using p to produce y∗t+ikh

10: preprocess partition yt+ikh+1:t+ikh+kh using p to produce y∗t+ikh+1:t+ikh+kh

11: train models on the preprocessed training set y∗t+ikh and select the best
model

12: for each day d = 0, 1, . . . , k − 1 in partition y∗t+ikh+1:t+ikh+kh do
13: use the best model to forecast load profile ŷ∗t+idh+h|t+idh
14: transform ŷ∗t+idh+h|t+idh back into ŷt+idh+h|t+idh using parameters p
15: the model is filtered on the preprocessed load profile y∗t+idh+1:t+idh+h

16: end for
17: add partition yt+ikh+1:t+ikh+kh to the training set
18: end for

Table 10.3: A sample of aggregated data

time 00:00 00:30 01:00 01:30 02:00 . . .
date

2008-10-06 0.3516 0.4052 0.4195 0.3289 0.3545
2008-10-07 0.3790 0.3412 0.2966 0.3959 0.3116
2008-10-08 0.3040 0.3474 0.3456 0.3111 0.3519
2008-10-09 1.1834 1.1665 0.3915 0.2904 0.3227
2008-10-10 1.4949 0.6381 0.6677 0.6755 0.6375
2008-10-11 0.4051 0.4123 0.3511 0.3665 0.3759
2008-10-12 0.4015 0.3429 0.3683 0.7925 0.7423
2008-10-13 0.3840 0.2885 0.3233 0.3362 0.2981
2008-10-14 0.4074 0.2830 0.3251 0.2813 0.3259
2008-10-15 0.3163 0.3678 0.3288 0.3252 0.4018

Each column represents the average energy consumption for the next
half-hour, i.e. average consumption between 00:00-00:30 is recorded in
column 00:00.
Each row corresponds to one day.

10.3.2 Time adjustement

Some of the models considered in this thesis, namely ES and ARMA models, are
able to account for only one type of seasonality. For this reason we introduce two
types of time adjustment preprocessing methods.

The first type, referred to as hour adjustment, concerns daily seasonality where
the data is split into 48 separate time series corresponding to 48 time intervals
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in each day. This means that each one of these 48 time series contains only
observations for the same time interval across all days, e.g. only observations
for time interval 10:30-11:00 etc. A separate model is trained on each one of
these 48 time series and forecasts for the next day are made using all of them
simultaneously with forecast horizon h = 1.

The second type is week adjustment and it deals with weekly seasonality. The
data is split into seven separate time series according to week days, e.g. one
of these splits contains only observations recorded on Mondays etc. A separate
model is trained on each one of these splits. Forecasts are then made using the
appropriate model with forecast horizon h = 48.

We can also consider a combination of these two adjustments. This results in
7 · 48 = 336 different models with forecast horizon h = 1.

When no time adjustment is performed, we refer to the data as unadjusted.

10.3.3 Box-Cox transformation

Box-Cox transformation [82] is motivated by the need of linear models for data
to be normally distributed [83]. It can also help with nonstationary time series
by stabilizing the variance.

Box-Cox transformation is a family of power transformations. Its aim is
to ensure the observations are normally distributed. Given time series y, the
transformation to y(λ) can be expressed as

y
(λ)=
t

{
yλt −1
λ

λ 6= 0

ln yt λ = 0

where λ ∈ [−5, 5] is the only parameter.
In this thesis λ is estimated using maximum likelihood estimation of a linear

regression model
y
(λ)
t = β0 + β1yt.

λ resulting in a model with the highest likelihood is the one chosen for transforma-
tion. AICc is not necessary as all of the models considered have the same number
of parameters.

After a model for forecasting energy consumption is trained on the transformed
data, it is necessary to perform an inverse transformation on its forecast ŷ∗t+i|t to
obtain interpretable results ŷt+i|t:

ŷt+i|t =

{
(λ(ŷ

(λ)
t+i|t)

λ + 1)1/λ λ 6= 0

exp((ŷ
(λ)
t+i|t)

λ) λ = 0

Some data cannot be power-transformed to be normal. Despite this, Draper
and Cox [84] concluded that Box-Cox transformation can still be used to find a
transformation that will approximately normalise the data.

Figure 10.1 contains an illustration what Box-Cox transformed energy con-
sumption looks like. The plots look similar but notice how transformed load
are centred around zero. Figure 10.2 displays the histogram of energy consump-
tion data after Box-Cox transformation and a red line representing the bimodal
distribution fitted to the histogram.
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Figure 10.1: Box-Cox transformation of a couple of days
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Figure 10.2: Histogram of data after Box-Cox transformation. Red line represents
the bimodal distributions that we fit to the data

10.4 Deseasonalisation

ES models and ARMA models can incorporate only one type of seasonality into
their forecasts. However, energy consumption data usually contain more than one
source of seasonality, namely daily, weekly and annual seasonalities. One can try
to use decomposition to remove some of them or at least simplify the data.

In this thesis we use STL [22], a seasonal-trend decomposition procedure based
on LOESS (LOcal regrESSion). It decomposes time series y into trend component
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b, seasonality component s and remainder r so that

STL(y) = b+ s+ r.

LOESS, sometimes called a locally weighted polynomial regression, is a technique
that approximates each observation yt by a regression polynomial f(t) of a small
degree, particularly linear polynomials in case of STL decomposition. What
distinguishes LOESS from regular regression is fitting f(t) within a window t−
w, t+w using weighted least squares, giving more weight to points closer to t and
less weight to those far away. We use the term smoothing window to refer to the
value of w and LOESSw(y) to denote the result of smoothing time series y.

STL works by updating estimates of trend b(i) and seasonal s(i) components
iteratively. The detailed steps of STL decomposition procedure are summarised
in Algorithm 6.

Algorithm 6 STL decomposition

1: m← frequency of y
2: choose smoothing window values wl, wb, ws
3: initialise b(0) ← 0
4: for each i = 0, 1, . . . do
5: y∗ ← y − b(i) . compute detrended time series
6: s← LOESSws(y

∗)
7: l← LOESSwl(MAS3×m×m(s)) . m×m×3 moving average smoother

followed by LOESS regression
8: s(i+1) = s− l . new estimate of seasonal component
9: y∗ = y − s(i+1) . compute deseasonalised time series

10: b(i+1) ← LOESSwb(y
∗) . new estimate of trend component

11: end for

Authors of STL decomposition [22] found out that the convergence of trend and
seasonal components in Algorithm 6 is very fast so two passes of the loop is enough.
On authors recommendation we use wl = 43 to prevent competition between the
trend and seasonal components for the same source of variance, wb = 73 and
ws = 7.

We apply decomposition at each step of cross-validation to deseasonalise the
data and train models only on the trend and remainder bt + rt. Models are
then used to forecast load profiles ŷ∗t+h|t and these are then combined with the
seasonality from previous season st−m+1:t−m+h to form interpretable forecasts
ŷt+h|t = ŷ∗t+h|t + st−m+1:t−m+h .

In Figure 10.3 we present an STL decomposition of a couple of days in March
2006. Notice how trend component picks up on larger loads during weekends and
seasonality component approximates morning and afternoon load spikes during a
business days.

10.4.1 Standardisation

The performance and learning rate of neural networks can be significantly im-
proved by standardisation [85]. Standardisation transforms data into a common
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Figure 10.3: STL decomposition of a couple of days

scale with zero mean and standard deviation of one. Mathematically, for time
series y it can be expressed as

y∗t =
yt − E(y)√

V (y)

where E(y) is the mean and V (y) is the variance of y.
The point forecasts ŷ∗ produced by neural network trained on standardised

data are naturally in this new scale. In order to interpret these forecasts in a
meaningful way, the output of neural network needs to be back-transformed to the
original scale. Therefore it is necessary to preserve the mean E(y) and variance
V (y) used in standardisation and compute the point forecasts in the original scale
ŷ by performing the inverse transformation

ŷt+i|t = ŷ∗t+i|t
√
V (y) + E(y).

10.4.2 Mean adjustment

Since out aim is to forecast load profile for the entire day, it may be beneficial to
remove the daily seasonality by encoding the data as deviations from the average
load profile. Because of the fact that load profiles for individual weekdays can
differ significantly, especially in the case of business days versus weekends (see
Table 3.5), we consider separate average load profile for Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday and Saturday. The profile for each day of the data
is mean-adjusted by subtracting the average load profile for that particular day
as seen in Table 3.5.
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11. Imputation

Imputation is a general term used to describe the reconstruction of missing ob-
servations from available data [86]. There are various methods suitable for data
imputation. In this chapter we describe the methodology and compare various
imputation methods used in this thesis.

Broadly speaking, to compare the imputation methods we artificially remove
some observations, impute them using a number of methods and then evaluate the
accuracy by comparing imputed data with the original data. The observations are
removed according to a probability distribution that reflects the true distribution
of outages in the data. Because the process of removing observations contains
randomness, observations are removed and imputed 10 times and the final accuracy
is averaged across all 10 runs. The implementation of imputation methods comes
from R’s package imputeTS [87].

Imputation is performed on the raw data (one observation per minute) before
any other preprocessing method, namely aggregation. This is done in order to
prevent aggregation from discarding valid observations in a half-hour time interval
containing only a few missing minutes (see Figure 3.2). The following is a list of
all imputation methods under consideration:

� random: replace missing observation by a random value between minimum
and maximum of data;

� replace: replace missing observation with mean median or mode;

� moving average smoother: missing observation replacement by weighted
moving average with simple, linear or exponential weighting scheme and
window size w = (1, 2, . . . , 10) (w = 2 encompasses two past and two future
observations);

� nocb: next observation carried backwards, if there is no such observation
(outage at the end of time series) carry forward last observation;

� locf: last observation carried forwards, if there is no such observation (outage
at the beginning of time series) carry backwards next observation;

� interpolation: uses either linear [88], spline [89] or Stineman interpolation
(stine) [90] to replace missing observations;

� ARMA model;

Moreover, before imputation one can preprocess the data to possibly improve the
results. In this thesis we use these preprocessing methods:

� deseasonalisation: data is decomposed and seasonal components are removed
before imputation, see Section 10.4,

� splitting: data is split into seasons and each season is imputed separately.

Before we can describe the methodology of evaluating these imputation meth-
ods, we need to establish a couple of preliminary definitions. Let O be the set
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containing all outages present in data. The distribution of outages is then a func-
tion d(o) : O → R that assigns probability of occurrence to each outage. Formally,
it is defined as

d(o) =
c(o)∑
q∈O c(q)

where c(o) : O → N is a counting function assigning the total number of occur-
rences to each outage.

Algorithm 7 Imputation

1: the distribution d of outages in the data O is computed.
2: yt1,t2 ← largest subset of time series y without any outage
3: for i = 1, 2, . . . , 10 do
4: youtt1,t2

← yt1,t2
5: j ← t1
6: while j ≤ t2 do . adding outages
7: draw outage o from the distribution d . roulette wheel selection
8: if o > 0 then
9: youtj,j+o−1 = 0o . 0o is vector of o zeros

10: j ← j + o
11: else
12: j ← j + 1
13: end if
14: end while
15: for each imputation method m : data→ imputed data do
16: yimpt1,t2 ←m(youtt1,t2

)

17: evaluate performance by comparing yimpt1,t2 to yt1,t2
18: end for
19: end for
20: average the performances across all 10 runs

The whole process of removing observations, imputation and computing the
accuracy is summarised in Algorithm 7.

Since various methods use very different parameters, for clarity we chose to list
experimental results in three separate tables. Table 11.1 describes the performance
of moving average smoother, Table 11.2 contains the results of interpolation and
Table 11.3 displays the results of all the other methods, including random, replace,
nocb, locf and ARMA model.

Table 11.1: Imputation results for moving average smoother

prep weighting scheme window size SRMSE MASE SMAPE SMAE

none exponential 2 0.1980 0.4218 0.3353 0.2953
none linear 2 0.1985 0.4239 0.3376 0.2940
none simple 2 0.1988 0.4250 0.3386 0.2941
none exponential 1 0.1996 0.4208 0.3343 0.3027
none linear 1 0.2000 0.4225 0.3363 0.3026

Continued on the next page
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Table 11.1 – continued from the previous page

prep weighting scheme window size SRMSE MASE SMAPE SMAE

none simple 1 0.2001 0.4230 0.3367 0.3026
des simple 2 0.2043 0.4218 0.3057 0.3062

none exponential 3 0.2061 0.4274 0.3373 0.3158
des linear 2 0.2068 0.4236 0.3066 0.3118
des exponential 2 0.2085 0.4245 0.3075 0.3154

none exponential 4 0.2104 0.4310 0.3386 0.3274
none exponential 5 0.2117 0.4328 0.3397 0.3303
none linear 3 0.2119 0.4329 0.3407 0.3310
none exponential 6 0.2123 0.4341 0.3406 0.3310

des exponential 3 0.2123 0.4272 0.3080 0.3303
none exponential 7 0.2126 0.4350 0.3415 0.3306
none exponential 8 0.2129 0.4359 0.3422 0.3315
none exponential 9 0.2133 0.4367 0.3430 0.3320

des exponential 5 0.2133 0.4284 0.3086 0.3338
des exponential 6 0.2133 0.4294 0.3097 0.3328
des exponential 7 0.2133 0.4305 0.3112 0.3316
des exponential 4 0.2134 0.4281 0.3082 0.3345
des exponential 8 0.2136 0.4319 0.3127 0.3314

none exponential 10 0.2136 0.4376 0.3437 0.3322
des exponential 9 0.2138 0.4330 0.3139 0.3312
des exponential 10 0.2140 0.4339 0.3151 0.3312
des linear 3 0.2141 0.4282 0.3077 0.3368
des simple 3 0.2165 0.4304 0.3090 0.3441
des linear 4 0.2176 0.4317 0.3099 0.3458

none simple 3 0.2183 0.4377 0.3429 0.3488
des linear 5 0.2185 0.4352 0.3141 0.3433
des exponential 1 0.2192 0.4318 0.3144 0.3449
des linear 1 0.2194 0.4323 0.3144 0.3451
des simple 1 0.2195 0.4326 0.3146 0.3451
des linear 6 0.2196 0.4404 0.3192 0.3401
des linear 7 0.2197 0.4456 0.3243 0.3364

none linear 4 0.2212 0.4405 0.3435 0.3557
des linear 8 0.2218 0.4528 0.3300 0.3379
des simple 4 0.2232 0.4362 0.3127 0.3590
des linear 9 0.2235 0.4588 0.3342 0.3382
des simple 5 0.2251 0.4453 0.3194 0.3571

none linear 5 0.2252 0.4457 0.3463 0.3637
des linear 10 0.2255 0.4648 0.3391 0.3387
des simple 6 0.2275 0.4530 0.3263 0.3567

none linear 6 0.2276 0.4502 0.3495 0.3685
des simple 7 0.2282 0.4591 0.3324 0.3471

none linear 7 0.2286 0.4542 0.3528 0.3678
none linear 8 0.2311 0.4597 0.3566 0.3739
none simple 4 0.2319 0.4489 0.3471 0.3840

Continued on the next page
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Table 11.1 – continued from the previous page

prep weighting scheme window size SRMSE MASE SMAPE SMAE

des simple 8 0.2319 0.4689 0.3395 0.3562
none linear 9 0.2338 0.4666 0.3614 0.3799

des simple 9 0.2347 0.4774 0.3450 0.3611
none linear 10 0.2368 0.4722 0.3653 0.3849
none simple 5 0.2371 0.4559 0.3509 0.3975

des simple 10 0.2377 0.4844 0.3505 0.3666
none simple 6 0.2404 0.4619 0.3551 0.4009
none simple 7 0.2413 0.4666 0.3593 0.4045
none simple 8 0.2452 0.4754 0.3651 0.4120
none simple 9 0.2492 0.4855 0.3721 0.4170
none simple 10 0.2537 0.4951 0.3782 0.4218
split simple 4 0.4453 0.9619 0.6288 0.7294
split linear 4 0.4505 0.9256 0.5902 0.7727
split exponential 4 0.4657 0.9043 0.5578 0.8326
split simple 3 0.4671 0.9724 0.6178 0.7961
split linear 3 0.4679 0.9273 0.5789 0.8296
split exponential 5 0.4727 0.9384 0.5810 0.8408
split exponential 3 0.4751 0.9087 0.5543 0.8588
split exponential 10 0.4766 0.9859 0.6271 0.8340
split exponential 8 0.4766 0.9848 0.6259 0.8347
split exponential 9 0.4766 0.9861 0.6271 0.8343
split exponential 7 0.4777 0.9879 0.6275 0.8374
split exponential 6 0.4799 0.9927 0.6299 0.8422
split linear 5 0.4829 1.0395 0.6571 0.8094
split linear 10 0.5012 1.2166 0.7996 0.7342
split exponential 2 0.5028 0.9452 0.5509 0.9347
split linear 8 0.5028 1.2106 0.7946 0.7496
split linear 9 0.5058 1.2381 0.8105 0.7415
split linear 2 0.5090 0.9664 0.5624 0.9448
split simple 5 0.5100 1.1502 0.7206 0.8014
split linear 7 0.5198 1.2739 0.8256 0.7792
split simple 2 0.5237 1.0141 0.5848 0.9601
split simple 1 0.5244 0.9630 0.5514 0.9412
split linear 1 0.5244 0.9630 0.5514 0.9412
split exponential 1 0.5244 0.9630 0.5514 0.9412
split simple 10 0.5299 1.3460 0.8640 0.7414
split simple 8 0.5406 1.3729 0.8769 0.7339
split simple 9 0.5443 1.4144 0.8955 0.7202
split linear 6 0.5446 1.3449 0.8580 0.8235
split simple 7 0.5785 1.5134 0.9363 0.7664
split simple 6 0.6408 1.7298 1.0212 0.8412

Continued on the next page
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Table 11.1 – continued from the previous page

prep weighting scheme window size SRMSE MASE SMAPE SMAE

”none” means that no preprocessing method is used.
”split” indicates that data was split into seasons and each season was imputed sepa-
rately.
”des” indicates that deseasonalisation before imputation was performed.
Results are sorted lexicographically in ascending order according to SRMSE.

Table 11.2: Imputation results for interpolation

prep type SRMSE MASE SMAPE SMAE

none stine 0.2166 0.5102 0.3751 0.3186
none linear 0.2219 0.5195 0.3791 0.3233
des stine 0.2240 0.5223 0.4026 0.3409
none spline 0.2266 0.4946 0.3497 0.3648
des linear 0.2402 0.5720 0.4148 0.3573
des spline 0.2451 0.5308 0.4102 0.4041
split linear 0.5244 0.9630 0.5514 0.9412
split stine 0.5302 0.9690 0.5530 0.9546
split spline 0.7545 1.5040 1.0177 1.2765

”none” means that no preprocessing method is used.
”split” indicates that data was split into seasons and each
season was imputed separately.
”des” indicates that deseasonalisation before imputation

was performed.
Results are sorted in ascending order by SRMSE.

It is clear that moving average smoother and its modifications performed best.
For imputation of the whole dataset we chose moving average with linear weighting
scheme, window size w = 2 and no preprocessing as it achieved the best SMAE.
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Table 11.3: Imputation results for various methods

prep alg SRMSE MASE SMAPE SMAE

none arma 0.2443 0.9230 0.8868 0.3001
none locf 0.2753 0.8155 0.6075 0.3324
des locf 0.2907 0.8524 0.6200 0.3626
des arma 0.2976 1.4506 1.3672 0.3113
none nocb 0.3393 0.9693 0.8234 0.4073
des nocb 0.3485 0.9480 0.7705 0.4299
split median 0.3958 0.7492 0.5117 0.7468
des median 0.4217 0.9011 0.6336 0.7182
des mean 0.4802 1.2309 0.8240 0.6572
split mean 0.5145 1.4425 0.9006 0.6664
split mode 0.5582 1.0401 0.8317 1.0926
none median 0.6048 1.3904 0.8956 0.9532
split nocb 0.6397 1.2880 0.9177 1.1287
none mode 0.6688 1.1425 0.8193 1.2856
split locf 0.8674 1.8790 0.8635 1.2949
none mean 0.9025 2.8217 1.3847 0.9508
des mode 0.9033 2.1453 3.1129 1.5067
split arma 1.1717 3.2721 4.9460 2.4941
split random 2.5060 7.5192 1.7568 2.9321
none random 6.2046 21.0529 2.5897 4.6809
des random 9.5344 37.8325 2.8098 5.5562

”none” means that no preprocessing method is used.
”split” indicates that data was split into seasons and each
season was imputed separately.
”des” indicates that deseasonalisation before imputation was
performed.
”locf” stands for last observation carried forward.
”nocb” stands for next observation carried backwards.
”mean”, ”median”, ”mode”, ”random” describes what value
is used to replace the missing observations.
Results are sorted in ascending order according to SRMSE.
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12. Experiments

In this chapter we present the results of conducted experiments and compare the
performace of various forecasting models. The implementation of ES, ARMA and
ARMAX models comes from R’s package forecast [91]. Neural networks were
implemented using python’s Keras library [92].

For convenience when we refer to the best or most accurate model we do it
according to SRMSE.

12.1 ES models

For the evaluation of ES models both weekly and monthly cross-validation was
used (Section 10.2). At each step of the cross-validation procedure, the training
process described in Section 6.3 took place. Each of the thirty ES models was
initialised, estimated and compared using AICc and the best one was selected
to forecast next week or month by alternating between forecasting and filtering
(Section 5.5).

To account for multiple seasonalities, the training and evaluation of ES models
was performed also on week-adjusted data, hour-adjusted data and their combi-
nation (week adjustment first). For non-adjusted data the assumed frequency of
time series was m = 48 (daily), for hour-adjusted data it was m = 7 (weekly),
for week-adjusted data it was m = 48 (daily) and for the combination of hour
and week adjustment it was m = 52 (annual). Other forms of preprocessing that
were considered include the Box-Cox transformation, deseasonalisation and their
combination (deseasonalisation first).

The corresponding experimental results for monthly cross-validation found in
Table 12.1 indicate a clear dominance of forecasts on hour-adjusted data. Further-
more it is clear that week adjustment did not generally improve the performance.
This may be caused by the fact that the training set for week-adjusted models is
only 1/7 of the original train set, which may be too small a training set especially
when data is also hour-adjusted. Additionally, deseasonalisation proved to be
detrimental to the performance of time-adjusted models which is to be expected
as both techniques are designed to deal with seasonality. Box-Cox transformation
worsens SRMSE and SMAE of some models while improving their MASE and
SMAPE.

We can conclude that hour adjustement is the most efficient preprocessing
method for ES models. The worst preprocessing method seems to be the week
adjustment.

In Figure 12.1 we compare the best and worst days for the best ES model.
Experimental results for weekly cross-validation are listed in Table 12.2. Figure

12.2 summarises the best and worst days for the best ES model for weekly cross-
validation.

Again the best performance is achieved on hour-adjusted data. Deseasonali-
sation is not suitable for ES models and weekly cross-validation as it worsened
the performance in almost all cases. Similarly to deseasonalisation, in most cases
Box-Cox transformation is also not beneficial. The worst preprocessing methods
are again week adjustment.
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Table 12.1: Experimental results for ES models using monthly
cross-validation

wa ha des bc SRMSE MASE SMAPE SMAE

7 3 7 7 0.6390 0.7723 0.2462 4.3332
7 3 3 7 0.6456 0.7678 0.2444 4.6052
7 3 7 3 0.6582 0.7408 0.2282 4.6735
7 3 3 3 0.6637 0.7497 0.2303 5.0512
3 3 7 7 0.6744 0.8172 0.2547 4.5755
3 3 7 3 0.6934 0.7939 0.2448 4.8563
3 3 3 7 0.7942 0.9157 0.2669 5.1179
7 7 3 7 0.8374 1.0199 0.3316 5.1632
3 7 3 7 0.8659 1.0662 0.3573 5.2755
7 7 7 7 0.9469 1.1276 0.3412 5.3710
7 7 7 3 0.9506 1.1298 0.3435 5.4291
3 3 3 3 0.9534 0.9570 0.2741 50.6483
3 7 7 3 0.9735 1.1918 0.3645 5.7481
3 7 3 3 1.3051 1.2851 0.3224 19.0228
7 7 3 3 1.4145 1.2648 0.3093 23.7938
3 7 7 7 1.8406 2.4646 0.4514 6.4907

”wa”, ”ha”, ”bc” and ”des” indicate the type of preprocessing used
(week adjustement, hour adjustement, Box-Cox transformation, desea-
sonalisation).
Results are sorted in ascending order first by SRMSE.
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Figure 12.1: Best and worst load profile forecasts of the best ES model when
using monthly cross-validation

We conclude that hour adjustment is the most efficient preprocessing method
for ES models. Also monthly cross-validation as a whole is generally better
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Table 12.2: Experimental results for ES models using weekly
cross-validation

wa ha des bc SRMSE MASE SMAPE SMAE

7 3 7 7 0.6393 0.7707 0.2458 4.3310
7 3 7 3 0.6478 0.7349 0.2282 4.5101
3 3 7 7 0.6754 0.8165 0.2543 4.5757
3 3 7 3 0.6837 0.7876 0.2426 4.6751
7 3 3 7 0.7066 0.8319 0.2584 4.6026
7 3 3 3 0.7120 0.8101 0.2468 5.4737
3 3 3 7 0.7950 0.9171 0.2674 5.2135
7 7 3 7 0.8557 1.0123 0.3179 5.1655
3 7 3 7 0.8710 1.0784 0.3610 5.2621
3 3 3 3 0.9139 0.9600 0.2747 31.2254
7 7 7 7 0.9414 1.1175 0.3382 5.3708
7 7 7 3 0.9476 1.1231 0.3415 5.4393
3 7 7 3 0.9749 1.1927 0.3664 5.7495
3 7 3 3 1.3507 1.3189 0.3276 19.0681
7 7 3 3 1.6694 1.3911 0.3058 23.7651
3 7 7 7 1.8520 2.4860 0.4532 6.4301

”wa”, ”ha”, ”bc” and ”des” indicate the type of preprocessing used
(week adjustement, hour adjustement, Box-Cox transformation, desea-
sonalisation).
Results are sorted lexicographically in ascending order first by SRMSE,

then MASE, SMAPE and finally by SMAE.

suited for ES models. Weekly cross-validation has either negligible or significantly
detrimental effects on performance. However, the top performing models from
both monthly and weekly cross-validation are comparable in their performance.
Some models have significantly larger SMAE values caused by a small number of
forecasts significantly larger that the actual load. However, after examining each
case we were unable to find overarching cause of this phenomenon.

12.2 ARMA models

ARMA models were evaluated using monthly cross-validation (Section 10.2). At
each step of the cross-validation procedure, the models were trained as described
in Section 7.3 and the best one according to AICc was selected to forecast the
next month by alternating between forecasting and filtering (Section 5.5).

Preprocessing methods considered for ARMA models were the same as for ES
models, i.e. week adjustement, hour adjustement and their combination (week
adjustement first) in addition to Box-Cox transformation and deseasonalisation
(deseasonalisation first). The assumed frequency of the time series was m = 48
(daily) for unadjusted and week-adjusted data, m = 7 (weekly) for hour-adjusted
data and m = 52 (annual) for the combination of hour and week adjustment.

The results, listed in Table 12.3, again hint at the domination of hour ad-
justment over week adjustement and no adjustement. On the other hand, week
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Figure 12.2: Best and worst load profile forecasts of the best ES model when
using weekly cross-validation

Table 12.3: Experimental results for ARMA models

wa ha des bc SRMSE MASE SMAPE SMAE

7 3 3 7 0.6321 0.7589 0.2429 4.4170
7 3 7 7 0.6406 0.7758 0.2479 4.4284
7 3 3 3 0.6641 0.7440 0.2291 4.7579
3 3 7 7 0.6663 0.8074 0.2515 4.5729
7 7 3 7 0.6724 0.8393 0.2853 4.4524
7 3 7 3 0.6728 0.7543 0.2327 4.9779
7 7 7 3 0.6747 0.8415 0.2846 4.4515
3 7 3 7 0.6842 0.8606 0.2806 4.5731
7 7 3 3 0.6871 0.7886 0.2430 4.7399
3 7 3 3 0.6905 0.8058 0.2501 4.7860
3 3 7 3 0.6956 0.7924 0.2445 4.7393
7 3 3 7 0.7067 0.8335 0.2587 4.6872
3 3 3 7 0.7920 0.9185 0.2703 5.4253
3 7 7 7 0.8305 1.0725 0.3333 5.2270
7 7 7 7 0.8313 1.0401 0.3124 5.3813
3 7 7 3 0.8733 1.0733 0.3302 5.4572
3 3 3 3 12.0091 1.2235 0.2789 1388.3484

”wa”, ”ha”, ”bc” and ”des” indicate the type of preprocessing used (week
adjustement, hour adjustement, Box-Cox transformation, deseasonalisa-
tion).
Results are sorted in ascending order according to SRMSE.

adjustment resulted in decreased performance in all cases. Deseasonalisation im-
proves the performance in most cases. Box-Cox transformation increases SRMSE
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and SMAE, but can help to lower MASE and SMAPE.
Out of all the preprocessing methods under consideration, hour adjustment

appears to be the best, while week adjustment seems to be the worst. We were
unable to determine the cause of unusually high SMAE of one of the models.
After we replaced only the largest residual with zero, the performance of the
model improved significantly (see Table 12.4).

Table 12.4: The performance of the worst ARMA model with the largest residual
replaced by zero

wa ha des bc SRMSE MASE SMAPE SMAE

3 3 3 3 1.1391 1.0033 0.2783 41.7385

”wa”, ”ha”, ”bc” and ”des” indicate the type of preprocessing used
(week adjustement, hour adjustement, Box-Cox transformation, desea-
sonalisation).
Results are sorted in ascending order according to SRMSE.

Figure 12.3 contains a comparison between the best and worst day for the best
performing ARMA model.
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Figure 12.3: Best and worst load profile forecasts of the best ARMA model

12.3 ARMAX models

Monthly cross-validation was used for evaluation of ARMAX models (Section
10.2). At each step of the cross-validation procedure, the models were trained
as described in Section 8.4. The best model (according to AICc) was chosen to
forecast the next month by alternating between forecasting and filtering (Section
5.5).
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Preprocessing methods considered for ARMAX models were the same as for
ES and ARMA models, i.e. week adjustement, hour adjustement and their com-
bination (week adjustement first) together with Box-Cox transformation and
deseasonalisation. Moreover, for ARMAX models we also considered two types of
regression. Some models used weather regression on the weather data described
in Section 3.3, some models used Fourier regression described in Section 8.1.1 and
some models used both.

In weather regression every weather characteristic (temperature, humidity,
wind speed) was standardised (see Section 10.4.1) before training the model.
When using only weather regression, for unadjusted data the assumed frequency
of time series was m = 48 (daily), for hour-adjusted data it was m = 7 (weekly),
for week-adjusted data it was m = 48 (daily) and for the combination of hour and
week adjustment it was m = 52 (annual).

When using Fourier regression, only unadjusted and hour-adjusted time ad-
justments are considered. We let ARMAX models handle one type of seasonality
(annual, i.e. m = 365 · 48 for unadjusted data and m = 365) for hour-adjusted
data. Fourier regression is used to model all other seasonalities. Fourier orders
are k1 = 3 and k2 = 5 (modelling daily and weekly seasonality for non adjusted
data) and k = 3 (modelling weekly seasonality for hour-adjusted data). It may be
possible to archive better performance using orders found by a grid search or hill
climbing algorithms, but the computation time is high as it is and therefore we
did not include this type of parameter tuning in this thesis. Fine-tuning Fourier
orders may the subject of future work.

Table 12.5: Experimental results for ARMAX models

wa ha des bc wregs fregs SRMSE MASE SMAPE SMAE

7 3 7 7 7 3 0.6384 0.7673 0.2434 4.3621
7 3 7 7 3 3 0.6392 0.7729 0.2466 4.4429
7 3 7 7 3 7 0.6468 0.7886 0.2516 4.5711
7 3 7 3 3 3 0.6502 0.7408 0.2299 4.6432
7 3 3 7 3 7 0.6548 0.8043 0.2553 4.5740
7 3 7 3 3 7 0.6661 0.7604 0.2354 4.6950
3 3 7 7 3 7 0.6663 0.8101 0.2541 4.3666
7 3 7 3 7 3 0.6676 0.7499 0.2311 4.7450
3 7 3 7 3 7 0.6744 0.8484 0.2740 4.5247
7 3 3 3 3 7 0.6766 0.7837 0.2431 4.7181
7 7 7 7 3 3 0.6777 0.8506 0.2952 4.3372
7 7 7 7 7 3 0.6780 0.8528 0.2970 4.3485
7 7 3 7 3 7 0.6844 0.8630 0.2776 4.6997
7 7 7 3 3 3 0.6936 0.8103 0.2525 4.7557
3 3 7 3 3 7 0.6987 0.7974 0.2458 4.8171
7 7 7 3 7 3 0.7035 0.8157 0.2523 4.8015
3 7 3 3 3 7 0.7101 0.8223 0.2555 4.8975
7 7 3 3 3 7 0.7155 0.8317 0.2583 4.9606
7 7 7 7 3 7 0.7454 0.9716 0.3047 4.9304

Continued on the next page
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Table 12.5 – continued from the previous page

wa ha des bc wregs fregs SRMSE MASE SMAPE SMAE

7 7 7 3 3 7 0.7811 0.9620 0.3037 5.1691
3 3 3 7 3 7 0.7916 0.9151 0.2689 5.4827
3 7 7 7 3 7 0.7998 1.0504 0.3276 4.9414
3 7 7 3 3 7 0.8262 1.0212 0.3267 5.4136
7 3 3 3 7 3 0.8305 0.9744 0.3007 5.8806
7 3 3 7 3 3 0.8727 1.0674 0.3460 5.0889
7 7 3 7 7 3 0.8745 1.1075 0.3500 4.8992
7 7 3 7 3 3 0.8774 1.1106 0.3527 4.8280
7 7 3 3 3 3 0.8900 1.0555 0.3209 7.5615
7 3 3 7 7 3 0.8973 1.0992 0.3429 4.9298
7 3 3 7 7 3 0.9139 1.1177 0.3460 5.3586
7 7 3 3 7 3 0.9219 1.0682 0.3197 9.6521
3 3 3 3 3 7 0.9294 0.9389 0.2759 34.7992
7 3 3 3 3 3 8.8280 1.1501 0.2993 1136.3982

”wa”, ”ha”, ”bc” and ”des” indicate the type of preprocessing used (week adjustement,
hour adjustement, Box-Cox transformation, deseasonalisation).
”wregs” (weather regression) and ”fregs” (Fourier regression) describe the type of regression.
Results are sorted in ascending order according to SRMSE.

From table 12.5 it is clear that hour adjustment is a better preprocessing
method compared to week adjustment or no time adjustment, as the top of the
table is dominated by models using it. Unsurprisingly, the combination of Fourier
regression and deseasonalisation performed the worst as both target the same
aspect of data. However, deseasonalisation can help weather regression, especially
when no time adjustment is used. Box-Cox transformation usually has detrimental
effects on the performance according to SRMSE and SMAE, but can improve
MASE and SMAPE. Fourier regression is overall better than weather regression.
This is especially apparent when comparing the performance of models trained
on unadjusted data.

From the results we can conclude that the best preprocessing method is again
hour-adjustment. Deseasonalisation seems to be the worst. However, deseasonali-
sation is overall better suited for modelling multiple seasonalities, as ARMA mod-
els trained on deseasonalised data performed better than their Fourier-regression-
using-ARMAX counterparts. We were unable to determine the overarching cause
of unusually high SMAE of several of the models. After we replaced only the largest
residual of the worst model with zero, the performance improved significantly (see
Table 12.6).

In Figure 12.4 we compare the best and worst forecasts of the best performing
ARMAX model.

12.4 Neural networks

To construct the training samples for neural networks, we initially set window shift
s = 48 (see Section 9.4) since forecast horizon is h = 48. However, this method
resulted in poor performance as the number of training samples was approximately
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Table 12.6: The performance of the worst ARMAX model with
the largest residual replaced by zero

wa ha des bc wregs fregs SRMSE MASE SMAPE SMAE

7 3 3 3 3 3 2.2412 1.0425 0.2993 195.0521

”wa”, ”ha”, ”bc” and ”des” indicate the type of preprocessing used (week adjustement,
hour adjustement, Box-Cox transformation, deseasonalisation).
Results are sorted in ascending order according to SRMSE.

0.5

1.0

1.5

2.0

Be
st

 d
ay

 (k
W

)

00:00 04:00 08:00 12:00 16:00 20:00 24:00
Hour

0.0

1.0

2.0

3.0

4.0

5.0

W
or

st
 d

ay
 (k

W
)

true
forecast

Figure 12.4: Best and worst load profile forecasts of ARMAX with Fourier regres-
sion trained on hourly adjusted data

the same as the number of days in the training set, which is only 1071 (see Section
10.2). We therefore set s = 1, which increased the number of training samples to
approximately 48 · 1071 which improved the performance.

Table 12.7: Experimental results for SLNs

prep weather w hid activation SRMSE MASE SMAPE SMAE

mean 7 1,7 100 sigmoid 0.6348 0.7696 0.2545 4.4832
mean 7 1,7 50 sigmoid 0.6358 0.7718 0.2573 4.4298
mean 7 1 100 sigmoid 0.6376 0.7787 0.2595 4.2843
mean 7 1 100 tanh 0.6395 0.7815 0.2622 4.2307
mean 7 1 50 sigmoid 0.6398 0.7847 0.2657 4.2790
mean 7 1,7 200 sigmoid 0.6408 0.7830 0.2627 4.4108
mean 7 1 200 sigmoid 0.6414 0.7879 0.2632 4.2072
mean 7 1 50 tanh 0.6417 0.7831 0.2608 4.3350
mean 7 1 200 tanh 0.6427 0.7869 0.2639 4.4392
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Table 12.7 – continued from the previous page

prep weather w hid activation SRMSE MASE SMAPE SMAE

mean 7 1,7 50 tanh 0.6433 0.7839 0.2644 4.5692
mean 3 1 50 sigmoid 0.6446 0.7890 0.2640 4.2181
mean 3 1 100 sigmoid 0.6447 0.7859 0.2626 4.2130
mean 7 1,7 100 tanh 0.6452 0.7875 0.2605 4.5314
mean 3 1,7 50 sigmoid 0.6453 0.7873 0.2624 4.3539
mean 3 1,7 100 sigmoid 0.6477 0.7869 0.2613 4.3430
mean 3 1,7 50 tanh 0.6488 0.7975 0.2693 4.3556
mean 3 1 50 tanh 0.6501 0.7951 0.2701 4.2708
mean 3 1 200 sigmoid 0.6517 0.8014 0.2674 4.1938
none 7 1,7 100 sigmoid 0.6553 0.7962 0.2556 4.7819
mean 7 1,7 200 tanh 0.6570 0.8025 0.2717 4.6438
mean 3 1,7 200 sigmoid 0.6583 0.8094 0.2763 4.2642
none 3 1,7 50 tanh 0.6584 0.8074 0.2646 4.8589
none 3 1,7 50 sigmoid 0.6588 0.8122 0.2669 4.7741
none 7 1,7 50 tanh 0.6598 0.8094 0.2618 4.8788
mean 3 1 100 tanh 0.6606 0.8089 0.2767 4.2855
none 7 1,7 50 sigmoid 0.6610 0.8049 0.2620 4.9869
none 3 1,7 100 sigmoid 0.6626 0.8159 0.2711 4.6756
mean 3 1 200 tanh 0.6629 0.8199 0.2809 4.2040
none 7 1,7 200 sigmoid 0.6660 0.8112 0.2647 5.0397
mean 3 1,7 100 tanh 0.6669 0.8239 0.2822 4.3349
none 7 1,7 100 tanh 0.6673 0.8058 0.2644 5.3518
none 3 1 50 sigmoid 0.6674 0.8181 0.2698 4.4190
none 3 1 50 tanh 0.6683 0.8215 0.2712 4.4114
none 7 1 100 sigmoid 0.6694 0.8187 0.2669 4.7085
none 3 1 100 sigmoid 0.6695 0.8239 0.2777 4.6780
none 7 1 50 sigmoid 0.6701 0.8250 0.2643 4.8626
mean 3 1,7 200 tanh 0.6709 0.8335 0.2859 4.1370
none 3 1,7 200 sigmoid 0.6710 0.8286 0.2808 4.2938
none 7 1 50 tanh 0.6715 0.8285 0.2678 4.7070
none 7 1 200 sigmoid 0.6724 0.8255 0.2687 4.8945
none 7 1 200 tanh 0.6736 0.8274 0.2717 4.7716
none 7 1 100 tanh 0.6750 0.8288 0.2713 4.7180
none 7 1,7 200 tanh 0.6778 0.8308 0.2765 4.8253
none 3 1 200 sigmoid 0.6790 0.8289 0.2810 4.5878
none 3 1,7 100 tanh 0.6797 0.8388 0.2822 4.6799
none 3 1 100 tanh 0.6801 0.8408 0.2886 4.4990
none 3 1 200 tanh 0.6919 0.8622 0.2932 4.5562
none 3 1,7 200 tanh 0.6929 0.8557 0.2945 4.7197

des 7 1 50 sigmoid 0.7288 0.8924 0.2902 4.5845
des 7 1 100 sigmoid 0.7306 0.8980 0.2947 4.4500
des 7 1,7 50 sigmoid 0.7319 0.8998 0.2982 4.6505
des 7 1,7 100 sigmoid 0.7321 0.8993 0.2984 4.4988
des 7 1,7 50 tanh 0.7330 0.9036 0.2998 4.7019
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Table 12.7 – continued from the previous page

prep weather w hid activation SRMSE MASE SMAPE SMAE

des 7 1 200 sigmoid 0.7332 0.9041 0.2956 4.4368
des 7 1,7 200 sigmoid 0.7342 0.9078 0.3070 4.5442
des 7 1 100 tanh 0.7355 0.9086 0.2985 4.5824
des 7 1 50 tanh 0.7357 0.9019 0.2950 4.4847
des 7 1,7 100 tanh 0.7381 0.9072 0.3019 4.6118
des 3 1,7 50 sigmoid 0.7427 0.9191 0.3105 4.4442
des 7 1 200 tanh 0.7432 0.9172 0.3042 4.4780
des 3 1 50 sigmoid 0.7439 0.9208 0.3092 4.6176
des 3 1,7 100 sigmoid 0.7462 0.9248 0.3138 4.5552
des 7 1,7 200 tanh 0.7465 0.9205 0.3070 4.7226
des 3 1 100 sigmoid 0.7469 0.9287 0.3152 4.4584
des 3 1 50 tanh 0.7502 0.9312 0.3103 4.5211
des 3 1 200 sigmoid 0.7504 0.9345 0.3189 4.6398
des 3 1,7 50 tanh 0.7508 0.9315 0.3196 4.8332
des 3 1,7 200 sigmoid 0.7551 0.9395 0.3248 4.4659
des 3 1 100 tanh 0.7590 0.9467 0.3229 4.5399
des 3 1,7 100 tanh 0.7609 0.9387 0.3218 4.6055
des 3 1 200 tanh 0.7655 0.9571 0.3274 4.7573
des 3 1,7 200 tanh 0.7758 0.9722 0.3342 4.6376

”none”, ”mean” and ”des” indicate the type of preprocessing used (no preprocessing, mean
adjustment, deseasonalisation.
”we” marks whether weather data was included for training purposes.
w indicate the window size, 1 means the previous day, 1,7 means the previous day and the

corresponding day from previous week.
”hidden” indicate the number of neurons in the hidden layer.
”activation” indicate the activation function of neurons in the hidden layer.
Results are sorted in ascending order by SRMSE.

Energy consumption data used for neural networks is always standardised (see
Section 10.4.1) even when we say that no preprocessing method was used. Apart
from standardisation, additional preprocessing methods considered for neural
networks were two: deseasonalisation and mean adjustment. Standardisation is
always performed the last, after all other preprocessing methods.

In the training process of some neural networks we also included standardised
weather data and dummy variables to encode the date (see Section 9.4).

We consider preprocessing methods and the presence of weather data as a type
of hyperparameters to tune. Other hyperparameters include number of layers,
number of neurons in each layer, activation functions for the layers and window size
(see Section 9.4). We consider one or two hidden layers, 50,100 or 200 neurons in a
layer, sigmoid or tanh activation functions and window size of 1 (72 previous half-
hours to capture daily seasonality, i.e. yt−72+1:t) or 1,7 (concatenated yt−72+1:t

and yt−6×48−72+1:t−6×48 for both daily and weekly seasonality). The activation
function for the output layer is linear, as the energy consumption is not bounded.
The minibatch size is set to 50 samples.

These hyperparameters were optimised using grid search and monthly cross-
validation (Section 10.2). To combat overfitting we used the early stopping (see
9.3.4) with k = 5. At each step of cross-validation procedure, 20% of training
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samples were set aside as a validation set. This can be done because MLN are not
sensitive to the order in which the training samples are presented. Also at each
step of cross-validation procedure the network is initialised and trained multiple
times to reduce the impact or random weights initialisation (see Section 9.3.5).
For SLNs this number is 10, while MLN with two hidden layers use only three
reinitialisations due to time constraints.

Table 12.8: Experimental results for MLN with two hidden layers

prep W w hid 1 hid 2 act 1 act 2 SRMSE MASE SMAPE SMAE

mean 7 1,7 50 200 sigmoid sigmoid 0.6332 0.7670 0.2516 4.4341
mean 7 1 50 100 sigmoid sigmoid 0.6334 0.7706 0.2545 4.2169
mean 7 1 50 200 sigmoid sigmoid 0.6342 0.7708 0.2548 4.2914
mean 7 1 50 50 sigmoid sigmoid 0.6344 0.7719 0.2545 4.4327
mean 7 1 100 100 sigmoid sigmoid 0.6351 0.7708 0.2513 4.2733
mean 7 1 200 50 sigmoid sigmoid 0.6358 0.7733 0.2523 4.3884
mean 7 1 100 200 sigmoid sigmoid 0.6359 0.7701 0.2525 4.3331
mean 7 1,7 50 100 sigmoid sigmoid 0.6359 0.7692 0.2532 4.5875
mean 7 1 100 50 tanh sigmoid 0.6371 0.7714 0.2554 4.3009
mean 7 1,7 50 50 sigmoid tanh 0.6372 0.7721 0.2535 4.5617
mean 7 1 100 50 sigmoid tanh 0.6374 0.7760 0.2554 4.3965
mean 7 1 200 50 sigmoid tanh 0.6375 0.7723 0.2539 4.4721
mean 7 1 100 50 sigmoid sigmoid 0.6375 0.7742 0.2514 4.2513
mean 7 1,7 50 100 tanh sigmoid 0.6377 0.7767 0.2630 4.3467
mean 7 1 50 100 tanh sigmoid 0.6380 0.7772 0.2563 4.3074
mean 7 1 100 100 tanh sigmoid 0.6383 0.7778 0.2566 4.3902
mean 7 1 50 100 sigmoid tanh 0.6384 0.7789 0.2588 4.2907
mean 7 1 200 200 sigmoid sigmoid 0.6386 0.7717 0.2514 4.4358
mean 7 1,7 50 50 tanh sigmoid 0.6388 0.7781 0.2620 4.5034
mean 7 1,7 50 50 sigmoid sigmoid 0.6389 0.7769 0.2559 4.5189
mean 7 1 100 100 sigmoid tanh 0.6391 0.7791 0.2552 4.2870
mean 7 1,7 100 100 sigmoid sigmoid 0.6393 0.7698 0.2544 4.6631
mean 7 1 50 50 sigmoid tanh 0.6393 0.7816 0.2587 4.2633
mean 7 1,7 100 200 tanh sigmoid 0.6394 0.7755 0.2600 4.2514
mean 7 1 50 100 tanh tanh 0.6394 0.7793 0.2554 4.3517
mean 7 1 50 200 tanh tanh 0.6397 0.7807 0.2571 4.3981
mean 7 1 200 100 sigmoid sigmoid 0.6401 0.7735 0.2512 4.3004
mean 7 1,7 100 50 sigmoid tanh 0.6404 0.7794 0.2588 4.5337
mean 7 1 50 50 tanh sigmoid 0.6406 0.7812 0.2590 4.3318
mean 7 1 100 200 tanh sigmoid 0.6406 0.7796 0.2583 4.5587
mean 7 1,7 100 200 sigmoid sigmoid 0.6409 0.7733 0.2549 4.6409
mean 7 1,7 50 200 sigmoid tanh 0.6410 0.7777 0.2590 4.5368
mean 7 1,7 50 100 sigmoid tanh 0.6410 0.7781 0.2623 4.5006
mean 7 1,7 100 50 sigmoid sigmoid 0.6411 0.7744 0.2571 4.4001
mean 7 1,7 200 100 sigmoid sigmoid 0.6411 0.7764 0.2520 4.3376
mean 7 1 100 200 tanh tanh 0.6415 0.7843 0.2641 4.3208
mean 7 1 200 100 sigmoid tanh 0.6416 0.7817 0.2547 4.3338
mean 7 1,7 50 200 tanh sigmoid 0.6420 0.7833 0.2607 4.3400
mean 7 1,7 200 200 sigmoid sigmoid 0.6421 0.7719 0.2515 4.5642
mean 7 1 50 200 sigmoid tanh 0.6421 0.7879 0.2616 4.2482
mean 7 1,7 100 100 sigmoid tanh 0.6421 0.7831 0.2585 4.4045
mean 7 1 200 200 sigmoid tanh 0.6422 0.7844 0.2575 4.4159
mean 7 1,7 200 50 sigmoid sigmoid 0.6423 0.7767 0.2529 4.6468
mean 7 1 100 100 tanh tanh 0.6434 0.7864 0.2583 4.2447
mean 7 1 200 50 tanh sigmoid 0.6434 0.7811 0.2625 4.2329
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Table 12.8 – continued from the previous page

prep W w hid 1 hid 2 act 1 act 2 SRMSE MASE SMAPE SMAE

mean 3 1 100 100 sigmoid sigmoid 0.6436 0.7864 0.2565 4.2535
mean 7 1 50 200 tanh sigmoid 0.6439 0.7877 0.2606 4.3872
mean 3 1 50 200 sigmoid sigmoid 0.6441 0.7847 0.2592 4.2280
mean 7 1 100 200 sigmoid tanh 0.6443 0.7838 0.2583 4.3276
mean 3 1 50 100 sigmoid sigmoid 0.6446 0.7832 0.2599 4.3035
mean 3 1 200 50 sigmoid sigmoid 0.6447 0.7847 0.2563 4.2042
mean 7 1 50 50 tanh tanh 0.6447 0.7877 0.2682 4.3433
mean 7 1 200 100 tanh tanh 0.6450 0.7887 0.2627 4.2633
mean 3 1,7 50 200 sigmoid sigmoid 0.6451 0.7883 0.2625 4.0930
mean 7 1 100 50 tanh tanh 0.6451 0.7853 0.2603 4.4567
mean 7 1,7 100 100 tanh sigmoid 0.6455 0.7856 0.2606 4.5134
mean 7 1 200 200 tanh sigmoid 0.6456 0.7837 0.2597 4.4423
mean 7 1,7 50 50 tanh tanh 0.6458 0.7876 0.2599 4.5178
mean 3 1,7 50 100 sigmoid tanh 0.6460 0.7859 0.2632 4.1672
mean 7 1,7 100 200 sigmoid tanh 0.6461 0.7825 0.2634 4.4911
mean 7 1,7 50 100 tanh tanh 0.6462 0.7880 0.2641 4.6459
mean 7 1,7 50 200 tanh tanh 0.6462 0.7869 0.2609 4.6648
mean 7 1,7 100 200 tanh tanh 0.6462 0.7863 0.2675 4.4949
mean 7 1 200 100 tanh sigmoid 0.6464 0.7912 0.2705 4.3177
mean 7 1,7 200 50 sigmoid tanh 0.6467 0.7833 0.2574 4.4675
mean 7 1 200 50 tanh tanh 0.6470 0.7910 0.2673 4.4939
mean 7 1,7 100 100 tanh tanh 0.6470 0.7877 0.2656 4.5321
mean 3 1 50 50 sigmoid sigmoid 0.6471 0.7908 0.2604 4.2084
mean 3 1,7 50 50 sigmoid tanh 0.6472 0.7870 0.2606 4.1471
mean 7 1,7 100 50 tanh tanh 0.6472 0.7952 0.2692 4.4575
mean 3 1 50 100 sigmoid tanh 0.6474 0.7851 0.2584 4.3199
mean 3 1 50 100 tanh sigmoid 0.6474 0.7898 0.2689 4.1846
mean 3 1,7 50 100 tanh sigmoid 0.6475 0.7881 0.2685 4.3020
mean 3 1 50 50 sigmoid tanh 0.6478 0.7881 0.2544 4.2607
mean 7 1,7 100 50 tanh sigmoid 0.6481 0.7902 0.2610 4.3780
mean 3 1 50 50 tanh sigmoid 0.6486 0.7924 0.2674 4.2679
mean 3 1 200 100 sigmoid tanh 0.6492 0.7875 0.2634 4.2774
mean 3 1 100 50 sigmoid sigmoid 0.6494 0.7886 0.2645 4.2484
mean 3 1 100 200 sigmoid sigmoid 0.6498 0.7906 0.2589 4.2469
mean 7 1,7 200 200 sigmoid tanh 0.6499 0.7878 0.2622 4.3310
mean 3 1,7 50 50 sigmoid sigmoid 0.6500 0.7938 0.2657 4.3039
mean 3 1 50 200 sigmoid tanh 0.6504 0.7909 0.2602 4.2207
mean 3 1 100 200 sigmoid tanh 0.6506 0.7910 0.2613 4.2800
mean 3 1,7 50 100 sigmoid sigmoid 0.6511 0.7919 0.2657 4.4041
mean 7 1 200 200 tanh tanh 0.6511 0.7977 0.2689 4.4732
mean 3 1 50 100 tanh tanh 0.6512 0.7960 0.2645 4.3377
mean 3 1 50 200 tanh sigmoid 0.6516 0.7972 0.2685 4.0540
mean 3 1,7 50 50 tanh sigmoid 0.6519 0.7903 0.2668 4.4443
mean 3 1,7 100 50 sigmoid sigmoid 0.6521 0.7971 0.2681 4.1820
mean 3 1,7 50 200 sigmoid tanh 0.6523 0.7938 0.2626 4.2904
mean 7 1,7 200 100 sigmoid tanh 0.6525 0.7888 0.2681 4.6893
mean 3 1 100 50 sigmoid tanh 0.6533 0.7966 0.2595 4.0183
mean 3 1,7 50 200 tanh sigmoid 0.6533 0.7975 0.2681 4.5029
mean 3 1 50 200 tanh tanh 0.6542 0.7950 0.2631 4.0833
mean 3 1,7 50 200 tanh tanh 0.6543 0.7965 0.2649 4.3153
mean 3 1,7 100 200 sigmoid sigmoid 0.6545 0.7977 0.2669 4.4436
mean 3 1 100 100 tanh sigmoid 0.6549 0.8044 0.2705 4.0671
mean 3 1 100 200 tanh sigmoid 0.6551 0.8028 0.2761 4.2416
mean 7 1,7 200 50 tanh sigmoid 0.6551 0.7948 0.2636 4.6404
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prep W w hid 1 hid 2 act 1 act 2 SRMSE MASE SMAPE SMAE

mean 3 1,7 100 50 sigmoid tanh 0.6560 0.7954 0.2636 4.2206
mean 3 1 100 100 sigmoid tanh 0.6562 0.7975 0.2618 4.1519
mean 7 1,7 200 50 tanh tanh 0.6567 0.7998 0.2699 4.5545
mean 7 1,7 200 100 tanh tanh 0.6569 0.8043 0.2733 4.3728
mean 3 1 50 50 tanh tanh 0.6570 0.8007 0.2653 4.2259
mean 3 1 100 50 tanh sigmoid 0.6570 0.8052 0.2724 4.5261
mean 3 1,7 50 100 tanh tanh 0.6571 0.8031 0.2652 4.4914
mean 7 1,7 200 100 tanh sigmoid 0.6573 0.7980 0.2681 4.6422
none 7 1,7 100 200 sigmoid sigmoid 0.6573 0.7848 0.2484 5.1542
none 7 1,7 50 100 sigmoid sigmoid 0.6574 0.7934 0.2517 5.1388
none 7 1,7 50 50 sigmoid tanh 0.6577 0.8004 0.2552 4.7704
none 7 1,7 50 200 sigmoid tanh 0.6589 0.7986 0.2539 4.6493
mean 3 1,7 200 50 sigmoid tanh 0.6589 0.8082 0.2723 4.3378
mean 3 1 100 200 tanh tanh 0.6595 0.8121 0.2761 4.1224
mean 3 1,7 100 100 sigmoid tanh 0.6595 0.8041 0.2686 4.3347
none 3 1,7 50 50 sigmoid tanh 0.6596 0.8034 0.2564 4.8001
mean 3 1,7 100 200 tanh sigmoid 0.6597 0.8112 0.2751 4.4776
mean 3 1,7 50 50 tanh tanh 0.6602 0.8096 0.2683 4.4564
mean 3 1 200 50 sigmoid tanh 0.6603 0.8045 0.2635 4.0448
mean 3 1 200 200 sigmoid sigmoid 0.6604 0.8021 0.2636 4.3724
none 7 1,7 100 50 sigmoid tanh 0.6606 0.7998 0.2615 4.7032
none 7 1,7 50 200 tanh sigmoid 0.6608 0.7928 0.2515 5.1196
mean 3 1,7 100 100 sigmoid sigmoid 0.6608 0.8071 0.2629 4.5108
none 3 1,7 50 50 tanh tanh 0.6612 0.8037 0.2581 4.5688
none 7 1,7 50 100 sigmoid tanh 0.6614 0.8007 0.2553 4.6345
mean 3 1 100 50 tanh tanh 0.6614 0.8157 0.2822 4.2699
none 7 1,7 50 100 tanh sigmoid 0.6614 0.7966 0.2514 5.0823
mean 3 1 100 100 tanh tanh 0.6615 0.8118 0.2712 4.1436
mean 3 1,7 100 50 tanh sigmoid 0.6617 0.8058 0.2779 4.3613
none 7 1,7 50 50 sigmoid sigmoid 0.6617 0.7999 0.2525 5.0012
mean 3 1,7 200 100 sigmoid tanh 0.6618 0.8035 0.2719 4.3350
none 7 1,7 100 100 sigmoid sigmoid 0.6619 0.7942 0.2526 5.0345
none 3 1,7 50 100 sigmoid tanh 0.6620 0.8009 0.2550 4.8093
none 3 1,7 50 200 tanh sigmoid 0.6621 0.8000 0.2560 4.7283
mean 3 1,7 200 200 sigmoid tanh 0.6623 0.8086 0.2757 4.2748
none 7 1,7 50 200 sigmoid sigmoid 0.6625 0.7945 0.2532 5.0650
mean 3 1,7 100 100 tanh sigmoid 0.6626 0.8122 0.2769 4.4570
mean 3 1 200 100 tanh sigmoid 0.6626 0.8168 0.2782 4.1931
mean 7 1,7 200 200 tanh sigmoid 0.6627 0.8014 0.2641 4.5469
none 7 1,7 50 50 tanh tanh 0.6630 0.8048 0.2556 4.8104
mean 3 1 200 200 sigmoid tanh 0.6632 0.8096 0.2677 4.1586
none 7 1,7 200 50 sigmoid tanh 0.6632 0.8008 0.2603 4.9081
none 7 1,7 100 50 sigmoid sigmoid 0.6636 0.7986 0.2545 4.8608
none 3 1,7 100 50 sigmoid sigmoid 0.6639 0.8076 0.2579 4.7159
none 7 1,7 50 100 tanh tanh 0.6639 0.8044 0.2577 5.0466
mean 3 1,7 100 200 sigmoid tanh 0.6639 0.8132 0.2712 4.4227
none 3 1,7 50 200 tanh tanh 0.6642 0.8027 0.2609 4.4203
mean 3 1 200 100 sigmoid sigmoid 0.6642 0.8085 0.2668 4.4720
none 7 1,7 100 100 tanh sigmoid 0.6644 0.7965 0.2531 5.0068
none 7 1,7 50 200 tanh tanh 0.6645 0.7999 0.2538 4.6420
none 3 1,7 50 100 tanh sigmoid 0.6645 0.8023 0.2546 4.3851
none 7 1,7 200 50 sigmoid sigmoid 0.6648 0.7988 0.2567 4.9076
none 7 1 100 50 sigmoid tanh 0.6648 0.8122 0.2606 4.9581
none 7 1,7 200 100 sigmoid sigmoid 0.6649 0.7989 0.2560 4.8138
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prep W w hid 1 hid 2 act 1 act 2 SRMSE MASE SMAPE SMAE

none 7 1 50 50 sigmoid sigmoid 0.6649 0.8101 0.2572 4.8404
none 3 1,7 50 50 tanh sigmoid 0.6651 0.8051 0.2577 4.5621
none 3 1 50 200 sigmoid tanh 0.6656 0.8079 0.2591 4.1952
none 7 1,7 100 200 tanh sigmoid 0.6657 0.7978 0.2535 4.8453
mean 3 1,7 100 50 tanh tanh 0.6659 0.8149 0.2704 4.6022
none 3 1,7 50 100 sigmoid sigmoid 0.6661 0.8041 0.2531 4.9477
none 3 1,7 50 200 sigmoid tanh 0.6663 0.8120 0.2594 4.6685
none 3 1,7 100 100 tanh sigmoid 0.6666 0.8091 0.2628 5.2768
mean 3 1,7 200 100 sigmoid sigmoid 0.6670 0.8099 0.2760 4.2940
none 7 1,7 100 100 tanh tanh 0.6671 0.8108 0.2597 4.8309
none 7 1,7 100 50 tanh sigmoid 0.6672 0.7997 0.2539 5.0286
none 7 1,7 100 100 sigmoid tanh 0.6674 0.8050 0.2580 4.8289
none 7 1 100 100 sigmoid sigmoid 0.6676 0.8076 0.2568 4.9727
mean 7 1,7 200 200 tanh tanh 0.6677 0.8141 0.2717 4.4713
none 3 1,7 100 200 tanh sigmoid 0.6678 0.8126 0.2643 4.6446
mean 3 1,7 200 200 sigmoid sigmoid 0.6679 0.8147 0.2671 4.3496
mean 3 1,7 200 50 sigmoid sigmoid 0.6679 0.8194 0.2790 4.3870
none 7 1 50 100 sigmoid sigmoid 0.6681 0.8110 0.2572 4.9316
none 3 1 50 50 sigmoid tanh 0.6684 0.8124 0.2595 4.3342
none 7 1,7 50 50 tanh sigmoid 0.6685 0.8065 0.2547 5.0052
none 3 1,7 50 50 sigmoid sigmoid 0.6687 0.8100 0.2546 4.6597
none 7 1 50 100 sigmoid tanh 0.6687 0.8132 0.2615 4.6954
none 7 1 100 200 sigmoid tanh 0.6688 0.8135 0.2639 4.7043
none 7 1 100 100 sigmoid tanh 0.6690 0.8205 0.2635 4.5410
mean 3 1,7 100 100 tanh tanh 0.6692 0.8219 0.2818 4.0562
none 7 1 100 50 tanh sigmoid 0.6693 0.8112 0.2589 4.7877
none 7 1,7 100 50 tanh tanh 0.6699 0.8068 0.2579 4.8948
none 7 1 50 200 sigmoid sigmoid 0.6699 0.8123 0.2556 4.7741
none 7 1 50 50 tanh sigmoid 0.6700 0.8193 0.2604 4.9009
mean 3 1,7 100 200 tanh tanh 0.6700 0.8245 0.2830 4.4427
none 3 1 50 200 tanh sigmoid 0.6701 0.8061 0.2567 4.2916
none 7 1 50 50 sigmoid tanh 0.6701 0.8188 0.2626 4.5288
none 7 1 50 100 tanh sigmoid 0.6701 0.8139 0.2581 4.8769
none 3 1 100 200 tanh sigmoid 0.6703 0.8158 0.2620 4.5989
none 7 1,7 100 200 sigmoid tanh 0.6705 0.8115 0.2639 5.1302
none 3 1,7 100 100 sigmoid tanh 0.6706 0.8140 0.2626 4.5419
none 7 1 200 50 sigmoid sigmoid 0.6707 0.8109 0.2610 4.9643
none 3 1,7 200 100 sigmoid sigmoid 0.6707 0.8101 0.2589 4.7197
none 3 1,7 50 200 sigmoid sigmoid 0.6710 0.8096 0.2547 4.5170
none 3 1 50 100 sigmoid sigmoid 0.6712 0.8087 0.2544 4.2826
none 7 1,7 200 100 sigmoid tanh 0.6712 0.8091 0.2598 4.9249
none 7 1,7 200 200 tanh sigmoid 0.6714 0.8067 0.2600 4.8011
none 3 1,7 50 100 tanh tanh 0.6714 0.8142 0.2663 4.8587
none 7 1,7 200 200 sigmoid tanh 0.6715 0.8111 0.2603 4.7211
none 7 1 100 50 sigmoid sigmoid 0.6716 0.8173 0.2622 4.9709
none 7 1 200 200 sigmoid sigmoid 0.6716 0.8085 0.2557 4.7964
none 3 1 50 100 sigmoid tanh 0.6718 0.8140 0.2631 4.6755
none 7 1,7 100 200 tanh tanh 0.6720 0.8208 0.2671 4.6813
none 3 1 100 50 tanh sigmoid 0.6722 0.8166 0.2633 4.6014
none 3 1 50 200 sigmoid sigmoid 0.6722 0.8135 0.2586 4.2384
none 7 1,7 200 200 sigmoid sigmoid 0.6722 0.8019 0.2533 4.7803
none 3 1 50 50 sigmoid sigmoid 0.6722 0.8114 0.2570 4.5434
none 3 1,7 100 50 sigmoid tanh 0.6725 0.8094 0.2598 4.8181
none 3 1 50 100 tanh sigmoid 0.6726 0.8088 0.2572 4.7344
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none 7 1 50 200 sigmoid tanh 0.6729 0.8186 0.2619 4.8868
none 3 1 50 100 tanh tanh 0.6730 0.8175 0.2651 4.3701
none 3 1 50 50 tanh sigmoid 0.6733 0.8195 0.2606 4.6979
none 7 1 200 100 sigmoid tanh 0.6733 0.8205 0.2643 4.9660
none 7 1 200 50 tanh tanh 0.6734 0.8215 0.2654 4.9993
mean 3 1 200 200 tanh sigmoid 0.6735 0.8245 0.2846 4.2759
none 7 1 200 100 sigmoid sigmoid 0.6736 0.8176 0.2622 4.8267
none 3 1,7 100 50 tanh sigmoid 0.6738 0.8100 0.2609 4.6431
none 7 1 50 100 tanh tanh 0.6741 0.8208 0.2640 4.6645
none 3 1 50 200 tanh tanh 0.6741 0.8213 0.2643 4.5226
none 3 1,7 100 50 tanh tanh 0.6741 0.8233 0.2718 4.7460
none 3 1 100 50 tanh tanh 0.6744 0.8236 0.2663 4.2808
none 7 1 50 200 tanh tanh 0.6745 0.8269 0.2655 4.8394
none 7 1 200 50 sigmoid tanh 0.6748 0.8301 0.2683 4.8639
none 3 1,7 100 100 sigmoid sigmoid 0.6749 0.8181 0.2579 4.6922
none 3 1 50 50 tanh tanh 0.6750 0.8191 0.2635 4.5569
none 3 1 100 50 sigmoid sigmoid 0.6751 0.8142 0.2619 4.5889
mean 3 1 200 50 tanh tanh 0.6752 0.8318 0.2846 4.5640
none 7 1 50 200 tanh sigmoid 0.6753 0.8209 0.2603 5.1089
none 7 1 100 200 sigmoid sigmoid 0.6754 0.8187 0.2593 4.8629
none 3 1,7 200 50 sigmoid tanh 0.6755 0.8189 0.2641 4.9483
none 7 1 50 50 tanh tanh 0.6755 0.8236 0.2640 4.8446
mean 3 1 200 50 tanh sigmoid 0.6758 0.8224 0.2752 4.4911
none 7 1 100 50 tanh tanh 0.6758 0.8288 0.2658 4.8771
none 3 1 200 50 sigmoid tanh 0.6761 0.8253 0.2670 4.5192
mean 3 1 200 100 tanh tanh 0.6761 0.8389 0.2880 4.1262
none 3 1 100 50 sigmoid tanh 0.6763 0.8290 0.2673 4.5684
none 7 1 100 100 tanh sigmoid 0.6763 0.8212 0.2607 4.8355
none 3 1,7 100 200 tanh tanh 0.6765 0.8270 0.2744 4.4728
mean 3 1,7 200 100 tanh sigmoid 0.6766 0.8313 0.2834 4.2363
mean 3 1 200 200 tanh tanh 0.6767 0.8395 0.2908 4.3291
none 7 1 200 200 tanh sigmoid 0.6767 0.8225 0.2624 5.0380
none 7 1,7 200 100 tanh sigmoid 0.6769 0.8131 0.2598 4.7858
none 7 1 200 200 sigmoid tanh 0.6772 0.8213 0.2657 4.8747
none 3 1,7 200 50 sigmoid sigmoid 0.6776 0.8193 0.2630 4.7197
none 7 1 200 100 tanh sigmoid 0.6778 0.8276 0.2642 4.9858
none 3 1,7 100 100 tanh tanh 0.6778 0.8239 0.2722 4.5582
none 3 1 100 100 sigmoid tanh 0.6778 0.8234 0.2665 4.3858
none 3 1,7 200 200 sigmoid tanh 0.6783 0.8265 0.2689 4.6317
none 3 1,7 100 200 sigmoid sigmoid 0.6783 0.8208 0.2621 4.7606
none 7 1 100 200 tanh sigmoid 0.6785 0.8246 0.2609 5.1252
none 7 1,7 200 50 tanh tanh 0.6786 0.8210 0.2649 4.9215
none 3 1,7 100 200 sigmoid tanh 0.6790 0.8162 0.2617 4.6958
mean 3 1,7 200 50 tanh sigmoid 0.6791 0.8387 0.2826 4.3090
mean 3 1,7 200 100 tanh tanh 0.6791 0.8410 0.2898 4.4289
none 3 1 100 100 tanh sigmoid 0.6801 0.8274 0.2639 4.9600
none 3 1,7 200 200 sigmoid sigmoid 0.6806 0.8174 0.2601 5.1222
none 7 1,7 200 50 tanh sigmoid 0.6808 0.8119 0.2598 5.0428
mean 3 1,7 200 50 tanh tanh 0.6811 0.8369 0.2830 4.2412
none 7 1 100 100 tanh tanh 0.6812 0.8372 0.2705 5.0316
none 7 1,7 200 200 tanh tanh 0.6813 0.8309 0.2763 4.3786
none 3 1 100 200 sigmoid sigmoid 0.6814 0.8203 0.2606 4.6243
none 3 1 100 100 sigmoid sigmoid 0.6815 0.8267 0.2622 4.2719
mean 3 1,7 200 200 tanh sigmoid 0.6821 0.8405 0.2878 4.2674
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none 3 1 200 100 tanh sigmoid 0.6822 0.8332 0.2744 4.6371
none 3 1 200 100 sigmoid tanh 0.6823 0.8288 0.2703 4.5815
none 7 1 200 50 tanh sigmoid 0.6829 0.8325 0.2633 5.0731
none 7 1,7 200 100 tanh tanh 0.6832 0.8304 0.2678 5.1656
none 7 1 100 200 tanh tanh 0.6833 0.8359 0.2727 5.1120
none 3 1 100 200 tanh tanh 0.6835 0.8363 0.2799 4.3611
none 3 1 200 200 sigmoid tanh 0.6837 0.8319 0.2672 4.5338
none 3 1 100 200 sigmoid tanh 0.6839 0.8311 0.2700 4.4306
none 3 1 100 100 tanh tanh 0.6843 0.8344 0.2784 4.6438
none 3 1,7 200 100 sigmoid tanh 0.6844 0.8304 0.2758 4.5570
none 3 1,7 200 200 tanh sigmoid 0.6853 0.8345 0.2779 4.4728
none 3 1,7 200 100 tanh sigmoid 0.6859 0.8294 0.2733 4.8558
none 7 1 200 100 tanh tanh 0.6862 0.8415 0.2698 4.9113
none 3 1 200 200 sigmoid sigmoid 0.6864 0.8289 0.2631 4.3072
none 3 1 200 50 sigmoid sigmoid 0.6864 0.8328 0.2663 4.1429
none 3 1 200 200 tanh sigmoid 0.6867 0.8371 0.2714 4.7448
none 3 1 200 100 sigmoid sigmoid 0.6871 0.8310 0.2688 4.3116
none 3 1,7 200 50 tanh sigmoid 0.6906 0.8292 0.2667 4.4576
none 7 1 200 200 tanh tanh 0.6911 0.8459 0.2747 4.8603
none 3 1 200 200 tanh tanh 0.6927 0.8517 0.2864 4.8255
none 3 1 200 100 tanh tanh 0.6928 0.8451 0.2814 4.6350
none 3 1 200 50 tanh sigmoid 0.6933 0.8355 0.2686 4.2931
none 3 1,7 200 100 tanh tanh 0.6933 0.8474 0.2811 5.4386
mean 3 1,7 200 200 tanh tanh 0.6948 0.8647 0.2982 4.5443
none 3 1,7 200 50 tanh tanh 0.6972 0.8480 0.2792 4.6816
none 3 1,7 200 200 tanh tanh 0.6974 0.8568 0.2917 4.9079
none 3 1 200 50 tanh tanh 0.7026 0.8562 0.2821 4.8539

des 7 1 50 100 sigmoid tanh 0.7326 0.8984 0.2936 4.4774
des 7 1,7 50 200 sigmoid tanh 0.7338 0.9000 0.2956 4.6556
des 7 1 100 50 sigmoid sigmoid 0.7343 0.8970 0.2899 4.5121
des 7 1 50 200 sigmoid sigmoid 0.7345 0.8951 0.2861 4.5138
des 7 1 50 50 sigmoid tanh 0.7349 0.9028 0.2921 4.4989
des 7 1,7 50 200 sigmoid sigmoid 0.7360 0.9001 0.2973 4.6035
des 7 1,7 50 50 sigmoid sigmoid 0.7361 0.9022 0.2965 4.5307
des 7 1 50 50 sigmoid sigmoid 0.7366 0.9025 0.2907 4.4748
des 7 1 100 100 sigmoid sigmoid 0.7367 0.9038 0.2914 4.5028
des 7 1 50 100 sigmoid sigmoid 0.7369 0.8977 0.2906 4.5007
des 7 1 50 200 sigmoid tanh 0.7372 0.9055 0.2975 4.7472
des 7 1,7 50 100 sigmoid tanh 0.7374 0.9069 0.2945 4.4318
des 7 1 100 200 sigmoid tanh 0.7374 0.9033 0.2952 4.2983
des 7 1 100 50 sigmoid tanh 0.7374 0.9005 0.2936 4.4371
des 7 1 100 200 sigmoid sigmoid 0.7376 0.9026 0.2938 4.5899
des 7 1 50 200 tanh tanh 0.7378 0.9083 0.2943 4.6387
des 7 1,7 50 50 tanh tanh 0.7380 0.9079 0.3005 4.6975
des 7 1,7 50 50 sigmoid tanh 0.7382 0.9065 0.3017 4.5516
des 7 1,7 50 200 tanh sigmoid 0.7386 0.9100 0.2982 4.5472
des 7 1,7 100 100 sigmoid sigmoid 0.7387 0.9080 0.2963 4.6514
des 7 1 100 100 sigmoid tanh 0.7388 0.9085 0.2957 4.5183
des 7 1 100 50 tanh tanh 0.7389 0.9098 0.2966 4.3370
des 7 1,7 50 100 sigmoid sigmoid 0.7390 0.9024 0.2951 4.3818
des 7 1,7 100 50 sigmoid sigmoid 0.7391 0.9043 0.2976 4.7747
des 7 1 200 200 sigmoid sigmoid 0.7397 0.9089 0.2970 4.6290
des 7 1 200 50 sigmoid tanh 0.7404 0.9096 0.2951 4.5071
des 7 1,7 100 200 sigmoid tanh 0.7409 0.9128 0.3035 4.5849
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des 7 1 100 100 tanh sigmoid 0.7412 0.9143 0.2937 4.6776
des 7 1 200 50 sigmoid sigmoid 0.7413 0.9110 0.2929 4.5654
des 7 1 50 50 tanh sigmoid 0.7420 0.9091 0.2914 4.5510
des 7 1,7 50 100 tanh sigmoid 0.7420 0.9119 0.2977 4.7511
des 7 1,7 50 200 tanh tanh 0.7422 0.9142 0.2998 4.9729
des 7 1,7 200 50 sigmoid tanh 0.7426 0.9127 0.3092 4.4379
des 7 1 100 200 tanh tanh 0.7428 0.9194 0.3027 4.4775
des 7 1 50 100 tanh tanh 0.7428 0.9129 0.2971 4.4503
des 7 1 50 50 tanh tanh 0.7431 0.9119 0.2981 4.7444
des 7 1 200 100 sigmoid sigmoid 0.7432 0.9143 0.2964 4.4946
des 7 1,7 200 200 sigmoid sigmoid 0.7433 0.9115 0.3012 4.5014
des 7 1 100 100 tanh tanh 0.7435 0.9169 0.3033 4.4084
des 7 1,7 100 50 sigmoid tanh 0.7436 0.9126 0.3000 4.5443
des 7 1 200 100 sigmoid tanh 0.7441 0.9162 0.2968 4.6982
des 7 1,7 100 100 sigmoid tanh 0.7444 0.9172 0.3011 4.4319
des 7 1 200 200 sigmoid tanh 0.7445 0.9178 0.3002 4.2875
des 7 1,7 200 50 sigmoid sigmoid 0.7445 0.9133 0.3053 4.7627
des 7 1 200 50 tanh tanh 0.7447 0.9171 0.3002 4.5348
des 7 1 50 200 tanh sigmoid 0.7448 0.9163 0.2948 4.3905
des 7 1 100 200 tanh sigmoid 0.7448 0.9161 0.2998 4.6139
des 7 1,7 50 50 tanh sigmoid 0.7448 0.9179 0.2996 4.7110
des 7 1 200 100 tanh tanh 0.7451 0.9193 0.3036 4.4406
des 7 1 50 100 tanh sigmoid 0.7462 0.9171 0.2953 4.5752
des 7 1,7 100 200 tanh sigmoid 0.7466 0.9179 0.3006 4.7750
des 7 1,7 100 200 sigmoid sigmoid 0.7466 0.9177 0.3000 4.6225
des 7 1,7 50 100 tanh tanh 0.7466 0.9204 0.3111 4.7409
des 7 1,7 200 100 sigmoid sigmoid 0.7470 0.9158 0.3025 4.5909
des 7 1,7 100 200 tanh tanh 0.7470 0.9231 0.3079 4.7602
des 3 1 50 50 sigmoid tanh 0.7471 0.9209 0.3116 4.5684
des 7 1,7 200 200 sigmoid tanh 0.7476 0.9196 0.3054 4.5565
des 7 1,7 100 50 tanh tanh 0.7480 0.9211 0.3062 4.6917
des 7 1 200 100 tanh sigmoid 0.7486 0.9253 0.2951 4.7033
des 7 1,7 100 100 tanh tanh 0.7487 0.9249 0.3147 5.0707
des 7 1 100 50 tanh sigmoid 0.7492 0.9172 0.2917 4.5789
des 7 1,7 100 50 tanh sigmoid 0.7494 0.9194 0.3023 4.7493
des 3 1,7 50 50 sigmoid tanh 0.7498 0.9222 0.3106 4.5340
des 7 1,7 200 100 sigmoid tanh 0.7500 0.9263 0.3082 4.5191
des 7 1 200 200 tanh tanh 0.7500 0.9234 0.3097 4.8229
des 3 1,7 50 50 sigmoid sigmoid 0.7508 0.9252 0.3104 4.6459
des 3 1 50 200 sigmoid tanh 0.7511 0.9372 0.3166 4.4460
des 7 1 200 50 tanh sigmoid 0.7511 0.9258 0.2964 4.3211
des 3 1 50 100 sigmoid sigmoid 0.7514 0.9266 0.3082 4.5031
des 3 1 50 50 sigmoid sigmoid 0.7522 0.9263 0.3059 4.5057
des 3 1,7 50 200 sigmoid tanh 0.7523 0.9299 0.3115 4.5026
des 3 1 50 100 sigmoid tanh 0.7538 0.9331 0.3140 4.3709
des 3 1 50 200 sigmoid sigmoid 0.7549 0.9303 0.3001 4.2435
des 7 1 200 200 tanh sigmoid 0.7557 0.9340 0.3009 4.7624
des 3 1 50 50 tanh sigmoid 0.7560 0.9305 0.3117 4.5868
des 3 1 50 50 tanh tanh 0.7562 0.9378 0.3148 4.5694
des 3 1,7 50 100 sigmoid tanh 0.7565 0.9306 0.3079 4.4842
des 7 1,7 200 200 tanh tanh 0.7574 0.9396 0.3262 4.7424
des 3 1,7 100 200 sigmoid tanh 0.7575 0.9329 0.3182 4.6615
des 3 1,7 50 50 tanh sigmoid 0.7575 0.9342 0.3149 4.8885
des 3 1 50 200 tanh sigmoid 0.7577 0.9386 0.3124 4.4181
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des 7 1,7 200 100 tanh sigmoid 0.7577 0.9292 0.3095 4.7087
des 3 1 50 100 tanh sigmoid 0.7582 0.9369 0.3112 4.4732
des 7 1,7 200 50 tanh tanh 0.7584 0.9333 0.3102 4.9906
des 3 1,7 50 200 tanh tanh 0.7584 0.9407 0.3196 4.5704
des 3 1 100 50 sigmoid tanh 0.7584 0.9345 0.3213 4.5840
des 3 1,7 50 100 tanh tanh 0.7586 0.9353 0.3120 4.7226
des 7 1,7 200 200 tanh sigmoid 0.7590 0.9359 0.3090 4.4563
des 3 1,7 50 200 sigmoid sigmoid 0.7590 0.9352 0.3109 4.6855
des 3 1 100 50 tanh sigmoid 0.7607 0.9425 0.3163 4.3514
des 7 1,7 100 100 tanh sigmoid 0.7611 0.9396 0.3039 4.7126
des 3 1,7 50 200 tanh sigmoid 0.7613 0.9418 0.3133 4.7293
des 3 1,7 100 50 sigmoid tanh 0.7618 0.9402 0.3170 4.6383
des 3 1 50 100 tanh tanh 0.7619 0.9423 0.3213 4.6313
des 3 1,7 100 100 sigmoid tanh 0.7620 0.9429 0.3191 4.1822
des 3 1 100 200 sigmoid tanh 0.7621 0.9455 0.3115 4.4096
des 3 1,7 100 50 sigmoid sigmoid 0.7621 0.9352 0.3101 4.6160
des 3 1,7 50 100 tanh sigmoid 0.7622 0.9464 0.3178 4.5211
des 3 1,7 50 50 tanh tanh 0.7622 0.9438 0.3180 4.8608
des 3 1 100 50 sigmoid sigmoid 0.7624 0.9367 0.3082 4.5171
des 3 1 50 200 tanh tanh 0.7628 0.9475 0.3170 4.2732
des 3 1 100 100 sigmoid tanh 0.7633 0.9486 0.3143 4.4128
des 3 1 200 200 sigmoid tanh 0.7633 0.9481 0.3207 4.2824
des 7 1,7 200 100 tanh tanh 0.7638 0.9455 0.3171 4.4955
des 3 1,7 50 100 sigmoid sigmoid 0.7640 0.9375 0.3105 4.8011
des 3 1,7 100 100 sigmoid sigmoid 0.7640 0.9392 0.3089 4.6450
des 3 1,7 100 50 tanh sigmoid 0.7645 0.9447 0.3210 4.6117
des 3 1,7 100 200 sigmoid sigmoid 0.7653 0.9423 0.3158 4.4863
des 3 1 200 100 sigmoid sigmoid 0.7656 0.9474 0.3149 4.2482
des 3 1,7 100 50 tanh tanh 0.7658 0.9529 0.3225 4.7583
des 3 1 200 50 sigmoid sigmoid 0.7669 0.9484 0.3112 4.1700
des 3 1,7 100 100 tanh sigmoid 0.7676 0.9549 0.3209 4.4228
des 3 1 100 100 sigmoid sigmoid 0.7677 0.9449 0.3147 4.1730
des 3 1,7 200 200 sigmoid sigmoid 0.7679 0.9480 0.3229 4.9257
des 3 1,7 200 100 sigmoid tanh 0.7688 0.9500 0.3305 4.8873
des 3 1,7 100 200 tanh sigmoid 0.7696 0.9566 0.3260 4.4431
des 3 1 200 50 sigmoid tanh 0.7696 0.9516 0.3245 4.1714
des 3 1 100 100 tanh tanh 0.7705 0.9549 0.3259 4.3631
des 3 1,7 100 100 tanh tanh 0.7707 0.9540 0.3253 4.9396
des 3 1,7 200 200 sigmoid tanh 0.7708 0.9583 0.3241 5.0155
des 3 1 100 200 tanh tanh 0.7709 0.9567 0.3255 4.1881
des 3 1 100 200 sigmoid sigmoid 0.7711 0.9520 0.3113 4.2387
des 3 1 100 100 tanh sigmoid 0.7712 0.9591 0.3257 4.3101
des 3 1 100 200 tanh sigmoid 0.7723 0.9592 0.3198 4.0241
des 3 1,7 200 50 sigmoid sigmoid 0.7725 0.9519 0.3220 4.7144
des 3 1,7 200 100 sigmoid sigmoid 0.7727 0.9559 0.3212 4.4399
des 3 1 200 200 sigmoid sigmoid 0.7729 0.9518 0.3177 4.6238
des 7 1,7 200 50 tanh sigmoid 0.7729 0.9488 0.3060 4.7208
des 3 1,7 200 50 sigmoid tanh 0.7757 0.9566 0.3257 5.0847
des 3 1,7 100 200 tanh tanh 0.7768 0.9662 0.3285 4.7878
des 3 1,7 200 100 tanh sigmoid 0.7785 0.9670 0.3342 4.5324
des 3 1 200 100 sigmoid tanh 0.7798 0.9657 0.3235 4.5785
des 3 1 200 100 tanh tanh 0.7802 0.9697 0.3313 4.7621
des 3 1,7 200 50 tanh sigmoid 0.7805 0.9666 0.3334 4.7214
des 3 1 100 50 tanh tanh 0.7811 0.9714 0.3264 4.3774
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des 3 1 200 50 tanh sigmoid 0.7811 0.9674 0.3231 4.4594
des 3 1 200 100 tanh sigmoid 0.7812 0.9723 0.3257 4.2226
des 3 1 200 200 tanh sigmoid 0.7813 0.9692 0.3207 4.2644
des 3 1 200 50 tanh tanh 0.7833 0.9711 0.3322 4.4318
des 3 1,7 200 200 tanh sigmoid 0.7852 0.9762 0.3298 4.5425
des 3 1,7 200 50 tanh tanh 0.7863 0.9795 0.3400 4.5396
des 3 1,7 200 100 tanh tanh 0.7863 0.9767 0.3274 5.0146
des 3 1 200 200 tanh tanh 0.7954 0.9911 0.3394 4.3520
des 3 1,7 200 200 tanh tanh 0.7964 0.9953 0.3401 4.9326

”none”, ”mean” and ”des” indicate the type of preprocessing used (no preprocessing, mean
adjustment, deseasonalisation.
W marks whether weather data was included for training purposes.
w indicate which of the previous days were used, 1 means the previous day, 1,7 means the
previous day and the corresponding day from previous week.
”hid 1” and ”hid 2” indicate the number of neurons in the first and the second hidden layer.
”act 1” and ”act 2” indicate the activation function of neurons in the first and the second hidden
layer.
Results are sorted in ascending order by SRMSE.

The experimental results of SLNs are summarised in Table 12.7. As we can
see, mean adjustment is the most successful preprocessing method, followed by
no preprocessing (only standardisation) and deseasonalisation as the worst. Also
including the weather data is not beneficial. Larger window size helps the accuracy,
together with smaller number of hidden neurons (50 or 100) and sigmoid activation
function. The best and worst forecasts of the best performing SLN are summarised
in Figure 12.5.
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Figure 12.5: Best and worst load profile forecasts of the best SLN

Table 12.8 contains the experimental results of MLN with two hidden layers.
Mean adjustment is the best preprocessing method, with no preprocessing (only
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standardisation) coming second and deseasonalisation as in the last place. Weather
data again does not help produce more accurate forecasts, while larger window size
yields only negligible improvements. It is best to use smaller number of neurons
(50) in the first hidden layer followed by larger (100 or 200) number of neurons in
the second hidden layer. Sigmoid activation function is again the better choice.

Figure 12.6 compares the best and worst forecasts of the best performing MLN
with two hidden layers.
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Figure 12.6: Best and worst load profile forecasts of the best MLN with one hidden
layer

Overall neural networks seem less sensitive to hyperparameter tuning compared
to ES, ARMA or ARMAX models. For example all networks are better than a
naive forecasting method (MASE < 1). Also there are no MLN with unusually
large SMAE.

12.5 Time complexity

In this section we summarize the approximate time complexity of the entirety
of one monthly cross-validation process with respect to the type of model. The
experiments were conducted using Intel Core i74712MQ processor with 8 GB of
RAM. The listed times also include the time needed for all the preprocessing
methods of a particular model. Entries in the following list are ordered from the
fastest to the slowest:

(1): 10-20 minutes for SLNs

(2): 10-30 minutes for ES models

(3): 10-30 minutes for MLNs with 2 hidden layers
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(4): 10-60 minutes for ARMA models

(5): 10-360 minutes (six hours) for ARMAX models

12.6 Ensemble learning

d
e
s
,m

ln

d
e
s
,s

ln

d
e
s
,a

rm
a

n
o
n
e
,s

ln

n
o
n
e
,m

ln

w
a
,h

a
,e

s

w
a
,h

a
,a

rm
a

h
a
,d

e
s
,w

re
g
s
,a

rm
a
x

h
a
,w

re
g
s
,a

rm
a
x

h
a
,a

rm
a

m
e
a
n
,s

ln

m
e
a
n
,m

ln

h
a
,d

e
s
,b

c
,e

s

h
a
,d

e
s
,e

s

h
a
,b

c
,e

s

h
a
,d

e
s
,b

c
,a

rm
a

h
a
,e

s

h
a
,fre

g
s
,w

re
g
s
,a

rm
a
x

h
a
,fre

g
s
,a

rm
a
x

h
a
,d

e
s
,a

rm
a

h
a
,b

c
,fre

g
s
,w

re
g
s
,a

rm
a
x

des,mln
des,sln
des,arma
none,sln
none,mln
wa,ha,es
wa,ha,arma
ha,des,wregs,armax
ha,wregs,armax
ha,arma
mean,sln
mean,mln
ha,des,bc,es
ha,des,es
ha,bc,es
ha,des,bc,arma
ha,es
ha,fregs,wregs,armax
ha,fregs,armax
ha,des,arma
ha,bc,fregs,wregs,armax

0.75

0.8

0.85

0.9

0.95

1

Figure 12.7: Clustering of models according to the absolute correlation of their
residuals ”es”, ”arma”, ”armax”, ”sln”, ”mln” indicate the type of model (ES, ARMA,

ARMAX, SLN, MLN with two hidden layers).

”none”, ”mean”, ”des” describe the preprocessing methods for neural networks.

”wa”, ”ha”, ”des”, ”bc”, ”wregs”, ”fregs” describe the preprocessing methods for statistical

models (ES, ARMA, ARMAX).

Ward clustering [93] with unsquared Euclidean distance was used to produce the clusters.

Produced using [94].

Ensemble learning is the practice of taking multiple algorithms and combining
their output. If the individual outputs are combined appropriately, the perfor-
mance of the ensemble is in many cases better than the performance of individual
members [95].

There are two main approaches to ensemble learning: static ensembles and
dynamic ensembles [96]. In static ensembles the output of the individual algo-
rithms is combined in a way that does not include the input, e.g. in ensemble
averaging the outputs of the ensemble members are combined in a linear fashion
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Table 12.9: Experimental results for ensemble averaging

models SRMSE MASE SMAPE SMAE

ha,es

0.6157 0.7427 0.2382 4.3869
des,arma

ha,des,arma
none, mln

mean, mln

ha,des,es

0.6157 0.7440 0.2388 4.4961
des,arma

wa,ha,arma
none, mln

mean, mln

ha,es

0.6158 0.7414 0.2375 4.4245
ha,des,es
des,arma

none, mln
mean, mln

ha, des, es

0.6159 0.7365 0.2345 4.4205
ha, arma

mean, sln
none, mln

mean, mln

ha,arma

0.6159 0.7380 0.2352 4.3828
ha,des,arma

mean,sln
none,mln

mean,mln

ha,des,es

0.6160 0.7411 0.2369 4.4848
wa,ha,arma

ha,wregs,armax
none,mln

mean,mln

ha,arma

0.6162 0.7378 0.2352 4.4239
ha,des,arma

none,mln
mean,mln

”es”, ”arma”, ”armax”, ”sln”, ”mln” indicate the type of model
(ES, ARMA, ARMAX, SLN, MLN with two hidden layers).
”none”, ”mean” describe the preprocessing methods (only stan-

dardisation, mean adjustment) for neural networks (SLN, MLN)
”wa”, ”ha”, ”des”, ”wregs” describe the preprocessing methods

(week adjustment, hour adjustment, deseasonalisation) for statistical
models (ES, ARMA, ARMAX).
Results are sorted in ascending order by SRMSE.
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using some type of weighting scheme. On the other hand, in dynamic ensem-
bles the input is directly involved in the mechanism that combines the outputs
of ensemble members. For example, mixture of experts combines the ensemble
members nonlinearly via training an additional neural network on their outputs.

Table 12.10: Experimental results for the best combination of
models

models SRMSE MASE SMAPE SMAE

none, mln
0.6291 0.7530 0.2390 4.6818

mean, mln

”mln” means MLN with two hidden layers.
”none”, ”mean” describe the preprocessing methods for neu-

ral networks.

In this thesis we use ensemble averaging with weights equal to 1/k, where k
is the number of ensemble members. The motivation behind ensemble averaging
is that when the ensemble members make different errors, the errors can be
averaged out. We use the correlation of residuals of two models as the measure
of the difference between their errors. As their correlation approaches 1, the
two models make increasingly similar errors. The ideal ensemble would contain
members with the lowest possible correlation with each other without sacrificing
the accuracy of members. For this reason we chose the top five ES, ARMA,
ARMAX models and the best SLN and MLN for each of the three preprocessing
methods and constructed their correlation heatmap in Figure 12.7.
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Figure 12.8: Best and worst load profile forecasts of the best ensemble

We chose the two most accurate ES, ARMA, ARMAX, SLN and MLN models,
two most accurate models from each group in Figure 12.7 and also some less
correlated models from groups in Figure 12.7 and tried every combination of up
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to five models, i.e. k = 2, 3, 4, 5. The top seven combinations are presented in
Figure 12.9.

We can conclude that the combination of one MLN trained on mean-adjusted
data and one MLN trained on standardised data is the most successful as it appears
in all seven of the best combinations. The accuracy of an ensemble composed only
of these two models is summarised in Table 12.10. All combinations also archived
better performance than their respective members did individually. Figure 12.8
compares the best and worst forecasts of the best performing ensemble.

112



13. Conclusion

In this thesis we focused on forecasting daily energy load profiles of a family house.
Our other objectives were describing the motivation and theoretical background
behind various forecasting models, comparing the accuracy of various imputation
methods and the influence of a number of preprocessing techniques on the accuracy
of load profile forecasting.

We tested a variety of imputation methods by taking a portion of our data
without any missing observations, artificially creating missing observations accord-
ing to their distribution in the entire dataset and then imputing this modified
portion of the data. The results indicate clear dominance of moving average
smoothers over all other methods including various types of interpolation and
ARMA models.

From among many preprocessing techniques under consideration the hour
adjustment performs the best for ES, ARMA and also ARMAX models. For
ARMA models also deseasonalisation improves the performance. However, for
ARMAX models using Fourier regression, deseasonalisation is the worst prepro-
cessing technique as it decreases their performance the most. Also for ARMAX
models the best type of regression is Fourier regression beating weather regression
and their combination. For SLN and MLN with two hidden layers the best type
of preprocessing method is mean adjustment, followed by no preprocessing (only
standardisation) and lastly deseasonalisation.

Regarding the comparison of preprocessing methods across different types of
models, deseasonalisation is better than Fourier regression when modelling multi-
ple seasonalities of energy consumption data, as evidenced by the performance of
ARMA models using deseasonalisation versus the performance of ARMAX models
using Fourier regression.

Weather data is not necessary for improving accuracy of models. However,
the data does not include energy consumption for heating. On the other hand,
south of France is relatively warm even throughout winter (compared to Prague),
so the question of whether the weather data influence on energy consumption
forecasting remains open.

When comparing the performance of the best model from each category, going
from the most to the least accurate the order is ARMA trained on hour-adjusted,
deseasonalised time series, mean-adjusted MLN, mean-adjusted SLN, ARMAX
using Fourier regression trained on hour-adjusted data, hour-adjusted ES. How-
ever, there are multiple SLNs (3) and mainly MLNs (16) that are more accurate
than both the second best ARMA model and the best ARMAX model. It is
also important to note that SLNs and MLNs are less sensitive to preprocessing
methods and parameter tuning than ES, ARMA and ARMAX models, as no
neural network performed worse that a naive forecasting method. There were also
no unpredictable flukes in terms of SMAE.

We also tried to improve the accuracy of the models by combining them into
ensembles. This effort proved to be successful as many ensembles improved the
accuracy measures of every individual member. The best combinations included
mainly hour-adjusted ES models, deseasonalised ARMA models, hour-adjusted de-
seasonalised ARMA models, MLNs with only standardisation and mean-adjusted
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MLNs.

13.1 Future work

A number of topics related to load profile forecasting that this thesis touched
upon have been left out due to lack of time.

First of all, there are statistical and machine learning models that we did not
experiment with. For example, a combination of ES and ARMA models designed
to handle complex seasonalities [97] might be suitable for multiple seasonalities
of energy consumption data. A different approach might be to use a long-short
term memory network [98], a type of neural network that proved to be successful
when forecasting time series.

One advantage of state-space-based statistical models, such as ES, ARMA and
ARMAX, is that they are able to produce prediction intervals together with fore-
casts. Machine learning models are also capable of producing prediction intervals,
although through methods different from state-space models. An optimisation
algorithm designed to utilise load forecasts might benefit from those prediction
intervals. It is also possible that, apart from the accuracy of the models, the
width of prediction intervals might be an important criterion to consider.

Although we did examine the forecasting ability of ensembles of models, we
did so in a static manner by combining the models into ensembles only after each
of them had been estimated individually. A more dynamic approach would be to
coordinate the respective estimation procedure of individual ensemble members
based on their collective performance as en ensemble. For example, one can
simultaneously train multiple neural networks in an ensemble by coordinating
their training procedured based on the correlation of their errors [99]. The aim is
to produce an ensemble of networks with negatively correlated errors to promote
specialisation and cooperation. Another approach might be to train ensembles
via genetic algorithms.

The scarcity of high quantity and quality energy consumption data has pre-
vented us from comparing models across different datasets. When such data be-
comes available it would be interesting to investigate how do the results archived
in this thesis translate to a different dataset.

In the meantime one can try to generate more data artificially and compare the
forecasting abilities and adaptability to real-world conditions of models trained
on artificially generated data with those trained on real-world data.

When high quantity data is not available, a model that is able to produce
reasonable forecasts from a small dataset might be preferable, especially in practice,
to a highly accurate model requiring a lot of observation. For example, in real-
life scenarios we expect the model to have access to only a couple of days or
weeks worth of observations. For this reason one might examine the evolution
of performance and adaptability of models as they are presented with new data,
starting from datasets with small number of observations and gradually increasing
the size of datasets.

It is also important to note that real weather data that was used in this thesis
may have introduced unwanted bias to forecasts. It can be argued that one should
opt for using historical forecasts of weather data instead of real weather data.
The comparison between forecasts using real weather data and forecasts using
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historical weather forecasts may shed some light on the significance of weather in
energy consumption forecasting.
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List of Abbreviations

ACF . . . . . autocorrelation function

ADAM . . . . adaptive moment estimation

API . . . . . . application programming interface

AR . . . . . . autoregressive

ARIMA . . . autoregressive integrated moving average

ARIMAX . . autoregressive integrated moving average with exogenous inputs

ARMA . . . . autoregressive moving average

ES . . . . . . . exponential smoothing

LOESS . . . . local regression

MAE . . . . . mean absolute error

MAPE . . . . mean absolute percentage error

MASE . . . . mean absolute scaled error

MLN . . . . . multilayer (neural) network

MSE . . . . . mean squared error

RMSE . . . . root mean squared error

SARIMA . . seasonal autoregressive integrated moving average

SARIMAX . seasonal autoregressive integrated moving average with exoge-
nous inputs

SMAE . . . . scaled mean absolute error

SMAPE . . . scaled mean absolute percentage error

SRMSE . . . scaled root mean squared error

STL . . . . . . seasonal-trend decomposition procedure based on LOESS
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Attachments

The DVD attached to this thesis contains two folders and a file info.txt contain-
ing this information. The first folder data contains energy consumption data and
weather data used for training and testing the models. The results of experiments
are also located in this folder. The second folder code contains source code used
for data preparation, imputation and experiments.

Data

All the data is split into several folders:

� raw contains raw energy consumption data

� weather contains raw weather data obtained via [31]

� imp contains the results of various imputation methods

� train test contains preprocessed data split into training and testing sets
ready to be used in experiments

� es contains the results for ES models and monthly cross-validation

� es week contains the results for ES models and weekly cross-validation

� arma contains the results for ARMA models

� armax contains the results for ARMAX models

� sln contains the results for MLN with one hidden layer

� mln contains the results for MLN with two hidden layers

� ensemble contains the results for ensemble learning

Source code

Source code is divided into following files:

� dataprep.py contains functions used for data manipulation and preparation

� imputation.py contains functions for imputation

� performance.py contains functions for performance measures and perfor-
mance evaluation

� workspace.py serves as a backbone of the whole program and utilizes
dataprep.py, imputation.py and performance.py in order to download
weather data, impute energy consumption data, prepare training and testing
sets, evaluate the results of experiments and build tables and plots.

� dataprep.R contains functions used for loading and saving data for R scripts
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� es.R sets up ES models and performs experiments

� arma.R sets up ARMA and ARMAX models and performs experiments

� mln.py sets up MLN models and performs experiments
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