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Introduction

In modern software engineering, performance awareness has become a first class
concern. The systems deal with growing amounts of data, with higher emphasis
on the real-time processing and with more limited environments for embedded
solutions, while we are reaching hardware limitations. It is the responsibility of
the developer to assure that his code will not only work correctly, but will also
be optimized and fast enough to meet these expectations.

The actual performance-aware programming can often be difficult and prob-
lematic for the developer, who is forced to make an assumptions about the speed
of his program. The performance in general is, however, a dynamic and not a
static feature. Even though it is possible to analyze the algorithm complexity at
design-time, the result will always be only an approximation, as it works with
abstract elementary computational steps. In reality, the programs often behave
in a different way due to the influence of CPUE] cache, memory locality, 1/ OE]
operations, parallelism and many other factors.

The only way how to actually find out if given implementation is fast enough
— possibly faster than some other variant — is through a thorough testing process
covering all the possible inputs and executed in the actual production environ-
ment. This process is complicated, costly, and should be repeated after every
change in the code, as it can have a previously unexpected impact. It can be
partially automatized by introducing performance constraints to the classic unit
tests. There is an active research in this area, e.g. [1I 2] 3].

Considering a common case where a programmer needs to decide which im-
plementation option of some functionality to use, the discussed solution has some
major downsides. First, he needs to design the tests, select test data, execute
them and make decisions based on the results, which is a non-negligible effort,
especially in a common software engineering process. Second, the decision that
is made is final — once executed, the program will always have to use only that
selected implementation. There are many cases where the performance of the
implementations varies for different inputs or in different environments, and we
would like our application to always use the best possible implementation, in
other words, to adapt its execution to these conditions.

To address these problems and to simplify the performance-aware develop-
ment in general, we propose a completely new approach in development, where
the programmer identifies the implementation options of a function in the code
using a programming language construct. At execution, the system tracks the
performance of the implementations involved and makes a new decision for each
run of the function based on the inputs and current trends in the run times.

The goal of this thesis is to design a framework that would allow this way of
development and to implement its prototype. It will be tested in various scenar-
ios common for many applications where the approach might be beneficial, and
the actual advantages and problems of proposed solution will be evaluated. The
target platform of both the design and the implementation is the Scala program-
ming language ([4]), because it has a very flexible syntax suitable for creating

LCentral Processing Unit
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language-like constructs while being statically typed with both object-oriented
and functional foundations. In addition, it compiles to the Java bytecode and
runs on the JVME], which makes it portable and open to the variety of Java-based
libraries.

Many frameworks for data processing and similar tasks where the adaptation
could be employed are either implemented or have interfaces in Scala, mainly for
its high expressive powers. An example can be the Spark framework [5], which
will be used in the evaluation process.

Structure of the text

In the first chapter of this work, the Scala language features that are not common
among current object-oriented programming languages are introduced. Most of
them will be mentioned and used in further chapters, so it serves as a brief intro-
duction for a reader who knows basic object-oriented and functional languages,
but does not have a deep knowledge of advanced Scala features.

The second chapter serves as a brief overview of the framework developed as
a part of this thesis. More detailed goals are stated and a basic structure of the
solution is outlined.

The third chapter is dedicated to the framework AP It begins with the re-
quirement analysis and most simple use cases, followed up by possible drafts and
their problems. Then, the actual design is presented, along with its evaluation and
more advanced scenarios and extensions. The whole chapter is written indepen-
dently on the framework implementation, and is based only on the requirements
and a basic notion of the functionality.

The fourth chapter is more theoretically focused. It introduces the functional-
ity of the selection part of the framework on an abstract level. The whole process
of deciding between multiple functions based on the historical observations of
their runs is explained. Several algorithms are presented, tested and compared.
In addition, more concrete improvements are suggested to increase the selection
precision and to speed up the invocation process.

In the fifth chapter, the whole framework implementation is briefly presented.
Concepts from the third and fourth chapters are incorporated into an actual Scala
program. A couple of problems is mentioned and solved. Last but not least, the
options that the framework user has of customizing and possibly extending the
functionality are discussed.

The goal of the sixth chapter is to try out the framework in real-life scenarios
and to evaluate the benefits that it brings. For that, a couple of different prob-
lems will be used, including basic selection between algorithms, JSON parsing
or adapting to quickly changing network environment. A part of the chapter is
devoted to the Spark framework for distributed data processing, which offers a
great potential for adaptive execution.

In the last, seventh chapter, other work that is related to the problem of
performance adaptation, measurement, prediction and similar topics is analyzed.

3Java Virtual Machine
4 Application Programming Interface
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1. Scala programming language

The adaptive framework introduced in this work was created in Scala [4], an ad-
vanced programming language that is built upon the JVM runtime. This chapter
will present a brief overview of some of the language aspects that are important
for the API design.

The basic paradigm of Scala is object-orientation — it is based on the same
principles as Java and its language constructs get mapped to Java bytecode con-
structs upon compilation. In addition to this, Scala aims to enable full-scale
functional development in the same context as well. It is quite a unique concept
among the common and production-used languages, which tend to adopt some
functional features (higher-order functions, lambdas), but stop at some point and
do not add more advanced mechanisms (type classes, monads).

1.1 Methods and functions in Scala

There is an important difference between methods and functions in Scala, even
though the names are often used interchangeably in the literature. Methods have
the same concept as in Java and other object oriented languages — they are an
integral, compile-time part of their class and the only context that they can refer
to is their class instance, their arguments and static members. They cannot be
passed around, so no additional context is needed. Every invocation has to be
performed on a class instance, allowing the compiler to correctly assign the this
reference. Simple example of a method can be the following:

class Class {

def method(arg: String): String =
s"Called method($arg) on $this"
}
val obj = new Class()

println(obj.method("Hello"))

Functions are first-class values that have a type and can be passed into other
functions or methods, or be part of expressions. Internally, they are represented
as closure objects, carrying around their context. The compiled code is stored as
a method in the closure type. They are created using lambda expressions:

val function: (String) => Unit =

arg => println(obj.method(arg))
function("Hello again!")
List("One", "Two", "Three").foreach(function)

Each lambda expression is upon compilation converted into an automatically
generated class, and its occurrences in the code are replaced by an instantiation
of the class. The obj reference is capturedﬂ inside the closure, the function is not
tied to any class.

The methods represent the basic building block of the object-oriented ap-
proach, being the single point that can access or modify the private internal

!Becomes an attribute of the class and is passed in using the constructor.
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state of the object. The functions are a foundation of the functional part of the
language, because they can be passed around as values.

We can create an illusion of functions behaving like methods by declaring
them as a class fields:

class Class(val field: String) {

val print: () => Unit = () => println(field)
}
val instance = new Class("Test")
instance.print()

In this case, the class contains an immutable field print containing a function.
The function references another field, which is stored in the function closure. The
invocation is done by accessing the print field and invoking the result.

1.1.1 Function types

The first-class value functions have to be anchored somewhere in the Scala type
system in order for type inference, type checking and other mechanisms to work
correctly. The type of a function is unambiguously determined by its signature,
i.e. the number and types of arguments and the return type. Consequentially,
the function types have to be generic and able to accept different numbers of type
arguments.

Scala as a language does not support variadic generic types (as opposed to
languages like C++), so there has to be a different type with different number of
type arguments for every possible number of arguments of a function. Currently,
there are traits for functions accepting 0 to 22 arguments?

trait FunctionO[+R]

trait Function22[-T1, ..., -T22, +R]
These traits have syntactic aliases in the language:

() =R

(T2, ..., T22) =>R

Functions with more than 22 arguments cannot exist in Scala and have to
be replaced by function accepting tupled®] arguments. The necessity to represent
functions with various argument numbers as multiple traits leads to code dupli-
cation wherever we want to interact directly with function types and support any
argument number.

Function invocation is represented by an apply method declared in all the
function trait types with the following signature:

def apply(vl: T1, ..., vN: TN): R

2In the code snippets, the type and argument lists will be shortened using the ... notation.
The code would have to be expanded in order to be compilable. Analogically, N will be used
in place of a number in the type or type argument names.

3Scala has generic tuple types and syntactic shortcuts for tuples: (T1, ..., TN).



Scala automatically converts the () operator on any instance to an invocation
of the apply method on the same instance with given arguments. This works for
all the class instances, we can make any type callable in Scala.

The default function implementations in Scala are created using lambda ex-
pressions, which are compiled to a separate closure class that extends the corre-
sponding function trait type and has the code in the apply method implementa-
tion. We can, however, create our own function trait implementations that will
be treated by all Scala code and libraries in the same way as any function. The
only thing required is to provide implementation of the apply method.

1.1.2 Eta-expansion

As the strengths of Scala lie in its functional features, it is often handy to be
able to convert methods to functions. This process is called eta-expansion and is
quite straightforward — we just need to create a function which delegates the call
to the method:

val methodFunction: (String) => String = arg => method(arg)

Scala has a special operator for the conversion that generates the function
automatically:

val methodFunction = method _
And in some expression contexts, this conversion becomes implicit:
List("One", "Two", "Three").map(method)

In this example, the conversion is implicitly applied to an argument of a
method in order to meet the required type. The expansion in this case will be
always implicit, unless one of the following conditions is met:

1. The method has overloads.

2. There is an implicit typecast required from the expanded type to the pa-
rameter type.

Unfortunately, the same kind of automatic expansion is not performed on the
target of a method call. The following example will not compile:
val composed = method.andThen(method)

The explicit eta-expansion operator is needed for it in order to work.

val composed = (method _).andThen(method)

1.2 DSLs in Scala

DSL (Domain Specific Language) is a type of a programming language that is nar-
rowly focused on solving a specific class of problems. It offers a higher level of ex-
pressiveness and therefore is easier to use than general-purpose languages. There
is a large variety of areas where the DSLs are often employed, e.g. mathematical
computations (R, MATLAB), database queries (SQL), build scripts (make, Ant),
parsing (regular expressions) and many more.

9
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In order to simplify the process of creating a new DSL, it is often implemented
inside an existing general-purpose language using objects and references to sub-
stitute the keywords of the language. The DSL is represented by a set of class
definitions and can be distributed as a library. This significantly speeds up the
development process — there is no need to implement the syntax parser or the
compiler. Additionally, the end user does not have to have any specialized tools
to actually use the language. A program written in such a language will only
get compiled (if its necessary) and executed. The DSL code will create a certain
object structure in runtime, interpret it and carry out required tasks.

These DSLs became recently very popular for defining configurations, and
build and deployment processes — an example could be the Gradle scripting lan-
guage [6], which is actually a DSL in Groovy, or the Recipe DSL for Chef [7] built
atop of the Ruby language.

DSLs can be efficiently implemented only in languages with flexible-enough
syntax, which do not limit it too much. Scala belongs to this category of lan-
guages, along with for example Groovy. A code in one of the Scala DSLs, the
ScalaTest framework [§], can look like:

an [Exception] should be thrownBy { s.charAt(-1) }
greeting should equal ("hi") (after being lowerCased)

The above is a valid Scala code that can be compiled and run, and is used by
the framework to express unit test assertions.

1.2.1 Infix operators

One of the features that support both the functional flavor of Scala and the DSL
building capabilities is the possibility to use methods as infix operators. Any
method that has exactly one argument can be called using the following special
syntax:

class RichInt {
def plus(other: RichInt) = ?7?
}

val res = x plus y

This syntax is even more powerful if we take into consideration that Scala
allows the methods to have non-alphanumeric names:

def +(other: RichInt) = 7?77

val res = X +y

This approach enables us to use the infix syntax with existing methods and
with methods that were not designed with the intention to be used that way. It
has, however, a downside as well — it does not allow us to create an infix operator
that would accept a certain type as its first argument without actually changing
the definition of that type and adding the method to its definition. Scala does not
directly support declaring extension methodsﬁ on types (unlike C#, Kotlin and

4Methods that can be added to existing types without changing them, they have access only
to the public API of the type.

10
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other languages), so the only way to solve this problem is to introduce implicit
typecast to a custom type and to add the infix operator as a method to it.

1.3 Implicit conversions

Scala supports defining a custom set of implicit conversion methods that will be
automatically called throughout the code. The conversion from type T to type U
is a method or a function with one argument of type T and a return value of type
U declared with the implicit attribute:

implicit def myConversion(t: T): U = ???

Now wherever an expression of type T is either used in a place where the
type U is expected, or a selector (method or field name) unknown to type T but
known to type U is applied to it, a call of our myConversion method is generated
to convert the type. The implicit method has to be in scope at the moment of
the typecast, otherwise the compiler will not be able to locate it. The common
practice is to gather all the implicit conversion methods into an object called
either implicits or Implicits, and let the user import all the methods of the
object whenever he needs it:

import my.project.Implicits._

The most typical use case for the implicit conversions is adding new function-
ality to existing types. This can be used in DSLs as well, like in the following
simple example:

class RichInt(val i: Int) {
def times[T](fun: () == T): Unit =
Seq.range(0, i).foreach(_ => fun())
}
implicit def intToRichInt(i : Int): RichInt = new RichInt(i)
def greet(): Unit = println("Hello!")
4 times greet

In other languages (C#, Kotlin), the same goal is achieved using extension
methods, which is a less flexible, but more transparent solution.

Implicit conversions are considered a potentially dangerous feature, therefore
they have to be manually enabled either by a Scala compiler switch, or by im-
porting scala.language.implicitConversions in the scope.

1.3.1 Implicit arguments

In addition to being automatically called for conversions, the implicit methods
and values can be automatically passed into method calls as arguments. If an
argument of a method is marked with the implicit attribute, it does not have to
be specified at invocation. It will be filled automatically by an identifier with
matching type that is accessible at the point of the call and is marked implicit
itself. The actual argument then, again, behaves as being marked implicit within
the function. This can be used to propagate implicit values throughout a chain
of calls.

11
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The most common application of implicit arguments is enabling the usage of
implicit typecasts with type arguments — a method can set bound on its type
arguments by requiring implicit conversion to a different type. In the Scala ter-
minology, the type has to be viewable as that type.

def bubbleSort[A](list: List[A]) (implicit ord: A =>
Ordered[A]): List[A] = ?7?7?

There used to be a specialized syntax called View bounds in earlier versions
of Scala to support this usage, but it has been deprecated:

def bubbleSort[A <% Ordered[A]](list: List[A]): List[A] = ?7??

The typical use case of the described scenario is simulating type classes from
functional languages like Haskell. A generic trait with required methods (repre-
senting the type class and its functions) is created:

trait Incrementable[A] {
def increment: A

}

Adding a member to the type class is done by creating an implementation of
the trait with the type fixed and an implicit method that provides the conversion
from the original type:

implicit def intIsIncrementable(i: Int): Incrementable[Int] =
new Incrementable[Int] {
override def increment: Int =i + 1

}

Now, whenever this conversion method is accessible, Int can be used as
Incrementable[Int] and, in addition, can be passed to any generic function
that requires the argument to be wewable as Incrementable:

def incrementValue[K, V](map: mutable.Map[K, V], key: K)
(implicit inc: V => Incrementable[V]) =
data.update(key, data(key).increment)

Note that the value of an implicit argument can be specified manually at the
time of the call, and it does not necessarily have to be implicit in the calling
scope. In such a situation, it will be treated as implicit only inside the method
scope.

1.4 Trait linearization and mixins

In Scala, the concept of interfaces known from common object-oriented languages
is replaced by traits. The main difference is that traits can contain method
definitions and data, thus being almost equivalent to abstract classes (except
for not having parametrized constructors). The possibility to extend multiple
types containing data members leads to the diamond problem known from C++
and other languages with multiple inheritance. The issue lies in the fact that
one ancestor can exist in more inheritance branches, and therefore be extended
multiple times.

12
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Scala solves this problem using a concept of linearization, a set of rules that
can determine a clear and unique single inheritance line for any type (for more
details see [9]). A new chain is build specifically for each concrete type that can
be instantiated. The super keyword gets bound dynamically to the parent in
this chain (i.e. a super call in a trait might result in different calls for different
usages of the trait). Consider the following example:

class Parent

trait TraitA extends Parent

trait TraitB extends Parent

class Child extends TraitA with TraitB

The linearization of type Child leads to the following inheritance chain:
Child <- TraitB <- TraitA <- Parent

In tis case, the TraitB will have the super reference bound to TraitA, even
though at the point of definition of the TraitB, the TraitA does not even have
to be known.

The multiple inheritance among traits leads to the possibility of creating miz-
ins — traits containing methods with implementations that can be added to a
type to enrich it. An example follows:

trait IntSequence {
val data: Seq[Int]

}

trait SequenceWithAverage extends IntSequence {
def average(): Double = data.sum / data.size

}

class IntList(val data: List[Int]) extends IntSequence

val listWithAverage =
new IntList(List(1l, 5, 200)) with SequenceWithAverage
val average = listWithAverage.average()

1.5 Def Macros

Def Macros is quite a unique feature among all the widely used programming
languages. It allows a library writer to include a code that will be executed
upon compilation of the unit which references the library. This basically means
that simple compiler extensions in Scala can behave like libraries and can be
distributed and used similarly.

The API is very simple — there are methods marked as macros in the library
code. Whenever a call of this method is being compiled, the compiler invokes the
macro implementation, which is a normal Scala method. It will receive an AST[]
of the arguments passed to the original method and produce another AST, which
will replace the call in the code.

The only limitation is that the macro cannot be used in the same compilation
unit where its declaration and implementation are, as the Scala compiler needs
to have access to the already compiled implementation when building the usages.

5 Abstract Syntax Tree — the product of the syntax analysis of the source code

13
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1.5.1 Building syntax trees

The macro usually has to be able to perform two steps:

1. Parse the argument AST

2. Build the replacement AST

The syntax trees are represented by tree node classes with apply() and
unapply () methods accepting and returning their descendants. We need to
deconstruct the input, preferably using pattern matching, and then build an out-
put tree by creating a new chain of nodes. For both actions, it is essential to
know the structure of valid syntax trees that correspond to the code.

Unfortunately, there is not a lot of documentation available for the syntax
tree structure. The official Scala documentation has only a few examples and the
types in the code lack the documentation as well (as of Scala 2.11). One of the
most complete overviews of the syntax tree nodes and its building scheme can be
found in [10].

One of the possible options to find out how certain expressions are parsed into
ASTs is to create a simple macro that will accept any expression, print its AST
and replace itself by the same expression again:

def printAst(arg: Any): Any = macro printAst_impl

def printAst_impl(c: Context)(arg: c.Expr[Any]): c.Expr[Any] =
{
import c.universe._
println(showRaw(arg.tree))
arg

}

The output that is written to stdout by a macro implementation is displayed
as a warning in the compilation process, so there is no need to run the program
to see the results of printAst(), it is sufficient to just compile it.

For example, printAst(x + 1) produces the following compile-time warn-
ing:

Warning:scalac: Block(List(),
Function(List(ValDef(Modifiers (PARAM | SYNTHETIC),
TermName("i"), TypeTree(), EmptyTree)),

Apply(Select(This(TypeName("MacroTest")),
TermName("increment")), List(Ident(TermName("i"))))))

14
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2. Solution overview

This chapter will provide a basic overview of the solution presented and of the
tasks that had to be solved in the process and that will be described with more
details in later sections.

2.1 Detailed goals

In the introduction, the basic goal of the thesis was mentioned in a very general
manner — as a simple-to-use framework that allows the user to introduce variants
into his program. Now, we will go a little deeper and present more detailed goals
and the consequences they have for the implementation.

A simple and fluent API

We would like the programmer to be able to simply combine two or more functions
or methods (in any combination), resulting into a new function that can be called
again.

def impll(in: T): U = 77?7
def impl2(in: T): U = 77?7
val impl3: (T) => U = 77?7

val function = impll _ or impl2 or impl3

In the rest of the text, such a function will be called combined function. We
will also occasionally use the term adaptive function, as it will be the API name
of the function.

In order to achieve this behavior, we are going to have to work with implicit
typecasts from function types and with eta-expansion.

Transparent usage

The function that was created by the combining process (in the rest of the text
referred to as combined function) should behave just like a normal function — the
caller should not have to perform any special action and he should not be able to
recognize that multiple implementations are involved.

val resultl: U
val result2: U

impll(arg)
function(arg)

If the user, however, decides to combine the function that is already combined
from n simple functions one more time, the result should be a combination of n+1
functions, not a combination of 2 functions where one of them is the original.

val newFunction = function or impl4

Similar behavior can be achieved by introducing custom function trait imple-
mentations and reflecting it in the typecast.
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Measuring and storing run times

Whenever the function is called and one of the implementations run, the run time
(or other metric) has to be measured and stored. The storage should be statically
accessible, because the function can be invoked from different contexts and we
would like to share the history across the entire application. In order to identify
the implementation in the static storage, we would need an identifier, preferably
the name of the method (if a method is used). For that, we are going to have to
use a compile-time macro.

Selecting the most appropriate function in different cases

As the key part of the framework, we want to select the function to run each
time. The selection should have 2 basic outcomes:

e Select the function that is expected to have better performance on given
input in current conditions if we are certain enough

e Seclect the function that we need to collect data for if we are not certain
enough

The selection would be based on historical measurements of each function.
We should be able to handle the following situations regarding the history data:

e Functions whose run time does not depend significantly on the input — we
expect that if one function has better performance than the other, it will
not change with different input or environment

e Functions whose run time depends on some characteristics of the input (e.g.
if the sequence is sorted)

e Functions whose run time is expected to be a function of the input size or
some similar measurable feature of the input (e.g. length of the sequence
to sort)

e Functions whose run time depends on the execution environment and is
expected to change over time

This leads to a few consequences. Multiple selection strategies meeting the
requirements of these cases will be necessary. In addition, their decisions should
reflect the certainty using methods of statistical testing with given significance
level. The user will have a way to customize the function combination in order
to identify the case and the input characteristics.

Controlling the invocation behavior

The invocation behavior should change in some situations — when we are sure
enough that one option is in general better than the other, when we need to
gather more data, when we need to save time and cannot perform the selection, or
in other cases. Every combined function should have its state and some behavior
plan, which would reflect some basic statistics and events on the functions.

We can achieve this by introducing a simple state machine logic and a language
in form of a Scala DSL to create simple state machines.
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Possibility to extend the framework

The framework should be modular, with its parts being easy to replace or ex-
tend. It should be possible for the user of the framework to incorporate his own
implementations without having to change the framework code in any way, just
by modifying the initial runtime construction.

The following extensions should be possible without changing the code of the
framework, only by adding custom implementations:

e Change the metrics that is measured for the functions
e Change the history storage

e Add, replace or extend the selection strategies

For this to work, the framework runtime will be created by composition with
no close-coupling between modules. All of the runtime parts will communicate
using trait interfaces. A simple form of Io(f]] configuration will be used for the
composition.

2.2 Key parts of the system

Based on the extended goals presented in section key parts of the solution
can be identified and will be described in detail in the rest of the text.

e API and CombinedFunction — a set of classes and methods that the user
will be directly interacting with in order to invoke the combined functions

e Invocation policies — a system of simple state machines to manage the
invocation process with almost no overhead, handled directly in the Com-
binedFunction

e Selection strategies — simple, stateless and isolated strategies that can
decide about the most appropriate function to run given the historical mea-
surements of all the functions

e Function selector and invoker with the history storage — module
that will be responsible for selecting the method using a given strategy,
invoking it, measuring the performance metrics and storing and retrieving
the historical data; it will be called by the CombinedFunction

e Configuration — a static description of the function selector and invoker;
can be changed by the user

Hnversion of Control

17



18



3. Adaptive development API

API (Application Programming Interface) is a key component of every framework
or library. It defines how a stand-alone piece of code (a function, class, module, or
even an entire running application) interacts with its environment. This includes
the possible calls or requests, format of the data that are passed in as arguments
and the data that are received as the result of the action. In our case, the API
will be used to access functionality of our library from the user’s own code.

One of the key tasks of this thesis is to research the potential possibilities of
adaptive development in the user code using the API of the adaptation frame-
work, to design it to be as fluent and expressive as possible using the Scala pro-
gramming language features described in chapter [1| and to analyze the problems
and limitations that it has. Some key design decisions about the functionality
of the entire framework that are tightly connected to the API design have to be
discussed as well.

3.1 Design of the API

3.1.1 Basic API requirements

The framework itself should not require much interaction from the programmer.
The typical use case of our API could be described in the following way:

User has a class with two methods, method1() and method2(), and
uses the framework simple API to create a third method in the same
class, method (), that adaptively uses one of the other two methods. If
he wants to change the behavior of the adaptation (method selection)
process, he can do it directly in the definition of the method().

The important point is that we want the result of combining the methods to
behave exactly like a normal function or method. The caller should not know and
should not need to know that he is using an object that is somehow special. This
allows introducing adaptivity to existing project just by changing the method
implementation, and no new dependency will be introduced in the majority of
the code.

We can make a list of the basic functional requirements:

1. Create a method by combining two or more different methods (stating that
they can be called interchangeably)

2. Define some basic adaptation behavior for the method

3. Make some more complex configuration changes for the whole framework

3.1.2 Possible API drafts

The core part of the whole API and the mechanism that will determine the
usability of the framework is the method combination definition. JVM classes
in general have the limitation that once they are loaded by a classloader, they
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cannot be modified, and neither do their methods. Generating new methods at
runtime is therefore extremely difficult. An alternative to that would be to create
functions instead, which behave like normal Java objects (see section [1.1)). From
the point of view of the potential caller, a function can be used almost identically
as a method.

This leaves us with two basic approaches to the API.

API based on methods

This variant would have to rely at least partially on compile-time actions and
would have to work with annotations (in case we do not want to create custom
language extensions).

The combination definition could work roughly in the following way:

@ClassWithCombinations

class Functions {
@CombineInto("combinedMethod")
def methodl(arg: Int) = 7?7

@CombineInto("combinedMethod")
def method2(arg: Int) = 7?77
}

There are multiple ways of implementing such an API. We are going to discuss
the following two:

1. Using Scala compile-time macros

2. Using aspect weaving

Scala macros would be able to modify the AST of the Functions class to
contain three methods (method1, method2 and combinedMethod) with the same
signature. The typecheck would be done at compile time in the macro execution.
Notice a few problems and limitation that this solution has:

e The @ClassWithCombinations annotation would be necessary for each
class that would contain the combined function, because the AST modifi-
cation of the class can be done only when processing an annotation of the
entire class

e Consequentially, it would be possible to combine only methods within one
class

e The IDEs do not process the macros upon code inspections and code high-
lighting, and would mark the combined methods as non existing, which
would be extremely inconvenient (this could potentially be fixed by adding
a dummy implementation of the combined method, which would impose
more work on the user)

e The string-based name of the combined method is error prone — methods
could be excluded from the combination due to typos in the name, or an
existing method could be overwritten by mistake
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The second option of using an aspect weaver] would lead to a very similar
API with different limitations. The weaver does not allow us to modify the class
and to generate a method, but can intercept calls of annotated methods using an
annotation pointcut. We could either intercept all calls on the methods combined
into the same group and use the selection mechanism every time (which would
not allow the user to invoke any of the combined methods without the selection
process), or have a dummy method with empty implementation and intercept
its calls. Looking for other methods with annotation from the pointcut would
require us to use reflection.

API based on functions

This option would work with functions as first-class values (and the objects rep-
resenting them) entirely at runtimeﬂ It might look the following way:

val functionl 777

val function2 = 7?77

val combinedFunction = /* Expression to combine functionl and
function2 */

val result = combinedFunction(data)

The combinedFunction would be an object extending the Functionl trait
(see and thus usable as a normal function.

The main inconvenience of the design is that it works only with functions.
Existing methods can be treated as functions using eta-expansion (see section
, so methods can be combined as well with almost no effort. The other way
around, i.e. creating an adaptive method, is a little more complicated. Both will
be discussed later.

Apart from these complications, this approach has a lot of advantages. It
can be used at runtime in any context to create a temporary function. The type
checking and IDE tooling work on it, it can be fluent and flexible. And, in general,
this approach fits the functional concept of Scala.

The function combination expression technically has to be a higher-order func-
tion (or method). We would like it to conform to the functional Scala design
patterns. As an inspiration, lets have a look at a different case where we generate
one function from two different ones — function composition. This can be done
in Scala using andThen method defined on the function type traits (see :

val timesTwo = (x: Int) => { x x 2 }
val plusOne = (x: Int) == { x + 1}
val timesTwoPlusOne = timesTwo.andThen(plusOne)

We can achieve even more readable and natural looking code if we take ad-
vantage of the infix operator syntax (see|1.2.1]):

val timesTwoPlusOne = timesTwo andThen plusOne

Chaining of the methods / operators is possible as well:

!For more information about JVM-based language aspect weaving see e.g. the Aspect]
project [11].

2With a small exception — a compile-time macro is actually used to fetch the method names,
as will be explained in
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val manyOperations = timesTwo andThen plusOne andThen plusOne
andThen timesTwo

Inspired by this readable and very simple syntax to compose functions which
relies only on the basic syntactic features of Scala, we can try to design the
combining expression exactly in the same way:

val combinedFunction = functionl or function2

3.1.3 Functional API requirements

From the two basic drafts presented in section [3.1.2] the function-based API will
be implemented in this work. The reason is primarily a more fluent integration
into the Scala programming style and functional development in general. Based
on this decision, we can make the basic outlines of the API for the adaptive
framework to be able to examine its usage patterns and possibilities.

The or method, in order to be used as an infix operator, has to be defined
on the type that represents the first argument, in this case a function. More
specifically, all of the function types mentioned in Because Scala does
not support extension methods, we need to introduce a new custom type for
functions containing this behavior, and an implicit conversion from the function
traits. We will use the same type as for the resulting combined function — an
AdaptiveFunctionN typdﬂ The following is required:

e FunctionN is implicitly convertible into AdaptiveFunctionN, creating a
default with just one implementation

e AdaptiveFunctionN has an operator or that will combine it with a differ-
ent AdaptiveFunctionN, creating a new object with concatenation of the
implementations

e AdaptiveFunctionN is a subtype of FunctionN and performs the imple-
mentation selection and invocation upon calling apply ()

3.1.4 Implementation

The type AdaptiveFunctionN, which will be the main part of the interface for
the user, will be just a trait hiding a concrete implementation. The user should
never come in contact with the actual class, as we do not want him to create
instances of it manually or to interact with its API. The implementation itself
should wrap a list of functions from which to choose, along with some basic
configuration, which will be discussed later.

There are two ways for the user how to get a new AdaptiveFunctionN in-
stance:

e By using the implicit conversion function

I implicit def toAdaptiveFunctionl[T1l, R](fun: (T1l) => R):
AdaptiveFunctionl[T1, R]

3Actually a set of types, one for each N, in this thesis only from 0 to 5
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e By calling the or method defined on AdaptiveFunctionN
1 def or(fun: (Tl) => R): AdaptiveFunctionl[T1l, R]

The implicit conversions have to be defined for all the function types separately
as publicly accessible methods on an objectf] For this purpose, a special object
Implicits was introduced — it can be imported into any other Scala source file
and the implicit conversions become active in the scope (for more details see [1.3)).

The conversion of FunctionN to AdaptiveFunctionN should check every
time, whether the FunctionN instance is not already a AdaptiveFunctionN
instance as well, and if so, just cast it instead of creating a new wrapper. The same
should be done by the or function, which can just manually call the conversion
on its argument.

3.2 Usage of the API

After having designed the basic look of our API, we can examine the usage pat-
terns and go through strengths and weaknesses of the solution.

3.2.1 Basic use cases
Combining two functions

The most simple and straightforward use case is to combine two functions previ-
ously stored in variables. We use the implicit type conversion and the or method.

import scalaadaptive.api.Implicits._
val combinedFunc = functionl or function2

Note that the import of the Implicits object is necessary every time and will
be omitted in the code examples from now on.

We suppose that functionl and function2 have the same type FunctionN
with the same type arguments. The combinedFunc variable will have a type of
AdaptiveFunctionN. When exposing the resulting function in a public API, it
might be better to enforce the FunctionN type for the variable or attribute:

val combinedFunc: (Int) => Int = functionl or function2

This will ensure that the AdaptiveFunctionN specific API will remain hidden
unless having the Implicits explicitly imported again.

Combining multiple functions

The or calls can be chained and used to combine more than two functions in one
expression.

val combinedFunc = functionl or function2 or function3 or
function4d

4A Scala concept for singleton.
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Combining function twice

A combined function can be combined again, no matter whether treated as
FunctionN or AdaptiveFunctionN in the meantime. The resulting combina-
tion will be the same as if the combination was done in one expression’]

val combinedFuncl: (T) => R = functionl or function2
combinedFunctl(...)

val combinedFunc2 = combinedFuncl or function3 or function4

Combining lambda expressions
Just like named function variables, lambda expressions can be combined directly.

val combinedFunc = { () => objl.call(...) } or { () =>
obj2.call(...) }

Combining methods

This is expected to be the most common use case — we have multiple methods
and we want to combine them into a single combined function. As mentioned
in [I.1.2] the methods can be easily converted in functions, but unfortunately, in
case of the implicit typecast and then a method call, the expansion is not done
automatically on the first method. The second method, which is an argument,
gets expanded.

val combinedFunc = obj.methodl _ or obj.method2

Note that if the or method accepted the FunctionN argument and relied on
the implicit conversion of the argument as well (just like the call target does), its
implicit eta-expansion would get blocked and an operator _ would be needed as
well:

val combinedFunc = obj.methodl _ or obj.method2 _

Creating a method from combined function

Even though functions are so common in Scala, there might be situations where
we would need to create a method from our combined function. Thanks to the
simplified syntax that allows us to define the method body using a one-line ex-
pression, quite an idiomatic way to create this combined method exists:

def combinedMethod(arg: T) = (functionl or function2)(arg)

The method body consists of creating the combined function object and then
immediately applying it. Although this does look elegant, it has a major prob-
lem — the AdaptiveFunctionN instance is created upon every invocation, which
leads to an unnecessary overhead and to loss of all the data locally stored in the

5Actually, the or call chain is exactly the same case, the AdaptiveFunctionN instances are
created one by one.
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instance. In addition, there is no way to access the AdaptiveFunctionN internal
API.

The preferred, a little less convenient way is to create a private field containing
the combined function initialized in constructor and to delegate the method calls

to itll

private val combinedInner = functionl or function2
def combinedMethod(arg: T) = combinedInner(arg)

3.2.2 Covariance and contravariance

So far, all mentioned usages of the or method were limited to functions with
the same signatures. Quite common case, however, might be combining multiple
functions with slightly different argument and return value types, typically one
being a specialized version of the other, for example:

def sortl(data: Iterable[Int]): Iterable[Int] = ?7?
def sort2(data: List[Int]): List[Int] = ?7?

We will examine how this can be done on a simplified case with more combi-
nations:

val funl: (Any) => String = 777
val fun2: (String) => Any = ?77?
val fun3: (String) => String = 777

val fun4 = fun3 or fun2
val fun5 = fun2 or fun3
val fun6 = fun3 or funl

val fun7 = funl or fun3

We receive compilation error on lines 5 and 8, in the definition of fun4 and
fun7. Lines 6 and 7 compile correctly. These are the cases where either:

e Return type of the function passed in as an argument is a subtype of the
return type of the target function

e Argument type of the function passed in as an argument is a supertype of
the argument type of the target function

The function types in Scala are defined in the following way:
trait Functionl[-T1, +R] extends AnyRef

The type arguments representing the function arguments are defined as con-
travariant and the type argument representing the return value of the function
is defined as covariant. This leads to (String) => String being a subtype
of (String) => Any and to (Any) => String being a subtype of (String)
=> String. So the or method is working flawlessly for the fun5 and fun6, as
implicit conversions from subtype to supertype exist for the functions.

In general, the target of the or call (i.e. the AdaptiveFunctionN instance
created by the implicit conversion) determines the type of the resulting function,

6Tt can be thought of as an analogy to the concept of property and its backing field.
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and only its subtypes can be passed in as arguments. This can solve majority of
the cases where it would be enough to put the more general function on the left
side of the or method. In the case where we wanted the combined function to
have more general signature, we can perform the typecast on the first function
passed in:

def sortl(data: Iterable[Int]): Iterable[Int] = ?7?

def sort2(data: List[Int]): List[Int] = ?7?

val sortCombined = (sort2 _).asInstanceOf[(List[Int]) =>
Iterable[Int]] or sortl

Potentially, this problem could be solved by having the or function generic:

def or[J1 <: T1, S >: R](fun: (J1) => S):
AdaptiveFunctionl[J1, S]

This, however, leads to problems when being invoked as a macro, so this solution
was not used in the final version.

3.2.3 Generic methods

Functions have one major limitation in Scala — they can’t have any generic argu-
ments. The signature of a function always has all the argument and return value
types specified at compile-time. If we perform the eta-expansion on a generic
method, we have to specify the type arguments. Otherwise, they will be fixed as
the most general achievable within the limits of the covariance and contravariance
of the function type (see [3.2.2)).

In some cases, this might make the function impossible to call:

def makeTuple[A, Bl(a: A, b: B): (A, B) = (a, b)
val fun = makeTuple _
// fun: (Nothing, Nothing) => (Nothing, Nothing)

In other cases, it might lead just to losing the compile-time type check:

def defaultCount[A](list: List[A], item: A): Int =
list.count(_ == item)

val fun = defaultCount _

// fun: (List[Any], Any) => Int

As the or method performs combination of functions into another function,
the eta-expansion has to be done at the point of combination, and the arguments
should be specified at that point to prevent the described effects. This effectively
prevents us from achieving genericity of the combined function in the same way
as with methods.

We can, however, take advantage of the fact that the type arguments being
explicitly set in the process of eta-expansion can be generic type parameters of an
enclosing structure (generic class or generic method). With this approach, there
are two possible patterns for the workaround:

1. Defining a generic method by creating the combination and then calling it
immediately:

1 def count[A](list: List[A], item: A) = (defaultCount[A] _
or customCount[A]) (list, item)
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This approach was already mentioned in and is discouraged from as
it leads to repeated creation of the AdaptiveFunctionN implementation.

2. Defining a function field inside a generic class:

1 def defaultCount[A](list: List[A], item: A) =

list.count(_ == item)
2 def customCount[A](list: List[A], item: A) =
list.filter(_ == item).map((i) => 1).sum

3
4 class ListTools[A] {
53 val count = defaultCount[A] _ or customCount[A]

!
3.2.4 Implicit arguments

As with a lot of other features, the implicit arguments (described in detail in
section are supported only by methods, not by functions. Therefore, all of
them have to be resolved and fixed when performing eta-expansion, along with
all the type arguments.

Lets consider the case where the implicit arguments depend on the value of
a type argument. The implicit arguments can be provided manually, or using
an implicit variable from the scope where they are being expanded. If the type
arguments are being fixed to concrete types, we usually have the implicit imple-
mentations at our disposal:

def radixSort(list: List[Int]): List[Int] = ?7?7?
def bubbleSort[A <% Ordered[A]](list: List[A]): List[A] = ?7??

val sort = radixSort _ or bubbleSort[Int]

The implicit argument might, however, often be used to set requirements
about the type argument (in the sense of type classes from other languages), like
in this example:

def sort[A](list: List[A]) (implicit ord: A => Ordered[A]):
List[A] = ??7?

As explained in[1.3.1] the goal is to propagate the implicit arguments through
several different scopes to the point where the type argument is fixed and the
implicit value can be provided. The solution from section to expand the
type argument to a type argument of an enclosing scope can be extended to the
implicit arguments, as the principle is exactly the same — the implicit argument
can just be repeated in the method scope:

def sort[A](list: List[A]) (implicit ord: A => Ordered[A]):
List[A] = (sortl[A] _ or sort2[A])(list)

Or, preferably, at the level of classes:

class Sorter[A] (implicit ord: A => Ordered[A]) {
val sort = sortl[A] _ or sort2[A]

}
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3.2.5 Extending traits

Traits in the role of interfaces represent key element of object-oriented program-
ming approach. Having a combined function exposed through a trait to the rest
of the system is expected to be one of the most common usage patterns, as it
would allow replacing the combined function with a fixed implementation and
vice versa.

A trait in Scala can define both methods and properties. In case of properties,
the implementations will override the getter and setter of the property (which can
be automatically generated). This allows us to define functions as parts of traits
as well, and the Scala syntax will make them almost unrecognizable from methods
in the trait user’s point of view.

trait TestTrait {
def testMethod(arg: List[Int]): List[String]
val testFunction: (List[Int]) => List[String]
}

If we design our own traits for the use in the application, we can intentionally
expose the logic using only functions. In that case, implementing the trait using
combined functions does not represent any problem. In case that we need to use
an existing trait that contains methods, we have to implement them and delegate
the call to the combined function using the techniques described in section [3.2.1]

class TestImpl extends TestTrait {
override val testFunction: (List[Int]) => List[String] =
impll _ or impl2
override def testMethod(arg: List[Int]): List[String] =
testFunction(arg)

3.2.6 Delayed measuring

In some specific cases it might be useful to delay the measurement, or, in general,
to measure invocation of a different function than the one that has multiple
implementation, as they can affect something else than their own runtime. Some
example use cases might be:

e Configuration, or generation of configuration
e Expression tree building
e Query building

e Method chain building with lazy evaluation

It is obvious that our API, which was designed to remain as simple as possible,
does not support this case. We need to slightly extend it.
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Decision context

Supposing we already have a mechanism to mark the actual function to measure,
we encounter another problem. Making a decision when executing the function
with multiple implementations automatically generates a context of the decision
— all measured function invocations that were affected by the decision. When
measuring the invocation, the framework needs to know to which context it be-
longs to in order to be able to assign the measured data to the run history of the
corresponding function.

The contexts can interleave and we cannot match the decision with the invo-
cation by time or location. It is impossible to decide which invocation belongs to
which decision automatically — we need support from the user. He will have to
explicitly state the context whenever invoking the measured function. By doing
this, he will also pinpoint the moment of decision that affected the invocation.

Practically, we need to introduce a special object — the invocation token —
which will represent the context. The AdaptiveFunctionN instances will have a
special, modified version of the apply method, which will not trigger the measure
of the selected function, but will generate an invocation token that will be used
to measure future function runs. We chose to make it accessible using the ~()
operator, to simulate the fluent application.

val getConfig = getFastConfig _ or getSlowConfig
val (config, measure) = getConfig™()

$éésure(() => run(config))

This approach has one main disadvantage compared to the rest of the API
— it breaks the transparency. The user has to know that he is working with
the AdaptiveFunctionN, not just normal function. His assistance is, however,
required by the nature of the problem.

3.2.7 Usage from Java and other JVM based languages

Even though Scala has a very high level of possible interoperability with Java
and in general, Scala classes and methods can be called directly from Java code
(being just a classes and methods in bytecode), the direct usage of described
API from Java is not possible. The reason is that it depends heavily on the
syntactic features that Scala provides, including implicit conversions and compile-
time macros.

There is, however, a very simple way how to utilize the method combining in
a Java or any JVM based language project. Supposing we have multiple methods
in Java that are interchangeable and that we want to adaptively combine, we
can introduce a simple Scala wrapper class. This wrapper will use the described
framework API to create an adaptive function with said Java methods as the
implementation options. The function should be exposed through a method, like
described in section as Java does not have the concept of functions and the
invocation would have to be done using the apply method call.
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4. Adaptive function selection

The key purpose of the adaptive framework is to always invoke a function that is
expected to have the best performance possible in a given environment and with
given inputs. By function performance we mean any measurable description of
the qualities of the function. It can be the actual run time of the function, memory
consumption, number of I/O operations, number of threads created, execution
counts for various parts of the code, etc. All these factors can be valuable and be
the goal of the system run optimization.

This thesis is focused on the task of optimizing the function run time or time
complexity in general. The core of the framework, however, is designed to be
extensible by modules that can analyze the function run in different ways. More
on this topic will be covered in chapter [5]

Note we will suppose some basic knowledge of mathematical statistics in this
chapter. A nice introduction covering all the concepts that this text works with
can be found in [12].

4.1 Overview of the selection process

Suppose we have functions fi,..., f,, all of them interchangeable, and an input
inll We need to decide which of the functions to select and invoke. To be able to
do that, we need to formulate predictions about run times of the functions under
given circumstances, and then use the function with the lowest prediction. As
the internal structure of the functions is unknown to us, the only data we can
base the prediction on is the information we collect during previous executions of
the individual functions. The exact form of these historical data will be discussed
later.

4.1.1 Problems of the prediction and selection process

There are three main factors we should take into account when predicting run
times and using them to select a function:

e The run times may depend on the input in
e The run times may depend on the environment

e The predictions are never precise, they have certain probability based on
the amount and the character of the historical data

The wnput dependency problem is being solved in many works about program
execution time predictions. Certain features of the input are usually analyzed
and a model is constructed describing the relation to the run time. The model
can then be used to predict the times for new inputs. This approach was used in
[13, 14]. The authors of [I5] propose clustering the inputs prior to creating any
models.

'If the original Scala function has multiple arguments argl, ..., argN, we will consider
them to be a tuple (argl, ..., argN) to get a single input object.
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The environment dependency is more complicated — there are no factors that
we could watch and use to classify the runs or to include in the prediction model.
The simplest solution is to give the history records a limited duration after which
they expire. The environment changes are not expected to occur very often,
which makes the most recent data the most suitable for modeling and predicting.
This technique is suggested among the adaptive framework use cases in [16].

As for the uncertainty problem, works in this field tend to use statistical
methods to express the confidence of the prediction. In [I5], confidence intervals
are used for this purpose. The comparison of predictions used for selection should
aways take these information into account and reject to select any function in case
of uncertainty to prevent potentially wrong decision. Such a case should be solved
by executing the function with the least data to gather more observations.

4.1.2 Input in the prediction process

The input of the function can be a complex structure with multiple factors con-
tributing to the run tim¢’} Common prediction techniques (J13,[14]) use simplified
model of the input in represented by a vector of features (ti,...,t,).

Based on this approach, we will suppose that for each Scala function exists ¢
so that for each input in modeled by (¢1,...,t,) holds t = g(t1,...,t,)+¢€, where
t is the runtime of the function on input in, and ¢ is an error represented by a
random variable with certain distribution, which we, for simplicity, assume to be
normal.

Now, the features can be divided into 2 basic categories:

e Features with distance metric

o Features without distance metric

If the feature has a distance metric, i.e., is comparable (typically sizes of struc-
tures), we can construct models that use the it to analyze the trends and make
predictions about inputs with feature values that were not processed before. The
features without the distance metric (usually enumerations and discrete configu-
ration values) cannot be treated this way, and we need previous observations for
a given value before making any assumptions.

To integrate these concepts into the framework, two mechanisms were in-
cluded. First, to replace the vector of features with distance metric, a single
integer called input descriptor is used. The user can define a descriptor function
that extracts the input descriptor from the input in for given function. Then, at
the beginning of the selection process, the descriptor function is applied and the
resulting value is used by the predicting model. In addition, the input descriptors
are stored in the run history as well, so a model can be built upon it and used
in the selection process. We will suppose that exists h so that for every input in
with input descriptor x holds t = h(x) + ¢.

If we wanted to be more precise in the dependency modeling, we should be
using a tuple of all the distance-based features as our input descriptor. That

2Consider for example a general graph — for most of the algorithms, both number of vertices
and edges have to be taken into account
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would, however, lead to significantly more complex prediction models, and there-
fore we decided to keep the framework prototype simple by limiting ourselves to
one factor. More complex models working with multiple features can be added
to the framework in the future.

As for the features with no metric, the simplest way of addressing the issue
is to treat different combinations of these features the same way as if they were
different functions. They should have completely separate historical measurement
records, and the strategies can build separate models for them, using the input
descriptor on top of that. A possibility of grouping the inputs was therefore
added and will be discussed in a separate section.

4.1.3 Input grouping

In [I5], an automatic method of clustering the inputs is used before formulating
any predictions about the run time. This is done because of the fact that inputs
with common factors are in general expected to lead to similar run times, or at
least to run times that can be described by the same, simpler model. In addition,
it might be necessary to split the inputs using the values of input features with
no distance metric, as explained in [4.1.2]

Due to the performance limitations and the overall complexity of the solution,
we will not include the algorithmic clustering. The user will, however, be able
to specify a method of assigning the inputs to groups. The historical records for
inputs from different groups will be held separately, and upon selection, only the
ones from the corresponding group will be used.

Group selection

The group selection function that determines a group for a given input is called
a group selector and has to be provided by the user when creating the combined
function. Groups are identified by a custom type that can be either an integer,
or a special NoGroup value.

The grouping should be primarily based on the discrete values that affect the
function behavior — enumerations, boolean flags and similar, as these cannot be
included in the input descriptor based model of the selection strategies. It can,
optionally, include the features covered by input descriptor as well, in order to
divide the range of all its possible values into more smaller ranges, which can
increase precisions of the models. Some of the most common ways how to group
values for the input descriptors might be:

e Logarithmic — orders of magnitude
e Linear — tens, hundreds, thousands
e Fixed — predefined finite number of groups

The groups in general should not be too small, as the selection process relies
only on the data from the group. The advantage of groups with growing size (e.g.
the logarithmic grouping) is that there is a lot of groups in the areas where the
functions tend to compete in the performance (smaller inputs).
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4.1.4 Limiting the historical data age

The € in the function h from section technically represents the influence
of the execution environment. We suppose that it is a random variable from a
normal distribution, whose parameters are determined among other factors by
the environment state. If it gets changed, the distribution of the error changes
as well. In such a case, we should not be using the observations from before and
after the change together in the models that suppose the same distribution for
all the observations (which is a common assumption).

Therefore, whenever we expect the environment to change often and the run
times to fluctuate significantly (e.g. due to network traffic, computation nodes,
etc.), we limit the history to the most recent observations in the selection process,
which will reduce the probability of model failures. Not only can this lead to more
significant results of the statistical selection strategies, but it also means that the
framework will be able to quickly adapt to a new environment in case that the
function performances get dramatically different.

Limiting the historical data age can also help with recovering from problems
caused by occasional performance fluctuations. Such a fluctuation in one of the
historical observations can influence the model and cause wrong decisions. If
we, however, use only fresh data to construct it, the problematic performance
measurement will not be used after a certain time. No long lasting errors can
therefore be introduced in the system.

For these reasons, we need to have the historical run records marked with
timestamps. The user of the framework will, optionally, provide a maximum age
of a record that should be taken into account for a combined function. Upon
invocation, the records that are older than this limit will be filtered from the
history vector of each one of the functions. This should not lead to any significant
overhead if the vectors preserve the ordering in which they are built, having the
most recent data at the end. The time period itself is up to the user to configure
and should depend on the expected frequency of the function runs and on the
environment behavior.

4.1.5 Solving the decision failures

As mentioned before, we would like the decision process to take into account the
certainty of the decisions, i.e., refuse to give a decision when the possibility of
committing an error is too high. If this happens, it can either mean that the run
times of the functions involved are very close to each other, or that the models
are very inaccurate. The first situation does not mean any problem for us, as
using any of the functions is equally good. In the second case, we would need to
increase the precision of the model, ideally by adding more data. Therefore, the
most useful action is to select a function with the least historical data.

4.1.6 Selecting from multiple functions

The goal of the decision process is obvious when selecting from two functions —
compare the predictions and select the one that is better (taking into account
the confidence of the predictions), or refuse to select when the decision cannot be
done. Upon selection among three or more functions, the situation becomes less
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clear. Ideally, we would like to be able to identify a function that is significantly
better than each one of the remaining functions. The problem is that there might
be a function that is significantly better than some of the remaining functions,
but not better than all of them. This function cannot be selected, because we are
not able to rule out the possibility that there is a faster option.

This could theoretically be solved by performing tests between subsets of
functions — if we found out that all functions in certain subset are better than
all the other functions with given certainty, we could limit the selection to the
subset, or even choose from it randomly. The problem is that such a procedure
would lead to an extremely high number of comparisons, which would increase
both the chance of an error in some of them and the selection overhead.

Therefore, we will consider only the simplest option where one function has to
be significantly better than all the others, and the remaining results will be treated
as ambiguous with none being selected. This can, unfortunately, cause problems
in a situation where we have two functions with equally good performance and
one with worse performance. As we are not able to make a decision, we will keep
cycling through all three functions.

4.2 The invocation chain

We have discussed the selection process using prediction techniques on a theo-
retical level. Now, we are going to have a look at the actual steps that have to
be done upon invocation of a combined function. Suppose we have a combined
function f with implementations fi,..., f,. We are able to invoke f with an
input in. It is expected to run one of the implementations fi,..., f, with in and
to return result out.

The basic steps required to do so are the following:

1. Use the group selector to find the group identifier g and the descriptor
function to find the input descriptor x for in (if either of the functions is
not defined, the corresponding variable will have a special undefined value)

2. Locate the history vectors dy, ..., d, of functions fi,..., f, for group ¢

3. Filter out records older than the maximum age (infinite by default) from
each vector d; into d;

4. Select the function fj to be executed based on d},...,d], and z
5. Invoke fx, fetch the result out and evaluate its run time
6. Add the new evaluation result to d; and update it for group g

7. Return out to the caller

In the following sections, we will discuss some of the steps of the process in
more details.
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4.2.1 Run time evaluation

The evaluation consist of gathering useful data from the function run. In this
text, the data will be represented only by the function run time, but in the
future, they might be replaced and might potentially contain more information
that can help with classifying the function run and make better predictions in
the selection process. An example of such data might be the execution counts of
certain code paths of the function, like in [13]. The collection would, however,
require a non-trivial instrumentation of the executed code.

Wall clock time and CPU time

When talking about function run time (or an execution time of a function), there
are two types of values that we could be observing:

e Wall clock time — time elapsed between entering and leaving the function
e CPU time — time that the CPU actually spent executing our function

The wall clock time is always higher than the CPU time, because it includes
not only the time when CPU is executing the function code, but also the time
when the executing thread is waiting for its turn in time-sharing multitasking op-
erating system or sleeping on a blocking 1/O operation, synchronization primitive,
or for any other reason. This means that the wall clock time also gets affected
by concurrently running processes, network load, and other environment-based
factors, and tends to vary much more between multiple invocations.

For the purposes of the adaptive framework, it might seem that the CPU
time would be more appropriate, as it gives clearer results not affected by the
state of the executing environment. The truth is, however, that many of the use
cases of the framework require the thread sleeping time to be included in the
measurement, as the functions run times are determined mainly by the duration
of an I/O operation (e.g. database queries, network requests, etc.), so using CPU
time would not give us the necessary results.

It is also quite difficult to determine the CPU time — it requires support
from the operating system with tracking the time that every thread has spent in
execution. For this reason and for the reason stated above, the selection process
in this text is based on the wall clock time. It might be, however, interesting as
a future extension to implement measuring of both of the times and allowing the
user to decide for each combined function which time should be used.

The wall clock time is measured by fetching high-precision system time in
nanoseconds right before calling the function apply method and right after return-
ing from the call. The result is the run time in nanoseconds. This measurement
is precise enough for all the use cases of the framework, because it is targeting
mainly functions with non-negligible time complexities.

4.2.2 Storing and retrieving the evaluation data

After having invoked the function and evaluated its run, the evaluation data have
to be stored before passing the return value back to the caller. The history of
all the run evaluations for a given function on inputs from a given group is kept
together as a vector of records. Each record consists of at least the following:
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1. The input descriptor of the input for a given run
2. The evaluation data (in our case, the wall clock run time) of a given run

3. The timestamp of a given run

Whenever a new evaluation data are obtained, a record is created and added
to the end of the history vector. Some additional metrics might be cached for the
whole history record. In such a case, the metrics have to be updated as well.

For simplicity, we suppose that the run histories of the actual implementations
will be shared between all the combined functions that use them. More on that
along with different options will be discussed in chapter 5

4.2.3 Selecting a function

The actual selection process, as described in can be implemented in many
ways using many different models. It is basically an isolated algorithm with the
following input:

1. History data vectors dy, ..., d, corresponding to functions fi,..., f,, where
di = ((xin, Yin)s - - (@ig, Yig;)), for x; ; being the input descriptors and y; ;
being the corresponding run times of historical runs (the input descriptors
can be undefined)

2. Current input descriptor x

It should return k& € 1,...,n, which will determine the function f; to run.

These algorithms are called selection strategies, and we suggested a few of
them based on different approaches to predicting the run times and selecting
between various predictions. They will be described in the following two sec-
tions, and for each that we included in the framework, a simplified pseudocode
implementation will be presented at the end of the description.

4.3 Mean based selection strategies

In some cases, the function run time does not depend on the input, or the rela-
tion is not significant enough. For simplification, we suppose that the function
complexity is constant in such a case. Using the same formalism as in for
run time ¢ on input in with input descriptor x holds t = h(z)+e¢ for a h constant,
i.e. Yy g(y) = c. Therefore, t = ¢+ €, where ¢ is the error which we suppose has
a normal distribution with a zero mean. Under these assumptions, ¢ is a random
variable with normal distribution and mean equal to ¢, which is the expected
constant run time of the function.

The mean based strategies will use the sample data to determine the means of
the function time distributions with given certainty and use them as the expected
run times in the decision process. The current input descriptor x, as well as the
ones included in the history measurements, will be ignored in the process. They
will not be therefore mentioned in the pseudocode algorithm input.
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4.3.1 T-test for two functions

To compare means of two samples from certain distribution and make conclusion
about their equality, statistical tests are commonly used.

Suppose we have two samples of run times for the two functions involved,
Xi,...,X,and Y;,...,Y,,. Next, suppose that these samples come from normal
distributions with means p; and ps, respectively. These means are unknown for
us, and neither are the variances, which we suppose to be different. The goal is
to test the means of the two samples against each other.

Based on these requirements, we will use a two-sample t-test. Standard Stu-
dent’s t-test works only under the assumption that the sample variances are equal,
so it cannot be used in this case. A generalized version can be applied, namely
the Welch’s (nonpooled) t-test [17]|, which is not as strong, but can work with
samples with different variances. More detailed reasoning about the test selection
can be found in [12].

The default hypotheses for the test are:

Hy: = pio
Hy o # po
and the test statistics used:
X, -V,
T o n m
S

where X,, and Y}, are the sample means and S is the following:

S = % + 8_52/
V. n m
with S% and S% being the sample variances:

1

2 v )2
SX—n_lg(Xz X)
S2 :Li(y—if )2

Y m— 14 Lo

This test statistics can be estimated according to [12] using Student’s t-
distribution with df degrees of freedom for:

(B + 37
df _ o n m 5
n?(n—1) + m2(m—1)

The hypothesis Hy will be rejected in favor of hypothesis H; with the signifi-
cance level « if

@8]
T| >t (1 — 5)

The tg(1 — §) is the (1 — §)-th quantile of t-distribution with df degrees of
freedom.
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Rejecting H in favor of H; means that the sample distributions have signifi-
cantly different expectations, i.e., one of the functions is expected to give better
results than the other. We can then simply compare the sample means and deter-
mine, which of the functions has lower expected run time and should be selected
to run with given certainty (the probability of 1 — «). If we cannot reject the Hy,
the strategy is not able to determine which function is better with given certainty
and should not give a result.

Selection algorithm

The strategy is parametrized by the selection significance level o and by the
secondary strategy to be used in case of decision failure.
Input: Historical data vectors dy, ds where d; = [yi1, ..., Yis]
1: equalityRejected + twoSidedTTest(dy, ds, )
if not equalityRejected then
return useSecondaryStrategy(dy, ds)
if mean(d,) < mean(ds) then
return 1
else
return 2

4.3.2 T-test for multiple functions

The selection strategy that was described in works only with two functions.
If we want to select from three or more, we need to modify the strategy.

Suppose we have k samples X 1,..., X1, ..., Xg1,..., Xpp, from normal
distributions with unknown means 1, . . ., gx and unknown variances. We would
like to compare the expectations and find out whether there is a sample whose
mean is significantly different from the others.

Common techniques for testing hypotheses concerning the means of multiple
samples involve AN OVAE] or its modified version, the Kruskal-Wallis test (both
described in [12]). The tests are based on variance comparison, assume that the
samples have similar standard deviations, and can decide about the following
hypotheses:

Ho: pn = pig = - =
Hy : Elivjv Mz?éﬂj

These multiple-sample tests are usually preferred over performing multiple
t-tests, because it usually offers higher strength of the test for the same signif-
icance. In our case, however, this approach is not very suitable. We need to
find out whether there is one sample deviating significantly from all the others —
ANOVA guarantees only the existence of some deviation.

Based on these observations, it is necessary to come up with different hy-
potheses. We will consider a simpler task first.

3 Analysis of variance
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Testing one function against the others

Suppose we want to test u; against all the other expectations:

Hiog: 35 # 1, pi =
Hiy o Vj#i, i < py

H; is basically saying that there is at least one other sample with the same
mean, and the one-sided alternative H;; puts p; as the lowest of all the means.

We can perform a simple t-test of H; o : i = p; against H; 1 1 pi < pi;
Vie{l,....k}, j #i. It is clear that the H;( can be rejected in favor of H;,
only if all of the H; ;o were rejected in favor of H; ;. Note that the H;;; is an
alternative hypothesis of a one-sided test — we need to take it into account when
performing the test and modify the critical values.

The procedure of combining statistical tests usually requires artificially low-
ering the significance level of the individual tests with the goal of keeping the
significance level of the whole set of tests reasonably low. These methods are
based on the assumption that committing a type-I erroif]in any of the individual
tests leads to a type-I error overall. Additionally, the probability of committing
at least one gets higher with the number of tests.

In our case, however, a type-I error in one of the individual tests does not
necessarily lead to a type-I error in the whole test. Suppose that H;  is true, so for
an [ > 1 exist mq,...,my such that p; = fiy, A+~ Ap; = fi,. In order to commit
a type-I error, we need to reject Hj,,, o for all j € {1,...,[} by committing the
type-I error in the individual tests [-times. At the same time, we need to decide
correctly about the remaining k£ — [ tests. So the probability of committing a
type-I error overall is o!(1 — «)*7!, and consequentially, the significance level of
the entire test gets even lower than «.

As the a decreases with growing k, the test gets more pessimistic — it will
require more data and more certainty in order to reject H; o. If we wanted to keep
the significance level at exactly a, we would need to apply a reverse correction —
artificially increase o. The exact method how to do so would, however, be quite
difficult to derive, as there are many cases to consider with unknown probabilities.
The assumption is that the number k of the functions involved will be low enough
not to affect the significance too much.

Testing multiple functions for a presence of a deviating one

Now we are able to decide about a function whether it is significantly better than
all the others. We can use it to decide about the following:

Hy : Ella VJ#% i < [j
The one-against-others will be performed for all the functions one by one. If
Jdi so that H, can be rejected in favor of H; ;, the Hy can be rejected in favor of

H, and we can use the i-th function as our selected candidate. If such an 7 does
not exist, we cannot reject Hy and no function will be selected.

4Incorrectly rejecting a true null hypothesis, more details can be found in [12].

40



In this case, the type-I error in any of the elementary tests leads to a critical
error of the selection process. If we wanted to remain precise about the signif-
icance levels, we would need to apply a correction at this moment to lower the
significance of the one-against-others test. As that test is, however, again com-
posed from multiple individual tests, the situation gets complicated and deriving
a precise correction is out of the scope of this work. In addition, such a correction
leads to lowering the test strength, i.e., the Hy being rejected less often. This
could severely affect the strategy behavior, maybe even make it unusable for some
higher numbers.

We will, therefore, use the unmodified significance level for simplicity, as the
expected usages combine mostly three functions at maximum. The task of de-
termining a suitable correction for the selection case, either theoretically using
probabilities in the composed tests, or practically by observing behavior with
different values, is left as a future extension.

Selection algorithm

The strategy is parametrized by the selection significance level o and by the
secondary strategy to be used in case of decision failure.
Input: Historical data vectors d, ..., d, where d; = [y;1, ..., Yiy,]
1: for 7 =1ton do
2: better <+ true
3 for j =1tondo
4 equalityRejected < oneSidedTTest(d;, d;, o)
5 if not equalityRejected or mean(d;) > mean(d;) then
6: better < false
7 if better then
8 return ¢
9: return useSecondaryStrategy(dy, ..., d,)

4.3.3 Mann—Whitney U-test

The t-tests used in strategies from sections [4.3.1 and 4.3.2| require the historical
measurement data to come from a normal distribution. Even though it was one
of our assumptions at the beginning, it does not necessarily hold in reality, as
the fluctuations in the run time depend on many factors of the environment.
We might try to use a test that is nonparametric, i.e., does not require any
standardized and parametrized distribution of the data. One of these tests is
the Mann—Whitney U-test (for details see [12]), which only requires the sample
observations to be independent.

Supposing we have the samples X1,...,X,, and Y7,...,Y,, from distributions
with respective means p; and ps, the hypotheses are going to be exactly the same
as for the t-test:

Ho: py = o
Hy oo # po

The test itself is based on sorting all the observations from both samples
together by their values and assigning them ranks corresponding to the position
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in the sorted sequence (from 1 to m + n). Then, the ranks of the first and the
second sample are added up, forming R; and R, respectively. The test statistic
is the following:

U= mm(Ul, UQ)

1
Ulle—M
2
1
ngRg—%

Now, U has, in case of valid Hy, a known distribution with critical values that
can be either looked up for small fixed values, or approximated using a normal
distribution for higher values. Therefore, we can reject the Hy for U < U(a, n, m),
where U(a,n,m) is the tabulated or approximated critical value for the signifi-
cance level o and given sample sizes.

The strategy can be extended to three or more functions exactly in the same
way as the t-test (see section [£.3.2)), the individual tests involved will have to be
changed to one-tailed (by using doubled o when looking up or approximating the
critical value of U) and an overall a correction should be used.

Selection algorithm

The strategy is parametrized by the selection significance level @ and by the
secondary strategy to be used in case of decision failure.
Input: Historical data vectors dy, ..., d,, where d; = [y;1, ..., YiL,)
1: for:=1ton do
2: better < true
3 for ) =1ton do
4 equalityRejected < oneSidedUTest(d;, d;, «)
5 if not equalityRejected or mean(d;) > mean(d;) then
6: better < false
7 if better then
8 return ¢
9: return useSecondaryStrategy(dy, ..., d,)

4.4 Input based selection strategies

Input based strategies use the historical measurements along with corresponding
input descriptor to construct a model that approximates the non-constant func-
tion h (see [£.1.2). A prediction for a new input descriptor can be derived from
the model and used to decide which of the functions will have better performance
on given input.

These strategies rely on the existence of input descriptors and cannot be used
when the descriptor function is not specified.
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4.4.1 Simple linear regression

The first strategy supposes that the function A can be approximated precisely
enough using a linear function A’ in the following form:

b (z)=dz+V

This approximation is a simple linear regression model. The slope a' and
intercept b’ of the linear function can be determined using the least-squares cri-
terion, which minimizes the squares of the distances of the actual observations
from values predicted by the model (for detailed description see [12]).

The major advantage of the model is its simplicity and thus minimal overhead
when generating the regression during the selection process. In addition, the
model can be easily cached for fixed set of samples and updated when adding
new data without having to construct it all over again.

The main problem is that applying the linear regression model to a case where
the relation is not linear leads to non-trivial errors that increase with the range
that we are trying to cover with the model. Figure shows samples of run times
of the basic selection sort algorithm, which has complexity of O(N?), on sample
arrays with 0 to 30000 integers. Collected data obviously match the quadratic
function graph, denoted by the dotted curve. The straight line shows the linear
regression model. As we can see, the predictions based on this model would be
quite inaccurate, especially if we tried to predict run time on an input significantly
larger than the samples.
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Figure 4.1: Linear regression model of selection sort runtime samples.

The model can then be used to formulate simple predictions, a’z+b" being the
prediction for input descriptor x. Next, we need to find a way how to determine
the certainty of the prediction to be able to select the best function with given
certainty using a set of these models.

Confidence interval based selection from two functions

Suppose we have the linear regression model h'(x) = o’z + b’ that approximates
the function h(x) = ax + b constructed using n data samples z;,y; (in our case,
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x; are the input descriptors and y; are the run times). If we assume that the
errors €; = y; — h'(x;) of our sample from the regression model values are random
variables with normal distribution, we can perform some observation about the
model.

Firstly, the standard errors se(d’) and se(a’) of the intercept ¢’ and the slope

a’ can be derived from the model. In addition, the statistics t, = "/—“) and

se(a’
ty = =t b/ have a t-distribution with n — 2 degrees of freedom. This means that
we are able to construct confidence intervals and perform t-tests for a and b. The
default tests hypotheses have the following form:

Hy: a=aqg

Hi: a#ag

We basically test equality of a (or b) and a fixed value ag (or by) — this test
can be used to verify if the data have a specific linear relation. If we put ag = 0,
we can find out whether the observations y; are constant.

None of these tests and statistics, however, allows us to test the certainty of
the prediction — we need to consider both the intercept and the slope estimation
certainty, and, in addition, the distance of the x we want the prediction for from
the mean z. The reason is that if we commit an error in the slope estimation o/,
the corresponding error in predictions increases with the distance from z.

With these facts, a confidence interval on level 1 —« for the mean of the actual
values (y) for 2 can be constructed. According to [12], the width of the interval

is the following:
_ (x — T)?
wx‘ - Yn—
2 Zz 1 xl - ‘CE)

where 7 is the mean of z;, t,_»(1—%) is the (1—%)-th quantile of ¢-distribution
with n — 2 degrees of freedom, and SE can be computed as:

SSE

n— 2

Se =

and

SSE = Ze = Z —y))?
=1

for y, = h/(z;).

It now holds for any « that the mean of y = h(z) lies in [a'z + b’ + w, o] with
probability (1 — «).

Now in the situation where we have two regression models and we want to
find the best prediction of x, we can construct these confidence intervals for both
models and:

e If the intervals do not overlap, the predictions have at least a (1 — «)?
probability of correctly setting the order, i.e. the worse prediction actually
being the worse function

5Standard error of the estimate
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e [f the intervals overlap, there is a non-trivial chance of the predictions being
mixed up by error

In the first case, we can decide that one function is significantly better and
select it. In the second case, we cannot decide with given certainty.

Confidence interval based selection from multiple functions

The described method allows us to decide between two functions with given cer-
tainty. Now, when choosing among n functions with regressions h},...,h. for
given z, we are looking for the k for which the following holds:

e The confidence interval on level (1—«) for prediction k) (z) does not overlap
with any other of the confidence interval for prediction.

o Vj#k:h(r) <hix)

It can be done by constructing all the regression models and then Vi perform-
ing the comparison described in of h; with h;,Vj # i. If h; is better than
all of the h;, we can choose the corresponding function.

The strength of this decision is influenced by the fact that we perform mul-
tiple confidence interval constructions — the errors an error in any of them can
influence the result of the selection, se the significance gets lower in general. If
we wanted the results to be precise, we would have to perform the correction of
the significance level a. Just like in we will leave the significance correction
analysis as a potential future work.

Selection algorithm

The strategy is parametrized by the selection significance level o and by the
secondary strategy to be used in case of decision failure.
Input: Historical data vectors dy, ..., d, where d; = [(zi1,Yi1), -, (Tig;, Yig,)], in-
put descriptor x
1: fori=1tondo
r; <— createRegression(d;) > Uses the least squares method

: fori=1tondo

better < true

for j=1ton,j#ido
(k1,11) < predictionlnterval(r;, z, «)
(k2,l2) < predictionlnterval(r;, z, o)
if (k1,1;) overlaps (kg,l2) or ky > ko then

better < false

if better then

11: return ¢

12: return useSecondaryStrategy(dy, ..., dp, x)

,d
<

4.4.2 Window-bound linear regression

To be able to apply the strategy described in section [4.4.1] on a wider variety
of functions, a simple approach to lower the approximation errors can be taken.
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Instead of creating a regression model for the entire set of historical measurements
at once, we can split it into more subsets and create different regressions for them.
Figure [4.2| shows ranges 5000 to 10000, 10000 to 15000 and 15000 to 20000 of the
input sizes of the data from [£.I] As we can observe from the second and third
range, the data tend to be much closer to the linear regression line. The first
range shows that a less significant fluctuation in the entire set has a lot bigger
impact on the model in a smaller subset.
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Figure 4.2: Examples of subsets of the data from figure with
corresponding linear regressions.

When selecting a function for a specific input descriptor x, a window around
its value of specific width w can be created and the regression model built using
the data from the said window. We do it by selecting only the historical samples
(xk, yx) where |z — 2| < w when constructing the regression.

There are multiple ways how to decide on the window width w. Using a
fixed number across all the functions and all the data samples would not be
recommendable, as the functions can vary in their input descriptors by orders of
magnitude. The width could be derived as a fraction of the width of the whole
data set: w = merl@)—min@) = where 5 would represent in how many parts we
want it to be split.

More flexible approach is to dynamically determine the p. Suppose we want
the average window to contain r records. We find out what is the average distance
between two neighboring records as d = % and then set the w = rxd.
This way, the window size will always be adapted to the density of the dataset.

The window limitation might seem similar to the grouping described in
but there are two major differences. First, the windows are based on the input
descriptor, whereas the group selector might use different features of the input.
And second, the groups are deterministic and do not move with the input de-
scriptor and change their size based on historical data. Both these concept can
be used at the same time.

Selection algorithm

The strategy is parametrized by the selection significance level @ and by the
average record count per window avg.
Input: Historical data vectors dy, ..., d,, where d; = [(z;1,Yi1)s -, (Tig;, Yis)], in-
put descriptor x
1: forv=1ton do
2: dist < (max(z; ;) — min(z;;))/(l; — 1)
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3: w <— dist x avg
4 d; < [(@ij,Yi )i Vit @iy — 2| < w/2]

5: return useLinearRegressionStrategy(dy, ..., d. , )

cey gy

4.4.3 Local regression

The approach explained in can be extended further — the locally constructed
linear regression models might be used to build up a model for the entire data
set. This leads to a model that is non-linear, i.e., the function that approximates
the original data relation is not a linear function.

One possible regression method that behaves this way is LOESS (Local Re-
gression, |18, 19 20]). It uses techniques similar to the least-square regression on
local subsets of the data set, and then smooths up the resulting curve. The out-
put is a Loess Curve, an artificially constructed function that does not necessarily
have to be expressed by a formula. This is one of the advantages of the model —
the original relation between input descriptors and the run times did not have to
be expressed by a simple function in order to be captured correctly.

The LOESS model can be used to predict the function run times. It is,
however, a lot more complicated to derive the prediction confidence intervals.
Therefore, only the values will be used in this selection strategy, which could lead
to some wrong decisions.

There are other disadvantages of this strategy as well. First of all, the entire
local regression model has to be recomputed whenever there is a new record in
the dataset, the model cannot be simply updated like the simple linear regression.
Secondly, it is much more computationally complex and the model construction
takes non-trivial time, so it has a negative impact on the framework overhead,
especially when used with short and simple functions. The last downside of
local regression is its inability to predict further behavior past the minimum and
maximum data sample.

Selection algorithm

The strategy is parametrized by the secondary strategy to be used in case of
decision failure.
Input: Historical data vectors dy, ..., d,, where d; = [(2;1,Yi1), s (Tig;, Yis;)], in-
put descriptor x
1: fori=1ton do
2 m; < interpolateLoess(d;)
3 p; < predictValue(m;, x)
4: if p, = NaN then > The prediction can fail
5 return useSecondaryStrategy(dy, ..., d,, )
6:

return argmin(p;)

4.4.4 Window-bound t-test

The mean based t-test selection strategy described in sections [4.3.1] and |4.3.2
works under the assumption that the run times of a specific function have a
normal distribution, and the prediction of run time is simply the mean of all
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the times measured. This could be true only for the functions with constant
complexity — whenever the function run time depends on the input, the samples
measured have their distribution influenced by the distribution of the inputs.
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Figure 4.3: Run times of quick sort algorithm (dark dots) and selection
sort algorithm (light dots) by input size.
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Figure 4.4: Examples of subsets of the data from figure

If we wanted to use the t-test strategy on the functions with non-constant
complexity, the same approach as with the simple linear regression can be taken.
Instead of assuming that the relation in the small window is linear, we want it to
be constant and normally distributed. We can then predict the run time using
the mean of the measurements from within a very small range of input descriptor
values. Consequently, it is extremely important to keep the window size as small
as possible, so that these assumptions held at least approximately. The t-test
significance levels and strengths will be approximate as well, but our goal is to
get reasonable selection behavior, we do not need to be precise.

Figure |4.3| shows the run times measured for the quick sort and selection sort
algorithms on random arrays of sizes between 0 and 30000. Obviously, there is a
relation to the input size, so the simple t-test should not be applied in this case.
In figure [4.4] there are the same data in three different windows — 0 to 3000, 7000
to 10000 and 17000 to 20000. As we can see, in a window of this size, the run
times are almost constant and the random fluctuations are more significant than
the actual relation to the input size. We can apply the t-test as described in
sections 4.3.1] and [4.3.2] to these windows and consider the result to be relevant
enough with respect to the input.
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The window sizes can be determined in a similar way as in section [£.4.2] If
we reduce it to a constant 0, we will get a technique in which only the results
for inputs with the same descriptor are tested. When there are none, we refuse
to select and wait until data are gathered. This might be useful in cases where
we know that the function will be called repeatedly on a limited set of input
variants, and basically rules out the prediction factor, as we need to have actual
observation for each input before making any conclusions. Similar approach is
taken in [I6]. The same goal, however, can be achieved more efficiently using the
grouping mechanism (see [£.1.3).

Selection algorithm

The strategy is parametrized by the selection significance level o and by the
average record count per window avg.
Input: Historical data vectors dy, ..., d,, where d; = [(zi1,Yi1), - (Tig;, Yig,)], in-
put descriptor x

1: forv=1tondo

2: dist < (max(z; ;) — min(z;;))/(l; — 1)

3: w < dist x avg

4 di < (@i, yi)i V5w — @] Sw/2]

5: return useTTestStrategy(d!, ..., d,)

4.4.5 Whitebox model construction

The methods that were described so far are examples of the blackbox techniques —
they do not analyze the function itself, the models are based only on the relation
of the run times and the input descriptors.

The techniques used in the research projects focused on formulating accurate
predictions about program run times (like [14 [13],21]) often build the model using
more detailed information about every run. These extra data can be obtained by
examining and instrumenting the function code. Key structures (loops, branches,
method invocation, ...) can be identified and execution counts can be tracked.
Then, a model that captures the relation between the input features, the described
structure execution counts and the run time can be constructed. This added
dimension might lead to more accurate model and therefore better predictions.

In [13], a Mantis framework for high accuracy program performance predic-
tion was implemented. The basic principles are similar to the approach described
above. It was tested on a series of data gathered from runs of the ImagelJ appli-
cation, and compared with a blackbox prediction model based on interpolating a
polynomial of degree three. The prediction error of the whitebox approach was
5.5%, the blackbox approach error rate reached more than 35%.

This approach has, however, a few problems concerning the intended use cases
of our framework. The model will not improve the predictions if the majority
of the execution time is spent waiting on an I/O operation. Specifically, it will
not help with any of the cases where we are selecting a database query, remote
server to connect to, etc. In addition, it would require the method code to be
instrumented at runtime, which would lead, together with the model construction,
to a significant overhead.
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For these reasons and because of the complexity, the whitebox model was not
implemented in the framework, but it represents a potential future work that
could be done on the topic.

4.5 Strategy comparison

In general, the input based strategies do not handle well more historical results for
the same input descriptor, and are impossible to use when there is none specified.
The following rules should be used to decide between input based and mean based
strategies:

e Dependency on the input
If the function does not have any input, or the input does not affect the ex-
pected run time (the complexity is constant), mean based strategies should
be used.

e Expected input values
If the function is expected to be invoked with a discrete and very limited
set of inputs, mean based strategy is preferred. On the other hand, if the
function will be called repeatedly with randomly distributed inputs, the
input based strategies are a better choice.

Considering these facts, the framework will contain both an input based and
a mean based strategy, and will automatically use the input based one if the user
specified an input descriptor, and the mean based one otherwise. The user will
be able to override this choice if he wants.

The actual strategies used should be easily replaceable, but some have to be
chosen as default for the common uses. Therefore, a practical comparison of the
selection success rate and overheads of the strategies that were described and
implemented follows.

4.5.1 Input based strategies success rates

To compare the efficiency of the selection strategies, we will perform two tests.
The first one will be based on an artificial function with linear complexity defined
by the following lambda expression:

i={
val j = (i * k).toInt
var acc = 0
Seq.range(0, j).foreach(l => {
acc = acc + (L x Random.nextInt(1000))

}

acc

Where 1 is the input of the function and K is a constant factor which can be
used to slow the function down.

Analogically, we will define a quadratic function (using a similar lambda, only
with second line replaced by val j = (i * 1 * k).toInt).
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Now, the test will be based on combining two instances of the same functionlﬂ,
one with £ = 1 and the other with some k£ > 1, perform a series of runs and track
how many times will the selection strategy choose the worse one (i.e. the k > 1
one).

For each test, we will generate 100 sequences, each one containing 200 integers
between 100000 and 500000 in case of the linear function, or 100 and 500 for the
quadratic function. One sequence will represent one test run — the measurement
history will be flushed and the function will be invoked on the members of the
sequence one by one. The strategies are set in the way that the first 60 runs will
use a round-robin selection to gather 30 data samples for each function before
starting the actual selection. It means that the strategy should perform 140
selections for each test run. We are going to count how many times the worse
function is selected. The baseline solution in this case would be to keep using
the round-robin technique, which would lead to the worse function being selected
50% of the time, 70 times out of 140.

Now, we will use the following values for k: 4, 2, 1.5, 1.2, 1.1, 1.01, and the
following selectors:

e Window-bound t-test (WBTT) with a set to 0.05 and 0.25

e Linear regression (LR) with a set to 0.05 and 0.25

e Window-bound linear regression (WBLR) with « set to 0.05 and 0.25
e Local regression (LOESS)

For each combination, all 100 test runs were performed and an average per-
centage of the worse function selection was computed, the results for the linear
function can be seen in table and for the quadratic function in table [£.2] A
surprising fact might be the overall better results for the non-linear case, which
should be more difficult to model. The reason for this fact is that there is a
dramatically lower range of inputs (100 to 500 instead of 100000 to 500000) in
order to keep the test run time realistic. In addition, the run time differences
between individual inputs grows much faster, so the error factor involved does
less damage to the model. In general, it seems that functions with faster-growing
complexities get more precise predictions.

As to the individual strategies, it might be unexpected that the linear regres-
sion has quite poor results, even in the case where the original function complex-
ities were linear. Almost 16% of selections of a function that is four times slower
in the o = 0.05 case. This is caused by the fact that eventual measurements with
extreme deviations influence the whole model, not just a local part of it, which
might lead to an eventual series of wrong decisions. Therefore, linear regression
strategy is not recommended to be used in general.

On the other hand, the absolute winner is the local regression, which is able
to maintain extremely low error rates (6.2% for the linear functions, 7.4% for the
quadratic functions) for the second-minimal case k = 1.1, and push it even lower
with growing k. Neither one of the other strategies got below 15% not only for
k = 1.1, but even for k = 1.2.

6Note that the actual implementation requires either using two different lambdas, or using
custom identifiers, more on that topic in section
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WBTT | LR | WBLR | WBTT | LR |WBLR|
(0.05) | (0.05) | (0.05) | (0.25) | (0.25) | (0.25)

1.01x | 52.4% | 49.6% | 51.5% | 47.1% | 49.6% | 50.1% | 43.6%
1.1x 49.4% | 485% | 372% | 33.7% | 44.6% | 335% |  6.2%
1.2x 40.1% | 46.0% | 29.0% | 26.3% | 41.6% | 27.8% |  3.5%
1.5x 302% | 38.9% | 13.9% | 13.7% | 25.6% |  9.9% 2.9%
2x 17.6% | 254% | 7.8% | 4.3% | 144% | 47% 2.4%
4x 2.9% | 15.7% |  5.0% 01% | 9.7% | 2.7% 2.5%

Table 4.1: Percentage of times the strategy selected the worse one out of
two linear functions (average from 100 test runs, each containing 140

selections).
WBTT LR WBLR | WBTT LR WBLR LOESS
(0.05) | (0.05) | (0.05) | (0.25) | (0.25) | (0.25)
1.01x 52.3% | 49.4% 44.6% 50.5% | 50.3% 49.5% 44.6%
1.1x 44.9% | 43.1% 28.9% 33.3% | 37.8% 26.2% 7.4%
1.2x 38.2% | 38.1% 16.3% 17.8% | 31.2% 15.7% 4.0%
1.5x 16.6% | 28.7% 8.4% 7.9% | 18.5% 6.4% 2.5%
2x 8.8% | 20.0% 4.1% 2.7% | 13.4% 2.4% 2.3%
4x 3.5% | 19.6% 3.0% 0.1% | 14.6% 1.5% 2.3%

Table 4.2: Percentage of times the strategy selected the worse one out of
two quadratic functions (average from 100 test runs, each containing 140
selections).

The window-bound strategies are somewhere in the middle — they perform
very well for higher k (2,4), which is the main concern, and reasonably for the
other sizes. The main difference between them being that the window-bound
linear regression improves steadily with growing k, whereas the window-bound
t-test reaches better results for the largest £ = 4, but improves dramatically at
the end and has worse results for lower k.

We can see that in all the cases, lowering the selection significance (by increas-
ing the «) can lead to slightly better results overall, especially for larger values
of k. The success of local regression, which does not employ certainty in the
decision making process, supports this observation. It seems that the assumption
of selection errors having a bad influence on the model and leading to chains
of bad decisions was not confirmed by this test. It might be, however, different
for real-life scenarios with more variable run times, environment changes, etc.,
and we should keep that in mind and be careful when lowering the « for better
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selection results.

4.5.2 Mean based strategies success rates

Similarly to the input based strategies, we are going to perform a selection success
rate test for the mean based strategies. As we need only a function with fixed
non-trivial execution time with a possibility to slow it down a little, we are going
to reuse the linear function from section fixing its input to 200000. Again,
we are going to combine an instance of the non-slowed function with the instances
of function slowed by a factor k.

The values 2, 1.5, 1.2, 1.1, 1.01 will be used for k, along with the following
selectors:

o T-test (TT) with « set to 0.05 and 0.25
e U-test (UT) with a set to 0.05 and 0.25

For each combination of k and a selector, 100 test runs will be performed,
each one consisting of invoking the described combined function 200 times and
removing all the history records afterwards.

The results can be seen in table [£.3] It might seem obvious that the u-tests
deliver better results, and again, lowering the a improves the result as well. In
order to get more insight into the results, we should take into account another
factor — the number of test runs, where the overall success rate was worse than
the baseline success rate, i.e. the 50% of the round-robin selection. This is shown

in the table 1.4

TT | UT | TT | UT
(0.05) | (0.05) | (0.25) | (0.25)
1.01x | 498% | 49.5% | 49.8% | 47.1%
1.1x | 46.6% | 27.0% | 39.1% | 25.5%
1.2x | 422% | 185% | 25.6% | 14.3%
1.5x | 11.6% | 0.0% | 26%| 0.2%
2x 1.9% | 0.0% | 0.0% | 0.0%

Table 4.3: Percentage of times the strategy selected the worse one out of
two constant functions (average from 100 test runs, each containing 140
selections).

It looks like the t-test is more conservative, it refuses to make the decision
more often, which leads to switching the functions in the round-robin fashion.
On the other hand, the u-test risks more, which leads to better results overall,
but there are some runs that are very bad — for £ = 1.2, 15 runs out of 100 were
worse than 50%, and 10 out of these 15 runs had a 0% success rate, which means
that the model selected the worse function every time.
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TT | UT | TT | UT
(0.05) | (0.05) | (0.25) | (0.25)
1.01x 0 1 19 7
1.1x 0 15 5 20
1.2x 0 15 4 13
1.5x 0 0 0 0
2x 0 0 0 0

Table 4.4: The number of test runs (out of 100) where the strategy had a
success rate worse than 50%.

The conclusion from the observations is that employing u-test (or increasing
the «) increases the expected success rate in a common case, but brings a non-
trivial risk of constructing a wrong model which leads to a sequence of errors that
might last very long.

4.5.3 Strategy performance

When deciding for one of the strategies, there is another concern that we should
keep in mind. The strategies tend to be quite complex and their execution time
might become non-trivial. As they need to process the entire run history of
each of the functions, their selection times increase over time, as more historical
measurements are collected.

For some of the strategies, it is possible to compute and cache the statistical
data in advance, at the moment of storing newly measured data, allowing them
to avoid processing all the records again during the selection. From our strategy
list, this is possible to be done for the linear regression and the t-tests. Unfor-
tunately, neither the window-bound strategies, nor the local regression support
this approach.

To compare the practical overheads, we ran the selection using each of the
strategies 20000 times in a row (while evaluating the runs and adding new data
in the process) for the task of deciding between quick sort and selection sort
algorithm on sequences of 0 to 2000 numbers. The window-bound strategies
had the window size calculated to contain 25 records in average. The resulting
averages of selection strategy run times are in table [£.5]

The results are showing that local regression has extremely high run times
that can grow above 50 milliseconds for situations with larger number of historical
observations. An overhead of this size on every selection would be too high for
most common usages, so the local regression strategy, even though it has the best
success rate, should be used with extreme caution and only in cases where it is
clear that overhead this high cannot damage the system performance.

As for the remaining strategies, it seems that caching speeds up the selection
a little more than 10 times for this number of runs. The window-bound strategies
cannot be improved by the caching (as the relevant statistics are different for every
window), but they have the lowest execution time of all the strategies without
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Not cached | Cached
Linear regression 1.68 0.15
Window-bound LR 0.91 -
Window-bound TT 0.72 -
LOESS 57.47 -
T-test 1.32 0.10
U-test 5.91 -

Table 4.5: Average strategy selection time (in ms) in a sequence of 20000
consecutive selections.

cache, and therefore are very usable for the input based case. Regarding the
mean based strategies, the t-test is almost 5 times faster than the u-test in the
non-cached version, and more than 50 times faster when using the cache, so it is
clearly a better choice if performance is the main concern.

4.6 Invocation policies

The selection process and all the strategies described in sections and are
quite complex and have non-trivial overhead, especially after collecting a large
amount of historical data, as discussed in section In a common scenario
where we expect the system to come to a decision about the best function (either
overall, or separately for every group), it would be suitable if we could stop
the selection process at a certain point and keep using only the most favored
function with no extra overhead. Or, to use it most of the time, with only
occasional attempts at the selection in order to detect possible changes in the
system (response times, I/O operation duration, etc.).

Similarly, it might be desirable to control the overhead time spent on the
selection, or, in general, on invoking the functions using selection (which might
lead to a bad decision), either per a specific time period, or with respect to a
specific action of the system (user request, processing unit, etc.). All of these
decisions should be taken at a higher level than the run time history analysis
performed by the selection strategies.

Invocation policies are a concept that tries to address these cases, with the
main purpose of lowering its invocation overhead. Every combined function has
an invocation policy associated with it. In the function selection chain, the policy
gets evaluated right after invoking the combined function and is supposed to
quickly decide how to proceed with the invocation. There might be scenarios
where a faster ways could be taken without even using any of the strategies and
analyzing the historical data.

The possible results of the policy evaluation are the following:

e SelectNew — Select function using the selection strategy, executing the
chain described in section £.2]
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e GatherData — Gather more data for the least-executed function (function
selection is skipped, but the run time is measured and the data are stored

to the history)
e UseLast — Use the function selected last time (without measuring run time

and storing it to the history)
e UseMost — Use the most selected function (without measuring run time

and storing it to the history)

We can notice that these results require only the basic statistical data about
previous selection processes. This is the key idea of the policies — the decision
and the execution should depend only on such a simple statistics.

The policy evaluation process also replaces the current policy with a new one.
This technically creates a state machine — the state of the function is represented
by the active policy, and whenever the function is invoked, a result is produced and
new policy becomes active. This corresponds to producing output and moving to

a new state in a state machine.

The advantage of the policy system over a regular state machine is its exten-
sibility and reusability — there are no rules directly in the state machine (i.e. here
in the combined function). All the logic of deciding on the result and the next
policy is in the policy node itself. So the entire behavior of the state machine is
defined by the initial policy, which should be specified by the user upon creating

the combined function. As a result, reusable policies that are parametrized can
be used in various chains of policies, smaller chains can be put together, etc.

4.6.1 Statistical data

The only input that the policy receives when making decision is a statistical
summary of previous selection results of the combined function. The process

itself is supposed to be fast and reflect just the trends in the selection, not to
replace the whole selection strategy decision making as described in sections 4.3

and [£.4] so the statistical data do not contain the entire run history of all the

functions involved.
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Figure 4.5: Process of combined function invocation.

The policies are a suitable tool to limit the potential damage of the selection

process to the system. For this, it is necessary to observe and to store various
times connected with the selection and execution. Figure4.5[shows the whole pro-

cess with policy being evaluated with the SelectNew result, split into individual
parts. Upon every invocation, the following is tracked:
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Selection and run history storage time (2 and 4)

Function execution time (3)

Total time spent on the SelectNew result (2, 3 and 4)

Total time spent on the GatherData result (3 and 4, 2 is skipped in such
a case)

Sums of these times are kept in every combined function. The policy can work
with these numbers and analyze the changes that happen to them over time. In
addition, the number of times each function was selected, the total number of
times we received the SelectNew and GatherData result and the total number
of times the combined function was invoked have to be tracked.

In general the policy has the following data available to decide:

e Total run count of the combined function

e Total number of times each function was selected

e Total number of times of gathering new data (GatherData result)
e Total time spent on function execution (after SelectNew result)

e Total time spent on selection and storage overhead (after SelectNew re-
sult)

e Total time spent on processing the SelectNew result
e Total time spent on processing the GatherData result

e Number of times the last selected function was selected in a row (the func-
tion streak)

4.6.2 Implemented policies

As mentioned earlier, policies are designed to be reusable as building-blocks.
The immutable policy itself is the only holder of the state and change of state
can be performed only by transitioning to a different policy. Its functionality and
very simple decision-making process can be visualized using a transition diagram,
which shows the policy itself as a dark (red) square with solid border, all the other
policies as a lighter squares with either solid or dashed border (determines if the
policy is an argument or not), and arrows as state transitions. The transitions
might be conditional, in such a case, the condition splits the arrow into two. The
transition can produce a result which is shown next to the transition arrow. If a
result is produced, the policy makes a decision and next policy will be evaluated
during the following invocation. If a result isn’t produced, the policy just dele-
gates the decision to the next policy which is evaluated immediately. The chain
of evaluation stops when first result is produced.

The transition conditions use policy parameters, which are passed to a policy
in the constructor, and the current statistical data explained in section [4.6.1 It
can also use static fields and methods that it has access to. The parameters of the
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top-level (starting) policy are passed in by the user creating it, the parameters
of the other policies in the chain are fixed when the policies are created, usually
during the decision of the top-level policy, which typically builds the entire policy
chain (that can be cyclic and lead back to it).

The transition diagrams and short descriptions of some policies will follow.

Building blocks

P: Policy

Always do A
condition R R: Result
: 1| Repeat until
I B | condition R - == '*I
I " R: Result Do once I 1
I ! P: Paolicy R: Result ! P )
LY ! I |
1

-

Figure 4.6: Transition diagram of the basic building-block policies.

Figure [4.6] shows the main policies that serve as a building-blocks. The most
important is the Repeat until condition policy, parametrized by a condition,
result R, which it keeps producing until the condition becomes true, and the
policy P, which it makes transition to at that moment. The Always do policy
represents an infinite loop producing the same result R every time, and the Do
once policy produces the result R once and immediately makes transition to the
policy P.

Total run count % GF =0

7T
1

Start policy :
GF: Int '
N: Int GatherData SelectNew I

I

I

1

P: Palicy

o

______

Total run count <N

Figure 4.7: Transition diagram of the Start policy.

Figure |4.7| represents the Start policy, which accepts the gather frequency
GF, number of invocation times N before moving to a next policy P. It is a little
more complicated and specialized version of the Repeat until policy — it keeps
producing the SelectNew result, and every GF-th invocation, it produces the
GatherData result. It might be useful at the beginning, when it is necessary
to gather data for all of the functions and perform some selections so that the
following policies had statistical data to base their decision on.
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Stop selecting when decided

Total run count = MR

&
{Last run count / Total run Stop selecting
Always count) > MP when decided
use last
MR: Int
MP: Double
Uselast SelectMew

Figure 4.8: Transition diagram of the Stop selecting when decided
policy.

In order to limit the overhead, it might be useful to completely stop selecting
when we are sure that one of the functions gets selected a lot more often. The
Stop selecting when decided policy shown in figure keeps selecting new
function until both the total number of invocations exceeds minimum run count
MR and the ratio of the number of times that the last selected function was
selected and the total number of invocations exceeds the minimum percentage
MP. After that, it will keep using the last function forever.

The advantage of falling back to the infinite Always use last policy is its
basically zero overhead — no condition is evaluated in the decision process. So
this policy is useful for the fast functions where keeping low overhead for the
long-term is critical. It cannot, however, undo a wrong decision, reflect a change
in conditions, or anything else.

Pause selection after streak

Run count > N

Uselast

Streak length = SL Pause selection
) after streak
Repeat until

Do once run count
N: Int

SL: Int
RE: Int

M = Total run count + RE L alogow

SelectNew

Figure 4.9: Transition diagram of the Pause selection after streak
policy.

To lower the number of selections, an approach based on the streak lengths
can be used as well. It is implemented by the Pause selection after streak
policy in figure .9} Its functionality is defined by the SL (streak length) and
RE (retry every) arguments. Whenever one function is selected SL times in a
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row, the selection process stops and the UseLast result is being produced. Once
every RFE times, a new selection attempt is done, looping back to the original
policy. If the same function is selected once again, the streak gets longer by one
and the selection process stops again. If, however, a different function is selected
this time, the streak becomes zero and we start selecting again.

The described behavior is the preferred way of limiting the selection overhead.
By setting the streak length to a reasonable number (e.g. between 10 and 100,
based on the data, situation, etc.), we can assure that if one function is signifi-
cantly better than the others, it will be used without the need to select it. The
retry that happens every once in a while makes sure that eventual wrong decision
will be detected and will reset the system back to the beginning.

Limited overhead, gather time and selection time

Currenttime =T

N = Current overhead + AC
UseMost

Limited overhead

Repeat until Repeat until

overhead
N: Int

reset time
T: Time

RP: Int
AQ: Int

T = Current time + RP

Current overhead > N SelectNew

Figure 4.10: Transition diagram of the Limited overhead policy.

Policies can be used to limit the framework involvement per a real-time period,
so that the selection overhead or the time spent on gathering data does not
damage the system more than a specified limit. The Limited overhead policy in
figure limits only the selection overhead time to AO (allowed overhead) every
RP (reset period). After depleting the allowed time, it cannot select anymore
and keeps using the most selected function until the end of the period.

i SelectNew
Current total time > N

N = Current gather time + AGT
T = Current time + RP

Limited gather
time:

Repeat until Repeat until

Repeat until
reset time
T: Time

total time
N: Int

gather time

N Int RP: Int

AGT: It
AST: Int

N = Current total time + AGT + AST

UseMost Currenttime =T Current gather time > N GatherData

Figure 4.11: Transition diagram of the Limited gather time policy.

In exactly the same way, the time spent on executing the function for the
result GatherData and the whole process of selection and execution for the
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SelectNew result can be limited. The figure demonstrates the Limited
gather time policy, which keeps producing GatherData until total gather time
reaches AGT (allowed gather time), after that, it continues with the SelectNew
result until total selection time reaches AST (allowed selection time). A loop
producing UseMost follows, for the rest of the real-time period specified by RP
(reset period).

This policy gives us control over the time spent on selecting results in real-
time. If we get a lot of requests at the same time, receive a large batch of data
to process or for any reason need to momentarily increase the throughput of the
system, the time or overhead limits get depleted very quickly and the UseMost
fallback result means reasonably good performance with a minimum overhead.

4.6.3 Policy builder

As we could see from the policy examples, most of them were built only using
the Repeat until or Do once blocks in a loop. This process of combining these
generic blocks into sequences can be automatized and hidden behind a simple DSL
(see called policy builder that would allow the user to express his customized
way to decide about the function run.

Figure shows the syntax diagram of policy builder.

andThenRepeat
andThenGoTo

andThenlf

__________

condition

result: duration:
-.
.-

condition:

once »O

until condition

{and j¢

Figure 4.12: Syntax diagram of the policy builder DSL.

The policy built with policy builder has always one main loop. Its defini-
tion starts with the first result that it emits: selectNew, gatherData, useMost or
useLast. A result is always followed by a duration specifier, and another result.
When we specify the sequence of results and their durations, we can end it by
either closing the main loop (using andThenRepeat), by transitioning to an ex-
ternal policy (using andThenGoTo, leads to a policy out of the loop), or by using
forever as a duration for the last result, which limits the loop just this one result.
In addition, it is possible to put a conditional transition to a policy out of the
loop anywhere in between two results (using andThenlf).
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The conditions can be either simple functions accepting statistical data and
returning a boolean value, or a growsBy condition with a value extractor’| and
an amount. A simple condition is evaluated only once against current statistical
data. In case of the growsBy condition, the extractor is executed once at the
beginning of the policy loop and its result is stored, and the condition evaluation
consist of executing it and comparing current result to the stored one.

An example of a simple policy described using the policy builder follows. It
produces GatherData 50 times, then SelectNew 50 times, and then either
loops forever on UseLast, if the streak is larger than 20, or repeats the whole
process otherwise.

val conditional: Policy = (
gatherData until (totalRunCount growsBy 50)
andThen selectNew until (totalRunCount growsBy 100)
andThenIf ((stats: StatisticDataProvider) =>
stats.getStreakLength >= 20) goTo (uselLast forever)
andThenRepeat)

4.6.4 Policies and groups

One of the techniques for improving the selection process is grouping the history
records using some input features, as described in We will extend the
grouping to function statistics and to the current policy. It means that the
combined function needs to hold the policy and the statistical data for every
group, and perform transitions and statistics updates separately.

The main advantage is the possibility to take faster decisions in some groups,
using for example the Pause selection after streak policy. When a function is
significantly faster than the others for some category of inputs, the streak will
build up fast within the group and the invocation for future inputs from such a
group will require no selection and will be very quick, yielding correct results.

4.6.5 Possible improvements

The policies were designed as a concept that is completely independent from the
actual selection strategies and history analysis. One of the improvements that
would require closer tying would be to allow the policies to choose the selection
strategy, or to influence it somehow, by limiting it to a subset of data, etc.

Another improvement that might seem useful is to let the policies analyze the
whole history data. This would, however, mean a lot of additional overhead time
when evaluating the policy, which is not desirable. With a different approach,
we could achieve the same thing by giving selection strategies a state that could
involve their decision. The state would be managed by the combined function
and it could even be the same state that is used by the policies.

7A function that extracts a value of some type from the statistical data. Default implemen-
tations are provided for the basic fields.
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5. Framework implementation

The API, as described in chapter [3| and the decision making logic from chapter
were implemented into the ScalaAdaptive framework, a simple library that can
be added to any Scala project and allows the programmer to use the adaptive
functions in his application. It is included in attachment [A] along with a brief
user guide.

In this chapter we will go through the implementation of the framework, its
basic architecture and the possibilities to extend it. We will also mention some
decisions that had to be made during the implementation.

5.1 Goals of implementation
The main concerns upon implementing the framework were the following:

e To separate the API from the selection logic

To keep the framework strongly typed and use static type checking even in
the internal parts of the code

To make the framework as extensible as possible

e To keep the framework overhead as low as possible

To keep the code well-organized, to minimize code duplication

Development approach

The main development approach was based on using the Scala language features
to make the code simpler, easier to maintain and less error-prone. We tried
to benefit from the functional features whenever possible, while still keeping the
high-level design object oriented. It lead to having the data and functionality sep-
arated in different classes. Inheritance is used only for implementing traits (except
for some special cases, like the API function objects). All of the functionality-
providing classes are accessed via corresponding traits, and thus communicating
only through a simple and limited interface, which allows replacing them very
easily. These trait-based building blocks are put together using composition and
delegation patterns.

Error handling

The framework is designed so that the number of exceptions handled in the code
was minimized. The ScalaAdaptive itself does not raise almost any exceptions in
case of errorsE], and catches most of the exceptions from the libraries within to
replace them with a None return value.

This approach is known from the functional programming and takes advantage
of monadic operations over the Option monacﬂ The return values can be mapped

IThe only exception being custom identifier validation in the function combination.
2In Haskell and other languages known as Maybe monad.
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over using the bind operator, which allows smooth function chaining and the error
propagation through the chain. More details can be found in the talk [22].

5.2 Architecture overview

This section will provide brief overview of the entire framework architecture and
related decisions. More detailed description at the level of individual classes can
be found in the generated documentation (included in attachment [A)).

5.2.1 API architecture

As briefly described in section [3.1.4] the public API of the framework is repre-
sented by a set of traits AdaptiveFunction@, ..., AdaptiveFunction5, that
expose all the user accessible methods. Because only some of the methods de-
pend on the number of input arguments and are therefore specific for each of
these types, the rest of the interface was extracted into a common trait supertype
AdaptiveFunctionCommon, which is parametrized by the adaptive function type
that extends it.

""""""""""""" ' ScalaAdaptive
| Public APl '

FunctionQ FunctionS ' n .
=R (==R ! R T BT TTTTTTTTTTTT Y (ot adirect inheritance) | |

!
:

l lij ' FunctionAdaptorBase
!
'
!

i
| | AdaptiveFunctiond | ------ AdaptiveFunctions | 1
i

FunctionAdaptor FunctionAdaptors

CombinedFunction CombinedFunction

Figure 5.1: Diagram showing the inheritance chain of AdaptiveFunctionN
and related classes.

The AdaptiveFunctionN traits are implemented by the FunctionAdaptorN
classes that are directly inaccessible to the user. This allows us to modify
or extend their internal API without changing the public API, thus maintain-
ing backwards compatibility. The methods that can be implemented indepen-
dently on the number of input arguments are extracted into an abstract class
FunctionAdaptorBase that the other adaptors inherit from.

It would be impractical to manipulate with N different classes that represent
the combined functions in the internal parts of the framework. Any Scala function
with NV arguments can be transformed into a function with one argument by
simply using a tuple argument:

val function = (argl: T1, ..., argN: TN) => 2?77
val tupleFunction = (tupleArg: (T1, ..., TN)) =>
function(tupleArg._1, ..., tupleArg._N)
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We will take advantage of this and, in order to minimize the code duplication,
hold all functions in this form in a CombinedFunction class parametrized only by
the tuple argument type and the return type. The FunctionAdaptorN classes
work as simple adaptors between the internal, tuple-based function interfaces,
and the external interfaces of AdaptiveFunctionN and FunctionN. The whole
inner part of our framework works only with CombinedFunction types. The
figure [5.1] shows described inheritance and composition scheme.

The user of the framework will generate instances of mentioned function
types using implicit conversion methods defined on the Implicits singleton,
a part of the API that is described in [3.1.4f The actual conversions where the
FunctionAdaptorN and the CombinedFunction instances get created will be
wrapped inside another singleton object, Conversions, and the delegating calls
will be done using a macro due to reasons explained later.

5.2.2 Internal architecture

The simplified internal architecture can be seen in the figure 5.2} It shows the
key components of the core chain that is executed when a combined function is
invoked.

CombinedFunction CombinedFunction CombinedFunction
Functiond, Pﬂ}'ic:ﬂ' FunctionG Pﬂ}'ic:ﬂ' Functiond, Pﬂ}'ic:ﬂ'
FumnctionB FunctionD FunctionC

Statstcs Statstcs Statistcs

CombinedFunctioninvoker
(PolicyBasedlnvoker)

\L Select and run / Gather data

AdaptiveSelector
(HistoryBasedAdaptiveSelactor) HistoryStorage

SelectionStrategy RunHistory (FunctionA)

(mean based) EvaluationProvider

RunHistory (FunctionB)

SelectionStrategy

(input based) RunHistory (FunctionC)
SelectionStrategy RunHistory (FunctionD)

(gather data)

Figure 5.2: Diagram showing the internal architecture of the
ScalaAdaptive framework.

As we can see, there are two principal logic units participating in the process:

1. CombinedFunctionInvoker
Supposed to make a quick decision based on the policy of the combined
function. It should either directly invoke one of the functions, or delegate
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the call to the AdaptiveSelector, and update the statistics of the com-
bined function afterwards. It works only with the data directly stored in the
CombinedFunction instance, it does not have any state or shared storage.

2. AdaptiveSelector
The key component of the framework, it receives a set of functions and an
input, and it should select one of them. That function should be executed,
its run evaluated and the the return value passed back. The default im-
plementation works with an abstract history storage (HistoryStorage),
three selection strategies (SelectionStrategy) and an evaluation mecha-
nism (EvaluationProvider).

5.3 Implementation options

A few questions regarding the implementation arise from the basic architecture
showed in section We will provide a brief analysis before explaining the
implementation details any further.

5.3.1 History storage location

HistoryStorage is supposed to gather and store historical run data for all the
functions that are invoked through a combined function. The question is, where
to save the data and how accessible to make it. We propose three variants with
different use cases that were all included in the framework.

Local

First option is to make the storage part of the CombinedFunction itself. In this
case, the history data would be unique for every instance of the class, i.e. for
every AdaptiveFunctionN created by the user. This has two consequences:

e A function will have separate histories for every use in a combined function.

e Every new instance of a combined function will have an entirely new history
for all the functions.

The second consequence might lead to some unexpected behavior — for ex-
ample, if we create a combined function inside of a method call as described in
section [3.2.1] it will have a clear history every time and will be useless:

def processData(data: List[Int]): Int =
(impll _ or impl2 withStorage Storage.Local) (data)

However, some use cases for this configuration exist, e.g. if we have a class
that holds immutable data and we keep executing some computations on the
data, then a combined function defined as a field on this class with local storage
will adapt to that specific instance and will have the best possible results.
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Global

Another option is to store all the measured data globally, in a static area of
the memory accessible from all contexts. This will allow to collect run data
for functions faster and share them across all the combined functions, which
usually leads to more informed and therefore precise decisions. This is usually the
preferred approach for most use cases. A unique identifier has to be used to match
the function history record with the actual function in the CombinedFunction
class. The selection of the identifier will be discussed later.

Persistent

The biggest problem of discussed storage locations is that the run history data are
available only during a single run of the application. Whenever the application
restarts, it will have to collect the data again. This might not be a problem for
some long running services or daemons, but it is not very convenient for some
tools or client applications with shorter lifecycle.

A solution to the problem is adding a persistent storage (e.g. the file system)
to the global storage and persisting the data at certain points. That can be done
in three different ways:

1. Immediately persist each run history record
2. Persist all of the records when the application terminates

3. Buffer the history records and persist them in batches

The first option seems like the best one, but it would lead to a series of 1/O
operations upon every invocation of a combined function. The added overhead
of this solution could be dramatic. The second option, on the other hand, has
no runtime overhead at all, but it requires a possibility to detect the application
termination from our framework. JVM does not guarantee finalizers being called
and relying on notifications from the user would complicate the API and be
problematic in general.

There is a mechanism in JVM called shutdown hooks that allow the user to
perform a custom action on shutdown (for more details see [23]). It will, however,
not be called if the application crashes because of an unhandled exception. Ad-
ditionally, it might be unexpected from a library to perform actions on shutdown
and the delay caused by persisting a lot of run data on a slow HDDE] (or even
a network drive) could lead to the application being terminated immediately in
some automatized environments.

Therefore, the third option was selected, as it leads to the runs being regularly
saved and the 1/O overhead is lower.

The persistent storage, just like the global one, relies on the unique function
identifier as well. There are additional problems connected to persisting the run
history, namely:

e Running multiple instances of the application at once (collisions on the
persisted data file)

3Hard Disk Drive
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e Changes in the application code (outdated run data, changed identifiers,
etc.)

e Having to deal with larger amounts of history data

5.3.2 Function identifiers

As described in section [5.3.1] we need some sort of identifier of the function to
be able to store the run history data in a global or persistent storage. It does not
make sense to use the references to the function objects, as new closure instances
are created every time a lambda expression (or an eta-expanded method) is as-
signed, which would lead to having new history for each new instance, a behavior
equivalent to local storage discussed in [5.3.1]

This leaves us with three basic identifier options.

Type name

As explained in[I.1.1] functions in Scala are instances that extend the FunctionN
trait. The default implementations are anonymous closure classes that are com-
piled from lambda expressions. Two different functions originate in two different
lambda expressions and thus have two different type names, the ones that were
generated and assigned by the compiler. The fully qualified type name can be
used as an identifier of a function

Using the type names as unique identifiers is safe and straightforward. A small
disadvantage is that they are not very readable, the compiler uses the name of
the type that contained the lambda expression followed by a sequential number.

There is also a subtle danger connected — if we try to combine two different
functions that originated from the same lambda expression (the difference might
be determined by the closure arguments), they will have the same identifier, thus
sharing the same history, which is usually not desirable.

The next problem is that in case of persisting the run history, the closure
classes might get renamed automatically upon recompiling. The compiler usually
assigns the closure names sequentially, so this could happen by just inserting
another lambda expression into the enclosing class code before the current one.
Run history data might even get mixed up as the newly added lambda expression
could have the former name of the original closure (by taking its position in the
sequence).

Last but not least, if the FunctionN trait has a custom implementation, the
type name identification might lead to an undefined behavior.

Method name

The expected most common usage pattern of the framework is the one where the
functions used with the or method are eta-ezpanded methods (see [3.2.1]). There
is a problem connected with methods when using the type name identifiers —
every time a method gets eta-expanded, a new lambda expression with new type
name is generated. In the following case, the methodl would not have the same
identifier in the two combined functions:
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1 wval funl
2 val fun2

methodl _ or method2
methodl _ or method3

It would be handy to use the method name as an identifier in such a case,
which would lead to better readability and allow the same method used in different
combined functions to have just one run history.

The problem is that at runtime, the implicit type conversion method or the or
method will always get the already eta-expanded function object with a compiled
apply method holding the actual method call inside. The names therefore have
to be extracted at compile time, using the def macros (see . At the moment of
the implicit conversion from FunctionN to AdaptiveFunctionN (as described in
, the AST of the FunctionN expression can be examined — if it’s a lambda
expression generated from eta-expansion, the method name can be extracted.
The exact process how to do so will be presented in a separate section.

Custom identifier

In order to handle specific cases where type name and method name identifiers
do not distinguish correctly between different functions, there is also a possibility
of choosing a custom, arbitrary identifier. This has to be triggered specifically by
the user in the API and should be used in the cases where:

1. User knows that the automatically assigned identifiers will not be sufficient

2. User wants to replace default type identifier with custom identifier because
of readability

5.4 Extracting method name from eta-expansion
AST

In section [3.1.4] we introduced an implicit method that will perform the conver-
sion from FunctionN to AdaptiveFunctionN. In order to extract the method
name from potential uses of eta-expanded methods in this conversion, we will
have to implement it in the following way:

1. Replace the implicit conversion method by a def macro (see and extract
the conversion logic into a different, non-implicit method that allows explic-
itly setting the function identifier (in our case, the Conversions singleton
object methods toAdaptor)

2. In the implicit macro, analyze the AST and try to locate the eta-expansion
method call

3. If the method call is successfully found:

(a) Generate the identifier expression as a getTypeName call on the target
of the method call, concatenated with the method name

(b) Generate the conversion code with explicitly specified identifier expres-
sion
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4. Otherwise generate the conversion code with implicit identifier

The conversion is done using the toAdaptor () method with two overloads:

e Accepting only the function — implicit identifier is used (type name of the
closure)

e Accepting the function and an identifier — the identifier provided is used

5.4.1 Eta-expansion AST format

First step in the macro implementation has to be parsing the input AST and
detecting patterns that are generated from eta-expansions by the compiler. In
this section, we will present what was discovered about the eta-expansion presence
in the ASP using the printAst() macro mentioned in [I.5.1] Pieces of the AST
structure will be shown, [10] can be used as a reference.

The list of facts follows:

e The result of eta-expansion is a lambda expression (referred to as function
literal in the AST).

Function(...)

e The lambda expression is always wrapped in a block, being its return value.

Block (
List(...),
Function(...))

o If the target of the invocation is either a constant or this, it is captured
in the lambda expression closure (i.e., the constant or this is referenced
directly from the function body).

e [f the target of the invocation is a variable or a result of a more complicated
expression, it is extracted to the enclosing block, its result is stored in a
variable local to the block and then captured in the lambda expression clo-
sure. The following example shows how the target, originally an expression
this.getInstance() on a Class class, was extracted into the block body.

Block (
List(

ValDef (
Modifiers(SYNTHETIC),
TermName("eta$0$1"),
TypeTree(),

Apply (
Select(
This(
TypeName("Class")),
TermName("getInstance")),
List()))),
Function(...))
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e The function node contains argument definition and the expression itself,
which is a single application (method call).

Function(
List(
ValDef (
Modifiers(PARAM | SYNTHETIC),
TermName("arg"),
TypeTree(),
EmptyTree)),
Apply(...))

This has a few consequences for our case. First, we will look for functions
with a body consisting from one method call. Secondly, we need to generate our
conversion code (along with the method retrieval) into the block return value,
because we need to be able to access the actual invocation targets that might
exist only in the block (as the original expression could have been extracted and
replaced by a local variable).

5.4.2 Retrieving the target from the method call

Now we need to go through the method call subtree and locate the invocation
target and the method name. If the method does not accept any type arguments,
the structure is quite simple:

Apply (
Select(
...1invocation target expression...,
TermName ("methodName")),
List(...function arguments...))

Where the invocation target expression can have multiple forms based on the
original expression, and can depend on the enclosing block variables. It is not,
however, important for us, as we can work with the expression as whole and
duplicate it. The function arguments are not needed either.

If the method is generic, the type arguments need to be applied in order to
convert it to a function (which cannot be generic). In this case, the tree gets a
little more complicated:

Apply (
TypeApply (
Select(
...1invocation target expression...,
TermName("genericMethod")),
List(...type arguments...))),
List(...function arguments...))

The method call is wrapped in a TypeApply node before being invoked using
the Apply node. The TypeApply node can be ignored in our case.

And the most complicated situation we are going to analyze is when the
method has some implicit arguments as well:
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Apply (
Apply (
TypeApply (
Select(
...1invocation target expression...,
TermName("genericMethodImplicit")),
List(...type arguments...)),
List(...function arguments...)),
List(...implicit arguments...))

One more Apply node is added to the topmost level — the implicit arguments
are applied after applying the actual function arguments. Their definition con-
tains another nested block and lambda expression, but again, it is not important
for our case. We just need to extract the invocation target and the method name,
which can be both found in the Select node.

Note that there are situations where the eta-expansion might lead to even more
complicated trees, for example when used on methods with multiple argument
lists. These are, however, cases which we are not going to support with the
extraction.

5.4.3 Generating the conversion

Supposing we have the invocation target expression and the method name, we
need to create the identifier string expression that will be used in the manual
toAdaptor invocation.

In order to extract the fully qualified name of the method call target, we need
to generate the following expression:

invocationTarget.getClass.getTypeName + ".methodName"

The AST representing this expression has to be wrapped in a construction
application of MethodNameIdentifier class (it is a case class with automatically
generated apply () method) to get the resulting identifier.

Now, the entire function literal from the original AST along with this identifier
expression have to be wrapped in a toAdaptor call and then be set as the return
value of the original AST block.

The original tree in a simplified form can be seen in figure 5.3 The tree after
the conversion is shown in figure [5.4]

Block

T

Statements  Function

ValDef

Figure 5.3: The original simplified eta-expansion AST.
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Block
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Statements Apply
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ValDef toAdaptor ArgumentList

/\

Function  ExtractedldentifierExpression

Figure 5.4: The simplfied eta-expansion AST after manually adding
toAdaptor call.

5.4.4 Extracting method overloads

The approach that was described so far has one small issue — it does not recognize
function overloads, so all the overloads share the same identifier.

It would not be difficult to extract the actual number of arguments that the
method is being invoked with and include it in the identifier. As for extract-
ing their types, the situation gets a little complicated — the function literal is
generated without argument type specification, the TypeTree is empty:

ValDef (
Modifiers(PARAM | SYNTHETIC),
TermName("i"),
TypeTree(),
EmptyTree)

This is a valid AST in Scala and can be generated in a lot of situations, for
example:

val function: (Int) => Int = { i => math.abs(i) + 1 }

In this case, the lambda expression does not have the type of its arguments
specified either, because the compiler will infer it from the context in which the
expression is used, in this case, from the type specifier of the variable it is being
assigned to.

The compiler is able to infer the data type from the usage of the argument as

well%

def method(i: Int): Int = 777
val function = { i => method(i) }

Note that the eta-expansion is guided by the same rules, so whenever expand-
ing a method without overloads, the compiler infers the types by itself:

def method(i: Int): Int = ?7?7
val function = method

Upon expansion of a method with overloads, the resulting function type has to
be provided either explicitly, or as an expected type in an expression (e.g. inside

4The code snippet is correctly compiled by the Scala compiler, although some IDEs (namely
IntelliJ IDEA 2016.3.4) are not able to infer the type and mark the code as incorrect.
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a method argument). The inference flow goes in the other direction in such a
case:

def method(i: Int): Int = ??7

def method(s: String): Int = 7?77

val function: (String) => Int = method

def useFunction(fun: (Int) => Int): Unit = ?7?
useFunction(method)

As a consequence, at the time of syntax analysis, the types are not inferred
yet and there is no way for us to find out which method overload is being called.
The method overloads therefore have to share the same identifier. If it leads to a
problem, a type name or a custom identifier can be used in such a case.

5.4.5 The conversion demonstration

As a practical demonstration of the process described in this section, we are going
to show the compile-time conversions that are done on a method identifier that
is being eta-expanded and converted into a AdaptiveFunctionN. Let’s consider
the following code:

val combined = target.method _ or function

We will follow the conversions that the compiler and our macro perform on
the target.method _ expression’}

1. The explicit eta-expansion is performed:

I { () => target.method() }

2. The implicit conversion is applied:

I Implicits.toAdaptiveFunctionO({ () => target.method() })

3. The macro toAdaptiveFunction0 is executed and expanded:

I Conversions.toAdaptor({ () => target.method() },
MethodNameIdentifier(target.getClass.getName +
".method"))

The final state shows the code whose equivalent will be present in our compiled
program and will be executed.

5.4.6 Macros in the combining method

In the section [3.2.1] we explained why the or method has to accept an argument
of FunctionN type instead of AdaptiveFunctionN. This does not seem to cause
any trouble as we can manually convert FunctionN into the FunctionAdaptorN
inside the method body. With the macro expansion, however, we run into prob-
lems. Image we do it the following way:

5The actual changes are performed on the AST level, we will show them in corresponding
Scala code for simplicity.
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def or(fun: (T1l) => R) =
orAdaptiveFunction(Implicits.toAdaptiveFunctionl(fun))

The toAdaptiveFunctionl method is a macro — it gets executed at compile
time, and it receives the argument AST as its input. In this case, an AST that
consists of the fun identifier. We have no way to find out, where this function
will be called from and with which arguments, so in order to extract the method
name, we need to convert the entire or function to a macro which will generate
the conversion code in the same manner as described in section [5.4.3] and then
wrap it in the internal orAdaptiveFunction code.

This does not require any extra AST manipulations, only one method call
generation. It does, however, mean a complication for us, as the macros can-
not be called virtually. The macro definition therefore has to be a part of the
AdaptiveFunctionN API trait, breaking somehow the encapsulation of the im-
plementation. Fortunately, it does not perform any actions by itself, only replaces
the or call with a conversion and an orAdaptiveFunction call, which is, again,
a virtual method defined on the trait without implementation and therefore en-
capsulated.

5.4.7 Extraction evaluation

In order to evaluate the method name extracting solution presented throughout
this section, we converted some expressions with function values to correspond-
ing AdaptiveFunctionN types using the macro approach. Table shows the
results. Note that the package prefixes were omitted from the method names for
simplicity, the actual identifiers contain fully qualified names. The conversion
was performed in the scope of a NameTest singleton object.

Expression Assigned method name
method _ NameTest$.method
genericMethod[Int] _ NameTest$.genericMethod
Singleton.quickSort _ NameTest$Singleton$.quickSort
variableSorter.quickSort _ Sorter.quickSort
getSorter.quickSort _ Sorter.quickSort

new Sorter().quickSort _ Sorter.quickSort

new GenericClass[Int]().foo _ GenericClass.foo

(i: Int) => method(i) N/A (Closure name used)
(i: Int) => method(i + 1) N/A (Closure name used)
function N/A (Closure name used)

Table 5.1: The method names extracted from expressions during their
conversion to combined functions.

As we can see, the method name extraction succeeded in all the eta-expansion
cases and did not get confused even by a direct method call within a lambda
expression.
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5.5 Module implementation

All the modules mentioned in [5.2.2] are abstract traits with replaceable implemen-
tations that are put together using composition. The API classes have to be able
to access the composed and active implementations at the moment of invocation.
For this reason, a singleton Scala object AdaptiveInternal was introduced and
holds the following composed modules:

e AdaptiveSelector with global storage
e AdaptiveSelector with persistent storage

e CombinedFunctionInvoker

We will briefly introduce the implementations of these modules and the parts
that they are composed from.
CombinedFunction

The CombinedFunction is the main data class representing a function with mul-
tiple implementations in ScalaAdaptive. It is basically a data holder class, the
important functionality was separated to be easily replaceable. It gets created
and modified when the user manipulates with the AdaptiveFunctionN API
type. Part of its attributes is immutable, representing the configuration and de-
fault setup of the function, and part of its attributes is mutable, holding its state
in the invocation process.
The immutable data are the following:

e Set of functions that it is combined from (wrapped into the tuple form, see
5.2.1)

— Each function holds up to two identifiers — one based on the closure
type name, the other being either a method name or a custom name,
depending on the creation process (see |5.3.2)

e Descriptor function (wrapped into the tuple form), see
e Group selector function (wrapped into the tuple form), see m

e Function configuration defined by the user, will be described later in more
detail

And the following state representing data:

e Function statistics (separately for each group), see m
e Current policy (separately for each group), see

e Analytics data — full list of all the selections and their results

In case of the local storage setup, the instance also has to contain its own
AdaptiveSelector that holds the local HistoryStorage.

76



CombinedFunctionInvoker

A module for invoking the CombinedFunction instances. Its basic implementa-
tion does the following:

1. Evaluate current policy using the statistics of the combined function

2. According to the result either invoke directly the function which is ac-
cessible through the statistics (the last one and the most selected one)
in case of UselLast or UseMost results, or pass the decision onto the
AdaptiveSelector in case of SelectNew or GatherData results

3. Update the function statistics

The AdaptiveSelector is accessed either through the CombinedFunction
itself for the local storage setup, or using the singleton object AdaptiveInternal
in case of global or persistent setup.

AdaptiveSelector

A module which is supposed to select one of given options to run, and to evaluate
the run. It is parametrized with TMeasurement type, which represents the data
measured from the function run. By default, a Long type for run time measured
is used. It supports two basic operations — selectAndRun and gatherData, which
correspond to the policy results. Both of these operations have also an option
with delayed measurement (see [3.2.6).

The implementation HistoryBasedAdaptiveSelector contains the general
chain described in f.2] It uses a HistoryStorage to store and retrieve the run
data of individual functions. In addition, it holds three SelectionStrategy
instances, one for gathering new data, one for the input based selection, and
one for the mean based selection. One of these three instances is used to select
the function to run, which is then executed using an EvaluationProvider.
The measurement retrieved is added to the history and the result is returned,
along with a performance benchmark including execution and overhead times
(independent on the actual measurement, always based on wall-clock times) for
the function statistics update. Figure [5.5| shows the entire process.

In case of the operations with delayed measurement, the function run is not
evaluated, an InvocationToken is generated instead. The token holds a callback
to the AdaptiveSelector and whenever used to invoke some function, it will
use the EvaluationProvider to evaluate the run and store the data to the
corresponding history record.

Note that the SelectionStrategy for gathering new data should select a
function for which data are needed the most at the moment instead of optimizing
the performance.

HistoryStorage

A type with a map-like interface based on the concepts from section [£.2.2] - it is
supposed to hold the historical measurement vectors represented by RunHistory
instances for each combination of function and input group. A key composed of
a function identifier and a group identifier is used to access the histories.
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Figure 5.5: Diagram showing the HistoryBased AdaptiveSelector execution
path.

There are two implementations in the framework:

e MapHistoryStorage — stores the histories in memory

e PersistentHistoryStorage — a wrapping storage that delegates the calls
to an internal HistoryStorage, and, in addition, it serializes every new
run using a HistorySerializer; if asked for a history that is not present
in the underlying storage, it tries to deserialize it using the same type

The HistorySerializer has two basic implementations, one for direct seri-
alization and one for buffered serialization. The data are stored into a file, one
per function (the format, root directory and file name pattern are fully customiz-
able). There is no list of these history containing files anywhere — when trying
to deserialize a function, a file with corresponding name is checked for existence.
This means that the individual function histories are deserialized one by one, at
the moment of the first invocation of a combined function that contains them,
which might cause a delay in the first execution.

RunHistory

RunHistory represents a vector of historical measurement results and other de-
tails about a function run. The interface is designed to support immutable solu-
tion — the appending methods always return an instance of the same type, which
might or might not be the same object depending on the implementation. The
interface provides some basic operations on the history, allows iteration over the
data and appending new data (always at the end).

Apart from that, it also has some methods to directly provide precomputed
data for some of the selection strategies in order to support caching. These
supporting methods can always be computed using the data available, and if the
implementation of RunHistory does not support the caching or precomputation,
there are mizin traits (see section |1.4]) with default implementations available.

The basic implementations of RunHistory are the following:

e FullRunHistory — stores all runs in an ArrayBuffer, is mutable

e ImmutableFullRunHistory — stores all runs in an immutable List, is a
little slower in general

These instances can be wrapped in the following decorating wrapper classes:

78



e LimitedRunHistory — limits the maximum number of stored items, when-
ever it reaches maximum, it throws the older half of all the records away

e CachedStatisticsRunHistory — stores the statistical data about the run
items, speeds up the t-test strategy (see 4.3.2)

e CachedGroupedRunHistory — stores average evaluation data for each run
selector, speeds up the local regression strategy (see [4.4.3)

e CachedRegressionRunHistory — stores the linear regression model built
upon all the run items, speeds up the linear regression strategy (see 4.4.1))

These wrappers can be chained in order to reach the desired behavior. They
usually only decorate one method and the rest is directly delegated to the inner
instance.

The LimitedRunHistory wrapper should always be used, as it can prevent
unexpected out-of-memory exceptions in the program run, as the base run history
implementations have no size limits.

SelectionStrategy

Very simple trait that represents one of the selection strategies, as described in
detail in chapter[4] It receives a set of RunHistory instances for various functions
and groups along with an input descriptor, and should select and return one of
the functions.

The implementations should be stateless and should work only with the set of
RunHistory records that it receives (in order not to mix together decisions about
two separate history storage locations). The strategy implementations often have
a customizable fallback strategy that is used in cases where the current strategy
is not able to make a decision, as described in section [4.1.5]

The strategies are parametrized by the TMeasurement type of the function
run evaluation. All of the implemented strategies work with function run time
represented either directly by Long or by a type viewable as Numeric.

The mean based strategies consist of the following classes:

e TTestSelectionStrategy — implements the t-test strategy described in
section [4.3.2} uses [24] to compute the p-value.

e UTestSelectionStrategy — implements the u-test strategy described in
section [4.3.3] uses [24] to compute the test statistics.

The implemented input based strategies are:

e RegressionSelectionStrategy — implements the linear regression strat-
egy as described in section uses [24] to compute the regression

e LoessInterpolationSelectionStrategy — implements the local regres-
sion strategy from section [4.4.3] uses [24] for the interpolation

In addition, some complementary supporting strategies were added:
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e WindowBoundSelectionStrategy — a wrapper strategy that limits the
history records to a flexible window before letting the internal strategy
decide, as described in sections [4.4.2| and [4.4.4]

e LowRunAwareSelectionStrategy — if any of the functions has less than
a specified number of history records, uses one strategy, otherwise uses a
different strategy

e LeastDataSelectionStrategy — uses the function with least historical
runs

The common pattern is to select one of the input based or mean based strate-
gies and to set the LeastDataSelectionStrategy as its fallback strategy. Op-
tionally, the strategy can be put into the window-bound type. Then, it should be
wrapped inside the LowRunAwareSelectionStrategy to postpone the decision
process until some data are gathered.

The LeastDataSelectionStrategy is also recommended to be used as the
strategy for the gather data operation of AdaptiveSelector.

EvaluationProvider

With the goal of potentially supporting larger variety of possible function evalu-
ation data, the selected function is always executed using an implementation of
EvaluationProvider, which is supposed to run the function and to evaluate it,
and return both the result of the function and the evaluation data in the form
of TMeasurement. The default implementation simply measures the wall-clock
time of the function run.

5.6 User interaction and customization

The basic behavior of combined functions can be changed in two ways:

e Each combined function can have the most basic features configured indi-
vidually

e The whole framework can be re-configured and customized

5.6.1 Combined function setup

As the simple API designed in chapter [3| does not allow directly setting the func-
tion selection behavior, an extension had to be added. In compliance with the
DSL-like or chaining, the configuration was made possible via special methods
on the AdaptiveFunctionN type that allow chaining as Wellﬁ and are also meant
to be used like operators. The combined function definition including the config-
uration can be very fluent and natural:

val sort = standardSort _ or selectionSort by (_.size)
selectUsing Selection.InputBased storeUsing Storage.Global

We have a look at what can be set using these methods.

6In the builder-style pattern, by returning the same type.
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Input descriptor and group selector

The most important part of the configuration API are the by and groupBy meth-
ods. The first allow the user to specify the descriptor function, i.e., function de-
scribing how to extract an input descriptor from the input (see[d.1.2)). A function
of type (T1, ..., TN) => Long is used for that, where T1, ..., TN are the
type arguments of the AdaptiveFunctionN.

The second method expects a group selector, which assigns the input to a
certain group (see . It should receive a function of type (T1, ..., TN)
=> Group.

Function configuration

The invocation and selection process can be configured even more using an in-
stance of a FunctionConfiguration class that each combined function holds
and that gets passed to the CombinedFunctionInvoker.

The choices are based mostly in selecting which one of the module implemen-
tations should be used with given function. In the AdaptiveInternal singleton,
we hold two implementations of AdaptiveSelector, one with persistent history
storage, the other without. Each of these two implementations then includes an
input based and a mean based implementation of SelectionStrategy

The API methods that change the FunctionConfiguration and their pos-
sible values are the following:

e storeUsing — represents the history storage options as described in section

£.3.1]
— Global — uses the shared AdaptiveSelector without persistent stor-
age

— Persistent — uses the shared AdaptiveSelector with persistent
storage

— Local — creates a new instance of AdaptiveSelector locally in the
function object

e selectUsing

— InputBased — uses the input based strategy in AdaptiveSelector
— MeanBased — uses the mean based strategy in AdaptiveSelector
— If none is specified, uses the input based strategy if the descriptor

function is set and the mean based strategy otherwise

e limitedTo — allows to specify the maximum age of the history records to
be used in the selection process, as described in

e asClosures — represents the history storage identifier choice as described
in section 10.9.2)

— true — always uses closure type names as the function identifiers

— false — uses either method names or custom names as the function
identifiers if available
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e withPolicy — allows to specify the starting policy for the function, as
described in

The user is expected to specify this configuration with most of the combined
functions. The default values are determined by the framework configuration,
except for the selection strategy choice, which is defaulted to input based if the
descriptor function is provided for the combined function and to mean based
otherwise.

5.6.2 Logging, analytics and control access

There are two basic mechanisms for the user of the framework to observe its
functionality — logging and analytics.

Logging

Logging is performed by multiple modules that are involved in the selection pro-
cess. An instance of Logger trait held in the AdaptiveInternals and passed
around to other modules in their constructors is used for that purpose. The
provided implementations are ConsoleLogger, FileLogger and EmptyLogger,
where the last one does not actually save the logs anywhere, and is used by default
to limit the overhead.

Replacing EmptyLogger with one of the other types will lead to detailed
output describing each invocation of every combined function, which can be used
to trace eventual problems with the framework behavior.

Analytics and control access

To provide a more systematic access to the framework behavior, an additional set
of methods was made available on the AdaptiveFunctionN type by extending
the AdaptiveFunctionControl and AdaptiveFunctionAnalytics traits:

e train — trains the combined function on a given set of inputs by executing
all of the functions on each of the inputs and storing the results

e flushHistory — flushes the entire run history of all the implementations
of given function'] (in the corresponding history storage)

e setPolicy — sets the current policy of the function to a custom one
e resetPolicy — sets the current policy of the function to the starting one

e getAnalyticsData — retrieves analytics data regarding the function his-
tory

The analytics data represent a way of monitoring the decisions of the selec-
tion process for each combined function. They contain a complete set of records
of previous runs, each one holding the identifier of the selected function, the input

"Note that this method can be called on the original implementation functions as well in
order to flush history for only one of them. It will work thanks to the implicit conversion
available.
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descriptor, run time and the overhead time spent on the selection. The data can
either be analyzed directly in the application by processing these records, or can
be easily serialized into a CSV file.

Note that the analytics data collection is relies on the AnalyticsCollector
trait. Again, we provide two implementations, BasicAnalyticsCollector that
collects all the data mentioned, and EmptyAnalyticsCollector, that does not
collect anything.

5.6.3 Framework configuration

In section [5.5] we mentioned a variety of building blocks that the main parts of
the framework is composed of and the possibility to use multiple implementation
to change the behavior of the entire system. This is the more advanced part of
the configuration and it involves manipulation with the actual implementations.

As explained earlier, all the shared and commonly accessible functionality is
held inside the singleton object AdaptiveInternal. This object can be initial-
ized using an initialize() method on a publicly accessible singleton Adaptive.
The static description of the module implementation composition that is followed
in this process is provided by the Configuration trait. This can be thought of
as a composition root of the whole system — it has to provide factory methods
for all the building blocks used. In addition, it has an abstract type member
TMeasurement that determines the type of the evaluation data used throughout
the whole framework.

The implementation of the Configuration trait has to provide a specific
TMeasurement type and factory methods that rely on the type. Note that the
AdaptiveSelector trait and its methods do not depend on the TMeasurement,
only its implementation does, so the type of the evaluation data does not leak
outside of the composition root or to the API. As a result, the actual type can
be changed at runtime by simply replacing the AdaptiveSelector instance.

The Configuration can be created by the user himself, using either a combi-
nation of provided implementations or his custom implementations in the factory
methods. Alternatively, one of the predefined Configuration traits with some
basic settings already in place can be utilized:

e BaseConfiguration — provides basic configuration of some of the types
that do not depend on the TMeasurement

e BaseLongConfiguration — extends the BaseConfiguration and sets the
TMeasurement type to Long

These traits have to be extended to define the unimplemented values.

Configuration blocks

To simplify the configuration process when working with existing implementations
and to hide the initialization details from the user, a concept called configuration
blocks was introduced.

Configuration blocks are mizxin traits (see section that provide implemen-
tation for just one (or a few) factory methods from the Configuration trait,
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setting up part of the framework in given way. The user of the framework can use
them to define the configuration by creating an anonymous class extending the
base configuration along with desired configuration blocks. Thanks to the fluent
and simple syntax of Scala, this concept is very expressive and easy to use. The
compile-time check will automatically alert the user if the combination of block
does not cover some required method.

In addition, some blocks can be parametrized. The parameters are always
protected read-only attributes of the block trait that usually have default imple-
mentation (i.e. value), but can be overridden. It fits easily into the anonymous
class usage pattern, as the new parameter values for all the blocks can simply be
stated in the body of the class. Blocks can share a parameter by inheriting it
from the same artificial base trait — in such a case, it is impossible to set different
values for different blocks.

Some blocks call the parent implementation of the factory method to wrap
its result into a different type. An example is the CachedRegressionStorage
block, which creates a wrapper for caching the linear regression model atop of the
RunHistory provided by its parent (for information about the decorating wrap-
pers see . The parentage in the configuration inheritance chain is determined
using linearization (see section [L.4). We have to be careful when mixing in a
block with implementations and a wrapping block at the same time — the block
with implementation has to be listed before the wrapping block in the extensions
list.

The whole configuration can look the following way:

val config = new BaselLongConfiguration
with DefaultHistoryPath
with RunTimeMeasurement
with WindowBoundRegressionInputBasedStrategy
with UTestMeanBasedStrategy
with CachedRegressionStorage
with CachedStatisticsStorage
with FilelLogging {
override val maximumNumberOfRecords = 20000
override val alpha = 0.25
override val logFilePath = "./adaptive/log.txt"

}

Adaptive.initialize(config)

List of all the configuration blocks available along with their parameters can

be found in attachments.

Default configuration

A special class for the default configuration was created and is used to initialize
the ScalaAdaptive framework at the beginning of the application run. It specifies
the implementations that are used if the user does not provide his configuration.

Based on the results observed in section [4.5] we decided to include the t-test
selection strategy with cached statistics as the default mean based strategy, and
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the window-bound linear regression as the default input based strategy. The
value of alpha for both of these strategies was set to 0.05.

The default configuration can be extended with any of the configuration blocks
as well:

val config = new DefaultConfiguration with ConsolelLogging

5.6.4 Extending the framework

The framework can be extended without actually modifying it by creating custom
implementations of some of the traits that are used by the invocation and selec-
tion process, and by supplying it to the Adaptive initialization using a custom
Configuration, as described in

An overview of the areas that are the simplest and most useful to extend will
follow.

Selection strategies

A new selection strategy can be created by extending the SelectionStrategy
trait. It can be used in the Configuration as either input based or mean based
selection strategyfl The trait itself is technically a single function corresponding
to the algorithm mentioned in [£.2.3] which is given a sequence of function run
histories and an input descriptor and is supposed to return the key (function
identifier and group identifier) of the function with best expected performance:

def selectOption(records: Seq[RunHistory[TMeasurement]],
inputDescriptor: Option[Long]): HistoryKey

The strategy will most likely have to work with either a specific TMeasurement
data type, or at least put a constraint on it (by using the viewability mechanism,

see section [1.3.1)).

History storages

If we wanted to change the way in which the history data are stored (by filter-
ing some of the results, performing some aggregations to save space, etc.), we
would need to implement one or both of the following traits — the RunHistory
trait, that represents the sequence of results for one group and function, and
the HistoryStorage trait, that manages the RunHistory instances for different
groups and functions.

Evaluation data

We can change the TMeasurement data type and make the framework perform
the adaptations according to a different (or more complex) evaluation results. In
such a case, we need to implement the EvaluationProvider trait, and then add
our custom selection strategies that select based on the new evaluation type.

8Tt is also possible to configure new strategy for the gatherData operation, but that is not
considered to be an interesting case
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5.7 Framework distribution and usage

The framework is distributed in a form of JAR package containing all its com-
piled classes, which can be found in the attachment [A] The simplest way to
set up ScalaAdaptive in any Scala project is to use the SBT (see [25]). The
scalaadaptive_2.11-1.0.jar file needs to be placed into the 1ib folder in
the project root. SBT will automatically locate the content of the archive make
it available in the compilation process.

Now, in any of the Scala source files in the corresponding project, the following
line can be added:

import scalaadaptive.api.Implicits._

From now on, the original Scala function types have been enhanced with the
ScalaAdaptive methods, including the most important or operator that allows
creating functions with adaptive execution (see section .

For a quick introduction of the framework usage, a simple user guide based
on examples is included in the attachment [A] along with the complete generated
source code documentation.
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6. Framework evaluation

This chapter will present some applications and practical usages of the ScalaAdap-
tive framework, and evaluate the benefits and problems that it brings. Some
problems and drawbacks of the adaptivity in a larger project in general will also
be discussed.

Note that all the tests in this chapter, if not specified otherwise, were per-
formed on a laptop with quad-core 1.3 GHz Intel Core i5 processor and 8GB of
RAM. The tests and the resulting data are available in the attachment [A]

6.1 Simple applications

We are going to suggest a couple of situations where the adaptive style of pro-
gramming could be used. The problems will be described and an example usage
of the ScalaAdaptive framework will be provided. A series of tests will be exe-
cuted for each case, with results showing the impact that the adaptivity had on
the overall performance.

6.1.1 Sorting algorithms

The first test of the ScalaAdaptive will be motivated by the example case of al-
most every lecture about algorithm complexity — sorting. We are going to try
combining an implementation of selection sort with complexity O(N?) with an
implementation of quick sort, which belongs to a category of algorithms with
complexity O(NlogN). From the theoretical point of view, the quick sort should
be a better choice for every input. In practice, however, it is faster to use selec-
tion sort for smaller inputs, as the quick sort has an overhead connected to the
recursive nature of the algorithm.

For our two implementations, we found out experimentally that the selection
sort tends to be faster for inputs of less than 1000 items.

We are going to combine the two sorting algorithms using the following code:

val customSort = (
quickSort _ or selectionSort
by (_.length)
groupBy (d => GroupId(Math.log(d.length.toDouble).toInt))
selectUsing Selection.InputBased
withPolicy new PauseSelectionAfterStreakPolicy(20, 20)

The test consists of randomly generating 500 sequences of 0 to 5000 random
integers. All the sequences are then sorted using the quick sort, selection sort and
the combined function in configuration with the following selection strategies:

e Linear regression (LR) with o = 0.05
e Window-bound linear regression (WBLR) with o = 0.05

e Local regression (LOESS)
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The sorting times of all the sequences were added up and the results are
available in table As we can see, using combined function was slightly worse
than using quick sort in all cases in this scenario.

Total time (ms)
Quick sort 1203.93
Selection sort 3493.43
Combined (LR) 1763.58
Combined (WBLR) 1605.37
Combined (LOESS) 1675.65

Table 6.1: Total times of sorting 500 random sequences of 0-5000 integers.
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Figure 6.1: Sorting times of sequences of different sizes using selection
sort, quick sort and a combined function (from top to bottom).
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Figure [6.1] shows us the execution times of quick sort, selection sort and the
combined function (using the window-bound linear regression strategy) for dif-
ferent input sizes from this test. As we can see, the combined function times are
mostly similar to the quick sort times. The figure [6.2] shows only the interval be-
tween 0 and 1200, where selection sort tends to be better. The combined function
has the worst performance, which is most likely caused by the selection overhead

(see section [4.5.3]).
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Figure 6.2: Detailed view of the sorting times of sequences of different
sizes using selection sort, quick sort and a combined function (from top to
bottom).

In conclusion, ScalaAdaptive is not suitable for performing optimization for
very small inputs of various algorithms. The overhead time leads to worse per-
formance overall, even though the selection is working fine and the better options
are correctly selected.

6.1.2 Matrix multiplication

Another example of an algorithmic problem where ScalaAdaptive can be used
is matrix multiplication. The basic multiplication algorithm has complexity of
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Total time (s)
Basic algorithm 2230.21
Strassen algorithm 2168.29
Combined (LR) 1673.63

Table 6.2: Total times of multiplying 200 pairs of square matrices of sizes
50-900.

O(N?) and tends to get quite slow for larger matrices. A lot of more complex
algorithms with slightly better complexities were discovered and are still being
improved. The best achieved complexity so far is O(N?37) in [26].

The practical problem with most of these fast algorithms is that they have high
constants and therefore are not suitable for smaller matrices. In this test, we will
use the ScalaAdaptive with the Strassen algorithm (complexity O(N%807) [27]),
and with the basic multiplication algorithm. We will use a simple implementation
of both algorithms from [28]. The goal of this test is not to find the fastest way to
multiply matrices, but to simply demonstrate that adaptation can be used with
this class of algorithms to reach optimal results with almost no effort.

We tried generating 200 pairs of square matrices of random sizes between
50 and 900 filled with random integers. Then, we multiplied each pair using the
basic algorithm, the Strassen algorithm, and the combined function. The window-
bound linear regression strategy with a = 0.05 was used. Because the run times
are quite high in this case, the minimal number of observations before selection
was lowered to 5 (using the LowRunAwareSelectionStrategy, see section .

The results can be found in table[6.2] As we can see, the overall results are in
favor of the combined version. If we examine the relation between the run time
and the size of the matrices in figure [6.3] we can notice the unusual character
of the Strassen algorithm which is caused by it rounding up the matrix to the
size corresponding to a closest power of two. This kind of an input dependency
does not work well with linear regression, especially around the edges, and should
optimally be used with logarithmic grouping and a mean based strategy. Never-
theless, the selection process worked fine enough and chose the optimal algorithm
for almost all the inputs.

The matrix multiplication algorithms represent an ideal problem for the adap-
tive execution. Current approach to designing a fast library method for multiply-
ing matrices would consist of measuring the matrix size limit where the more com-
plex algorithm becomes faster than the basic one and then putting a branching
on a fixed size test in the method, deciding which one to use. With ScalaAdaptive
framework, this whole process can be skipped, and if the algorithms change, the
system will adapt, finding the new limit by itself.
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Figure 6.3: Multiplication times of matrices of different sizes using basic
algorithm, Strassen algorithm and a combined function (from the top to
the bottom).

6.1.3 JSON parsing

J SONEl is a data-exchange format that can hold serialized object trees and collec-
tions. It is based on the notation for object (technically key-value dictionaries)
literals in JavaScript. The format has recently become extremely popular due to
its simplicity, data efficiency and readability, and as of today, is basically a stan-
dard for HTTP REST APIs. Most of the systems with distributed architecture
that communicate over such an API (typically client-server applications) need to
serialize and deserialize JSON upon sending a request or receiving a response,
which might occur quite often.

The problem concerning JSON and other similar formats (XML, Protocol-
Buffers, etc.) is that there is a variety of libraries available to perform the se-
rialization and deserialization, and we have to decide for one when designing
our application. The API tends to be similar and since it is used with such a
frequency, optimizing its performance might be a suitable goal. There are per-

1JavaScript Object Notation
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formance tests and comparisons of the libraries available, but as shown in [29],
each one might be suitable for a different use case. In addition, [30] shows that
the performance might significantly vary in different versions.

This library decision problem is a suitable use case for ScalaAdaptive — we
can create a simple wrapper library with the same API as the original libraries
that will expose the functions combined from the original serialization and de-
serialization methods. The user will be abstracted from the ScalaAdaptive, and
the libraries can be added or removed at any time very easily.

Combining GSON and Jackson

In [29] we can find a benchmarks of the most popular JSON libraries from the
Java world. For the test, we chose to use GSONP|and Jackson} We will measure
only the deserialization part (parsing of string containing JSON), which is the
more time-complex operation.

The combined function was created in the following way:

val parse = (
parseWithGson _ or parseWithJackson
groupBy ((json, c) => GroupId(Math.log(json.length).toInt))
selectUsing Selection.MeanBased
withPolicy new PauseSelectionAfterStreakPolicy(10, 200)
)

The test is based on parsing three different JSON strings:

e Small — 9KB, 10 records array
e Medium — 80KB, 100 records array

e Large — 8MB, 1000 records array

We know that we deal with fixed sizes of input files, so we can use the default
t-test selection strategy without any problems, because every size will occupy one
of the groups. If we knew that the sizes within a group might vary, we should
use some other strategy. The value a = 0.05 is used.

During the test, we ran each one of the three parsing functions 10000 times
on the small JSON, 5000 times on the medium JSON and 200 times on the large
JSON. We added up run times on these inputs for all the functions, and the
results can be seen in the table [6.3

As we can see, the combined function time is a little worse that the better
alternative for each input size separately. But since the better alternative changes
for different inputs, the total time of the combined function is the best.

We can compare the results with table[6.4]showing the same test, only without
the Pause selection after streak policy. We see that by actually performing
the selection every time, the overhead grows, which is noticeable especially on
the small and medium inputs, where the results are significantly worse. Applying
the overhead-limiting policies therefore makes sense and can cause significant
performance differences.

2Version 2.8.1 of the GSON library from Maven repository was used in the test.
3Version 2.8.8 of the Jackson library from Maven repository was used in the test.
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GSON | Jackson | Combined
10000 * Small JSON 1830.36 | 4883.24 2566.54
Small JSON average 0.18 0.49 0.26
5000 * Medium JSON 4865.89 | 3142.05 3059.18
Medium JSON average 0.97 0.63 0.61
200 * Large JSON 15790.47 | 7298.75 7740.31
Large JSON average 78.95 36.49 38.70
Total time 22486.71 | 15324.05 13366.03

Table 6.3: Results of the JSON parsing tests (times in ms).

GSON | Jackson | Combined
10000 * Small JSON 2180.20 | 5H615.20 5667.64
Small JSON average 0.22 0.56 0.57
5000 * Medium JSON 4696.52 | 2944.04 3889.25
Medium JSON average 0.94 0.59 0.78
200 * Large JSON 15829.39 | 7433.50 7772.41
Large JSON average 79.15 37.17 38.86
Total time 22706.11 | 15992.73 17329.30

Table 6.4: Results of the JSON parsing tests without the policy applied
(times in ms).

6.1.4 Load balancing

A different sort of problems that ScalaAdaptive might help with concerns adapt-
ing systems to environment changes. We can demonstrate this on a simple ex-
ample — an application that relies on a remote web service running in multiple
instances on different web servers. The service itself is stateless, so the requests
can be performed on any of them.

The main goal of such a replication is usually to distribute the work between
more nodes, so that the response times remain low. A technique called load
balancing should take care of distributing the requests evenly between the nodes
often just using a simple round-robin technique. This, however, has to be done
on the side of the service, through a common gateway.

We will use ScalaAdaptive to implement a simple load balancing on the side
of the client by evaluating the response times and selecting the target node using
our selection strategies. We will take advantage of the possibility to limit the
maximal age of the historical data (see section — we want to make decisions
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based only on the most recent measurements, because we suppose that they will
change rapidly.
There are two goals of this load balancing example:

e To provide better performance than relying just on one node

e To limit the load on the node that is currently under pressure (and thus
slow)

Suppose we have a simple web service running on multiple nodes and a system
that performs synchronously running requests to these nodes. The request has
the following form:

def request(url: String) (query: String): Option[String] = ?77?

We can take advantage of the possibility to curry the function and create the
composed request that works with multiple nodes using the ScalaAdaptive API
in the following way:

private def getRequest(s: Server) =
IdentifiedFunction(performRequest(s.url) _,
s"request_${s.name}")
val balancedRequest =
(
servers.tail.foldLeft(getRequest(servers.head)) { (f, s) =>
f.or(getRequest(s)) }
selectUsing Selection.MeanBased
limitedTo Duration.ofSeconds(20)

)

Note that we need to use the custom identifier feature as mentioned in
because the function is combined from a single eta-expanded method with dif-
ferent arguments fixed in the currying process. The closure type is therefore the
same for all the resulting functions. The selection will be done using the default
t-test strategy with a = 0.05.

For the actual test, we used two instances of a simple custom web service
running on different ports of the same machine. Its implementation can be found
in attachment [A] We simulated the problems with load on the machines by ar-
tificially changing the response times of the servers every 50 seconds according
to a set of predefined scenarios. From the client application, we sent one request
every 0.5 seconds directly to each one of the servers and one using our balanced
method.

The results for three different scenarios can be seen in figure [6.4] The lines
represent response time evolution in time — direct requests are marked with double
line and dotted line, the balanced request is solid. We can observe that most of
the time, the solid line copies the lower of the two remaining lines. Sometimes,
it repeatedly reaches the higher line, which means that the balanced request is
sent to the slower server in order to gather fresh run data.

The average response times in these scenarios are shown in the table The
balanced response time is always lower than the worse of the response times. In
case where the load alternates between the two servers (scenario 2), the balanced
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Figure 6.4: Time evolution of response times for request methods in
scenarios 1, 2 and 3 (from top to bottom).

version has the best average response time. If, on the other hand, only one server
fluctuates and the other one keeps a relatively low response time (scenario 3), the
balanced version is slightly worse than the optimal one. Nevertheless, the second
goal of moving the load between the servers is completed in all three scenarios.

Server 1 | Server 2 | Balanced
Scenario 1 74.20 70.48 68.38
Scenario 2 80.92 81.77 72.52
Scenario 3 81.97 94.39 85.38

Table 6.5: Average response times for the request methods in scenarios 1,
2 and 3 (in ms).

A disadvantage of ScalaAdaptive that complicates the usage in this area is
the fact that it does not support measuring run times of asynchronous functions,
i.e. functions that perform callbacks or complete promises upon finishing.
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6.2 Apache Spark

Apache Spark (5]) is a framework for distributed computing that is focused
on data processing in a similar way as the MapReduce distributed computation
paradigm. It works with distributed data sets that can be mapped, filtered,
grouped or reduced, but unlike the implementations in Hadoop or other systems,
it is focused on in-memory data processing on the nodes. Currently, it is one
of the most used systems in big data processing, designed to work with a large
variety of distributed storage systems (e.g. HDFS, Cassandra, OpenStack Swift).

The Spark framework represents one of the most interesting possibilities to
use the ScalaAdaptive framework. The data processing queries are long-running
tasks, so any overhead imposed by the selection is negligible. On the other hand,
the potentially saved time on a faster implementation increases. In addition,
the distributed computation model and the necessity to create an execution plan
which depends on the data locations, sizes, etc. leads to large differences in
execution times based on:

e The query itself
e The cluster it is running on (number of machines, cores, network)

e The configuration of Apache Spark

The goal of this section is to show the basic ideas where the adaptivity might
be used in such a framework.

6.2.1 Spark APIs

Spark currently supports three different APIs that can be used to construct Spark
queries.

RDD

RDD (Resilient Distributed Dataset) was the first API introduced and is basically
a distributed dataset of JVM objects. Spark is not aware of the structure of the
internal JVM objects, it is treating the individuals like blackboxes. The RDD
query is typed and constructed using lambda expressions that work with these
objects:

rdd.filter(_.id > 5000).count

Upon execution, the Spark worker engine manipulates with the RDDs as a
whole (partitions it, collects the results, etc.), but the operations on its members
(filtering, transformation, grouping) are carried out by actually executing the
lambda functions.

This approach is very simple and allows the user to write queries over custom
data types without any limitation. The downside is that the Spark execution
engine does not know what is going on within the lambdas, cannot optimize the
execution plan based on the query, and, when moving the parts of RDDs between
the nodes, the objects have to be serialized and deserialized again.
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DataFrames and Spark SQL

DataFrames API was introduced later into the Spark framework with a goal of
solving the problems of RDDs. The data within DatakFrames are described by
a schema, somehow similar to classic SQL schema — Spark knows exactly how
are the data records structured. The queries are constructed using Spark SQL, a
query language (DSL in Scala) that uses textual names of the record attributes
(i.e. schema columns). As we can see in the following example, the actions are
described by strings and parsed by Spark upon execution:

df.filter("id > 5000").count

Spark therefore knows how exactly the mapping, filtering, reducing or group-
ing is going to happen, and can use these information to optimize the execution
and data distribution, to make estimations, etc., when building the query plan.
In addition, the data described by a schema can be easily persisted or transfered
between nodes without the need to perform a JVM serialization. A major disad-
vantage is the necessity to provide the schema and the fact that the actual query
is parsed at runtime and is untyped — errors in attribute names or conditions in
general will not be detected upon compilation.

Datasets

The newest Spark API, Datasets, was designed with an objective of combining
the best from RDD and DataFrame approaches. The query programming API is
typed and works with JVM objects, just like RDD, but the internal representation
is schema-based, like in DataFrames. In order for this to work, Spark uses a
mechanism of encoders that can transform the JVM representation to the internal
one and vice-versa. It also analyzes the content of the typed lambdas and uses
the same optimization as with the DataFrames API.

6.2.2 ScalaAdaptive tests

To perform the test of ScalaAdaptive with Apache Spark, two environments were
used:

e Spark local mode with 1 workei]] on a laptop with quad-core 1.3 GHz Intel
Core i5 processor and 8GB of RAM

e Spark local mode with 8 WorkersE] on the same machine

e Cluster of 12 Spark workers deployed in Docker containers on 3 machines,
each with two 8-core Intel Xeon CPU E5-2660 0 @ 2.20GHz and 48GB of
RAM

Randomly generated data were used for the test, no distributed storage was
involved. The tests were running with the StorageLevel.MEMORY_ONLY data
persistence configuration. The version 2.1.0 of the Apache Spark library was used.

4Using master("local[1l]") setup.
SUsing master("local[8]") setup.
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Query selection

The most simple adaptation case that can be applied to any data processing
or querying framework is the query selection. A data operation can usually be
expressed using a variety of queries that differ in the order or character of the
elementary steps. These queries can have different performance, based on the
optimizations that the executing engine can perform, especially in the distributed
environment where the main concern is keeping the amount of data transfered to
the minimum.

An example of such a query performance variation can be the group versus
reduce problem. Suppose have a set of key-value pairs and we want to group
them by key and then reduce the groups (by aggregating their content somehow).
The straightforward approach is to group the data and to map the aggregation
function over the grouped values:

data.groupByKey ()
.map(i => (i._1, i._2.flatten.toArray))

Because the execution engine does not understand the mapping action (RDDs
do not analyze the queries), this requires the grouping to be done across all
the workers to physically create the groups, even though we are just going to
immediately reduce them.

To address this issue, a special operation for reducing is present in the API:

data.reduceByKey((arrl, arr2) => arrl ++ arr2)

In this case, the reduced value can be first computed for each node out of the
records with given key present on the node. Then, the partial reduction results
can be passed around and further aggregated.

A test with ScalaAdaptive was performed on a 5000 key-value pair sequence
in Local[8] mode. The two RDD queries presented in this section were combined
together and the resulting function was executed 1000 times. The framework
decided correctly for the reduce variant using the default t-test with a = 0.05.
The analytics data show the following average run times of the queries:

e GroupByKey — 3677.61ms

e ReduceByKey — 684.52ms

RDDs or Datasets

As explained in section Spark has various APIs that allow the user to per-
form the query. Theoretically, the Dataset API should offer the same expressive-
ness and better performance. A lot of current production Spark code is, however,
written in RDDs, as it was the first (and the only for some time) presented API.
This poses a question whether the code should be kept and maintained in RDDs,
or whether it would be better to replace it with Datasets and what the eventual
performance gain would be.

The ScalaAdaptive can be used in this case to limit the potential negative
impact of this change. The Dataset-based queries can be implemented into the
system and wrapped along with the old RDD queries into a single combined query.
If there was a place where the Dataset query would, for some reason, have worse
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performance, the ScalaAdaptive framework should discover it and keep using the
old RDD query. In the longer term, the results of ScalaAdaptive selections can
be evaluated and used to discover problematic queries and to decide about next
steps.

In this test, we are going to try combining two queries from the two different
APIs and try them out in different environments and with different data sizes.
We are going to track the execution times of both of them in the phase where the
data is gathered in a round-robin manner, and then analyze the decision made
by the ScalaAdaptive framework. We would preferably like to find out whether
the decision will be the same for all the data and environments, or whether there
are going to be significant differences.

For the test, we implemented the following two queries in both RDDs and
Datasets:

e Query 1 — generates n random key-value pairs using parallelized RDD
generation, groups by the key and counts the groups

e Query 2 — generates n records with multiple attributes from in-memory
sequence, filters them by an attribute, groups them by a different attribute,
reduces the groups into new records, filters the records again and groups
them for the second time

The RDD and Dataset option of each of the queries were combined together
and the result was executed 100 times in various environments and with multiple
values of n. The average execution times of the queries, as retrieved from the
analytics data (see section[5.6.2)), can be seen for all the cases in table[6.6] The last
column shows the ScalaAdaptive decision after gathering enough data — default
t-test selection strategy with a = 0.05 was used.

We can see that it is definitely not possible to assume that Datasets are gener-
ally faster than RDDs. The only situation where Dataset got better performance
was the Query 1 test with the largest amount of data. We can observe that at
least for Query 1, the Datasets perform better for larger data sizes, both locally
and in the cluster. For Query 2, it seems that Dataset performance is constantly
around 7 times worse than the RDD performance.

These observations might be caused by Datasets having the operations opti-
mized to different cases, or even by our wrong selection of Dataset alternatives of
the RDD queries. But such a case might be a real scenario where the ScalaAdap-
tive framework can be successfully employed and help to discover a potential
problem.

Spark SQL adaptive execution

Spark queries are divided into stages, where each stage can be performed on a
single node without the need to exchange any data. Typically, multiple maps
or filters are chained within one stage, because every record can be mapped
without the necessity of any other data. On the other hand, join, group and
reduce operations have to be done at the beginning of a new stage, because they
can potentially require data from other nodes. Before every stage, a shuffle is
performed — the data is exchanged between the nodes.
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RDD | Dataset | ScalaAdaptive decision
Query 1: Cluster 500000 920.97 | 1633.84 RDD
Query 1: Cluster 2000000 7105.58 | 7068.34 Cannot decide
Query 1: Cluster 5000000 | 37140.28 | 3587.97 Dataset
Query 1: Local[1] 200000 2426.95 | 12554.66 RDD
Query 1: Local[8] 200000 1499.14 | 7446.45 RDD
Query 1: Local[8] 1000000 | 12070.14 | 12861.32 Cannot decide
Query 2: Cluster 100000 1152.19 | 6956.03 RDD
Query 2: Cluster 1000000 2162.72 | 14311.13 RDD

Table 6.6: Run times (in ms) of Spark queries on RDD and Datasets in
various environments.

The data is divided into partitions and each node processes a specific subset
during the stage execution. Upon shuffle, some partitions get exchanged. Origi-
nally, the partitioning of the data following each shuffle was fixed and based on
the original partitioning — it did not reflect the actual results of previous stages,
which could potentially lead to some nodes having a lot less work than the others
if there were partitions with majority of data filtered out in previous stage. To
solve this issue, an experimental feature called adaptive evecutionf| was introduced
into Spark SQL. It causes that the result sizes from previous stages are collected
and a new partitioning is created before performing the shuffle.

The Spark adaptive execution feature is turned off by default. We can use
ScalaAdaptive to experiment with the performance impact when enabling it. In
addition, there are two configurable attributes of the feature:

e targetPostShuffleInputSize — the optimal size of a partition (will be
targeted during shuffle)

e minNumPostShufflePartitions — the minimal number of partitions (will
be strictly kept)

We can try a custom value for these attributes in one of the ScalaAdaptive com-
binations.

The usage of ScalaAdaptive in this case will, however, be a little more com-
plicated. Some attributes of the Spark SQL configuration can be changed at any
point in the execution, but doing so is not reliable, especially in large cluster —
changes do not seem to be reflected immediately. A safer approach is to create
the SparkSession already with the target configuration. If we create new session
for each query, we can incorporate the session creation into the query function. If
we, on the other hand, use one session for multiple queries, we need to split the
selection process (session creation) and the measurement process (query execu-
tion). The only solution is the delayed measurement model described in section
0.2.0l

6Should not be mistaken with the adaptive execution of ScalaAdaptive framework.

100



The test was performed on a Dataset of n records which was filtered, grouped
by an attribute, the groups reduced to a single element and the result filtered
again and counted. We tried to combine various values of n with the following
setups:

1. Spark adaptive execution disabled (currently the default configuration)
2. Spark adaptive execution enabled with default attributes

3. Spark adaptive execution enabled
targetPostShufflelnputSize = 512MB
minNumPostShufflePartitions = -1 (unlimited)

4. Spark adaptive execution enabled
targetPostShufflelnputSize = 2MB
minNumPostShufflePartitions = 200

The SparkSession was created 12 times for every test case and the query
was executed 10 times using each session (120 executions in total). As the
LowRunAwareSelectionStrategy (see section was set to a minimum of
20 records, each of the setups had to be used to create at least two sessions. The
t-test selection strategy with a = 0.05 was used.

ScalaAdaptive

decision

Local[8] 1000 | 4322.24 | 1472.51 | 1916.87 | 3528.62 | Cannot decide

Local[8] 10000 | 6911.03 | 4499.11 | 4933.53 | 6320.43 Cannot decide

Cluster 20000 | 1234.36 | 725.79 | 3892.56 | 1172.69 2.

Cluster 200000 | 2879.25 | 2538.94 | 5639.02 | 2853.10 2.

Table 6.7: Average run times (in ms) of Spark queries with different
configurations in various environments, and the configurations that
ScalaAdaptive selected.

The table shows the average execution times for the setups based on the
initial 20 runs. It additionally marks if the framework reached a decision after
having evaluated these runs. As we can see, the performances of the options vary
a lot depending on the input size and on the execution environment. The default
configuration (with Spark adaptive execution disabled) in the local execution on
small data is by far the worst, in large cluster is among the better ones. The
configuration number 2, i.e., the manually activated adaptive execution with de-
fault setup, is the best in all the cases, but we can see that the results tend to
change a lot. Using ScalaAdaptive can therefore help discover eventual better
configurations.

The disadvantage of ScalaAdaptive in this case is that selection from quite
a lot of alternatives is required, which suffers from multiple problems discussed
in chapter [l In case of the results discussed, the test was not able to decide in
the two local setups, which lead to looping through all the options including the
worst ones.
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6.3 Problems with practical use of the framework

Using adaptive framework in the development process is a new concept with many
consequences. While designing, implementing and evaluating the framework, we
discovered a few potential problems that can complicate its practical application.

6.3.1 Invocation overhead

The framework adds a non-trivial overhead to the function invocation process
due to the selection and the storing of the evaluation data. In order to limit
this, the policy-based invocation system was added to the framework with a goal
of skipping the selection in some situations. Therefore, two different types of
overhead time per invocation can be measured:

1. Policy evaluation overhead
Part of every invocation. It is expected to be small and it should be constant
throughout the whole application lifetime. It cannot be measured from
within the framework, but it can be computed by measuring the combined
function run time and then by subtracting the run time and overhead time
from the AnalyticsData collected by the function.

2. Selection overhead
Exists only when the SelectNew or GatherData result is given by the policy.
It is determined by the actual selection strategy used and is in general
expected to be longer and to be related to the amount of historical data
available for the functions involved. It is tracked by the framework and
included in the AnalyticsData and in addition, it is one of the statistics
that the policies are based on.

The figure [6.5] shows these times tracked for a sequence of 20000 invocations
(sampled every 50th run) of a sample combined function using the window-bound
linear regression strategy (see section and a policy that emits the SelectNew
result every time. We can see that the selection overhead is significantly larger
and really grows with the number of records. The policy evaluation overhead
remains basically constant.

The average selection overhead from the sample discussed is 1.29ms per invo-
cation, the average policy evaluation overhead from the same sample is 0.06ms
per invocation. We can see that the policy evaluation overhead is reasonably
low, so the key to limiting the overhead is using the correct policies and avoid-
ing selection whenever possible. Analysis in section also showed that there
are important differences in overheads of the strategies, so the correct strategy
selection is important as well.

The overhead always exists and has to be counted with, but its significance
depends on the actual problem that we are solving.

6.3.2 Maintainability

One of the main problems that an adaptive framework faces in larger systems
and projects is an engineering issue. The code of current systems has to be kept

102



2 ® e L
e ® o % .C o.
® ° ° e ' o
18 e © e o e ® ° ® o0 °
° @ ®e ° ° e ° °
16 ° ° %% o o o % %% 8 o 0,4 ®
. . . e s o & c X e
— ° L] . e ° ® e o o, o 20 °
214 o . o ° e ° w_ © ° @ e "o ® o
o e o e 0o 9 0 o
o ® S o _ 400 0 % "o °o &0 o
£E1, ° o © ® N e® o & 0% o0
z ® e r ° y %..'o €,0 P e @0 ° °
g 1 % e ° % e _® ,® % ‘. & 0® o000 ° © °,
5 .. L) d‘.. ® e @ o
s e _°° ® e .i..‘..o ° ‘.’ © o
e
'é 0% [o% °t . ..‘..- e : o®® nl.. °s o0 e
g °
3 06 % ° Fe ° o

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Amount of gathered run measurements

Figure 6.5: Selection overhead times (dark) and policy evaluation
overhead times (light), both in ns, for a sequence of 20000 invocations of
the same combined function.

working and maintained for several years, sometimes decades. During this period,
bugs appear in the system, business requirements change and consequently, it is
necessary to perform modifications in function code.

Maintaining multiple implementations of the same functionality at once brings
a lot of issues. The developers have to know exactly how all the implementations
work and whenever it is necessary to modify the behavior, be able to perform
changes in all of them to achieve the same result. Described process itself is very
demanding and has a significant time impact on the development.

What is more, subtle differences in behavior of the implementations could be
unintentionally introduced. These differences might not have visible effects im-
mediately and may appear after several other modifications. At that moment, it
will be extremely difficult to locate the problem, because the misbehavior caused
will not be deterministic thanks to the nature of the selection algorithm.

In cases where third-party libraries are used within the combined implemen-
tations, we introduce yet another factor of risk into the system — the libraries can
change their behavior in newer versions, can have undocumented differences in
their solutions of input corner cases, etc.

Using non-deterministic decision tools in general lowers the maintainability of
the system, and the ScalaAdaptive framework is such a tool.

6.3.3 Testing and verification

When maintaining multiple implementations used in our program, there will have
to be inevitable changes made to every one of them. Before being released,
the system has to go through the verification process. Common techniques of
regression testing are insufficient in this case due to the non-deterministic nature
of the adaptive selection in the system — some of the implementations might not
be tested at all during the regression test, but might be selected in the production
environment.

The only way how to perform a regression test on the system is to change the
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ScalaAdaptive framework configuration in the test environment, specifically the
default policy and the selection strategy. The recommended settings are following;:

e default policy: AlwaysSelectPolicy

e selection strategy: LeastDataSelectionStrategy

Using this setup and ensuring that there are no historical data present, the
system will go through all the options in round-robin style upon every run. The
test process has to be performed enough times for all the options to reach their
turn.

The described testing process is cumbersome and can lead to errors in verifi-
cation. For this reason, more emphasis should be put on unit testing in a project
containing the adaptively selected functions. If all the implementations are well
covered by unit tests, all the hidden bugs and deviations of behavior should be
immediately detected. In fact, there could be one common set of unit tests cov-
ering all the implementations, so that the test cases and acceptation conditions
were the same.

A simple library for generating the unit tests for all the implementation would
be useful and could be introduced as a part of continuation of the project.

6.3.4 Same API requirement

In order to create a combined function from two different algorithms implemented
in two different libraries or frameworks, we need to adapt them to share the same
API. This could be a very simple task for some basic algorithms (converting
number formats, wrapping arguments, etc.), but it might get complicated when
more complex structures get involved. Even for such a basic example like sorting
algorithms, we get a variety of interface options:

e Does it sort list, array or an abstract sequence?

e Does the algorithm sort in-place, or produces a new sequence?

Creating wrappers for the API that solve these issues is not trivial — data
structures have to be converted, copied, etc., which will cause more unnecessary
overhead. This overhead might get more significant with the complexity of data
structures that we need to convert between the two APIs that we need to adapt.

104



7. Related work

A different approach for the same goal consists in manually selecting an imple-
mentation and guaranteeing its performance with unit tests. A special language,
SPL (Stochastic Performance Logic), which allows to express assumptions about
the performance of multiple functions, was introduced in [I]. The innovative
concept is that it treats the performance as a random variable, not as a fixed
value, so the conditions are evaluated with certain confidence. It was later used
to examine the performance of JDOM framework in [2], and became the base of
performance unit testing frameworks for C# ([30]) and Java ([31]).

The development of adaptive systems that can tweak their performance based
on the environment is a widely studied topic as well. Systems that are capable
of some form of auto-tunning, i.e., self reconfiguration based on an analysis of
the execution environment (OS, CPU, etc...), are often among the fastest in its
category — an example might be [32], which is considered to be the fastest non-
commercial FF{Y] algorithm in the world. The adaptation in this case is done by
recompiling the application code ([33]).

An idea of a universal adaptive framework that would not require manual
analysis of the environment and work only with observations from actual execu-
tion is presented in [I6]. It describes a system that has generally the same goal as
our work — increase performance awareness by designing the systems adaptively.
It is focused on large component-based applications where the performance of
certain components is tracked. Multiple use case scenarios are presented, e.g.
verifying component contract, observing trends, or selecting between multiple
interchangeable components based on performance. The SPL is used to make
the decisions, i.e., the components are guarded by conditions expressed in the
language.

The article does not solve the issue of predicting run time with a certain
input based on the performance observed with other inputs. The presented con-
cept is also based on the interconnection between the adaptive framework and
the system components. ScalaAdaptive provides a partial implementation of a
similar system, more narrowly focused, with higher emphasis on the simplicity
and efficiency of performing the single task of selecting faster implementation.
In addition, it provides an API that allows easily using the adaptivity in any
existing system with no need of architectural changes.

The task of predicting function (or application in general) run time based
on the input is a separate problem examined in many different ways. In [34], a
static analysis of LISP programs is performed in order to derive actual complex-
ity. A runtime analysis approach was taken in [I4], where basic blocks in the
program called locations are identified and their performance is measured for a
certain input described by a set of features. The performance is represented by
an execution count in order to keep the measurement deterministic and platform
or environment independent. A powerlaw regression is then built to find rela-
tions between feature values and locations. The resulting model can be used to
formulate predictions.

Relatively precise predictions of an actual execution can be achieved using

IFast Fourier transform
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the Mantis framework [I3], which is based on instrumenting the code and au-
tomatically identifying its features (loops, branches, variable values...). The
features are evaluated (branch counts, loop counts...) at runtime and the ma-
chine learning process is used to select the ones that are important for the overall
performance. A regression model is then constructed using the data. One of the
possible models is described in [21].

Authors of [I5] obtain the predictions in two steps — first, they use greedy
or genetic algorithm to find similar inputs (jobs, workloads) in the historical run
measurement, and then, they generate the prediction using either simple mean or
inear regression, both with corresponding confidence interval. The basic approach
taken here is quite similar to the ScalaAdaptive, even though neither this, nor
the other works referenced in this chapter deal with the problem of real-time
prediction upon invocation, where one of the main concerns is minimizing the
overhead.
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Conclusion

In this thesis, we designed and implemented a framework that allows a completely
new style of performance-aware development by composing functions from inter-
changeable implementations. An API that allows fluent integration with almost
no effort from the developer was introduced. Various statistical methods to iden-
tify the most appropriate implementation for given input based on historical
performance observation were examined, implemented and compared.

The testing that was carried out identified some potential use-cases for this
style of development. Among the more suitable ones were in general longer run-
ning functions, where the run time fluctuations were not as significant and where
the selection overhead was negligible. We achieved better overall run times of
adaptive functions on sequences of various inputs, either for an algorithmic prob-
lem (matrix multiplication), or in case of selection between two utility libraries
(JSON parsing). On the other hand, optimizing fast-running functions for small
inputs does not appear to be a useful application, as the overhead surpasses the
potential benefit from adaptation.

In addition, we demonstrated the potential of environment adaptation on the
Apache Spark distributed data processing framework, where different configura-
tions and query types achieved better results depending on the cluster they were
running on. The Spark itself seems to be a suitable use scenario for our framework,
as it is being actively developed and many features have experimental character
and get iteratively optimized.

Among the main drawbacks of the solution is the fact that the user has to
identify the key feature of the input, which has to be one-dimensional (simple
integer) in order to enable input based selection. The prediction models are not
perfect, especially in cases where the observed performances of all the functions
are very similar. In addition, upon selecting from more than two functions, the
system might get stuck in a situation where the selection strategy cannot decide
due to a pair of equally good variants and rotates all of them in a round-robin
manner.

The majority of current problems and issues can be addressed in the future
by extending the framework and adding new functionality. This can be done
without actually modifying the framework code due to the modularity and run-
time composition.

We believe that the biggest potential of this framework lies in its simplicity
and possibility to be used in all kinds of systems without any structural changes.
As we do not expect a common developer to implement one functionality multiple
times and then combine it using our framework, the main use case in some larger
project would most likely consist of combining multiple libraries, configuration,
queries or other simply obtainable entities.

To see the actual benefit that this development approach can bring to a larger
system, we would need to practically test it in such an application, i.e. a long
running service, and track the performance changes. This kind of test would also
expose other problems connected with either the framework or the whole con-
cept of adaptive development that could not have been identified in the isolated
artificial tests that were part of this work.
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Future work

Improving selection from multiple functions

As mentioned in [4.1.6] the task of selecting the most suitable function out of more
than two is complicated by its nature and we have taken a simplified approach in
this work. In addition, the significance-based selection strategies have to perform
multiple tests (or confidence interval constructions) in the process and the proba-
bility of an error increases. We can either keep the significance high and lower the
strength of the test, which leads to more situations without any function being
selected, or let the significance drop while keeping the strength, causing more
selection errors.

The potential future extension could either completely redefine the goal of
selection from multiple functions and design a new process, or extend the current
solution by determining suitable significance corrections.

Extending the policy logic and connecting it to selectors

In section we stated that the policies were currently relatively limited, both
in the data they have to base their decision on, and in the results they can
produce. It would be interesting to analyze possible extensions while keeping the
evaluation overhead as minimal as possible. The policies could give hints to the
selection strategies, limit the data that they are working with, etc.

Custom selection rules based on the SPL

The [16] introduces an extension of the SPL language designed to describe con-
ditions based on the trends of historical performance data of functions. A special
selection strategy could be designed to accept the SPL conditions and make de-
cisions according to them. This would allow the framework user to have more
control over the selection process.

Thread safety and concurrency

The framework in general is currently not thread safe. It is designed, however,
with regard to the possible concurrency, so the modifications should not be dra-
matic. For the possibility to safely use the framework from a multi-threaded
environment, we would need to ensure three basic points:

1. Thread-safe initialization and static runtime composition
2. Thread-safe access to the run history

3. Thread-safe access to the combined function state (run statistics and current
policy)

The run histories are already prepared to be made thread-safe by having an
API to support immutability (mutating operations return new instances) and an
immutable implementation (with all the caches) as well. Because of that, only
adding a simple lock on the history updating method should be enough. The third
point is currently the biggest issue, because it has been optimized for performance
and the statistics are mutable in general.
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Optimizing run time of the whole system

Instead of optimizing the run times of separate functions, we could aim for op-
timizing the whole system. We could, for example, have a set of different data
structures that our algorithm will be working with. The data structures would
have all the necessary operations implemented and presented using a trait or an
abstract class. The framework would generate a factory method that would cre-
ate one of the implementations, and then track the overall behavior of different
methods on the implementations.

val data = createDataStructure(list)
data.getMin()

data.getMax()

data.add(i)

Selection strategies supporting multidimensional input descriptors

As mentioned in section [4.1.2] algorithm complexities are quite commonly func-
tions of multiple features of the input. In order to create selection strategies that
would be able to correctly decide in case of such algorithms, we would need to
add support for input descriptors with more features. The input based strategies
would then have to construct multidimensional regression models and analyze the
dependency on multiple features.

Detecting the input features

The fact that the user has to know which features of the input might affect the
function run time and manually specify the descriptor function and the grouping
is quite limiting. Another way of improving the framework might be some kind
of analysis that would examine the history measurements and look for correlation
between the input feature changes and the run time changes. The main limitation
is that the input has to be some structure known to the framework in order to
extract the features.

Implementation in other languages

The framework is implemented in Scala and can be used to combine functions for
any JVM-based languages (see section . Transferring the whole framework
to a different language and platform might be desirable in the future. In such a
case, the main problem would be the API of the framework, which, in its current
design, relies heavily on the Scala DSL features of Scala (see section . It
requires the following features from the language:

e Implicit type conversions

Functions as first-class values

Extensibility of the function types
e Eta-expansion of methods

e Infix operator syntax for methods
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e Macros to parse and modify the AST upon compilation

With only a subset of these features in the language, a limited version of
current API could be designed.

The best approach for a different platform implementation would probably be
to analyze the features that the target language offers and the common approach
to designing APIs in that language, and to create a new, better suited API.
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List of Abbreviations

e JVM - Java Virtual Machine, the target platform of Java, Scala and other
languages

e HTML - Hyper Text Markup Language

e API - Application Programming Interface

e REST — Representational State Transfer, a philosophy of web API
e JSON - JavaScript Object Notation, a format for data exchange

e XML — Extensible Markup Language, a format for data exchange
e FFT — Fast Fourier Transform

e JAR — Java Archive, a distribution format of JVM based applications and
libraries

e SPL — Stochastic Performance Logic

e OS — Operating System

e CPU - Central Processing Unit

e HDD - Hard Disk Drive

e I/O — Input / Output

e IoC — Inversion of Control, an application development pattern

e AST — Abstract Syntax Tree, the result of syntax analysis of a code
e DSL — Domain Specific Language

e SBT - Scala Build Tools

e RDD — Remote Distributed Dataset, a Spark API
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Attachments

A The attached CD

The disc attached to this thesis contains the following directories:

e doc — The documentation of the ScalaAdaptive framework source code
automatically generated by the Scaladoc tool.

e evaluation_data — Raw output data from the test and evaluation runs
that were used in the text.

e introduction — A brief user guide that introduces the ScalaAdaptive
framework and its usage on a series of examples.

e jar — The compiled version of the ScalaAdaptive library in a JAR package.

e source_framework — The source code of the ScalaAdaptive framework,
can be opened as IntelliJ IDEA project or built from the command-line
using SBT. Note that it does not include any test code, as it includes
macros and therefore cannot be used from the same compilation unit.

e source_tests — The source code of the ScalaAdaptive framework tests
and evaluation code, can be opened as IntelliJ IDEA project or built from
the command-line using SBT. The package evaluation contains all the
tests that were used for evaluations in the text. Each test contains a brief
description of its inputs, outputs and configuration. The package tests con-
tains additional, mostly uncommented, test code. And lastly the package
tutorials contains examples from the user guide mentioned before.

e text — An electronic version of this text.

e tools — A simple custom Node.js web server that was used to perform
the load balance test.

B Complete list of configuration blocks

The following blocks can be used to configure ScalaAdaptive. If there is not a
suitable block, a custom configuration implementation can be done.

Analytics

e AnalyticsCollection — turns on the analytics data collection
e NoAnalyticsCollection — turns off the analytics data collection

121



Logging
e ConsolelLogging — framework logs to the standard output

e FilelLogging — framework logs to a specified file (logFilePath argument)

e NoLogging — framework does not log

Persistence

e BufferedPersistence — framework persists the run data in batches of
serializationBufferSize into a directory (rootHistoryPath argument)

e DirectPersistence — framework persists the run data into a directory
(rootHistoryPath argument)

e NoPersistence — framework does not persist the data, global storage is

used for persistent setup

Selection strategies

Sets the corresponding strategy as the main strategy of given type. Note that the
LowRunAwareStrategy is always used as a wrapper with configurable lowRun-
Limit argument. Some strategy blocks allow setting alpha and average Window-
Size arguments.

e LinearRegressionInputBasedStrategy
e LoessInterpolationInputBasedStrategy

TTestMeanBasedStrategy

UTestMeanBasedStrategy

WindowBoundRegressionInputBasedStrategy

WindowBoundTTestInputBasedStrategy

History

e CachedGroupHistory — caches average run times for input descriptors
e CachedRegressionHistory — caches linear regression model

e CachedStatisticsHistory — caches statistics (used for T-test)
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