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Abstract: Task scheduling in operating system area is a well-known problem on 

traditional system architectures (NUMA, SMP). Unfortunately, it does not perform 

well on emerging many-core architectures, especially on Intel Xeon Phi. We 

collected all publicly available information about the architecture of Xeon Phi. After 

that, we benchmarked the Xeon Phi in order to find the missing information about its 

architecture. We focused especially on the information about cores and memory 

controllers. These are the most important parts when designing a scheduler. Based on 

the results, we proposed improvements for scheduling algorithm in the Bobox (an 

experimental streaming system). However, we found that the biggest problem is not 

in the scheduling algorithm, but in the design of operators’ parallelization. Therefore, 

we proposed improvements to the parallelization and tested one of the proposals.  
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Introduction 
There has always been an effort to execute any program as fast as possible. It 

applies especially to the applications processing some data. One of the main factors 

influencing the speed of the applications is the speed of the microprocessor, which is 

processing the data. People try multiple ways to speed up microprocessors. These days, 

the microprocessors with multiple cores inside are the most popular solution. Intel took 

this idea and introduced its many-core architecture and launched Xeon Phi cards.  

There is an experimental streaming system called Bobox [1]. It was developed 

at the Department of Software Engineering of the Charles University. It is an example 

of a complex application processing some data. While trying to run the Bobox on the 

Xeon Phi, it did not perform well. There is a performance problem on the Xeon Phi 

card, even though it is not connected with the traditional system architectures, i.e. SMP 

(Symmetric multiprocessing) and NUMA (Non-uniform memory access).  

In this thesis, we want to find the cause of the performance problems of the 

Bobox on the Xeon Phi. Firstly, we make a summary of all available information about 

the architecture of the Xeon Phi. Secondly, we benchmark the coprocessor and analyze 

the results in order to find some additional information about its architecture. The 

information are used to a proposal of possible improvements to the scheduler and the 

memory allocator of the Bobox. Finally, we test the proposed improvements in the 

Bobox and analyze results. If the improvements do not solve the problems, we will try 

to find a real cause of the problems. If the problems are found, we will introduce 

another enhancement to the system.  

The first chapter analyzes our performance problem and prepares a working 

procedure of our research.  

The second chapter makes an overview about hardware and software 

architecture of the Xeon Phi. It is a summary of all public documents we were able to 

find. There is a thorough description of the hardware architecture. We focus the 

description on things connected to the core and the memory layout. These components 

are important when dealing with the problems connected to scheduling. On the other 

hand, the software architecture contains only some basic information necessary for 

using the Xeon Phi.  

The third chapter is about testing. It describes the preparation of the Xeon Phi 

and its environment for testing. It writes about the Xeon Phi specific of the testing 

environment. Afterwards, it continues with the description of the used methodology 
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and our testing. Based on the tests, we find some missing information about the Xeon 

Phi hardware architecture. We also use that chapter to propose improvements of 

scheduling on the Xeon Phi.  

The fourth chapter describes the streaming system Bobox and its internals. We 

try to test the improvements using this application. However, we show that the biggest 

problems are caused neither by the architecture nor by the scheduler. To prove our 

speculation, we find the real cause of the problems and test one of the simple 

improvements.  

The final chapter summarizes a contribution of this thesis and proposes a future 

work. 
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1. Analysis 

To analyze the main problem with scalability of the Bobox, we start with the 

attempt to replicate the results of the measurement given by [2]. That document 

focuses on creating a new task scheduler for the Bobox. It takes different effects of a 

processor into account, i.e. many layers of caches and NUMA effect. We successfully 

replicated the results on a similar configuration. However, there is a big performance 

slowdown while running the same tests on Xeon Phi, even though we use different 

configurations with a different number of NUMA nodes. The best results are achieved 

while the configuration is set to NUMA.  

There are multiple papers [3], [4] or [5] about benchmarking the Xeon Phi. 

They all try to measure different characteristics of the Xeon Phi, e.g. latency of 

instructions, throughput of instructions, memory access latency and memory 

bandwidth. The papers did not mention a NUMA effect at all. Closer look reveals that 

the experiments would not detect the NUMA effect. We did not find any other papers 

or researches that confirm or decline the NUMA effect on the Xeon Phi. As the results 

show a possibility of the Xeon Phi to be a NUMA system, we create our own 

benchmarks to test the NUMA effect.  

We analyze the results and set the configuration of Bobox according to them. 

However, it does not solve the scalability problem of Bobox. To be able to find a 

problem, we use a profiling tool – Intel VTune Amplifier [6]. This profiler has a special 

support for the Xeon Phi cards.  

Lots of valuable information about Bobox is stored in [2] or [7]. There are 

sections covering intra-operator parallelization, task scheduling and memory 

allocation. As a result of the profiling, we locate the real problems and propose a 

solution how to deal with them. We also implement one of the solutions as a proof. 
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2. Xeon Phi overview 

There are two types of Intel Xeon processors. One of them is the standard type 

of server processor, not so different from the classic desktop processors. The other 

one, with attribute Phi in its name, is compounded of many small processors and its 

architecture is closer to the architecture used in graphic cards.  

The latest architecture, by the time of writing this thesis, is Knights Landing 

(launched in June 2016). The previous architecture is called Knights Corner. Unless 

stated otherwise, all things in the thesis relates to the older architecture – Knights 

Corner. 

There are 8 types of the Intel Xeon Phi coprocessor with architecture Knights 

Corner. The only differences are: a number of cores, processor base frequency, 

a number of memory channels and the maximal size of used memory. For 

simplification, we write only about the model Intel Xeon Phi 7120. We choose this 

model, because we have it at our disposal. 

This chapter makes an overview about hardware and software architecture of 

the Xeon Phi. It is a summary of all public documents we were able to find. There is a 

thorough description of the hardware architecture. We focus the description on things 

connected to core, memory layout and interconnect. There are also basic information 

about software architecture. We cover only necessary things for running applications. 

2.1. Hardware Architecture 

The coprocessor comprises of 61 in-order cores that are connected through on-

die bidirectional interconnect. In addition to the cores, there are also 8 memory 

controllers and other special devices placed on it, such as memory controller (GBOX), 

PCI Express client logic (SBOX) or a display engine (DBOX)1.  

As shown in Figure 1, each core contains:  

 512-bit vector processor unit (VPU) 

 The Core Ring Interface (CRI) 

 The L2 cache 

 The tag directory (TD)  

 Asynchronous Processor Interrupt Controller (APIC).  

                                                 
1 Do not confuse with a display device output. The display engine stores debugging 

information. 
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Core fetches and decodes the instructions from four hardware thread execution 

contexts. Vector processor unit executes floating-point and integer operations. The 

Core Ring Interface hosts L2 cache, APIC, TD and connects each core to the Ring 

Stop. TD holds coherence between L2 caches of the core. Memory controller is 

comprised of two independent memory channels where each channel has 32-bit in 

width and provides connection to the RAM. SBOX includes PCI Express client 

logic, DMA and the power management capabilities. DBOX supports the debugging 

of the Xeon Phi. 

 

Figure 1: Basic building block of the Intel Xeon Phi (source [8]) 

2.1.1. Core 

Xeon Phi core design is based on the old Pentium P54c architecture (see 

documentation [9] for architecture details). There were made some additional changes 

to support hardware threads.  

Each core contains four hardware threads. Threads support 32-bit and 64-bit 

execution environment. Core also contains 8-way 32KB L1 ICache (instruction 
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cache), DCache (data cache) and some interfaces with L2/CRI block. Each thread has 

a replicated architecture state which comprises of the registers (GPRs, ST0-ST7, 

segment registers, CR, DR, EFLAGS), the prefetch buffers, the instruction pointers, 

the segment descriptors and the exception logic. Other additional adjustments, added 

to support hardware threads, are thread ID bits in TLBs, thread-specific flush and a 

hardware support for thread wake-up/sleep mechanisms.  

Pipelines 

The core pipeline is composed of 7 stages. Pipeline for vector instructions adds 

other 6 addition stages. Both pipelines use global stall architecture. It means that the 

part of the pipeline stalls if a stage is stalled. Each core stage is speculative – it might 

invalidate the whole work in a pipeline if a branch misprediction appears. 

Figure 2 shows the core pipeline. Figure 3 shows the vector pipeline, where 

orange boxes show addition stages in vector pipeline compared to the core pipeline. 

Figure 4 depicts the core pipeline of Xeon Phi compared to the generic one. Table 1  

shows the function of each stage. 

 

 

Figure 2: Core pipeline 

 

 
Figure 3: Vector pipeline 

 

 

Figure 4: Core pipeline compared to the generic one 
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Table 1: Core pipeline stages functions 

Instruction Fetch 

Instruction fetch is split into two stages – the PPF (pre-thread picker function) 

and the PF (picker function). The goal of the stages is to choose which thread is going 

to be executed. The PPF stage prefetches instructions for a thread context into the 

prefetch buffers. There are 4 prefetch buffers per a thread and each of them can store 

32 bytes in a buffer. Also, there are two instruction streams per a thread. If one of the 

streams is stalled due to a branch misprediction, the second stream is switched in, 

while the branched target stream is prefetched. The PF examines the prefetch buffer to 

determine the next thread. A priority to refill the prefetch buffer is given to a thread 

which is being executed in the current cycle.  

Each core contains a ready-to-run buffer that consists of two instruction pairs. 

If the executing thread has a control transfer to instruction that is not in the buffer, the 

context buffer is flushed and appropriate instruction is loaded. In case that the 

instruction cache does not have a control transfer point, the core stall happens. To hide 

a performance penalty during the core stall, the PF chooses a next context to execute. 

It works in a round-robin manner. If the instructions from context 0 are processed in 

N-th cycle, the PF tries to issue the instructions from context 1, context 2 or from 

context 3 in (N+1)-th cycle. This exact order is always used.  

The two-cycle instruction fetcher unit implies that fully pipelined core cannot 

issue instructions from the same context in back-to-back cycles. This means that if the 

instructions from context 0 are issued in N-th cycle, the instructions from all contexts 
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except for context 0 can be issued in the next (N+1)-th cycle. It implies that there need 

to be present at least 2 threads for full core utilization. If they are not presented, the 

core utilization in a maximum of 50% can be achieved due to inability to issue 

instructions in back-to-back cycles.  

The refill of instruction buffer, which happens during core stall, takes 4-5 clock 

cycles. This implies that 3-4 threads are needed for optimal performance. On the other 

hand, if the PPF and the PF are perfectly synchronized, two threads are sufficient for 

running the maximal speed. In case they are not synchronized (due to a cache miss), a 

cycle clock bubble might be inserted.  

An overview of the first two stages is shown in Figure 5. Another view on the 

instruction and data flow is depicted in Figure 6. 

 

Figure 5: Core multithreading support (source [8]) 
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Figure 6: Simplified data and instruction flow (source [10]) 

Instruction Decode 

The decode stages (D0 and D1) start to decode instructions right after the 

appropriate instructions are chosen by the PF. The instructions are decoded in two 

cycle clock. The D0 stage decodes the instruction prefixes. Fast prefixes are decoded 

without penalty, legacy prefixes have 2 clock cycle latency. The D1 stage mixes 

together the ucode of the decoded prefixes with the instruction microcode found in 

ucode ROM. In the next decoding stage (D2), the processor reads the general purpose 

register file and looks up the data cache.  

In the end, the decoded instructions are sent to an execution unit by two 

pipelines – U-pipe and V-pipe. The pipelines use the same names as in old Pentium. 

The first instruction takes U-pipe and the other one takes V-pipe, if the instructions are 

pairable. The concurrent execution of instructions is governed by pairing rules. Intel 

documentation [8] says: “The V-pipe cannot execute all instruction type, and 

simultaneous execution is governed by pairing rules. Vector instructions can only be 

executed on the U-pipe.” Another Intel document [4] says: “Most of the VPU 

instructions are issued from the core through the U-pipe. Some of the instructions can 

be issued from the V-pipe and can be paired to be executed at the same time with 

instructions in the U-pipe VPU instructions.” The second source implies that not all 
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vector instructions are forbidden on V-pipe. The document also gives the list of 

instructions that run on V-pipe. These instructions are shown in Table 2. 

Instruction Execute and Retire 

At the execute stage, integer instructions are executed in the ALUs (Arithmetic 

Logic Unit). Once the scalar instructions reach the WB (write-back) stage, they are 

finished.  

 

 

Table 2: Pairable instructions 

 

Vector Pipeline 

There is a separate pipeline for x87 floating point and vector instructions that 

starts right after the core pipeline. Even though the vector instruction reaches WB 

stage, it is not finished. The core pipeline is supposed to think so, but the vector unit 

keeps working until it goes through the whole vector pipeline. No exceptions can be 

raised. Instead, the VXCSR flag is set to indicate an exception e.g. underflow, overflow.  

Vector Processing Unit (VPU) 

There is no support for extended or vector operations i.e. MMX, AVX or SSE 

known from some other Intel processors. This led up to the introduction of new vector 

floating-point unit (VPU) together with the new instructions.  

VPU is 512-bit wide and is placed in each core. It executes 

majority of instructions in 4 clock cycles with 1 cycle throughput. It can read/write 

one vector from/to memory. This vector can contain either sixteen 32-bit numbers 

(integer, single-precision floating point) or eight 64-bit numbers (64-bit integer, 

double-precision floating point).  

VPU is composed of 8 UALUs where each of them contains 2 SP (single 

precision) and 1 DP (double precision) ALUs with the independent pipelines. Each 

VPU has 128 entry vector registers divided equally among all 4 threads, which makes 

Type Instruction

Vector Mask
JKNZ, JKZ, KAND, KANDN, KANDNR, JKNZ, JKZ, KAND, KANDN, KANDNR, KMERGE2L1H, 

KMERGE2L1L, KMOV, KNOT, KOR, KORTEST, KXNOR, KXOR

Vector Store VMOVAPD, VMOVAPS, VMOVDQA32, VMOVDQA64, VMOVGPS, VMOVPGPS

Vector Packstore

VPACKSTOREHD, VPACKSTOREHPD, VPACKSTOREHPS, VPACKSTOREHQ, VPACKSTORELD, 

VPACKSTORELPD, VPACKSTORELPS, VPACKSTORELQ, VPACKSTOREHGPS, 

VPACKSTORELGPS

Vector Prefetch
VPREFETCH0, VPREFETCH1, VPREFETCH2, VPREFETCHE0, VPREFETCHE1, VPREFETCHE2, 

VPREFETCHENTA, VPREFETCHNTA

Scalar
CLEVICT0, CLEVICT1, BITINTERLEAVE11, BITINTERLEAVE21, TZCNT, TZCNTI, LZCNT, LZCNTI, 

POPCNT, QUADMASK
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it 32 registers per a thread. There are additional 8 16-bit mask registers controlling 

which elements are active during computation. Each VPU instruction must pass 

through one of the five pipelines to completion. The pipelines and their relation to the 

vector pipeline stages is shown in the Figure 7. It shows which stages execute which 

pipelines. Possible vector pipelines are: 

 Double Precision (DP) Pipeline – executes float64 arithmetic, 

conversion and comparison 

 Single Precision (SP) Pipeline – executes float32/int32 arithmetic, 

logical operations, loads (including int64 load), conversion, 

float64/int64 logical 

 Mask Pipeline – executes mask instructions with 1 clock cycle 

latencies 

 Store Pipeline – executes store instructions with 1 clock cycle latencies 

 Scatter/Gather Pipeline – read/write sparse data from/to vector 

registers 

A transition between pipelines costs some additional clock cycles. There are 

built-in bypasses in pipelines, but there are no bypasses between SP and DP pipeline. 

That is why the execution of the SP instructions consecutively results in good 

performance unlike the mixing SP and DP instructions, as a result of the fact that there 

are no bypasses between those two ALUs. 

The D2 stage decides whether the processor is processing a vector instruction 

or a scalar instruction. The E stage detects any dependency stalls. The next two stages 

(VC1 and VC2) do the shuffling and load conversions. Main add and multiply 

operations are executed it the V1-V4 stages. The last stage (WB) writes the content of 

vector/mask register back to cache. Detailed description of vector processing unit is 

depicted in the Figure 7.  
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Figure 7: Vector processing unit (source [11]) 

 

Latencies 

Each stage of the pipeline is processed in 1 clock cycle. If there are at least 4 

independent instructions, the pipeline can throughput one instruction per clock cycle 

with each instruction latency of 4 clock cycles. If there are data dependencies, for 

example in two consecutive SP instructions, the second instruction must wait until the 

data is produced by the V4 stage and pass the data through internal bypass to the V1 

stage of the next instruction. This causes an additional 3-cycle delay, because there are 

3 stages between V1 and V4, where the dependent instruction cannot execute, until it 

has the data from the previous instruction.  

If an SP instruction is followed by another SP instruction with register swizzle, 

the data has to be send from V4 to VC1 stage by another internal bypass. This causes 

the additional 5-cycle delay. If an SP instruction is followed by an EMU instruction, 

since transcendental lookup happens in VC1, the data can be moved by an internal 

bypass with the 5-cycle latency delay.  

If a DP instruction is followed by a SP instruction, the DP instruction has to 

complete write before the dependent SP instruction can execute. Because there are no 

bypasses between the SP and the DP pipelines, the waiting costs 7 clock cycles. 

Vector Registers 

Each thread has 32 512-bit general vector registers zmm0-zmm31, eight 16-bit 

mask registers K0-K7 and the status register VXCSR. The vector registers operate 

either with sixteen 32-bit elements or with eight 64-bit elements. The VXCRS holds 

the status of each vector operation. The VPU reads and writes the data cache at a cache-
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line granularity of 512 bits (64 bytes) through dedicated 512-bit bus. The data read 

from the cache goes through the load conversion and swizzling to ALU. The writes go 

through conversion and alignment right into a write-commit buffer in the data cache. 

The vector mask registers control updates of the vector registers in the 

calculation. A small set of operations can be performed on the mask registers – xor, or 

and and. Non-masked operations can simply overwrite the destination register by the 

result of another operation. The masked operations update only the destination register 

according to the vector mask register. A write mask modifier can be specified with all 

vector operation. The destination elements that are flagged with ‘1’ are updated, the 

elements with flag ‘0’ are left unchanged. If no mask is specified, the default mask 

0xFFFF is used. This value is stored in the mask register K0.  

Extended Math Unit (EMU) 

The VPU contains the Extended Math Unit (EMU). The EMU executes the 

single-precision transcendental operations using Quadratic Minimax Polynomial 

approximation and table lookup for fast approximations to the approximation function. 

The EMU is fully pipelined. The table lookup happens in parallel. The EMU offers 

following basic transcendental functions: reciprocals, reciprocal square roots, base 2 

exponential and base 2 logarithms. Other functions – division, square root and power 

– are composed of the basic transcendental functions. Table 3 shows latencies of the 

EMU instructions. 

 

Table 3: EMU instructions latencies 

 

2.1.2. Memory 

Figure 8 shows the distribution of the memory controllers. As we can see, each 

core contains L2 cache. The memory controllers (MC) and tag directories (TD) are 

placed symmetrically around the bidirectional ring.  
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Figure 8: Interleaved memory access (source [11]) 

L1 Cache 

Each core contains a L1 cache. It is composed of a 32KB instruction cache 

(ICache) and a 32KB data cache (DCache). It has standard 64 bytes cache line size 

with 8-way associativity. The data from the cache can be returned out-of-order. 

Load-to-use latency is 1 cycle for scalar integer values, but it is longer for vector 

values. The cache contains an address generation interlock with minimal 3 clock cycle 

long latency. Therefore, the GPR registers must be produced by three or more clocks 

before they are used as a base register or as an index register in an address computation. 

It implies that the base and index register setup takes also a 3 clock cycle latency.  

L2 Cache 

The L2 cache is inclusive of the data and the instructions from the L1 cache. It 

implies that all data that are stored in the L1 cache are duplicated in the L2 cache. The 
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size of L2 cache is 512KB per core. It is divided into 1024 sets with 8-way associativity 

per a set and 64 bytes per a way. It is also split into 2 banks and it is able to address 

32GB (35 bits). The latency of the cache is 11 clock cycles and the idle access time is 

around 80 clock cycles. It cannot be accessed by each clock cycle (like L1 cache), but 

only every other clock cycle.  

All cores together contain around 30MB of the L2 cache – each core provides 

its 512KB. This is valid only if the data among cores are not shared. In this case, each 

core has only its private data. If the data are shared, they need to be replicated to each 

core which needs them. In the worst case scenario, when all data are shared among all 

cores, the effective size of L2 cache is only 512KB. 

The cache contains streaming hardware prefetcher that is able to prefetch code, 

read and RFO (read for ownership) cache lines into the cache. There are 16 memory 

streams that can deliver together up to 4KB page of data per a request. If the direction 

of the stream is detected, 4 multiple prefetch requests can be issued.  

The L2 cache supports ECC and multiple power states e.g. C1, C6 and the 

package C3. It is a part of the CRI (core ring interface). It forms the Transaction 

Protocol Engine together with the TD (tag directory) and the RS (ring stop). This is an 

equivalent to the FSB unit.  

Caches 

Both caches (L1 and L2) use a pseudo-LRU algorithm for replacement. They 

both are also fully coherent. They support 38 outstanding (read/write) requests per a 

core. The system agent (containing PCI Express agent and DMA controller) can 

generate additional 128 requests (read and write). Each request executes in 1 clock 

cycle. The maximal number of requests is 38 × (number of cores) + 128. This 

allows the software to prefetch data aggressively. If the maximal number of requests 

is reached, the new request causes a core stall. 

The standard MESI protocol [8] is used for maintaining shared states across 

the cores. There is the state diagram of the MESI protocol in Figure 9. The definitions 

of the states of the protocol are in Table 4. 
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Figure 9: MESI protocol (source [8]) 

 

 

 
Table 4: Cache states 

 

  

Cache state State definition

M (Modified)
Cacheline is updated relative to memory (GDDR). Only one 

core may have a given line in M-state at a time.

E (Exclusive)
Cacheline is consistent with memory. Only one core may have 

a given line in E-state at a time.

S (Shared)

Cacheline is shared and consistent with other cores and with 

memory. Multiple cores may have a given line in S-state at the 

same time.

I (Invalid) Cacheline is not present in this core cache.
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Distributed Tag Directories (DTD) 

To solve potential performance limitations of the MESI protocol in comparison 

to the MOESI protocol, Xeon Phi presents the ownership tag directory (TD). The 

possible limitation is given by the fact that there is a missing O state in the MESI, i.e. 

the MOESI avoids the need to write back the modified data. The ownership tag 

directory can be found in many other multiprocessor systems. The main purpose of the 

TD of the Xeon Phi is to emulate the missing O (owner) state in the MESI protocol. 

The MOESI protocol avoids the need to write back the modified data to the main 

memory before sharing it. The MOESI protocol is described in Table 5.  

By adding the functionality of the TD to the MESI protocol, it is possible to 

emulate O state in the MOESI protocol without the need of redesigning blocks of 

cache. If the TD is faster than the memory, we get the promised performance boost 

compared to the MESI protocol. The tag directory implements the GOLS3 protocol. 

The GOLS3 protocol state diagram is shown in Figure 10 and the function of each 

state is described in Table 6. The modified coherence diagram for the emulated MOESI 

protocol is depicted in Figure 11.  

 

 

Table 5: The MOESI protocol 
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Figure 10: The GOLS protocol in the TD (source [8]) 

 

 

 
Table 6: GOLS protocols states 
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Figure 11: MOESI protocol emulation (source [8]) 

 

The tag directory (TD) is distributed among the cores in 64 smaller distributed 

tag directories (DTDs). Each DTD stores the global coherence state for its assigned 

cache lines. It contains an address, the GOLS3 state and the ID of the owner of the 

cache-line. The cache-lines are uniformly distributed among the tag directories. That 

provides a uniform traffic characteristic on the ring.  

Information about the cache-line state is associated with each cache-line and it 

is stored in individual cores. The cache-lines state uses the standard MESI protocol. If 

a cache-line is in modified state, the core sends a request to the DTDs and gets back 

the GOLS3 state of the cache-line.  

Page Tables and TLBs 

There are two types of memory in the Xeon Phi – uncacheable (UC) and 

write-back (WB). The L1 data TLB supports three types of page sizes – 4KB, 64KB 

and 2MB. It can address 32-bit physical addresses or 36-bit physical addresses 

extension (PAE) in 32-bit mode or 40-bit addresses in 64-bit mode. The execute 

disable (NX) bit is supported, in contrast to the global page (GP) bit which is not 

supported.  

If the L1 cache and the L2 cache miss happens, a 4-level page table walk is 

performed. The instruction INVLPG has the same behavior. There are no restrictions 

for mixing the page sizes in a single address block (2 MB), but they all have to be 

consistent. The Table 7 shows characteristics of TLBs located on the Xeon Phi.  
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As we can see, all TLBs are 4-way. Instruction cache does not support large 

pages. Entries in the TLB can be shared among threads with the same values of 

registers of the TLB (e.g. CR3, CR0.PG, CR4.PAE, CR4.PSE, and EFER.LMA). 

 

 

Table 7: TLB's characteristics 

Memory Controllers 

There are 8 on-die GDDR5 memory controllers. Each controller can operate 

two 32-bit channels, where a channel can deliver with the rate 5.5 GT/s. The 

controllers directly interface with the ring. They are responsible for reading and 

writing the data to the GDDR memory by translating the memory reads and writes to 

commands. It also supports the ECC data integrity feature. 

2.1.3. Interconnect 

The Interconnect is implemented as a bidirectional ring. It contains three 

independent rings in each direction. The largest - 64 bytes wide ring is the data block 

ring. The address ring is much smaller and it is used to send read/write commands and 

memory addresses. The acknowledgement ring is the smallest and also the fastest one. 

It is used to send the flow control and the coherence messages. The details are shown 

in Figure 12. 

Whenever the L2 miss appears on a core, the core generates a request on the 

address ring and queries the tag directory. If the requested data is found in the L2 

cache, a forwarding request is sent to that cache over the address ring and the request 

block is sent back through the data block ring. If the address is not found in any tag 

directory, the appropriate tag directory requests the memory from the memory 

controllers. The memory controller returns the data back to the core over the data ring. 

One data transfer and two address transfers are needed per a request. Therefore, the 

less expensive rings – address and acknowledgement rings - are doubled to increase 

the bandwidth requirements caused by many requests on the ring. 
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Figure 12: The interconnect (source [11]) 

2.2. Software Architecture 

The Xeon Phi is implemented as a tightly integrated collection of processor 

cores on the PCI Express add-in card. The card meets PCI Express specification for 

the PCI Express endpoint. It implies that there are three address spaces (configuration, 

memory, I/O).  

Each card represents Symmetric Multiprocessing domain (SMP) that is loosely 

coupled to the computing domain represented by the host platform. There are lots of 

APIs to support many High-Performance Computing (HPC) applications. There are 

also TCP/IP, MPI, OpenCL APIs and some other Intel interfaces, which create 

abstraction layers.  

The communication layer between the host and the card is called the SCIF. 

They altogether create Manycore Platform Software Stack (MPSS). The MPSS is the 

collective name for all software on the host and the card that supports the coprocessor.  

Figure 13 shows relationships between the APIs and other components. The 

left side of the picture shows the host stack that runs on standard Linux kernel. The 

right side shows a similar stack that belongs to the coprocessor and runs on top of the 

Linux based kernel with the Xeon Phi adjustments. 
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Figure 13: The Xeon Phi software architecture (source [8]) 

 

The software architecture supports three programming models – offload, 

symmetric and native. In the offload model, the main application is launched on the 

host processor. The offload process is controlled by some compiler directives and it is 

fully in the scope of activity of the compiler. The symmetric model is composed of 

multiple processes, where the computation and the communication need to be done 

explicitly by using some standard mechanism e.g. the MPI. The last native model is 

the variant, where the application is running exclusively on the Xeon Phi coprocessor.  

Unlike standard computers, the Xeon Phi does not contain a permanent file 

system (FS) storage. Its FS is maintained in RAM and it can be remotely mounted e.g. 

through NFS. 

2.2.1. MPSS 

The high level representation of the MPSS is pictured in Figure 14. Although 

the software stacks of the MPSS contain similar components, they are not binary 

compatible, because they both run on different platforms. Logically, the same thing 
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holds for applications – the native Xeon Phi applications are not binary compatible 

with any other applications. 

 

Figure 14: The MPSS (source [8]) 

 

The kernel used in the coprocessor is a standard Linux kernel with a few 

adjustments due to the special architecture. The kernel and an initial FS image are 

stored in the MPSS part of the host. The host driver injects the Linux kernel image and 

the kernel command line into the memory of the coprocessor to begin execution. The 

kernel command line and the FS are constructed based on configuration files. The files 

can be configured by certain host configuration files in the MPSS.  

All Linux utilities are provided by BusyBox [12]. Busybox is a program that 

provides several stripped-down UNIX tools in a single application. It was originally 

developed for operating systems with limited resources. 

There is a virtual ethernet transport between the host and the coprocessor 

implemented by virtual ethernet drivers. It supports the TCP, UDP, IP stack and tools 

such as the SSH, SCP etc.  

As mentioned previously, the SCIF is a low-level communication layer 

between the host and the coprocessors. It also provides a communication between 

multiple coprocessors within the platform. It exposes DMA capability for transfers and 
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an ability to map memory from the coprocessor to the host and from the host to the 

coprocessor. The SCIF is built on top of the PCI Express, which results in the 

advantage of an inherent reliability and no need to error check any data packages 

compared to the virtual ethernet driver. 

2.2.2. Overlay System 

There are prepared system administration tools for the Xeon Phi on the host. 

They are used to control the coprocessor. Alternatively, the coprocessor can be 

controlled through configuration files. They are located in /etc/sysconfig/mic/ on the 

host. There is a configuration file for all coprocessors installed on the system – 

default.conf and the configuration files for each installed coprocessor – mic<n>.conf 

(where <n> is the number of the coprocessor). There are also the configuration files 

of the installed software– conf.d/*. Each kernel module is configured by using the file 

/etc/modprobe.d/mic.conf. Every change to the file requires a restart of the coprocessor 

for changes to take the effect. 

The root file system for coprocessor is constructed on the host. The result is 

compressed into a cpio file. On boot, the content of the file is unpacked and loaded 

into the RAM disk. The file system image cannot be directly modified, but instead of 

that one or more file hierarchies overlay corresponding files in the file system image 

during the boot. It means that each file in the hierarchy replaces the corresponding file 

in the base file system or creates it, if it does not exist in the base file system. The 

hierarchies are called overlay sets or overlays. The used overlays are described in the 

configuration files. For example, if the file foo is created in /var/mpss/common/etc/foo, 

it overlays /etc/foo in the file system of each coprocessor. 

The overlay process begins with the Base file system. Its configuration 

specifies the file system to be used.  The common overlay can include files that overlay 

the file system of all coprocessors. The common overlay is rooted at 

/var/mpss/common by default.  

There exists a per-coprocessor overlay that enables overlaying of files for the 

coprocessor. The overlay includes some files by default (see [13] for more 

information). 
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3. Testing 

The purpose of the tests is to find the missing details or wrong information 

about the architecture of the Xeon Phi. Sometimes, the details are left out intentionally 

to protect the secret of a company, and sometimes they are missing by mistake.  

The chapter starts with the description of preparation of the testing 

environment. It continues with the description of the testing methodology. There are 

special methods to ensure that the results of the tests are reliable. We describe the 

architecture of the Xeon Phi based on the results. The tests are focused on measuring 

the memory latency for shared and unique access. 

3.1. Preparation 

The testing environment needs to be prepared at first. Even though the Xeon 

Phi uses a Linux kernel, it has its specifics. Some of them cannot be found in the 

documentation and they are usually discovered on the fly. In this chapter, we describe 

the specifics that we found. 

Compiling a Kernel Module 

Building a kernel module for Xeon Phi is not so different from building a kernel 

module for another platform [14]. The infrastructure for building a kernel and 

managing all compilation options is known as the Kernel Build System – kbuild.  

The kernel was built on the host, because there are no building utilities on our 

Xeon Phi. This leads to another problem – we have to cross compile the kernel module.  

Firstly, we take the source codes of our kernel. It can be downloaded or 

accessed on the Xeon Phi through the NFS. Secondly, we use the compiler that is able 

to create binary files for the Xeon Phi. There exists a version of GCC especially 

prepared to produce binaries for the Xeon Phi. All required libraries together with the 

compiler need to be given to the kbuild, e.g. through the PATH variable. The last step 

is to start a build with the corresponding architecture.  

Loading a Kernel Module 

The load of a kernel module can be done in two ways. The first possibility is 

to load it while the coprocessor is booting. This implies that the kernel module has to 

be defined in overlays. The disadvantage of this solution is that the coprocessor must 

be rebooted with every change to the kernel module. An easier way to load a kernel 
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module is with the standard utilities insmod and rmmod. To call the utilities, we need 

to gain root privileges on the coprocessor. 

Root Privileges on the Xeon Phi 

On the standard Linux, the root privileges are gained if there is an appropriate 

entry in /etc/sudoers file. We cannot modify the file directly, because the changes last 

only until next reboot. The overlay must be used to preserve the changes. However, if 

the file is added into an overlay definition, nothing happens. There is nothing about 

this special behavior in the documentation [13]. Nevertheless, there is a note that some 

files are included by default into a per-processor overlay. Except for sudoers, almost 

all special files from /etc directory are included. It seems that the files from /etc are 

either included by default into overlay or they cannot be included at all. 

Luckily, there is an entry in default sudoers for additional include directory 

(sudoers.d). All files from this directory are included into sudoers. Therefore, the final 

solution to add a user into sudoers is to create a file with the desired rule and force the 

overlay to copy the file into /etc/sudoers.d/ directory. 

3.2. Methodology 

At the beginning, we decide how to measure our code properly. The first option 

is to measure a time from the user space. The second option is to measure it from the 

kernel mode. Because we need to access some kernel structures and some kernel 

functions, we must create a kernel module anyway. That is why we have decided to 

measure our code from the kernel mode by reading a timestamp counter. The results 

given by this method should be more accurate. 

RDTSC and CPUID 

All Intel CPUs have a monitoring counter to keep track of events that are 

happening inside a processor. One of the counters is the timestamp counter, which 

counts a number of cycles in the processor. This counter can be accessed by RDTSC 

or RDTSCP assembly instructions. The RDTSC was introduced by the Pentium 

processor. The RDTSCP was introduced later and it is not supported by all processors. 

Especially, the Xeon Phi does not support it, so we must use the RDTSC version. 

Both instructions read timestamp counter (a 64-bit MSR) into the EDX:EAX 

registers. The EDX contains the high-order 32 bits of the MSR and the EAX the 

low-order 32 bits. The RDTSC is not a serializing instruction. That means that it does 
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not wait until previous instructions are executed before reading the counter. That is the 

main difference from the waiting RDTSCP. On the other hand, the subsequent 

instructions might start an execution before the read operation begins. Both 

instructions have this in common. In order to measure intended instructions, we need 

to include a fence before and after the RDTSC instruction. 

The Intel architectures define several serializing instructions. These 

instructions force the processor to complete all modifications of flags, registers and 

memory, produced by previous instructions. They also force all buffered writes to 

memory to drain before the next instruction is fetched. The implication is that nothing 

can pass the serializing instruction and the serializing instruction cannot pass any other 

instruction. 

The CPUID is one of the instructions used for serialization. Its main purpose 

is to return an identification of the processor. It guarantees that any modifications to 

flags, registers and memory for all previous instructions are completed before it is 

fetched and executed. 

The right combination of the instructions above ensures that we are able to 

measure only the piece of code that we need, and no other instructions. At the 

beginning, we place the CPUID instruction before the RDTSC. We know that the 

CPUID serializes instructions. It is obvious that all instructions are executed in 

advance. Also, the CPUID cannot pass through the next instruction – the RDTSC. At 

the end of the code, the CPUID is placed right before the RDTSC instruction. The 

CPUID ensures that the instructions after do not start execution before the RDTSC 

reads the counter. One disadvantage is that we measure also the latency of the CPUID. 

If we could use the RDTSCP, we would easily solve the problem with measuring the 

latency of the CPUID – if the CPUID is placed at the end before the RDTSCP, it is 

able to serialize instructions before. 

The described process for measuring is general and can be used for any 

out-of-order processor with instruction pipelining. The measurement of the Xeon Phi 

is easier, because all the cores of the Xeon Phi are in-order, so the coprocessor cannot 

internally reorder instructions. However, there is a support for pipelining in the 

coprocessor; therefore the serializing instruction must be used. It forces any 

instructions in any pipeline stage to finish before the RDTSC instruction starts to 

measure. 

Disabling Kernel Preemption 
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There are other factors that might ruin our measurements. The OS of the 

coprocessor is preemptive. If its scheduler decides, it can temporarily interrupt a 

running thread and let another thread to run instead. In our test scenario, is it unlikely 

to happen, because we run only few threads. The only thing that might ruin the 

measurement are interrupts.  

Our goal is to exclusively own the CPU and then run our code. We call 

functions preempt_disable() for disabling preemption and raw_local_irq_save(flags) 

for disabling hard interrupts in the code. To return both thing back to normal, we use 

functions raw_local_irq_restore(flags) and preempt_enable(). 

3.3. Testing Architecture Layout 

As we stated before, the cores and the memory controllers are placed on the 

bidirectional ring. We work on the assumption that the cores are uniformly distributed 

among the ring and the memory controllers are placed evenly between them, as shown 

in Figure 8. We can also see that the memory controllers are paired.  

We test whether the access from some CPUs to some controllers takes longer 

than to the other controllers. It would imply that the system has the NUMA 

architecture. We also measure the impact of accessing to the DTD from different cores. 

3.3.1. Memory Controllers 

First, we test the latency of the access from a core to a memory controller. The 

architecture picture shows that the cores are uniformly distributed among the 

bidirectional ring. It also shows that the memory controllers are paired, which leaves 

us with 4 pairs of memory controllers (there are 8 memory controllers). It seems 

reasonable that those groups are placed uniformly between the individual cores. 

Because the Xeon Phi has around 60 cores, there must be around 15 cores between 

adjacent memory controllers. If we take opposite memory controllers and the closest 

core to the first controller, there are around 30 cores between the core and the second 

controller. This should be the longest path between a core and a memory controller, 

because the ring is bidirectional, and it uses the shortest path between every two 

elements on the ring. We think that there is a difference between the access time to the 

memory controller from the nearest core and from the furthest core.  

Physical Addresses to Memory Controllers Mapping 
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At first, we need to know how the addresses are mapped to the memory 

controllers. The information can be read from the performance counters, which lie 

inside every memory controller. Unfortunately, we did not find any public document 

describing where the performance counters are placed. It seems that it is not a public 

piece of information. If we knew, where the performance counters were, we would try 

to read and write cache-lines one by one while looking into the performance counters.  

It does not seem that the blocks of memory in each controller are smaller than 

a cache-line. We expect that each controller contains block of memory that 

corresponds to the size of the virtual pages. The 4KB block size seems reasonable. 

That makes 64 cache-lines in each block, because the size of a cache-line is 64B.  

There is a proposed layout of memory on the Intel’s forum [15], but it has not 

been validated by anyone. Physical memory of the coprocessor is divided into blocks 

of 62 cache lines. The blocks are interleaved around the 8 memory controllers with 2 

channels per controller using a fixed repeating pattern. The left 2 cache-lines in each 

4KB range are used for holding ECC data. The suggested layout is depicted in Figure 

15.  

There is also proposed mapping between the memory controllers and the 

physical memory addresses. The mapping is written in Table 8. We test the proposed 

mapping and validate characteristics of given results. The characteristics must 

correspond with the well-known information about the architecture of the Xeon Phi. 
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Figure 15: Memory controller mapping 

 

 

Table 8: Physical address to memory controller mapping 

Implementation 
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For measuring latencies of a memory controller, we must access only blocks 

that belong to a single memory controller. We use a technique called a pointer-chasing. 

We create a big array of unsigned integers. Each of them is the index of the next 

element in the array. It basically creates a chain of the pointers. Our program traverse 

the array using a read element as the index of the next element. Because we use the 

read value as the index, a prefetcher cannot prefetch the code in advance. That allows 

us to see the latency of reading from the memory. 

The Algorithm 1 shows the traversal code. The array in the example is called 

A, and the index of the array is called i. We do not use this exact code in our testing 

program. We manually unroll the cycle instead. Not optimized cycles are replaced with 

comparisons and jumps in the assembly code and we want to avoid them. We need to 

measure only the access to the memory.  

 

We create the array with the chain of pointers that jump only on memory blocks 

stored in each memory controller. The cache-line is 64B long, each block has 62 of 

them and the blocks are repeatedly distributed among memory controllers. If we want 

to jump on the first cache-line in a memory block of each memory controller, we must 

jump over 64𝐵 × 62 × 8. To skip the channels of the memory controllers, multiply 

the given number by 2 (there are 2 channels per a memory controller).  

We allocate 210 of 4KB pages, which makes together 4MB of a continuous 

space. We cast it into an array of uint64_t. The length of the pointer chain between 

blocks is the size of the array divided by the length of a jump. That gives us the pointer 

chain with at least 64 jumps (
4𝑀𝐵

(64×62×16)
≥

4𝑀𝐵

216 = 64).  

We run the test multiple times. In case of multiple runs, we must take caches 

into consideration. If the test runs for the first time, the values are loaded from a main 

memory – a memory controller. When the values are loaded, cache-lines are stored 

into caches. We get bad results every other run, if we do not erase the values from the 

caches. Caches of the Xeon Phi are using a modification of LRU algorithm to change 

cache-lines. Therefore, we must replace the old values with some new values. We 

i = 0; 

while(i < A.size()) { 

 i = A[i]; 

} 

Algorithm 1: The pointer-chasing algorithm 
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create an array with the size of L2 cache – 512KB. To fill the caches with the new 

values from the array, we simply iterate through the array few times.  

One of the problems that might arise, during the creation of the function that 

fills up the cache, are optimizations on some compilers. The compilers are able to 

optimize away useless things. A function for filling the cache with some dummy values 

is a great example. A basic implementation goes through an array and does nothing. 

To prevent the optimizations, either the program must be compiled without the 

optimization enabled or the program must do some work with the cache-lines e.g. 

reading/writing values. 

Kernel Specific Functions 

A memory in kernel can be allocated in two ways. One of them is to use 

kmalloc() and kfree(). These functions are intended for allocation of smaller chunks of 

the memory. They are similar to user space malloc() and free(). There is a second pair 

of functions – __get_free_pages() and free_pages() that can be used for allocation and 

deallocation of whole pages. These pages translate into contiguous physical pages.   

The memory allocated in kernel is un-swappable by default. It means that 

nobody can swap the memory out. If we used a classic user space allocator, which 

returns a swappable memory, the memory could be relocated and mapped to totally 

different physical page. That might imply a different memory controller associated 

with the new physical page. However, there are possibilities how to pin a memory even 

in the user space. 

To run a single thread on a core and to forbid scheduling of the thread to another 

core, we need to pin threads to cores. There exists the function kthread_bind() for this 

purpose. One of the parameters is a task_struct pointer that holds the information about 

the thread. The second parameter is a CPU number to which we want to bind. The 

number is not exactly a core number, but it is a number of the thread. For our Xeon 

Phi with 61 cores, each having 4 threads, the possible CPU numbers are from 0 to 243. 

In order to bind a thread to a CPU, the thread must be stopped. That is the difference 

between the function set_cpu_allowed(), which is used for the implementation of 

kthread_bind(), and function kthread_bind().   

Another possibility to bind a thread to the CPU is offered by the OpenMP. 

However, the framework cannot be used in kernel space.  
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Last special kernel function is virt_to_phys(), which is used for translation of 

virtual addresses into physical addresses. It works exactly as anyone would have 

expected – it gets a virtual address and returns the appropriate physical address. 

Results 

We measure the latency between each logical core (a physical core with its 

threads) and each memory controller with its channels. One measurement cycle does 

64 jumps in the memory on a single memory controller. After the measurement cycle, 

caches are flushed and we measure again. The cycle is repeated 1024 times. We 

calculate an average value from all measured results. The higher number of repeats 

was not able to achieve, because the kernel starts timing out whenever the loading of 

a kernel module takes a long time. This process is repeated for each logical core (244 

of them) and each memory controller with its two channels (16 of them).  That gives 

us together 244 × 16 combinations.  

The results show the latency of accessing the memory without any 

synchronization. They are shown in Graph 1. Individual cores are placed around the 

circle. Each color represents the latency of a memory controller. The closer the value   

is to the center of the graph, the smaller the latency gets. The second view on the same 

results is depicted in Graph 2.  
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Graph 1: Read latency from cores to memory controllers 

 

 

Graph 2: Read latency from cores to memory controllers 
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The Latencies of Memory Controllers 

The values are approximately between 20000 and 24000 cycles per 64 memory 

accesses. It gives us the values from 310 to 375 cycles per a memory access. The 

results correspond with expected values. The read latency of main memory measured 

in [3] was around 305 cycles per a memory access. There is a difference in order of 

magnitude compared to reading from the L2 cache, which takes 11 cycles. Also, there 

is 65 cycles difference between the fastest and the slowest reading from the memory. 

We assume that the fastest read is when the core is next to the controller. The 

slowest read should happen when the core is placed in opposite to the memory 

controller. This behavior can be seen in Graph 1. The highest values are always 

opposite to the lowest ones. Also, the sum of opposite values is always the same. In 

the other graphs, we see that the change between adjacent values is almost linear. There 

are around about 30 cores in one half of the ring. With the difference around 60 cycles, 

it gives us the latency 2 clock cycles per a core on the shortest path between the 

memory controller and the core.  

Xeon Phi Architecture Layout Results 

As we already know from the architecture pictures, the memory controllers are 

coupled. Therefore, the access latencies of those controllers must be similar. That 

holds for the memory controllers with indices (0 + 1), (2 + 3), (4 + 5) and (6 + 7).  

The latencies of the found memory controller pairs are depicted in Graph 3, 

Graph 4, Graph 5 and Graph 6. We include a polynomial trend line to see how the 

latencies behave as a complex. Every graph contains precisely two intersections of the 

trend lines. One of them is near the minimum and the other one is near the maximum. 

Naturally, the intersections correspond to the intersections that are between the lines 

of the latencies. They are also placed near the extreme values and they swap the 

relation of the values.  

The extreme values split the graph into three areas. In the first area, most of the 

latencies of the controller A are higher than the majority of the latencies of the 

controller B. This relation inverts in the second area. The latencies of the controller B 

are higher than the latencies of the controller A. In the third area, the relation between 

the latencies inverts again, hence it is the same as in the first area. Most of the latencies 

of the controller A are higher than the majority of the latencies of the controller B.  

This behavior corresponds with the layout of the memory controllers and the 

cores on the ring. If we get closer to a memory controller pair from the one side of the 
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ring, the latencies fall down. Clearly, we are always closer to one of the memory 

controllers than to another from the pair. The second controller is hidden behind the 

first controller, so the path to it is always one step longer. It changes when we get to 

the other side of the memory controller pair. Now, the previously hidden controller is 

closer to the cores. The second change happens on the opposite side of the ring. As we 

stated before, the ring is bidirectional. Therefore, requests always take the shortest path 

to their destination. There is a place where the shortest path stops moving one direction 

and starts moving the other direction. For the requests of a memory controller, the 

place is right opposite to the memory controller.  

 

 
Graph 3: The latency of memory controllers no. 0 and no. 1 

 

 
Graph 4: The latency of memory controllers no. 2 and no. 3 
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Graph 5: The latency of memory controllers no. 4 and no. 5 

 

 
Graph 6: The latency of memory controllers no. 6 and no. 7 

NUMA Effect 

Base on the results, we propose the layout of the memory controllers and the 

cores on the ring. The cores that are the nearest to the intersection with the minimal 

latency value surround the memory controller. We create the layout based on this idea. 

The layout is shown in Figure 16. 

Just to recap, the latency of accessing the memory controller is between 310 

cycles (for the closest core) and 375 cycles (for the furthest core). That gives us 60 

cycles difference. These 60 cycles are used to traverse a half of the ring, which contains 

30 cores and one memory controller pair. If we want to create some NUMA nodes, we 

should create them around the memory controllers as shown in Figure 17. The NUMA 
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nodes are in the red ellipses. An average distance between the cores from the adjacent 

NUMA nodes is 30 clock cycles. If the fastest latency is around 310 clock cycles, then 

the NUMA factor is 1.1. 

 The NUMA factor is so small that it should have no effect on the majority of 

the applications. A high performance application can gain a small performance boost 

if it utilizes the proposed NUMA architecture. However, this NUMA factor holds only 

for unshared memory. If the memory is shared, the DTDs get involved and the 

latencies of the access to the memory are completely different.  
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Physical Address to Memory Controller Mapping Validation  

The trend lines of the latencies of every memory controller are depicted in 

Graph 7. The similar graphs for the memory controller pairs are in Graph 8 and in 

Graph 9.  

The graphs clearly show that the memory controllers are placed on the ring and 

their latencies correspond with the architecture of the Xeon Phi. Moreover, they 

validate our hypothesis that the memory blocks are built from 62 cache lines. If it was 

not true, the characteristics would not correspond to the circle layout of the ring inside 

the Xeon Phi. So, it is correct to say that the mapping in Table 8 is correct. 

 

 
Figure 16: The layout of memory controllers and cores 
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Figure 17: Proposed NUMA nodes 

 

 
Graph 7: The trend lines of latencies of each memory controller 
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Graph 8: The latencies of memory controller pairs 

 

 
Graph 9: The trend lines of the latencies of memory controller pairs 

 

3.3.2. DTDs 

The second thing that we test is the latencies of the DTDs (distributed tag 

directories). There are 64 tag directories (TD) around the ring. One record in the TD 

contains a cache-line address, a mask with valid CPUs and a state. It is hard to get 

information about the mapping between cache-lines and the TDs. There are no 

performance counters available for the TDs. One of the possibilities how to find a 

mapping is to test it.  

Our application tests a cache-line ping-pong of different cache-lines between 

the two cores. Because the TDs are uniformly distributed among the ring, we expect 

different results for different TDs.  
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Implementation 

We create a cache-line ping-pong for testing the latencies of the TDs. Our 

testing application has two threads. The first thread accesses a cache-line. Because it 

does not have the cache-line in its cache, it sends a load request to the TD owning the 

cache-line. As no core has the cache-line in its cache, the TD sends a request to the 

memory controller owning the address. Now, the second thread accesses the same 

cache-line. It is not in the cache of the thread, therefore it sends a request to the TD. 

The TD already know that the cache-line is in the cache of the first thread, so it sends 

a request to that cache. After the request returns the cache-line, the second thread 

modifies it. After the modification, the first thread accesses the cache-line again. It 

sees that the cache-line is in modified state. Thus, it sends a request to the TD. The TD 

forwards the request to the second thread and the thread returns the cache-line. The 

application repeats this process many times.  

If both threads are pinned to some cores, the time of sending data between the 

cores is the same, even though the TD changes. The only thing that changes with a 

different TD is the latency of the reading information from the TD.  

The Implementation Using False Sharing 

The first implementation creates a false sharing between the threads. The false 

sharing happens, when there are seemingly no related data stored on the same 

cache-line, and the data are accessed from multiple threads. As the cache-line is the 

smallest unit in the memory, even if every thread changes only its own private piece 

of the cache-line, the whole cache-line must be invalidated.  

Our program creates a structure with two counters. Each of them belong to one 

of the threads. The structure is mapped to the cache-line and the threads start 

incrementing their counters. The implementation does not synchronize the threads. 

The first thread (a slave) increases the counter in the cycle. The second thread (a 

master) increases the counter and also measures the code.  

This implementation shows worse results than the other one. We assume that 

the main problem is that the threads are not forced to run simultaneously. It might 

happen that a thread accesses the cache-line without the interference of the second 

thread. 

Our second implementation uses a volatile counter and an atomic_t flag. The 

volatile keyword signals to a compiler that it should not optimize the variable. The 

second variable is the flag to show whose turn is it. It ensures that the threads change. 
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Both variables are stored on the tested cache-line. A waiting for the turn is performed 

by a classic busy waiting. One thing to realize is that the cache-line is loaded twice, 

for the counter and for the flag.  

We allocate 1024 pages and then we run the application with pinned threads. 

We use kthread_bind() to pin a thread to a core. For creating a thread, we use the 

function kthread_create(). We use the function wake_up_process() for starting the 

thread. There are two functions - kthread_stop() and kthread_shoud_stop() – for 

ending the thread. The first function sends a signal to the thread that it should end. The 

second function checks whether the signal has already arrived. 

Sometimes, even though we call kthread_stop() after wake_up_process(), the  

thread does not start. For this reason, we create our own signals using an atomic_t 

variable that signals the thread. We do not know, why it happens. Either it is due to 

some compiler optimizations, or it is an internal behavior of the functions. 

Threads Numbering 

We test multiple cores and multiple cache-lines. First, we pin the core, and then 

we test all the latencies of the cache-lines in allocated pages.  

A side effect of our testing is that it finds logical units placed on the same core. 

If the threads run on the same core, the state of the cache-line is not synchronized 

through the TDs, but it is synchronized within the core. The latency in that case is 

really small.  

Every physical core has 4 logical cores (threads). We found that the IDs of the 

logical threads are shifted. The ID = 0 does not belong to the core 0, but to the core 60 

(the last one). The IDs of each core are tuples of four. They start with 1 and go to 243. 

The last number of thread is 0. E.g. (1, 2, 3, 4) are threads of the 1st core, (5, 6, 7, 8) 

are threads of the 2nd core and (240, 242, 243, 0) are threads of the last 61st core. 

The Latencies of TDs 

The examples of the results are shown in Graph 10, Graph 11, Graph 12 and 

Graph 13. Each graph holds the values of one allocated page. Every value shows the 

latency of the cache-line. We see that the same values of the latencies appear in each 

graph. The smallest value is around 144 cycles, the highest value is around 402 cycles. 

The values repeat in 4KB memory cycles, which correlates with the size of pages. 

Therefore, we assume that each cache-line in every page is mapped to a unique TD. 
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Unfortunately, we did not find a function for the mapping. There is no obvious pattern, 

the values look randomly shuffled.  

The measured values are normalized. We measure the latency of 128 

ping-pongs, which correspond to 512 memory loads. As previously stated, each thread 

loads 2 cache-lines per a ping-pong. Also, the cache-line is loaded twice, because it 

contains two stored values. Therefore, all measured values are divided by 512 to get 

the latencies of a single memory load.  

 

Graph 10: Measuring a latency of a TD 

 

 

Graph 11: Measuring a latency of a TD 
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Graph 12: Measuring a latency of a TD 

 

 

Graph 13: Measuring a latency a TD 

NUCA effect 

The fastest latency takes around 144 cycles. The slowest latency takes around 

402 cycles. This is a huge difference. The ratio of the difference is almost 1:3. The 

only thing that changes between different cache-lines is the position of the TD. It 

implies that, if multiple cores share a cache-line, it depends where the cache-line is 

placed. This effect appears in some multicore architectures. These architectures are 

called Non-Uniform Cache Architectures (NUCA) [16].  

”In an attempt to improve upon conventional “deep” cache hierarchies, a 

number of Non-Uniform Cache Architectures (NUCAs) have been proposed. In 

general, a NUCA flattens the conventional multi-level cache hierarchy by using a 

fewer numbers of cache hierarchy levels with a large number of banks of the same 
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memory technology (e.g., SRAM, EDRAM, etc.) in each level of the cache hierarchy. 

As a consequence of the physical structure of such cache architectures, entries in 

different banks of the same cache memory have non-uniform access times dependent 

on physical position, giving rise to the term NUCA.” [16] 

The non-uniform access times are caused by the distributed tag directories 

(DTDs). If the cache-line is shared between multiple cores, the DTD needs to be used 

and the performance goes down. Therefore, the Xeon Phi is not exactly NUCA, but it 

has similar behavior when some data are shared.  

If some data are shared between the multiple cores, we should be careful where 

the data are stored. Sharing almost always implies the usage of the TDs. Because we 

do not know the mapping between the cache-lines and the TDs, the best way is to 

benchmark it. We only need to benchmark 64 consecutive cache-lines. 

On the other hand, the difference of the latencies shows only for some special 

cases. The data must fit into a single cache-line and must be shared between two cores. 

If the data use multiple cache-lines, the cache-lines are uniformly distributed in the 

TDs around the ring. In that case the latency gets closer to the average latency of the 

TDs, which is around 260 cycles. If multiple cores access a single cache-line, thanks 

to the uniform distribution of the TDs, the overall latency of the access of multiple 

cores goes to the average latency. In the last case, when multiple cores shared multiple 

cache-lines, the latencies are also close to the average values. 
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4. Application 

This whole thesis is created because of the performance problems of the 

streaming system Bobox on the Xeon Phi. In this chapter, we describe relevant aspects 

of the Bobox that are necessary for understanding of the proposed improvements. 

More detailed information about Bobox can be found in [1], [2] or [7]. We also 

introduce the improvements to the Bobox. We show that there is no problem with the 

scheduling and therefore we implement one of the possible improvements to prove it. 

4.1.  Bobox Overview 

There are two basic types of programming languages. The general purpose 

programming languages (C, C++, Java, Javascript, Python, etc.) and the domain 

specific languages (UNIX shell scripts, MATLAB, VHDL, SQL, YACC, etc.). A 

domain specific language (DSL) is a computer language specialized to a particular 

application domain. On the other hand, the general purpose languages (GPL) can be 

used across multiple domains. The streaming languages are a subgroup of the DSL.  

The idea of the streaming languages is that data can be represented as a stream 

of tuples. The streams can be processed by operators/kernels/filters. The operators 

transform input streams into output streams. The execution of the language is managed 

by a runtime. The runtime for the streaming languages is called a streaming system. 

The implementation of the operators and the operator’s mutual connections together 

are called an execution plan. An example of the execution plan is depicted in Figure 

18.  

 

 

Figure 18: An example of the execution plan 

 

Bobox is a parallelization framework developed at the Department of Software 

Engineering of the Charles University. It can be considered a streaming system, 
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because it provides operators known as boxes, and their mutual connections, known as 

an execution plan or a request. The boxes process data streams. They transform the 

input streams into the output streams. The stream is a flow of envelopes. The envelope 

is a sequence of some tuples. The envelopes travel between the boxes. When an 

envelope arrives into the box, the box is scheduled by a task scheduler. Later, the 

scheduled box is executed by a thread. The whole execution plan is evaluated this way. 

Except for the data envelopes, there is a special management envelope. It is called the 

poisoned pill. The poisoned pill is sent after the last data envelope and it denotes the 

end of the stream.  

One of the advantages of the streaming systems is that they naturally introduce 

inter-operator parallelism. Each of the operators can be executed in parallel in case 

that they do not depend on each other. It is up to the runtime, how the operators are 

executed. Besides the inter-operator parallelism, the Bobox has introduced 

intra-operator parallelism, i.e., the single operator is adjusted to be able to run in 

parallel. 

4.1.1. Task Scheduler 

The task scheduler is responsible for the execution of the boxes. The box is 

scheduled and executed by a thread when the input envelopes are ready for processing. 

The Bobox cannot analyze the implementation of the boxes, hence it knows nothing 

about the fact how the data are accessed inside the box. It presumes the input envelopes 

to be hot in cache, therefore it prefers to run the current box on the same processing 

unit as the previous one.  

From the view of the scheduler, each box is in one of three states:  

 waiting – The box is waiting for the input envelopes. 

 scheduled – The input envelopes are prepared and the box is ready to 

be executed. 

 running – The box is being executed. 

When the state of the box switches to scheduled state, a new task that executes 

the box, is created and passed to the scheduler.  

There are two types of tasks: 

 immediate – The task is associated with the processing of the input 

data. It is expected to be executed as soon as possible, preferably by the 

thread which created it.  
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 deferred – The task is directly associated with no data. It can be 

executed by any thread.  

Both types of tasks should be executed as soon as possible and also as close as 

possible to the thread that spawned the task. It is obvious that each task belongs to 

exactly one execution plan. Therefore, the Bobox runs the tasks from different 

execution plans on a different physical processor.  

Task Scheduling Algorithm 

At the beginning of the Bobox, the host system is analyzed. The configuration 

of the system – e.g. NUMA factor, the hierarchy of the cache – is set according to the 

analysis. The processing units that share at least one level of a cache form a processing 

group. Each group contains one thread pool. Each pool has the same amount of threads 

as is the number of processing units inside the group. The affinity of the threads is set 

to this group. Each processing unit has one queue of immediate tasks. All processing 

units inside the processing group share one queue of deferred tasks.  

The distance of the units within a group is the lowest level of the cache shared between 

the units. The distance of two groups is the distance of their corresponding NUMA 

nodes, i.e., it is equal to the NUMA factor. 

 The immediate task queue is an ordinary queue. The deferred task queue is a 

more complex data structure. It holds the tasks of different execution plans separately. 

Also, the deferred tasks are sorted from the youngest task to the oldest one. 

When a thread is searching for the next task, the scheduler chooses the task 

according the first applicable rule:  

1. The youngest task from the queue of immediate tasks of the processing 

unit of the thread is taken. 

2. Other processing units of the same group are scanned (in increasing 

distance) and the first non-empty immediate queue is found. If such 

queue exists, the oldest task is taken. 

3. The youngest deferred task of the oldest requests from the shared queue 

of deferred tasks of the current group is taken.  

4. Other processing groups are scanned (in an increasing distance) and the 

first non-empty shared queue of deferred tasks is found. If such queue 

exists, the oldest deferred task of the second oldest request is taken. If 

the queue has tasks of only one request, its oldest deferred task is taken 

instead.  
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5. Immediate queues of the processing units from other groups are 

scanned. If non-empty queue is found, the oldest task is taken. The 

immediate queues are scanned in round-robin manner and the thread 

remembers the last non-empty queue found. When this rule is applied 

again, the scan resumes where it previously ended, i.e., when the thread 

steals a task from another processing unit, it tries to steal a task from 

the same unit again. It may have the context of the hot in cache. 

6. If all steps above fail, i.e., there is no available task to execute, the 

thread is suspended.  

4.1.2. Memory Allocator 

Default memory allocators in C/C++ do not work well with the envelopes of 

the Bobox, because they do not scale well in parallel environment. Therefore, the 

Bobox has introduced its own NUMA-aware allocator for envelopes in order to 

achieve a better performance.  

Blocks of memory larger than 512KB are accessed rarely, because the 

preferred size of an envelope is smaller than 256KB. For this reason, these blocks of 

memory are allocated and deallocated using standard system functions for 

allocating/deallocating virtual memory (mmap/munmap, VirtualAlloc/VirtualFree). 

For the blocks of memory between 8KB and 512KB, there are several 

fixed-size block sub-allocators. When a new block is requested, the allocator chooses 

the appropriated sub-allocator – the one with the smallest size of blocks larger or equal 

to the requested size. This sub-allocator returns a free block. If there is no such block, 

it creates a new super block that is used as an additional memory pool. The free blocks 

are kept in a linked list. This linked list is served in LIFO manner. 

Each allocated block has a small header with the information about its 

sub-allocator and its super block. The super blocks are deallocated when all underlying 

memory blocks are deallocated. The allocation and deallocation of super blocks is 

managed by the super block allocator. Each super block allocator belongs to one 

NUMA node that uses it for memory allocations.  

Blocks of memory smaller than 8KB are allocated similar way as the bigger 

blocks. Moreover, there are some additional optimizations to reduce the internal 

fragmentation and the overhead of the management of small blocks.  
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4.1.3. Intra-operator Parallelization 

The intra-operator parallelization is difficult to achieve automatically in 

streaming systems because the operators are designed as black boxes. One of the 

possibilities, which are also used in the Bobox, is the duplication of the operators. This 

approach corresponds to the data parallelism [17]. 

The Bobox distinguishes between two types of operators – stateless operators 

and stateful operators. 

Stateless Operators 

The stateless operators do not maintain their inner state. The results are 

independent of the previous results. The example of stateless operator is a filter 

operator. It filters envelopes based on a condition that is evaluated for each envelope 

independently.  

The stateless operator is easy to parallelize. It splits the input streams into 

multiple sub-streams that are processed in parallel. The results of processing are later 

joined together into a single output. Figure 19 shows the example of the parallelization 

of the stateless operator. The dispatch operator splits the input stream into multiple 

sub-streams and it sends them into the output streams according to a rule, e.g. 

round-robin rule. The consolidate operator is the inverse operator to the dispatch 

operator. It forwards envelopes according to a rule, e.g. round-robin, from the input 

streams into the single output stream. 

 

Figure 19: The parallelization schema of the stateless operator 

Stateful Operators 

The stateful operators need to maintain their inner state. The result of the 

operator can depend on every previously processed tuple. An example of the stateful 
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operator is the merge join operator. The merge join operator performs a join algorithm 

on relations sorted by the join attribute. It has two inputs – the left one and the right 

one. It reads the input streams and finds the sequences of the same values of the join 

attribute in the left and in the right input. Then it creates a cross product of those 

sequences. The merge join and other algorithms from this chapter are described 

preciously in [2]. 

One of the problems of the stateful operators is that not all of them can be easily 

parallelizable. The Bobox supports a parallelization of the group of operators whose 

algorithm match the schema from Algorithm 2. Bobox calls these operators 

parallelizable. One important aspect of the parallelizable operators is that the update 

of the state is separated from the processing of the envelopes.  

 
The concurrency is achieved by the replication of the operator. The schema of 

the parallelization of the parallelizable operator is depicted in Figure 20. The schema 

is similar to the schema of the stateless operator. The only difference is the usage of 

the broadcast operator instead of the dispatch operator. The broadcast operator 

forwards all the envelopes from the input into all its outputs.  

 

Figure 20: The parallelization schema of the parallelizable operator 

 

Each replicated operator keeps its own copy of the state. Every time it receives 

an envelope, it updates the state. Also, it performs its part of the work when an 

appropriate envelope arrives. The algorithm performed by each replica is shown in 

state = initial_state(); 

while(not_end_of_stream()) { 

 envelope = get_next_envelope(); 

 process_evelope(envelope, state); 

 state = update_state(envelope, state); 

} 

Algorithm 2: The schema of parallelizable operator 
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Algorithm 3. The RID stands for Replica ID; i.e., a unique identifier of each replica. 

The number of all replicas is N.  

 

There are also other improvements to the Algorithm 3. The first improvement 

is used, if it is faster to update the state at once for N-1 envelopes than to perform N-1 

updates separately. The adjusted algorithm is described in Algorithm 4. For example, 

this schema is used in parallel multi-way merge operator in Bobox. 

The idea behind the second improvement is following: An envelope is 

processed only by one replica, while the remaining N-1 replicas use the envelope to 

update their inner states. That implies that the remaining replicas are performing 

exactly the same operations. The redundancy is eliminated by dedicating a preprocess 

operator. It calculates the values of a state for each envelope and it includes this 

information inside the envelope. The algorithm of a preprocess operator is described 

in Algorithm 4. The corresponding algorithm for replicas is in Algorithm 5. This 

schema is used for parallelization of the merge join operator.  

 

state = initial_state(); 

phase = 0; 

while(not_end_of_stream()) { 

 envelope = get_next_envelope(); 

 if (phase % N == RID) 

  process_envelope(envelope, state); 

 state = update_state(envelope, state); 

 phase = phase + 1; 

} 

 

Algorithm 3: The algorithm performed by each replica. 

state = initial_state(); 

while(not_end_of_stream()) { 

 envelope = get_next_envelope(); 

 store_state_to_envelope(envelope, state); 

 send_envelope(envelope); 

state = update_state(envelope, state); 

} 

 

Algorithm 4: The algorithm of the preprocess operator 
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There are multiple models of parallelization of boxes in the Bobox. The model 

says how much the operator can scale. Naturally, there is a serial model. It does no 

intra-operator parallelization. Another model is a parallel model. It introduces two 

options for the inter-operator parallelization. Both options adjust the number of 

duplicated operator inside the inter-operator parallelization. The first option (denoted 

as * in Bobox) duplicates the operator to the number of threads per a NUMA node. 

The second option (denoted as ** in Bobox) duplicates the operator to the number of 

processing units in the system. For example, the SMP16 solution contains two NUMA 

nodes and 8 threads per a node. It creates 8 copies of the box with the first option (*) 

and 16 copies of box with second option (**).  

4.1.4. SPARQL Engine 

As mentioned previously, the Bobox is only a framework. One of the 

applications that were created with the aid of the Bobox is in-memory SPARQL engine 

for querying RDF data. The engine is used for the evaluation of performance of the 

Bobox. More information about the SPARQL engine can be found in [18]. 

The Resource Description Framework (RDF) [19] is a data model for 

description of information. The data are stored in the form of triples. The triple consists 

of a subject, a predicate and an object. The subject is the resource and the predicate 

expresses a relationship between the subject and the object. For example, the notion 

“This thesis discusses Xeon Phi” can be represented in RDF as the triple: (subject) 

“this thesis” – (predicate) “discusses” – (object) “Xeon Phi”.  

SPARQL is a popular SQL-like query language for RDF data. A SPARQL 

query can consist of multiple triple patterns, logical symbols and variables. The 

SPARQL engine searches for the sets of triples that match the triple patterns and binds 

the variables to appropriate values. An example of a single query which returns all the 

envelope_index = RID; 

while(not_end_of_stream()){ 

 envelope = get_nth_envelope(envelope_index); 

state = envelope.get_state(); 

 process_envelope(envelope, state); 

envelope_index = envelope_index + N; 

} 

Algorithm 5: The algorithm performed by each replica when prepended by the preprocess 

operator 
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topics for all thesis of the given author is written in Algorithm 5. The symbol “?” 

denotes a variable.  

 

The SPARQL language provides a set of multiple operations known from SQL 

such as JOIN, SORT, SCAN, UNION, etc. All these operations must be implemented 

by the engine. While the Bobox is being used for implementation of the SPARQL 

engine, the operations are implemented inside the boxes (operators) and the triples are 

stored as the tuples inside envelopes. After a query is received by the engine, it gets 

compiled and optimized. After a validation of the query, the engine prepares the query 

execution plan. Then, the execution plan is executed over the loaded RDF data by the 

Bobox. 

4.2.  Bobox Improvements 

In this part of the chapter, we test the proposed improvements in the Bobox 

framework. We prove that the main performance problem is not caused by the 

scheduler. We locate the main problems and propose the solution that solves them. 

Unfortunately, the implementation of the solution to the problems is beyond the scope 

of this thesis.  

4.2.1. Testing Improvements 

We perform multiple experiments with the Bobox. We use the SPARQL engine 

and the SP2Bench benchmark [20] with its testing 5M and 1M datasets. Additional to 

the datasets, the benchmark contains several SPARQL queries. The queries are 

transformed to appropriate execution plans by the SPARQL engine. This way, we can 

easily test the performance of the Bobox. All used queries with their execution plans 

can be seen in Graph 14. We use the same queries as in [2] in order to know reference 

results.  

We use two types of Xeon Phi for the experiments. We test the Xeon Phi with 

architecture Knights Corner (denoted as KNC) and the newer version of Xeon Phi with 

architecture Knights Landing (denoted as KNL). By using those two cards with 

SELECT ?topic 

WHERE { 

 ?thesis author ?author . 

 ?thesis discuss ?topic . 

} 

Algorithm 5: An example of the SPARQL query 
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different architecture, we can distinguish the problems of the architecture from the 

general problems of the Bobox. Also, the KNL allows the run standard 64bits 

applications which make the debugging and profiling of the programs easier compared 

to the same work on the KNC. Therefore, if the architecture is relevant for the results, 

we state it explicitly. If the architecture is irrelevant, we use the results of the KNL.  

As a reference solution, we use a blade server containing 2x4-core CPU (with 

Hyper-Threading) and 96GB RAM in SMP configuration. We denote it as SMP16. 

The results of the reference solution are shown in Graph 14. The results correspond 

with the results from [2] as is expected.  

 The configuration of the Bobox is set based on the Bobox default analyzation. 

All tests use the default parallel model of operators with *; i.e., the number of 

duplicated operators corresponds to the number of threads per a NUMA node. The 

default setting for SMP16 is two NUMA nodes and each with 8 threads. The default 

setting for the KNL is 256 threads with 1 NUMA node. For the KNC, the default 

setting is 240 threads with 1 NUMA node. 

4.2.2. The Preparation of the Execution Plan 

We started our investigation with the repetition of the experiments for which 

we already had results measured on SMP16. As we can see in Graph 14, the results on 

KNL are much worse than on SMP16. The time is measured by the Bobox. The Bobox 

is able to measure the time of the evaluation of the query. This time does not include 

the time of a SPARQL runtime initialization and neither the compilation of the query.  

Closer look shows that the evaluation runs in two phases. The first phase 

prepares the execution plan. It creates all the boxes and the connections between them. 

It has to link the consecutive boxes together and create input and output buffers. The 

second phase is a real evaluation of the plan. Therefore, we create our own 

measurement to make the results of the experiments more precise. We measure each 

phase independently.  

As we can see in Graph 15, the biggest part of the time of the evaluation takes 

the preparation of the execution plan. Other experiments depicted in Graph 16 and in 

Graph 17 show that the time of the preparation grows linearly with the number of 

requests and also with the number of threads.  

The linear growth with the number of requests is predictable. The Bobox needs 

to create a new execution plan for each query. The linear growth with the number of 

threads is not so obvious at first. However, the reason for that is the intra-operator 
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parallelization. Following our earlier example from 4.1.3, we know that the 

parallelization duplicates the operators. In case of the parallel version (*) of the 

operators, it means that there is one operator per a thread. The results with the serial 

version of the operators in Graph 18 prove our assumption. It implies that there is an 

initialization for each duplicated operator. For a large number of duplicated operators 

(the number correspond to the number of threads per a NUMA node), the time of 

initialization of the operators starts to be significant. 

At this moment, the initialization of the execution plan is single-threaded. That 

implies one of the possible improvements – make the Bobox multi-threaded. More 

sophisticated improvements would probably require the change of whole architecture 

of the Bobox. However, both improvements are beyond the scope of this thesis. 

 

Graph 14: The evaluation time of single queries on the KNL and on the SMP16 (1 request) 
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Graph 15: The evaluation time of single queries with parallel version of operators on the KNL 

(4 requests) 

 

 
Graph 16: The preparation time for different number of requests 
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Graph 17: The preparation time for different number of threads (32 requests) 

 

 
Graph 18: The evaluation time of single queries with serial version of operators on the KNL 

(4 requests) 
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4.2.3. Testing NUMA on the KNC 

We showed with the benchmark in 3.3 that the performance of application 

could be tuned with the right settings of NUMA nodes. Therefore, we test the KNC 

with different settings of NUMA nodes. The results are shown in Graph 19.  

As we can see, the results are highly influenced by the bad scaling of the 

broadcast operator. Therefore, it is hard to say, whether the NUMA setting makes 

sense.  On the other hand, we see that the NUMA effect is not big enough to change 

the results significantly. It corresponds with the fact that the NUMA factor is really 

small. Thus, we should take this improvement into consideration only if all major 

problems are solved.  

 

Graph 19: The evaluation time of query for different NUMA settings on KNC 

4.2.4. Broadcast Operator 

There are two types of boxes in the Bobox. The first type of the boxes was 

shown in 4.1.1. Those boxes can be scheduled and they process the data in a complex 

way. They are called basic boxes. The other type of boxes – simple boxes – cannot be 

scheduled. Their main purpose is to create a model of an execution plan. They hold 

the information about predecessor and successor boxes of a box. Therefore, if the 

predecessor boxes push an envelope into the simple box, the simple box simply 
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forwards the envelope into the successor boxes. Simple boxes may contain a 

processing of the envelopes, but it should not be time-consuming.  

However, this approach is suitable for platforms with small number of threads. 

It creates a bottleneck together with the automatic intra-operator parallelization (4.1.3).  

The functions that insert envelopes into the input queue of the merge join box 

are one of the hotspots shown in the profiler. As was said previously, the parallel merge 

join box contains preprocessor boxes which are followed by broadcast boxes. Each 

broadcast box sends envelopes into duplicated merge join boxes. The number of 

duplicated boxes depends on the chosen model, i.e. serial, parallel (*) or parallel (**). 

Eventually, the merge join boxes process the data and send the data into a consolidate 

box.  

There is a problem with intra-operator parallelization using a broadcast box. 

The problem appears with a big number of duplicated operators, i.e. on the platforms 

with lots of threads. As the broadcast box is not schedulable, it must create multiple 

copies of the envelope and push them into the next duplicated operators. This process 

starts to be really time-consuming for a big number of duplicated boxes. One of the 

problems is that the pushing an envelope into the box is not so fast on its own. In order 

to push an envelope into the box, you must acquire a lock for the queue at first, and 

then you are able to store the envelope. The box is loading the data on the other side 

of the queue; therefore the queue must be thread-safe.  

What happens on the Xeon Phi is following: The preprocessor box is 

processing the stream of the envelopes. If the envelope is processed, it sends the 

envelope to the next box. If it were the schedulable boxes, it would just insert the 

envelope into the queue. Nevertheless, the broadcast box is not schedulable, so it 

creates copies of the envelope and sends it to its all outputs. After all the outputs 

receive the envelope, i.e. the envelope is successfully stored in all buffers, the function, 

which sent the envelopes, can successfully return. This whole time is the preprocessor 

box blocked. Only after the function returns, it can continue its preprocessing.  

To prove our theory, we run the query E2 that tests a scalability of the merge 

join box. This query is taken from [18] and it is shown in Algorithm 6. It contains only 

one merge join box after a compilation. We measure the time of broadcasting an 

envelope into all its outputs. The evaluation of the whole query takes 0.310 seconds. 

The broadcasting time takes 0.261 seconds. It means that 85% of time is spent on 

broadcasting envelopes and not on processing the data.  
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In next test, we replaced the parallel implementation of the merge join box with 

the serial implementation. The results are depicted in Graph 20. It shows that the 

results of the serial version of merge box are always better than the results of the 

parallel version or they equal. The difference depends on the amount of usage of the 

merge join.  

Improvements 

We see that the problem of the broadcast box has a big impact. It is caused by 

the fact that the broadcast box is a foundation stone for the intra-operator parallelism. 

One small improvement is to create a broadcast box that can be schedulable. We call 

it schedulable broadcast box. The only difference between the schedulable and the 

original (unschedulable) broadcast box is obvious – the schedulable box can be 

scheduled. Except for that, the implementation of the boxes is the same. This approach 

should solve the problem with a blocking of the predecessor boxes. The results are 

shown in Graph 21 and Graph 22. The comparison of the results between the 

schedulable and unschedulable broadcast on KNL and SMP16 are shown in Graph 23, 

Graph 24, Graph 25 and Graph 26. We clearly see that the speed of all queries was 

improved on all testing architectures.  

Another idea works on the assumption that the broadcast box scales well for 

small number of threads ( [2]). Thus, we can assign the pushing of the envelopes to 

multiple threads. However, it breaks the basic premise of the Bobox that the boxes are 

single-threaded. To overcome this restriction, we need to introduce a new 

inter-operator parallelization or change the architecture of the Bobox. Unfortunately, 

that is beyond the scope of this thesis.  

SELECT ?article1 ?article2 

WHERE { 

 ?article1 dcterms:issued ?year. 

 ?article2 dcterms:issued ?year 

FILTER (?article1 = ?article2) 

} 

Algorithm 6: The query for testing a scalability of merge join box. 
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Graph 20: The test of queries with serial merge join box 

 

 
Graph 21: The evaluation time of single queries with schedulable broadcast operators on the 

KNL (1 request) 
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Graph 22: The evaluation time of single queries with schedulable broadcast operators on the 

KNL (4 requests) 

 

 
Graph 23: Comparison of single queries between schedulable and unschedulable broadcast 

operators on KNL (1 request) 
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Graph 24: Comparison of single queries between schedulable and unschedulable broadcast 

operators on KNL (4 requests) 

 

 
Graph 25: Comparison of single queries between schedulable and unschedulable broadcast 

operators on SMP16 (1 request) 
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Graph 26: Comparison of single queries between schedulable and unschedulable broadcast 

operators on SMP16 (4 requests) 
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5. Conclusion 

At first, we made a summary of all available information about the internal 

architecture of the Xeon Phi. We focused on core and memory, because these pieces 

of information are relevant to every scheduler. Based on the found results, we proposed 

additional tests to complete the missing information.  

We showed a detail about the positions of the cores on the connection ring. We 

also confirmed a proposed mapping between physical addresses and memory 

controllers. These things are important to show a NUMA effect. Given the fact that 

the cores are placed around the connection ring, there is a difference between accesses 

to different memory addresses. With proposed four NUMA nodes, there is a small 

NUMA factor around 1.1. By taking this fact into the consideration, we can gain 

additional performance boost for HPC application. However, this effect is insignificant 

to majority of applications. 

We found one important memory effect that should be taken into consideration. 

There is a big difference in accessing the shared memory between different cores. The 

information of shared memory is kept in DTD (TDs). While accessing a cache-line, 

the information needs to be read from appropriate TD. Those TDs are also distributed 

around the connection ring. It implies that there is a difference in accessing into a 

cache-line from different cores. The difference in latency is around 1:3 ratio. Even 

though we were not able to find a mapping between TDs and cache-lines, we showed 

at least that consecutive cache-lines in 4KB pages are assigned to different TDs. A big 

performance boost can be achieved by incorporating this information into applications. 

This problem appears only if a single cache-line is shared between two cores. If 

multiple cache-lines or multiple cores are used, the effect disappears thanks to a 

uniform distribution of TDs around the connection ring.  

The proposed NUMA configuration of the Xeon Phi (KNC) was tested using 

the Bobox SPARQL engine. Unfortunately, there are other problems that are not 

connected to the problem with a scheduling. To prove this speculation, we found the 

real problems. A creation of the execution plan from a query is the biggest bottleneck, 

because it is single-threaded. However, this problem is more closely connected with 

the SPARQL engine. We also found that the intra-operator parallelization introduced 

by [18] does not scale well, because of the bad design of the broadcast operator and 

other operators. Finally, we introduced some possible improvements and we tested 
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their benefits. The results show that the performance gets better on all tested platforms 

– the Xeon Phi and SMP16.  

5.1. Future Work 

A future work should start with solving problems with the operators in the 

Bobox. There is a possibility to introduce a new intra-operator parallelization or to 

change the architecture of the Bobox. We should not forget about the slow 

initialization of Bobox, because the users are mostly interested in the performance of 

the whole application.  

There are still missing some details about the architecture of the Xeon Phi 

(KNC), e.g. the mapping between cache-lines and DTD. Another interesting thing is 

to create a NUCA-aware allocator that takes the differences between accessing 

different cache-lines into account. Also, a new version of the Xeon Phi (KNL) was 

released not so long ago. There might appear some new issues that are specific for this 

hardware.   
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Attachment 

 bobox_results – Results of testing on Bobox 

 mcm – Results of latencies between memory controllers and cores 

 tdl – Result of latencies between cache lines and cores 

 bobox_boxes.hpp – A header file for the schedulable broadcast box 

 boxes.cpp – A source file for the schedulable broadcast box 

 how_to_build_kmod.txt – Instructions how to build a kernel 

module for Xeon Phi 

 Makefile – Makefile for kernel modules 

 mcm.c – Source code of mcm measurement 

 tdl.c – Source code of tdl measurement  
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List of Abbreviations 
 

 SMP – Symmetric Multiprocessing 

 NUMA – Non-Uniform memory access 

 VPU – Vector Processor Unit 

 HT – Hyper-Threading technology 

 CRI – Core Ring Interface 

 ICache – Instruction cache 

 DCache – Data cache 

 TD – Tag Directory 

 DTD – Distributed Tag Directory 

 RS – Ring Stop 

 APIC – Asynchronous Interrupt Controller 

 RAM – Random Access Memory 

 DMA – Direct Memory Access 

 TDL – Translation Lookaside Buffer 

 PF – Picker Function 

 PPF – Pre Picker Function 

 ECC – Error Correcting Code 

 FSB – Front Side Bus 

 LRU – Least Recently Used 

 ALU – Arithmetic Logic Unit 

 UALU – Arithmetic Logic Unit in VPU 

 MESI – Modified Exclusive Shared Invalid protocol 

 MOESI – Modifier Owned Exclusive Shared Invalid protocol 

 PCI – Peripheral Component Interconnect 

 I/O – Input/Output 

 API – Application Programming Interface 

 HPC – High-Performance Computing 

 TCP – Transmission Control Protocol 

 IP – Internet Protocol 

 UDP – User Datagram Protocol 

 MPI – Message Passing Interface 

 OpenCL – Open Computing Language 
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 OpenMP – Open Multi-Processing 

 SCIF – Symmetric Communication Interface 

 MPSS – Many-core Platform Software Stack 

 FS – File System 

 NFS – Network File System 

 GCC – The GNU Compiler Collection 

 CPU -  Central Processing Unit 

 NUCA – Non-uniform Cache Architecture 

 ID –Identification 

 SSH – Secure Shell 

 SCP – Secure Copy 

 GBOX – Memory Controller of Xeon Phi 

 SBOX - PCI Express Client Logic Used in Xeon Phi 

 DBOX – Display Engine Used in Xeon Phi 

 GOLS3 – A Protocol that mimics O state for the MESI protocol 

 DSL – Domain Specific Language 

 GPL – General Purpose Language 

 RDF – The Resource Description Framework 

 SPARQL – SPARQL Protocol and RDF Query Language 

 KNC – Xeon Phi Knights Corner 

 KNL – Xeon Phi Knights Landing 

 


