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Introduction
Virtual screening has been widely adopted by scientists in the field of drug dis-
covery. It can safe both time and financial resources especially in early stage of
research. There is a wide range of different virtual screening techniques and we
also present a brief overview in this thesis. Popular are similarity methods often
joined with machine learning techniques.

Aim of this thesis is to examine utilization of latent semantic indexing (LSI) for
Virtual screening (VS). LSI uses singular value decomposition (SVD) to identify
hidden concepts in collections of documents. Hidden concepts can capture latent
information in the text, which is used by searching algorithms. Similarly, mo-
lecule can be described by a set of features or fragments that can be viewed as a
document containing terms. We test the idea, if usage of similarity methods on
latent variables obtained by SVD can improve performance of Structure-based
virtual screening.

We are going to study influence of different kind of sets of features or fragments
on resulting performance. Additionally, we are going to compare results of LSI
with each other and with standard similarity techniques directly using fingerprints
(AP, TT, ECFP, MACCS).

First chapter describes representation of molecular structure in computer sci-
ence and methods for analysis and estimation of molecular properties.

Second chapter is focused on virtual screening, its usage in drug-discovery
process. We discuss principle and usage of protein-ligand docking, pharmacophore
mapping, similarity searching and machine learning.

Third chapter summarize general information about developed application for
VS based on LSI, we present used data set for benchmarking.

Last chapter includes description of implementation details for each developed
VS method and comparison of results.
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1. Molecules ”in silico”
At first, we are going to discuss how to represent molecules in computer science
and how to describe their structural, chemical and physical properties. Sub-
sequently, we are going to use these information in design of VS technique.

1.1 Molecule representation
Chemical molecules are usually represented by molecular graphs. A molecular
graph is an abstract structure, which consists of nodes (chemical elements) and
edges (chemical bonds), it can only describe the topological information of mo-
lecule. A molecule can be split into molecular fragments, which are represented
by subgraphs, subsets of the nodes and edges of the graph.

A single graph has many different drawings, that might look very different
so it is necessary to recognise same molecules, this problem is well known in
mathematics and it is called graph isomorphism.

Two graphs, G and H are isomorphic if there is a bijective mapping, f between
set of nodes in G and H, such that two nodes u and v of G are adjacent in G if
and only if f(u) and f(v) are adjacent in H.

There are well-developed algorithms to determine if two graphs are isomor-
phic, further information can be found in Read and Corneil [1].

1.1.1 Format of molecular graph
MDL information system

Connection table is a common type of representation, the representation of as-
pirin in MDL format can be seen in Fig. 1.1. The simplest type of connection
table consists of two sections: first, a list of the atomic numbers of the atoms in
the molecule and second a list of the bonds, specified as pairs of bonded atoms [2].
However there can be included more detailed information, for instance the hy-
bridisation state, bond order or even spatial coordinates of the atoms to produce
a standard chemical drawing.

Linear notation

On the other hand the most compact format use the linear notation. It uses alpha-
numeric characters to encode the molecular structure. The most wide spread lin-
ear notation is the Simplified Molecular Input Line Entry Specification (SMILES),
see Fig. 1.3. Atoms are represented by their atomic symbols. Upper case symbols
are used for aliphatic atoms and lower case for aromatic atoms. Hydrogen atoms
are not normally explicitly represented. Double bonds are written by ”=” char-
acter, triple bonds by ”#”. Rings are dealt with by “breaking” one of the bonds
in each ring; the presence of the ring is then indicated by appending an integer
to the two atoms of the broken bond. Information about chirality, geometrical
isomerism and aromaticity can be also encoded [2].

Number of different SMILES strings exist for a single molecule. Therefore,
there were stated rules for a unique ordering of the atoms, which is called the
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Figure 1.1: The connection table for aspirin in the MDL format (hydrogen-
suppressed form). The numbering of the atoms is as shown as in the chemical
diagram [2].

canonical representation. Widely used algorithm for determining a canonical
order of the atoms is the Morgan algorithm [3].

Morgan algorithm iteratively calculates the “connectivity values” to enable
differentiation of the atoms. At first each atom is assigned a number of connected
atoms. These numbers are recalculated in every iteration, until each atom is
assigned a unique number. New “connectivity value” for each atom is equal to
the sum of values assigned to neighbours in previous step. Several iterations
are demonstrated on molecule of aspirin in Fig. 1.2. Atoms are listed in the
descending order according to the “connectivity values”. If there are multiple
atoms that have the same value, additional properties are considered, such as
bond order and atomic number respectively [2].

The resulting canonical ordering is then used to generate the unique SMILES
string for the molecule [2], for example by CANGEN algorithm [4].

1.2 Molecular descriptors
Molecular descriptors have been designed in order to analyse and predict the
properties of chemical structures. They provide basic information that can be
used to predict biological activity. The numerical values of descriptors may rep-
resent the physicochemical properties of a molecule or only the statical about the
number of atoms [2]. Widely used examples of the molecular descriptors from
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Figure 1.2: Illustration of the iterative construction of the atomic connectivity
values during Morgan algorithm, n is the number of unique integer identifiers [2].

Figure 1.3: Illustration of some examples of the SMILES strings [2].

the 2-D structure can be found in the following text.

1.2.1 Simple structural formula based counts
The simplest molecular descriptors are counts of features such as hydrogen bond
donors, hydrogen bond acceptors, ring systems (including aromatic rings), rotat-
able bonds and molecular weight. However these descriptors offer only a very
limited information so they are often combined with the others [2].

1.2.2 Physicochemical properties
Very important property is the hydrophobicity. The molecule’s hydrophobicity
can affect how tightly it binds to a protein and its ability to pass through a
cell membrane. It is commonly modelled by the usage of the logarithm of the
partition coefficient between n-octanol and water, SlogP descriptor [5].
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1.2.3 Molar Refractivity
The refractive index, descriptor SMR, term accounts for the polarisability of the

molecule and does not vary much from one molecule to the another, the molar
refractivity additionally depends on the molecular weight and density [2].

1.2.4 Topological indices
The topological indices are single-valued descriptors calculated from the 2-D
graph representation of the molecule.

They characterise structures according to their size, complexity of branching
and shape in general. Most popular are the chi molecular connectivity indices
developed by Kier and Hall [6]. They used values of sigma, pi and lone pair
electrons. An arbitrary atom i in the molecule is described by the simple delta
value δi and the valence delta value δν

i as

δi =σi − hi, (1.1)
δν

i =Zν
i − hi, (1.2)

where σi is the number of sigma electrons, hi is the number of hydrogen atoms
bonded to the atom i, Zν

i is the total number of valence electrons. Zero chi index
for a molecule is then computed as:

0χ =
∑

atoms

1√
δi

0χν =
∑

atoms

1√
δν

i

. (1.3)

There are also higher order chi indices which are computed over bonds or their
sequences.

1.2.5 Kappa shape indices
The Kappa shape indices were designed by Hall and Kier [7] to characterize the
molecular shape by comparing the molecule with the extreme shapes depending
on various order of the indices. For the first order, kappa index is defined as:

1κ = 21P 1
maxPmin

(1P )2 , (1.4)

where 1Pmax corresponds to the number of edges in the completely connected
graph, 1Pmin is the number of bonds in the linear molecule and 1P is the number
of bonds in the specific molecule. The second-order kappa index is determined by
the count of two-bond paths etc. There are also modification that also consider
the orbital hybridisation of the atoms.

1.2.6 Electrotopological state indices
The Electrotopological state (E-state) indices are determined for each atom so the
output value is rather a vector or a bitstring. However individual atomic E-states
can be combined into the molecular descriptor by calculating the mean-square
value over all atoms.
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Intrinsic state of the atom i encodes its electronic and topological character-
istics

Ii = (δν
i + 1)
δi

, (1.5)

and E-state, Si of the atom i is given by the sum of the intrinsic state and all
perturbations between other atoms

Si = Ii + ∆Ii = Ii +
atoms∑

j

Ii − Ij

r2
ij

, (1.6)

where rij is the path length between atoms i and j [8].

1.2.7 Fingerprints
The structural fingerprints are originally used for searching tasks. It enables to
extract information about similar molecules from the database efficiently. Finger-
print is a sequence of zeros and ones. Each bit indicates if particular structural
feature is present or not. As there are many structural features it can be repres-
ented as a fragment dictionary or the information is hashed to hash key of a given
length. In the case of hash key collisions must be handled, so multiple fragments
corresponds to a single bit.

However molecular properties and biological activity correlate to the struc-
tural features, therefore there are attempts to use fingerprints as molecular de-
scriptors, despite they were not designed for it. Instead of simple boolean value
an integer frequency of the structural pattern can be used.

Atom pairs

The atom pair descriptors encode all pairs of atoms in a molecule together with
the length of the shortest bond-by-bond path between them, and kind of bond [9].
For example the substructure CH2 CH2

, is coded as ”CX2-(2)-CX2”, where
Xnindicates presence of n non-hydrogen neighbouring atoms.

The atom pairs were later modified by Kearsley et al. [10] in the sense that
property of atoms are often more important than the specific element type. Atoms
are identified as belonging to the one of seven binding property classes: cations,
anions, neutral hydrogen bond donors and acceptors, atoms which are both donor
and acceptor, hydrophobic atoms and all others.

Topological torsions

The topological torsions encode sequences of connected atoms together with their
types, number of non-hydrogen connections and number of pi-electrons [11]. Typ-
ically, sequences have length of four atoms. However, the longer sequences can
be also used.

Extended Connectivity Fingerprints

The extended Connectivity Fingerprints were explicitly designed for structure-
activity modelling. ECFPs are circular fingerprints based on the Morgan al-
gorithm [3] and they can represent wide range of structural features including
stereochemical information.
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Extended Connectivity Fingerprints are generated as follows [12]:

1. Initialization: Each atom is an assigned integer identifier.

2. Update, iterative step: Each atom identifier is updated to reflect the
identifiers of each atom’s neighbours, any duplicates are marked.

3. Removal step: Duplicates are reduced to a single representative in the
final feature list (possible a number of duplicates is noted).

At each update step, there is created an array where are put all identifiers
of bonds and atoms which should be added in this iteration and than they are
hashed into a single integer, which is used for next iterative step.

Number of iterations is usually specified by the number of bonds as a diameter
of the circle, for instance ECFP-2, assume circle with diameter of 2 bonds, so the
update process ends at iteration number 1 (Fig. 1.4) for each atom.

(a) Overview of iterations (b) Several iteration steps

Figure 1.4: Illustration of the iterative updating of the identifier for atom 1 in
benzoic acid amide [12].

Extended Connectivity Fingerprints (ECFPs) and Functional Connectivity
Fingerprints (FCFPs) differs in the assigning method of the initial identifiers.
ECFPs are designed to capture precise atom environment substructural features,
while FCFPs should capture more abstract role-based substructural features [12].
Initial identifiers are integers that are created by hash function from topolo-
gical (number of immediate neighbours) and atomic properties (atomic mass,
charge...). Detailed description can be found in Rogers and Hahn [12].

BCUT descriptors

BCUT descriptors can encode atomic properties relevant to intermolecular inter-
actions. They are calculated from matrix representation of the molecule‘s connec-
tion table. BCUT matrices can be extended to encode also atomic charge, atomic
polarisability and atomic hydrogen bonding ability [13]. Each matrix, encoding
certain property, is further modified and the highest and lowest eigenvalues of
the matrix are evaluated and used as descriptors.
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2. Drug-discovery in modern
chemistry
Modern organic chemistry and biochemistry is capable of synthesis of almost any
compound in the chemical universe. However, chemical universe itself is huge,
only the number of small organic molecules is exceeding 1060 [14]. Therefore
modern drug discovery and drug design needs tools for efficient searching, filtering
and evaluating of compounds with desired biological activity.

2.1 Virtual screening
Exact biological activity must be always confirmed experimentally, but which
compounds should be likely purchased, synthesised and finally tested, that is
where virtual screening comes in handy. Virtual screening is an in silico method
that scores, ranks and filters a set of structures using one or more computational
procedures [2] according to the defined criteria.

There is a wide range of criteria and methods by which the chemical com-
pounds may be judged. Virtual screening can starts by general filters and sub-
structure queries for possible candidates. Additionally, molecules that contain
certain undesirable, or even toxic functionality can be eliminated.

After the molecule set is chosen, the biological activity is estimated by more
involved methods. Virtual screening methods can be divided into four main
classes based on amount of structural and bioactivity data that is available [15].

If 3D structure of the target’s binding spot is known a protein–ligand dock-
ing can be employed [16]. If one or more active molecules are known, similarity
searching can be used [17]. In case of multiple known active molecules, pharmaco-
phore mapping can be carried out to determine common patterns of features that
might be responsible for the biological activity [18]. If both active and inactive
molecules are available, they can be used to train a machine learning technique
such as statistical criteria, decision trees and neural networks [19].

Methods based on examples of known active molecules are usually referred to
as ligand-based virtual screening methods. Whereas, methods based on known
structure of target protein are referred to as structure-based virtual screening
methods.

2.1.1 Protein–ligand docking
The protein–ligand docking is a term used for computational schemes that at-
tempt to find the best matching between two molecules: a receptor and a ligand
according to some score function [16].

It is a computationally intensive and complex procedure because it involves
many degrees of freedom. The translation and rotation of one molecule relatively
to the another involves six degrees of freedom. There are in addition the conform-
ational degrees of freedom of both the ligand and the protein. The solvent may
also play a significant role in the determining of the protein–ligand geometry and
the free energy of binding. But it is often ignored [2]. Some successful usage of
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docking are summarized by Lyne [20]. Greatest shortcomings of the docking are
connected to the used score functions. However, a promising improvement offers
the machine learning scoring functions as was showed by Wójcikowski et al. [21].

Spatially 3-dimensional structures of more than 44,000 x-ray and nuclear mag-
netic resonance (NMR) structures of proteins and protein–ligand complexes are
available in the Protein Data Bank (PDB).

2.1.2 Pharmacophore mapping
The pharmacophore mapping is the process of identification of common 3D phar-
macophores in the set of known active molecules and it is usually followed by
a 3D database search. Pharmacophores can be defined as the set of features,
such as hydrogen bond donors and acceptors, positively and negatively charged
groups, hydrophobic regions and aromatic ring, together with their relative spa-
tial orientation. Some functional groups can have similar biological, chemical and
physical properties, these are called bioisosteres.

There are various methods for pharmacophore mapping, for instance con-
strained systematic search, maximum likelihood method, maximum clique de-
tection or even genetic algorithms, further reading can be found in Leach and
Gillet [2].

2.1.3 Similarity searching
The similarity searching does not require the exact 3D structure of target binding
spot and it is also not necessary to precisely identify pharmacophores responsible
for the activity.

The major idea of this method is so called similar property principle, that
similar molecules could have similar biological activity [22]. The query compound
is used to score and rank every molecule in the testing set according to the
similarity.

The 2D similarity searching methods usually describe molecules by fragment-
based descriptors [17] such as atom pairs or extended connectivity fingerprints
(see Section 1.2.7).

The 3D similarity searching methods additionally include atom positions and
conformational properties of the molecules. The similarity can be than computed
by alignment methods [23] or by superimposed electron density maps [24]. How-
ever additional dimension increases significantly the computational complexity.

Description of similarity in 2D

Most widely used method for evaluating similarity between binary descriptors is
Tanimoto similarity, defined as

SAB = c

a + b − c
, (2.1)

where SAB is Tanimoto similarity coefficient between molecule A and B, a are
bits set to one in molecule A, b bits set to one in molecule B and c are bits
common to both A and B. Tanimoto coefficient ranges from zero to one. A value
of one indicates that the molecules have identical fingerprint representations [2].
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However an universal similarity coefficient can be evaluated as Euclidean dis-
tance, DAB

DAB =
(

N∑
i=1

(xiA − xiB)2
)0.5

, (2.2)

where xiA is a value of property i in molecule A and xiB in molecule B.
Or as Cosine similarity

SAB =
∑N

i=1 xiAxiB(∑N
i=1(xiA)2∑N

i=1(xiB)2
)0.5 . (2.3)

2.1.4 Machine learning
We will discuss usage of machine learning in ligand-based virtual screening which
is currently a promising and fast developing area. Every method have to be
trained with input data of active or also inactive molecules before actual screening.

Neural network

The artificial neural network is derived from biological neural networks, number
of computational elements or nodes operate in parallel and while connected via
weights that are modified during learning [25]. There are two widely used neural
network architectures: feed-forward network and the Kohonen network.

The feed-forward neural network [26] is built of layers of nodes with assigned
states between zero and one. There is one input layer, several layers with hidden
nodes and one output layer, each layer is connected to adjacent layers by weighted
edges. Input nodes can be assigned for example values of molecular descriptors.
Parameters as states and weights are adjusted during training, where to each
input molecule is known desired output. It is a supervised learning method,
because it uses the values of the dependent variables to derive the model [2].
Feed-forward neural network was for instance used to predict the physicochemical
properties of molecules [27].

The Kohonen network, or self-organising map [28] is an unsupervised learning
method. Nodes are organised to rectangular grid and each node has an associated
vector that corresponds to the input data (molecular descriptors). All vectors
are assigned small random values which are than updated during learning. Thus,
training creates areas of neighbouring nodes that have similar input data [2].

Decision tree

The decision trees are straight-forward and easily interpretable as a set of rules.
It is used to divide large dataset into smaller and more homogeneous sets. At
each decision step, the method identifies the feature, according to, the set would
be divide into two most diverse subsets. Selection is done statistically for example
via t-test.

The decision trees are often combined with the other machine learning al-
gorithms. There are two widely used techniques, bagging and boosting. The
bagging [29] is a type of the model averaging approach. The bagging model is
formed by repeatedly selecting bootstrap samples of the dataset and training the
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trees on these data [25]. The boosting [30] combines large number of hypotheses,
each of which is generated by training the given learning algorithm on a different
set of examples. Trees can be built in sequential fashion, that previous trees are
combined with new sample concentrating on less well predicted compounds. Or
trees can be built in parallel and each tree can vote on the prediction, this method
is referred to as Random Forest [31].

Näıve Bayesian

The näıve Bayesian (NB) method is based on Bayes rule for conditional prob-
ability, for example class (C) posterior probabilities given a feature vector X is
equal to the class-conditional feature probability distribution times the prior class
probability divided by the prior feature probability [25]

P (C = i|X = x) = P (X = x|C = i)P (C = i)
P (X = x) . (2.4)

NB weights each molecular features, descriptors by assigning greater signific-
ance to features that appear to distinguish good samples from baseline samples [25].

NB is efficient, robust and easy to use. On the other hand it also suffers from
its intrinsic simplicity, because it is unable to analyse combined effect of multiple
descriptors [32]. However, the performance can be increased by usage of NB on
molecular fragments features [33] instead of entire molecules.

Support vector machine classification

The support vector machine has become one of the most popular machine learning
methods in drug design, virtual screening and combinatorial chemistry [25]. It is
well describe, for instance, in monograph written by Cristianini et al. [34].

The training of a SVM is based on a the set of learning data belonging to
two different classes. For these data SVM constructs the maximal separating
hyperplane separating the training objects into two classes. If data are not linearly
separable, than a kernel function is used to project the input data into a higher
dimensional feature space, where a hyperplane can be constructed [25]. Testing
data are then classified according to these hyperplanes.

2.2 Latent semantic indexing
The latent semantic indexing (LSI) is the method for data analysis, that assumes
that there is some underlying or latent structure in the data. LSI is usually related
to text searching and comparing of relevant documents. As words can have mul-
tiple synonyms or even different meanings, it is important to analyse surrounding
text, not only queried words. Estimation of latent structure is done via singu-
lar value decomposition (SVD) of matrix formed by frequencies of used words
in each document. We project queries and documents from high-dimensional
space of words to low-dimensional latent semantic space, often 2-dimensional or
3-dimensional space for the purpose of visualization.

13



This can be also understood as least-squares method, because the projection
of matrix A to lower dimensional space Â is chosen in the way to minimize the
Euclidean distance ∆ between document’s vectors

∆ = ||A − Â||2 (2.5)
This setup has the consequence that the dimensions of the reduced space

correspond to the axes of greatest variation.

2.2.1 Latent Semantic Structure Indexing
The latent semantic structure indexing (LaSSI) is a method firstly published
by Hull et. al. [35], and it is used to analyse molecules, instead of documents.
According to Hull, molecules are described by the vectors aj = (d1j, d2j . . . dmj)T

where dij is the raw non-negative frequency of the descriptor i, which are for
example atom pair or topological torsion descriptors. In context of LSI, molecule
can be viewed as a document containing terms. And each structural feature
is a different term. Thus, LaSSI tries to capture hidden concepts in structural
patterns.

The molecular matrix of n molecules: A ∈ Rm×n is decomposed by the singular
value decomposition defined as

A = USV T , (2.6)

where, U ∈ Rm×r, V ∈ Rr×n are the orthogonal matrices (r is the rank of A) and
S ∈ Rr×r is the diagonal matrix with elements σ11, σ22, . . . , σrr which are called
the singular numbers of matrix A and they are square root of the eigenvalues of
the matrix AT A. SVD can be written as follows

⎛⎜⎜⎜⎜⎝
d11 d12 · · · d1n

d21 d22 · · · d2n
... ... . . . ...

dm1 dm2 · · · dmn

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
u11 · · · u1r

u21 · · · u2r
... . . . ...

um1 · · · umr

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

σ11
. . .

σrr

⎞⎟⎟⎠
⎛⎜⎜⎝

v11 v21 · · · vn1
... ... . . . ...

v1r v2r · · · vnr

⎞⎟⎟⎠ .

(2.7)

If we choose first k biggest singular numbers and we set other to zero
σ(k+1)(k+1) . . . σrr = 0, we get the k-th rank approximation of A, denoted by Ak,
for k < r,

Ak = USkV T . (2.8)
Each row of A belongs to one molecular descriptor, each column of A is

description of one molecule. Row i of matrix V , vi, is a projection of molecule i
to latent semantic space.

Similarity between 2 arbitrary molecules i1 and i2, computed in latent se-
mantic space, is a cosine similarity between rows i1 and i2 of matrix V

Similarity between molecules i1 and i2 = vi1 · vi2

|vi1||vi2 |
(2.9)

Molecule that is originally not included in matrix A, has to be transformed to
latent semantic space in order to determine similarity to other molecules. Let z
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be the vector describing the molecule by same molecular descriptors as molecules
in matrix A, then vector y is the projection to latent semantic space defined as

y = S−1
k UT z. (2.10)

Vector y can be treated as a row of matrix V .

2.2.2 QSAR model and projection to latent structures
The quantitative structure–activity relationship models try to find how are con-
nected molecular properties and observed biological activity to the molecular
structure. QSAR model describes estimated property as a function of descrip-
tors [2].

If we select m descriptors, known for n training molecules. We have a descriptor
matrix A = (a1, . . . an), where aj = (d1j, . . . , dmj). And for each molecule j we
know value of estimated property yj, giving property vector y = (y1, . . . yn). Fi-
nally, predicted functionality as function f of the descriptors can be obtained as

f : Rm → R, y′ = f(a), (2.11)
where y′ is a value of estimated property for molecule described by descriptor
vector a.

An example how to determine function f is a linear regression or a partial
least squares method [36].

Partial least squares

Partial least squares method does not use directly computed descriptors, but tries
to find new latent variables that explains as much of the variance of the observed
property and the descriptors as possible with minimal total number of variables.
This method is also referred to as the projection to latent structures and it is a
generalization of the problem solved by LaSSI [2].

Latent variable k, tk = (t1k, . . . , tnk) is extracted as a linear combination of
descriptors from the descriptor matrix A = (dij. Component tjk of the latent
variable tk is defined as

tjk =
m∑

i=1
pikdij, (2.12)

where pik describes the influence of a descriptor i on tk. If we set the number
of latent variable to kmax < m, then the m-dimensional space is reduced to kmax
dimensions. The resulting score matrix T = (tjk) can be used similarly to original
descriptor matrix for linear regression.

If the new variables takes into count only variance in the descriptor space and
not the variance in the observed property y, we call them principal components [2]
and the method is principal component analysis (PCA). Principal components
can be obtained by singular value decomposition of the descriptor matrix. Thus,
the resulting projection is the same as in the case of LaSSI. So if the SVD is
defined as in eq. (2.6), than the principal components or latent variables can be
computed as

A = USV T = PT T , (2.13)
P = U, T = V S, (2.14)
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where P = (pik) is the loading matrix describing the influence of descriptors on
latent variables.

2.3 Testing of performance
We have discussed several methods used in Ligand-Based Virtual screening, but
which method is the best or which method can be improved? If we want to
analyse the overall performance and compare methods between each other, we
need proper rating technique and standardized data sets, same for all compared
methods.

2.3.1 Performance rating
There are several evaluation methods, the widely used are Enrichment Factor
(EF) and Receiver Operating Characteristic (ROC) curve. Input is a set of ranked
molecules with binary information if molecule is active or decoy.

Enrichment Factor

The enrichment factor (EF) simply analyse the top rated fraction of molecules
in data set. It compares number of active molecules found in the fraction and
the average number of active molecules that would be found in case of uniform
distribution. EF is defined as

EF (ϕ) =
∑n

i=1 δ(ri)
ϕn

, with δ(ri) =

⎧⎨⎩1, ri ≤ ϕN

0, ri ≤ ϕN
, (2.15)

where ϕ is specified fraction, usually 0.01–0.05, n is total number of active mo-
lecules, N is total number of all molecules, ri is a rank of i-th active molecule.

Problem of EF is a large variation when a small number of actives is used.
Methods that try to overcome this problem are for example Robust Initial En-
hancement (RIE) or Boltzmann-Enhanced Discrimination of ROC (BEDROC) [37].

Receiver Operating Characteristic

The receiver operating characteristic was firstly used in signal detection analysis.
ROC curve express dependency of sensitivity and specificity of the method [38].

ROC curve analyse a set of molecule rated and ordered by a VS method.
Essentially we define a threshold and all molecules above this value are selected
and the remaining molecules discarded. The active molecules in the selected
set are True Positives, while the inactive False Positives. The molecules in the
discarded set are similarly called False Negatives if they are active and True
Negatives if they are inactive [38].

The sensitivity (Se) is a ratio of the correctly selected True Positives to all
active molecules

Se = nTP

nTP + nFN
, (2.16)

where nTP is number of selected actives and nFN number of incorrectly discarded
actives.
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The specificity (Sp) is the ratio of the discarded inactive compounds to all
inactive molecules

Sp = nTN

nTN + nFP
, (2.17)

where nTN is number of discarded inactives and nFP number of wrongly selected
inactives.

Finally ROC curve plot Selectivity, Se as a function of (1-Sp). See Fig. 2.1,
the closer is the curve to ideal curve, the better VS method is. The ROC curve
can be integrated in order to obtain area under the curve (AUC), which is a single
value performance indicator.

Figure 2.1: Illustration of ROC curve, with AUC=0.8.

Usage of AUC as performance indicator for VS is also criticised [37]. For
instance,it struggles to identify the early recognition phenomenon. Early recog-
nition means that VS method ranks actives very early in the large data set of
compounds. It can be better if VS method rank half of the active molecules at
the very beginning and half at the end of the list, than rank all active molecules
in the middle of the list. In both cases the AUC is 0.5, but first example offers
fast results in experimental testing [37].

However, AUC still does possess desirable statistical behaviors for large data
sets, is easy to use, and there are results of other screening methods rated by
AUC. So we have chosen to use AUC as a performance indicator in this thesis.
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3. Model - general information
Goal of this thesis is the implementation of ligand-based virtual screening method
utilizing the latent semantic analysis and analyse possible improvement of this
method.

Virtual screening methods were implemented in Python with usage of chemin-
formatics libraries. Python is a very popular programming language to solve
cheminformatics and bioinformatics problem. The main reason of using python
is that there is a number of available scientific libraries that provide evaluat-
ing and computational tools as well as analysing, statistic and visualisation tools.
Thus, new methods can be easily tested. However the main drawback is a limited
performance as python is an interpreted language that does not compile the code
to machine-language. This disadvantage is moderated by usage of pre-compiled
c++ libraries wrapped by Python API.

3.1 Used cheminformatics libraries

3.1.1 RDKit
RDKit is an open-source cheminformatics software [39]. Core data structures and
algorithms are written in C++, but there is also available a very popular Python
wrapper that significantly facilitate usage of the library. Alongside Python wrap-
per, there are also less known Java and C# wrappers. RDKit is distributed under
business-friendly BSD license, that impose minimal restrictions on the use and
redistribution.

Usage of RDKit in python is transparent and straight-forward. RDKit offers
a wide-ranging functionality, namely reading, writing and drawing of molecules,
substructure searching, generation of structural fingerprints (AP, TT, ECFP ...),
atomic descriptors, pharmacophore fingerprints and it also provide supports for
working with chemical reactions.

3.1.2 Biochem-tools
Biochem-tools is a python library developed by Petr Škoda [40] that is capable of
extracting fragments from molecules. It utilize module RDKit.Chem and it can
extract fragments derived from extended connectivity fingerprints and topological
torsion fingerprints. In case of ECFP, first a Morgan fingerprint is generated and
subsequently it translates info of each non-zero bit to corresponding SMILES
fragment. In case of TT, the process is slightly different, it uses SMARTS mo-
lecular patterns for substructure search to find all possible fragments of specified
length.

Apart from fragment functionality it also simplifies generation of atomic mo-
lecular descriptors. It contain an explicit list of all descriptors and their corres-
ponding functions that are available in RDKit.
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3.2 Data sets
Before usage of the screening model, it is necessary to prepare input data sets
from molecular collections. We have used 2 different collections of data sets in
this thesis. First is Maximum Unbiased Validation (MUV) data set, second is a
compilation of data sets with known average performance rating.

3.2.1 Maximum Unbiased Validation data set
MUV data sets are considered to be most difficult data sets for ligand-based
Virtual screening because of the way how they are constructed. Thus, they are
ideal for testing of the robustness of the methods.

Design of MUV Data sets comprises of three major steps. Firstly, a collection
of bioassays is analysed and molecules that are found certainly active or inactive
are extracted to form the initial set. Subsequently, chemical universe around each
active molecule is statistically examined if it is well surrounded by decoys. All
inconvenient molecules are discarded. Finally, an experimental design algorithms
are applied to select subsets of 30 active and 15 000 inactive molecules with
spatially random distribution regarding simple molecular properties [41].

3.2.2 Compilation of data sets
Hoksza and Škoda [42] have collected several data sets and separate them into
classes according to performance of ligand-based similarity methods using struc-
tural fingerprints. Data sets are no further statistically analysed and modified
unlike MUV sets. But they are arranged according to the average AUC value,
there are 4 main classes 0.8–0.85, 0.85–0.9, 0.9–0.95, 0.98–1.0. These data sets
are much easier for similarity methods in comparison to MUV sets and they are
ideal for tweaking and initial testing of the VS method. Every data set consist of
4900 inactive molecules, total number of active molecules ranges from 100–300.

3.2.3 Data set preparation for screening
Our VS method needs a train set of active molecules. as well a target test set. In
order to obtain a statistically significant results we have prepared 10 random sets
from every single original data set. Always two groups of actives were randomly
chosen. One served as train set and the other was mixed with inactive molecules
to form a test set.

In case of MUV sets, we have chosen a train set of 20 actives uniformly at
random and remaining 10 actives form together with 12000 inactives a test set.

Compilation of data sets contains larger number of active molecules, so only
30 actives were chosen for train set and 20 actives together with 4900 inactives
for test set. This selection was not done in random but we have rather used a
previously prepared random selections, because there are available results of VS
methods that analysed exactly the same data sets and selections [33].
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4. Model - implementation and
results

4.1 General model description
Our model is based on Latent Semantic Structure Indexing described in Sec-
tion 2.2.1 and further modified and improved.

However comparison of results previously published by Hull [35, 43] was not
possible because they used data sets extracted from MDDR library [44], which is
commercial and currently not accessible at our institution. Additionally Hull used
an in-house designed Atom-Pairs and Topological torsion molecular descriptors
that are also not accessible.

4.2 Molecule based LSI
The molecule based LSI is a reimplementation of the method described by Hull.
We have also tested Atom-Pairs and Topological torsion molecular descriptors
implemented in RDKit. Additionally these results were compared with ECFP
and atomic descriptors that have not been tested before.

Screening process with molecule based LaSSI is as follows, assuming that we
have prepared train and test set

1. Vector of descriptors is generated for each molecule in train set

2. All vectors are put into one descriptor matrix and chosen weight function
is applied.

3. Latent variables are generated by singular value decomposition of descriptor
matrix (A = USV T ).

4. Each molecule in test set is rated as

(a) Vector z of descriptors is generated for tested molecule.
(b) Chosen weight function is applied.
(c) Vector z is projected to latent space, via y = S−1UT z.
(d) Cosine similarities between projected tested molecule (vector y) and

each projected training molecule (rows of matrix V ) are computed.
(e) Maximum cosine value is chosen and the value is saved to file.

5. After rating of all molecules, they are ordered by the descending similarity
and the resulting performance is measured by AUC.

4.2.1 Implementation notes
Each column of the descriptor matrix belongs to one train molecule and each row
to one molecular descriptor. The matrix consist only from non-zero descriptors
for at least one train molecule, so rows of zeros only are not allowed.
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Structural fingerprints are integer vectors describing the frequency of occur-
rence of a certain molecular feature.

Atomic descriptors are collection of simple structural, formula based counts
and descriptors describing the physicochemical properties. From simple counts
we use number of carbocycles, hetero-cycles, aliphatic rings or specific functional
groups. Advanced descriptors are namely estate indices, kappa, chi indices, par-
tition coefficients SlogP, molar Refractivity SMR, partial charge PEOE. All avail-
able descriptors in RDKit are listed on the web page of official documentation [45].

4.2.2 Weight functions
We have used different weight functions. In case of structural fingerprints
(AP, TT, ECFP), if no weight function is applied and frequencies are directly
used, we use notation freq. If integer vector is modified and represents only
binary information about occurrence of certain structural feature, we use notation
bin. And if each frequency is divided by maximal frequency found in descriptor
matrix, notation is max.

Atomic descriptors (desc) are used unmodified or normalised in two differ-
ent ways:

• Division by maximal value in absolute for each descriptor separately, max-
imal value is determined from the train descriptor matrix, notation is abs.

• Standard normalization,value is shift to zero and division by the difference
of maximal and minimal value for each descriptor separately, notation is
norm.

4.2.3 Results
All results for different fingerprints and different weight functions are summarized
in Fig. 4.1 and in Fig. 4.2.

In case of compilation of data sets (Fig. 4.1), binarized descriptors perform
better than direct usage of frequencies. ECFP fingerprints are more effective
than atom-pair or topological-torsion descriptors. Descriptors that use atomic
properties of entire molecule showed the worst results regardless the weight func-
tion. The best results were obtained by utilisation of combination of ECFP2 and
ECFP4. Similar trends can be observed for MUV data sets (Fig. 4.2), where the
best performance shows combination of ECFP2 and ECFP6.

4.3 Fragment based LSI
Fragment based LSI is a modification where latent variables are not generated
from descriptors computed from entire molecules. Instead we decompose all train
molecules to fragments of certain length. The reason is, that we have noticed of
poor performance of atomic descriptors on entire molecules. So we decided to test
the idea if molecular fragments can describe the relationship between structure
and final activity better.
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freq ecfp2 bin ecfp2 max ecfp2 bin ecfp2+4 bin ecfp2+6 bin ap freq ap bin tt freq tt abs desc norm desc desc

0.80-0.85

5HT2B 0.762 0.776 0.734 0.779 0.768 0.717 0.688 0.717 0.66 0.638 0.635 0.624
5HT2C 0.749 0.784 0.73 0.792 0.787 0.73 0.706 0.773 0.708 0.668 0.667 0.634
ADA2A 0.778 0.799 0.767 0.807 0.812 0.761 0.715 0.744 0.721 0.653 0.658 0.587
CDK2 0.681 0.732 0.713 0.736 0.731 0.7 0.666 0.702 0.642 0.62 0.609 0.525
HDAC01 0.686 0.699 0.693 0.727 0.724 0.699 0.656 0.689 0.612 0.53 0.538 0.593
PXR Agonist 0.851 0.866 0.843 0.883 0.896 0.861 0.818 0.827 0.847 0.632 0.659 0.607

0.85-0.90

ACM1 Agonist 0.756 0.769 0.713 0.769 0.768 0.73 0.7 0.701 0.688 0.664 0.656 0.593
ADA2B Antagonist 0.785 0.828 0.794 0.824 0.815 0.77 0.738 0.761 0.731 0.705 0.703 0.6
ADA2C Antagonist 0.793 0.799 0.78 0.801 0.793 0.738 0.682 0.717 0.735 0.649 0.636 0.608
CHK1 0.841 0.87 0.859 0.877 0.864 0.76 0.787 0.783 0.761 0.677 0.671 0.526

0.90-0.95

5HT1F Agonist 0.774 0.762 0.709 0.795 0.786 0.759 0.709 0.762 0.638 0.643 0.655 0.599
DRD1 Antagonist 0.8 0.837 0.778 0.838 0.833 0.836 0.77 0.793 0.759 0.699 0.699 0.643
DRD2 Agonist 0.863 0.88 0.855 0.885 0.882 0.859 0.827 0.819 0.837 0.638 0.655 0.637
LSHR Antagonist 0.809 0.864 0.827 0.882 0.883 0.84 0.82 0.818 0.782 0.648 0.656 0.631
OPRM Agonist 0.842 0.86 0.832 0.861 0.857 0.879 0.827 0.866 0.839 0.753 0.765 0.609

0.98-1

DHFR 0.931 0.914 0.884 0.947 0.956 0.804 0.764 0.73 0.673 0.469 0.551 0.604
MTR1A Agonist 0.747 0.77 0.712 0.799 0.797 0.846 0.81 0.731 0.706 0.669 0.673 0.551
MTR1B Agonist 0.793 0.822 0.76 0.835 0.826 0.872 0.82 0.747 0.709 0.624 0.637 0.604
V2R Antagonist 0.837 0.865 0.816 0.901 0.906 0.86 0.827 0.83 0.746 0.644 0.626 0.593
AVG 0.794 0.816 0.779 0.828 0.825 0.791 0.754 0.764 0.726 0.643 0.65 0.598

Figure 4.1: Results of molecule based LSI - Compilation of data sets (see Sec-
tion 4.3.2 for legend)

freq ecfp2 bin ecfp2 max ecfp2 bin ecfp2+4 bin ecfp2+6 bin ap freq ap bin tt freq tt abs desc norm desc desc

466 0.624 0.629 0.598 0.633 0.641 0.701 0.655 0.644 0.659 0.62 0.623 0.596
548 0.65 0.687 0.662 0.684 0.687 0.652 0.676 0.629 0.604 0.628 0.581 0.621
600 0.643 0.668 0.641 0.657 0.659 0.612 0.601 0.624 0.588 0.539 0.556 0.545
644 0.755 0.711 0.736 0.723 0.722 0.727 0.737 0.663 0.693 0.659 0.642 0.626
652 0.561 0.672 0.65 0.657 0.66 0.726 0.575 0.655 0.578 0.562 0.585 0.572
689 0.554 0.681 0.64 0.687 0.681 0.607 0.518 0.549 0.636 0.539 0.476 0.573
692 0.531 0.481 0.488 0.495 0.501 0.46 0.484 0.527 0.514 0.564 0.543 0.517
712 0.621 0.546 0.578 0.535 0.546 0.63 0.621 0.603 0.54 0.631 0.619 0.528
713 0.678 0.681 0.617 0.681 0.677 0.598 0.612 0.589 0.603 0.587 0.587 0.582
733 0.582 0.656 0.64 0.651 0.651 0.626 0.632 0.625 0.557 0.549 0.541 0.532
737 0.513 0.535 0.497 0.528 0.543 0.465 0.57 0.485 0.507 0.525 0.537 0.577
810 0.646 0.688 0.703 0.726 0.735 0.62 0.624 0.588 0.562 0.625 0.642 0.53
832 0.648 0.732 0.696 0.763 0.779 0.753 0.736 0.724 0.645 0.566 0.576 0.536
846 0.652 0.67 0.632 0.695 0.707 0.677 0.741 0.727 0.679 0.622 0.636 0.567
852 0.702 0.758 0.749 0.737 0.747 0.763 0.698 0.724 0.7 0.664 0.662 0.622
858 0.652 0.625 0.585 0.649 0.652 0.655 0.62 0.563 0.603 0.656 0.667 0.609
859 0.457 0.513 0.461 0.51 0.506 0.562 0.487 0.5 0.501 0.503 0.498 0.406
AVG 0.616 0.643 0.622 0.648 0.652 0.637 0.623 0.613 0.598 0.59 0.587 0.561

Figure 4.2: Results of molecule based LSI - MUV data sets (see Section 4.3.2 for
legend)

We use fragments derived from circular ECFP and TT fragments, the pro-
cess of generation is described in Section 3.1.2. And fragments are compared to
fragments of tested molecule via LSI.

Screening process with fragment based LSI is as follows, assuming that we
have prepared train and test set

1. Chosen molecular fragments are extracted from set of train molecules.

2. Vector of molecular descriptors is generated for each unique molecular frag-
ment.

3. All vectors are put into one training descriptor matrix and chosen weight
function is applied.

4. Latent variables are generated by Singular value decomposition of descriptor
matrix (A = USV T ).

5. Each molecule in test set is rated as

(a) Chosen molecular fragments are extracted.
(b) Vector z of molecular descriptors is generated for each unique molecu-

lar fragment.
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(c) Chosen weight function is applied.
(d) Vector z is projected to latent space, via y = S−1UT z.
(e) Cosine similarities between projected molecular fragment (vector y)

and each projected fragment from training matrix (rows of matrix V )
are computed.

(f) Maximum cosine value is chosen
(g) Cosine similarity values are collected for all fragments of tested mo-

lecule
(h) Finally an average value is computed and saved to file.

6. After rating of all molecules, they are ordered by the descending similarity
and the resulting performance is measured by AUC.

4.3.1 Implementation notes
Atomic descriptors are discussed in Section 4.2.1. We store a cosine similarity
value in hash table for each fragment and the value is reused, if the same fragment
should be processed again for different molecule.

4.3.2 Weight functions
We use weight functions for atomic descriptors described in Section 4.2.2. But the
weight functions are applied on atomic descriptors generated from each molecular
fragments.

4.3.3 Results
Fragment based LSI perform better than previous method (see Fig. 4.3 and
Fig. 4.4). Fragments extracted via ECFP seems to be more effective than linear
fragments from TT fingerprints. Increasing size of fragments have positive influ-
ence on resulting performance, however, it significantly increases computational
time.

Interesting observation is that standard normalisation of descriptors have neg-
ative influence on performance. On the other hand screening using division by
maximum in absolute value as weight function performs almost the same as
screening with unmodified descriptors. Both Compilation of data sets and MUV
data sets have the same trend.

4.4 Comparison with other methods
We compare our LSI model with results of similarity methods directly using
fingerprints, namely AP, ECFP2, FCFP2, MACCS, TT (see Fig. 4.5 and Fig. 4.6).
Molecule based LSI performs worse than all other fingerprint methods.

On the other hand, fragment based LSI have comparable results with most
fingerprint methods on compilation of data sets. It surpasses fingerprints for
some more difficult data sets but lacks of performance for the less difficult sets.
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f abs ecfp2 f ecfp2 f norm ecfp2 f abs ecfp3 f abs tt2 f abs tt4 f abs tt6

0.80-0.85

5HT2B 0.862 0.862 0.562 0.845 0.692 0.794 0.847
5HT2C 0.889 0.889 0.664 0.863 0.71 0.837 0.888
ADA2A 0.902 0.903 0.584 0.892 0.785 0.876 0.899
CDK2 0.836 0.836 0.551 0.815 0.584 0.78 0.817
HDAC01 0.821 0.821 0.568 0.849 0.604 0.767 0.816
PXR Agonist 0.878 0.879 0.695 0.879 0.764 0.845 0.896

0.85-0.90

ACM1 Agonist 0.845 0.848 0.803 0.819 0.765 0.818 0.833
ADA2B Antagonist 0.912 0.912 0.605 0.902 0.797 0.873 0.895
ADA2C Antagonist 0.907 0.909 0.698 0.901 0.733 0.855 0.886
CHK1 0.895 0.896 0.561 0.891 0.643 0.804 0.889

0.90-0.95

5HT1F Agonist 0.947 0.946 0.491 0.957 0.772 0.887 0.921
DRD1 Antagonist 0.934 0.934 0.853 0.921 0.8 0.872 0.897
DRD2 Agonist 0.93 0.929 0.566 0.916 0.7 0.862 0.884
LSHR Antagonist 0.903 0.903 0.485 0.918 0.659 0.833 0.89
OPRM Agonist 0.95 0.95 0.649 0.964 0.787 0.921 0.942

0.98-1

DHFR 0.993 0.993 0.968 0.988 0.919 0.987 0.987
MTR1A Agonist 0.971 0.973 0.967 0.977 0.731 0.904 0.942
MTR1B Agonist 0.976 0.976 0.974 0.961 0.753 0.931 0.949
V2R Antagonist 0.987 0.986 0.674 0.989 0.766 0.916 0.967
AVG 0.913 0.913 0.68 0.908 0.735 0.861 0.897

Figure 4.3: Results of fragment based LSI - Compilation of data sets (see Sec-
tion 4.3.2 for legend)

f abs ecfp2 f ecfp2 f norm ecfp2 f abs ecfp3 f abs tt2 f abs tt4 f abs tt6

466 0.646 0.646 0.575 0.695 0.516 0.547 0.599
548 0.744 0.743 0.508 0.773 0.488 0.62 0.677
600 0.717 0.717 0.666 0.72 0.52 0.613 0.635
644 0.791 0.791 0.547 0.805 0.467 0.675 0.681
652 0.548 0.549 0.534 0.558 0.457 0.468 0.504
689 0.551 0.549 0.54 0.631 0.463 0.546 0.531
692 0.576 0.575 0.582 0.566 0.576 0.502 0.501
712 0.645 0.643 0.47 0.569 0.456 0.495 0.594
713 0.571 0.573 0.493 0.562 0.534 0.51 0.527
733 0.604 0.604 0.574 0.571 0.435 0.611 0.587
737 0.648 0.648 0.59 0.614 0.535 0.53 0.594
810 0.742 0.74 0.45 0.729 0.489 0.607 0.686
832 0.882 0.882 0.546 0.862 0.605 0.804 0.86
846 0.91 0.91 0.768 0.912 0.651 0.805 0.846
852 0.767 0.767 0.542 0.77 0.497 0.645 0.735
858 0.601 0.601 0.504 0.58 0.51 0.538 0.599
859 0.517 0.517 0.471 0.498 0.47 0.443 0.501
AVG 0.674 0.674 0.551 0.671 0.51 0.586 0.627

Figure 4.4: Results of fragment based LSI - MUV data sets see Section 4.3.2 for
legend)

In the case of MUV data sets the performance is worse than almost all fingerprints
except the MACCS.

4.5 Application structure
The application structure consists of several python modules, see Fig. 4.7. Applic-
ation is controlled via command line user interface located in green main module.
All internal red modules form computational core of application. External orange
library is used for generation of molecular fragments. Source code is available on
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f abs ecfp2 bin ecfp2+4 ecfp1-2 AP ECFP2 FCFP2 MACCS TT

0.80-0.85

5HT2B 0.86 0.78 0.83 0.78 0.8 0.8 0.82 0.82
5HT2C 0.89 0.79 0.85 0.85 0.85 0.85 0.85 0.86
ADA2A 0.9 0.81 0.92 0.84 0.83 0.84 0.86 0.83
CDK2 0.84 0.74 0.87 0.83 0.79 0.75 0.8 0.86
HDAC01 0.82 0.73 0.94 0.81 0.83 0.78 0.76 0.83
PXR Agonist 0.88 0.88 0.95 0.83 0.85 0.83 0.87 0.86

0.85-0.90

ACM1 Agonist 0.84 0.77 0.91 0.87 0.89 0.9 0.9 0.85
ADA2B Antagonist 0.91 0.82 0.92 0.88 0.88 0.88 0.89 0.86
ADA2C Antagonist 0.91 0.8 0.94 0.87 0.88 0.86 0.89 0.87
CHK1 0.9 0.88 0.96 0.91 0.9 0.85 0.86 0.96

0.90-0.95

5HT1F Agonist 0.95 0.8 0.95 0.94 0.94 0.93 0.95 0.94
DRD1 Antagonist 0.93 0.84 0.96 0.94 0.94 0.94 0.95 0.94
DRD2 Agonist 0.93 0.88 0.97 0.95 0.95 0.9 0.96 0.96
LSHR Antagonist 0.9 0.88 0.89 0.93 0.93 0.91 0.92 0.96
OPRM Agonist 0.95 0.86 0.96 0.95 0.96 0.93 0.93 0.97

0.98-1

DHFR 0.99 0.95 1 0.98 0.99 0.99 1 1
MTR1A Agonist 0.97 0.8 0.99 0.99 0.99 0.96 0.98 0.99
MTR1B Agonist 0.98 0.83 0.99 0.99 0.99 0.96 0.99 0.99
V2R Antagonist 0.99 0.9 0.98 0.98 0.98 0.97 0.98 0.99
AVG 0.91 0.83 0.94 0.9 0.9 0.89 0.9 0.91

Figure 4.5: Comparison of the LSI model to standard fingerprints on compilation
of data sets

f abs ecfp2 bin ecfp2+6 AP ECFP2 FCFP2 MACCS TT

466 0.65 0.64 0.66 0.59 0.59 0.57 0.66
548 0.74 0.69 0.87 0.83 0.8 0.63 0.8
600 0.72 0.66 0.75 0.76 0.72 0.65 0.77
644 0.79 0.72 0.84 0.8 0.77 0.7 0.84
652 0.55 0.66 0.71 0.68 0.58 0.49 0.7
689 0.55 0.68 0.68 0.67 0.64 0.56 0.81
692 0.58 0.5 0.6 0.54 0.53 0.53 0.6
712 0.65 0.55 0.74 0.7 0.6 0.62 0.77
713 0.57 0.68 0.69 0.69 0.67 0.5 0.67
733 0.6 0.65 0.71 0.64 0.71 0.53 0.68
737 0.65 0.54 0.77 0.74 0.75 0.7 0.7
810 0.74 0.73 0.73 0.67 0.64 0.65 0.79
832 0.88 0.78 0.86 0.84 0.82 0.85 0.88
846 0.91 0.71 0.9 0.89 0.83 0.81 0.9
852 0.77 0.75 0.86 0.8 0.8 0.81 0.81
858 0.6 0.65 0.67 0.64 0.62 0.6 0.68
859 0.52 0.51 0.55 0.58 0.67 0.61 0.56
AVG 0.67 0.65 0.74 0.71 0.69 0.64 0.74

Figure 4.6: Comparison of the LSI model to standard fingerprints on MUV data
sets

github [46] or in attachments.
General screening begins with generation of train and test set. Selections can

be prepared in advance, supported format is the same as generated by bench-
marking platform created by Škoda and Hoksza [42]. It consists of molecule
database in sdf format and library of json files that describes each selection. But
it is possible to also create new random selections, where supported is currently
only MUV database in the format described by Rohrer [41].
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Each selection consists of three files in SMILES format, where test set is saved
in data.smi, train set in known-ligands.smi and set of all active molecules for later
evaluation in ligands.smi.

After evaluation, results are saved into result.csv in format: ”cosine similarity,
SMILES”. Sorted in result sorted.csv, active and inactive molecules are marked
in result stat data.csv and results are saved to result stat.csv.

Final results of screening of all random selections for a particular data set are
collected to a separate file in root directory.

main.py

User interface io.py

Load/Save molecule
Browse file system
Prepare data sets,
(train set, test set)

screenProcessor.py

Perform VS on a single
data set

screen.py

Perform screening
of the library
Evaluate average
results

Biochem tools

Generate molecular
fragments

descriptors.py

Input: molecule
Output: vector
describing molecular
properties.

descMatrixBuilder.py

Create descriptor matrix
Perform SVD

similarity.py

Analyse similarity
Definition of weight
functions

Figure 4.7: Architecture of the application for VS based on LSI
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Conclusion
We have examined existing VS method called latent semantic structural indexing
(LaSSI) [35], based on description of entire molecule by structural fingerprints
AP or TT and we have compared it with ECFP fingerprints. Usage of ECFP
fingerprints leads to better performance. We have also tested different weight
functions that modify original frequencies of structural features. And usage of
only binary information about presence of certain structural feature is the most
effective.

We have also tested usage of formula based counts and descriptors describ-
ing the physicochemical properties, however, descriptors generated on entire mo-
lecules exhibit poor performance.

Finally, we have developed a new model for virtual screening (VS) based
on latent semantic indexing combining both structural fingerprints and atomic
descriptors. We call this method a Fragment based LSI. Each molecule is rep-
resented by molecular fragments of certain length and each fragment is described
by atomic descriptors. The extracted fragments from tested molecule are than
compared to all fragments that are present in train set of active molecules.

The extraction of fragments based on ECFP seems to be better than TT
fingerprints and ECFP with radius of 2 bonds have the best performance. Atomic
descriptors were the most effective unmodified or scaled by maximal absolute
value for each descriptor.

Fragment based LSI shows far better performance than molecule based LaSSI
and it is comparable with other fingerprint methods. However, the computational
difficulty is increased because it is necessary to evaluate each fragment separately
for each molecule.

Further improvement of the fragment based LSI could be probably possible by
identification of structural features, responsible for observed activity. Identified
fragments would be favoured during molecule rating.
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