
BACHELOR THESIS

Adam Filandr

Utilizing simulated annealing for
molecular fingerprints optimization for

virtual screening

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. David Hoksza, Ph.D.
Study programme: Computer Science

Study branch: Programming and Software Systems

Prague 2017

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

ii

Title: Utilizing simulated annealing for molecular fingerprints optimization for
virtual screening

Author: Adam Filandr

Department: Department of Software Engineering

Supervisor: RNDr. David Hoksza, Ph.D., Department of Software Engineering

Abstract: Ligand based virtual screening can be realised with various molecular
representations. Fragment-feature representation represents the molecules as a
set of fragments, where each fragment receives a set of descriptors. First goal
of this thesis is to find suitable similarity function for such representation. This
representation can also be improved by assigning a weight for each descriptor,
which gives it a priority in a given similarity function. The second goal of this
thesis is to examine simulated annealing as an algorithm used to find the weights.
We experimentally analysed the influence of various fragment types, descriptor
types, similarity functions, correlated descriptors, fragment noise and parameters
of simulated annealing. Because the experiments are computationally demanding,
we also created a tool for large scale computations.

Keywords: virtual screening similarity function simulated annealing

iii

iv

I would like to thank my supervisor RNDr. David Hoksza, Ph.D. and Mgr. Petr
Škoda for their advice and time. Special thanks goes to my parents and my
brother for their continued support.

v

vi

Contents

Introduction 3

1 Introduction to virtual screening and related theory 5
1.1 What is virtual screening and its categories 5
1.2 Ligand based virtual screening with descriptors 7
1.3 Molecular Fragments . 8
1.4 RDKit and PaDEL descriptors . 10
1.5 Scoring - ROC and AUC . 10
1.6 Simmulated Annealing . 11

2 Our approach to similarity searching LBVS 13
2.1 Fragment-feature molecular representation 13
2.2 Weights . 14
2.3 Why use fragments . 15
2.4 Why use weights and how to find them 15
2.5 Similarity Functions . 16

2.5.1 Euclidean Similarity . 17
2.5.2 Manhattan Similarity . 17
2.5.3 Simple Matching Similarity 17
2.5.4 Nfrag Similarity . 18

3 Finding the weights 19
3.1 Implementation of simulated annealing 19
3.2 Descriptor scaling and reducing fragment noise 20
3.3 Removing correlated descriptors 20
3.4 Training and testing weights . 21
3.5 The whole method put together 22

4 WeFrag 23
4.1 All options WeFrag provides . 23
4.2 Optimization . 24

4.2.1 Caching . 25
4.2.2 C++ vs Python . 25
4.2.3 Better sorting algorithm 25
4.2.4 Memory optimization . 26
4.2.5 Reusing the preprocessed data 26
4.2.6 Parallelization . 26

5 Experiments 29
5.1 Data used . 29
5.2 Focus of experiments . 29
5.3 Results of experiments . 30

5.3.1 Fragments, descriptors, similarity functions 30
5.3.2 Correlated descriptors . 36
5.3.3 Fragment noise reduction treshold 37

1

5.3.4 Temperature, cooling, distance and number of dimension
to change . 38

5.3.5 Effects of larger train data 41
5.3.6 Comparison to traditional methods 42

6 Discussion 45
6.1 Future work . 45

Bibliography 47

List of Figures 49

List of Tables 51

List of Abbreviations 53

Attachments 55

A File Formats and Directory System 57
A.1 Input data format and file system 57
A.2 The output of phase preprocess.py 57
A.3 Output format . 57

B Programmer Documentation 59
B.1 Client-Server Communication . 60
B.2 Creating molecular representation - data preprocessing 61
B.3 Creating New Similarity Function 62
B.4 Writing Custom Optimization Algorithm 62

C User Documentation 63
C.1 System Requirements . 63
C.2 Setup . 63
C.3 Input - commands and data . 64
C.4 Examples of Usage . 65

2

Introduction
Drug discovery is a process of finding a new small molecule which has desired
effects on a biological system. Virtual screening is a method used for optimization
of drug discovery. When pharmacologists want to develop a new drug, one of the
problems they face is which molecule to pick for laboratory testing. There are
milions of potential candidates so a method that is better than random selection
would be greatly appreciated. Virtual screening is exactly that - a method that
tries to select active molecules (molecules with desired effects) from a pool of
active and inactive candidates in silico. After a researcher selects a small amount
of molecules using virtual screening, they are tested physicaly in a laboratory
(high-throughput screening - HTS), which consumes large amounts of time and
resources.

Ideally all of the chosen molecules are active (pharmacologist can then pick
the best one regarding side-efects, cost of production etc.). However with current
state of virtual screening that is often not the case and resources are wasted by
testing inactive molecules. Thus by improving this method, we could potentialy
make drug discovery cheaper and side-effects less harmful.

There are two main categories of virtual screening ligand-based (LBVS) and
structure-based (SBVS). Focus of our work is LBVS.

The core of LBVS is similar property principle [1] which states that similar
compounds have similar effects with respect to given medical condition. This
category requires to already know at least one active compound. We use the
information stored in this set of known actives to determine the similarity between
known active molecules and candidate molecules. In the end, the most similar
molecules to the known active ones are selected.

There are many different ways to utilise the information stored in known
actives and candidates, however our interest lies in the descriptor method. De-
scriptor is a representation of features and properties of molecule or molecular
fragment in form of a value. Most commonly vector of values or fingerprint (vec-
tor of zeros and ones) is created from descriptors based on properties of given
compound (e.g. weight or number of carbon atoms).

Again there are many different ways how to compare molecules using de-
scriptors. In order to improve LBVS we introduce combination of two different
approaches which were suggested by David Hoksza [2].

First approach - fragment-feature molecular representation: Traditionally we
would create one vector of descriptors for the whole molecule - instead of that we
split the molecule into fragments and assign descriptors to each one of them (the
same set of descriptors for each fragment). Thus representation of the molecule
is a set of vectors instead of a single vector.

Second approach - weighting the descriptors: To determine similarity between
candidate molecules and known active ones, each part of descriptor vector is
equally important in traditional methods. However, we assign a weight to each
descriptor which gives it a priority in respect to given situation. The core of this
work is to explore simulated annealing as an algorithm used to find the weights.

Our hypothesis is that some parts of molecules (fragments) and some molecu-

3

lar features (descriptors) are more important for the activity of molecule against
given medical condition than others. By combining these two approaches we
get a molecular representation which enables us to compare molecules based on
this criteria. This is something the traditional molecular representations can not
provide us. We call this approach weighted fragment-feature screening.

First goal of our work is to implement suitable similarity function for fragment-
feature molecular representation. Second goal is to explore the capabilities of sim-
ulated annealing as a method for optimization of weights in weighted fragment-
feature representation. To achieve both goals, the sub-goals of our work are:

• Create a tool which will enable us to easily calculate large numbers of
screenings. This involves optimization of the whole process to make it run
as fast as possible - usage of cluster, paralelisation of processes, better data
representation.

• Use simulated annealing to optimize weights of descriptors.

• Find out which way of spliting molecule into fragments is most suitable for
our method.

• Explore which descriptor type is the most benefitial for our method.

• Find suitable algorithm to compare molecules as sets of vectors.

• Analyze the influence of fragment noise, correlated descriptors and param-
eters of simulated annealing.

4

1. Introduction to virtual
screening and related theory
Due to the nature of given problem and our solution, it is fitting to introduce
reader into virtual screening as a whole and some related theory. In this chapter,
we first explore the theory and categories of virtual screening, then we shift focus
to molecular descriptors and fragments, take a quick look at one popular way
used to compare the performance of various virtual screening methods and at
last we explore the simulated annealing.

1.1 What is virtual screening and its categories
The problem of finding a molecule with certain desired effects can be ilustrated
by the concept of chemical space 1.1 which is an imaginary space containing
all possible chemical compounds and “can be viewed as being analogous to the
cosmological universe in its vastness, with chemical compounds populating space
instead of stars” [3]. To imagine the size of chemical space one estimate states
that there are more than 1063 molecules with less than 30 atoms and molecular
weight less than 500, which are stable at room temperature and stable against
oxygen and water [4]. Thus virtual screening acts as a telescope of sorts, which
enables us to look at different compounds in this chemical universe and predict
their effects or even predict the existence of certain compounds. The laboratory
testing of those compounds (high-throughput screening - HTS) would then be
equivalent of flying to those places in a spaceship.

Figure 1.1: Diagram of chemical space - ilustration from [5]

Target is a short for biological target - any structure in organism (e.g. protein
or nucleic acid) to which a molecule can bind, resulting in changes of behavior or
function of this structure in given organism. Essentially goal of virtual screening is

5

to find new molecules which can bind to a given target and we call these molecules
active in respect to given target. Decoys are known inactive molecules and ligands
are known active molecules (in respect to given target). Set of molecules in which
we are searching for new active compounds is called set of candidate molecules.

New active molecules which we found also need to fullfil other requirements in
order to be useful. One is often interested in molecules which structurally differ
from known active compounds - the motivations vary, but the most common ones
are to find molecule stronger in activity, molecule with different side-effects or to
generate new intelectual property that is different enough from their competi-
tors. Other requirement for new active molecules is to be druglike. Druglikeness
determines a set of characteristics necessary for compound to be safe and orally
administered (absorption, permeability, metabolic stability, toxicity and others)
[5]. All of those requirements can be adressed by virtual screening too, however
in our work we focus only on identification of new active compounds.

Since 1970s virtual screening diversified into many different methods. The
two main categories of approaches are ligand-based (LBVS) and structure-based
(SBVS) virtual screening.

Underlying principle of LBVS is similar property principle [6] which states
that similar molecules function in similar way. One can quickly find arguments
against this principle - small changes in compounds resulting in great changes
in biological activity or large structural changes resulting in little to no change
in activity, but this principle is generally accepted and it has been statistically
demonstrated [7]. However what exactly is a ”similarity” between molecules is
not defined - the whole meaning changes depending on how we describe molecules
and how we compare molecules according to this description. For example, we
could describe molecules by their molecular weights and similarity function could
be just a difference of these weights. Other approach could describe molecules as
set of substructures and similarity could be defined as the number of shared sub-
structures divided by the total number of substructures. Thus LBVS methods are
mainly distinguished by the method of describing a molecule and by the method of
comparing a molecule using this description. Three main sub-categories of LBVS
exist - similarity searching, compound classification and compound filtering [8].

Similarity searching includes namely our approach, volume/surface matching,
substrucutre searching, pharmacophore searching and descriptor methods. Al-
though they all differ in how to describe and compare molecules, the general
approach stays the same. With at least one already known active compound
(compound classification requires multiple known actives) the screening can be-
gin: Create representation of known actives and candidate molecules, compare
candidate molecules against known actives, evaluate the results, select small num-
ber of molecules for HTS. In our work we focus on the descriptor method.

The compound classification sub-category includes methods such as cluster-
ing/partitioning, mapping and various machine learning methods. However this
sub-category is not utilised in our work.

Compound filtering is often used as pre-screening and profiling of large com-
pound libraries. The goal is usually to filter out undesired molecules such as
reactive and toxic ones. Filtering can be also used for estimating basic ADME
(Absorption, Distribution, Metabolism, Excretion) - which are parameters re-

6

quired for orally avaliable medicine (Rule-Of-Five [9]). We also did not use this
sub-category.

Even though we do not focus on SBVS in our work, quick overview can be
useful. The SBVS is based on docking the candidate molecules into a target
(e.g. protein). This process involves creation of target model from 3D structural
information and selection of binding site. With the model prepared, each com-
pound of library is docked into the target. The priority of candidate molecule is
determined by the ability of binding to the target with high affinity, estimated
by scoring a function for docking. In the end the molecules that bind the best
are selected. As always there are multiple approaches on how to dock and score
molecules. This category is still very computationaly demanding - LBVS is much
less demanding and also receives greater attention. Interested reader can find
more information in publication by Lionta [10].

1.2 Ligand based virtual screening with descrip-
tors

The most inspiration was drawn from this approach. “The molecular descriptor
is the final result of a logic and mathematical procedure which transforms chem-
ical information encoded within a symbolic representation of a molecule into a
useful number or the result of some standardized experiment.” [1] In other words
descriptors represent features and properties of a molecule in form of a value.
They can be than formed into vector of values or fingerprint (vector of zeros and
ones).

There is a great variety of descriptors and they are mainly categorised by
their dimension. 1D descriptors describe molecular properties such as weight or
number of carbon atoms. The presence, absence, topology or number of different
substructures (molecular fragments) are 2D descriptors. 3D descriptors encode
shape and functionality [11].

Figure 1.2: Ilustration of descriptors - from [12]

Descriptors which are formed into vector of values 1.2 are generated by soft-
ware such as PaDEL [13], RDKit [14], JOELib, Chemistry Development Kit
(CDK) [15] and Chemical Descriptors Library [16]. Each part of vector repre-
sents value of certain chosen 1D, 2D or 3D descriptor. We use PaDEL and RDKit
descriptors in our work.

7

Figure 1.3: Ilustration of fingerprint, colorful bits are set to 1, the rest is set to 0
- from [12]

Fingerprints put simply are bitstrings, where each bit represents presence
or abscene of certain molecular feature, substructure, range of values or other
feature 1.3. Types of fingerprint descriptors include substructure-keys based (e.g.
MACCS), topological torsions based [17] (e.g. Daylight) and circular based (e.g.
ECFP [18]). Fingerprints can also be folded. Fingerprints however are not in the
focus of our work.

As said earlier LBVS with descriptors is included in sub-category of LBVS
called similarity searching. It also follows the general similarity searching ap-
proach 1.4:

1. Create representation for known actives and candidate molecules = assign
descriptors to known actives and candidate molecules

2. Compare candidate molecules against known actives = use appropriate sim-
ilarity/distance function between known actives and candidate molecules
using representation from previous step.

3. evaluate the results = use appropriate scoring function
4. select small number of molecules for HTS

1.3 Molecular Fragments
Because we use molecular fragments in our approach we will take a quick look
at the concept here. Molecular fragment is any form of continuous substructure
of given molecule, however, we focus on fragments which follow certain rules -
namely linear fragments and circular fragments.

Linear fragments can be imagined as paths through the molecule of certain
lengths where length is the number of atoms in path. For example linear frag-
ments of length 1 are all single atoms in a molecule, linear fragments of length 2
are all atom pairs in a molecule. In our work we use linear fragments of length
2, 3 and 4.

Circular fragments consist of substructures of certain radius around atoms
where radius is measured in number of atom bonds 1.5. For example circular
fragment of radius 0 are all single atoms in a molecule, circular fragments of
radius 1 consist of central atom and all of its direct neighbours (other atoms
connected by bond with the central atom of fragment). In our work we use
circular fragments with radius of 1 and 2.

8

Figure 1.4: Diagram of LBVS with descriptors

Figure 1.5: Ilustration of circular fragments - from [19]

9

One can also think about molecular fragment as a connected induced subgraph
(following certain rules) of a connected graph (which represents the molecule).

1.4 RDKit and PaDEL descriptors
Both PaDEL [13] and RDKit [14] are open source software for calculating molec-
ular descriptors which we use in our work.

PaDEL currently calculates 797 desciptors (663 1D and 2D, 134 3D descrip-
tors) and was programmed using Java language. Advantages of PaDEL are that
it provides both GUI and command line interface, can work on any platform that
supports Java (Windows, Linux, MacOS), supports more than 90 different molec-
ular file formats and the speed of computation is quite good (thanks to the usage
of multi-thread computation). The disadvantage of PaDEL is that it does not
calculate as many descriptors as other software such as DRAGON, Molconn-Z,
MODEL and PreADMET Descriptor.

RDKit has core algorithms written in C++ and wrappers in Python, Java and
C#. RDKit has more general purpose than PaDEL, because it can provide other
functions besides just descriptor calculation (e.g. molecular fragment extraction).
Advantages of RDKit include the support of many input and output formats and
ability to work on all major platforms (Windows, Linux, MacOs). However RDKit
calculates only 192 descriptors which is even less than PaDEL.

RDKit and PaDEL assign descriptors to any molecular structure, meaning we
can assign descriptors either to complete molecules or to molecular fragments.

1.5 Scoring - ROC and AUC
With such a great number of different LBVS methods the question arises, how
to compare performance of those methods. One popular way is to calculate area
under the curve (AUC) of receiver operating characteristic (ROC) which gives us
single number evaluating used method.

ROC curves are used to identify the diagnostic ability of a binary classifier
system. The classifier system receives different positive or negative test examples
and assignes them positivity or negativity using some algorithm. In the end we
can determine how often the system is true positive (TP - predicts positivity in
positive example), true negative (TN predicts negativity in negative example),
false positive (FP predicts positivity in negative example) and false negative (FN
predicts negativity in positive example). The curve is created by plotting the true
positive rate against the false positive rate. True postitive rate (sometimes called
sensitivity) is defined as T P

T P +F N
and the false positive rate (sometimes called

specifity) is defined as T N
T N+F P

In other words, ROC curve tells us how well can the algorithm of our classifier
separate active molecules from the inactive ones. To be able to do that, our
method (classifier) needs to be ranking - molecules with higher rank have to be
more likely to be active. In our approach we rank molecules by the similarity to
an already known active molecule.

The algorithm to plot a ROC curve goes as follows:

10

• Rank each molecule and sort them in decreasing order
• Start at s = (x, y) where x = 0 and y = 0
• For each molecule m (using the decreasing order)

If m is active x+ = 1
If m is inactive y+ = 1
Plot coordinate s

On this graph the y-axis represents the true positive rate and the x-axis
represents the false positive rate.

AUC (sometimes also AUROC) is used to convert the ROC curve into a
number. By computing the area under the ROC curve we give the curve a score.
The bigger the score is the better. Perfect AUC equals to 1 - all active molecules
are ranked before any negative one. The worst AUC equals to 0 - all inactive
molecules are ranked before any active one.

The AUC value is popular way to measure the performance of different virtual
screening methods because the only requirement is to have a ranking classifier.
One feature of AUC which reader could notice is that only the order of test
examples (molecules in our case) is important, not the exact value of classifier.
The disadvantage of this feature is that if for example half of all molecules were
10x more similar than the other half and contained all of the active molecules,
we would not notice, even though this is probably useful information.

1.6 Simmulated Annealing
Simmulated annealing is a method used to find global optimum of a function. We
use this method to find weights of the molecular descriptors. In order to explain
how simulated annealing works, lets compare it to hillclimbing. The algorithm
for hillclimbing (when searching for maxima) is following:

Lets define:
f : Rn− > R function for which we want to find global maxima. x, y ∈ Rn

vectors. N : Rn− > Rn neighbour function.

1. x = some initial position
2. y = N(x)
3. If f(y) > f(x) then x = y
4. Go to step 2.

This algorithm can work nicely, if our function has no local maxima. However
if there are local maxima, the chance is, we will get stuck in those (and our
function has probably many of those). In order to avoid this problem one would
like to somehow jump out of the local maxima but in the end stay in the global
maxima.

Which is where simulated annealing comes in. Instead of always moving to
better neighbour position, we also allow to sometimes move into worse neighbour
position - we define the acceptance criterion. The crucial part is, that the ac-
ceptance criterion changes in time. This is called the cooling schedule and the
variable that affects the acceptance criterion is called temperature. A cooling
chedule is specified by the initial temperature, decrement function for lowering

11

the value of temperature and final value of temperature at which the annealing
stops. [20] At first with high temperature we want to move into worse positions
relatively frequently but as time goes on and temperature cools down we will
behave more and more like hillclimbing.

The idea is that we jump out of local maxima at the begining and towards the
end we climb the global maxima (or value close to global maxima). This concept
is inspired by annealing in metalurgy, where controlled cooling yields metals with
different crystal structures (and different desired properties). The algorithm for
simulated annealing goes as follows:

Lets define:
f : Rn− > R function for which we want to find global maxima. x, y ∈ Rn

vectors N : Rn− > Rn neighbour function P : (R, R, R)− >< 0, 1 > acceptance
criterion T temperature C decrement function

1. x = some initial position
2. y = N(x)
3. x = y with the probability of P (f(x), f(y), T))
4. T = C(T), go to step 2.

When implementing this algorithm we need to solve mainly three different
issues which are specific for the kind of function for which we want to find global
optima: how to implement neighbour positions function, acceptance criterion and
decrement funtion. All of those questions are answered in chapter 3.1.

12

2. Our approach to similarity
searching LBVS
With underlying concepts such as molecular fragments, descriptors and scoring
explored in previous chapter, we can finally put together our approach. In this
chapter, we focus on individual pieces of our method: the way of representing a
molecule, why we think this approach can be succesful, the concept of weights
and similarity functions.

2.1 Fragment-feature molecular representation

The core of every ligand based virtual screening method lies in the molecular
representation. The traditional way is to describe a molecule as a whole using set
of 1D and 2D descriptors in form of vector or a fingerprint while each descriptor
has the same priority in comparison.

Our molecular representation differs significantly. Instead of describing fea-
tures of a molecule as a whole, we describe features of fragments of given molecule.
Same set of descriptors is used for every fragment of each molecule - this al-
lows us to compare any pair of fragments. Duplicit fragments are removed from
molecules, since they decrease the performance - each molecule would be full
of basic fragments like strings of carbon atoms and unique fragments would be
hidden.

Now each molecule is represented by a set of vectors (instead of single vector),
where the size of the set depends on number of fragments extracted from molecule
(which depends on size of given molecule) and dimension of vectors depends on
number of descriptors used. This approach allows us to look at molecule from
different perspective - we can for example determine that two molecules, which
are overall different, are very similar in half of their fragments, even if those
fragments are not identical. Perspective such as this can be crucial, if those
fragments are responsible for activity of the molecule. This distinction is not
possible with traditional representations.

This representation is called fragment-feature molecular representation and
was proposed by Hoksza and Škoda in [2].

Creation of representation consist of two steps:

1. Split molecules into suitable fragments

2. Calculate descriptors for each fragment

First step:
One can split a molecule into fragments in many different ways, so how to

decide which way is the most suitable? First we had to consider which technical
solution is best for us - we decided to use RDKit to generate linear and circular
fragments. Now with our focus narrowed to linear and circular fragments we chose
to explore linear fragments of lengths two, three, four and circular fragments
of radius one and two. Larger fragments for both types were computationally

13

too demanding. Which type of fragments is most suitable one is determined
experimentally in section 5.3.1.

Second step:
PaDEL and RDKit were chosen to calculate descriptors. The reason being

both PaDEL and RDKit are opensource and PaDEL calculates greater number
of descriptors than RDKit. We compare how the number of descriptors influence
performance of our method experimentally in section 5.3.1.

With this representation in hand we can then add weights to individual de-
scriptors and compare two molecules using a similarity function on which we focus
in section 2.5.

2.2 Weights

In traditional methods, each descriptor used in molecular representation has the
same priority during comparison of molecules. In our approach each descriptor
is given weight which influences its priority when comparing two fragments 2.1.

Weights essentialy allow us to specify which features are more important when
deciding similarity to known active compounds than others (e.g. difference in
the number of carbon atoms would affect similarity more than difference in the
number of hydrogen atoms). We hypothesize that when the right features are
prioritised above others (in a meaningful way) we can improve the precision of
similarity search between known actives and candidate molecules.

Figure 2.1: Diagram of weighted fragment-feature molecular representation

It is important that those weights are not universal for all molecules, but are
specific for given known active molecules and a target. Essentialy each pair of
known actives and a target has its own set of weights, which helps to identify other
active molecules in a candidate set. The reason being that for different known
sets of active molecules and different targets the features which are important are
different too.

14

2.3 Why use fragments

Lets compare the use of fragment-feature representation to other methods.
First lets discuss fingerprints (topological torsions, ECFP, MACCS). They

are somewhat similar in nature thanks to the focus on fragments - although
fingerprints focus mainly on presence or absence of fragments. However, our
method can distinguishe how similar fragments are. We think that comparison of
active and candidate molecules should focus more on presence or absence of crucial
properties of fragments rather than on presence or absence of whole fragments.

Lets imagine this situation: we have three molecules - one known active and
two candidates - and we take two pairs active+candidate. We also calculate
that having an aromatic ring is crucial property for active molecule so we give
this descriptor high weight. First pair does not share any fragments, but some
fragments of candidate molecule have aromatic rings. Second pair share many
fragments but not a single fragment of candidate molecule has aromatic ring.
If we used fingerprints, we would declare the second pair much more similar
than the first one. With our approach the first pair can be more similar than the
second one (when the right similarity function is used). If in this situation having
aromatic ring really was the reason for activity of a compound, our method would
prove to be more useful.

Second, lets take a look at traditional descriptor methods (single vector of de-
scriptors for molecule). We think that the ability to look at molecule in fragments
is more useful than the global way of looking at a molecule. For example if we
used one descriptor per molecule and determined that two molecules have simi-
larity of 0.5 (on a scale from 0 to 1) using Euclidean distance, we would not know,
if the two molecules are similar in mediocre way overall or the two molecules have
parts which are completly identical and other parts which are completly different.
With our method we can tell the difference (with the right similarity function)
and even tell, if the similar side is important thanks to weighted descriptors. If
only a part of molecule is important for a molecule to be active, our method
would be more useful.

Another advantage of our method is the ability to change what similarity
means with great range of similarity functions which can work with this repre-
sentation.

However the disadvantage of our method is that it is more computationally
demanding than the other methods.

2.4 Why use weights and how to find them

Lets suppose we would like to compare humans for various reasons. Each human is
described by a set of descriptors - i.e. height, inteligence, strength, facial features,
genetic code. Now we would like to know the chance that 2 random people are
related. One option is to take in account all features and estimate, that people
which are the most similar over all should be related. This is obviously not so
great idea. We can clearly see, that we have a descriptor ideal for this comparison
- the genetic code. Other features can throw our calculation off.

15

Now lets compare people to a basketball player and calculate the chance,
that this person is also a basketball player. In this case it is not so clear, which
descriptors are important, but facial features will probably be the least important
descriptor.

For different comparisons different descriptors are useful which also applies
to molecules. The difference is that when comparing molecules, it is almost im-
possible to determine, which descriptors are useful and which are not in advance.
Althought almost certainly not every feature should be equally important. That
is why each descriptor has a weight which describes how much important it is
(0% as not relevant to 100% maximum importance) .

So now we know that we want to assign weights to descriptors. The question
is how to find the best weights. We can imagine virtual screening being multidi-
mensional continuous function which gives us a value from 0 to 1 (AUC value)
for each set of coordinates (different weights). We would like to find a set of
coordinates which gives us the global maxima of AUC in this multidimensional
space. If we had only 3 descriptors, we can imagine that we search for highest
peak in a cube which contains some sort of a landscape. If we had infinite com-
putational power we could just calculate AUC for each set of weights and find the
maximum value. However since we do not have such luxury, we need to find some
other method. This is common optimisation problem and the variety of solutions
is great - hillclimbing, beamsearch, simulated annealing, tabu search, harmony
search, genetic algorithms, parallel tempering etc. We chose to use simulated
annealing. The implementation of simulated annealing is described in section
3.1.

2.5 Similarity Functions

With our representation created we now face the problem of choosing the right
similarity function for comparing molecules. Since we represent molecules as
sets of fragments and we represent fragments as vectors, essentially we want to
determine the similarity of two sets of vectors. Different similarity functions allow
us to take different perspective and influence outcome of the method greatly - for
example we can focus on average similarity of fragments (global perspectvie) or
focus on the most similar fragments (narrow perspective) etc.

No matter which similarity function was used, the final similarity assigned
to a candidate molecule is always calculated as max(s(x, a) : a ∈ A)m where
s is the similarity function, x is candidate molecule and A is set of known ac-
tives. Formulas in this section use following symbols: M1 and M2 are compared
molecules, f1 and f2 are fragments from those molecules, Descriptors are indexes
which identifies parts of vector of descriptors, weights is an array of weights, one
weight for each descriptor. The f1(d) and f2(d) are values of d descriptor in their
fragments, |M1| and |M2| is the number of fragments of molecule M1 or M2. We
implemented 6 similarity functions:

16

2.5.1 Euclidean Similarity

Euclidean similarity is a popular way of computing similarity between two sets of
vectors. We simply measure the euclidean distance between all fragments from
the two compared molecules and average the sum to get a distance of molecules
and then substract that from 1 to get similarity:

1 −

∑
f1∈M1,f2∈M2

√ ∑
d∈Descriptors

(f1(d) − f2(d))2 ∗ weights(d)

|M1| × |M2| ×
√

|Descriptors|
(2.1)

For every pair of fragments f1 and f2 from molecule M1 and M2 we compute
the euclidean distance of the descriptors vectors. We then average the sum by
|M1| × |M2| (number of pairs of fragments from both molecules). The division by
square root of the number of descriptors will scale our value into [0,1] - since each
descriptor can have maximal value of 1 (thanks to scaling of descriptor values
which we did in the pre-processing phase) |

√
Descriptors| is the maximal value

which euclidean distance of two molecules can have. For purpose of our work we
also added weights to the equations.

Time complexity of this method is O|M1| × |M2| × |Descriptors| - which is
the number of (f1(d) − f2(d))2 calculated.

2.5.2 Manhattan Similarity

Manhattan similarity uses taxicab geometry in which distance of two points is
defined as the sum of diferences of each dimension. The whole formula is:

1 −

∑
f1∈M1,f2∈M2

√ ∑
d∈Descriptors

|f1(d) − f2(d)| ∗ weights(d)

|M1| × |M2| × |Descriptors|
(2.2)

Thus the only difference between Euclidean and Manhattan similarity is the
change of (f1(d) − f2(d))2 to |f1(d) − f2(d)| when calculating fragment distance
and change of division by

√
|Descriptors| to |Descriptors|. Time complexity

stays the same as O|M1| × |M2| × |Descriptors| .

2.5.3 Simple Matching Similarity
This strategy utilises binned values of fragment vectors. Binning is done in the
pre-processing phase. For each descriptor we find the minimal and maximal
value in all active and candidate compounds. Minimal value goes to the first bin,
maximal to the last bin and values in between are assigned accordingly depending
on the number of bins. Similarity of two fragments is then computed as number
of shared bins divided by number of all bins. Similarity of two molecules is then
determined as mean of fragment pairs similarities. Again weights were added for
the purpose of this work:

∑
f1∈M1,f2∈M2

∑
d∈Descriptors

(
Indicator(f1(d), f2(d)) ∗ weights(d)

)
|M1| × |M2| × |Descriptors|

(2.3)

17

Indicator(f1(d), f2(d)) =

⎧⎨⎩1 if f1(d) = f2(d)
0 if f1(d) ̸= f2(d)

(2.4)

The disadvantage of this method is that we do not measure how different the
values are, we just determine if they are or are not similar enough (the threshold is
given by the number of bins). Time complexity is O(|M1|×|M2|×|Descriptors|).

2.5.4 Nfrag Similarity

The disadvantage of Euclidean, Manhattan and Simple similarity is that two iden-
tical compounds do not have the similarity of 1 (unless they have only 1 fragment),
so two identical molecules can be less similar than two different molecules. This
can lead to major errors when used to compare candidate molecules and known
active ones.

Nfrag similarity attempts to solve the problem stated above. It can be used
with any distance function. Instead of calculating distance of two molecules as
average of all fragment pairs distances we choose N of the most similar pairs. In
fact the number N is different for every pair of molecules:

N =
⌊
max(|M1|, |M2|) ∗ (P

100)

⌋
(2.5)

Formula for similarity:

1 −

N∑
i=1

SortedFragDist(i)

N ×
√

|Descriptors|
(2.6)

SortedFragDist = Sort

(⋃
f1∈M1,f2∈M2

Distance(f1, f2)
)

(2.7)

Distance is function which computes distance of two fragments using all de-
scriptors - we use simple, Euclidean and Manhattan distance.

Sort is any sorting function which sorts a set of numbers in descending order.
This way two identical molecules have the similarity value of 1, because for

every fragment of one molecule exist the same fragment in the other. Also because
we throw away duplicate fragments (in the pre-processing phase) the only other
way of obtaining the similarity value of 1 would be by comparing two molecules
which have only 1 type of fragment, however, in different numbers. For example
the fragment is pair of carbon atoms and M1 consist of two of those fragments
and M2 consist of three of those fragments - these molecules are not exactly
the same but our method would give them similarity of 1. Which certainly is a
disadvantage of this method, however, this situation does not occur very often.

Just note that for any other P than 100 this method will again have the same
disadvantage as simple, Euclidean and Manhattan similarity.

Time complexity of this method is O(|M1|×|M2|×|Descriptor|+|M1|×|M2|×
log(|M1| × |M2|)) where first half of the sum represents the time complexity of
fragment pairs comparison while the second half represents sorting of the distance
to obtain SortedFragDist.

18

3. Finding the weights
In this chapter we examine the simulated annealing, descriptor scaling and re-
moval of fragment noise and corelated descriptors. We also take a look at training
and testing process and in the end present our method as a whole.

3.1 Implementation of simulated annealing

Essentialy weights are used to maximize the performance of our LBVS approach,
which is measured in AUC. In each iteration of simulated annealing we calcu-
late AUC for given weights and then decide if we keep this new position or not
(as explained in section 1.6). Thus each iteration calculates the whole virtual
screening.

As such the function for which we want to find global maxima is the whole
virtual screening f : Rn− > R, where f transforms vectors of weights (n is
the number of descriptors) into AUC values. As explained in section 1.6, we
need to solve the issue of neighbour function, acceptance criterion and decrement
function.

For the neigbour function we define dim as number of weights in a vector
of weights to change (number of dimensions to change - user can configure this
number). Weights can not get below 0 or above 1/n, where n is the number of
weights. rand(x, y) is a function which generates random integer in the inter-
val < x, y − 1 >. dist is a constant implemented as 1

n
∗ neigbour distance

100 , where
neigbour distance is a value in interval <0,100 >which user can configure. The
neighbour function:

• For i in range(0,dim):
descriptor = rand(0, n)
weights[descriptor]+ = (−1)rand(0,1) ∗ dist

The acceptance criterion is implemented as

P (f(x), f(y), T) =

⎧⎪⎪⎨⎪⎪⎩
1 if f(x) =< f(y)

exp

(
f(y)−f(x)

T

)
if f(x) > f(y)

(3.1)

The decrement function is implemented as C = T ∗ cooling, where c is a
constant which user can configure (usualy 0.999). User can also configure the
starting temperature T . The temperature at which simulated annealing stops is
T = 1.

Inspiration for these functions was drawn from [20].
We tested this implementation by limiting our method to only 15 descriptors

and seetting neigbour distance to 25 - thus weights could obtain 4 values. For this
configuration there exists 415 = 1073741824 possible weights. We then searched
for weights from random starting position using cca. 9200 iterations (T=10000,
cooling=0.999).

19

Already 1073741824 combinations are too much for us to calculate, since one
screeing takes about 0.3 seconds. However we were able to find the same weights
from random positions almost all the time using simulated annealing (they occa-
sionaly varied in value of one or two weights slighty). We take this as a confir-
mation that the algorithm works.

Charts of simulated annealing with various configurations can be found in
section 5.3.4.

3.2 Descriptor scaling and reducing fragment
noise

Simmulated annealing can be very computationally demanding therefore finding
a way how to speed up similarity search is crucial for our approach. In order to
improve performance we can use similarity function with better time complexity,
reduce the number of descriptors or reduce the number of fragments. We decided
to reduce the number of descriptors by erasing correlated descriptors and reduce
the number of fragments by reducing fragment noise. Reducing fragment noise
should also improve the accuracy of our method. Other pre-processing consist
of descriptor scaling and creating better data format. When used for simple
matching similarity method we also binn descriptors in pre-processing phase.

Descriptors scaling:
Descriptors need to lie in the same range in order to affect similarity in the

same way (raw descriptors lie in various ranges). By scaling them to the range of
0 to 1, final similarity will range from 0 to 1 too. Scaling is done by finding out
maximal and minimal value of given descriptor in all candidate and known active
molecules and calculating scaled descriptor as: scale(x) = x−min(d)

max(d)−min(d) where x

is a value of descriptor d and min(d) or max(d) are minimal or maximal values
of given descriptor from all fragments.

Reducing fragment noise:
Some fragments are much more frequent than others - for example a string of

carbon atoms as a fragment lies in nearly 50% of molecules (when the molecule is
split into linear fragments). We think that these fragments act as an information
noise which can throw our method off. Thus we erase fragments which are present
in certain percentage of molecules. We examine this feature experimentally in
section 5.3.3.

3.3 Removing correlated descriptors

It seems like not every descriptor is useful for similarity searching LBVS. One can
for sure erase descriptors which have constant value for all fragments (they do not
contribute to any of our similarity functions). By erasing correlated descriptors
with the right correlation treshold we should get rid of only those that are not
so important. The reason for removing correlated descriptors is following: when
using for example RDKit descriptors, fragments receive 192 different descriptors.
To find weights for representation which uses 192 descriptors we would need
to search in space with 192 dimensions. This number is too big for practical

20

implementation of simulated annealing. We examine experimentaly the influence
of correlated descriptors in section 5.3.2.

At first we remove constant descriptors - they do not contribute to similarity
search. After that we eliminate correlated descriptors is done usign the correlation
matrix C, in which Ci,j = corr(Di, Dj), where corr is a correlation function
between two vectors. Di and Dj are vectors containing i-th and j-th descriptor
from each fragment. For example first RDKit descriptor is weight of molecule, so
D1 would containt weight of every fragment. Thus the size of each vector D is n,
where n is the number of unique fragments of the set of molecules for which we
want to remove correlated descriptors. Vectors D are ordered by fragments.

The size of C is m ∗ m, where m is the number of descriptors. The matrix
contains value for every descriptor pair. We used numpy.corrcoef asi corr.

With C we can combine correlated descriptors into clusters and pick only
one descriptor representing each cluster. At first we create a cluster for each
descriptor, then we merge clusters in which each descriptor pair is correlated (in
absolute value) above a treshold, which the user defines. We are done after we
can no longer merge any cluster pair.

We remove correlated descriptors only in the training phase. In test phase
we, instead of removing correlated descriptors, remove those descriptors, which
were not used in training phase. This way we ensure that weights match with
descriptors in training and test phase (since in test data different descriptors
could correlate).

3.4 Training and testing weights
In order to simulate different situations and evaluate method more accurately we
define a split - a subset of known active and inactive molecules in respect to a
target divided into train and test molecules. Thus we calculate unique weights
for each split.

Now lets look what situation the split is simulating. Reader can notice that
we have complete information about all molecules - we know exactly which are
active and which are not. This is not how real world application of virtual screen-
ing looks like, however we need this information in order to evaluate how well
our approach to virtual screening is performing. The situation which splits are
simulating is that some researcher might know only about some subset of known
active molecules and his chosen candidate molecules might consist of some other
subset of active and inactive molecules. Our approach needs to work well with
different subsets of molecules - by evaluating different splits we can be sure that
we did not just have luck with certain subset.

The search for weights is performed using train data for each split. From train
data 1/4 of the actives is used as known actives and 3/4 of actives are used as
candidates among with the inactive molecules.

After we find the weights, we want to see if they work on some set of molecules
other than the train data. This is after all our goal - to find weights for given
set of known actives which will improve our method when used with different
candidate molecules. For this purpose we use the test data. Active and inactive

21

test molecules act as candidates and active molecules from training phase act as
known actives.

3.5 The whole method put together
Now we can take a look at our method as a whole in the diagram 3.1.

Figure 3.1: The complete diagram of our method

22

4. WeFrag
When designing our program WeFrag we focused mainly on the ability to eas-
ily configure various aspects of our approach to virtual screening (e.g. type of
fragments or type of similarity function) and compute those configurations fast.
The reason for this is that we needed to perform many experiments in order
to find how much certain options influence the performance and find the best
configuration.

To easily perform great number of different computations WeFrag offers client
and server side of application for paralel computing on cluster. The user interface
enables the user to quickly assign several thousands of different computations
(using grid options) which will be then dynamicaly distributed and computed.
Results are saved in client computer and can be aggregated into a .csv file using
built-in function. WeFrag also provides user with various features regarding the
maintenance of cluster - namely monitoring of running computations and the
ability to update data and code on servers.

When distributing computations (tasks) on the cluster, we also monitor cur-
rent state of every cluster computer (usage of memory and CPU) in order not to
disturbe other users of cluster.

WeFrag also provides user with option of local computation, when cluster is
not avaliable or user wants to run just a small number of computations. Local
computations can be again assigned through menu, but there is also the option
to use only command line arguments.

More information about the implementation of WeFrag can be found in section
B. The whole program is included in attachement.

4.1 All options WeFrag provides
Options regarding input:

• Input through menu using cluster.
• Input through menu using local computer.
• Input through command line using local computer.

Capabilities regarding virtual screening and simulated annealing:
• To select targets from data, which the user provides.
• To select which splits to compute.
• To choose from linear fragments of length 2, 3 and 4 and from circular

fragments of radius 1 and 2.
• To choose from RDKit or PaDEL descriptors.
• To set fragment noise reduction treshold percentage.
• To set descriptor correlation treshold percentage.
• To select similarity function from simple, Euclidean, Manhattan and Nfrag

version of simple, Euclidean and Manhattan.
• To choose from none simulated annealing or simulated annealing with rad-

nom starting position or simulated annealing with constant starting posi-
tion.

23

• To set starting simulated annealing temperature.
• To set cooling rate.
• To set the distance of neighbours in simulated annealing.
• To choose how many dimensions to change in one step of simulated anneal-

ing.

Other features regarding mainly the monitoring of computation and updating
cluster are:

• To get information about running computations and state of cluster. Also
the ability to stop running and planed computations.

• To update code, data and preprocessed data on cluster.
• To set the number of computations per computer.
• To set the seed for random number generation.

Users are also provided with configuration file in which they can configure:

• Location of code and data on server.
• Number of splits.
• Seed used in randomizer.
• Names and adresses of cluster computer.

4.2 Optimization

Simulated annealing is quite computationally demanding since it requires to cal-
culate the whole virtual screening in each iteration. Since we need at least several
thousand iterations, even a few seconds to calculate a screening is too much. For
example 10000 iterations (which is quite low number) and 3 seconds per screen-
ing would take about 8 hours to compute. On top of that we need to calculate
weights for each split (and in our datasets we have 168 splits as explained in
section 5.1). That is of course too much for any practical experiments.

At the beggining, when we used Python to implement screening and did not
use any custom data format, one single screening took about 20-40 minutes and
the whole computation was serial. At the end one screening takes from 0.1 to
0.5 seconds and screenings of splits are computed in paralel on any number of
cluster computers. The times vary depending on types of fragments, descriptors
and correlation treshold used. Without this improvement we could never execute
our experiments.

Other than screenig the data preprocessing (creating fragments, calculating
descriptors, removing correlated descriptors etc.) needs to be optimized too.
One such preprocessing can take about 15 minutes. Thanks to reusing some
preprocessed data we managed to improve this process too.

We have already discussed means of speeding up the computation on the
data level - removing fragment noise and correlated descriptors. However great
performance improvements were also made through technical solutions. In this
section we discuss the most profound ones.

24

4.2.1 Caching
Caching of fragment comparisons made probably the greatest improvement in
performance. This solution seems obvious however it is not so much from the view
of a programmer who is not a chemist and does not know much about molecules
and its fragments. The idea goes as follows: When comparing molecules we
compare its fragments. These fragments are not unique for each molecule - some
fragments occur in many molecules. So when we compare a pair of fragments
we save the result somewhere and when we need to compare this same pair of
fragments again (when comparing some other pair of molecules) we can just use
the already computed value. There are two crucial factors which need to be
fulfilled in order for caching to work.

First, there can not be too many different types of fragments or else we would
run out of memory - we need to hold an array (or equivalent data type) with
size: number of different fragments in all molecules squared. Second, we need to
compare some fragments pairs often enough in order for caching to take effect
- if every fragment pair was computed only once, caching would even hurt our
method.

Both of those requirements are satisfied (which was a little bit surprising).
There are typicaly only thousands or tens of thousands different fragment struc-
tures. And the same fragment pairs are compared often enough to speed up
computation several fold.

4.2.2 C++ vs Python
At first the core of screening and simulated annealing was written in Python.
When rewritten into C++ the same computation was suddenly computed much
faster. One reason for the speed up is that along with the C++ code we im-
plemented custom data format. With Python code we tried to use fragments in
JSON format and descriptors in text format (direct output of RDKit), both rep-
resented in memory as dictionary. These two formats proved to be terribly slow
thanks to the need to constantly search through the dictionaries. With C++ our
data format is focused on pointers and is explained in A.2.

The speed up is also probably due to the fact that C++ can perform some
optimization during compilation. We also use tightly packed arrays of pointer
(in hopes of being cache friendly) in C++ while in Python we used dictionaries,
which are much slower. Python is also dynamicaly typed which can generate
many overhead machine instructions.

4.2.3 Better sorting algorithm

Another rather simple idea like caching. When comparing molecules using the
Nfrag similarity function one need to sort the results of fragment pairs comparis-
ments and pick the top N . However using the standard C++ sorting algorithm
is an ”over kill”. We do not need to have the entire set of results sorted - we just
need to know the top N. So by implementing this top N sort using linked list we
achieved considerable speed up.

25

4.2.4 Memory optimization

In theory JSON output of fragmented molecules and output of RDKit or PaDEL
is everything needed to perform screening and annealing. Data in this format
could be as big as several hundred Mbits. This is unacceptable since we want
to run multiple screenings on one computer. We also need to create table for
caching which can be quite big when larger fragments are used like ecfp.2 (since
more unique fragments are then present). So another priority was to reduce the
size of data which we need to hold in memory. This was again done through our
custom data format explained in A.2

4.2.5 Reusing the preprocessed data

Data input is handled in the preprocessing phase, where we convert the raw
molecules in SDF format into our molecular representation, which we later use
for computations. For each configuration the preprocessing needs to be done
only once. First thing to understand when talking about creating our molecular
representation is input data format. Input to our program is in form of .sdf files,
which is data format used to describe molecules. SDF (structure-data file) is a
chemical-data file format which holds structural information about molecule and
wraps other data format - MDL Molfile which holds information about the atoms,
bonds, connectivity and coordinates of a molecule. This data format was created
by MDL Information Systems.

Files can be provided to WeFrag either through a directory system or as a
command line parameter.

The advantage of using input through directory system is that all of the files
created (either final or temporary) can be re-used when preprocessing certain
other configurations - for example if the type of fragments stays the same, we
do not separate fragments again. Or if we want to compute with different corre-
lation treshold, we need to only recompute final preprocessing part. The whole
preprocessing phase is explained in section B.2

This is possible thanks to the additional information the directory system
provides. When using command line input we can not perform such optimizations
since we do not have enough information about the data.

Thus directory system saves u a lot of time when testing great number of
slightly different configurations since the preprocessing phase can be fairly time
consuming.

4.2.6 Parallelization

We used two levels of parallelization. One level is implemented using Python
threads. Threads were used only for enabling the client-server communication
and for assignment of computations on a server or local computer.

The other level of parallelization is realized by paralelization of preprocessing
and screening of splits. Parallelization of preprocessing is only partial - for ex-
ample 2 splits of the same target can not be preprocessed at the same time, since
creation of temporary files would collide.

26

All screening tasks can be computed in paralel, however some preprocessing
tasks cannot be performed in paralel and they always need to be computed before
screening tasks. This is why cluster is so useful - with cca. 38 computers in our
laboratory we can in theory preprocess 38 different configurations in paralel - and
mind that some configurations partialy use data from other configurations so this
speeds up the preprocessing even more when more configurations are computed.
After all preprocessing is finished we can in theory compute 304 splits in paralel (8
tasks per computer is most efficient). However when using some larger fragment
types (such as ecfp.2) only about 1 or 2 splits per computer is possible thanks to
massive memory demand.

27

28

5. Experiments
In this chapter, we take a look at our experiments. First we need to understand
the data which we use for the experiments, after that we can discuss what we
want to find out through the experiments. In the end we examine the results.

The naming for Euclidean similarity, Manhattan similarity and simple simi-
larity is euclidean, manhattan and simple.

We use simple100, euclidean100 and mahnattan100 as names for Nfrag ver-
sions of simple, Euclidean and Manhattan functions with P = 100 (as explained
in section 2.5.4).

Name ecfp.1 stands for circular fragments of radius 1 and tt.2, tt.3 and tt.4
stand for linear fragments of length 2, 3 and 4.

5.1 Data used

First datasets we considered is used in paper by Hoksza and Škoda [21]. However
in those datasets we only had about 5 to 15 active molecules in train sets. Other
datasets we looked into are from another paper by Hoksza and Škoda [2], however
in those datasets there is not enough inactive molecules in train data.

As such we decided to create new 2 new dataset which has both more active
and inactive molecules in train set. These datasets were proposed to be included
in [21] so that they can be tested by other virtual screening methods.

Our data consist of 2 datasets each having the same 42 targets. Each target
has 4 splits. Each split is divided into train and test data.

Dataset 20 1000 50 8000

• The train data consist of 20 active molecules and 1000 inactive molecules.
• The test data consist of 50 active molecules and 8000 inactive molecules.

Dataset 50 1000 50 8000

• The train data consist of 50 active molecules and 1000 inactive molecules.
• The test data consist of 50 active molecules and 8000 inactive molecules.

Training and testing is implemented as shown in the section 3.4 and the metric
used to measure performance is AUC.

The AUC value of a target is calculated as average of AUC values of its splits.
The AUC value for whole dataset is calculated as average of AUC values of all
targets.

5.2 Focus of experiments
What exactly do we want to find out through experiments? We want to figure out
if we are able to improve fragment-feature molecular representation when using
various similarity functions with weights found through simulated annealing. We
also want to examine how much do the parameters, which we can configure,

29

influence the performance. In the end, we want to compare our approach to
traditional methods.

The parameters include:

1. Type of
fragments chosen from ecfp.1, tt.2, tt.3 and tt.4.
Descriptors chosen from RDKit and PaDEL
Similarity function chosen from simple, Euclidean, Manhattan and their

Nfrag versions
2. Correlated descriptors removal treshold
3. Fragment noise reduction treshold
4. Simulated annealing factors:

Starting temperature
Cooling
Distance of vectors in a iteration of annealing
Number of dimensions which we change in the vector of weights in each

iteration

Originally we wanted to calculate also with ecfp.2 fragments, however they
proved to be too slow for the scope of experiments we needed.

Experiments were not performed in grid-like fashion, meaning we did not
compute every combination of options. Instead after establishing how much do
fragment types, descriptor types and similarity functions influence the method we
chose the most promising combination. Using this combination we then explored
the correlation treshold and examined the noise reduction treshold. Then we
focused on simulated annealing factors. We also experimented with larger training
set. Finaly we can compare our method against traditional LBVS methods.

Experiments in this chapter were computed using seed 1984. We also com-
puted the same experiments with seed 5000 and 987654321. The differences were
minimal (AUC+- 0.01).

5.3 Results of experiments
The tables follow color scheme for AUC values as shown in table 5.1. If a cell
contains 2 values, the value on the right determines the color.

Table 5.1: The color scheme
0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1

The values in tables are average AUC values of all targets from all datasets
using the average of all 4 splits of a target.

Initial value of weights before annealing is 1
numberofdescriptors∗2 . Meaning all

weights have the same value and thus have no effect.

5.3.1 Fragments, descriptors, similarity functions
In this section we focus on the effects of different fragment types, descriptors
and similarity functions. Those are the parameters which influence our approach

30

the most. For the purpose of this experiment we disabled correlated descrip-
tors removal and fragment noise elimination (so that they do not influence the
outcome).

The setup of experiments:
Dataset: Dataset 20 1000 50 8000
Fragments: ecfp.1, tt.2, tt.3, tt.4
Descriptors: RDKit, PaDEL
Similarity function: simple100, euclidean100, mahnattan100, euclidean,

manhattan and simple
Fragment noise treshold: 100 (essentialy is disabled)
Correlated descriptors treshold: 1 (essentialy is disabled)
Temperature: 1000
Cooling: 0.999
Distance of vectors: 25 (neighbour distance value from 3.1)
Number of dimensions to change: 1 (dim value from 3.1)
We chose this temperature and cooling as it is the maximum which we could

compute at this scale of experiment.
With this distance of vectors, weights can have 4 values. We limited weights

to only 4 values, because in this set of experiments we commonly use cca. 126
RDKit descriptors (and even more PaDEL descriptors), which means we can have
4126 = combinations. In these conditions simulated annealing probably will not
find the global maxima, however at least we are no going to get stuck in some
small local maxima.

Train Data

First let us examine the results on training data:

Table 5.2: Train without weights / Train with weights - Fragment types, descrip-
tors and similarity functions

RDKit ecfp.1 tt.2 tt.3 tt.4
RDKit euclidean100 0,84 / 0,94 0,75 / 0,83 0,81 / 0,89 0,83 / 0,92
RDKit euclidean 0,64 / 0,98 0,69 / 0,95 0,65 / 0,97 0,68 / 0,97
RDKit manhattan100 0,84 / 0,95 0,75 / 0,82 0,8 / 0,9 0,83 / 0,92
RDKit manhattan 0,65 / 0,98 0,68 / 0,96 0,66 / 0,97 0,69 / 0,97
RDKit simple100 0,63 / 0,97 0,56 / 0,94 0,64 / 0,96 0,65 / 0,96
RDKit simple 0,72 / 0,98 0,69 / 0,96 0,72 / 0,97 0,75 / 0,97
PaDEL ecfp.1 tt.2 tt.3 tt.4
PaDEL euclidean100 0,84 / 0,86 0,73 / 0,74 0,8 / 0,81 0,81 / 0,83
PaDEL euclidean 0,62 / 0,75 0,65 / 0,8 0,61 / 0,75 0,66 / 0,76
PaDEL manhattan100 0,83 / 0,86 0,72 / 0,74 0,79 / 0,81 0,81 / 0,82
PaDEL manhattan 0,61 / 0,73 0,63 / 0,78 0,61 / 0,73 0,66 / 0,75
PaDEL simple100 0,57 / 0,83 0,57 / 0,79 0,55 / 0,77 0,61 / 0,78
PaDEL simple 0,77 / 0,85 0,7 / 0,78 0,72 / 0,79 0,75 / 0,8

From table 5.2 and table 5.3 we can clearly see that we are able to find weights
which improve the results on train data for each fragment type and similarity

31

Table 5.3: Difference in AUC with and without weights using train data- Frag-
ment types, descriptors and similarity functions

RDKit ecfp.1 tt.2 tt.3 tt.4
RDKit euclidean100 0,10 0,08 0,09 0,09
RDKit euclidean 0,33 0,27 0,32 0,29
RDKit manhattan100 0,11 0,07 0,10 0,10
RDKit manhattan 0,32 0,28 0,32 0,28
RDKit simple100 0,34 0,38 0,31 0,31
RDKit simple 0,26 0,27 0,25 0,21
PaDEL ecfp.1 tt.2 tt.3 tt.4
PaDEL euclidean100 0,02 0,01 0,02 0,01
PaDEL euclidean 0,13 0,15 0,14 0,10
PaDEL manhattan100 0,02 0,02 0,02 0,01
PaDEL manhattan 0,12 0,15 0,13 0,09
PaDEL simple100 0,26 0,22 0,22 0,17
PaDEL simple 0,08 0,08 0,07 0,05

function when using both RDKit and PaDEl. Thus simulated annealing is a
succesful strategy for the search of weights on train data. However for
some similarity functions and fragment types we are able to find better weights
than for others and PaDEL performs much worse than RDKit.

Influence of fragment types:
We can notice that type of fragments influence training a lot. The ecfp.1

fragments performed better for all similarity functions and both descriptors type
than tt.2, tt.3 and tt.4 fragments. Also tt.4 performed better than tt.2 and tt.3
and came close to ecfp.1 fragments. The reason for this is probably because of
the size and shape of fragments. The ecfp.1 fragments are much bigger than tt.2
and tt.3 while tt.4 are closer in size. The size of fragments is important because
it influences the number of fragments created from a molecule. For example since
tt.2 and tt.3 are essentialy paths of length two and three in a graph (molecule) the
number of paths of length three is greater than the number of paths of length two
(for most graphs - molecules). Also the bigger the fragments are, the greater is the
variety of structuraly different fragments created. So by using bigger fragments
we get greater number of unique fragments. However the ecfp fragments are also
shaped differently than tt fragments which can influence the performance.

Influence of descriptor types:
Using RDKit we get a greater increase in AUC than when using PaDEL.

This is probably due to the fact, that PaDEL has much more descriptors (when
using correlation treshold equal to 1), which makes it harder to find suitable
weights. Without weights RDKit also performs better. It is a little bit surprising
that RDKit performs better than PaDEL without weights, since the number
of descriptors which PaDEL calculates is approximately four times larger than
what RDKit calculates. The reason for this could be that great number of of
PaDEL descriptors are correlated, close to constant for all molecules or just not
important.

Influence of similarity functions:

32

It is much harder to train using the euclidean100 and manhattan100 function.
However euclidean and manhattan perform worse without weights. It seems like
the simple100 can be trained better than the simple similarity function. After we
examine the test data we estimate why do functions behave like this.

Test Data

Now lets take a look at the results of test data and piece all of the information
together.

Table 5.4: Test without weights / Test with weights - Fragment types, descriptors
and similarity functions

RDKit ecfp.1 tt.2 tt.3 tt.4
RDKit euclidean100 0,9 / 0,91 0,79 / 0,79 0,86 / 0,87 0,89 / 0,89
RDKit euclidean 0,62 / 0,84 0,66 / 0,8 0,63 / 0,82 0,65 / 0,82
RDKit manhattan100 0,89 / 0,9 0,78 / 0,79 0,85 / 0,87 0,88 / 0,89
RDKit manhattan 0,64 / 0,85 0,67 / 0,81 0,64 / 0,82 0,67 / 0,83
RDKit simple100 0,63 / 0,82 0,57 / 0,8 0,64 / 0,81 0,65 / 0,81
RDKit simple 0,72 / 0,86 0,68 / 0,81 0,71 / 0,82 0,74 / 0,83
PaDEL ecfp.1 tt.2 tt.3 tt.4
PaDEL euclidean100 0,9 / 0,9 0,71 / 0,72 0,84 / 0,85 0,85 / 0,85
PaDEL euclidean 0,61 / 0,69 0,64 / 0,74 0,6 / 0,69 0,65 / 0,71
PaDEL manhattan100 0,89 / 0,9 0,71 / 0,71 0,84 / 0,84 0,85 / 0,85
PaDEL manhattan 0,59 / 0,68 0,62 / 0,71 0,6 / 0,69 0,65 / 0,71
PaDEL simple100 0,61 / 0,72 0,61 / 0,69 0,56 / 0,69 0,6 / 0,68
PaDEL simple 0,77 / 0,81 0,69 / 0,73 0,72 / 0,76 0,75 / 0,77

Table 5.5: Difference in AUC with and without weights using test data - Fragment
types, descriptors and similarity functions

RDKit ecfp.1 tt.2 tt.3 tt.4
RDKit euclidean100 0,01 0,01 0,01 0,00
RDKit euclidean 0,22 0,14 0,19 0,18
RDKit manhattan100 0,01 0,01 0,01 0,01
RDKit manhattan 0,21 0,14 0,18 0,16
RDKit simple100 0,19 0,23 0,18 0,17
RDKit simple 0,13 0,13 0,11 0,09
PaDEL ecfp.1 tt.2 tt.3 tt.4
PaDEL euclidean100 0,00 0,00 0,00 0,00
PaDEL euclidean 0,09 0,10 0,09 0,06
PaDEL manhattan100 0,00 0,00 0,00 0,00
PaDEL manhattan 0,09 0,10 0,09 0,05
PaDEL simple100 0,12 0,08 0,13 0,09
PaDEL simple 0,04 0,04 0,04 0,03

In tables 5.4 and 5.5 we see that weights which we found on the train data do
improve the performance on test data. However it largely depends on the simi-
larity function used - euclidean100 and manhattan100 seem to be improved only

33

a little bit. However other methods are improved greatly. As such we can say
that we are able to improve perofrmance of our method using weights
found through simulated annealing on train data. Interestingly the simple
similarity works reasonably well too - apparently the information optained from
bins is enough.

Influence of fragment types:
Different fragment types behave similarly like in train data. Ecfp.1 again

performs better than tt.2, tt.3 and tt.4. This is still probably caused by the
number and size of fragments.

Influence of descriptor types:
Again RDKit performs better than PaDEL both with and without weights.

We think that the reason is the same as with the train data - since PaDEL has
more descriptors, it is harder to train and many of them are probably correlated.

Influence of similarity functions:
This is the most interesting part. It seems like we are not able to improve

euclidean100 and manhattan100 using weights on test data even with different
fragment and descriptor types. However even though we are not able to improve
those methods with weights, they still perform much better than other similarity
functions.

So why is every method other than euclidean100 and manhattan100 improved
by weights? First of all euclidean100 and manhattan100 are very similar methods,
since Manhattan distance can be though of as just a approximation of Euclidean
distance. Second we hypothesise that the Nfrag method puts much greater pri-
ority on the type of fragments which the pair of molecules containt than the
standard method.

Standard Euclidean or Manhattan similarity computes similarity of pair of
molecules as average of similarities of all their fragments. This way we essentialy
blurr all information about what kind of fragments those molecules contained
(thanks to the average over all fragments) - two molecules with mediocre similarity
in all fragments are similiar just as two molecules with half of their fragments
identical and half different completly. This way weights can influence the outcome
more easily as descriptors are essentialy the only information which the similarity
function can utilise.

Since Nfrag method computes similarity as an average of top N similar frag-
ments, it definitely uses some information about what kind of fragments these
molecules contain. Two molecules with mediocre similarity in all fragments are
less similar than two molecules with half of their fragments identical and half
different completly. It seems like the information which the method obtains this
way is so strong that the weights can not overcome it easily. Other possibilty is
that it is easy to overtrain the weights when using this similarity function.

In order to test this, we tried setting the correlation treshold to 0 using the
RDKit descriptors (table 5.6). This way we end up with only 1 descriptor - the
molecular weight (MolWt).

As we can see euclidean100 still works much better than euclidean. This
supports the hypothesis that Nfrag similarity methods use a lot of iformation
about what kind of fragments the molecules contain, since molecular weight can
be almost used as an unique identifier of a fragment.

34

Table 5.6: RDKit descriptors, ecfp.1 fragments, euclidean100 similarity function
when used with correlation 0 - which means only molecular weight is used as a
descriptor

Corr 0
RDKit euclidean100 ecfp.1 0,77
RDKit euclidean ecfp.1 0,65

We also tried generating random weights for seeds 1, 2, 3, 4 and 5 (table 5.7).

Table 5.7: RDKit descriptors, ecfp.1 fragments, euclidean100 similarity function
with random weights

Seed 1 2 3 4 5
RDKit euclidean100 ecfp.1 0.903 0.900 0.899 0.902 0.901
RDKit euclidean ecfp.1 0.611 0.596 0.601 0.620 0.607

The size of interval in which euclidean100 values lie is 0.004 and for euclidean
the size is 0.024. Thus even random weights influence euclidean more than eu-
clidean100. This is probably due to the fact, that there are multiple descriptors
which can act as an identifier of a fragment (which euclidean100 can utilise) and
the chance that some set of weights would minimize the importance of all those
descriptors is very small.

However it is a little bit surprising that random weights do not have a greater
influence. This shows, that weights which we found using simulated
annealing and which improve various similarity functions are not just
a lucky find.

Conclusion

• Some fragments are better than others for the implementatin of our ap-
proach - ecfp.1 seems to be the best performing.

• Greater number of descriptors makes it harder for simulated annealing to
find weights. Greater number of descriptors also does not improve the
method when used without wieghts. RDKit seems to be better than PaDEL.

• Some similarity function are better suited for our approach than others.
Some similarity functions are improved by weights like euclidean, but some
are not like euclidean100.

• Random weights do not influence the performance too much. Thus the
weights which improve the preformance are with high probabilty not doing
it by luck.

• We picked ecfp.1 as fragments used in future experiments. Similarity func-
tions chosen are euclidean and euclidean100, since they performed the best.
Also euclidean represents a function influenced by weights and euclidean100
represents function not influenced by weights. We want to examine if other
parameters change this behaviour.

35

5.3.2 Correlated descriptors
Now we want examine how much does the correlation treshold influence the
method, especially how does RDKit and PaDEL perform with various correlation
tresholds.

The setup of experiments:
Dataset: Dataset 20 1000 50 8000
Fragments: ecfp.1
Descriptors: RDKit, PaDEL
Similarity function: euclidean100, euclidean
Fragment noise treshold: 100 (essentialy is disabled)
Correlated descriptors treshold: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Temperature: 1000
Cooling: 0.999
Distance of vectors: 25
Number of dimensions to change: 1
We use ecfp.1 fragments since they the had best results in previous experi-

ments. Both RDKit and PaDEL are used since we want to see how the correlation
treshold influences each descriptor type. We chose euclidean and euclidean100
as euclidean showed strong improvement with weights and euclidean100 did not
react to them and it would be interresting to see if correlated descriptors change
this behaviour.

Train data table is not included in these experiments since we already estab-
lished that the training phase succesfully finds the weights.

The table shows correlation treshold =>average number of descriptors which
are assigned to a fragment in first and forth row. The number of descriptors of
a fragment is different for each split, since for each split we calculate correlated
descriptors separately.

Table 5.8: Test without weights / Test with weights - Correlation treshold
=>Number of descriptors
RDKit 0,1=>40,20 0,2=>46,90 0,3=>57,60 0,4=>65,50 0,5=>72,20 0,6=>83,40 0,7=>90,50 0,8=>100,50 0,9=>111,80 1=>125,80
RDKit euclidean100 0,88 / 0,88 0,89 / 0,89 0,9 / 0,9 0,9 / 0,9 0,9 / 0,9 0,9 / 0,9 0,9 / 0,9 0,9 / 0,91 0,9 / 0,9 0,9 / 0,91
RDKit euclidean 0,57 / 0,81 0,6 / 0,82 0,64 / 0,84 0,64 / 0,83 0,64 / 0,84 0,65 / 0,84 0,65 / 0,84 0,64 / 0,84 0,62 / 0,83 0,62 / 0,84
PaDEL 0,1=>49,30 0,2=>62,30 0,3=>82,30 0,4=>104,90 0,5=>135,10 0,6=>169,90 0,7=>214,80 0,8=>283,20 0,9=>382,90 1=>739,10
PaDEL euclidean100 0,89 / 0,9 0,89 / 0,89 0,9 / 0,9 0,9 / 0,91 0,9 / 0,91 0,9 / 0,91 0,9 / 0,91 0,9 / 0,91 0,9 / 0,91 0,9 / 0,9
PaDEL euclidean 0,61 / 0,82 0,59 / 0,8 0,64 / 0,83 0,66 / 0,83 0,67 / 0,83 0,63 / 0,83 0,63 / 0,83 0,62 / 0,82 0,63 / 0,8 0,61 / 0,69

The results from table 5.8 are pretty surprising. It seems like the correlation
treshold does not really affect the performance of RDKit descriptors at all - results
on test data and train data are consistent up to the 0.2 correlation treshold. Even
after that they are worse only by a little bit.

The only big difference is between PaDEL paired with euclidean method from
correlation 1 to correlation 0.9. We removed a lot of descriptors and thus the
simulated annealing can find suitable weights more easily and improve the per-
formance. We can also notice below the correlation treshold of 0.8 the PaDEL
descriptors perform very similarly to RDKit descriptors.

Lastly we can see that a lot of descriptors are correlated, since the average
number of used descriptors drops very fast (especialy for PaDEL).

36

Conclusion

A lot of descriptors are correlated or non-important. When using PaDEL it is
benefitial for our method to remove some correlated descriptors. We can also
safely remove a lot of descriptors and speed our calculations up without having
to wory about losing performance.

We can also safely use RDKit instead of PaDEL since PaDEL does not bring
any benefits to our method even though it has much more descriptors.

5.3.3 Fragment noise reduction treshold
In this set of experiments we examine how does fragment noise influence the
performance. We use only RDKit descriptors since we established that PaDEL
does not bring any advantage in previous experiments.

The setup of experiments:
Dataset: Dataset 20 1000 50 8000
Fragments: ecfp.1
Descriptors: RDKit
Similarity function: euclidean100, euclidean
Fragment noise treshold: 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Correlated descriptors treshold: 0.5
Temperature: 1000
Cooling: 0.999
Distance of vectors: 25
Number of dimensions to change: 1
Correlation treshold is set to 0.5 since it does not seem to harm perfromance

when using RDKit descriptors.
Train data table is not included in these experiments since we already estab-

lished that the training phase succesfuly find the weights.
The table shows fragment noise treshold =>number of unique fragments in a

split averaged over all splits and targets (not by average number of fragments in
a single molecule averaged over all splits and targets!) in the first line.

Table 5.9: Test without weights / Test with weights - Fragment noise treshold
=>Number unique fragments in all molecules
RDKit 1=>645,5 5=>754,9 10=>786,5 20=>809,4 30=>819 40=>822,8 50=>826 60=>827,9 70=>828,4 80=>828,6 90=>828,9 100=>829,8
euclidean100 0,75 / 0,75 0,82 / 0,83 0,85 / 0,85 0,89 / 0,89 0,9 / 0,89 0,91 / 0,91 0,91 / 0,91 0,9 / 0,9 0,9 / 0,9 0,9 / 0,9 0,9 / 0,9 0,9 / 0,9
euclidean 0,72 / 0,72 0,7 / 0,75 0,68 / 0,77 0,66 / 0,82 0,66 / 0,82 0,67 / 0,83 0,67 / 0,83 0,66 / 0,84 0,66 / 0,83 0,66 / 0,83 0,66 / 0,83 0,62 / 0,84

From the table 5.9 it is clearly visible that fragment noise reduction worsen the
performance both for euclidean and euclidean100 when using weights. Without
weights the euclidean method improves.

This improvement in euclidean method without weights could really be thanks
to the reduction of harmful fragment noise, however it seems like the same frag-
ments also contribute to the performance of euclidean with weights.

It is interesting that even at 1% treshold the number of fragments is still quite
large. This means that a lot of molecules have fairly unique fragments.

37

Conclusion

The fragment noise reduction is not a siutable way of increasing precision of our
approach as we loose too much useful information. Nor is it suitable way of
improving performance, since we still end up with large quantities of fragments
on average.

5.3.4 Temperature, cooling, distance and number of di-
mension to change

In this set of experiments we examine the parameters of simulated annealing from
section 3.1.

The setup of experiments:
Dataset: Dataset 20 1000 50 8000
Fragments: ecfp.1
Descriptors: RDKit
Similarity function: euclidean100, euclidean
Fragment noise treshold: 60
Correlated descriptors treshold: 0.5
Temperature: 10 100 1000 10000 100000 1000000
Cooling: 0.99 0.999
Distance of vectors: 25
Number of dimensions to change: 1
Correlation treshold is set to 0.5 and fragment noise reduction treshold is set

to 60 since it does not seem to harm performance when using RDKit descriptors.
Train data table is not included in these experiments since we already estab-

lished that the training phase succesfuly find the weights.

Table 5.10: Test without weights / Test with weights - Temperature and cooling
Temperature 10 100 1000 10000 100000 1000000
euclidean100 0,99 0,9 / 0,91 0,9 / 0,91 0,9 / 0,91 0,9 / 0,91 0,9 / 0,91 0,9 / 0,91
euclidean100 0,999 0,9 / 0,91 0,9 / 0,9 0,9 / 0,9 0,9 / 0,9 0,9 / 0,9 0,9 / 0,9
euclidean 0,99 0,66 / 0,79 0,66 / 0,81 0,66 / 0,81 0,66 / 0,81 0,66 / 0,81 0,66 / 0,81
euclidean 0,999 0,66 / 0,83 0,66 / 0,83 0,66 / 0,84 0,66 / 0,83 0,66 / 0,83 0,66 / 0,83

In table 5.10 different temperatures do not influence the euclidean100 simi-
larity function. However different cooling seems to improve euclidean100 slightly.
This could mean that weights are overtrained for euclidean100, since at lower
temperatures and faster coolings overtraining should be reduced. However the
change is too small to tell for sure. It seems like euclidean100 is just very resiliant
to the influence of weights.

However euclidean method is influenced singificanlty by the speed of cooling.
At 0.999, it performs much better. This means that euclidean similarity function
performs better when given greater time to find weights.

We also tried different distances of vectors. The setup is the same as above,
with the difference in:

Temperature: 1000000
Distance of vectors: 5, 10, 25, 50, 100

38

Since we are using correlation 0.5, that means we have 72 RDKit descriptors
on average. With different values of distances, we are essentialy giving more
positions for each weights to obtain. For example at 100 distance the weights
can be either 1 or 0, thus we have 272 combinations of weights on average. With
distance value of 10, we have 1072 combinations of weights. Thus smaller distances
should result in greater precision of weights but also make it harder to find the
weights since there the number of possible weights gets larger.

Table 5.11: Test without weights / Test with weights - Distance of weights
Distance 5 10 25 50 100
euclidean100 0,9 / 0,91 0,9 / 0,91 0,9 / 0,9 0,9 / 0,9 0,9 / 0,9
euclidean 0,66 / 0,82 0,66 / 0,83 0,66 / 0,83 0,66 / 0,83 0,66 / 0,83

Table 5.11 shows interesting result. It seems like there is almost no difference
in the effect of weights on test data between weights which can have only 2
positions and weights with 20 posible positions. First this could mean that more
precise weights do not translate better from train data to test data. Second
this could mean that when searching through so many possible combinations of
weights, we are not able to utilise the precision of smaller distances and find just
rough weights anyway.

To get a better idea, we created charts of training on a single split (target
DRD2 Antagonist, split s 001) 5.1 5.2 for euclidean100 similarity function. The
X axis shows the number of iterations and the Y axis shows the value of AUC.
We can see that when training with distance 100 the graph gets much more
jittery, however the annealing still works relatively well and can find some kind
of maxima. This shows that the difference between training a split with distance
10 and 100 is significant, however when averaged over all splits and targets the
result is similar.

Figure 5.1: euclidean100, distance
10, simulated annealing for 1 split

Figure 5.2: euclidean100, distance
100, simulated annealing for 1 split

Lastly we experimented with the number of dimensions changed in each iter-
ation of annealing.

The setup is the same as above with the difference in:
Temperature: 100000
Distance of vectors: 10
Number of dimensions to change: 1, 2, 3, 5, 10, 15, 25, 50, all dimensions

39

Greater number of dimensions of vector of weights which we change in each
iteration should make it harder for simulated annealing. The reason for this
is that we essentialy jump from position to other position in the vector space
acros multiple dimensions and loose the information which dimension improves
the method and which does not.

With the correlation set to 0.5 we have on average cca. 70 descriptors for a
fragment.

Table 5.12: Test without weights / Test with weights - Dimension
Dimensions 1 2 3 5 10 15 25 50 all
euclidean100 0,91 / 0,91 0,91 / 0,91 0,91 / 0,9 0,91 / 0,91 0,91 / 0,9 0,91 / 0,91 0,91 / 0,91 0,91 / 0,91 0,91 / 0,9
euclidean 0,66 / 0,83 0,66 / 0,84 0,66 / 0,84 0,66 / 0,84 0,66 / 0,84 0,66 / 0,84 0,66 / 0,83 0,66 / 0,83 0,66 / 0,83

From the table 5.12 we can see that again the effect of various numbers of
dimensions which we change in each iteration is little.

In order to get a better picture we again created charts of training on a
single split (target DRD2 Antagonist, split s 001) 5.3 5.3 for euclidean similarity
function.

Figure 5.3: euclidean, dimension 1,
simulated annealing for 1 split

Figure 5.4: euclidean, all dimen-
sions, simulated annealing for 1 split

Interrestingly these charts look very similar to the previous ones, where we
manipulated with distances of vectors. In the end both distance and dimension
variable influence how much are weights in each iteration different.

Conclusion

The speed of cooling influences performance singnificantly, while the starting
temperature and distane of weights do not.

The effects of various numbers of dimensions to change and distances seems
similar. For both variables it is probably better to use lower values.

We hypothesise that using even slower cooling and greater starting tempera-
ture we could see a greater difference in various distances of weights and numbers
of dimensions to change.

To improve the performance of simulated annealing, the best strategy is to
lower the cooling and increase the temperature, other variables set as low as
possible.

40

5.3.5 Effects of larger train data
It seems like a lot of parameters do not influence the performance. The greatest
differences are between different fragment types, similarity functions and cool-
ings. Different descriptors, correlation tresholds, fragment noise tresholds, tem-
peratures, distances and number of dimensions to change do not seem to really
cause a change.

Now we want to see if larger train data can improve the effects of weights
using ecfp.1 and similarity functions euclidean and eucldiean100.

The setup of experiments:
Dataset: Dataset 20 1000 50 8000, Dataset 50 1000 50 8000
Fragments: ecfp.1
Descriptors: RDKit
Similarity function: euclidean100, euclidean
Fragment noise treshold: 60
Correlated descriptors treshold: 0.5
Temperature: 1000
Cooling: 0.999
Distance of vectors: 25
Number of dimensions to change: 1
Dataset 20 1000 50 8000 is marked as D20.
Dataset 50 1000 50 8000 is marked as D50.
Greater train set will cause better overall AUC, however we are interested in

the increase of perfromance when using weights.

Table 5.13: Test without weights / Test with weights - Different datasets
Dataset D1 D2
euclidean100 0,9 / 0,9 0,94 / 0,94
euclidean 0,66 / 0,84 0,66 / 0,87

Table 5.14: Difference in AUC values with and without weights in test data -
Different datasets

Datasets D1 D2
euclidean100 0,000 0,002
euclidean 0,173 0,212

In table 5.13 and 5.14 we can notice that euclidean method sees better im-
provement when used on larger training set. However euclidean100 still is not
improved by weights at all.

This shows again, that weights used as an improvement of our method depends
greatly on the similarity function used. Some similarity functions do not respond
well to trained weights. Table 5.15 and 5.16 show that we really did find weights
on train data even for euclidean100 method (although worse weights than for
euclidean method).

41

Table 5.15: Train without weights / Train with weights - Different datasets
D1 D2

euclidean100 0,85 / 0,95 0,88 / 0,95
euclidean 0,67 / 0,97 0,68 / 0,96

Table 5.16: Difference in AUC values with and without weights in train data -
Different datasets

Datasets D1 D2
euclidean100 0,107 0,075
euclidean 0,302 0,279

Conclusion

Not even weights found on a dataset with larger train data influence the eu-
clidean100 similarity function. However euclidean similarity function sees greater
improvement. This shows us again, that some similarity functions respond better
to weights than others.

Weights found through larger train set are better than weights found through
smaller train set.

5.3.6 Comparison to traditional methods
After examining the effects of different parameters on the performance of our ap-
proach, we can now compare it to other traditional methods. For this comparison
we picked the best performing combination.

The setup of computation:
Dataset: Dataset 20 1000 50 8000
Fragments: ecfp.1
Descriptors: RDKit
Similarity function: euclidean100
Fragment noise treshold: 50
Correlated descriptors treshold: 0.5
Temperature: 1000
Cooling: 0.999
Distance of vectors: 25
Number of dimensions to change: 1
The graph 5.5 contains AUC value on Y axis and targets of given dataset on

X axis.
As we can see euclidean100 performs similarly as the traditional methods,

however is outperformed by ECFP 2 2048. Full table of values for each method
and target can be found in attachements 6.1.

Now lets take a look at the dataset Dataset 50 1000 50 8000 5.6. The setup
remains the same, only the dataset used changed.

Again euclidean100 performs almost as well as the traditional methods, out-
performed by ECFP 2 2048. Full table of values for each method and target can
be found in attachements 6.2.

42

Figure 5.5: Our method using ecfp.1 fragments, euclidean100 similar-
ity function and RDKit descriptors compared to traditional methods on
Dataset 20 1000 50 8000

Figure 5.6: Our method using ecfp.1 fragments, euclidean100 similar-
ity function and RDKit descriptors compared to traditional methods on
Dataset 20 1000 50 8000

43

Conclusion

The euclidean100 performs in a comparable way to traditional meth-
ods on both datasets. This means that with the right similairy function the
fragment-feature molecular representation is comparable to traditional methods.
Unfortunately euclidean100 does not seem to be improved by weights - if eu-
clidean100 improved in similar fashion as euclidean for example, we would out-
perform the traditional methods. We believe that weighted fragment-feature
representation has the potential to outperform the traditional methods, one just
need to design suitable similarty function.

44

6. Discussion
In our work we have implemented weighted fragment-feature molecular represen-
tation, designed multiple similarity functions for this representation, implemented
simulated annealing and added the elimination of correlated descriptors and frag-
ment noise. We also created a tool for large scale computation of experiments.

We have demonstrated that when given the right similarity function, weights
found through simulated annealing improve the performance of weighted fragment-
feature molecular representation. We have also found a similarity function which
performs almost as well as other traditional methods. The influence of different
parameters of our approach was examined through experiments and we deter-
mined which are benefitial and which are not. Thus we completed the two main
goals of our work.

All of the subgoals of our work were also completed. We found that the best
performing fragments are circular fragments of radius 1, best performing descrip-
tors are from RDKit, euclidean100 is the best performing similarity function and
we explored the correlation treshold and fragment noise.

As we were able to both succesfuly design well performing similarity func-
tion, demonstrate the potential of weights found through simulated annealing
and complete all of the subgoals, we think of this work as a succes.

6.1 Future work

With the information obtained through this work, we see a potential in weighted
fragment-feature representation paired with simulated annealing. As the similar-
ity function seems to be the most influential factor, we think that a solution to
outperform the traditional methods lies in finding a better one. Perhaps simi-
larity function based on the Nfrag similarity, hovewer altered in such a way that
weights improve it.

We also want to use our method on other datasets, such as datasets with very
low and very high number of training molecules. Also it would be interesting to
try extremely long training times on these datasets.

45

46

Bibliography
[1] Roberto Todeschini and Viviana Consonni. Handbook of Molecular Descrip-

tors. Wiley-VCH, 2000.

[2] Škoda P. Hoksza D. Using bayesian modeling on molecular fragments fea-
tures for virtual screening. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics, 2016.

[3] C. Lipinski and A. Hopkins. Navigating chemical space for biology and
medicine. Nature, page 855–861, 2004.

[4] McMartin C. Bohacek, R.S. and W.C. Guida. The art and practice of
structure-based drug design: a molecular modeling perspective. Medicinal
Research Reviews, page 3–50, 1996.

[5] Hugo Kubinyi Gerd Folkers Christoph Sotriffer, Raimund Mannhold. Virtual
Screening: Principles, Challenges, and Practical Guidelines. Wiley-VCH,
2011.

[6] M.A. Johnson and G.M. Maggiora. Concepts and Applications of Molecular
Similarity. John Wiley & Sons, Inc., New York, 1990.

[7] Cramer R.D. Ferguson A.M. Clark R.D. Patterson, D.E. and L.E. Wein-
berger. Neighborhood behavior: a useful concept for validation of molecular
diversity descriptors. Journal of Medicinal Chemistry, page 3049–3059, 1996.

[8] F.L. Stahura and J. Bajorath. Virtual screening methods that complement
hts. Combinatorial Chemistry & High Throughput Screening, 7:259–269,
2004.

[9] F.; Dominy B.W.; Feeney P.J. Lipinski, C.A.; Lombardo. Experimental and
computational approaches to estimate solubility and permeability in drug
discovery and development settings. Adv. Drug Deliv. Rev., pages 3–25,
1997.

[10] Vassilatis DK Cournia Z Lionta E, Spyrou G. Structure-based virtual screen-
ing for drug discovery: principles, applications and recent advances. Curr
Top Med Chem, pages 1923–38, 2014.

[11] V. Todeschini, R.; Consonni. Molecular Descriptors for Chemoinformatics.
Wiley-VCH, 2009.

[12] Qiannan Hu Yi-Zeng Liang Dong-Sheng Cao, Qingsong Xu. Manual for
chemopy. https://www.researchgate.net. Accessed: 2010-09-30.

[13] Yap CW. Padel-descriptor: An open source software to calculate molecular
descriptors and fingerprints. Journal of Computational Chemistry, pages
1466–1474, 2011.

[14] Greg Landrum. Rdkit: Open-source cheminformatics. http://www.rdkit.
org. Accessed: 2010-09-30.

47

https://www.researchgate.net
http://www.rdkit.org
http://www.rdkit.org

[15] C.; Kuhn S.; Floris M.; Guha R.; Willighagen E. L. Steinbeck, C.; Hoppe.
Recent developments of the chemistry development kit (cdk) - an open-source
java library for chemo- and bioinformatics. Current Pharmaceutical Design,
pages 2111 – 2120, 2006.

[16] D. E. J. Sykora, V. J.; Leahy. Chemical descriptors library (cdl): a generic,
open source software library for chemical informatics. Chem Inf Model, page
1931, 2008.

[17] J. S. Dixon R. Nilakantan, N. Bauman and R. Venkataraghavan. Topological
torsion: A new molecular descriptor for sar applications. comparison with
0ther descriptors. J Chem Inf Comput Sci, page 82–85, 1987.

[18] D. Rogers and M. Hahn. Extended-connectivity fingerprints. J Chem Inf
Comput Sci, page 742–754, 2010.

[19] ChemAxon. Chemaxon docs. https://docs.chemaxon.com. Accessed:
2010-09-30.

[20] Jan K. Lenstra Emile Aarts. Local Search in Combinatorial Optimization.
John Wiley & Sons, 1997.

[21] Škoda P. Hoksza D. Benchmarking platform for ligand-based virtual screen-
ing. Bioinformatics and Biomedicine (BIBM), 2016.

48

https://docs.chemaxon.com

List of Figures

1.1 Diagram of chemical space - ilustration from [5] 5
1.2 Ilustration of descriptors - from [12] 7
1.3 Ilustration of fingerprint, colorful bits are set to 1, the rest is set

to 0 - from [12] . 8
1.4 Diagram of LBVS with descriptors 9
1.5 Ilustration of circular fragments - from [19] 9

2.1 Diagram of weighted fragment-feature molecular representation . 14

3.1 The complete diagram of our method 22

5.1 euclidean100, distance 10, simulated annealing for 1 split 39
5.2 euclidean100, distance 100, simulated annealing for 1 split 39
5.3 euclidean, dimension 1, simulated annealing for 1 split 40
5.4 euclidean, all dimensions, simulated annealing for 1 split 40
5.5 Our method using ecfp.1 fragments, euclidean100 similarity func-

tion and RDKit descriptors compared to traditional methods on
Dataset 20 1000 50 8000 . 43

5.6 Our method using ecfp.1 fragments, euclidean100 similarity func-
tion and RDKit descriptors compared to traditional methods on
Dataset 20 1000 50 8000 . 43

C.1 Screenshot of WeFrag menu . 64

49

50

List of Tables

5.1 The color scheme . 30
5.2 Train without weights / Train with weights - Fragment types, de-

scriptors and similarity functions 31
5.3 Difference in AUC with and without weights using train data- Frag-

ment types, descriptors and similarity functions 32
5.4 Test without weights / Test with weights - Fragment types, de-

scriptors and similarity functions 33
5.5 Difference in AUC with and without weights using test data - Frag-

ment types, descriptors and similarity functions 33
5.6 RDKit descriptors, ecfp.1 fragments, euclidean100 similarity func-

tion when used with correlation 0 - which means only molecular
weight is used as a descriptor . 35

5.7 RDKit descriptors, ecfp.1 fragments, euclidean100 similarity func-
tion with random weights . 35

5.8 Test without weights / Test with weights - Correlation treshold
=>Number of descriptors . 36

5.9 Test without weights / Test with weights - Fragment noise treshold
=>Number unique fragments in all molecules 37

5.10 Test without weights / Test with weights - Temperature and cooling 38
5.11 Test without weights / Test with weights - Distance of weights . . 39
5.12 Test without weights / Test with weights - Dimension 40
5.13 Test without weights / Test with weights - Different datasets . . . 41
5.14 Difference in AUC values with and without weights in test data -

Different datasets . 41
5.15 Train without weights / Train with weights - Different datasets . . 42
5.16 Difference in AUC values with and without weights in train data

- Different datasets . 42

6.1 Complete table for comparions of euclidean100 to traditional meth-
ods for the Dataset 20 1000 50 8000 55

6.2 Complete table for comparions of euclidean100 to traditional meth-
ods for the Dataset 50 1000 50 8000 56

51

52

List of Abbreviations
LBVS Ligand based virtual screening

euclidean100 Nfrag similarity function using Euclidean distance and P value
of 100.

manhattan100 Nfrag similarity function using Manhattan distance and P value
of 100.

simple100 Nfrag similarity function using simple distance and P value of 100.

euclidean Euclidean similarity.

manhattan Manhattan similarity.

simple Simple similarity.

ecfp.1 and ecfp.2 Circular fragments with radius of 1 and 2.

tt.2, tt.3, tt.4 Linear fragments of length 2, 3 and 4.

53

54

Attachments

Table 6.1: Complete table for comparions of euclidean100 to traditional methods
for the Dataset 20 1000 50 8000

euclidean100 – 0.91 AP – 0.91 TT – 0.91 ECFP 2 2048 – 0.93
5HT1A Agonist 0,90 0,91 0,88 0,92
5HT1A Antagonist 0,92 0,91 0,91 0,92
5HT1D Agonist 0,92 0,92 0,93 0,93
5HT1D Antagonist 0,89 0,90 0,93 0,93
5HT2A Antagonist 0,88 0,91 0,88 0,92
5HT2C Antagonist 0,82 0,81 0,88 0,85
AA2AR Antagonist 0,94 0,94 0,95 0,93
AA2BR Antagonist 0,91 0,93 0,95 0,92
ACM1 Agonist 0,86 0,83 0,81 0,85
ADA1A Antagonist 0,83 0,93 0,91 0,93
ADA1B Antagonist 0,90 0,94 0,93 0,96
ADA1D Antagonist 0,91 0,95 0,94 0,96
ADA2A Antagonist 0,86 0,88 0,85 0,92
ADA2B Antagonist 0,86 0,84 0,81 0,87
ADA2C Antagonist 0,87 0,86 0,83 0,89
ADRB3 Agonist 0,99 0,93 0,96 0,98
AG2R Antagonist 0,94 0,96 0,96 0,98
CCKAR Antagonist 0,87 0,93 0,92 0,93
CLTR1 Antagonist 0,90 0,88 0,91 0,91
DRD2 Antagonist 0,89 0,90 0,87 0,91
DRD3 Antagonist 0,86 0,89 0,87 0,92
DRD4 Antagonist 0,88 0,95 0,91 0,96
EDNRA Antagonist 0,92 0,91 0,91 0,93
EDNRB Antagonist 0,90 0,88 0,91 0,92
EGFR 0,99 0,98 0,98 0,99
ER Alpha Agonist 0,91 0,96 0,95 0,97
ER Beta Agonist 0,96 0,94 0,94 0,97
FXR Alpha Agonist 0,92 0,92 0,92 0,92
GASR Antagonist 0,90 0,92 0,90 0,91
GR Agonist 0,94 0,93 0,90 0,90
GR Antagonist 0,92 0,95 0,96 0,95
HRH3 Antagonist 0,96 0,88 0,94 0,99
LXR Alpha Agonist 0,94 0,93 0,96 0,96
LXR Beta Agonist 0,93 0,94 0,97 0,97
NK1R Antagonist 0,86 0,91 0,91 0,90
OPRD Agonist 0,95 0,93 0,92 0,95
PPAR Alpha Agonist 0,96 0,93 0,96 0,99
PPAR Beta Agonist 0,96 0,93 0,97 0,98
PPAR Gamma Agonist 0,82 0,85 0,88 0,92
PR Agonist 0,97 0,95 0,93 0,99
PR Antagonist 0,91 0,93 0,94 0,97
TA2R Antagonist 0,86 0,83 0,84 0,87

55

Table 6.2: Complete table for comparions of euclidean100 to traditional methods
for the Dataset 50 1000 50 8000

euclidean100 - 0,95 AP - 0,95 TT - 0,95 ECFP 2 2048 - 0,97
5HT1A Agonist 0,93 0,94 0,93 0,94
5HT1A Antagonist 0,95 0,95 0,94 0,95
5HT1D Agonist 0,97 0,96 0,96 0,96
5HT1D Antagonist 0,95 0,94 0,96 0,97
5HT2A Antagonist 0,90 0,91 0,91 0,95
5HT2C Antagonist 0,89 0,86 0,91 0,91
AA2AR Antagonist 0,97 0,97 0,97 0,96
AA2BR Antagonist 0,95 0,96 0,97 0,96
ACM1 Agonist 0,92 0,90 0,88 0,92
ADA1A Antagonist 0,91 0,96 0,95 0,96
ADA1B Antagonist 0,96 0,97 0,97 0,97
ADA1D Antagonist 0,93 0,96 0,95 0,96
ADA2A Antagonist 0,92 0,94 0,92 0,95
ADA2B Antagonist 0,91 0,89 0,89 0,94
ADA2C Antagonist 0,93 0,91 0,89 0,93
ADRB3 Agonist 0,99 0,96 0,98 0,99
AG2R Antagonist 0,98 0,97 0,97 0,98
CCKAR Antagonist 0,91 0,94 0,94 0,93
CLTR1 Antagonist 0,94 0,94 0,95 0,95
DRD2 Antagonist 0,92 0,94 0,93 0,95
DRD3 Antagonist 0,90 0,94 0,93 0,95
DRD4 Antagonist 0,95 0,97 0,93 0,97
EDNRA Antagonist 0,94 0,95 0,96 0,97
EDNRB Antagonist 0,94 0,96 0,97 0,97
EGFR 1,00 1,00 1,00 1,00
ER Alpha Agonist 0,96 0,98 0,97 0,99
ER Beta Agonist 0,98 0,98 0,98 0,99
FXR Alpha Agonist 0,99 0,98 0,98 0,99
GASR Antagonist 0,95 0,97 0,97 0,97
GR Agonist 0,99 1,00 0,97 1,00
GR Antagonist 0,97 0,98 0,99 0,99
HRH3 Antagonist 0,97 0,95 0,97 0,99
LXR Alpha Agonist 0,97 0,98 0,99 0,99
LXR Beta Agonist 0,99 0,98 0,99 1,00
NK1R Antagonist 0,90 0,94 0,94 0,93
OPRD Agonist 0,96 0,96 0,96 0,98
PPAR Alpha Agonist 0,98 0,95 0,97 0,99
PPAR Beta Agonist 0,99 0,96 0,98 0,99
PPAR Gamma Agonist 0,88 0,88 0,90 0,94
PR Agonist 0,98 0,99 0,97 1,00
PR Antagonist 0,95 0,98 0,98 0,98
TA2R Antagonist 0,91 0,91 0,92 0,93

56

A. File Formats and Directory
System

A.1 Input data format and file system

Our program supports this format of input when using directory system:

• Data/datasetName/targetName/split/targetName active test.sdf
• Data/datasetName/targetName/split/targetName decoys test.sdf
• Data/datasetName/targetName/split/targetName active train.sdf
• Data/datasetName/targetName/split/targetName decoys train.sdf
• Data/datasetName/targetName/split/targetName active validation.sdf
• Data/datasetName/targetName/split/targetName decoys validation.sdf

”TargetName” is replaced by real target name in practice and split is replaced
by s 001 or s 002 etc.

When using command line the only requirement is that the files must be SDF.

A.2 The output of phase preprocess.py

Data is saved in a text file and the system is following:

• 1. line = number of descriptors
• 2. line = number of unique fragments of given molecules
• 3. line = number of active molecules train
• 4. line = number of active molecules validation
• 5. line = number of active molecules test
• 6. line = number of inactive molecules tran
• 7. line = number of inactive molecules validation
• 8. line = number of inactive molecules test
• The same number of lines as number of fragments then contain only values

of descriptors for each fragment (without name - essentialy 2D array of
descriptors, each row being a fragment).

• For each number of molecules in the same order (from lines 3. to 8.) is each
molecule written as line of fragments, where each fragment is represented
by index to a line, which contains the descriptors of given fragment (index
to a row in array described previously).

• Last line is a line with names of descriptors.

A.3 Output format
When using command line, output of python main.py -type model is

• Line with names of descriptors
• Lines with values of weights

57

• Line with information about calculation: AUC of train data without weights,
AUC with weights, AUC with random weights, number of descriptors used
and number of unique fragments in molecules.

When using command line, output of python main.py -type test is

• Line with information about calculation: AUC of test data without weights,
AUC with weights, AUC with random weights, number of descriptors used
and number of unique fragments in molecules.

When using the menu, output is

• Line with names of descriptors
• Lines with values of weights
• Line with information about calculation: AUC of train data without weights,

AUC with weights, AUC with random weights, number of descriptors used
and number of unique fragments in molecules.

• Line with information about calculation: AUC of test data without weights,
AUC with weights, AUC with random weights, number of descriptors used
and number of unique fragments in molecules.

When using the menu output uses directory system: Results/datasetName/targetName/fragmentType/descriptorType/similarityFuniction/correlationTreshold/fragmentNoiseTreshold/annealingType/temperature/cooling/distance/dimensions/split
Through menu option [3] these outputs can be aggregated into single .csv file.

58

B. Programmer Documentation
The project is implemented using mix of Python, C++ and Bash. Python is
used to implement the main logic and functionality including client-server com-
munication. C++ is used to handle the most computationaly demanding part
- simulated annealing and screening. Bash is used for few simple scripts. C++
program is called screening and can be used independently on on the python
code.

We choose Python because of RDKit, which is library used to extract frag-
ments and assign descriptors (and has many other useful functions like AUC
calculation), is implemented in Python. The original plan was to use Python on
screening and annealing too, but in the end we switched to C++. Hence we never
actualy use RDKit in our code, but Python was still a great choice, because the
general logic of a program is written much faster in this langauge.

C++ was chosen for its performance and also because it does not require any
virtual machine like Java or C# does. Thus our cluster does not need to have
.Net, Mono or JVM installed.

Python code consists of a set of scripts:
• main.py - Handles communication with user, communication with servers,

manages given tasks (their assignment to servers or local computer)
• WeFrag server.py - Communicates with client, runs computations on server.
• merge sdf.py - Small script which merges sdf files provided.
• remove duplicates.py - Small script which removes duplicate molecules

from .sdf file.
• split info.py - Generates info about split from given .sdf files into a .json

file.
• extract fragments.py - Creates .json file containing information about

molecules and its fragments. This script was provided by Petr Škoda.
• padel descriptors.py - Assignes PaDEL descriptors to each fragment. Re-

quires .json file of molecules and fragments (same file which extract fragments.py
outputs). This script was provided by Petr Škoda.

• rdkit descriptos.py - Assignes RDKit descriptors to each fragment. Re-
quires .json file of molecules and fragments (same file which extract fragments.py
outputs). This script was provided by Petr Škoda.

• phase preprocess.py - Final preprocess of training or test data. For train
data emoves correlated descriptors, fragment noise and scales the descrip-
tors. For test data removes descriptors descriptors not used in weights,
fragment noise and scales the descriptors.

Bash scripts consist of:
• generate data.sh - Generates data in a format useful for screening from

the input .sdf files. Executes the scripts used for preprocessing of data and
checks for existing/non-existing files. Used with the directory system. Used
when commands are provided through menu.

• cmd line run.sh Does the same as generate data.sh but do not relie on
directory system and on top of that starts the screening. Used when com-
mands are provided through command line.

59

• pinger.sh - Can check if cluster computer is online, if someone is using it
or to start WeFrag server.py on it.

• starter.sh - Small script which is meant to inicialise supporting software
before the start of server. We are using to start RDKit, it can be rewritten
for other needs.

C++ program screening consist of:

• screening.cpp - Handles main logic, reading input and producing output.
• Comparer.cpp and Comparer.h - Parent class used in order to easily

implement new similarity functions for comparing molecules.
• Euclidean NFrag.cpp and Euclidean NFrag.h - Child of Comparer,

implements Euclidean similarity and Nfrag Euclidean similarity.
• Manhattan NFrag.cpp and Manhattan NFrag.h - Child of Comparer,

implements Manhattan similarity and Nfrag Manhattan similarity.
• Simple NFrag.cpp and Simple NFrag.h - Child of Comparer, imple-

ments simple similarity and Nfrag simple similarity.
• Node.h and val.h - Only supporting struct.
• Optimizer.cpp and Optimizer.h - Parent class used in order to easily

implement new optimizing functions for finding weights.
• Simulated Annealing.cpp and Simulated Annealing.h - Child of Op-

timizer, implements simulated annealing.

B.1 Client-Server Communication
This whole funcionality has been designed to work mainly on the computer lab-
oratory of Faculty of Mathematics and Physics, Charles University. In theory
it should work with any cluster of computers with shared file system and other
requirements fulfilled from section C.2.

Users can configure which computers to use as a part of their cluster in clus-
ter config.txt.

When talking about our cluster computing system, we need to first understand
what a task is. We define task as a screening of a split or preprocessing of certain
configuration. For example when user wants to perform screening of 10 splits
with certain configuratin, 11 tasks are created. First the preprocessing task is
executed on the cluster and then the 10 screening tasks are performed in paralel.

The server application on cluster servers is started through SSH. After that
the cluster is controlled through Python sockets and data can be sent to com-
puters through SCP. In order not to disturbe user by repeatedly asking him for
password when starting the cluster (since we need ssh command for every com-
puter in cluster), we use sshpass. However there is a security risk involved in this
solution, since the sshpass command can be found in command history contain-
ing uncyphered password and login. This could be solved by enabling ssh keys,
however it is another level of dificulty for new user to start using cluster. If the
user is running WeFrag on his secured computer, sshpass should not be a security
issue.

When starting the cluster we scan computers and those which are dead or oc-
cupied by someone else (and use significant ammount of resources) are excluded.

60

This scaning can be periodically repeated in order to avoid blocking any com-
puter. The whole system is also sturdy against sudden death of a computer (tasks
computed on this computer will be redirected somewhere else). The user can also
configure how many tasks to compute on a computer.

The core of WeFrag server.py is the use of sockets, threading and bash sub-
process, which the python language enables. The whole process looks like this:

• Task is chosen from queue of tasks
• Server with free computation capabilites is selected
• Bash command of task in form of string is generated on client
• Socket connection to the server is established
• Server creates new thread for this connection
• String with command is sent to the server
• Server receives the command and runs it as a subprocess
• Server collects the result of the subprocess
• Server sends the result back to the client
• Client closes the socket connection and handles the response

Failur in any of the steps above should only result in putting the task to the
back of the queue.

B.2 Creating molecular representation - data pre-
processing

:
Input molecules in SDF format need to be preprocessed in order to be useful

for computations. This is done by a combination of scripts. Each script can be
interchanged by some new one, if the format of input and output stays the same.
This enables to implement new fragment or descriptors types.

The sequence of data processing scripts is executed by generate data.sh when
directory system is used or by cmd line run.sh.

The data processing phase:

1. If the directory system is used, aggregate molecules in SDF from all splits
of given target into two files in SDF (decoys and ligands) and remove du-
plicates. If command line is used, only remove duplicates. Handled by
merge sdf.py. Expects .sdf input and .sdf output.

2. Generate information about split we are currently preprocessing - puts
names of train, validate and test molecules into new file. Handled by
split info.py. Expects .sdf as input and .json as output.

3. Create new file containinig fragments of molecules from step 1. Handled by
extract fragments.py. Expects .sdf as input and .json as output.

4. Create new file containing descriptors of fragments from step 3. Handled by
rdkit descriptors.py or PaDEL-Descriptor.jar. Expects .json as input and
outputs text file in special format.

5. Create final file for train data - remove correlated descriptors and fragment
noise, scale descriptors values. Handled by phase preprocess.py. Expects
output from step 2, 3 and 4 as input. Outputs text file in special format.

61

6. Create final file for test data - remove descriptors not used in weights, re-
move fragment noise, scale descriptors values. Handled by phase preprocess.py.
Expects output from step 2, 3 and 4 as input. Outputs text file in special
format.

The output formats are described in A.2.

B.3 Creating New Similarity Function

The creation of new similarity function is fairly easy. All logic connected to sim-
ulated annealing and comparison of molecules is implemented in C++ program
screening. A programer just needs to implement new C++ class which inher-
its from the class Comparer and implement the calc weights method. Then in
the screening.cpp utilise polymorphism to assign this new class parent Comparer
pointer which is used to call the calc weights method.

The expected behaviour is that the method according to parameters provided
compares two sets of molecules and the result of each comparison pushes into
vector best compared.

B.4 Writing Custom Optimization Algorithm

Again this is handled in the C++ program screening. A programer needs to im-
plement new c++ class which inherits from the class Optimizer and implement
the calc weights method. Then in the screening.cpp utilise polymorphism to as-
sign this new class parent Optimizer pointer which is used to call the calc weights
method.

It is expected that a optimization algorithm changes the weights provided on
input accordingly to the rest of parameters provided.

62

C. User Documentation

C.1 System Requirements

Unix operating system is required among with Python 3.X and RDKit software
pack in order to run WeFrag on client computer for local computation.

In order to use the cluster it is required to have Unix system supporting ssh
and scp on each server among with Python 3.X and RDKit. Client computer
requires Python 3.X, ssh, scp and sshpass. Cluster also needs to implement
shared filesystem and all computers have to use the same login and password.
Very important thing is to have strong internet connection! The system was
tested on 100 Mbit Ethernet. From our experience weak Wi-fi connection is not
enough!

If user wants to use the PaDEL descriptors, the machine needs to support
JVM.

C.2 Setup

The C++ code of screening.exe program can be compiled using Clion or CMake
version 3.6. or higher. The compiled screening.exe needs to be in Code config
directory.

When setting up local computation there are 2 requirements: The users need
to enable RDKit in their environment and insert data accordingly to the directory
system refdir sys.

When setting up the cluster, users need to configure two files, insert data
accordingly to filesystem and run a few commands in our program.

Cluster configuration.txt - In this file users need to configure the directory
on cluster in which they wish to store code and data, number of splits in their
dataset and seed they wish to use. After this, user has to write the name and
IP adress of each cluster computer he wish to use on a single line. Template of
configure file can be found in attachment with the rest of project.

starter.sh - In this file user can write any commands which need to be run
before the start of WeFrag server.py. For example we needed to start RDKit on
each computer. Template of starter.sh can be found in attachment with the rest
of project.

After having those files configured and data in filesystem, user can run the
command python main.py -type menu and select setup. This command sends
code to the cluster.

Last step required - users need to send data to the cluster. They can either
send all of raw .sdf data (which can be fairly big) using [7] Update Data command
or they can preprocess the data locally (preprocessed data are much smaller) and
send it to the server using [9] Update Preprocessed.

63

C.3 Input - commands and data

One option to input commands is through menu C.1. When using menu data
input is realised through directory system. This type of input is designed for large
scale computations (on cluster or local) - meaining tens of targets, hundreds of
splits and various configurations.

Figure C.1: Screenshot of WeFrag menu

Other option is to input commands through command line parameters. This
type of input is much more limited - user can perform 2 actions. First action is
to calculate weights (with certain configuration of parameters), second action is
to test the weights (with certain configuration of parameters). User cannot use
cluster with command line input. This type of input is designed for small scale
computation on local computer - for example quick calculation of single split in
various configurations.

Run program as python main.py -type model ...(parameters) or python main.py
-type phase 2 ...(parameters). Parameter model computes the weights from ac-
tive train, decoys train, active validation and inactive validation (validation data
optional) Paramter test tests the weights using active train, active validation, ac-
tive test, decoys test (validation data optional)

User can choose from all the parameters which are avaliable in menu mode.
model requires: -atr, -itr, -o, -tmp test requires: -atr, -ate, -ite, -o, -tmp, -w

All parameters possible:

• -atr - active train
• -itr - decoys train
• -ate - active test
• -ite - decoys test
• -ava - active validation
• -iva - decoys validation
• -w - weights
• -o - output

64

• -tmp - tmp directory
• -f - type of fragments (ecfp.1, ecfp.2, tt.2, tt.3, tt.4) - default ecfp.1
• -p - fragment noise treshold percentage [0,100] - default 50
• -d - descriptors used (RDKit, PaDEL) - default RDKit
• -sb - scaling or binning of descriptor values - default scaling
• -corr - correlation treshold [0,1] - default 0.5
• -m - similarity function used (euclidean, manhattan, simple or Nfrag meth-

ods euclidean[0-100], manhattan[0-100], simple[0-100])
• -a - annealing type (none, rand start, const start)
• -T - starting temperature - default 1000
• -dist - distance of weights in annealing [0,100] - default 25
• -parts - how many parts of weights vector to change in an iteration of

annealing - default 1
• -c - cooling rate - default 0.999
• -seed - Seed used for random numbers generation (RANDOM seed by de-

fault)

C.4 Examples of Usage
When using the command line input

• python main.py -type phase 1 -atr DRD2 Antagonist actives train.sdf
-itr DRD2 Antagonist decoys train.sdf -o weights -tmp tmp

• python main.py -type phase 2 -atr DRD2 Antagonist actives train.sdf
-ate DRD2 Antagonist actives test.sdf -ite DRD2 Antagonist decoys
test.sdf -o vals -tmp tmp2 -w weights

• python main.py -type phase 1 -atr DRD2 Antagonist actives train.sdf -itr
DRD2 Antagonist decoys train.sdf -o weights -tmp tmp -f tt.2 -p 50 -d
RDKit -sb scaling -corr 0.3 -m manhattan100 -a none -T 0 -dist 0 -parts 0
-c 0

• python main.py -type phase 1 -atr DRD2 Antagonist actives train.sdf -itr
DRD2 Antagonist decoys train.sdf -o weights -tmp tmp -f tt.3 -p 25 -d
PaDEL -sb scaling -corr 0.5 -m euclidean -a none -seed RANDOM

• python main.py -type phase 1 -atr DRD2 Antagonist actives train.sdf -itr
DRD2 Antagonist decoys train.sdf -o weights -tmp tmp -f ecfp.1 -p 25 -d
RDKit -sb scaling -corr 0.5 -m euclidean100 -a local -T 100 -dist 50 -parts
1 -c 0.999

• python main.py -type phase 2 -atr DRD2 Antagonist actives train.sdf
-ate DRD2 Antagonist actives test.sdf -ite DRD2 Antagonist decoys
test.sdf -o vals -tmp tmp2 -f ecfp.1 -p 50 -d RDKit -sb scaling -corr 0.5 -m

euclidean100 -w weights

When using the menu (menu will guide you however) - example of the usage
of grid options.

1. Run python main.py -type menu
2. Write local
3. Write 2

65

4. Write Dataset 20 1000 50 8000
5. Write ecfp.1 tt.2 (both fragments will be computed)
6. Write RDKit
7. Write euclidean100 manhattan (both similarity functions will be computed)
8. Write 100 (100% fragment noise treshold)
9. Write 1 (1 correlation treshold)

10. Write const (start with neutral weights)
11. Write 1000 (100 starting temperature)
12. Write 0.999 (0.999 cooling)
13. Write 25 (25% distance of weights - weights can have 4 values)
14. Write 1 (1 dimension to change per iteration)
15. Write 001 (split 001)

The results will be: compute ecfp.1, euclidean100 and the rest of parameters
compute ecfp.1, euclidean and the rest of parameters compute tt.2, euclidean100
and the rest of parameters compute tt.2, euclidean and the rest of parameters

Beware that when local mode is selected, all computations are computed
locally and if cluster mode is selected, all computations are computed on the
cluster!

66

	Introduction
	Introduction to virtual screening and related theory
	What is virtual screening and its categories
	Ligand based virtual screening with descriptors
	Molecular Fragments
	RDKit and PaDEL descriptors
	Scoring - ROC and AUC
	Simmulated Annealing

	Our approach to similarity searching LBVS
	Fragment-feature molecular representation
	Weights
	Why use fragments
	Why use weights and how to find them
	Similarity Functions
	Euclidean Similarity
	Manhattan Similarity
	Simple Matching Similarity
	Nfrag Similarity

	Finding the weights
	Implementation of simulated annealing
	Descriptor scaling and reducing fragment noise
	Removing correlated descriptors
	Training and testing weights
	The whole method put together

	WeFrag
	All options WeFrag provides
	Optimization
	Caching
	C++ vs Python
	Better sorting algorithm
	Memory optimization
	Reusing the preprocessed data
	Parallelization

	Experiments
	Data used
	Focus of experiments
	Results of experiments
	Fragments, descriptors, similarity functions
	Correlated descriptors
	Fragment noise reduction treshold
	Temperature, cooling, distance and number of dimension to change
	Effects of larger train data
	Comparison to traditional methods

	Discussion
	Future work

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	File Formats and Directory System
	Input data format and file system
	The output of phase_preprocess.py
	Output format

	Programmer Documentation
	Client-Server Communication
	Creating molecular representation - data preprocessing
	Creating New Similarity Function
	Writing Custom Optimization Algorithm

	User Documentation
	System Requirements
	Setup
	Input - commands and data
	Examples of Usage

