
BACHELOR THESIS

Marek Dobranský

Efficient simulation of environment
destruction in games

Department of Software Engineering

Supervisor of the bachelor thesis: Mgr. Miroslav Kratochv́ıl
Study programme: Computer Science

Study branch: Programming and Software systems

Prague 2017

I declare that I carried out this bachelor thesis independently, and only with
the cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact
that the Charles University has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of
the Copyright Act.

In Prague date 19.7.2017 signature of the author

i

ii

Title: Efficient simulation of environment destruction in games

Author: Marek Dobranský

Department: Department of Software Engineering

Supervisor: Mgr. Miroslav Kratochv́ıl, The Department of Software Engi-
neering

Abstract: Destructible environments have become a popular feature of com-
puter games. Currently used game engines employ different approaches to
implement such environment. This thesis studies several such approaches
and implements some key ideas from available research in a new, combined
approach. We use tessellations and boolean operations on triangular meshes
to modify rigid-body objects that represent game environment, and create a
simple application to demonstrate the approach in a real-time environment.
We conclude that the proposed method is mainly suitable for computer games
that feature low-polygon meshes.

Keywords: destructible environment, simulation, games, convex decomposi-
tion, polygon mesh

iii

iv

I would like to express my gratitude to Mgr. Miroslav Kratochv́ıl, the super-
visor of this thesis, for his patient guidance, feedback and all advice he has
given me.

I also want to thank my family and girlfriend for their continued support
and encouragement during my Bachelor studies and especially during the
time spent working on this thesis.

v

vi

Contents

Introduction 3

1 Overview of techniques 5
1.1 Implementations in mainstream gaming 5
1.2 Methods and algorithms . 8

1.2.1 Soft body deformation 9
1.2.2 Rigid body decomposition 10

1.3 Related research . 12
1.3.1 A fast method for simulating destruction and the gen-

erated dust and debris 13
1.3.2 Real Time Dynamic Fracture with Volumetric Approx-

imate Convex Decompositions 16

2 Review of related software libraries 19
2.1 Physics engine . 19
2.2 Geometric libraries . 19

2.2.1 Boolean operations . 20
2.2.2 Voronoi tessellation . 20
2.2.3 Convex decomposition 21

3 Implementation 23
3.1 Main algorithm . 23
3.2 Program Structure . 24
3.3 Collision handling . 26
3.4 Convex Decomposition . 28
3.5 Measurements and experiments 28

3.5.1 Performance test . 29
3.5.2 Performance impact of mesh complexity 30
3.5.3 Testing the concept of EDEM 32

Conclusion 33

Bibliography 35

A User guide 37

B Implementation internals 41

1

2

Introduction
Destructible environment has been an amusing part of computer games since
their beginning, from shooting through the simple bricks in Space invaders to
blowing up buildings in the Battlefield series. Current development is trying
to achieve highly realistic destruction effects by inventing and improving
various simulation approaches of 2D and 3D destructible game worlds.

Despite the advances in the field, the excessive complexity of accurate
physical simulation introduces a trade-off: To achieve sufficient performance
required to satisfy real-time constraints of the game environment (most no-
tably acceptable and consistent frame rate), the game developers are forced
to relax their demands on realism, usually by simplifying the game environ-
ment and neglecting less-important aspects of physical simulation.

The goal of this thesis is to review current techniques used to simulate
such environments, implement a simple game environment to test some of
the approaches, and design and measure an approach applicable in the game
environment that is based on a combination of the reviewed techniques.

Related work A large part of the research on the destructible environment
is done commercially to be deployed in game titles; the thesis reviews a
selection of those approaches. The commercial research is usually based on
rigorous academic research of the basic algorithms required for the task,
including various tessellations, convex decompositions, methods of physical
simulation and geometric representation of solid objects. We specially refer
to the work on dynamically destructible rigid-bodies (treated in detail in
section 1.2), boolean operations on meshes using Nef polyhedra Bieri [6],
an approach based on discrete particle method focused on inner body stress
simulation [10], and one based on Voronoi tessellation [15].

Approach As a main result of the thesis, we present an algorithm that
computes a fracture of a 3D solid object using boolean operations on 3D
objects and Voronoi tessellation. The algorithm is set into the environment of
a simple physical simulation of objects of arbitrary shape and used to modify
the objects in the case when a critical force is applied to them, i. e. when they
are shot by the player or when the simulation detects collisions with other
objects.

The algorithm is similar to one described by Müller et al. [15], with some
improvements:

• We try to reuse currently available open-source libraries to implement

3

primitive operations on 3D solids, which has influenced the internal
representation of the objects (e. g. the mesh representation used for
rendering and model storage is different than the one required to run
tessellations) and exact steps of the algorithms (e. g. we use mesh sub-
traction instead of object reconstruction).

• To hide the latency caused by fracturing-related computation, we of-
fload it to other program threads and insert the result to the main
simulation only as soon as the computation finishes. Without the drop
in frame rate, the introduced delay is almost negligible from the user
perspective.

Finally, the performance of the algorithm is measured on objects with
varying complexity.

Thesis structure The thesis is organized as follows: Chapter 1 describes
the techniques used in computer games and simulations, and focuses on sev-
eral results of recent research. Chapter 2 introduces open-source libraries
and implementations of the 3D geometric algorithms that are required for
the simulation. Chapter 3 illustrates the design of our implementation and
presents measurements of its performance. After conclusion we continue with
two appendices: Appendix A is a user guide for running the testing program,
and appendix B provides some insight into the inner structure of the program.

4

1. Overview of techniques
This chapter introduces the techniques used to simulate destructible environ-
ments. First, we talk about the development of the destructible environment
in several games and game engines, then about general approaches to this
problem.

We repeatedly categorize the content of the game world in following way:
We use the word object to refer to any building, crate, door, tree or other
items that occur in the game environment, but excluding terrain, distant
environment like skyboxes and any in-game characters. Most of the modern
3D games use the term destructible environment as a reference to destructible
objects because they do not support the destruction of terrain. We decided
to comply with this terminology and, unless specified otherwise, use the term
destructible environment as a reference to a destruction of game objects and
not the terrain.

1.1 Implementations in mainstream gaming
In this brief overview, we introduce the most common approaches to envi-
ronment destruction that can be seen through the games released in last 40
years. More common approaches can be seen used in newly released games.

Object replacement or removal was the first [4] method used to sim-
ulate a destructible environment in a computer game, mostly because it
is straightforward and undemanding. This approach is based on swapping
models or any other kind of visual representations, for more damaged ones
or completely removing them. Because it relies on pre-made models, exact
collision points on the models are not considered, and the result is always
the same. If we were to consider N points of taking damage, the number of
different models could grow up to 2N . A large number of models is not prac-
tical for game development, other approaches are therefore used for breaking
the object at the precise point. Despite its simplicity and limitations, this
approach can still produce a very desirable result. In fact, it is still most
widely used approach to a destructible environment in computer games.

In our simplified view on 2D games, we do not differentiate between ob-
jects and terrain and refer to both as the environment. First 2D games featur-
ing the destructible environment were arcade games like the Space Invaders
(1978)1, where the environment is represented by cells in a grid. After taking
damage, the visual representation of the cell is replaced by one looking more

1https://en.wikipedia.org/wiki/Space_Invaders

5

https://en.wikipedia.org/wiki/Space_Invaders

Figure 1.1: Source engine swaps door models. Image taken from Counter
Strike: Global Offensive. Successively damaging any doors in the game al-
ways produces this sequence of models, regardless of the exact point where
the damage was applied.

damaged and then finally completely removed. About a decade later, new
environment destruction technique was used in games like Scorched Earth
(1991)2 and Worms (1995)3. Collision and removal of terrain in those games
is based on individual pixels rather than whole objects, which creates a more
realistic visual effect. In Scorched earth players typically need to blow away
a hill dividing them, in Worms it is common to dig a tunnel to hide from
your enemies gunfire.

In 3D games, the principal technique of implementation of destructible
objects has not changed much over the years. For every object that the
player can modify there is a prepared set of alternative models with various
amount of damage applied. Based on how much damage is applied, the
models are swapped and eventually completely removed, as seen in fig. 1.1.
Swapping the models is usually accompanied by animations, debris and dust
generation, designed to hide the unrealistic and instant change of the object
from the player. The disadvantage of this method is the necessity to replace
the in-game objects as a whole — there has to be a significant number of
objects pre-made for different scenarios to make the game look realistic. A
small number of pre-made damaged models means this approach can not
flexibly react to specific player actions. As an example, in the Source engine,
the hole in the door (fig. 1.1) is always created at the same place, regardless
of the point of the impact. Another example can be found in the game Duke
Nukem 3D4, where specific parts of the walls are constructed as separate
objects that disappear when hit.

Height map approach is closely intertwined with terrain generation.

2https://en.wikipedia.org/wiki/Scorched_Earth_(video_game)
3https://www.team17.com/games/worms-original
4https://en.wikipedia.org/wiki/Duke_Nukem_3D

6

https://en.wikipedia.org/wiki/Scorched_Earth_(video_game)
https://www.team17.com/games/worms-original
https://en.wikipedia.org/wiki/Duke_Nukem_3D

The basic principle behind modifying the environment with this method is
changing the height of the terrain at given point. We can find this method
used in the first 3D games that featured destructible terrain, e. g. Magic
Carpet (1994) 5 or Starfighter 3000 (1994) 6.

The height map of a 3D terrain is defined as a uniform 2D grid of values
representing the height of their respective column in 3D space. A convenient
approach is to use 2D gray-scale bitmap and represent the height as a color
distance from the white color, black being the maximum. Because the grid
only contains information about the discrete points, interpolation is used
to create continuous terrain. We can also view this method as creating a
function of two coordinates on the plane giving us the value on the vertical
axis. The definition of function forbids more than one function value at
each input point. Therefore this method can not represent multiple layers
of terrain. The relative simplicity of the approach is counterweighted by the
fact that it can only change the height of the terrain and does not allow
creating caves, tunnels or similar hollow features.

Geo-Mod (Geometry Modification Technology[3]) is an engine developed
for the Red Faction (2001)7 video game. It approaches the modification of
the terrain by creating objects representing an empty space. After every
collision, a new object is created at the point of collision. This new object
is then subtracted from the terrain, creating the modified terrain with the
newly created hole. The difference of the meshes is calculated in real time.
Game reviews suggest that the engine does not work well with the buildings
and other objects. Geomod represented the first significant attempt to cre-
ate the fully destructible 3D environment that would work under real-time
constraints.

Geo-Mod 2 [3]8 does not feature destructible terrain, instead, it focuses
on realistic destruction of buildings. A set of smaller objects is used to
represent each building as a ragdoll (multiple objects connected with joints)
for the simulation of inner stresses. Switching from using a conventional 3D
model to the ragdoll simulations requires at least basic knowledge of civil
engineering to properly analyze the structural stability of the building and
create a ragdoll model simulating it accurately. This process is therefore done
by hand in the development process and can not be modified at a runtime.
The game avoids any interaction of multiple buildings requiring simulating
their behavior at once because of the high complexity of simulation. This
limits the engine in the scale of the game world and mutual proximity of

5https://ultimatehistoryvideogames.jimdo.com/magic-carpet
6https://en.wikipedia.org/wiki/Star_Fighter_(video_game)
7http://redfaction.wikia.com/wiki/Red_Faction
8Geo-Mod 2.0 presentation video https://www.youtube.com/watch?v=lICurOVsNv0

7

https://ultimatehistoryvideogames.jimdo.com/magic-carpet
https://en.wikipedia.org/wiki/Star_Fighter_(video_game)
http://redfaction.wikia.com/wiki/Red_Faction
https://www.youtube.com/watch?v=lICurOVsNv0

Figure 1.2: The arrangement of destructible elements for the large-scale de-
struction in Frostbite engine (on the left). Rest of the images shows the
process of large-scale destruction in Battlefield: Bad Company implemented
using Frostbite 1.

destructible objects.
Frostbite 9 engine (and mainly its component Destruction [2]) is cur-

rently used in new mainstream games that feature destructible environment
e. g. Battlefield series or Star Wars Battlefront (2015). It supports two differ-
ent kinds of destruction micro-destruction on the surface and the large scale
predetermined destruction on whole buildings.

The dynamic micro-destruction focuses on creating small dents into the
surface of the object. The dents are created dynamically at the point of
impact and can be placed on any point of the surface.

The large-scale destruction is focused on destroying entire buildings. The
buildings are created from smaller parts that are linked together. Each part
can disappear on its own (fig. 1.2), and when there are not enough parts left,
the whole building collapses. It does not use any physical simulation in this
process, and therefore structural stability is determined solely by the number
of removed parts of the building.

1.2 Methods and algorithms
Here we give a short overview of several more rigorous algorithms commonly
used for simulations of destructible environment.

In simulations, we consider two types of objects: soft bodies and rigid
bodies. A rigid body represents an object with a constant shape where every
two points on the body are always in the same relative position. On the other
hand, soft bodies are deformable under an applied force, and any point on the
body can change its position independently on every other point. Although
there are no actual rigid objects in the real world, soft body simulation is

9http://www.frostbite.com/about/frostbite-3

8

http://www.frostbite.com/about/frostbite-3

computationally more expensive than the rigid body one. Therefore, in the
computer games, rigid body simulation is used almost exclusively. Although
we do not perform soft body simulations, we try to emulate them in real-time
on rigid bodies.

When trying to save a processing power, there is another way to do it on
soft bodies. Many soft bodies are non-essential to the gameplay, and their
simulation would not bring more value to the game e. g. waving flag or flowing
water. Those bodies can be implemented as a pre-rendered animations and
not actual simulations.

1.2.1 Soft body deformation
In this section, we shortly introduce two different approaches for simulation
of soft bodies. Despite the fact that soft bodies are currently rarely used in
computer games to the extent of destructible environment, several soft body
objects can show up in a game. We also expect that with an evolution of
more powerful hardware, soft body deformation will make its way into the
gaming world e. g. Next Car Game: Wreckfest (2018) 10 will use soft bodies
to simulate car crashes.

Finite Element Method (FEM) is a numerical method used to simu-
late the behavior of a system that can be modelled by solving the behavior of
the smaller discrete parts, called finite elements. Each element calculates its
physical state, e. g. stress or temperature, and propagates the results to neigh-
boring elements. This model can be used for simulation of fluid dynamics,
brittle fractures [16], ductility [18], elasticity, heat transfer and other physical
properties. It is beneficial in engineering, modelling and rendering scenes for
computer generated images [5].

FEM requires a lot of computational resources and is mostly used in
simulations that are not under real-time constraints. The algorithms like
O’Brien and Parker [17] propose, that optimised version of FEM can be used
in computer games.

Material point method (MPM) is a numerical method for modelling
an object as a continuum mass. Continuum model assumes that the object
fills the space it occupies and is not a set of discrete particles. MPM simu-
lates such materials by using two different views of the data, material points
(Lagrangian elements) and Eulerian grid. MPM is a particle method but
thanks to the Eulerian grid it can be applied to continuum materials.

MPM is more computationally expensive than FEM, as the grid must be
reset at the end of each MPM calculation step and reinitialized at the begin-

10http://store.steampowered.com/app/228380/Next_Car_Game_Wreckfest/

9

http://store.steampowered.com/app/228380/Next_Car_Game_Wreckfest/

ning of the following step. On the other hand, MPM is a meshfree method
and does not require remeshing steps and is less susceptible to numerical
errors.

MPM works by projecting the data from the particles to the mesh, de-
termining and applying the velocities on the nodes of the mesh and then
updating the particles based on the deformation of the mesh. After each
loop, mesh needs to be reset while the data are stored in particles.

A simplified overview of algorithm steps follows, for more details see the
thesis of Jiang [11].

1. Grid data are reinitialized to default values.

2. Weights and weight gradients are computed on every particle.

3. Mass and momentum are transferred from the particles to the grid.

4. The explicit forces on nodes are calculated

5. The explicit nodal velocity update is performed

6. Grid based collision is performed on vertices.

7. Particles are updated from grid velocities.

These steps are illustrated in fig. 1.3.
MPM is useful for both fluid and soft body dynamics. It can simulate

deformation, fractures, heat transfer, melting and other changes of the state
of an object.

A popular example of MPM deployment can be seen in snow simulation
in the Disney film Frozen (2013). The simulation software Matterhorn11

computes the behavior of different types of snow (e. g. wet, fresh, sticky) and
other materials, such as sand or mud.

1.2.2 Rigid body decomposition
In the soft body, application of the force propagates across the particles, and
the connected particles break apart when the limit is exceeded. This creates
the fracturing that may lead to the whole body splitting. In the rigid body
simulation, the body has no internal structure, and therefore the applied
force can only change the momentum of the entire body. This prohibits the
deformation or fracturing a rigid body in a simulation.

11https://www.disneyanimation.com/technology/innovations/matterhorn

10

https://www.disneyanimation.com/technology/innovations/matterhorn

Figure 1.3: Material point method algorithm overview. The top and the bot-
tom rows operate in particle domain (Lagrangian) while the middle depicts
grid-based (Eulerian) operations [20].

To solve this problem, there are numerous approaches of decomposing
the rigid body in the way that imitates fractures achieved by exceeding the
elasticity of the soft material. The most common approach is a decomposi-
tion of a rigid body into smaller parts. Some of the common methods for
decomposition are: slicing by planes [14], convex decomposition [12], tetrahe-
dralization [9] and Voronoi tessellation. In this section, we describe a process
of Voronoi tessellation.

Voronoi tessellation is a method of decomposing a solid object into smaller
parts, as shown on fig. 1.4. It is also applicable for e. g. terrain generation [19],
but we focus only on object decomposition. Assuming the input is a closed
triangular mesh with non-empty volume, the tessellation can be done in
following three steps:

Delaunay tetrahedral decomposition Given points P in general posi-
tion (the vertices of input mesh and a set of points inside its volume),
tetrahedral mesh DT (P) can be generated satisfying the following con-
dition: no point in P is inside the circumscribed sphere of any tetra-
hedra in DT (P) [8].

Creating Voronoi diagram For a Delaunay tetrahedral decomposition,

11

Figure 1.4: The result of Voronoi tessellation by Yan et al. [21]

its dual graph (with vertices in the center of tetrahedrons circumscribed
sphere) is a Voronoi diagram (see fig. 1.4).

Clipping the Voronoi diagram Boundary cells of the Voronoi diagram
are infinite (see fig. 1.5) and need to be clipped by the original input
triangular mesh. The efficient algorithm proposed by Yan et al. [21]
for this task finds the intersection of the boundary Voronoi cell with
the triangular mesh and continues with neighborhood propagation to
determine all intersections.

As we can see in the performance diagram fig. 1.6 the Voronoi tessellation
with hundreds of thousands of Voronoi sites can take a number of seconds to
calculate. However, for a destructible environment, hundreds of pieces will
suffice. Therefore this method can be used in a real-time application.

1.3 Related research

In this section, we review two results of recent research that propose different
techniques for the environment destruction in computer games. The first
technique focuses on simulating the forces inside the object with the approach
based on particle methods. The second one focuses solely on the destruction
of rigid bodies with the use of Voronoi decomposition.

12

Figure 1.5: Transformation of 2D Delaunay triangulation to Voronoi
diagram. Source: https://en.wikipedia.org/wiki/Delaunay_
triangulation

1.3.1 A fast method for simulating destruction and the
generated dust and debris

The method of Imagire et al. [10] approaches destruction on three scales. At
first, the destruction is performed on a coarse scale, and then the applied
energy is used to calculate the amount and size of smaller debris and finally
dust particles.

Destruction on a coarse scale , on this level the authors use Extended
Distinct Element Method (EDEM) which is based on Element Method
described in section 1.2.1. Instead of using particles, EDEM uses a set
of rigid bodies that need to be produced by some tessellation method.
The extension over traditional DEM is the use of pore springs to con-
nect the adjacent elements (see fig. 1.7). The authors compare the
elements to individual bricks (the distinct elements) held together by
layers of mortar (the pore springs). If the applied force is sufficient to
move the elements far enough from each other, the fracturing process
is initiated. Pore springs also help the object retain its original shape
after the force is applied.
Algorithm for creating EDEM elements

1. Represent the original object as a closed surface model.
2. Arbitrarily arrange the EDEM elements inside the object. Ele-

ments are allowed to overlap at this point.

13

https://en.wikipedia.org/wiki/Delaunay_triangulation
https://en.wikipedia.org/wiki/Delaunay_triangulation

Figure 1.6: Timing curve of clipped Voronoi diagram computation against the
number of Voronoi seed points, on a model with 1000 boundary triangles. To
achieve clipped Voronoi diagram all three tasks must be completed. Source:
Yan et al. [21]

14

Figure 1.7: The force between two EDEM elements. Source: Imagire et al.
[10]

3. Move elements by performing the EDEM simulation. Only the
contact force is considered in this simulation.

4. Perform collision detection between the object’s surface and ele-
ments, making sure that they always stay inside the object.

5. Repeat (3)–(4) until elements are stabilized.
6. Construct a Delaunay diagram from the set of elements and put

the pore springs on the Delaunay edges that connect the elements

We can see the distribution of the EDEM elements inside objects after
the collision on fig. 1.8.
The position xI and velocity vI of the element I can be found using
Newton’s equation of motion as follows:

M
dvI

dt
=

∑
J∈contact

Fc
JI +

∑
K∈pore

Fp
KI + Mg

dxI

dt
= vI

Here, g is the gravitational vector, Fc
JI is the contact force, Fp

KI is
the force due to the pore springs and M is the element’s mass. Two
elements {I, J} are in contact, if they are closer to each other than the
diameter of a single element.

Fine debris generation and simulation If a fracture between EDEM el-
ements happened, we can determine if there was enough energy to break
EDEM element into smaller debris. The probability distribution is used
to determine the size of debris. Debris is taken out of EDEM simula-
tion and put into particle simulation, where each piece is represented
as a particle without volume.

15

Figure 1.8: View of final rendering with generated dust and debris (left) and
equivalent view showing underlying EDEM elements (right). Source: Imagire
et al. [10]

Dust generation and simulation Amount of generated dust is based on
fracture energy and results of debris generation. Instead of simulating
particles smaller than predetermined margin, they are represented as
dust in a grid-based fluid simulation. The density of particular cell
represents the amount of dust.

EDEM
elements FPS

128 320
256 160
512 75
1024 30
2048 9.1

Table 1.1: Performance of EDEM element method without rendering [10]

In conclusion, based on table 1.1, the frames per second (fps) drop pro-
portionally with growing number of EDEM elements. The method achieved
interactive fps on moderate number of EDEM elements. In addition, the
proposed debris and dust generation can be combined with other methods.

1.3.2 Real Time Dynamic Fracture with Volumetric
Approximate Convex Decompositions

The approach of Müller et al. [15] does not try to simulate the internal forces
of an object and focuses only on rigid body decomposition. The idea behind
this method is to represent the mesh as a compound shape of convex parts.

16

Figure 1.9: The decomposition to the initial compound mesh does not become
visible when a fracture pattern is applied. Source: Müller et al. [15]

The algorithm used for convex decomposition is Volumetric Approximate
Convex Decomposition (VACD), which works by introducing the Voronoi
decomposition into a bounding box of the mesh and then clipping the Voronoi
cells by the mesh. To determine the decomposed shapes, we use a prepared
fracture pattern. The fracture pattern is pre-computed and represented as a
set of convex cells. The algorithm works as follows (the process is visualized
in fig. 1.10:

1. The fracture pattern is aligned with the point of impact, and rotated
and scaled randomly to avoid an occurrence of same-looking patterns.

2. The intersections of all cells with all convex parts are computed. To
compute the intersection of a single cell with a single convex part, the
convex part is clipped against all the planes of the cell one by one. At
the end of this step, we have a set of new convex parts, and each convex
part belongs to exactly one cell.

3. If there are convex parts that together entirely fill one cell, we can
combine them into single new one convex part. The test is carried out
using a simple volume comparison.

4. All convex parts that belong to one cell are combined to form a new
compound part. This ensures that the temporary parts of decomposi-
tion into compound shape are not visible after the fracture (see fig. 1.9).

5. Finally, the separate islands of convex parts are detected and individual
compound shapes are constructed for them.

17

Figure 1.10: Overview of the fracture algorithm. Left: The fracture pattern
(red) is aligned with the impact location (black dot). Middle: All convex
pieces are intersected with all cells. The green convex pieces can be welded
to form a single piece because they cover the entire cell. Pieces within one
cell become a new compound part (same colors). Island detection finds that
the dark red compound needs to be split. Source: Müller et al. [15]

The cost of fracturing in this method depends only on the number of
mesh triangles of the object being fractured and the resolution of fracture
pattern. The paper suggests that the model with 106 vertices and 5 ·105 faces
can be fractured under 50ms. This makes this method suitable for real-time
computer games.

18

2. Review of related software
libraries
In this chapter, we review some software libraries that can be used for im-
plementing the algorithms required for constructing a destructible environ-
ment. We do not talk about all-in-one software development kits with their
approach to a destructible environment already implemented. Instead, our
focus is on building a game with our own approach to the destructible envi-
ronment.

To build a game, we will surely need a physics engine, a graphics en-
gine, and a selection of geometric libraries to support the computation of
the destructible environment. We mention which libraries we used in the
implementation and details of their use can be found in appendix B.

2.1 Physics engine

Physics engines are used in games to provide a simulation of applied forces
to in-game objects and collision detection. Many physics engines are directly
bundled with rendering, audio engines to create a complete game engine.

To support our implementation of destructible environment we need a
physics engine to detect collisions, move the user-controlled vehicle and simu-
late gravity and mechanical forces. There are no special needs for the physics
engine in our applications that would not be supported in most engines. Some
of the commonly used engines are Open Dynamics Engine, Newton Game Dy-
namics, Bullet, Simulation Open Framework Architecture, Tokamak. All of
them provide the simulation of rigid bodies and collision detection. Other
features are not relevant to us. Therefore we decided to used Bullet physics
on the base of author’s previous experience.

2.2 Geometric libraries

Here we preview some of the libraries focused on a decomposition or mod-
ification of 3D meshed objects. The preview is focused on three techniques
used in destructible environment, boolean operations, Voronoi tessellation
and convex decomposition,

19

2.2.1 Boolean operations
When searching for efficient library able to compute the difference of two
3D triangular meshes, we found out that the majority of software utilizing
geometric library is dependent on using The Computational Geometry
Algorithms Library 1 or shortly CGAL. CGAL provides polyhedral sur-
faces that are closed for Boolean operations, and it is possible to convert
data between meshes and polyhedrons.

The mentioned polyhedral surfaces or Nef polyhedrons [6], require the
input mesh to be an orientable 2-manifold (for more details on this data
structure see appendix B). Nef polyhedron works with two data structures,
one that represents the local neighborhoods of vertices, which is in itself
already a complete description, and a data structure that connects these
neighborhoods up to a global data structure with edges, facets, and volumes.
This redundancy in data makes Nef polyhedron a large data structure that
is not optimized for fast construction and not the most suitable for real-time
deployment.

We also considered using a Cork Boolean Library 2 but we did not
find it to be as robust as CGAL and encountered problems and instability
on valid data.

2.2.2 Voronoi tessellation
We learned that to Voronoi tessellation can be beneficial to either creating
a compound body held together by springs or used as a tool for subtracting
parts of the mesh. Here are some libraries useful for both tasks.

CGAL also includes package providing different 3D triangulations, mainly
Delaunay triangulation and the possibility of creating Voronoi diagram
as its dual graph. However, CGAL does not provide means to clip the
Voronoi cells against the surface mesh.

Voro++ 3 is a library for carrying out three-dimensional computations
of the Voronoi tessellation. It calculates Voronoi cell for each particle
individually and is suited for high-performance calculations on large
scale particle systems. It is also able to clip Voronoi cells to any user
defined boundary. This library would be well suited for decomposing
entire objects into Voronoi cells.

1http://www.cgal.org/
2https://github.com/gilbo/cork#cork-boolean-library
3http://math.lbl.gov/voro++/

20

http://www.cgal.org/
https://github.com/gilbo/cork#cork-boolean-library
http://math.lbl.gov/voro++/

Qhull 4 provides the means to compute convex hull, Delaunay triangulation,
Voronoi diagram in 2,3 or 4 dimensional space.

Because implementation requires only one Voronoi cell per collision, we chose
to use the simpler Voro++ library for this task.

2.2.3 Convex decomposition
Convex decomposition is critical to fast and accurate collision detection on
3D meshes. We introduce two libraries with different approaches to the task.

CGAL provides the means for decomposing the polyhedral shape (triangu-
lar mesh can be converted into polyhedron) into a set of convex poly-
hedrons. CGAL is aiming for an exact convex decomposition, which
produces a large number of small pieces 5.

Hierarchical Approximate Convex Decomposition or HACD [13] is a
library and algorithm providing a convex decomposition that approx-
imates the original shape. The approximation yields fewer pieces and
is faster than exact calculations, but the result is not exact. For the
reasons that we are implementing a destructible environment in a com-
puter game, we can allow for deviations in the shape of the objects
from their respective visual representations. Those deviations should
be too small to be noticed in the game. This makes us choose HACD
over CGAL.

Convex Decomposition Library 6 produces approximate convex decom-
position. It is an older library that is currently marked deprecated in
favor of HACD.

We can see the difference in the result of exact and approximate ap-
proaches on fig. 2.1. It is evident that we do not want to use the exact
decomposition in a computer game, but on the other hand for the simula-
tions where the calculation time is not critical, the approximations should
not be used.

4http://www.qhull.org/
5http://doc.cgal.org/latest/Convex_decomposition_3
6http://codesuppository.blogspot.cz/2009/11/convex-decomposition-library-now.html

21

http://www.qhull.org/
http://doc.cgal.org/latest/Convex_decomposition_3
http://codesuppository.blogspot.cz/2009/11/convex-decomposition-library-now.html

Figure 2.1: Difference between original mesh, exact convex decomposition
and an approximate convex decomposition. Source: https://github.com/
kmammou/v-hacd

22

https://github.com/kmammou/v-hacd
https://github.com/kmammou/v-hacd

3. Implementation
In this chapter, we describe the implementation of our demonstration game
and explain the basic principles and algorithms behind it. Then we present
measurements of performance of main algorithms used in the implementation.

At first, we considered implementation based on A fast method for simu-
lating destruction and the generated dust and debris (FMSDGDD) (see sec-
tion 1.3.1). However, after degrading performance issues section 3.5 we de-
cided to abandon this approach.

After consideration of various approaches implemented in games and also
proposed efficient solutions to the problem of real-time destructible envi-
ronment, we decided to implement and test an approach based on Geomod
(described in section 1.1) technique. The Geomod inspired us to create an
object representing an empty space and use the boolean subtraction opera-
tion on the mesh to generate a damaged body. The abandoned FMSDGDD
approach influenced us to generate debris equivalent to the removed volume.
We implemented this idea by using an intersection of Geomod inspired empty
space and original mesh as debris.

3.1 Main algorithm
As mentioned, our algorithm uses boolean operations similarly to Geomods
removal of an empty space from the terrain. The difference is that we apply
this method to rigid body objects and permanently alter their mesh. The
shape of removed object is determined by Voronoi cell that is generated
dynamically for every collision. The collision information is received from
the physics engine.

Our approach generates Voronoi cell at the point of collision. The deci-
sion to use one cell instead of a fracture pattern, like the one described in
Real Time Dynamic Fracture with Volumetric Approximate Convex Decom-
positions algorithm (see section 1.3.2), is based on the fact that we want to
observe how dependent is our design on the complexity of destructed objects
and not on the complexity of fracture pattern. Our implementation is easily
expandable to the use of multiple cells or cells of any shape.

After the cell generation, the difference of original mesh and the Voronoi
cell is calculated to represent the damaged objects. To generate the debris,
the intersection of original mesh and the Voronoi cell is calculated. This
action effectively cuts the object into two or more pieces, all of which are
put back into simulation and can be damaged again (see fig. 3.1). The

23

Figure 3.1: object with point of collision (left), generated Voronoi cells (cen-
tre), object divided into five new smaller objects after subtraction of the
Voronoi cell belonging to the point of collision (right)

Voronoi cell was chosen because it has easily randomizable shape and provides
aesthetically good results.

The cost of fracturing in our implementation is solely dependent on the
size and complexity of the fractured object section 3.5. This makes the
method suitable for use in computer games with a large number of simple
objects with low polygon meshes.

To generate the Voronoi cell, we create a closed domain with the center
at the point of collision. In the domain, we need to create random points,
so the Voronoi cell of the point of collision does not cover entire domain.
This step also ensures variability of generated cells. After that, we can use a
Voronoi cell belonging to the point of collision as the mesh we subtract from
the object being damaged. The boundaries of the domain clip the generated
Voronoi cell, therefore the Voronoi cell can never be larger than the domain.
Randomization of the size and shape of a Voronoi cell guarantees different
result after every damage application.

3.2 Program Structure
The program is structured into four main components, Physics, Graphics,
Controllers and Mesh Manipulation (see fig. 3.2). Physics performs rigid
body simulation and detects collisions. Graphics is used as an output device.
Controllers contain the core of the application and process user input. Mesh

24

Figure 3.2: Diagram showing architecture of the application

Figure 3.3: Diagram is showing multiple threads handling collision event.

Manipulation is the part of the application that handles the destruction of
the environment.

The main program loop runs in following steps:

1. Perform a step in physics simulation.

2. Handle collisions and perform destruction, as described in section 3.3.

3. Read user input and then apply correct forces to the controlled vehicle.

4. Render the current state of objects. In this step, a graphical represen-
tation of every object is updated to comply with its rigid body version.

We want to keep a constant frame-rate in our application, but we do
not expect the mesh subtraction and convex decomposition tasks to perform
in required time, and therefore we execute them asynchronously in separate
threads. As a result, the program is running in three threads (fig. 3.3): the
main thread, a thread for subtracting meshes and a thread for decomposing

25

triangular mesh into a set of convex shapes (section 3.4). Both subtraction
and decomposition threads communicate solely with the main thread, and
all communication is done in producer-consumer model. Figure 3.4 shows
the changes of the object and its collision shape across all threads.

We use only one thread for all mesh subtraction tasks because we antic-
ipate that the most of the consecutive collisions are going to be triggered
by the same object — shooting at one building multiple times in a row. In
this situation, one subtraction does not have valid input data until the pre-
vious one has finished, which leads to sequential processing. If we were to
expect the collisions are occurring randomly on independent objects we could
implement a thread pool for resolving subtraction tasks. When processing
multiple collisions on the same object with multiple threads, the order of
applying subtraction is not important as long as all tasks are processed and
applied.

A use of a larger thread pool could be useful for convex decomposition.
With multiple threads, the object could have been changed since the cur-
rent calculation started. This conflicting state means we can not apply the
current result, but we know for sure that another decomposition task was
created when the change occurred. We do not know whether the newer task
has already finished or not, but we know for certain, that if we discard our
decomposition, the object has either temporary shape or a new valid decom-
position. We did not implement the thread pool solution because current
common gaming hardware is not well suited for running a large number of
simultaneous threads.

3.3 Collision handling
After the detection of the collision, physics engine gives us a reference to two
rigid bodies participating in that collision, point of collision and vector of
applied impulse. For simplification, we consider only one object, the point
of impact and the force. The second object is processed symmetrically.

Some collisions can be results of an object placed on ground or collisions
with not enough force to damage the object. We need to filter out those
unwanted collisions.

For every collision that is selected as acceptable for damaging the object,
we generate Voronoi cell as described before, and move meshes of both ob-
jects into a task for mesh subtraction thread. After enqueuing all collisions,
we check if there are any prepared subtraction results for further use. The
result of one subtraction task is a set of meshes that represent new objects.
For every mesh, we create a new incomplete object without its convex decom-

26

Figure 3.4: Simplified overview of collision handling across multiple threads
in simultaneous time slots. (a): collision was detected (red), (b): Voronoi
cell (green) is being subtracted from the original mesh (black) in subtraction
thread, (c): the result of the subtraction are two objects — one one without
change in collision shape (blue) and one with temporary spherical shape, (d)
and (e): new collision shapes are computed in decomposition thread, (f): the
final result.

position needed by the physics engine to perform accurate collision detection.
Because the decomposition can take relatively long, we create a simple tem-
porary collision shape. We decided to use a sphere for the new objects and
keep using the original collision shape that is already available for the orig-
inal object. Then we create tasks for decomposition of current meshes into
new collision shapes and proceed with simulation, not waiting for the result.
Decomposition is done in a separate thread and the result is returned to the
main thread where decomposition results are applied to objects — temporary
shape is replaced by compound shape consisting of convex parts.

This process guarantees that we do not wait for either subtraction or
decomposition and therefore we can have stable fps in our game — gameplay
experience is highly dependent on stable fps and simulation delayed by a
few frames is usually not recognizable and can be covered in animations of
dust. To ensure consistent behavior of new objects (we can put them into
the simulation, and they do not fall through each other or otherwise not
comply with laws of physics) when using a temporary collision shape, we
need to make the temporary shape resemble the mesh as much as possible.
For the already existing objects keeping the older collision shape for a while
longer should not disturb the simulation as the closest objects to this space

27

are a newly generated object, those should be thrown away from the point
of collision either way. For the new object, we use the sphere with the
diameter equal to the shortest edge of the objects bounding box, meaning
that the newly created objects have smaller collision shapes than meshes. The
implementation showed that this factor does not visually impact simulation
and the presence of the collision shape ensures that the object does not fall
through other objects.

3.4 Convex Decomposition
Regardless of used physics engine, our objects are represented as triangular
meshes. Implementing mesh to mesh collisions is possible, but highly im-
practical. Even if checking every vertex of one mesh against all vertices of
second mesh is sufficient, the complexity of algorithm would be dependent
on the number of vertices.

To be able to perform mesh to mesh collisions with complexity indepen-
dent of triangle count, we must find a way to describe the object as a set of
geometrically simpler shapes. The convex shapes are the easiest for detect-
ing mutual intersections, but encapsulating whole mesh into a convex hull
would produce imprecise collisions. This problem is solved by performing a
convex decomposition. Convex decomposition process splits the input object
into a set of convex shapes, forming a compound shape. Now the complexity
of the collision algorithm depends on the number of convex parts. The size
of convex decomposition is dependent on the number of concave features on
decomposed mesh [1].

While the exact convex decomposition can still produce a significant num-
ber of convex parts [7], in the setting of a computer game, the speed of calcu-
lation is much more relevant than the precision — small differences between
collision shapes and visual meshes are not considered to be a problem. To be
able to perform collision detection at real-time, many approximate convex
decomposition algorithms that sacrifice some precision to gain performance
have been proposed. One of those algorithms is Hierarchical Approximate
Convex Decomposition algorithm (see section 2.2.3) which we decided to use.

3.5 Measurements and experiments
In this section, we show the conducted experiments with the goal of evalu-
ating efficiency our approach.

To gather the data, we added special code that dumps the timing from

28

Model Count Triangles
media/building.obj 7 60
media/missile.obj 1 142
media/ship.obj 1 104

Table 3.1: Objects and their complexities used in the measurement.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Subtraction

Decomposition
Overall Time

Time (s)

Figure 3.5: Box plot showing the distribution of the duration in seconds of
given task (vertical axis)

the program, and we also prepared input files for testing. We are interested in
the times of two most complicated tasks in our application, mesh subtraction
and convex decomposition.

Data are dumped into data/ folder. Three files are present in the folder.
One contains the dump of the times it took to resolve subtraction tasks, one
does the same for decomposition tasks, and the third one contains total times
it took for the single object to get from being put into subtraction queue until
new decomposition is applied.

We designed two different experiments. The performance test to mea-
sure the behavior of our approach in the world with multiple objects and
fast sequences of collisions. And the mesh complexity test to identify the
relationship between a number of triangles and subtraction/decomposition.

3.5.1 Performance test
For a performance test we prepared a world configuration (copy in perfor-
mance test.cfg) consisting of objects with models, counts and geometric com-
plexity specified in table 3.1. We recorded about 2000 collisions by repeatedly
shooting the buildings at random locations. Recorded data can be seen in
fig. 3.5.

Our expectation is that a delay shorter than 300ms between the collision
and rendering of its resulting objects would be acceptable for a game and
that the separate threads would ensure that this delay would not impact the

29

triangles subtraction decomposition
12 0.037 0.118

108 0.069 0.135
588 0.134 0.261

2700 0.386 2.362
10092 1.211 12.007

Table 3.2: Average time (in seconds) of processing the given task with the
given number of triangles in the mesh. All data are collected on the same
cube with only difference in number of triangles.

frame rate. The experiment confirms that on given input we can successfully
meet this expectation.

The problem seems to be a high variance in overall time of the whole
process starting with mesh subtraction and ending at applying convex de-
composition. This can be explained by the tasks waiting in the queue for
processing and shows that our solution is not well suited for a fast sequence of
collisions. The problem here is that after every collision only one subtraction
task is created, but the number of decompositions is nondeterministic and
depends on the shape of the destructed object, the generated Voronoi cell
and the position of the collision. Use of a thread pool with more advanced
bookkeeping of the decomposition dependencies would aid in solving that
problem (proposed in section 3.2).

3.5.2 Performance impact of mesh complexity
We designed an experiment to measure a relationship between a number of
triangles and time required to complete the two already measured tasks. The
collected data are subtraction time and convex decomposition time. For the
experiment, we prepared five cubes with the same size but with a different
number of triangles in their mesh. We created an isolated environment with
only one cube placed in it and then executed the application to collect the
data (example configuration in cube test.cfg). The data were generated as a
result of a collision after the cube dropped onto the ground. The experiment
was repeated with each of the prepared cubes and run multiple times to
collect a large sample for statistical analyses. The results of the experiment
are shown in table 3.2 .

The experiment showed the limits of our approach. For the mesh sub-
traction, we can tolerate meshes with the size of about 2000 triangles (see
fig. 3.6). On the other hand, as shown on fig. 3.7, convex decomposition times
grow significantly faster and reach the critical 300ms somewhere around 1000

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

12

108

588

2700

Time (s)

#
tr

ia
ng

le
s

Figure 3.6: Relation between number of triangles and time required for sub-
traction task.

0 0.5 1 1.5 2 2.5

12

108

588

2700

Time (s)

#
tr

ia
ng

le
s

Figure 3.7: Relation between number of triangles and time required for con-
vex decomposition task.

31

triangles. The measurement for 10092 triangles is omitted from the plots for
scaling reasons.

3.5.3 Testing the concept of EDEM
To test EDEM (described in section 1.3.1), we set up a cube divided into
439 tetrahedrons. After introducing constraints to hold the tetrahedrons
together, we experienced a drop from 60fps (set as an upper limit) to 13fps.
Having a large number of elements connected with springs in the simulation
can also trigger an undesirable behavior, such as contractions, retractions
and self-induced rapid disassembly of the object. Performance issues and
problems with keeping elements in a stable state concluded that the approach
was not suitable for our implementation.

32

Conclusion
This thesis has reviewed currently used techniques used to simulate destruc-
tible environments, implemented a simple game environment to test some of
the approaches, and designed and measured an approach based on a combi-
nation of the reviewed techniques:

• Apart from the technique review in chapter 1, we have added a short
overview of the currently available open-source software libraries that
may aid the implementation of similar simulations in chapter 2.

• In chapter 3, we have successfully presented an approach that com-
bines boolean operations on 3D objects with Voronoi tessellation and
multi-thread computation offloading. The performance experiment in
section 3.5.1 show that the visual experience is not impacted by the
computation, even though the result of the offloaded computation is
presented with a delay.

• The experiments have concluded that the used technique is viable for
low-polygon meshes. The convex decomposition, which was the most
time-consuming task in the process, creates a noticeable delay with
meshes larger than around 1000 triangles. Exact measurements are
available in section 3.5.2.

• We have tested the approach of Imagire et al. [10] in the same setting as
our implementation. The result in section 3.5.3 strongly suggests that
this approach is applicable only to objects divided into a very small
number of elements.

Future work
The implementation showed several points that might be viable as starting
points for future research:

• We have used CGAL library to perform boolean operations on 3D
meshes, the approach it implements has performed consistently. How-
ever, CGAL is a geometric library, and it is designed to provide a rich
interface with multiple views on data. For the purpose of destructible
environment, we propose a library for boolean operations on 3D tri-
angular meshes optimized for use in real-time environments, possibly
simplifying and minimizing most other aspects of the library.

33

• The implementation exhibits a problem with centers of gravity, which
are misplaced for some dynamically created concave meshes. Correct
computations of centers of gravity for such objects could be added to
Bullet engine.

• We have not implemented texture mapping for the simulated objects.
The generation of correct texture coordinates for the fragments of orig-
inal objects would benefit the realism of the result.

• It would be interesting to perform independent stability analyses of the
in-game objects that would be able to e. g. correctly cause the demoli-
tion of an object in which a large, massive part is held in place only by a
tiny support. Scanning the environment for unstable objects by explo-
ratively running such tests can be easily performed in separate threads,
i. e. possibly not impacting the performance of the main simulation.

• The collisions of controlled vehicle with the environment are currently
processed as basic simulation of two colliding rigid bodies. This can
produce an out of control spinning and flipping that creates an unde-
sirable visual effects. The application would benefit from adjustment
of this part of the simulation.

34

Bibliography
[1] Convex decomposition of polyhedra.

[2] Destruction. http://battlefield.wikia.com/wiki/Destruction.
Accessed: 2017-05-17.

[3] Geo-mod. http://redfaction.wikia.com/wiki/Geo-Mod. Accessed:
2017-05-17.

[4] History 101: Destructible environments in
videogames. http://www.gamernode.com/
history-101-destructible-environments-in-videogames/. Ac-
cessed: 2017-06-17.

[5] Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk.
A finite element method for animating large viscoplastic flow. ACM
Trans. Graph., 26(3), 2007.

[6] Hanspeter Bieri. Nef polyhedra: A brief introduction. In Geometric
modelling, pages 43–60. Springer, 1995.

[7] Bernard Chazelle. Convex partitions of polyhedra: a lower bound and
worst-case optimal algorithm. SIAM Journal on Computing, 13(3):488–
507, 1984.

[8] Paolo Cignoni, Claudio Montani, Raffaele Perego, and Roberto
Scopigno. Parallel 3d delaunay triangulation. In Computer Graphics
Forum, volume 12, pages 129–142. Wiley Online Library, 1993.

[9] Pascal J Frey, Houman Borouchaki, and Paul Louis George. Delaunay
tetrahedralization using an advancing-front approach. In 5th Interna-
tional Meshing Roundtable, pages 31–48, 1996.

[10] Imagire, Takashi, Henry Johan, and Tomoyuki Nishita. A fast method
for simulating destruction and the generated dust and debris. The Visual
Computer, 25.5-7:719–727, 2009.

[11] Chenfanfu Jiang. The material point method for the physics-based sim-
ulation of solids and fluids. University of California, Los Angeles, 2015.

[12] Jyh-Ming Lien and Nancy M. Amato. Approximate convex decomposi-
tion of polyhedra. In Proceedings of the 2007 ACM Symposium on Solid

35

http://battlefield.wikia.com/wiki/Destruction
http://redfaction.wikia.com/wiki/Geo-Mod
http://www.gamernode.com/history-101-destructible-environments-in-videogames/
http://www.gamernode.com/history-101-destructible-environments-in-videogames/

and Physical Modeling, SPM ’07, pages 121–131, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-666-0.

[13] Khaled Mamou. Approximate Convex Decomposition for Real-Time
Collision Detection. In Game Programming Gems 8, pages 202–210.
Course Technology Press, 2010.

[14] Rodrigo Minetto, Neri Volpato, Jorge Stolfi, Rodrigo MMH Gregori,
and Murilo VG da Silva. An optimal algorithm for 3d triangle mesh
slicing.

[15] Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Real Time
Dynamic Fracture with Volumetric Approximate Convex Decomposi-
tions. ACM Transactions on Graphics, 32(4):115:1–115:10, 2013.

[16] James F. O’Brien and Jessica K. Hodgins. Graphical modeling and
animation of brittle fracture. In SIGGRAPH 99 Proceedings, pages 137–
146, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing
Co. ISBN 0-201-48560-5.

[17] James F. O’Brien and Eric G. Parker. Real-time deformation and frac-
ture in a game environment. In SCA 09 Proceedings, pages 165–175,
New York, NY, USA, 2009. ACM Press/Addison-Wesley Publishing Co.

[18] James F. O’Brien, Jessica K. Hodgins, and Adam W. Bargteil. Graphi-
cal modeling and animation of ductile fracture. In SIGGRAPH 02 Con-
ference Proceedings, pages 291–294, New York, NY, USA, 2002. ACM
Press/Addison-Wesley Publishing Co.

[19] Jacob Olsen. Realtime procedural terrain generation. 2004.

[20] Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and
Andrew Selle. A material point method for snow simulation. ACM
Transactions on Graphics, 32(4):102, 2013.

[21] Dong-Ming Yan, Wenping Wang, Bruno Lévy, and Yang Liu. Efficient
Computation of 3D Clipped Voronoi diagram. In GMP, volume 10,
pages 269–282. Springer, 2010.

36

A. User guide
This part of the documentation is focused on the end user, in this case,
player. We introduce controls of the application and detail the possibility to
adjust the game world.

A.1 Installation guide
This section documents the process of compiling and running the applica-
tion. We focus on the installation process on Ubuntu 17.04, but the code is
written in as platform independent and should work on any platform where
the library dependencies work.

The packages with library dependencies are available for multiple Linux
distributions and can be manually compiled and installed on most other
operating systems.

Dependencies Following packages are required to compile the application.
We also provide versions of packages used to create and test our implemen-
tation.

package version
libbullet-dev 2.83.7+dfsg-5
libirrlicht-dev 1.8.4+dfsg1-1
libcgal-dev 4.9-1build2
voro++-dev 0.4.6+dfsg1-2
HACD bundled with the application1

A C++ compiler capable of compiling the C++14 standard is also needed,
we have used GCC version 6.3.0-2ubuntu1 with compilation flags -std=c++14
-O2 -frounding-math.

Compiling the application
We assume that all the correct versions of the packages from the previous
section are installed. This installation process is automated with the use of
make. The HADC library is bundled with our code with its own Makefile.

The bundled HACD library needs to be compiled first, and then the main
application is compiled. The compiling process may take a few minutes. Af-
ter extracting the archive, the code is compiled by changing into the directory
DestructionInGame and running make.

37

Key Function
W/S pitch down/up
A/D roll counter-clockwise/clockwise
Q/E yaw left/right
Z/X speed up/slow down
Space Bar shoot or unpause
P pause the game
ESC quit the game

Table A.1: Key bindings available for the user.

Hardware requirements

The software was tested on a system with Intel Core i3 550 CPU (3.20GHz
× 4), 8GB of DDR3 RAM and 1GB ATI Radeon HD 5770 GPU. Minimal
requirements should be lower, but for observing the behavior of the algorithm,
a CPU capable of running at least 3 computation threads simultaneously
should be used. We also recommend at least 4GB of RAM 2. The graphics
card has to support OpenGL.

Using the application

The application is run by executing the build/game file. One optional console
parameter is provided. It is -d, and it enables debugging information to be
rendered. In other words, it draws the collision shapes and bounding boxes
around the objects.

The user is able to control a flying vehicle and shoot at the destructible
objects. The application accepts the keyboard input. The bindings are listed
in table A.1.

A.2 Directory structure
Our application is distributed among multiple folder and files. Here we de-
scribe the directory structure and mention the files in them.

src/ is a folder with our source code, both header files and cpp files can be
found here.

2The memory requirement is not needed for running the application — compilation of
CGAL headers with any optimizations enabled require more than 2GB of RAM

38

media/ directory contains 3D models, textures and world.cfg file (see ap-
pendix A.3). The other .cfg files are configurations used for exper-
iments. We can also find cube X.obj files, those are cubes with X
triangular faces.

include/ folder contains third party header files that are needed for compi-
lation. Only headers associated with HACD are currently in the folder.

lib/ contains the source codes of HACD library in sub-folder hacd/. It is
also a target for compiling HACD.

build/ is a target directory for make. After compilation object files and
executable file game are located here.

A.3 Input data

To allow the user to easily change the game world without the need of re-
compilation the input text file describing the game setting is provided. The
mentioned file is located in media/world.cfg.

world.cfg format

We show that the structure of the data is straightforward and therefore we
have chosen not to use XML or any other standardized format. The file is
interpreted by lines. Each line represents one in-game entity. First three
lines have special meaning, and the rest are destructible objects. Inside the
line, we use semicolons as a separator between data items.

The first line describes the sky-box, it is formed of 6 images in given
order: top, bottom, left, right, front, back; relative to the starting viewpoint.

All other lines use same nine data items. Those are object model, texture,
position (3 coordinates), scale (3 numbers, one for every axis) and mass.
Every number is used as a floating point number. The second line describes
the ground. Currently, the ground is generated as a solid cube with 1x1x1
size. Therefore model file is not needed. The third line is a description of our
controlled vehicle. Beginning with this line, the texture file is an optional
parameter and can be left blank. The described format can be seen in fig. A.1.

39

1 top.jpg;bottom.jpg;left.jpg;right.jpg;front.jpg;back.jpg
2 ;grid.jpg;0;-15;0;1000;10;1000;0
3 fighter.3ds;;0;20;0;0.5;0.5;0.5;1
4 building.obj;;-20;-11;-30;2;2;2;500
5 pyramid.obj;;50;-11;-100;5;10;5;800
6 ...

Figure A.1: Example of the world.cgf. The first line describes skybox tex-
tures, the rest consists of: object; texture; position (x;y;z); scale (x;y;z);
mass. The zero mass means that the object is static and does not move.

Object models and textures
The input formats are limited to the support of Irrlicht. The detailed list of
supported object and texture formats can be found on Irrlicht web page 3.
When using a new model file, the mesh needs to be checked for non-manifold
geometry to ensure the compatibility with the CGAL::Nef polyhedron 3 (ap-
pendix B.2).

3http://irrlicht.sourceforge.net/?page_id=45#supportedformats

40

http://irrlicht.sourceforge.net/?page_id=45#supportedformats

B. Implementation internals
This section provides insights on the code from a programmer’s point of view.
We do not focus on algorithms here, as we already did that in chapter 3. The
main focus here is on data representation and division of code into multiple
modules.

B.1 Design and Libraries
Logically, the program consists of four components, and they are Physics,
Graphics, Mesh Manipulation and Controllers. Controllers connect the other
three components together, see fig. 3.2. In the following list, we explain the
purpose and summarise used technology in each of them.

Physics provides us with the simulation of our objects and collision detec-
tion. We use Bullet physics to implement this component (more on
physics engines in section 2.1).

Graphics is used for rendering the current state of the physics world. Al-
though it is possible directly use those low-level libraries, we use a
library with more abstraction in provided API. Using higher-level li-
braries means we can save code, but we lose a direct control of rendering
process. This thesis is not focused on graphical output and only uses
it as a tool for building our application.
We decided to use Irrlicht Engine 1. Irrlicht is a light-weight cross-
platform, high-performance engine capable of using either OpelnGL or
DirectX. Our use of Irrlicht is based on using its graphical window as
an output of our application and also using Irrlichts event receiver for
reading user input.

Controllers ask the Physics to step the simulation and provided collision
data and give the information about the current state of the world to
the Graphics. The Controllers also read the user input which is done
by parts of Irrlicht engine. Mesh Manipulation component is called to
create new objects and react to the collision provided by the Physics.

Mesh Manipulation provides tools for creating objects, creating a Voronoi
cell (done by Voro++, converting data and handling the collisions. To
be able to do the mentioned tasks, Mesh Manipulation works closely

1http://irrlicht.sourceforge.net/

41

http://irrlicht.sourceforge.net/

Figure B.1: Data conversion diagram. Input formats - yellow, required
formats - green. Black lines show used conversions, red lines show re-
quired process after a change of the shape of an object. Rectangles sig-
nify the library used to make the conversion, if none a member function of
gg::MMeshManipulators is used.

with CGAL library and also use HACD library for convex decomposi-
tion.

B.2 Data representation

As a result of using multiple libraries for a multitude of tasks, we have to
deal with a lot of different data representations of the same objects.

We introduce the data structures that are used to represent one in-game
object for multiple purposes. We can see how different data types are con-
verted in fig. B.1.

42

btRigidBody

Bullet physics uses this class to hold information about a rigid collision ob-
ject. For us, most important part of the body is a collision shape.

The collision shape can be of multiple types, most notably a convex hull
or a primitive geometric shape, a triangular mesh or a compound shape. We
need the collision shape to be as close to a visual mesh as possible. Because
calculating collision between triangular meshes is not implemented in the
Bullet physics and would be too costly even if implemented, we choose the
representation by compound shape.

One more parameter of btRigidBody to consider is the object mass. Bod-
ies with mass set to zero (or negative value) are considered static objects and
do not move. Bodies with positive mass react to gravity and other exter-
nal forces, their center of gravity is set to their respective origin of local
coordinates. This poses a problem when the origin is not inside the object.

We try to solve the problem of displaced origin by calculating a center
of the bounding box of the object and then translating all vertices in a way
that the center becomes an origin. After the origin is changed, we must
appropriately adjust the position of the object. We deployed this approach
to newly created objects. The difference between where the real centre of
gravity should be, and where the center of gravity used by Bullet physics is,
is not visible. However, we failed to solve this problem with objects with
their mesh changed. This results in the visibly displaced center of gravity
and occasional wrong position of newly created objects. Because this problem
has no impact on the simulation of the destructible environment, we decided
against trying to solve it.

irr::scene::ISceneNode

Graphical object in the Irrlicht engine is represented by this class. It is an
abstract class instantiated into multiple types of graphical objects, e. g. lights,
cameras, animations, particle systems. To represent our objects, we are using
irr::scene::IMeshSceneNode. irr::scene::IMesh is the data structure
inside irr::scene::IMeshSceneNode that stores the mesh information.

irr::scene::IMesh

This class stores the mesh information in multiple mesh buffers. Each buffer
has an array of vertices and an array of indices. Every index in the array
of indices refers to one vertex. However, we found out that not every vertex

43

is referred to, and therefore valid. Indices divided into consecutive non-
intersecting triples form a triangular face of a mesh.

CGAL::Nef polyhedron 3

”A Nef-poly-he-dron in dimension d is a point set P ⊆ Rd generated from
a finite number of open halfspaces by set complement and set intersection
operations.” 2 In other words, CGAL::Nef polyhedron 3 is a boundary rep-
resented data structure closed under Boolean operations. This make it ideal
to perform our boolean operation on. This structure imposes a restriction on
the data we can use to represent our objects, the underlying halfedge data
structure 3 is restricted to orientable 2-manifolds. Common examples of
non-manifold geometry: open geometry, two neighbouring faces with oppo-
site normals, two faces sharing vertex but no edge, self-intersecting geometry,
inside faces.

gg::MObject

gg::MObject is a class designed to unite all data about one in-game object
into one structure. It includes irr::scene::ISceneNode, btRigidBody and
CGAL::Nef polyhedron 3. It implements the mechanism ensuring that upon
deletion of an object, its parts are first removed from their respective engines,
and then safely deallocated before gg::MObject itself is destroyed.

B.3 Modules
In this section, we describe the functionality of each program module. Third
party software is not described here, details about used libraries can be found
in chapter 2. Interactions between modules are visualized in fig. B.2. Irrlicht
Engine is not present in the diagram because we do not structurally depend
on it. Every module is contained in a file of the same name, as a class with
that name prefixed with letter M (i. e. Object Creator can be found in file
ObjectCreator.cpp and is implemented as class gg::MObjectCreator). Also,
namespace gg identifies exact components of the application implemented for
this thesis.

2http://doc.cgal.org/latest/Nef_3/index.html#Nef_3Definition
3doc.cgal.org/latest/HalfedgeDS/index.html#Chapter_Halfedge_Data_

Structures

44

http://doc.cgal.org/latest/Nef_3/index.html#Nef_3Definition
doc.cgal.org/latest/HalfedgeDS/index.html#Chapter_Halfedge_Data_Structures
doc.cgal.org/latest/HalfedgeDS/index.html#Chapter_Halfedge_Data_Structures

Figure B.2: Software architecture shown on diagram of relationships of pro-
gram modules. Third party software is highlighted in dashed rectangles.

45

Game module holds gg::MGame class which is the core of the application.
The communication with the physics engine, the graphical engine and
mesh manipulation parts of the software is managed from here.

Event Receiver module implements the instance of irr::IEventReceiver
from Irrlicht engine and it is used to read the user input.

Loader is only used for initializing the application. It parses the data that
describe the game environment from the medial/world.cfg file, con-
structs the objects using gg::MObjectCreator, and returns the set of
constructed objects.

Object Creator implements the gg::MObjectCreator class designed in a
Builder pattern to provide initialization for the data contained inside
gg::MObject.
There are three member functions that allow us to create gg::MObjects
with different behaviours from the same set of input parameters (see
appendix A.3). We can create a destructible object, an indestructible
object with box collision shape and a rectangular indestructible object
without input mesh. Those functions are meant to be used exclusively
for application initialization, as they generate a new convex decompo-
sition and CGAL::Nef polyhedron 3 from their mesh.
Two more kinds of objects can be created: a projectile that is shot from
the given position with the given impulse and a destructible object with
temporary collision shape (sphere shaped). Because the object with
temporary collision shape is constructed while the game is being played
and construction of CGAL::Nef polyhedron 3 can take a longer time,
to gain control over the construction, we will construct it beforehand
and then provide it to the Object Creator.

Collision Resolver implements the Collision handling process, described
in section 3.3. Conversions between data formats that are required
during the process are externalized to Mesh Manipulators module to
maintain the code readable.

Mesh Manipulators provides set of utility functions. Because different
libraries are used for physics simulation, rendering and geometric ma-
nipulation, those functions provide means for converting data between
different formats.

46

	Introduction
	Overview of techniques
	Review of related software libraries
	Implementation
	Conclusion
	Bibliography
	User guide
	Implementation internals

