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Supervisor: RNDr. Pavel Paŕızek Ph.D., Department of Distributed and De-
pendable Systems

Abstract: Viper is a verification infrastructure developed at ETH Zurich. Using
this infrastructure, programs written in the Viper language may be analyzed for
correctness with respect to assertions and contracts.

In this thesis, we develop a contracts library and a translator program that
compiles C# code into the Viper language and thus allows it to be verified. A user
may annotate their C# program with these contracts and then use the translator
to determine its functional correctness.

The translator supports most C# features, including types and arrays. It also
integrates with Visual Studio, showing translation and verification errors to the
user on-the-fly.

Keywords: verification, programming languages, contracts, permissions

iii



iv



I would like to thank my advisor, Dr. Pavel Paŕızek, for promptly provid-
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1. Introduction
The field of software verification deals with providing guarantees that a given

computer program behaves as expected. In the context of research, software
verification is understood to encompass only the more formal techniques such as
symbolic analysis or model checking. Unit testing in particular is usually not
considered a part of software verification.

Software verification is expensive and still often impractical for large-scale
projects. For these reasons, it is used only for those systems where the cost of a
potential failure is very high, and expending considerable resources on preventing
the failure is still a worthy investment. Still even in that case, only the most
critical parts of the code are verified.

Over the last decades, software verification has become easier, faster and
more powerful. This trend may be expected to continue as better verification
methodologies are invented and performance improves. However, at the same
time, the software that needs verification has become larger and more advanced.
Even at this time it remains impossible to verify many properties of software
developed at the dawn of computers, even though we’d be happy to be able to
verify those. And in the meantime, advances in software engineering such as
more common use of multithreading and the heap have made verification more
difficult.

One way to perform software verification is to check program code with re-
spect to contracts, i.e. specifications written by the code author that define what
the program’s expected result is. The program is then verified in a modular
way — each method is verified separately and if all methods verify, then the pro-
gram is deemed correct. For example, if one created a quicksort subroutine, its
contract might state “This subroutine always terminates, and when it does, num-
bers within the input array will be in ascending order.” The code that executes
the actual quicksort might be complex and hard to understand, but, with an
appropriate infrastructure, a tool called a verifier could automatically prove that
the subroutine’s code never breaks its stated contract. If the verifier succeeds,
then we can be sure that the code is correct as long as the contract really states
what we want it to. But contracts are usually much simpler than the actual code
and more easily checked by humans.

Contracts are also the verification methodology chosen by the Viper project [1,
2], developed at ETH Zurich1. The project aims, among other objectives, to create
an intermediate verification language that is low-level enough that verifiers are
capable of proving its contracts, and yet expressive enough that developing front-
ends for the language, or programming in Viper directly, is easy.

In this thesis, we aim to develop a transcompiler — a translation program —
that takes C# code files as input and produces a file in the Viper verification
language. This way, we allow users to formally analyze the correctness of their
C# programs. As C# is a more high-level language than Viper, it is often more
expressive and convenient to use.

Translating C# syntax and features into Viper makes up the bulk of this thesis.
Translating some features is easy: For example, even though the for loop is not

1Eidgenössische Technische Hochschule Zürich, http://www.pm.inf.ethz.ch/
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available in Viper, a C# for loop can be translated as a Viper while loop with
only minor work by the transcompiler. On the other hand, some features take
more effort to translate correctly. For example, Viper has no concept of types or
receivers.

In the second chapter, we describe more formally how Viper’s verification in-
frastructure works and give some information on its theoretical basis — permission
logic, symbolic execution and SMT problems. Reading the chapter is not required
for understanding the rest of this thesis and if the reader is not interested in learn-
ing this information, we encourage them to skip it.

In Chapter 3, we define terms used throughout the thesis and give examples
of Viper programs and of the translation.

In Chapter 4, we give a formal yet accessible specification of the Viper lan-
guage. In the following chapters, we will assume the reader can at least read code
in Viper. A basic understanding of the Viper language is expected even of the
user of the translator.

In Chapter 5, we define the scope of this project and describe what features
of the C# language are supported by the translator.

In Chapters 6 and 7, we give details on the implementation of the translator.
In the remaining chapters, we evaluate the translator, discuss its strengths

and limitations and our experience, explain the relationship of this thesis with
related work, and then conclude.
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2. Background
This chapter contains theoretical background for the verification methodol-

ogy used in the Viper project. This information is in general not necessary for
understanding the Soothsharp translator, but it may help one to understand how
the Viper language and framework work.

2.1 Viper
The field of software verification is large and there is a number of different

verification methods. A one-line description of Viper could be “Viper verifies
correctness of procedural programs written in a high-level language with respect
to contracts specified by the user, focusing on multithreading and heap access
correctness.”

Viper is not a theorem prover — it reaches neither the theorem prover’s power
(some programs can be proved to be correct in a theorem prover such as Coq,
but not so in Viper), neither its soundness (a program that passes verification in
Viper might still contain errors).

Viper doesn’t guarantee soundness — for one, it doesn’t guarantee termina-
tion; and two, it makes some simplifying assumptions such as that integers are
unbounded and an overflow cannot occur2.

However, Viper is sufficiently powerful to prove the correctness of, for example,
sorting algorithms or binary search.

The current primary purpose of the Viper project is to serve as a framework
that researchers can use to test or develop new verification methodologies. While
it is possible to write “proofs” or write Viper programs directly with the goal of
ensuring their correctness, and the language was designed with that in mind (for
prototyping purposes), that is not the main goal of Viper as a project.

2.2 Viper internals
Figure 2.1 provides an overview of the structure of the Viper project. The

most important subprojects are the frontends and the core projects Silver, Carbon
and Silicon3.

Frontends are tools that translate code in a high-level programming language
code into Viper code.

Silver is the former name of the Viper Intermediate Language. The code
repository silver still hosts the parser and type checker for the language (and
other code common to both backend verifiers).

Carbon and Silicon are “backend verifiers,” they are responsible for actually
verifying Viper code.

2In addition, there might be bugs in the verifier. Unlike theorem provers such as Coq, there
is “trusted core”.

3We have also considered naming Soothsharp after a chemical element, but the convention
seems to be that Viper frontends don’t follow this naming scheme.
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Figure 2.1: Viper architecture [1]

Carbon is a backend that translates a Viper code file into a Boogie code file
which is then translated into queries for the Z3 SMT solver (we explain this
process in the next section).

Silicon is a backend that uses a symbolic execution method to generate SMT
queries from Viper code, without using Boogie as a go-between step (also ex-
plained in the next section).

Each of these backends has its own limitations or bugs, but in theory, they
are meant to provide the same verification result for the same Viper code file.

2.3 Verification methodology
A Viper code file ultimately consists of a number of methods and functions

that need to be verified. At the time of writing of this text, semantics of the
Viper language have not yet been formalized, but we can estimate them: The
verifiers are expected to report verification errors if an assertion included in the
program is not guaranteed to be true4.

For example, the verifiers must be able to prove that assertions in each assert
statement are correct and that method postconditions hold, or else they must re-
port a verification error. An error doesn’t mean that there is a program execution
that would result in the assertion being false, but that the verifier couldn’t prove
that there isn’t.

One verifier (Carbon) works as a translator, similarly to Soothsharp. It takes

4The semantics have since been formalized in [3].
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Viper code and translates it to Boogie source code. Boogie [4] is a Microsoft
intermediate verification language and verifier. Syntactically, it is quite similar to
Viper itself. The most important difference is that Boogie doesn’t use or support
fractional permissions. Carbon reduces Viper code to Boogie code and then uses
the Boogie verifier to find verification errors in the Boogie code, which are then
translated back to Viper errors.

The other verifier (Silicon) performs symbolic execution on the Viper code.
Symbolic execution is a kind of static analysis. Each program point is associated
with a set of possible program states (by a program state, we mean the values of
variables and the contents of the heap, and, in the case of Viper, also known facts
and held permissions). For an assertion to hold, each possible program state at
that point must satisfy the assertion. To determine whether this is true, Silicon
synthesizes SMT queries from the program code that are then fed to Z3 [5], an
SMT solver. This is called “verification condition generation”. The answer to
those queries is then used by Silicon to produce verification errors.

Carbon (via Boogie) and Silicon both ultimately depend on Z3 for verification.
Z3 is a well-known SMT solver, introduced by Microsoft in 2008. SMT solvers
receive logic formulas as queries and determine whether they are satisfiable, much
like SAT solvers. However, because some common operations in programming
(such as integer arithmetic) would result in extremely complex formulas, the SMT
solver doesn’t reduce them to boolean variables but instead uses a subsystem with
some specific knowledge (such as the theory of integer operations) to determine
the satisfiability of that formula.

2.4 Reasoning about the heap
An important part of program verification deals with reasoning about loca-

tions on the heap. Most verifiers are modular: they verify each method separately.
But then, since all methods have access to the heap, each method call has the
potential to completely change any value on the heap and you lose almost all
reasoning information after the method call.

For example, consider this piece of pseudocode:
1 a = new A();
2 a.Field = 2;
3 DoSomething(a);
4 assert a.Field == 2;

The assertion might not be true, because the method DoSomething could
change the value of a.Field. To deal with this, separation logic [6] may be
used. In separation logic, we consider heap to be a set of distinct regions and for
each method, or program point, we maintain information about which regions of
the heap the program we can access. Attempting to access other regions of the
heap is illegal.

Usually in object-oriented programming, a region would correspond to the
memory location of a field of an object, and the heap would be separated into
fields you can access and fields you cannot. Ownership is a related concept:
memory locations, such as fields, may be “owned”, which means that they can
only be accessed (by reading or writing) via their owner [7]. Many verification
methodologies, such as Spec#, use ownership directly.
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However, an even more granular approach is possible using permission logic
and fractional permissions. In this paradigm (which is used by Viper), to read
a memory location, you must have nonzero permissions (> 0) to it. To write to a
memory location, you must have the full permission (1) to it. When memory is
first allocated, during object construction, the creator gains the full permission
to that memory, and, when calling methods, may then grant a fraction of that
permission to that method. If less than the full permission is given (for example,
1
2 or 1

3), the called method can only read that memory. If full permission is
given (1), the called method can write there as well. Thus, if the caller only gives
away partial permission, it is guaranteed that after the method call, that memory
location still contains the original value.

Fractional permissions can be used in proofs and never occur in source code [8]
but in the case of Viper, they can be used in the code directly.

A use case of fractional permissions that keeps being explored in current
research is how they can be used to ensure safe concurrency.

2.5 Roslyn
Before explaining the functioning of our translator, we need to introduce the

.NET Compiler Platform, often referred to as “Roslyn”. We make heavy use of
its abilities.

Roslyn [9], besides being the host to the C# compiler, also exposes many
abilities of the compiler as API. These include lexical and syntax analysis: Roslyn
can convert a string or a text file containing C# source code to a syntax tree made
of Roslyn classes such as IfStatementSyntax.

But they also include semantic analysis. Methods of the Roslyn API can be
used to determine which method a call refers to, what is the fully qualified name
of an identifier or what is the type of an expression syntax node.

Roslyn can also perform the compilation process in its entirety and determine
what compiler errors, if any, would prevent code generation.

More information about Roslyn is available online [10].
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3. Overview
The purpose of this thesis is to produce a working software solution that en-

ables developers to write C# code that can be analyzed for functional correctness.
To this end, we developed two front-end tools:

• The csverify.exe command-line utility. It takes input C# source code
files and produces a single Viper source file which it may save on disk or
immediately verify using either the Carbon or Silicon verifier. Any errors
produced by either the transcompiler or the verifier are linked to a C#
line-column location and printed to standard output.

• A plugin for Microsoft Visual Studio that translates C# files loaded in
the editor and allows the user to have them translated and verified. Any
translation or verification errors (reported by a backend verifier) are linked
back to nodes in the C# syntax tree and appear in Visual Studio’s Error
List and as squigglies underlining the errors in the source code.

We also create a contracts library, Soothsharp.Contracts, which the user
will use in their code to assist the verifier and to specify method contracts.

These, along with the core and the backend, allow the user to verify C# code.

3.1 Example 1 (Maximum)
For example, suppose you have the following C# file:

1 class A {
2 public static int Maximum(int a, int b)
3 {
4 return a;
5 }
6 }

There is a bug in the above file: the method named Maximum always returns
the first value, but the compiler cannot know what the method is supposed to
do, and so cannot report an error.

With Soothsharp, the user could add contracts to the code to specify post-
conditions that the method body must guarantee:

1 using static Soothsharp.Contracts.Contract;
2 class A {
3 public static int Maximum(int a, int b)
4 {
5 Ensures(a > b ? IntegerResult == a : IntegerResult == b);
6 return a;
7 }
8 }

The fifth line in this program specifies a method postcondition. This one
means “If this method was called with arguments a and b, and argument a was
greater, then it will be returned, otherwise b will be returned”. Postconditions
and other Soothsharp contracts are blank methods in C# and so the compiler will
still succeed here and leave the bug in the code. However, if the user passes this
code to the Soothsharp verifier, an error will trigger:

9



1 Errors: 1.
2 5:9 SSIL204: Postcondition of A_Maximum might not hold. Assertion

(a > b ? res == a : res == b) might not hold. (tmp8116.tmp@2.11)

This will alert the user to fix the method, like this, for example:
1 using static Soothsharp.Contracts.Contract;
2 class A {
3 public static int Maximum(int a, int b)
4 {
5 Ensures(a > b ? IntegerResult == a : IntegerResult == b);
6 if (a >= b)
7 return a;
8 else
9 return b;

10 }
11 }

Soothsharp will accept this code:
1 > csverify --quiet --silicon example.cs
2 Verification successful.

What happens here is that Soothsharp translates the above code into code
written in the Viper Intermediate Language, which looks somewhat like this:

1 method A_Maximum(a : Int, b : Int) returns (res : Int)
2 ensures (a > b ? res == a : res == b)
3 {
4 if (a >= b) {
5 res := a
6 goto end
7 } else {
8 res := b
9 goto end

10 }
11 label end
12 }

In this particular example, the code is very similar. Of note is only the absence
of the return statement in Viper and the fact that it names its return values.5

This generated code file may then be either printed out or passed to a Viper
verifier. In our case, we chose the symbolic execution backend (by using the
option --silicon). This backend parses a Viper code file and outputs error
reports such as the one seen during our first try.

3.2 Example 2 (Binary search)
The example we gave above was very artificial. Verifying such a program

is not very useful because the verifier only checks the code with respect to its
contracts which still have to be proven to be correct by hand.

However, in the following scenario (adapted from [11]), it is much easier to
look at the four lines of contracts at the beginning of the method and see that
they are correct than to look for bugs in the entire method:

5This is because Viper methods can return more than one value.
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1 using Soothsharp.Contracts;
2 using static Soothsharp.Contracts.Contract;
3 namespace Soothsharp.Examples
4 {
5 class B
6 {
7 // Searches a sorted sequence of integers for a value. If

the value is found, this method returns the index of the
value in the sequence. If the value is not present, the
method returns -1.

8 int BinarySearch(Seq<int> xs, int key)
9 {

10 // As a precondition, we assume the sequence is sorted:
11 Requires(ForAll(i => ForAll(j => (0 <= i && j <

xs.Length && i < j).Implies(xs[i] < xs[j]))));
12 // The returned integer is either -1 or an index in the

sequence:
13 Ensures(-1 <= IntegerResult && IntegerResult <

xs.Length);
14 // If it’s not -1, then the searched value as at the

returned index:
15 Ensures((0 <= IntegerResult).Implies(xs[IntegerResult]

== key));
16 // If it is -1, then the searched value is not in the

sequence.
17 Ensures((-1 == IntegerResult).Implies(ForAll(i => (0 <=

i && i < xs.Length).Implies(xs[i] != key))));
18
19 // The rest of this method can be assumed to be correct

if the above contracts are correct
20 // and verification passes
21 int low = 0;
22 int high = xs.Length;
23 int index = -1;
24 // Binary search follows:
25 while (low < high && index == -1)
26 {
27 Invariant(0 <= low && low <= high && high <=

xs.Length);
28 Invariant((index == -1).Implies(ForAll(i =>
29 (0 <= i && i < xs.Length && !(low <= i && i <

high)).Implies(xs[i] != key))));
30 Invariant(-1 <= index && index < xs.Length);
31 Invariant((0 <= index).Implies(xs[index] == key));
32
33 int mid = (low + high)/2;
34 if (xs[mid] < key)
35 {
36 low = mid + 1;
37 }
38 else
39 {
40 if (key < xs[mid])
41 {
42 high = mid;
43 }
44 else
45 {

11



46 index = mid;
47 high = mid;
48 }
49 }
50 }
51 return index;
52 }
53 }
54 }

They’re not perfect contracts. They do guarantee that the result is correct,
i.e. that we return a −1 if the value is not found, or the correct index if it is
present, but they make no guarantee that the process used to get this index is a
binary search, nor that its speed is logarithmic.

Moreover, the contracts don’t guarantee termination — the method might con-
ceivably run forever. However, if we accept these limitations, the contracts are
still a useful tool here. Verifying this code in Soothsharp gives us a guarantee
that the method is functionally correct.

You may also note the “Invariant” contracts in the loop body. A loop invariant
is an assertion that’s true at the beginning and end of the loop and also at the
beginning of each loop iteration. These invariants are not part of the method’s
contract but the verifier uses them to be able to prove the method’s correctness.

For comparison, this is the Viper code that Soothsharp produces for this
example:

1 method B_BinarySearch (this : Ref, xs : Seq[Int], key : Int)
returns (res : Int)

2 requires forall i : Int :: forall j : Int :: (0 <= i && j <
|xs| && i < j) ==> xs[i] < xs[j]

3 ensures -1 <= res && res < |xs|
4 ensures (0 <= res) ==> xs[res] == key
5 ensures (-1 == res) ==> forall i2 : Int :: (0 <= i2 && i2 <

|xs|) ==> xs[i2] != key
6 {
7 var low : Int
8 low := 0
9 var high : Int

10 high := |xs|
11 var index : Int
12 index := -1
13 while (low < high && index == -1)
14 invariant 0 <= low && low <= high && high <= |xs|
15 invariant (index == -1) ==> forall i3 : Int :: (0 <= i3 && i3 <

|xs| && !(low <= i3 && i3 < high)) ==> xs[i3] != key
16 invariant -1 <= index && index < |xs|
17 invariant (0 <= index) ==> xs[index] == key
18 {
19 var mid : Int
20 mid := (low + high) \ 2
21 if (xs[mid] < key) {
22 low := mid + 1
23 } else {
24 if (key < xs[mid]) {
25 high := mid
26 } else {
27 index := mid
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28 high := mid
29 }
30 }
31 }
32 res := index
33 }
34
35 method B_init () returns (this : Ref) {
36 this := new(*)
37 }

3.3 Example 3 (Permissions)
The true strength of Viper, however, lies in its capacity to reason about

locations on the heap. A Viper program can access a value stored on the heap
only if it has permission to access it, and it can overwrite that value only if it has
write permission to it.

Let’s look at this example:
1 using static Soothsharp.Contracts.Contract;
2 using static Soothsharp.Contracts.Permission;
3
4 namespace Soothsharp.Examples
5 {
6 class Data
7 {
8 public int Value;
9 }

10 class C
11 {
12 public static int ReadValue(Data d)
13 {
14 Requires(Acc(d.Value, Wildcard));
15
16 return d.Value;
17 }
18 public static int ReadValueError(Data d)
19 {
20 Requires(Acc(d.Value, Wildcard));
21
22 d.Value = 3; // <= This will trigger an error.
23 return d.Value;
24 }
25 }
26 }

At line 14, we specify that the method ReadValue requires a read permission
to heap location d.Value (“wildcard” here means “any nonzero permission”). This
permits the method to access d.Value at line 16.

However, the second method requires only a read permission in its precondi-
tion, but attempts to write to that location at line 22. It does not have permission
to do this, so the verification will fail:

1 Errors: 1.
2 23:13 SSIL204: Assignment might fail. There might be insufficient

permission to access d2.Data_Value. (tmp732D.tmp@9.2)
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This way, one can be sure that a method only modifies heap in a way that’s
specified by its contract. This is useful both on its own and inside larger proofs.

3.4 Definitions and terms

The following terms are used throughout the rest of this thesis:

• Viper (“Verification Infrastructure for Permission-based Reasoning”) is
both the name of the project and the intermediate language developed as
part of the project at the university of ETH Zurich.

– For many years, the Viper Intermediate Language was called Silver.
This name persists throughout the source code of both Soothsharp and
the Viper project.

• Silicon is the name for one of the Viper verifier backends. It uses symbolic
execution to prove assertions.

– Symbolic execution is a static code analysis method where facts
about the program state are assumed at each point in the control flow
graph, and these facts are used to reason about program properties.

• Carbon is the name for the other Viper verifier backend. It translates
Viper code into the Boogie language and then uses Z3, an SMT solver, to
prove the assertions.

– Boogie is a Microsoft intermediate verification language; its code can
be compiled into SMT queries understood by Z3

– Z3 is a Microsoft SMT solver.

• A frontend means, depending on the context, either:

– A frontend for the Viper language, e.g. Soothsharp or Nagini.
– A frontend for the Soothsharp translator, i.e. csverify.exe or the Visual

Studio plugin.

• Translation is the process of transforming one or more C# syntax trees
into Viper syntax trees.

• Verification is the process of using a backend verifier to check assertions
in a Viper code file.

• Roslyn is the C# compiler library that allows its user to create syntax trees
from C# source code and to get the results of the C# compiler semantic
analysis from the trees.
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Figure 3.1: Soothsharp architecture

3.5 General architecture
The Soothsharp solution consists of a number of components (see Figure 3.1).
The main project is Soothsharp.Translation. This takes C# syntax trees,

runs semantic analysis on them (both Microsoft’s semantic analysis, and our own)
and converts them to Viper syntax trees. Errors may be generated in this process,
which would stop the translation. Most of our code is in this project.

To get C# syntax trees into this project, one of two frontends may be used:
either the console application that generates trees by parsing C# code from
files, or the Soothsharp plugin for Visual Studio which extracts trees from open
documents of a running Visual Studio instance.

The resulting Viper trees are serialized to Viper text which is sent to a back-
end. The two available backends (Silicon and Carbon) are part of the Viper
project.

Messages from these backends are passed back to the frontends and, after
some modifications by Soothsharp, are either printed to the standard output or
in a Visual Studio window.

Details about this entire process are given in Chapter 6.
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4. Viper Intermediate Language
This chapter gives a detailed specification of the Viper language, the target

of Soothsharp’s translation. The chapter is technical and precise. For a gentler
introduction, other documents might be available at the Viper home site [1].

This specification describes the Viper language as it was in November 2016.
The language still undergoes active development that sometimes changes even its
syntax. We developed this specification during our work on Soothsharp because
an official specification for the language does not yet exist. Some examples in this
specification are based on personal communication with Dr. Malte Schwerhoff.

Full grammar description of Viper is given as an appendix to this thesis. In
this chapter, we first give important basic information and term definitions, and
then specify the behavior of individual declarations, contracts, statements and
expressions.

In November 2016, semantics of the Viper language have been formalized in
[3]. The work assumes some knowledge of the Viper project but it goes into more
detail on the semantics of Viper declarations, statements and expressions than
we do.

Overview. The Viper language is “an expressive intermediate verification
language” [12]. It is a procedural, imperative language with object-oriented el-
ements. Viper programs are not executable, the code is processed by a verifier
instead.

Name. Viper is also called the Viper Intermediate Language. Previously,
Viper was named Silver, Silver Intermediate Language and also Simple Inter-
mediate Language (SIL). These names are now obsolete, although they all still
appear in various documents and source code. Viper was originally the name for
the entire effort to create a verification framework, but it’s recently also come to
mean the created language itself.

Extension. Viper code files should have the extension “.vpr”, although code
files with the extension “.sil” remain common.

Identifiers. Identifiers may contain alphanumeric characters, underscores,
dollar signs and must not begin with a digit. The identifier space is mostly
flat: fields, functions, methods, domains, predicates and axioms share the same
namespace. Local variables, parameters and return value names share the iden-
tifier space with global declarations, except that they only have an effect in their
scope. It is still a parse error to “shadow” a global identifier with a local one.

Token termination. Definitions (methods, domains, axioms, . . . ) do not
need to be terminated by a newline. For example, field b : Int field
d: Int is legal. Fields and domain functions may be optionally terminated by
a semicolon, but this semicolon is ignored.

Passing verification. A program passes verification if its analysis trig-
gers no syntax or semantic errors, and if all of its functions and methods pass
verification. We can also say that a program or a function or a method verifies.
This means the same thing.

Types: Viper has the following types:

• Int, a signed unbounded integer; specifically, not a 32-bit integer
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• Bool, a boolean

• Perm, a permission value

– Rational is a synonym of Perm.
– A Perm value is a rational nonnegative number.

• Ref, a reference object

– All reference objects are assumed to have all fields declared with the
field declaration.

• Domain types created by domain declarations

• Seq, an immutable mathematical sequence of elements of a specified type

• Set, an immutable mathematical set of elements of a specified type

• Multiset, an immutable mathematical multiset of elements of a specified
type

Expression. An expression is a syntax node that corresponds to the exp
syntax production. However, the use of this term is discouraged as it may lead
to confusion. When possible, the following more specialized terms are used:

• An assertion is an expression that’s used in contracts, in special Viper
statements and as a loop condition and if condition. An assertion will
usually contain other expressions. For example, the assertion “2 != 3”
contains the subexpressions “2” and “3” which are not assertions themselves.

• A pure expression is an expression that has a type. It does not contain
any spatial assertions.

• A pure assertion is a pure expression that has the type boolean.

• A spatial assertion is any other assertion, either an atomic spatial as-
sertion or an assertion that combines at least a single atomic spatial as-
sertion with other assertions using the operator “&&” or “==>”.

• An atomic spatial assertion is the access predicate acc or a user-defined
predicate.

Permissions. Permissions are an important concept in Viper. The following
terms relate to permissions:

• A fact is a logic statement that’s known to be true at a point in the program.

• To assume a pure assertion is to add it to the database of facts at this
point. Only boolean assertions can be assumed.

• To drop a fact means to remove it from the database of facts and no longer
hold it true.

• To assert a fact is to check whether the verifier can prove, from its database
of facts and by its reasoning, that the asserted fact is true at this point. If
the check fails, a verification error is triggered.
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• To inhale an assertion means to assume all pure assertions in the assertion
and to gain the permissions from that assertion.

– If you have a permission greater than 1 to a location, you can infer
false.

• To exhale an assertion means to lose all permissions from that assertion.
If those permissions are not available, a verification error is triggered. The
pure assertions in that assertion are asserted. Locations which are newly
inaccessible are havocked.

• To havoc a location, variable or value means to lose all information about
it.

• You have read permissions to a field or a predicate if you have nonzero
permissions to it.

• You have full permissions to a field or a predicate if you have at least
permission 1 to it.

– Any permission greater than 1 causes you to be able to infer false.
– Full permissions are sometimes referred to as write permissions or even

full write permissions.

4.1 Example file
This example file (adapted from [13]) that encodes a sorted list of integers

might give a good idea of how Viper code files look like in general. All elements
in this example are described further below in this specification.

1 field data: Seq[Int]
2
3 define sorted(s)
4 forall i: Int, j: Int :: 0 <= i && i < j && j < |s| ==> s[i] <=

s[j]
5
6 method insert(this: Ref, elem: Int) returns (idx: Int)
7 requires acc(this.data) && sorted(this.data)
8 ensures acc(this.data) && sorted(this.data)
9 ensures 0 <= idx && idx <= old(|this.data|)

10 ensures this.data == old(this.data)[0..idx] ++ Seq(elem) ++
old(this.data)[idx..]

11 {
12 idx := 0
13
14 while(idx < |this.data| && this.data[idx] < elem)
15 invariant acc(this.data, 1/2)
16 invariant 0 <= idx && idx <= |this.data|
17 invariant forall i: Int :: 0 <= i && i < idx ==>

this.data[i] < elem
18 { idx := idx + 1 }
19
20 this.data := this.data[0..idx] ++ Seq(elem) ++ this.data[idx..]
21 }
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4.2 Declarations
A Viper code file (usually with the extension .vpr) is a sequence of declara-

tions. The declarations are import, define, domain, field, function, predicate and
method. The order of declarations does not matter except for define declarations.

The rest of this section specifies the behavior of all declarations.

4.2.1 Import
Syntax: import "[relative-filename]"
Processes the declarations in the Viper code file with the given filename as

though they were in this file.
Filename is relative to the primary file, i.e. the one that is put as a command-

line argument, not to the current directory and not to the file where the import
declaration was present.

It is an error for a file to import itself directly.
Imports are only ever imported once. If a file imports itself via an intermedi-

ary, the second import declaration is ignored.

4.2.2 Define
Syntax: define [macro-name] [expression-or-block]
Defines a new macro with the name macro-name that expands into the given

expression or statement block.
Define declarations are processed in text order. If a macro with the same

name is already defined, the new declaration is ignored.
Wherever an expression or an identifier might appear, a macro identifier can

also appear. In that case, the macro identifier takes precedence and expands first.
A macro may have parameters, in which case the parameters are replaced in

the expression-or-block. Parameters are replaced as pure source text replacement,
i.e. just like C-style macros.

• For expression macros with no parameters, the parentheses may be omitted
both at declaration site and at use site.

• For block macros, parentheses are mandatory at both sites.

It is an error to have a cycle of define declarations.

4.2.3 Field
Syntax: field [field-name] : [type]
Adds a new field to the database of fields. All reference objects will be con-

sidered to have that field. Fields are shared across all loaded files.

4.2.4 Domain
Syntax: domain [domain-name] {[domain-function]*

[axiom]* }
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Syntax: domain [domain-name] ( [type-argument]* ) {
[domain-function]* [axiom]* }

Adds a new domain to the database of types. A domain may have type
parameters. A domain is a type that has no defined operators. The primary way
to get a value of a domain type is by the result value of a domain function. This
is called “being an uninterpreted type”.

Other ways for facts to become known about a variable of a domain type
exist6.

A variable of a domain type is not a Ref and cannot have fields.
This specification does not describe domain type arguments as their defi-

nition is still uncertain and they are not very useful. They may be removed in a
future version of Viper.

The declaration also adds all nested domain functions and axioms to the
database. Neither for domain functions nor for axioms does it matter in which
domain they are defined — they are always global.

Domain function

Syntax: function [ident] [formal-args] : [type]
Registers a new global domain function that has no body but has a return

type. When called, the domain function will return a value of its return type,
with no additional information about it (but see axioms).

A function that’s called with the same parameters at multiple call sites will
always return the same value at all call sites.

If the function is declared unique, it merely means that no other domain
function can return that value.

Merely declaring a function unique, without ever using it, has an effect. Specif-
ically, if you declare three unique functions returning Bool, it is as though false
was assumed, globally.

Axiom

Syntax: axiom [ident] { [exp] }
Registers a new global axiom. The axiom’s name is ignored (the parser just

checks that it is unique). The axiom’s assertion is assumed to be true, globally.
Usually, one would place quantifier assertions in the axiom. If the axiom is tau-
tologically false, for example, false will be assumed globally (and every assertion
will be proven).

4.2.5 Subroutines
Syntax:

1 method [ident] [formal-args] [formal-returns]
2 [precondition]*
3 [postcondition]*
4 [block]
5

6A value of a domain type can also be obtained as the result value of an abstract function
or method or by constraining a fresh variable with the assume statement.
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6 function [ident] [formal-args] : [return-type]
7 [precondition]*
8 [postcondition]*
9 {

10 [exp]
11 }
12
13 predicate [ident] [formal-args]
14 {
15 exp
16 }

Registers a new subroutine (a function, a method, or a predicate). After
parsing is complete, all registered subroutines are checked for provability.

The conceptual, most important difference between a function and a method
is that the former is pure (side-effect free), hence deterministic, and guaranteed
to terminate. Due to these properties, functions can be used in specifications,
whereas methods cannot.

Specifically, differences between a function and a method are:

• A function’s body is a single pure expression. A method’s body is a block
of statements.

• A function always has one return value, identified by the keyword result.
A method may have zero or any number of return values.

• A function call may be part of an assertion. A method call is always a
statement.

At the beginning of a subroutine’s verification, the following become the only
known facts:

• All preconditions

• All axioms

• Any facts inferred from global sources such as the uniqueness of functions

To verify a subroutine, the tool starts at its entry point and then proceeds
as though by symbolic execution. If all possible execution paths that lead to the
exit point pass verification, and all postconditions pass verification for all these
paths, then the subroutine passes verification, otherwise it doesn’t.

A subroutine need not have a body. In that case, we say that it is abstract.
An abstract subroutine’s body is deemed to be such that it ensures that all the
postconditions hold.

A predicate’s assertion’s type must be Bool or it must be a spatial assertion.
In addition, for a subroutine to verify successfully, its preconditions and post-

conditions must be well-formed7.
7The most common well-formedness violation is when a contract accesses a field for which

it does not have sufficient permission.
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4.2.6 Predicates

Predicates behave as subroutines syntactically, during their declaration, but
their use is quite different at call sites.

A predicate is, basically, a packaged (usually spatial) assertion that contains
permissions. This assertion may be “unfolded” by the unfold statement or the
unfolding expression, and then the contained assertion may be used to access
fields.

For non-recursive predicates, there is little advantage to using predicates in-
stead of a define declaration which doesn’t require folding and unfolding. How-
ever, there may also be recursive predicates.

For example the following predicate is recursive [14]:
1 predicate lseg(this: Ref, end: Ref)
2 {
3 this != end ==>
4 acc(this.data) && acc(this.next) && acc(lseg(this.next, end)) &&
5 unfolding acc(lseg(this.next, end)) in this.next != end ==>

this.data <= this.next.data
6 }

That predicate means “write permissions to the object this and to the entire
list of objects reachable from this by means of the field this.next, transitively,
until the object end is reached”.

Folding and unfolding is used to prevent loading all the permissions and all
the facts into memory where they’re not necessary since the verifier might not
be able to reason about that. Instead, only a single “layer” of the predicate is
unfolded and exposed to the verifier, which is often all it needs. In the example
above, even if the method has lseg(a, end) assumed, it still can’t access a.data.
After unfolding lseg, it could access a.data but not a.next.data — it would need
to unfold twice to access that field.

More information can be found under fold and unfold further below.

4.3 Contracts

There are several types of contracts — preconditions, postconditions and in-
variants. Contracts are assertions.

4.3.1 Precondition

A precondition has an effect at the beginning of a subroutine and just before
a method call.

• At the beginning of a subroutine declaration, the subroutine inhales all
preconditions.

• Just before a method call, the caller exhales all preconditions of the
method.
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4.3.2 Postcondition
A postcondition has an effect at the end of a subroutine and just after a

method call.

• At the end of a subroutine’s verification, the subroutine exhales all post-
conditions.

• Just after a method call, the caller inhales all postconditions of the method.

4.3.3 Invariant
An invariant has an effect in while loops. See the statement “while” further

below.

4.4 Statements
The following statements exist: local variable declaration, local definition, local

variable assignment, field assignment, object creation, assert, assume, inhale,
exhale, fold, unfold, goto, label, if, while, method call, fresh, wand, package, apply,
constraining.

The statements goto, label, while, if and constraining are involved in execution
path modification. Otherwise, all statements merely execute and the execution
continues in text order.

In the following, “local” means “local variable, parameter or return value”.
The statements wand, package, apply, fresh and constraining are not

used in Soothsharp. The first three deal with magic wands, an advanced concept
in separation logic. The fresh statement deals with havocking permission values
and the constraining statement may be used to implement abstract read permis-
sions. None of these statements will be described in this specification, nor are
they used within the Soothsharp program.

4.4.1 If
If statement consists of a pure assertion, a then block, and optionally any

number of elsif branches and optionally a final else block.
The if statement causes the control graph to branch. For each block, a new

path is created.
At the beginning of the then block, the statement’s pure assertion is as-

sumed. At the beginning of each elsif branch, negations of the preceding pure
assertions are assumed and the current branch’s pure assertion is assumed. At
the beginning of the else block, the negation of all preceding pure assertions is
assumed. At the end of each of the blocks, all of these assumptions are dropped
and execution transfers unconditionally to the code point after the if statement.

4.4.2 While
While statement consists of a pure assertion, a number of invariants and a

block.
The while statement causes the control graph to branch into two branches.
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• In the first, all invariants are exhaled (“an invariant must hold on en-
try”), then all local variables used in the loop body are havocked, then all
invariants are inhaled, then the negation of the pure assertion is assumed,
and execution transfers to the end of the loop.

• In the second, all permissions are dropped, then all invariants are in-
haled, then the pure assertion is assumed, then the loop body occurs,
then all invariants are exhaled, then execution ends.

No Invariants on Abrupt End: Jumping out of a loop abruptly (i.e. by a
goto statement) will not cause the invariant to have an effect.

No Termination Check: There is no check that the loop condition can ever
be violated, i.e. whether the program terminates or not is not checked by Viper
verifiers.

4.4.3 Label

Label marks a point that can be referenced by a labeled old expression and
by the goto statement. It has no semantic meaning on its own.

4.4.4 Goto

Goto transfers control unconditionally to the target label in the same method.
If a statement is unreachable because of a goto jump, then false is assumed

for that statement.

4.4.5 Var (local variable declaration)

Declares a new variable with a specified type and optionally assigns an ex-
pression as its value. Note that in Viper, object creation and method call are
statements, not expressions. If no expression is given, this does not mean that
the value is random or none; it merely means that the verifier does not yet know
what it is.

A variable cannot be accessed before it is declared.

4.4.6 Define (local definition)

Works as a global define declaration, with the following differences:

• The macro only exists in this method.

• The define statement can be anywhere in the method, even after its use.

• A local definition shadows a global define declaration without an error or a
warning. A local definition thus takes precedence.
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4.4.7 Local variable assignment
Sets the value of the local variable being assigned to the value of the right-

hand side of the assignment (a pure expression). The local and the pure assertion
must have the same type.

Note that facts are associated with values, not with variables. For example,
thee following code verifies successfully:

1 method test() {
2 var x: Int
3 assume 0 < x
4 var y: Int := x
5
6 x := x - 10000
7 assert 0 < y
8 }

4.4.8 Field assignment
Sets a pure expression as the value of a field. The field and the pure expression

must have the same type.
The method must have full write permissions to the field at this point, and it

keeps these permissions after the assignment.

4.4.9 Object creation
Creates a new reference object and sets it as the value of a local.
In addition, for all specified fields, full write permissions to those fields are

inhaled. If the new(*) variant is used, full write permissions are inhaled for all
fields in the database of fields (for the newly created object only).

4.4.10 Assert
The assertion is asserted (see the beginning of Chapter 4 for definitions).
The verifier must prove that the assertion is provable, i.e. its pure assertions

are true and that you have permissions for all spatial assertions in the assertion.
If it doesn’t, then verification fails.

4.4.11 Assume
The assertion is assumed.
The pure assertion is added to the database of facts. The current implemen-

tation, however, considers assume to be a synonym of inhale and allows spatial
assertions to be assumed as well (they are, however, inhaled).

4.4.12 Inhale
The assertion is inhaled.
Any pure assertions in the assertion are assumed, and permissions to any

spatial assertions are gained.
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4.4.13 Exhale
The assertion is exhaled.
Any pure assertions in the assertion are asserted. For spatial assertions, the

permissions to those elements are lost. If you don’t have those permissions, then
verification fails.

4.4.14 Fold
Syntax: fold [predicate-call] or fold [access-expression]
The access expression must be to a user-defined predicate.
The “fold [predicate-call]” syntax is equivalent to

“fold acc([predicate-call], write)”.
The assertion within the predicate is asserted but, for all access expressions

within the predicate, the permission amount checked is first multiplied by the
permission amount given in the fold statement.

Then, permissions to the assertion in that predicate are “lost” and cannot be
used until the predicate is unfolded again, but the verifier can still assume that
others don’t have that permission access to this predicate. This may be relevant
in some situations.

Also, permissions to the predicate itself are gained, based on the permission
amount given.

Example of “fold”:
1 field f : Int
2 predicate p(k : Ref) {
3 acc (k.f, 1/2)
4 }
5 method test(l : Ref) {
6 assume acc(l.f, 1/2) // We have half permission
7 fold acc(p(l), 1/2) // We only have 1/4 permission left,
8 // but we also have 1/2 permission to p(l)
9 assert acc(l.f, 1/4) // succeeds

10 assert acc(l.f, 1/2) // fails!
11 }

4.4.15 Unfold
As fold, except that instead of asserting and “losing” permissions, it inhales

the assertion within the predicate, as modified by the multiplier given as part of
the unfold statement. Also, these permissions to the predicate itself are exhaled.

4.4.16 Method call
The following happens in order:

• First, the preconditions of the called method are exhaled.

• Second, return value receiving variables are havocked.

• Third, the method’s postconditions are inhaled .
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4.5 Expressions
The following expressions exist: literal, local, parenthesized expression, arith-

metic expression, conditional expression, old expression, labeled old expression,
apply old expression, permission literal, perm-expression, accessibility predicate,
function application, field access, predicate access, inhale-exhale expression, un-
folding, folding, applying, packaging, forall, exists, seq constructor, set construc-
tors, sequence length, let-in expression, forperm expression.

The expressions apply old, applying, forperm and packaging are not
used within Soothsharp and are not explained in this document.

4.5.1 Local
Syntax: [identifier]
Represents a local variable, parameter or return value and returns its value. It

is not possible to refer to locals within access expressions — the program always
has permission to access locals.

4.5.2 Parenthesized expression
Syntax: ( [expression] )
Does the same as [expression]. This is used for clarity or operator precedence.

4.5.3 Literals
The Bool literals are true and false.
The Ref null literal is null.
The Int literals are all integers written as decimals.
The keyword result represents the return value of a function.
There are four Perm literals:

• none which is the same as 0/1;

• write which is the same as 1/1;

• epsilon which is deprecated and should not be used

• wildcard which is a special permission literal that represents any non-zero
permission.

4.5.4 Operator expression
An operator expression consists of one or two operands and an operator. The

operator must be able to work on those operands. The following operators exist:

• Unary plus, unary minus: works on integers and rationals

• Unary negation: works only on booleans

• subset: works on sets

• in: works on a set, multiset, sequence and its member type
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• ++: works on two sequences of the same type

• union, intersection, setminus: works on two sets or multisets of
the same type

• --* (magic wand): not described in this specification

• \ (division), % (modulo): works only on integers

• +,-,*: works on integers and rationals

• <,<=,>,>=: works on integers and rationals

• ==, !=: works on any two pure expressions of the same type

• ||, <==>: works on booleans

• &&: works on booleans and spatial assertions

• ==>: left-hand side must be a boolean, right-hand side may be a boolean
or a spatial assertion

If both operands of the “&&” operator are boolean assertions, the resulting
operator expression is pure and boolean. If at least one of them is a spatial
assertion, then the resulting operator expression is spatial and has no type and
“combines” all boolean and spatial assertions from its operands (recursively). The
same holds for the ==> operator.

4.5.5 Conditional expression
Syntax: [test] ? [then] : [else]
If the pure assertion test is true, then the result is then, otherwise the result

is else. then and else must have the same type. If one of them is spatial, then
the other must be either spatial or boolean.

If either then or else is spatial, the expression is spatial, otherwise it’s pure.

4.5.6 Old expression
Returns the value of its argument, which must be pure, as it was at the

beginning of the subroutine (if no label is specified) or at the specified label.

4.5.7 Permission access (perm)
Returns the Perm value that represents the permissions the method has on

the field or applied predicate at that point.

4.5.8 Inhale-exhale expression
This expression should be part of a precondition or postcondition. It contains

two assertions.
If the inhale-exhale expression is inhaled, then only the first assertion is in-

haled.
If the inhale-exhale expression is exhaled or asserted, then only the second

assertion is exhaled or asserted.
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4.5.9 Access expression (acc)
An access expression is used within contracts and assert, inhale, exhale and

assume statements. It means that the program has permissions to access the
specified location at that point. If no permission amount is specified as the
second argument, the permission amount is 1/1 (write permissions).

The first argument may be a field access or a predicate access.

4.5.10 Function application
Syntax: [functionname] ([arguments])
Represents the return value of a function. Functions are deterministic and

pure: the verifier will assume that two function applications with the same ar-
guments return the same value. A function application works in many respects
as a method call, except that it is pure and can be used within expressions, even
more complex expressions.

At the point where a function is used, the function’s preconditions are as-
serted, but not exhaled.

4.5.11 Field access
Syntax: [object].[fieldname]
Access a field of an object. Field access may appear within access expressions,

assignments or directly as a value.

4.5.12 Predicate access
Syntax: [predicate]([arguments])
Also referred to as “predicate call” in this specification, it represents an applied

instance of the predicate. It may appear within access expressions and fold/unfold
statements. This is how one refers to a predicate outside their definition.

4.5.13 Folding/unfolding
A folding expression is as a normal expression, but before its “evaluation”

begins, the specified predicate is folded as if by the fold statement, and when the
expression finishes evaluating, the predicate is unfolded again.

Notably, it can be used within functions.
An unfolding expression acts analogously.

4.5.14 Quantifiers
There are two quantifiers: forall and exists. While they can be used any-

where a boolean expression is permitted, they only make sense as assertions.
A forall assertion is true if the inner assertion holds for all possible instances

of the specified types. An exists assertion is true if the inner assertion holds for
at least one combination of values of the specified types.
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The verifier cannot easily reason with quantifiers: You might have an assumed
assertion and yet the verifier might not use it. This is because the verifier only
applies quantified expressions when they are triggered.

Each quantifier may be associated with one or more triggers. A trigger is a
syntax element, such as a function application or a field access. When the verifier
reaches this element, it instantiates the quantified expression for that case.

If no trigger is specified for a quantifier, the Viper program may try to infer
the trigger automatically, but this is not always successful.

4.5.15 Mathematical object constructor
Creates a new mathematical sequence, set or multiset, either from a type or

from an explicit sequence. You must specify one or the other, but not both.
Mathematical objects are immutable, although you may create new mathemat-
ical objects from old ones using operators such as “++”, “subset” or a special
sequence constructor.

The following special sequence constructors exist:

• sequence[index]: Returns the element at index index. Sequences are
zero-based. This doesn’t create a new mathematical object.

• sequence[..count]: Take. Returns a new sequence with the first count
elements.

• sequence[count..]: Drop. Returns a new sequence without the first
count elements.

• sequence[dropcount..takecount]: Take & Drop. Returns a new
sequence as though first the take and then the drop operations were per-
formed.

• [minimum..maximum): Returns a new Seq[Int] that contains each
integer starting with minimum and ending just before maximum.

4.5.16 Sequence length
Syntax: |seq|
Returns the number of elements in a sequence, set or multiset.

4.5.17 Let-in
Syntax: let [identifier] == ( [value] ) in [expression]
Assigns the value (in parentheses) to the identifier, as though the identifier

were a local variable inside the expression. The value must be a pure assertion
and must be in parentheses. The identifier uses the global namespace.
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5. Supported C# features
The C# language is extensive and it would take significant time to create

a program that would translate it perfectly. For some features, it would even
be impossible because they cannot be encoded in Viper. In this section, we go
through the C# language specification and we state, for each feature, whether
our translator should support it or not.

For starters, we will not support any C# feature from version 6.0 onwards.
This is mostly because no public specification for C# 6 exists, and also because
these new features are mostly syntax improvements with little research value.

In the following comprehensive list of C# features, taken from the specifica-
tion, black items are supported, but red underlined items are explicitly out of
scope (any feature introduced in C# 6 or later is out of scope). If an item is
supported, it still might not be fully supported. For example, variable declara-
tions might support only “int i; int j” and not “int i,j;”. The bold
captions are names of chapters of the C# language specification.

In the parentheses after each unsupported feature is a character that encodes
the reason why the feature is unsupported. The meanings of these characters are
given after the list.

• Lexical structure: pre-processing directives (U)

• Basic concepts: member access, scopes, name hiding, qualified and short
names, memory model (D), unsafe code (D)

• Types: value types, default constructors, int, bool, reference types, object,
byte, sbyte, short, uint, long, char (D), float (V), double (V), decimal (V),
dynamic (D), string (D), boxing (U), constructed types (D), expression trees
(D)

• Variables: instance fields, array elements, value parameters, local vari-
ables, static fields (N), reference parameters (N), output parameters (N),
default values (N)

• Conversions: conversions (N)

• Expressions: operators, member lookup, overload resolution, literals, sim-
ple names, parenthesized expressions, member access, invocation, element
access, this access, increment, decrement, new, ternary operator, assign-
ment operators, constant, dynamic binding (D!), operator overloading (N),
base access (D), typeof (D), checked (V), unchecked (V), default value (N),
anonymous method (D), null coalescing operator (N), LINQ query (D)

– Operators: as supported by Silver

• Statements: empty statement, block, labeled statement, local variable
declaration, local constant declarations, expression statement, if, while, do,
for, goto, return, switch (S), foreach (D), break (S), continue (S), throw
(D), try (D), checked (V), unchecked (V), lock (D), using (U), yield (D!)

• Namespaces: namespaces, using aliases, extern aliases (U), nested names-
paces (U),
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• Classes: classes, instance member, constants, constructors, partial classes
(S), generics (D), inheritance (D), GetType (D), static member (D), nested
types (S), properties (S), events (D), indexers (S), static constructors (D),
destructors (V), iterators (D), async functions (D!)

– Fields: fields, readonly (N), volatile (D), field initializer (N)
– Methods: methods, overloading, overriding (D), extension methods

(N)
– Operators: integer operators, custom operators (N)

• Structs: structs (N)

• Arrays: arrays, array creation expression, array element access, array
length, array initializer, array covariance (D), arrays with inheritance (D)

• Interfaces: interfaces (D)

• Enums: enums

• Delegates: delegates (D!), lambda functions (D!)

• Exceptions: exceptions (D)

• Attributes: Soothsharp attributes, custom attributes (U)

• Silver functionality: field, function, contracts, predicate, method, new
object creation, assert, assume, inhale, exhale, fold, unfold, Seq, sequence
concatenation, old expression, permissions (none, write, wildcard, frac-
tional), perm(), acc(), unfolding, forall, exists, domain (NC), domain func-
tion (NC), domain axiom (NC), fresh (NC), constraining (NC), Set (NC),
union (NC), intersection (NC), setminus (NC), set membership (NC), sub-
set relation (NC), triggers (D), Multiset (NC), domain type instance (NC)

In the next chapter, we will describe how all of these C# features are translated
into Viper.

5.1 Rationale
We support a reasonable subset of C# — it is possible to code useful programs

and algorithms using only the features that are supported by the Soothsharp
translator. We would still like to provide some explanation behind why the ex-
cluded features were not implemented.

• (U) “uncommon”: These features are almost never used in real C# code
which is why they should be low-priority.

• (D) “difficult”: It would be too difficult to implement this, therefore we
decided to put it out of scope of this thesis.

– (D!) “extremely difficult”
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• (V) “Viper”: It is impossible to encode this in Viper. These features mostly
deal with integer overflow/underflow, affected by the checked and unchecked
contexts, and would require us to implement a bounded numeric data type
in Viper which would be difficult; floating-point numbers are also unsup-
ported. As it is, Viper only supports unbounded integers.

• (S) “syntax only”: This is basically syntactic sugar and can be easily re-
placed by other, supported, C# constructs. The statement switch may be
replaced by if, break and continue may be replaced by goto. Nested types
may be put on the top level. Properties and indexers can be replaced by
fields and methods.

• (N) “not interesting”: Translating these features holds no research interest
and it’s not indispensable. They don’t add strength to the C# language
and with some effort, the user might be able to replace them.

• (NC) “not C#”: These are Viper features that we might backport into C#
but we chose not to, because either they would be difficult to use or difficult
to implement.

For some C# features that are difficult to implement in Soothsharp, we would
like to present the reasons for that:

Unsafe code: Unsafe code makes use of memory pointers and allows for
pointer arithmetic. There is fundamentally no way to make this verifiable using
Viper.

Inheritance: Support for inheritance, by which we mean casting, the typeof
operator, and overriding methods is possible but would take time. Casting and
typeof could be implemented by adding a field to every instance that would deter-
mine its class and by adding axioms for subtyping, for example as a Viper domain
(this is the way Scala2Sil [15] does this). Implementing overriding methods is a
harder problem because we cannot permit arbitrary preconditions and postcondi-
tions, and so there would be inherent limits on what an overridden method could
do. This is explained in more detail in [16].

Static fields: Viper expects no global state to exist and, aside from constants,
doesn’t have the syntax to express it. The way around this would be to add an
extra parameter to each method that would contain a “global state object”, which
would have, as fields, all the static fields in the program.

Delegates: Delegates allow the user to basically store method pointers. At
a point when the delegate is executed, what do we know about the result of the
method call and of its arguments? How do we know we have enough permissions
to call all the possible methods in the delegate? A possible solution would be
to only allow delegates to point to methods that have been somehow marked as
possible targets in a method’s precondition. Then, when we call that delegate,
we can exhale the conjunction of preconditions of possible targets, and inhale the
disjunction of postconditions of possible targets, and thus maintain soundness.
To our knowledge, no Viper frontend, or any similar tool, has tried to do this yet.
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6. Translation
In this chapter, we explain how the translation process operates, step-by-step.
Soothsharp attempts to translate C# code, as closely and accurately as possi-

ble, to Viper. However, some unsoundness will be introduced, even if Soothsharp
did not have any bugs. For example, C# bounded integers (System.Int32 ) are
translated as Viper mathematical integers (Int) and overflow problems are there-
fore ignored.

We will point out these problems where they occur in the translation phase,
but much like the Viper team itself, we are unable to provide a rigorous proof of
the translation process’s correctness.

An explanation of why we chose to perform translation this way can be found
at the end of this chapter.

6.1 Definitions
We will use the following phrasing in the translation process description.

• To “trigger an error” is to add it to the list of errors that will be returned
to the frontend.

• “[This] may not trigger any errors.” means that we don’t expect errors to
be triggered during [this] procedure. An exception may still occur but if it
does, it is a bug and the translation process will usually be aborted.

• “[An item] is remembered” means that somewhere, [the item] is stored in
memory (or at least some information about the item is stored) and that
information will come into play later in the process.

• A silvernode is a node of the Viper abstract syntax tree. A silvertree is
the syntax tree. The master silvernode tree is the concatenation of Viper
syntax trees of all files that are translated. The term “silvernode” comes
from a previous name for the Viper language when it was still called the
“Silver Intermediate Language”.

• A sharpnode is a node of our own C# abstract syntax tree.

• A Roslyn node is a node of Microsoft .NET Compiler Platform’s abstract
syntax tree.

• “[An item] is ignored” means that nothing is done to it in this phase, and
if it’s a translation phase, it translates into nothing.

• A silvername is an identifier in the Viper language that corresponds to an
identifier in C# code. Again, the name “silver” comes from an earlier name
for the Viper language.

6.2 Overview of the translation process
The translation process takes as input one or more C# syntax trees and may

output, depending on settings, Viper code files, translation or verification errors
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or the information that the input was successfully verified.
The process consists of 14 steps. Some of them (marked in bold) are named

phases that are detailed further below.

1. The frontend supplies one or more C# syntax trees. A tree may be marked
for full translation or only for signature extraction (see 6.12).

(a) If the frontend is the csverify executable, the user will supply .cs source
files and .dll reference assemblies. The front-end will use the Roslyn
API to create a syntax tree from the files. All files, even if malformed,
will output a syntax tree. Reference assemblies will not create any
trees but will be passed to the compiler in order to make semantic
analysis work correctly. Otherwise each source file creates a single
tree. Full verification may be launched if the user requests it via a
command line option.

(b) If the frontend is the Visual Studio plugin background scan, it will
supply the syntax tree of a single document. No reference assemblies
will be loaded and other documents in the project will also be ignored.
The tree will always be marked for full translation. Full verification
will always be launched.

2. A new translation process is created.

(a) The translation process determines what reference assemblies are as-
sociated with the process and adds the mscorlib assembly and the
Soothsharp.Contracts assembly, if not already associated.

(b) In addition, the System.Core assembly will be referenced. None of the
types in that assembly can actually be used by a verifiable program.
However, the directive “using System.Linq;” is generated by default in
Visual Studio and referencing this assembly will prevent a C# compiler
error on that line.

3. The Roslyn object CSharpCompilation is created. It contains all the trees
and all the references.

4. The Roslyn semantic model is created, starting semantic analysis for all
trees simultaneously.

5. If any error occurred during semantic analysis, the process is aborted and
ends with failure.

6. The following phases occur, in order, for all syntax trees. First, the first
syntax tree is fully processed, then the next one, and so on.

(a) Conversion phase. The tree is converted to Sharpnode intermediate
representation (“the sharpnode tree”). This phase cannot trigger any
errors. If it throws an exception anyway, the translation of this tree is
aborted.

(b) Collection phase: The sharpnode tree is scanned for types and fields,
which are collected into the translation process. Any errors are remem-
bered.
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(c) Main phase: The sharpnode tree is scanned for methods which are
converted into a single Viper Intermediate Language syntax tree (“a
silvernode tree”). Main phase occurs also for trees that are marked for
signature extraction only but all methods in those trees are considered
to be marked [Abstract]. Any errors are remembered.

7. All silvernode trees are concatenated into a single master silvernode tree.

8. Global addition phase: Additional silvernodes are added to the master
tree that are global for the translation process; these are, for example, field
definitions or additional code for arrays. No errors may trigger.

9. Optimization phase. The master silvernode tree is optimized and some
silvernodes may be removed. However, semantics will remain the same.

10. Name assignment phase. Identifiers are assigned their names in the
Viper source code (“silvernames”). These are guaranteed to be unique
across the master silvernode tree.

11. Postprocessing phase. Postprocessing is launched for the master
silvernode tree. The postprocessing deals mainly with pretty indentation.

12. If there are any remembered errors, they are sent to the frontend and the
process is aborted.

13. The translation is reported as successful.

14. Verification. If the process is marked for full verification, the master
silvernode tree is converted to source code text and passed to the chosen
backend.

(a) The Carbon or Silicon verifier runs, producing output.
(b) The verifier output is parsed and a list of verification error messages

is extracted from it.
(c) If these error messages are associated with a line and column (“loca-

tion”) in the Viper source code, they instead become associated with
a C# syntax tree node that caused that Viper code location to exist.

(d) If there are any error messages, they are sent to the frontend.
(e) If not, the verification is reported as successful.

The translation process for expressions on the left-hand side of assignments
and prepending method calls were the two most difficult parts of this system to
implement. We give more details on this in Section 8.1.

6.3 Conversion phase
During the conversion phase, Roslyn nodes are transformed into sharpnodes.

This is useful because Roslyn nodes contain a lot of information that is un-
necessary for us, don’t sometimes contain information that we need, and most
importantly, cannot be extended with virtual methods.
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This phase will not normally trigger errors. If it does anyway (due to a bug),
the conversion phase may throw an exception which is caught and put to the user
as error SSIL103 and the translation of this tree is aborted (the collection and
main phases do not occur).

Roslyn nodes are converted mostly on a one-for-one basic. For example,
NamespaceDeclarationSyntax (a Roslyn node) becomes NamespaceSharpnode.
ClassDeclarationSyntax becomes ClassSharpnode etc.

If a Roslyn node is encountered that we either don’t have a sharpnode for
(for example, a struct declaration) or that we don’t have a sharpnode for in this
context, a DiagnosticSharpnode or UnknownSharpnode is created. The purpose
of these special sharpnodes is to trigger an error later on in the main phase. We
do not trigger the error right here because we want the conversion phase to be
free of errors and to have it happen entirely within constructors.

At some locations, nodes of many different kinds may occur. Specifically,
these locations are:

• where a class member is expected (there may be a method declaration, a
field declaration, a constructor declaration, or a declaration that we cannot
convert);

• where a statement is expected; and

• where an expression is expected.

The static class RoslynToSharpnode calls an appropriate sharpnode
constructor based on the kind of the Roslyn node in each of these three
locations. For example, in a location where an expression is expected,
the method RoslynToSharpnode.MapExpression might see that the node
has the kind GreaterThanExpression and so it will call the constructor of
BinaryExpressionSharpnode, with appropriate arguments.

Each sharpnode will retain a reference to the Roslyn node that it was trans-
formed from. This node will be called “original node”. The purpose of this is
twofold:

• First, during the main phase, this reference is how we can access semantic
information about the node (e.g. the type of a variable).

• Second, if an error triggers in this sharpnode, the original node will serve
as the location of the error that’s reported to the user (Roslyn nodes keep
information about location in a code file; sharpnodes don’t).

6.4 Collection phase
In the collection phase, we walk through the sharpnode tree using a depth-first

search and we don’t use any context.
Depending on the type of the sharpnode we’re traversing, different actions

may occur. For compilation units and namespaces, we simply descend into their
children. ClassSharpnode elements, however, register themselves and all of their
fields. The search does not descend into methods or fields.

Registering a class means:
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• Depending on the attributes and verification settings (see Section 6.12), the
class might or might not be collected. If it’s not collected, it’s ignored and
none of its fields are registered either.

• Otherwise, the class is remembered. The remembered information is the
class name, what fields it contains and whether the class is static. This
information will be used in the global addition phase (Section 6.6) to create
initializer code.

Registering a field means:

• If the field is a constant, it is ignored (because constants are inlined later
on in the main phase).

• If the field is static, an error triggers.

• Otherwise, the field’s name becomes its base silvername (see Section 6.8), we
determine the field’s Viper type (or trigger an error if the type translation
fails) and the field is remembered.

6.5 Main phase
In the main phase, we also walk through the sharpnode tree using a depth-first

search algorithm. However, this time, sharpnodes themselves are responsible for
translating their children; also, whenever a sharpnode starts being translated, it
receives a context providing additional information.

The main phase only occurs for a tree with no compiler errors. If the C#
compiler library detects an error in the tree, the tree is not translated.

When a sharpnode is being translated, it will usually first translate its children
and then use the results of their translation to provide its own Viper output.

6.5.1 Context
Depending on the context and on the type of the sharpnode, different actions

may occur when that sharpnode goes through the main phase.
When a sharpnode causes its child to be translated, it may modify the context

for that child. The modified context may then be propagated further down the
tree that has that child as a root.

The context includes the following flags that are common for the entire tree
and are never modified by sharpnodes:

• MarkEverythingAbstract which is set when the tree is to be translated as
signatures-only, without translating method bodies (this happens with the
--assume option of csverify.exe)

• VerifyUnmarkedItems which is set when classes and methods with neither
the [Verified] nor [Unverified] attributes should be considered marked [Ver-
ified]. If not set, then they should be considered marked [Unverified].

The context also includes these properties which may be modified by sharpn-
odes:
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• IsFunctionOrPredicateBlock, which is set when the sharpnode being trans-
lated is part of a C# method that is meant to be translated to a Viper
function or predicate, rather than a Viper method.

• PurityContext which may be set to one of three options8:

– PurityNotRequired: Translated expressions may result in Viper state-
ments.

– Purifiable: The expression must not translate into a statement, but
it will be possible to prepend a statement (see Prepending statements
below, Section 6.5.5).

– PureOrFail: If an expression would translate into a statement, an error
triggers.

6.5.2 High-level constructions
Compilation units, namespace declarations and class declarations are trans-

lated as a concatenation of their children’s translations.
Depending on verification settings (Section 6.12), a class may be ignored.
Class members are handled thus:

• Methods are translated (see below).

• Constructors are translated (see below).9

• Fields are ignored.

• Any other members or nested types trigger an error.

6.5.3 Methods and constructors
A C# method, in general, has the following form:

1 [attributes]
2 [modifiers] [return-type] method-name ( [parameters] ) {
3 [contracts]
4 [statements]
5 }

All modifiers except for static are ignored. Access modifiers don’t need to be
translated at all, and Soothsharp doesn’t support inheritance so virtual methods
are considered the same as normal methods.

A C# method may have the [Pure] attribute. Such a method is called “declared
pure” and will be translated into a Viper function. It may also have the [Predicate]
attribute which will cause it to be translated as a Viper predicate. Other methods
are impure and are translated as Viper methods. A method may not be declared
[Pure] and [Predicate] at the same time.

A method may also have the [Abstract] or [SignatureOnly] attribute which
causes it to be translated as an abstract Viper method, function or predicate.

8In this chapter, by “purity”, we mean “not having side-effects”, as opposed to purity as
used by Viper where it means “having a type and not being spatial”

9There is currently a bug where a class with multiple user-defined constructors fails to
translate.
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The same effect happens if the file that contains the C# method is marked for
signature extraction only (see 6.12). An abstract Viper method, function or
predicate merely lacks a body (the part from the opening brace to closing brace,
including the braces, is excluded).

Verification settings may also cause a method to be ignored altogether.
The method name is translated as an identifier. The return type, unless void,

is translated as a type (see type conversion, Section 6.13).
A parameter, in C#, is [type] [name], which is translated as [name]’

: [type]’.

Method

An impure method is translated into Viper thus:
1 method [name]’ ( this : Ref, [parameters]’ ) returns ( res :

[type]’)
2 [contracts]’
3 {
4 [statements]’
5 label end
6 }

If the C# method’s return type is void, the returns clause is not present.
If the method is static, the “this : Ref” parameter is not present. The
statements are translated in a PurityNotRequired context.

Function

A method declared [Pure] is translated thus:
1 function [name]’ ( this : Ref, [parameters]’ ) : [type]’
2 [contracts]’
3 {
4 [statements]’
5 }

It is an error to declare a method without a return type pure. If the method
is static, the “this : Ref” parameter is not present. The method’s body is
translated in a PureOrFail context and must only contain contracts and a single
return statement.

Predicate

A method declared [Predicate] is translated thus:
1 predicate [name]’ ( this : Ref, [parameters]’ )
2 [contracts]’
3 {
4 [statements]’
5 }

It is an error to declare a method with a return type other than bool a pred-
icate. If the method is static, the “this : Ref” parameter is not present.
The method’s body is translated in a PureOrFail context and must only contain
contracts and a single return statement.
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Constructor

A constructor is translated into a Viper method as above but there are a
couple of differences.

The return type is always Ref. The base silvername of the Viper method will
be the translated class name followed by the tag “ctor” (see also 6.8). The return
type is then named “this”.

At the beginning of the constructor, the class’s initializer is called.
A constructor is therefore translated thus:

1 method ClassName_ctor ([parameters]’) returns (this : Ref)
2 [contracts]’
3 {
4 this := ClassName_init ()
5 [statements]’
6 }

Unlike the default constructor (which we call “initializer”), a user-defined
constructor will not return full write permission to all its fields by default. If
that is something the user wants, they need to add the Ensures postconditions
themselves. This allows for more control by the user.

6.5.4 Statements
In this section, we’ll show how C# statements are translated.
An apostrophe after a word means “the translated version of this”. The word

might be an identifier, an expression, a statement or something else that can be
translated.

Table 6.1 summarizes how statements are translated into Viper.

• Empty statement is ignored.

• Block: A C# block is translated into a block silvernode, with all C# state-
ments within translated, with the following caveats:

– If any of the children are contracts:
∗ If the block is the main code block of a loop or method, they are

returned to the parent as user-specified contracts. They are not
translated as Viper statements.

– If the block is the main block of a method declared pure, it must only
have a single child that’s not a verification condition and that must be
a return statement. If not, an error triggers.

• Do/while/if/for: No special comment, but see Prepending statements
below. The expressions are translated in a Purifiable context.

• Goto/labeled statement: Translation is straightforward.

• Local variable declaration: A local variable declaration may declare
only a single variable. This is a limitation of Soothsharp that could be
removed in the future.

44



Statement C# code Viper code
Empty statement ; (ignored)
Block { code } { code’ }
Do do { code } while (condition) code’

prepended-statements
while (condition’) {
code’
prepended-statements

}
While while condition statement; prepended-statements

while (condition’) {
statement’
prepended-statements

}
Expression
statement

expression; expression’

For for ( initializers; condition;
incrementors) block

initializers’
prepended-statements
while (condition’) {
block’
incrementors’
prepended-statements

}
Goto goto label; goto label’
If if (condition) statement prepended-statements

if (condition’) {
statement’

}
If (full) if (condition) statement else

elseStatement
prepended-statements
if (condition’) {
statement’

} else {
elseStatement’

}
Labeled
statement

label: statement; label label’; statement’

Local declaration type identifier; var identifier’ : type’
Local declaration
and initialization

type identifier = expression; var identifier’ : type’;
prepended-statements; identifier’
:= expression’

Return return expression; prepended-statements
(in methods:)
res = expression’
goto end

(in functions:)
expression’

Unknown (node generated during conversion
phase)

(an error triggers)

End of method (in methods:) label end

Table 6.1: How statements are translated
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• Return statement: The expression is translated and the result stored
in either the res output variable (if in method) or merely returned (if it’s
a function or a predicate). In methods, the context for the expression is
Purifiable. In other cases, it’s PureOrFail.

• Expression statement: The expression is translated. An error may trig-
ger when the expression is not a valid Viper expression.

– If the expression is a verification condition, the statement translates
into nothing but will return the verification condition.

– The expression is translated in a PurityNotRequired context and may
result in a Viper statement.

• End of method: At the end of each method, the label end is added to
Viper code. Because Viper has no return statements, this label is referred
to by goto statements created when translating C# return statements. This
only happens for methods that are not translated into functions or predi-
cates because functions and predicates don’t contain statements in Viper.

6.5.5 Prepending statements
In Viper, expressions cannot have side-effects. By side-effects, we mean the

following actions:

• creating a new object;

• assigning a value to a variable or field;

• calling a method; and

• changing the state of the verifier by an inhale, exhale or similar statement

Viper guarantees this syntactically10 as, unlike in C#, all of these actions
(object creation, assignments, method call and inhale statement) are statements
and not expressions. Statements are allowed to have side-effects.

However, C# permits, for example, calling methods from within expressions,
and we would like to allow this if possible. To do so, when a C# expression
that would be translated into a Viper statement is encountered, we move the
translated expression to a code location just before where the original expression
is and “prepend” it. For example, look at the following code.

1 if (methodname() == 2) {
2 body();
3 }

In Viper, this would not be legal. Therefore, we translate the code into this:
1 var _tmp1 : Int;
2 _tmp1 := methodname();
3 if (_tmp1 == 2) {
4 body();
5 }

10In the case of methods vs. functions, semantic analysis is also required to determine whether
the subroutine call is pure.
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As another example, suppose there there is a C# method with the
signature static int Return4() and we used it in a statement
Contract.Assert(Return4() == 4), that statement will be translated
thus:

1 var _tmp1 : Int
2 _tmp1 := Return4()
3 assert _tmp1 == 4

In this case, the user may have intended for the translation to be
1 assert Return4() == 4

To have that code, Return4 would have to be declared [Pure] so that it trans-
lates into a Viper function. Since it’s declared as a method, and method calls are
not expressions in Viper, we must store the return value in a temporary variable.

We must not forget this to maintain soundness:

• In loops, these prepended statements must be added before each evaluation
of the condition. That usually means before the loop and at the end of the
loop body.

• If multiple subexpressions within an expression wish to prepend statements
before the location, the subexpression that would be evaluated first in C#
must also be evaluated first in Viper.

This still is not enough to maintain the same semantics as C#. In the case
of binary boolean operations, C# has short-circuit evaluation. By prepending
statements, we force all method calls to evaluate even if they weren’t evaluated
in C#. A similar problem occurs in the case of the conditional expression, where
a branch may be evaluated even if the condition doesn’t point to it. This may be
the subject of future work.

6.5.6 Expressions
In this section, we’ll show how C# expressions are translated.
An apostrophe after a word means “the translated version of this”. The word

might be an identifier, an expression or something else that can be translated.
Table 6.2 gives a summary.
For expressions that include operators, an example operator (usually plus)

was used in the table but the translation works similarly with other operators.
In the purity column,

• pure means “this expression is translated to a Viper expression” and so it
can occur in any purity context

• stmt means “this expression translates to a Viper statement”, and so it can
only occur inside PurityNotRequired context, or it must be prepended or
trigger an error

Some notes are needed for specific rows of the table:
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Expression
name

Example C# code Equivalent Viper code Purity

Sequence
concatenation

seq1 + seq2 seq1’ ++ seq2’ pure

Division operand1 / operand2 operand1’ \ operand2’ pure
Another binary
operator

operand1 + operand2 operand1’ + operand2’ pure

Unary operator -operand -operand’ pure
Compound
assignment

res += operand res’ := res’ + operand’ stmt

Conditional
expression

cond ? ifyes : ifno cond’ ? ifyes’ : ifno’ pure

Diagnostic
expression

(node generated earlier) (triggers an error) pure

This this this pure
Array index expr[index] complex, see further down depends
Array length expr.Length |expr’.arrayContents| pure
Array initializer {expr, expr2, ...} complex, see further down stmt
Sequence element seq[expression] seq’[expression’] pure
Increment /
decrement

expression++ expression’ := expression’ +
1

stmt

Literal literal (e.g. 2 or true) literal (e.g. 2 or true) pure
Object creation new classname([arguments]) complex, see further down stmt
Parenthesized
expression

( expression ) ( expression’ ) pure

Assignment lvalue = expression; lvalue’ := expression’ stmt
Unknown
expression

(node generated earlier) (triggers an error) pure

Identifier name complex, see further down pure
Member access expression.name complex, see further down pure
Invocation expression([arguments]) complex, see further down special
Soothsharp
namespace

various complex, see further down depends

Table 6.2: How expressions are translated

• Plus. In Viper, sequence concatenation uses the operator ++ but in C#, we
use + for this (because in C#, ++ is the increment operator). The translator
uses semantic analysis to determine whether sequences or integers are added
and emits a Viper operator accordingly.

• Division. In Viper, the integer division operator is “\” so that it can be
differentiated from the fractional permission operator “/” that results in a
Perm value.

• Literal. Some literals are not legal in Viper, such as floating-point numbers.
These trigger an error.

Some of these expressions translate as statements but contain subexpressions.
For all of these, those subexpressions are translated in a Purifiable context.
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6.5.7 Arrays
To support arrays, we store their elements in Viper mathematical sequences.

However, sequences are immutable, but arrays are not. Because of this, whenever
an array is modified, we replace the old sequence by a new one. An array is thus
represented by a reference object that has only a single field: a mathematical
sequence of its type11.

In Soothsharp, we support only single-dimensional integer arrays but support
for other array types could be added in the future (we describe a possible solution
at the end of this section).

If the use of an array is detected in the C# source code, the following Viper
lines are added in the global addition phase:

1 field arrayContents : Seq[Int]
2 define arrayAccessPermission(array) acc(array.arrayContents)
3 define arrayWrite(array, index, value) { assert index >= 0; assert

index < |array.arrayContents|; array.arrayContents :=
array.arrayContents[..index] ++ Seq(value) ++
array.arrayContents[(index+1)..]; }

4 function arrayRead(array : Ref, index : Int) : Int
5 requires acc(array.arrayContents, wildcard)
6 requires |array.arrayContents| > index
7 {
8 array.arrayContents[index]
9 }

The following C# constructs are supported that are relevant to arrays:

• Array indexing

• Array initializer

• Array length

An array initializer is impure. If an array is initialized thus:
1 int[] variable = {2, 4}

It is translated into:
1 var _tmp1 : Ref
2 _tmp1 := new(arrayContents)
3 _tmp1.arrayContents := Seq(2, 4)
4 var variable : Ref
5 variable := _tmp1

An array length expression is pure and is translated into Viper’s sequence
length expression.

As for indexing, the translation depends on whether we write into the array
or read from it. We write into an array if the indexing is on the left side of an
assignment expression, and we read from it otherwise.

If we read, the indexing is translated into the arrayRead function. If we write,
the entire assignment expression is translated into the arrayWrite macro. Here
note that arrayRead is pure, but arrayWrite translates to statements.

11This is also the approach taken by Nagini, the Python frontend, for Python lists. Other
ways of encoding arrays exist, such as [17].
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arrayRead is a Viper function which means that it’s pure and yet it can have
preconditions. In this case, its use guarantees that we never access an array index
that’s out of bounds. Viper functions are pure and don’t consume permissions.
Therefore, after we read from an array, we still possess our original permissions
to the array.

In order for a Viper verifier to allow access to the arrayContents field, we
must have permissions to it. We will obviously have it if we create the array
in the method but what if it’s passed down as a parameter? For those situa-
tions, we introduce the contract method AccArray which grants access to that
field (this contract can only be used on array-type variables). This might be
improved in the future by having the Acc predicate automatically grant access to
the arrayContents field if it’s an array.

To extend arrays for non-integer elements, we would need to create separate
Viper fields, functions and macros for each possible array type. Specifically, these
would be Int, Bool and Ref (there is no reasonable use of a Perm array, and arrays
of Seq and Set are also not very useful, especially if we can wrap them in objects).
The translator could then select appropriate functions and macros based on the
element type of the array.

6.5.8 The Soothsharp namespace

Soothsharp users will include the Soothsharp.Contracts library in their
projects. The methods in this library have empty bodies (or merely return
a literal value to satisfy the type checker) but translate directly into Viper
constructs.

For example, consider the following method call:

1 Soothsharp.Contract.Inhale(
2 Soothsharp.Contract.Acc(this.fieldName)
3 )

It would get translated into:

1 inhale(acc(this.fieldName))

Soothsharp namespace translation takes precedence. All identifier expressions,
member access expressions and invocation expressions are first checked to see
whether they don’t have a special meaning given by this namespace, and only if
not are they translated according to the general translation rules.

The tables in this section give translation for all “special” translations.
Table 6.3 shows translations for members of the main class.
The three “contract” methods (Requires, Ensures and Invariant) don’t trans-

late to Viper statements but are instead remembered by the enclosing block
sharpnode and attached to the loop or subroutine that contains them.

Table 6.4 shows how extension methods residing in the Soothsharp.Contracts
namespace are translated. bool1 and bool2 must be boolean expressions.

Table 6.5 shows how sequences are translated and Table 6.6 translates mem-
bers of the Permission class.
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Soothsharp.Contract. Viper code Purity
IntegerResult res/result1 pure
Result<T>() res/result pure
Old(value) old(value’) pure
Ensures(postcondition) ensures postcondition’ contract
Requires(precondition) requires precondition’ contract
Invariant(invariant) invariant invariant’ contract
Assert(obligation) assert obligation’ stmt
Assume(assumption) assume assumption’ stmt
Fold(predicate) fold predicate’ stmt
Unfold(predicate) unfold predicate’ stmt
Folding(predicate, expr) folding (predicate’) in expr’ pure
Unfolding(predicate, expr) unfolding (predicate’) in expr’ pure
Inhale(expression) inhale expression’ stmt
Exhale(expression) exhale expression’ stmt
Acc(loc) acc(loc’) pure
Acc(loc, perm) acc(loc’, perm’) pure
ForAll((i) => assertion)2 forall i’ : type’ :: assertion’3 pure
Exists((i) => assertion)2 exists i’ : type’ :: assertion’ pure

Table 6.3: How Soothsharp.Contract members are translated
1 Within predicates and functions, result is used. Within methods, res is used.
2 These are the only locations where Soothsharp permits a lambda expression.
3 type’ is the type of the identifier i, deduced by C# semantic analysis

C# code Viper code Purity
bool1.Implies(bool2) bool1’ ==> bool2’ pure
bool1.EquivalentTo(bool2) bool1’ <==> bool2’ pure

Table 6.4: How extension methods are translated

C# code Viper code Purity
new Seq<T>() Seq[T’]() pure
new Seq(arguments) Seq(arguments’) pure
seq.Length1 |seq’| pure
seq.Contains(value) value’ in seq’ pure
seq + seq2 seq’ ++ seq2’ pure
seq[index] seq’[index’] pure
seq.Drop(value) seq’[value’..] pure
seq.Take(value) seq’[..value’] pure
seq.TakeDrop(drop, take) seq’[drop’..take’] pure

Table 6.5: Translation of sequences
1 In this table, seq means “an expression with a Seq type”.
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C# code Viper code Purity
Permission.Write write pure
Permission.Wildcard wildcard pure
Permission.Half 1/2 pure
Permission.None none pure
Permission.FromLocation(loc) perm(loc’) pure
Permission.Create(num, den) num’ / den’ pure

Table 6.6: Translation of the Permission class

6.5.9 Identifier expression and member access expression
Soothsharp. If one of the translations in the Soothsharp special translations

table applies, that translation takes precedence.
Constants & Enums. If an identifier or a member access represents a

constant (declared with the const keyword) or an enumeration member, it is
translated to Viper as the value of the constant. In C#, enumerations are based
on integer types, so the value will be an integer. Constants may either be integers,
booleans or the null literal, which will be translated as the appropriate Viper type.
Information from the Roslyn semantic model is used to determine the value of a
constant.

Otherwise: A simple identifier expression is translated as the identifier’s
silvername; a member access expression container.name is translated as con-
tainer’.name’. These are pure. If no container is given, but the identifier refers
to an instance field, it is translated as this.name’ instead.

6.5.10 Object creation and invocation
Object creation and Viper method invocation can occur in PurityNotRequired

and Purifiable contexts. In a PurityNotRequired context, they are translated as
statements. In a Purifiable context, that statement is prepended, the return value
(i.e. the created object or the method’s return value) is stored in a temporary
local variable, and that variable is then used in the place of the original context.

Viper function and predicate calls can occur in any context.
Soothsharp. If one of the translations in the Soothsharp special translations

table applies, that translation takes precedence.
Method invocation. Method invocation is translated in a straightforward

way, regardless of whether the method was translated to a method, a function
or a predicate. The translation schema depends on whether the method group is
given as an identifier or a member access, and whether it’s a static or instance
method. The schemas are summarized in Table 6.7.

Kind Method group C# code Viper code
static identifier name(arguments) name’(arguments’)
instance identifier name(arguments) name’(this, arguments’)
instance member access exp.name(arguments) name’(exp’, arguments’)
static member access Type.name(arguments) name’(arguments’)

Table 6.7: Translating method calls
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However, if the method translates into a Viper method, then it must be trans-
lated as a statement. Viper also requires that if the method has a return value,
then that value must be assigned to a variable, even if it’s not used. To handle
this, we always use a temporary variable to store the result (unless the method
has no return value, in which case a direct call is permitted and required).

Object creation. When a C# constructor is called, it is handled as though it
were a call to a Viper method in the above section, except that it always returns a
value (the created object) and that the name of the called method is determined
based on the constructor.

If the constructor is the default constructor of a class, the name is Class-
Name init. Otherwise, the name is ClassName ctor (see Section 6.8). Informa-
tion about whether a default or non-default constructor is called is taken from
C# semantic analysis.

6.6 Global addition phase
For each type collected during the collection phase, the following steps are

performed:
Adding fields. Each declared field is transformed into the silvernode “field

[identifier] : [type]”. The identifier includes the class name. [type] is the Viper
type corresponding to the C# type.

If the type is a value type and cannot be correctly translated, an error would
have triggered during the collection phase. If the type is a C# type whose methods
or fields are not translated to Viper, no errors trigger at this point either, but
they will trigger at the points where the user attempts to use these untranslated
methods or fields.

Adding initializers. An initializer Viper method is created that creates a
new object and returns it, and returns write permissions to all fields of the new
object to the caller. This method is used whenever an object is created in C#
using the default constructor, or at the beginning of user-defined constructors.

Adding array code. Additional code to support arrays is added here, as
explained in Section 6.5.7.

6.7 Optimization phase
The following optimization steps are performed for the master silvernode tree:

• Removing excess blocks. If multiple blocks are nested in each other
without using a loop or if statement, the redundant blocks are removed.
Nested blocks are illegal in Viper; thus, this is not merely optimization, but
a requirement for the translation to work correctly.

• Removing empty silvernodes. This eliminates redundant line breaks in
the Viper code.

• Removing final goto/label sequence. Normally, the return statement is
translated into Viper as goto end and the end of a method is translated
as label end. However, for methods that contain only a single return
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statement, when it’s last statement of the method, this “goto end; label
end” sequence is redundant and clutters the Viper code. Because such
methods are common, we eliminate this sequence where possible.

6.8 Name assignment phase
During previous phases, Viper identifiers may be needed, and in that case, a

base silvername is created for each of them. The translation process is respon-
sible for always assigning the same base silvername for syntax nodes that refer to
the same identifier.

• Sometimes, a phase needs to create a temporary Viper identifier (for exam-
ple, for a local variable that stores an unused return value of a method).
The base silvername of these temporary identifiers is “ tmp”.

• Otherwise, a phase might need to create a Viper identifier that corresponds
to a C# item such as a class, a variable or a method. The base silver-
name of these identifiers is the partially qualified C# name of that symbol,
silverized and perhaps with an additional tag.

– A partially qualified name of a C# symbol is the fully qualified name
of that symbol but without namespaces. We found that namespaces
clutter the resulting Viper code and don’t add any value in relevant
cases.

– Silverization is removing all characters not accepted in the Viper lan-
guage. For example, the C# identifier “Hudeček” would be reduced
to ”Hudeek” and the C# identifier ”π” would be reduced to an empty
string. In addition, dots are replaced with underscores.

– Sometimes, a tag will be added to differentiate among Viper identifiers
that share the same C# symbol. This is the case of initializers (these
get the suffix tag “ init”) and constructors (these get the suffix tag
“ ctor”) because these special methods share the C# symbol of their
enclosing class.

In the name assignment phase, we want to ensure that silvernames don’t
conflict with each other. To ensure this, we convert base silvernames into their
final forms by appending a number (starting with 2) to a silvername if that base
silvername is already used an all forms with lesser numbers are already used as
well. Thus, for example, the fifth temporary variable in the resulting Viper file
would be named “ tmp5”, and the second overload of the method Foo.Example
would be named “Foo Example2”.

Keywords of the Viper language are also thought of as “being used” for the
purposes of this phase. So, for example, even the first variable declared with the
name “axiom” will have the silvername “axiom2”.

6.8.1 Rationale
We designed this name translation process with these goals in mind:
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• The silvername must be as similar as possible to the C# name.

• C# can use a wider set of characters in identifiers. These characters that
are not legal in Viper will be omitted or otherwise translated away.

• There must not be ambiguity. For example, if there is an overloaded
method, some characters will be appended to at least one of its overloads
in order for the two methods to have a different silvername.

• Scopes exist in Viper, too; the translator should recognize this and not
needlessly mangle names that would not be in conflict in Viper source code
(not implemented, see Future work, Section 8.4).

6.9 Postprocessing phase

Postprocessing calculates the number of spaces that must be added in front
of each line in the resulting Viper code so that the code is properly indented in
more complex methods.

6.10 Verification

The master silvernode tree is serialized to text, written to a file and that file
is sent to a backend verifier. The backend verifier’s standard output is parsed,
line-by-line, and either errors are found, or the file passes verification.

If any errors are found, they are associated with a line number and a column
number in the Viper code where the error starts. These are converted to the C#
location of the original error and shown to the user (see Section 7.4).

6.11 Producing errors

Any errors created by the translation process are fed back to the frontend.
The csverify frontend will print them to the console and the Visual Studio plugin
frontend will show them in the Error List and as squigglies.

Errors are almost always associated with a Roslyn syntax node, whether they
come from translation or verification. This is converted to a line and column
number in csverify and the Error List, but the entire erroneous syntax node is
highlighted if using the plugin.

We assign error codes to various types of errors. These error codes are shown
in the Error List window or are printed to standard output.

• Error codes from 100 to 199 represent an error during the translation.

• Error codes from 200 to 210 represent an error during verification.

• Error codes from 300 to 310 represent an internal error of Soothsharp.
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6.12 Verification settings
A C# class or method may be marked with attributes ([Verified], [Unveri-

fied] and [SignatureOnly]) or be unmarked. If it’s marked by multiple of these
attributes, a translation error is triggered.

Depending on user settings, unmarked nodes may be considered [Verified] or
[Unverified]. The user may set some source code files to be marked for signature
extraction only. If they do, then any [Verified] attributes on methods in those
files are overridden and all [Verified] and unmarked methods are considered to
be [SignatureOnly].

• An [Unverified] node is ignored during both collection and main phase.

• A [Verified] node is subject to both collection and main phase.

• A [SignatureOnly] node is subject to the collection phase and to a modified
variant of the main phase. This modified variant causes it to be translated
as though it were abstract.

6.13 Type conversion
Types in C# are converted to Viper types according to Table 6.8.

C# type Viper type
integer types Int1

System.Boolean Bool
Soothsharp.Permission Perm/Rational
Soothsharp.Seq<T> Seq[T]
an array type Ref2
System.Void should never be translated
any other value type translation error
any other type Ref

Table 6.8: How types are translated
1 In Viper, an integer is unbounded, but in C#, it’s
a 32-bit integer. We assume that overflow will never
occur.
2 See Section 6.5.7 on arrays.

The type system and compiler of C#, along with the lack of conversion opera-
tors in Soothsharp, guarantee that type members are accessed properly. The way
we build Viper forms of initializers and constructors also (redundantly) ensures
that the program only has permission to access its actual fields and not fields of
other types.

Value types that have no equivalent in Viper, such as floating-point numbers,
are excluded from Soothsharp. Viper is not designed to deal with floating-point
math.

All integer types are translated as Int— Viper doesn’t deal with bounded
integers.
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Viper allows also for domains and the types Set and Multiset but these are
never generated by the Soothsharp translator.

6.14 Design choices
It has been obvious from the very beginning that we wanted to do a source-

level translation. Viper and C# are languages with very similar syntax. In ad-
dition, the frontends that came before us — Scala2Sil and Chalice2Silver — both
use source-level translation, as does Nagini12 (although we weren’t aware of that
at the time).

The other option would be a bytecode-level translation. However, there we
would run into problems: Almost nobody explored the translation of bytecode
into Boogie-like languages and there would be little existing experience to draw
on. The code we would produce would also be necessarily larger and slower, and
we would need to implement a stack for local variables, among other issues.

Using Roslyn and translating the abstract syntax tree is preferable to trans-
lating the source files as text strings because the parser work is already done by
the compiler. We were learning Roslyn API as we went along so there are a few
inelegant constructions in our code, but using Roslyn was the right idea.

Most C# and Viper constructs have a one-to-one correspondence. For exam-
ple, most arithmetic expressions don’t need to be translated at all. The while loop
and the if condition are quite similar as well, as is the block-based structure of
the code. For these reasons, we chose to translate each syntax node individually,
as opposed to performing more complex translations.

However, some nodes cannot be so easily translated. Let’s take contracts
(preconditions and postconditions), for example. A simple node translation of a
method declaration might translate the C# code block into a Viper code block,
translate the method declaration header and put that together. However, pre-
conditions and postconditions are included in the C# code block as statements.
They don’t result in actual Viper code themselves: at the very least, they can’t
be put in the same Viper code block as all the other statements in the method.
The result of their translation has to be given to the method declaration which
puts them between the Viper header and the Viper method body.

That is not a very pretty solution, but it’s an acceptable one. We were unable
to find any other feasible solution.

Then, there was a decision to be made on what to translate C# code into.
One option was to have C# nodes generate Viper code directly, as text. That
would greatly simplify the project as we wouldn’t need the Viper tree nodes at
all. Instead we chose to generate a Viper syntax tree first, and then serialize that
tree into Viper code.

The reason for that is to maintain links between C# and Viper code. We must
unfortunately communicate with the verifier by sending it a text file and reading
its standard output. What it gives us is a list of verification errors associated
with a line and column of the Viper code given as input. But when the user is
writing C# code in an IDE, or even in a text file, they don’t want to see what

12Nagini is a Viper frontend for Python, see Section 9.3.
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generated line caused the verification to fail: they want to see what part of their
own code triggered the error.

By maintaining a link between C# syntax nodes and the Viper syntax node
they translated into, we can then go back from the line and code of the Viper
code to the Viper syntax node and finally to the C# syntax node, and if necessary,
from there, to C# line and column.

That said, we believe our Viper syntax tree is overly complex: we describe
some of this in Section 8.3.
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7. Implementation
Most code in Soothsharp project is called as part of the translation process,

which follows the specification above.
The conversion phase happens entirely within constructors and cannot fail.

The translation process begins by calling the constructor of a CompilationUnit-
Sharpnode and from there, construction proceeds until the entire Compilatio-
nUnitSharpnode is constructed. The main phase happens via calling the Trans-
late method on nodes in the constructed tree.

This chapter describes parts of the code where the meaning is less obvious.

7.1 Code overview
The source code contains the following folders and projects:

• Soothsharp.Contracts

– library that users of Soothsharp must reference in their projects to be
able to write contract code

• Soothsharp.Translation.Tests

– unit and system tests for Soothsharp, see Section 7.7

• Soothsharp.Translation

– the bulk of the code, responsible for translating C# code to Viper and
for reporting verification errors back

– Backends
∗ contains classes that launch backend verifiers (Carbon or Silicon),

pass them Viper code files and recover their output
– Diagnostics

∗ contains a list of all possible errors that may occur when using
the Soothsharp translator (in Roslyn, a diagnostic is an error or a
warning)

– Exceptions
∗ custom exceptions thrown during translation

– Translators
∗ some parts of the translation process are complex enough that we

added special classes for them, we call these classes “translators”,
see Section 7.1.3

– Trees
∗ CSharp

· contains nodes that make up the converted C# tree; all files
start with CompilationUnitSharpnode inside the sub-
folder Highlevel

59



∗ Silver
· contains nodes that make up the translated Viper tree

• Visual Studio Plugin

– Soothsharp.Plugin

∗ an intermediary between the Visual Studio plugin and the
Soothsharp.Translation project

– Soothsharp.Plugin.Vsix

∗ a VSIX package that can be installed as an extension into Visual
Studio

• Soothsharp.Rewriter

– a console application that removes all contracts from a code file; using
this application is one way of facing the issue posed by the recursive
predicates problem, see Section 7.8

• Viper

– this folder contains Viper binaries and scripts that are used by
Soothsharp as backend verifiers

• csverify

– command-line utility for running Soothsharp

• csverify GUI

– a Win32 GUI application that sets command-line arguments and runs
csverify.exe

• Examples

– some example code files that use Soothsharp for verification

• soothsharp.sln (the main solution file)

• README.md

• LICENSE.txt

7.1.1 Csverify.exe
Csverify.exe may be run directly from the command-line or launched from the

GUI application. Its role is to accept options (described in the user documenta-
tion, see B.3), process them, run the translation process and report its results to
standard output.
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7.1.2 Soothsharp.Contracts
This library is meant to be used by the end user and it exposes Viper features

to C#.
Viper methods, functions and predicates are all created from C# methods,

so attributes are used to differentiate between them. The Contract static class
is a container for most standalone keywords of Viper. The Permission and Seq
classes expose the Viper types Perm and Seq.

Other attribute classes are used by csverify.exe to determine which parts of
the code should be verified.

Classes, methods and properties from this library must be translated in a
special way. The translator recognizes them by their name. For example, any
method with the fully qualified name Soothsharp.Contracts.Contract.Requires is
translated as a requires clause. This makes Soothsharp more resilient to er-
rors that might occur if, for example, the user has a different build of the
Soothsharp.Contracts library.

7.1.3 Translators
Some parts of the translation are factored out to separate classes which we

call “translators”.
Type translator. This class converts C# types to Viper types, for example,

it converts System.Int32 to Int. Types that cannot be translated cause a
translation error.

Subroutine builder. This class takes a C# method declaration or a con-
structor and creates from it a Viper method, function or predicate, abstract or
non-abstract.

Seq translator. This class translates Soothsharp.Contracts.Seq into Viper
Seq.

Constants translator. This class translates declared constants (such as
“const int a = 2”) by inlining them in Viper code.

Arrays translator. This class adds Viper code related to arrays and trans-
lates array reads and array writes.

Contracts translator. This class translates the various members of
Soothsharp.Contracts.Contract into keywords of the Viper language.

7.2 Setup
To build Soothsharp from source, the user should follow this process:

1. Clone locally the repository https://github.com/Soothsilver/
soothsharp13

2. Follow the installation guide in Section B.2 to add required Viper compo-
nents to the system.

13You may also copy the source code from the attached DVD.
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3. Rebuild the solution. If the fails, right-click the solution in the Solution Ex-
plorer and click “Restore NuGet packages”, then try to rebuild the solution
again.

Then the user may run the “csverify GUI” project and find examples in the
“Examples” project.

7.3 Using backend verifiers
About Nailgun. There are two ways to run the backend verifies on Win-

dows. The most straightforward way is to use the batch files provided by the
Viper project. However, both verifiers are written in Scala and run on the Java
virtual machine which requires the JVM to be initialized each time, which takes
significant time.

To allow for shorter verification time, the official Viper IDE plugin for Visual
Studio Code makes use of Nailgun [18], “a client, protocol, and server for run-
ning Java programs from the command line without incurring the JVM startup
overhead”. The Nailgun server is launched, once, with class files of both verifiers
in its classpath. From then on, the nailgun client (“ng.exe”) can be used to ex-
ecute entry points in those class files. This cuts back on the time required for
verification.

Originally, we used the batch files for verification and the code that facili-
tates this is still present in the classes CarbonBackend and SiliconBackend, but
eventually we migrated to using nailgun because of its speed-up which is rele-
vant especially for automated tests. The interaction with nailgun is handled by
CarbonNailgunBackend and SiliconNailgunBackend.

Starting the Nailgun server. Whenever Soothsharp attempts
verification, it first launches the Nailgun server using a batch file
(startviperserver.bat) provided by the Viper team. If the server
is already running, the batch file does nothing. This file is only launched once
per lifetime of the translator, which is useful for running batches of automated
tests.

Running the verifiers. To verify Viper code, Soothsharp saves that code
to a temporary text file and passes it as an argument to a verifier class started by
means of the Nailgun client. The verifier, via Nailgun, sends its standard output
back to Soothsharp, which can then recreate error messages with information
about C# code, as seen in the following section.

7.4 Converting Viper errors to C# errors
During the conversion phase, Roslyn syntax nodes are associated with sharpn-

odes, and during the main phase, the created silvernodes are associated with the
sharpnodes that created them. A silvernode is either atomic (such as EmptySil-
vernode or IdentifierSilvernode) or complex, which means that it consists of one
or more child silvernodes (for example, SubroutineSilvernode).

An atomic silvernode always implements ToString which returns its Viper
representation. A complex silvernode’s ToString method concatenates the Viper
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representations of all children of the silvernode. Thus, a tree of silvernodes may
be converted to Viper code by calling ToString on its root node.

When that is done, the verifier examines the Viper code and returns a list of
error messages, where each message is associated with a line and column of the
Viper code.

To determine which line and column of C# code each message corresponds to,
the children of each complex silvernode are expanded, until the line and column
of the Viper error is reached, and the earliest atomic silvernode that contains
that line and column is deemed to have caused it. Then, either that silvernode
itself or one of its parents is linked to a sharpnode, and each sharpnode is linked
to a Roslyn node and from there we get the line and column of the C# code that
caused the error.

7.5 Roslyn

Microsoft.CodeAnalysis (better known under its codename Roslyn) is a .NET
class library that can be used to analyze C# code [9]. The library exposes almost
everything that’s done by the C# compiler: syntax analysis, semantic analysis
and even emitting IL code.

In this project, we make use of its syntax and semantic analysis and, in the
rewriter program, of the ability to modify the abstract syntax tree.

A major limitation of Roslyn is that it doesn’t permit interacting with the
C# compiler itself. It is not possible modify the abstract syntax tree between the
time the user starts compilation and the time IL code is emitted.

Documentation for Roslyn is available on the Internet [10]. In the rewriter
project, we use its Rewriter class to modify the abstract syntax tree.

In the translator proper, we use Roslyn more extensively. We use it to per-
form syntax analysis and obtain a syntax tree from C# code given as a string
(using CSharpSyntaxTree) and perform semantic analysis on it. The results of
the semantic analysis are stored within SemanticModel which is accessible from
the context in the main phase of the translation.

Roslyn nodes contain other Roslyn nodes as members, and we convert all of
these to instances of our classes in the conversion phase, because we don’t need
all the members of those nodes, and conversely, we need properties and methods
not present in the Roslyn classes.

7.6 Visual Studio plugin

We have created a small plugin for Visual Studio 2015 that allows the user to
translate and verify their C# code files from within the Visual Studio IDE. User
documentation for this plugin is in the appendix.

The plugin uses Roslyn extension points to run the translation process when-
ever Visual Studio determines that the syntax tree has changed.
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7.7 Automated tests
The unit test project, Soothsharp.Translation.Tests, contains four kinds of

automated tests:

• traditional unit tests: these are used on the algorithms library

• syntax tests (SyntaxTest): these run the translation of a C# code file into
Viper code using the translator; for a test to pass, the translation must
succeed

• compare tests (CompareTest): these also run the translation only, and a
compare test passes if the Viper code output of the translation is the same
as the expected output

• systemwide tests (SystemwideTest): these run both translation and veri-
fication (using Carbon); the test passes if the translation and verification
errors that actually triggered match the expected ones

Full translation tests are the best way of ensuring that the translation works
as expected, so we focused on those tests.

Compare tests were a failure: in the end, we only kept a single compare test.
The problem with these tests is that a minor change in the translation program
might invalidate many compare tests and force us to generate the expected output
again.

For many test files, we only perform the syntax/translation test, and not the
full systemwide test, because the errors we test for in those files would reveal
themselves already during translation, and doing translation only is faster than
running the verifier as well.

We have about 40 tests in total.

7.8 Recursive predicates problem
We encountered a significant problem with recursive predicates in that a pro-

gram that uses recursive predicates, if it’s run as an executable application, will
crash because of a StackOverflowException or another exception, such as Null-
ReferenceException.

Recursive predicates (see Section 4.2.6) are a feature of Viper and permit
reasoning about the heap in situations where an object refers to other objects of
the same kind, such as in a linked list.

Here’s why this is a problem. Contracts in Soothsharp are written as ex-
pression statements with a method call as the expression. Although the method
bodies of Requires, Ensures etc. are empty, and so have no effect on execution,
their arguments are still evaluated. That leads to two issues:

• First, evaluating an argument might throw an exception. Suppose, for
example, that we need a precondition of “the first argument can’t be null
and its field is nonzero”. We might encode that, for clarity, as two precondi-
tions: “Requires(arg != null);” and “Requires(arg.field !=
0);”. This will pass both compilation and verification, but, when it’s called
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with a null argument, a NullReferenceException will be thrown. In this par-
ticular case, that might be okay, since we’re not supposed to call a method
with a failed precondition, but in other cases, that might be a problem.

• Second, more importantly, to encode Viper predicates, Soothsharp uses C#
methods. But then, if a contract contains a predicate and that predicate
contains itself in its body (i.e. it is recursive), during execution, an infinite
recursion will occur. Verification will still succeed, because Silicon/Carbon
do not execute code — they perform analysis. The launched executable file,
however, would fail due to this infinite recursion.

The first problem can be partially solved by a couple of tricks. For example,
we may have Soothsharp methods and properties return non-null dummy objects
that can perform any operation. This cannot be used every time, though, and
as for the second problem, we don’t see a way (without significant changes to
Soothsharp) to have recursive predicates in C# code and yet have the code be
correctly executable as a functional Win32 program. This problem doesn’t affect
the verification itself.

Other tools, such as the Scala frontend or Code Contracts, use rewriting
to remove contracts from the code before compilation. Specifically, the Scala
frontend project created a plugin for the Scala compiler that modifies the abstract
syntax tree of the Scala program by removing the contracts before it’s passed to
the next phase of compilation. Code Contracts use a binary rewriter at the IL
level to move contracts to appropriate points. None of these options can be done
with the technology we have (mostly because Visual Studio and csc.exe do not
allow interfering with the compilation process).

We have, unfortunately, discovered this problem late during work on this thesis
and only had time to implement two less satisfactory solutions. We present all
the possible solutions to this problem that we know of here:

1. Add a value that’s false in C# and yet true in Viper. Add a new
constant that can be used in C#, such as “Contract.Truth”. In C#,
this constant would evaluate to false but in Viper, it would be translated as
true. C# uses short-circuit evaluation. If the user added this constant as the
first operand of a conjunction in a contract, the rest of the contract would
not evaluate and wouldn’t throw an exception nor would it cause infinite
recursion. However, the user would need to write longer code. For ex-
ample, instead of “Requires(RecursivePredicate(this));”, the
line “Requires(Truth && RecursivePredicate(this));” would
be needed.

2. Do not support recursive predicates. This solves the second (more se-
rious) problem. Recursive predicates aren’t necessary for many programs.
For example, InsertSort can be verified without using them. Still, these
predicates are useful very often and they are needed for linked lists or
graphs. In addition, Soothsharp already supports the verification of recur-
sive predicates and verification is the primary contribution of this project,
so it would be a waste to not include them.

3. Preprocessor directives. Using the #if and #endif directives, we
could separate contracts from the executable code. Contracts would be
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run for Soothsharp verification, and the executable code for the compiler.
However, these directives would need to be written by the users them-
selves. They couldn’t be in the Soothsharp contracts library, and especially
when using the expressions Folding and Unfolding, which are important for
recursive predicates, code could be littered with #if blocks and become
unreadable.

4. Create a rewriter. Before generating the final executable file, the user
could run a rewriter program on their code that would remove contracts
from the code. Only the code that comes out of the rewriter would be
compiled. As far as we know, it is not possible to integrate this into Visual
Studio. We could have this program replace the csc.exe compiler, but that
is problematic (csc.exe is complex and has many features and options).

We have decided to implement solutions 1 and 4. The user may use the
Contract.Truth static property in contracts to ensure that they’re not evaluated
at runtime. Most contracts are simple and don’t need it, but for contracts with
recursive predicates, it is required.

Alternatively, the user may run the Soothsharp.Rewriter program on their
code which generates identical code except that all contracts are removed and
the Folding and Unfolding expression have their permission part removed.

We recognize that this is an obstacle to the use of Soothsharp as an end-user
tool. For larger or more complex programs, this extra work on the part of the
user may be excessive. We outline a possible path forward to remove this issue
in the Future work section (8.4).

7.9 Algorithms library
A library of basic algorithms that have been verified using Soothsharp can be

found in the project Examples. They can be included in a Soothsharp verification
of other programs, either directly or as assumed files. More information can be
found in the User documentation (Section B.7).
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8. Discussion
In this chapter, we discuss what features proved to be the most difficult or

surprisingly time-consuming to implement. We also give limitations of the current
translator, share insights from the development process and offer ideas on how
our work can be improved in the future.

8.1 Notable difficulties
The work on Soothsharp encompassed a number of areas that proved more

difficult to understand or implement than we anticipated. We don’t include the
planning or architecture work in this section.

Understanding the Viper language. At the time when development of
Soothsharp started, there was no specification of the language available. A re-
search paper outlining the principles existed, and there was an (outdated) gram-
mar description, but nowhere near enough material to create a translation pro-
gram from.

We spent significant time compiling a specification of the language in order to
make it possible to create a sound translator. To do this, we analyzed the Scala
source code of the parser, experimented with the verifiers on simple files and also
exchanged private communication with Dr. Malte Schwerhoff, a researcher at
ETHZ, one of the authors of Viper.

During this work, we have reported several bugs and inconsistencies in the
parser, the grammar and the verifiers to developers of the Viper project.

While there is still no specification of the language as such, the semantics of
a significant part of Viper have since been formalized in [3].

Scale of the C# language. Traditionally, one wants to verify at the lowest
possible language level. For example, the Code Contracts static verifier Clousot
runs its verification on the IL code emitted by the C# compiler. This makes it
possible to handle even the very large number of features supported by the C#
language with less effort.

However, Viper is a language that presents many similarities to C# that can
be exploited and many features are easier to verify in C#-style code than in
assembly-style (for example, loops rather than jumps). This also has the side-
effect of making the resulting Viper code more readable.

This means, however, that we have to translate language with a specification
that takes 500 pages. Even with the reduced scope (see Chapter 5), the sheer
scale of the project caused it to take a lot of time.

Assignments. Our translation process wants to translate each node on its
own, without knowing anything about its parent. That works most of the time
but for assignments (and some other cases), it doesn’t. If an expression is on the
left-hand side of an assignment, it cannot be translated the same way as if it were
on the right-hand side. This is mostly because Viper assignments are statements
where the left-hand side is fixed and doesn’t allow arbitrary expressions. C#
assignments, by comparison, are just expressions.

Prepending method calls. In Viper, method calls are statements.
In C#, they are expressions. The code int a = MethodCall(2) +
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MethodCall(4) is legal in C#, but not in Viper, where it would have to be
translated as:

1 tmp1 := MethodCall(2)
2 tmp2 := MethodCall(4)
3 a := tmp1 + tmp2

This is common to do in compilers, but it’s a little more complicated in
Soothsharp, because the method calls can’t just be prepended before the expres-
sion, but before the outer statement that contains the expression. For example,
if the method call is part of an if condition, the method call must go in front of
the if statement.

8.2 Aesthetics
A notable limitation of the Soothsharp project is the way contracts must

be used by the end user. In languages designed primarily for verification (e.g.
Viper or Spec#), keywords such as requires and ensures are first-class keywords
of the language. Frontends for Viper, however, add contracts using the tools that
already exist in the language, usually method calls. This is the case not only for
Soothsharp, but also for Scala2Sil, Nagini and Code Contracts14.

The lack of these keywords and other syntax elements makes it less convenient
for the programmer to use Soothsharp, and causes the code to become longer.
Two cases where this is the most obvious are Implies and Contract.Result. Where
in Viper one can write an implication as expression1 ==> expression2, in
C#, (expression1).Implies(expression2) is needed. Note the paren-
theses that are almost always required.

Because C# doesn’t allow generic methods to infer their type arguments from
context, the type argument of Contract.Result() must be always given explicitly.
Longer contract lines are thus difficult to read.

One additional important aesthetics problem deals with throwing exceptions
in contracts and with recursive predicates. Normally, contracts are evaluated by
the runtime during execution and this may cause exceptions or infinite recursion
to occur. To prevent this, either the rewriter program needs to be used (which
cannot be done directly from Visual Studio) or the Contract.Truth member has
to be put manually in all problematic contracts. We have described this in detail
in Section 7.8 .

8.3 Code limitations
If we were to create the translation program from scratch now, there are some

things that would be better done differently.
A better design of the class trees. Both class trees, for C# and for

Viper, are somewhat complex, having intermediate base classes for statements
and expressions. Especially for Viper, they are a little haphazardly used and not
especially necessary and they could be removed to make the code cleaner and
simpler.

14Another option is to add contracts as comments, but that is even less appealing — any IDE
support is lost that way.

68



Better passing of information though the tree. When converting the
C# tree to the Viper tree, an instance of a context class is passed to each node
and an instance of TranslationResult is returned. Especially the TranslationRe-
sult class contains a number of members that are not useful for all nodes. Because
of tree structure of the nodes, a TranslationResult’s contents have to be copied
(or appended) in each node to the next TranslationResult, until a final Transla-
tionResult is output as the result of translation. However, there is a potential for
bugs in this process if some members of the class are forgotten. Here, a better
architecture might help.

Method prepending. C# allows method calls inside expressions, Viper
doesn’t. To make this work, we invented a method of extracting method calls
from expression and prepending them in front of the outer statement. That is
okay, but our implementation is not very clear and prone to mistakes, because it
requires prepending code at multiple locations in Soothsharp source code.

8.4 Future work
The Soothsharp project might be improved in the following ways:

• Multithreading. While Viper contracts and permissions have some use
even in single-threaded programs, they offer the most benefit when used
to guarantee data race freedom in parallel programs. Soothsharp can be
extended to allow the user to run methods in parallel.

• First-class contracts. Instead of encoding contracts as a method calls,
create a superset of the C# language that would add keywords such as
requires and ensures. This is possible by creating a customized C# compiler
but distributing it is not well-supported. This is a difficult extension but
it would eliminate two of the most important issues in Soothsharp: its
aesthetics problem and the recursive predicates problem.

• Better name translation. Viper supports scopes, albeit in a limited
way. If a variable named a is declared in two different methods, currently
Soothsharp will translate the first as a and the second as a2, but there is
no reason why both couldn’t be named a.

• More object-oriented features. There is a lot of possible improvements
regarding object-oriented programming support. In the future, Soothsharp
might want to support inheritance, interfaces and the is operator.

• More Viper features. Viper contains some useful features that are not
exposed via Soothsharp. Notably, these are the mathematical constructs
Set and Multiset, and magic wands. Magic wands are a little tricky, but
Set and Multiset could be implemented analogously to Seq.

• Static fields. Soothsharp doesn’t support static fields yet. There should
be a way to add support for these into the translator, perhaps by creating
a global Viper object to hold static fields and passing this object to all
methods.
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• Class libraries. .NET offers a large number of classes and methods that
can be used by C# programs, but these are not annotated by contracts
and thus cannot be used in Soothsharp-verified programs. Features could
be added that would allow us to annotate these classes (to which we don’t
have source code access).

• Automatic contract inference. Currently, we require the user to specify
a lot of contracts by hand, as Viper does. However, it might be useful to
infer some preconditions or postconditions automatically, as it’s done by
Code Contracts.

• Exceptions. C# makes use of exceptions which break traditional control
flow, and — more importantly — can cause a method to not return a value
of its stated return type. This presents some difficulties but in the Nagini
frontend, these were overcome.

• Integration with another IDE. Soothsharp, as it stands now, is not well
suited for large industrial projects consisting of many files. Writing code to
be checked by Soothsharp might possibly be better done in an editor such
as Visual Studio Code than Visual Studio proper.

• More proper integration. Sometimes Soothsharp forces the user to use
less complex expressions. For example, it is not possible to use the result of
a method call in an l-value (the method call must be before the assignment
expression). This can be done automatically by Soothsharp in the future.

A full frontend that would translate as much C# as possible into Viper is
probably not a useful effort but some of the options given above would likely be
beneficial, if only to further validate the effort of the Viper project.
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9. Related Work
In this chapter, we would like to present a number of projects in some way

related to the kind of verification we attempt, either for C# or other languages,
within the Viper project or outside it.

There is a large number of such tools available15 and we cannot elaborate on
all of them here, but those that are the most related will be discussed.

9.1 Code Contracts
Code Contracts [19] is a Microsoft tool for expressing preconditions, postcon-

ditions and invariants in C# code.
Code Contracts are used much like our own Soothsharp.Contracts library. In

fact, the naming of classes and signatures of methods in that library (Contract,
ForAll, Result) are directly inspired by Code Contracts and made to resemble
them as much as possible.

There are two ways Code Contracts can be used — with a static checker or a
binary rewriter. The static checker [20] is able to output Visual Studio warnings
for some violations of contracts, but not for all — for example, it is unable to prove
most assertions with a quantifier. The binary rewriter encodes preconditions as
guards that throw an exception if not met. In a similar way, postconditions will
then throw an exception if not satisfied.

Code Contracts operate on the bytecode level [21].
Our project (and Viper), as opposed to Code Contracts, is able to statically

prove more complex assertions and can reason about permissions or ownership of
objects on the heap. Both projects share the same flaw of clumsy syntax in C#
(see Section 8.2).

9.2 Spec#
Spec# [22] is an abandoned collaboration project between ETH Zurich and

Microsoft Research. It is a superset of C# 2.0, its syntax a blend of C# and the
language used by intermediate verification languages such as Viper.

Lessons learned from the development of Spec# were applied when Code
Contracts were created, but the project was abandoned around 2008 [23].

Spec# verifies code similarly to how we do it, by translating the C# (Spec#)
code into Boogie and then running an SMT solver. Spec# has a notable advantage
of having elegant syntax as opposed to our tool or Code Contracts. It uses
ownership to reason about heap locations which is a less powerful technique than
permission logic, although similar. There were attempts for Spec# to also check
whether a method terminates but these were only really developed for Dafny, a
sort-of successor to Spec# [24, p. 5].

15For example, AutoProof, Dafny, Frama-C, KeY2, Spec#, VCC, VERL (no permissions),
Bedrock, Chalice, FCSL/Coq, Grasshopper, Infer, jStar, SmallFloot, VeriFast, Ynot [16, pp. 17–
18].
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9.3 Nagini
Nagini16 is a frontend for the Viper project that translates Python source

code to the Viper language and then verifies it. Nagini is currently developed by
Marco Eilers at the university of ETH Zurich. Its capabilities are similar to what
Soothsharp offers for C#, but more advanced in some areas.

In particular, Nagini handles class inheritance with some success, and supports
try/catch blocks and exceptions.

We would like to thank Marco Eilers for his advice and for sharing his expe-
rience on programming a Viper frontend.

9.4 Other frontends
Other frontends for Viper already exist.
There is a frontend for Chalice [26], which is a verification language itself.

That was the example frontend for the Viper project. Chalice and Viper are
similar in many respects.

There is a frontend for Scala [15] from which we took some inspiration. Like
us, the Scala frontend uses compiler libraries to get access to the syntax tree
of the original language and then translates them mostly at the abstract syntax
tree level. Like us, it supports only a subset of the Scala language. Because
the frontend was written in Scala, just like the Viper framework itself, it could
interface with the verifier directly. Soothsharp, on the other hand, has to rely on
creating a text file and communicating via a command-line interface.

Finally, frontends for Java and OpenCL have been developed at the University
of Twente. These are said to be the most comprehensive frontends, but we were
unable to gain access to them.

16No public document or website is available for citation, but the project is part of the
VerifySCION initiative [25].

72



10. Conclusion
We have developed Soothsharp, a transcompiler that converts C# source code

files into code of the Viper Intermediate Language. It supports a reasonable
subset of the C# language, works from within the Visual Studio IDE and makes
it more convenient to write verifiable programs.

Soothsharp proves that the Viper framework is a solid base upon which one
can build frontends that help writing verifiable programs, even for languages quite
different from the Viper language itself or the language it’s programmed in, Scala.

We have encountered no fundamental issues that would prevent advanced
verification of C# programs using a future version of Soothsharp.

However, there are obstacles that prevent our work from being used as-is by
end users, because the program misses some features needed for more complex
projects, such as exceptions or inheritance. These features could be added in the
future.
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[3] Cyrill Martin Gössi. A formal semantics for viper. 2016.

[4] Boogie website. https://www.microsoft.com/en-us/research/
project/boogie-an-intermediate-verification-language/.

[5] Z3 homepage. https://github.com/Z3Prover/z3.

[6] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In Proceedings of the 17th Annual IEEE Symposium on Logic
in Computer Science, LICS ’02, pages 55–74, Washington, DC, USA, 2002.
IEEE Computer Society.

[7] Werner Dietl and Peter Müller. Object Ownership in Program Verification,
pages 289–318. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[8] Colin S. Gordon, Matthew Parkinson, Jared Parsons, Aleks Bromfield, and
Joe Duffy. Uniqueness and Reference Immutability for Safe Parallelism.
Technical report, October 2012.

[9] Roslyn website. https://github.com/dotnet/roslyn.

[10] Roslyn documentation. https:
//github.com/dotnet/roslyn/wiki/Roslyn%20Overview.

[11] Binary search (Seq) example.
http://viper.ethz.ch/examples/binary-search-seq.html.

[12] Malte Hermann Schwerhoff. Advancing Automated, Permission-Based
Program Verification Using Symbolic Execution. PhD thesis, 2016.

[13] Sorted list example. http://viper.ethz.ch/examples/
sorted-list-immutable-sequence.html.

[14] Linked list example. http:
//viper.ethz.ch/examples/linked-list-predicates.html.

[15] Bernhard F Brodowsky. Translating Scala to SIL. Master’s thesis,
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A. Contents of the DVD
• source

– source code for the Soothsharp solution as detailed in Section 7.1;
this is also available at https://github.com/Soothsilver/
soothsharp

• binaries

– contracts
∗ Soothsharp.Contracts.dll (the class library that contains

contracts)
– tools

∗ csverify.exe (the translator program)
∗ rewriter.exe (the rewriter program)
∗ Soothsharp Graphical Verifier.exe (a GUI for the

translator)
∗ Soothsharp.Plugin.vsix (the Visual Studio plugin)
∗ various dll files requires by the above programs

– viper
∗ this folder contains tools of the Viper framework; these files must

be in your PATH environment variable
– boogie

∗ this folder contains compiled Boogie binary files

• class-documentation

– generated class documentation for the project

• thesis.pdf (this document)
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B. User documentation

B.1 Overview
Soothsharp is a tool for verification of C# code with respect to contracts. It

makes use of the Viper framework as its backend. You will need a certain famil-
iarity with software verification and Viper-like methodologies to use Soothsharp
effectively.

Soothsharp consists of the following projects. They are described in more
detail further below.

• csverify.exe: This command-line tool can translate C# files to Viper code,
or verify them immediately.

• csverify GUI: This program is the graphical user interface to csverify.exe.

• Visual Studio Plugin: If you install this plugin in Visual Studio, trans-
lation and verification errors will be shown in the Error List within the
IDE.

• Soothsharp.Contracts: This C# class library contains contracts that you
will need to use in your verifiable C# code. Add this library as a reference
to your projects.

• Examples: This folder contains example code files that demonstrate how
to use Soothsharp.

• rewrite.exe: This program removes contracts from the C# code it receives
and writes the remaining code to standard output.

B.2 Installation
All binary tools, except for the plugin, may be used out of the box, by running

the executable.
To install the plugin in Visual Studio, double-click the vsix file. You must

have Visual Studio 2015 installed.
To make use of verification, you must first ensure that Soothsharp can locate

the backend files and Nailgun. To do this, add the folder Viper17 to your PATH
environment variable.

In addition, some additional programs that are required by Viper must be
installed. For both verifiers, you will need Java 8 and the Z3 solver. For Carbon,
you will also need Boogie.

You may download and install Java 8 from its official website18.
You may download the Z3 prover from its GitHub page19. The recommended

version of Z3 for the version of Viper tools supplied with this thesis is 4.4.0.
17The folder contains the files ng.exe, startviperserver.bat, silicon.jar, carbon.jar and nailgun-

server-0.9.1.jar.
18https://www.java.com/en/download/
19https://github.com/Z3Prover/z3/releases

79

https://www.java.com/en/download/
https://github.com/Z3Prover/z3/releases


When you do, you must create an environment variable named %Z3 EXE%. That
variable should hold the path to the z3.exe executable.

To run the Carbon verifier, you will need Boogie. You may download Boogie’s
source code from its GitHub page20 and build it. Alternatively, you may use the
binary files attached to this thesis. Then, you must create an environment variable
named %BOOGIE EXE%. That variable should hold the path to the boogie.exe
executable.

These variables are how the Viper verifiers locate the tools they depend on.
Alternatively, you play all Z3 and Boogie files in the Viper tools folder which
should have the same effect.

Finally, the Viper tools themselves must be located under a path that is pure
ASCII and doesn’t contain non-ASCII characters or spaces.

It is possible to replace the attached Viper tools with newer versions, but that
process is more difficult.21

B.3 csverify.exe
The main executable of the project, csverify.exe, takes C# code files as input

and outputs Viper code or error messages.
The tool has many command-line options:

1 Usage: csverify.exe [OPTIONS] file1.cs [file2.cs ...]
2
3 Options:
4 -?, --help, -h Shows this message.
5 -v, --version Shows that the version of this program is 1.0.6352.
6 25168.
7 -V, --verbose Enables verbose mode. In verbose mode, additional
8 debugging information is printed and more
9 details are written for each error message.

10 -q, --quiet Enable quiet mode. In quiet mode, only the
11 resulting Viper code or error messages are shown.
12 -r, --reference=ASSEMBLY.DLL
13 Adds the ASSEMBLY.DLL file as a reference when
14 doing semantic analysis on the code. mscorlib
15 and Soothsharp.Contracts are added automatically.
16 -a, --assume=CLASS.CS Translates the file CLASS.CS to Viper and prepends
17 it to the main generated file, but its methods
18 and functions won’t be verified - their
19 postconditions will be assumed to be true.
20 -w, --wait When the program finishes, it will wait for the
21 user to press any key before terminating.
22 -O, --only-annotated Only transcompile classes that have the [Verified]
23 attribute, and static methods that have the [
24 Verified] attribute even if their containing
25 classes don’t have the [Verified] attribute.
26 -o, --output-file=OUTPUT.VPR
27 Print the resulting Viper code into the OUTPUT.VPR
28 file.
29 -l, --line-numbers Print line numbers before the Viper code
30 -s, --silicon Use the Silicon backend to verify the Viper code.
31 -c, --carbon Use the Carbon backend to verify the Viper code.

To disable an option that’s turned on by default, add a minus sign after it,
like this: --line-numbers- or -l-. By default, line numbers are printed, and
neither the verbose mode nor the quiet mode are active.

20https://github.com/boogie-org/boogie
21Some documentation is available at https://bitbucket.org/viperproject/

documentation/wiki/Home.
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Figure B.1: Screenshot of the GUI application

To output only Viper code and nothing else, use the options --quiet
--line-numbers-.

B.4 csverify GUI

The Soothsharp Verifier GUI allows you to configure the verifier using a graph-
ical interface. The verifier itself (csverify.exe) must be in the same folder as the
GUI program.

The following options are exposed (see Figure B.1) :

• Verbosity. In quiet mode, only the translated Viper code will be written
out. In verbose mode, many debugging messages will be written out.

• Verifier backend. Determines whether verification also occurs, and if yes,
which backend verifier is used.

• Code files. Determines what C# code files will be verified, and whether
they’re fully verified or whether only their signatures are extracted.

• Other options. Allows the configuration of other options of the csver-
ify.exe program.

The text box shows the arguments that will be passed to the command-line
tool based on selected options. You may modify these arguments before running
verification.

The Run verification button will launch csverify.exe with the given arguments.
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B.5 Visual Studio plugin
There is also a Visual Studio plugin that automatically translates and verifies

C# code using Soothsharp and the Carbon Nailgun backend verifier.
To install it, double-click the distributed vsix file.
Then, as long as that plugin is not deactivated, Soothsharp will automatically

translate and verify C# code files open in Visual Studio. There is no per-project
setting: the plugin is either active or not, so unless you’re using Soothsharp, you
will likely want to keep the plugin deactivated.

Translation errors are reported as errors in Visual Studio (with red squig-
glies). Verification errors are reported as warnings in Visual Studio (with green
squigglies).

B.6 Soothsharp.Contracts
The Soothsharp.Contracts library should be added as a reference to each

project that uses Soothsharp. The csverify.exe tool adds it as a reference auto-
matically.

It contains the static Contract class which exposes functionality of the Viper
language, some attributes, the classes Seq and Permission and some extension
methods. All of these are in some way translated to Viper. Some of them have
some functionality in C# as well (such as the Permission type) but most methods
have empty bodies and do nothing when executed by the runtime.

More information can be found in the class documentation of the project.
See the example files provided to get a good overview of how contracts are

used.

B.7 Examples
This folder contains several files annotated with Soothsharp contracts. The

folder Algorithms is of particular interest and it contains the following methods:

• Arithmetic.Max

• Arithmetic.Min

• Arithmetic.Abs

• Search.GetSmallestNumber

• Search.BinarySearch

• SeqUtils.ArrayToSeq

• Sorting.InsertSort

In addition, the following classes are available:

• VerifiedTuple

• SortedList
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• Node (a node in a directed acyclic graph)

All of these are proved correct using Soothsharp and their documentation is
visible to IntelliSense.

B.8 rewrite.exe
The rewrite.exe tool accepts one C# code file as input: either put its filename

as the only argument, or send it to rewrite.exe using standard input (terminated
by end-of-file).

The rewriter will remove all contracts from the source code (i.e. calls to the
methods Assume, Assert, Ensures, Exhale, Inhale, Invariant, Requires, Fold and
Unfold on Soothsharp.Contracts.Contract). Semantic analysis is used to remove
them correctly even if aliases are used.

In addition, the expressions Folding and Unfolding are removed and replaced
with their second argument only. That way, the first argument — which is only
relevant in Viper — doesn’t remain in the code that needs to be compiled into a
binary, but the executable portion of the code remains.

Use rewrite.exe to avoid running contract code.

B.9 Troubleshooting
• If a program fails with an error, make sure that all the DLL files that

accompanied it are present in its directory.

• If verification fails, or conversely, unexpectedly succeeds, make sure that
the Viper folder is in your PATH environment variable and that you have
Java, Z3 and Boogie installed and that the environment variables Z3 EXE
and BOOGIE EXE are set.22 It is not sufficient for the Viper files to be in
the current directory, they need to be in the PATH.

• If verification still doesn’t work, check that all executable files are in paths
that don’t contain non-ASCII characters (such as Czech letters) or spaces.

• There is a bug in Viper that causes problems when the current directory
is on a different drive than the Viper tools. To avoid this, run verification
from a folder that’s on the same drive.

• Additional documentation for Viper tools is available online23. You may
also contact the author of this thesis for assistance.

22Programs copy the environment as they are launched. You may need to restart programs
after you set these environment variables to have them apply.

23https://bitbucket.org/viperproject/documentation/wiki/Home
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C. Formal grammar of Viper

1 // Declarations
2 sil-program ::=
3 (
4 import |
5 define |
6 domain |
7 field |
8 function |
9 predicate |

10 method
11 )*
12
13 import ::=
14 "import" relative-path
15
16 relative-path ::=
17 \A(?:[\w-]+\/?)+\z
18
19 define ::=
20 "define" identifier [ "(" parameterˆ,* ")" ] expression-or-block
21
22 parameter ::= ident
23
24 expression-or-block ::=
25 exp |
26 block
27
28 domain ::=
29 "domain" domain-name
30 "{"
31 domain-function*
32 axiom*
33 "}"
34
35 domain-name ::=
36 ident |
37 ident "[" identˆ,* "]" //e.g. Seq[T]
38
39 domain-function ::=
40 ["unique"] function-signature [";"]
41
42 function-signature ::=
43 "function" ident formal-args ":" type
44
45 axiom ::=
46 "axiom" ident "{" exp "}" [";"]
47
48 field ::=
49 "field" ident ":" type [";"]
50
51 function ::=
52 function-signature
53 precondition*
54 postcondition*
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55 "{"
56 exp
57 "}"
58 // Semicolon not permitted
59
60 precondition ::=
61 "requires" exp
62
63 postcondition ::=
64 "ensures" exp
65
66 invariant ::=
67 "invariant" exp
68
69 predicate ::=
70 "predicate" ident formal-args "{" exp "}" |
71 "predicate" ident formal-args
72 // Semicolon not permitted
73
74 method ::=
75 "method" ident formal-args [formal-returns]
76 precondition*
77 postcondition*
78 [block]
79
80 formal-args ::=
81 "(" formal-argˆ,* ")"
82
83 formal-arg ::=
84 ident ":" type
85
86 formal-returns ::=
87 "returns" formal-args
88
89 // Statements
90 block ::=
91 "{" statement-with-optional-semicolon* "}"
92
93 statement-with-optional-semicolon ::=
94 stmt [";"]
95
96 stmt ::=
97 // local variable declaration with an optional initial value
98 "var" ident ":" type [":=" exp] |
99

100 // local definition
101 define |
102
103 // local variable assignment
104 ident ":=" exp |
105
106 // field assignment
107 field-access ":=" exp |
108
109 // object creation (all fields)
110 ident ":=" "new(*)" |
111
112 // object creation (specified fields)
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113 ident ":=" "new(" identˆ,* ")" |
114
115 "assert" exp |
116 "assume" exp |
117 "inhale" exp |
118 "exhale" exp |
119 "fold" acc-exp |
120 "unfold" acc-exp |
121
122 "goto" ident | // goto statement
123 "label ident | // a goto label
124
125 if-statement |
126 while-statement |
127 call-statement |
128 fresh-statement |
129 wand-statement |
130 constraining-block
131
132 if-statement ::=
133 "if" "(" exp ")"
134 block
135 ("elsif" "(" exp ")"
136 block
137 )* // any number of elseif branches
138 ["else"
139 block
140 ] // optional else branch
141
142 while-statement ::=
143 "while" "(" exp ")"
144 invariant*
145 block
146
147 call-statement ::= // method call [with return target]
148 [identˆ,* :=] ident "(" expˆ,* ")"
149
150 fresh-statement ::=
151 "fresh" identˆ,*
152
153 wand-statement ::=
154 "wand" ident ":=" exp |
155 "package" magic-wand-exp |
156 "apply" magic-wand-exp
157
158 constraining-block ::=
159 "constraining" "(" identˆ,* ")"
160 block
161
162 // Expressions
163 binop ::=
164 "==" | "!=" | // equality operators
165 "==>" | "||" | "&&" |"<==>" | // boolean operators
166 "<" | "<=" | ">" | ">=" | // ordering
167 // (integers and permissions)
168 "+" | "-" | "*" | // arithmetic operators
169 // (integers and permissions)
170 // also int*permission
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171 "\\" | "\%" | // arithmetic division
172 // and modulo
173 "\/" | // permission division
174 // (of two integers)
175 "--*" | // magic wand
176
177 "union" | "intersection" | "setminus" //set operators
178 "++" | // sequence concatenation
179 "in" | // set/multiset/sequence membership
180 "subset" // subset relation
181
182 unop ::=
183 "!" | // boolean negation
184 "+" | "-" // integer and permission
185
186 exp ::=
187 "true" | "false" | // boolean literal
188 integer | // integer literal
189 "null" | // null literal
190 "result" | // result literal in
191 // function postconditions
192 ident | // local variable read
193
194 "(" exp ")" |
195
196 unop exp | // unary expression
197 exp binop exp | // binary expression
198 exp "?" exp ":" exp | // conditional expression
199
200 "old" "(" exp ")" // old expression
201 "[" ident "]" "(" exp ")" // labeled old expression
202 "lhs" "(" exp ")" // apply old expression
203
204 "none" | // no permission literal
205 "write" | // full permission literal
206 "epsilon" | // epsilon permission literal
207 "wildcard" | // wildcard permission
208
209 "perm" "(" loc-access ")" | // current permission
210 // of given location
211
212 acc-exp | // accessibility predicate
213
214 ident "(" expˆ,* ")" | // [domain] function

application
215 "(" ident "(" expˆ,* ")" ":" type ")" // typed function

application
216
217
218 field-access | // field read
219 predicate-access | // predicate access
220
221 "[" exp "," exp "]" | // inhale exhale expression
222 "unfolding" acc-exp "in" exp | // unfolding expression
223 "folding" acc-exp "in" exp
224 "applying" ( "(" magic-wand-exp ")" | ident ) "in" exp
225 "packaging" ( "(" magic-wand-exp ")" | ident ) "in" exp
226
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227 // quantification
228 "forall" formal-argˆ,* "::" triggerˆ,* exp |
229 "exists" formal-argˆ,* "::" exp |
230
231 seq-constructor-exp |
232 set-constructor-exp |
233
234 seq-op-exp |
235 "|" exp "|" | // length of a sequence; or

set/multiset cardinality
236
237 let-in-exp |
238 forperm-exp
239
240 magic-wand-exp ::=
241 exp // except that it must not be <==> or ==>
242 let-in-exp ::=
243 "let" ident "==" "(" exp ")" "in" exp
244
245 forperm-exp ::=
246 "forperm" "[" identˆ,* "]" ident "::" exp
247
248 seq-constructor-exp ::=
249 "Seq[" type "]()" | // the empty sequence
250 "Seq(" expˆ,* ")" | // explicit sequence (must not be empty)
251 "[" exp ".." exp ")" // half-open range of numbers
252
253 set-constructor-exp ::=
254 "Set" "[" type "]" "(" ")" | // empty set
255 "Set" "(" expˆ,* ")" | // explicit set
256 "Multiset" "[" type "]" "(" ")" | // empty multiset
257 "Multiset" "(" expˆ,* ")" | // explicit multiset
258
259 seq-op-exp ::=
260 exp "[" exp "]" | // sequence lookup
261 exp "[" ".." exp "]" | // take n first elements
262 exp "[" exp ".." "]" | // drop n first elements
263 exp "[" exp ".." exp "]" | // take and drop
264 exp "[" exp ":=" exp "]" | // update sequence at
265
266 trigger ::=
267 "{" expˆ,* "}" // a trigger for a quantification
268
269 acc-exp ::=
270 "acc" "(" loc-access ["," exp ]")" //access
271 // default is write
272 loc-access ::=
273 field-access | predicate-access
274
275 field-access ::=
276 exp "." ident | // field access
277
278 predicate-access ::=
279 ident "(" expˆ,* ")" // predicate access
280
281 // Types
282 type ::=
283 "Int" | "Bool" | "Perm" | "Ref" | "Rational" | // primitive
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types
284 "Seq" "[" type "]" | // sequence type
285 "Set" "[" type "]" | // set type
286 "Multiset" "[" type "]" | // multiset type
287 ident [ "[" typeˆ,* "]" ] // [instance of

a generic] domain type
288
289 // Identifiers
290 ident ::= // regular expression for an identifier
291 "[a-zA-Z$_][a-zA-Z0-9$_’]*"
292
293 Expression operator priority
294 ============================
295 (operators are in general, right-associative)
296
297 ternary conditional operator
298 <==>
299 ==>
300 --*
301 ||
302 &&
303 == !=
304 <= >= < > in
305 ++ + - union intersection setminus subset (left-associative!)
306 * / \ % (left-associative!)
307 field-access seq-op-exp
308 other expressions
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