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Abstract:

The proton, one of the basic constituents of atoms, was discovered around 1920. Its
structure has been intensively studied since that time mainly with the help of proton-
proton collision experiments. Main progress has started when corresponding experiments
at the world’s first hadron collider ISR at CERN which ran from 1971 to 1984 were
performed. The understanding of the structure and interactions of this subatomic
particle protons has been, however, rather incomplete. Only some very general models
have been available especially in the case of higher collision energies when very different
kinds of collisions have existed. Some very simplifying assumptions of unclear physical
meaning have been then involved in models concerning elastic processes. The influence of
these assumptions on physical interpretation has started to be studied and some progress
has been made when the eikonal model has been proposed, i.e., the dependence of elastic
collisions on corresponding impact parameter values has been taken into account from
the beginning. However, even if some new results have been obtained many unanswered
questions have remained. For example, the collision process has been denoted generally
as probabilistic but corresponding probabilities have not been sufficiently defined and
determined. The given thesis contains, therefore, summary of different contemporary
descriptions of elastic hadron collisions concerning the influence of impact parameter and
the discussion of consequences and justification of some important assumptions. The
eikonal model has been generalized and demonstrated on experimental data at 53 GeV
and then applied also to newly obtained data at 8 TeV. Consequently, the contemporary
TOTEM experiment at the LHC accelerator at CERN devoted to measurement of
elastic pp scattering and diffractive processes at the highest ever reached energies has
been described. In the given thesis several important open problems blocking the
progress in the given area of research have been identified. A new probabilistic model of
particle collisions has been then shortly described; the dependence of elastic collisions
on impact parameter having been systematically taken into account in analyses of
corresponding experimental data. It has been demonstrated that with the help of it
deeper understanding of characteristics and interactions of fundamental particles might
be obtained.

Keywords: proton-proton collisions, models of elastic collisions, impact parameter,
central or peripheral scattering, probabilistic scattering, TOTEM experiment at the
LHC at CERN
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Abstrakt:

Proton, jeden ze zdkladnich stavebnich kamenu atomu, byl objeven okolo roku 1920.
Jeho struktura byla od té doby intensivné studovana zejména s pomoci srazkovych
proton-protonovych experimentu. K hlavnimu pokroku doslo, kdyz byly provedeny
experimenty na svétové prvnim srazec¢i hadronu ISR v CERN, ktery byl v provozu v
letech 1971 az 1984. Porozuméni struktufe a vzajemnému pusobeni této subatomarni
castici vsak zustavalo znac¢né netplné. Pouze velice obecné modely byly k disposici,
zejména v pripadé vyssich srazkovych energiich, kdy existovaly velmi rozdilné druhy
srazek. Modely pruznych srazek zahrnovaly nékteré velice zjednodusujici predpoklady
nejasného fyzikalnitho vyznamu. Vliv téchto predpokladu na fyzikalni interpretaci se
zacal studovat, a urcitého pokroku se dosahlo, kdyz byl navrzen eikonalovy model,
ktery mimo jiné umoznil studovat zavislost pruznych srazek na hodnotach ptislusného
srazkového parametru od samého pocatku. Avsak i kdyz nékteré nové vysledky byly
ziskany, mnoho nezodpovédénych otazek zustalo. Srazkovy proces byl, napft., oznacen
jako pravdépodobnostni, ale pifislusné pravdépodobnosti nebyly dostatecné definovany a
urceny. Predkladand préce proto obsahuje prehled souc¢asnych riznych popisu pruznych
srazek hadront tykajicich se vlivu srazkového parametru a prislusnou diskuzi ohledné
dusledku a opravnénosti nékolika dulezitych predpokladi. Eikonalovy model byl zobecnén
a demonstrovan na experimentalnich datech pti 53 GeV a pak aplikovan také na nové
ziskané vysledky pii 8 TeV. Je proto popsan i soucasny experiment TOTEM (na
urychlova¢i LHC v CERN) urcéeny k méfeni pruznych srazek protonu a difrakénich
procesu pti nejvyssich energiich, kterych kdy bylo dosazeno. Déle je identifikovano nékolik
dulezitych otevienych problému omezujicich pokrok v dané oblasti vyzkumu. Kratce
je pak popsan novy pravdépodobnostni kolizni model ¢astic, s jehoz pomoci 1ze vzit
do tvahy systematicky zavislost pruznych srazek na srazkovém parametru v analyzach
prislusnych experimentalnich dat. Je také ukazano, ze s jeho pomoci by se mohlo
dosahnout nového a hlubsiho porozumeéni vlastnostem a interakcim fundamentélnich
castic.

Klicova slova: srazky protonu, modely pruznych srazek protonu, srazkovy parameter,
centralni ¢i periferdlni rozptyl, pravdépodobnostni rozptyl, experiment TOTEM na LHC
v CERN
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Introduction

According to the contemporary knowledge the macroscopic matter world we live in
consists of atoms with dimensions of the order 107!° m. The basic constituents of atomic
nuclei (~ 107'% m) are nucleons: protons and neutrons. Better understanding of nucleon
characteristics and their interactions may, therefore, immediately improve our knowledge
of the whole atomic (microscopic) physics. One of the nowadays standard methods how
to study properties of some particles is to analyze their collisions at various energies
and observe corresponding result. This method was pioneered by Rutherford in the
beginning of 20th century [1] who also discovered the proton around 1920.

Two-particle collisions may be divided into elastic and inelastic. In elastic collision
energy and magnitude of momentum of each of the particles are conserved during the
motion and no new particles are created (the particles may change only direction of their
motion during the collision); all the other types of collisions may be denoted as inelastic.
Inelastic processes having ”similar” dynamical characteristics are called quasi-elastic or
more generally diffractive production processes. They have been introduced for the first
time in 1950s [2, 3]. Together with the elastic scattering they are often called diffractive
processes. The presented thesis is devoted mainly to proton-proton (pp) elastic collisions
(at high energies) but many discussed aspects are similar to other particles, namely to
(charged) hadrons.

Detection of pp collisions has already quite long tradition. Two beams of protons
collided for the first time in the Intersecting Storage Rings (ISR) at European Orga-
nization for Nuclear Research (CERN); it was the first world hadron collider. It ran
from 1971 to 1984 and it was one of very successful projects that opened the way to
new technological development and physics discoveries with an impact up to the present
[4]. Part of the ISR is shown in fig. 1. In the ISR the protons collided at energy /s in
the range of approximately 20 — 60 GeV.

The pp collisions have been measured and studied later also in several other exper-
iments which helped to extend important information about protons and, of course,
about other particles produced during the collisions. The present day accelerator where
pp collisions are observed in several experiments is the Large Hadron Collider (LHC)
at CERN which has been designed (after some upgrades) to ultimately reach collision
energy of 14 TeV. It has provided important experimental data at lower energies already
now. The first pp collisions at LHC were recorded during LHC Run 1 from November
2009 till February 2013, before Long Shutdown 1 (LS1). The TOTal, Elastic and
diffractive cross section Measurement (TOTEM) experiment which has been dedicated
to measurement of diffractive processes including elastically (diffractively) scattered
protons.

However, even thought a lot of data have been accumulated at various collision ener-
gies, the description and understanding of the structure, interactions and characteristics
of protons (hadrons) is still not complete in many aspects. For example, the range of

1
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Figure 1: The world’s first proton-proton collider - ISR.
Two beam pipes cross at large crossing angle (Image:

CERN).
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hadronic interaction, dimensions (shape) of proton, distribution of electric charge inside
proton, distribution of hadronic matter inside proton etc. are still not sufficiently known.
In fact, the description of the kinematically simplest process, i.e., elastic scattering of
protons (diffractive processes in general) is still very limited.

The first measurement of pp elastic collisions (beam-beam) has been performed at
ISR; the experimental result in form of measured elastic differential cross section has
been plotted as a function of momentum transfer (scattering angle) at some selected
energies in fig. 2 where one may see a clear non-trivial dip-bump structure which has
been measured for the first time at ISR in pp collisions at energies of 23.5, 30.7, 44.9 and
53 GeV in 1974 [6]. Such a t-dependent structure has been later discovered in elastic
collisions of several other hadrons [7—12]. Only one diffractive dip has been observed
in collisions of hadrons up to now while more than one dip has been observed even
earlier in collisions of light nuclei. In the case of (pp) elastic collisions no dip has been
observed, only a shoulder - see fig. 2. Similar diffractive structure has been observed
at ISR also in some non-elastic interaction, e.g., in single diffraction pp — p (n7t)
at 45 GeV as discussed in [13] (from 1975), see fig. 3. Even thought these dip-bump
structures in differential cross sections of diffractive processes varying with collision
energy and particle type are known for relatively long time, their explanation (relation
to the structure and interaction of the colliding particles) represents, however, still an
open question.

Two fundamental interactions are usually used for description of elastic scattering
of two charged hadrons: the long-ranged Coulomb interaction (electromagnetic) and
much stronger but short-ranged hadronic interaction (also known as nuclear or strong).
While the former one is supposed to be well known, the determination of the latter one
is more complicated. The simultaneous action of both the interactions already in the
case of elastic collisions represents, therefore, quite delicate problem even thought some
models exist (as we will see later).

Better understanding of diffractive collision processes of protons (mainly those with
at least one proton surviving the collision) could bring new and important light in
description of their structure and interactions as the diffractive processes are quite
frequent ones (they always represent a significant part of total hadronic cross section).

The result of a collision of two objects (particles) depends on their structure, interaction
type, collision energy and also on the value of so-called impact parameter b, see fig. 4. It
is mainly the dependence on the impact parameter which is usually not respected in
descriptions of collisions. However, there are at least three effects which may significantly
influence the collision result of two hadrons

1. There is surely a big difference in interaction of two particles colliding head-on
at b = 0 or at some higher value of b (e.g., corresponding to the boundary of
short-ranged or contact hadronic collisions). The collision of two particles mainly
at small relative distances may be regarded as a probabilistic process (depending
on geometrical configuration of colliding particles, their spins, etc.). One may,
therefore, introduce probability P(s,b) that two colliding particles will produce
a given type of process at impact parameter b and collision energy /s. This
probability function may be, of course, very different for different types of processes
(interactions) and particles.

2. The initial states of two particle collisions distinguished by impact parameter
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have always different frequencies in collision experiments (see, e.g., fig. 5). The
corresponding distribution of impact parameter must be taken into account in order
to study the physically interesting dependence of collisions on impact parameter
mentioned in the previous point.

3. The actual minimum mutual distance (in collision instant) of colliding charged
hadrons may be significantly influenced by long-ranged Coulomb interaction
especially at very low collision energy values where it may even happen that the
Coulomb interaction may deflect the colliding particles at impact parameter so
that they do not even enter to a region of short-ranged interaction. If this effect
of long-ranged Coulomb interaction is not taken into account then the established
value of total hadronic cross section may be different than it corresponds to reality
(depending on collision energy). In the case of attractive (repulsive) Coulomb force
it may be lower (higher).

Until now only some phenomenological models have been applied to in interpreting
experimental data represented by elastic differential cross sections. For example the
description of elastic collisions of charged hadrons proposed by West and Yennie (WY)
[14] in 1968 (having been commonly used for determination of total hadronic cross
section since ISR era) has not taken impact parameter into account at all. One of the
first discussion concerning the character of hadronic collisions in impact parameter space
has been presented by Miettinen in 1974 [15] (see also [16] from 1975). According to his
calculations a rather great ratio of elastic processes should correspond to central collisions
(even at impact parameter b = 0) and average impact parameter of elastic collisions
should be smaller than that of inelastic ones; which is to be denoted as surprising in the
case of matter particles.

The central character of elastic collisions has been even more confusing due to the
fact that the single inelastic diffraction seemed to be peripheral (see again [15] or, e.g.,

4
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(a) central collision: small values of b (b) peripheral collision: higher values of b

Figure 4: Example of a central and peripheral collision of two particles of finite dimensions;
one may expect that the result of a collision depends strongly on the value of impact
parameter b which represents transversal distance of the two particles before collision.

scattering
center at rest

do=2nb db dQ

Figure 5: Potential elastic scattering (e.g., Coulomb) of a particle on a scattering
centre at rest. Particles hitting the ring between b and b + db are scattered by an
angle between 6 and 6 4+ df. The element of cross section do = 2wbdb represents
the area of a ring of radius b and width db. The b-dependent factor 27b, therefore,
represents a weight of initial states corresponding to a given impact parameter
(assuming independently and uniformly distributed two particle collisions in cross
plane).
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Giovannini et al. [17] from 1979). Such significant difference between both the kinds
of diffractive collisions may be hardly brought to agreement with other experimental
data as the elastic and mentioned inelastic diffraction processes should have very similar
dynamics. This kind of ”transparency” of protons (in elastic collisions) was, therefore,
denoted as a puzzling question already at that time (see, e.g., Giacomelli and Jacob [18§]
from 1979).

It was then shown in [19] (1981) that the central character of elastic collisions has
been derived due to some assumptions in corresponding collision models that have been
strongly limiting. It has been shown, too, that very different (peripheral) behaviour
of elastic collisions may be obtained if one admits arbitrary change of ¢-dependence of
elastic hadronic phase that has been admitted in standard approaches to change only
very slightly.

A new more general formula for description of elastic scattering for both the Coulomb
and hadronic interactions has been then derived on the basis of eikonal model in 1994
[20] as an alternative to that of WY. It has allowed taking into account and further
study the dependence of (elastic) hadronic collisions on impact parameter. However,
even if the elastic processes prevailed significantly at higher values of impact parameter
(and elastic collisions could be denoted as peripheral) the non-zero probability at b = 0
has remained as other (commonly used) assumptions have been applied to. It means
that the problem of physical interpretation is to be studied and analyzed further to
a greater detail. The eikonal model approach and its possibilities have been recently
revisited and summarized in [21] (2016).

Several fundamental open problems in contemporary descriptions of elastic collisions
have been explicitly identified and discussed in [22] (2015). It is possible to say that it
is mainly the dependence of elastic collisions on impact parameter which has not been
systematically taken into account and which should be carefully analyzed. To overcome
the limitations contained in previous descriptions of elastic collisions new probabilistic
collision model has been proposed. It is introducing probability of elastic collision in
dependence on impact parameter b. First ideas of the model have been formulated in
2009 in [23] and later significantly improved in 2013 [24].

The presented thesis represents continuation of two previous theses (bachelor and
diploma) [25, 26] of the author which have been devoted also to elastic scattering. To
explain the story outlined in the preceding about evolution of description of elastic pp
collisions in dependence on impact parameter in more detail this thesis is structured
as follows (main contributions of the author to the given results are also mentioned
together with corresponding publications which he co-authored):

Chapter 1
The aim of this chapter is to provide a reader basic information concerning
the way how pp collisions are produced at the LHC at CERN. The whole
LHC accelerating chain is, therefore, very briefly explained together with
purpose of several experiments devoted to the measurement of the collisions.
Some widely known accelerator physics principles are summarized. It is
mainly transverse linear beam motion and concept of luminosity which are
discussed in slightly more details as they are very important for understanding
several aspects of measurement of (elastic) pp scattering discussed in next chapters.
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Chapter 2
A diffractively scattered proton is scattered at very small angle. It moves along
proton beam where its motion is influenced by magnetic field (it stays in beam pipe
for quite long distance) before it may be detected by special detectors. One of the
main experimental difficulties is then detection of such protons and reconstruction
of their kinematics after the scattering. Corresponding measurement techniques
are, therefore, outlined in this chapter with the help of detector apparatus of
TOTEM experiment at the LHC dedicated to measurement of mainly diffractive
processes. This chapter contains also brief summary of several published physics

results characterizing pp (diffractive) collisions determined from data obtained
during LHC Run 1 (before LHC LS1) by TOTEM collaboration [27-44].

The author of this thesis, as a member of TOTEM collaboration, has contributed to
the results concerning mainly elastic scattering and its interpretation; it concerns
also measurement of total pp cross section as corresponding hitherto methods
are based on measurement of elastic scattering, see below. He has contributed
mainly to [36] concerning measurement and interpretation of elastic pp scattering
in Coulomb-hadronic interference region at 8 TeV. Some of the results have been
presented by the author on behalf of the whole collaboration in [45-47].

Chapter 3

This chapter summarizes contemporary theoretical description of elastic scattering
of charged hadrons (e.g., pp or pp). One may find here more detailed discussion of
the WY and the eikonal model approach together with corresponding assumptions.
In [20] only electric form factors have been taken into account in the eikonal
model. In this chapter the model is generalized to study also the influence
of effective electromagnetic form factors on determination of elastic hadronic
amplitude FN(s,t) on the basis of experimental data. It is further shown how
b-dependent total, elastic and inelastic profile functions and corresponding mean
impact parameter values may be calculated at finite energies on the basis of elastic
amplitude F'N(s,t). Contemporary widely used models (or parameterizations) of
elastic hadronic amplitude FN(s,t) contain several a priory limitations leading to
the mentioned central character of elastic collisions. These limitations are discussed
in this chapter, too. The understanding of the description of elastic collisions
is also of key importance for understanding of, e.g., contemporary methods of
total hadronic cross section measurement; the corresponding discussion may be,
therefore, found also in this chapter.

The whole eikonal model approach has been generalized and revisited by the
author of the thesis with the aim to prepare it for analysis of experimental data of
elastic pp collisions at LHC energies measured by TOTEM, i.e., at the highest
ever reached pp collision energies, see also chapter 4.

Chapter 4
In this chapter the eikonal model described in chapter 3 is applied to older
experimental ISR data at 53 GeV and also to data at 8 TeV recently measured
by TOTEM [36]. At 53 GeV a fit corresponding to widely used assumptions and
leading to central behaviour of hadronic collisions is shown. It is then demonstrated
that one may fit the same data and obtain peripheral (i.e., completely different)
character of elastic collisions; several new peripheral alternatives are discussed

7
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to demonstrate different interpretation possibilities. These fits are performed
taking into account electric form factors and then also effective electromagnetic
form factors to see the impact on the results. Similar analysis is then performed
at 8 TeV and two interesting fits, one leading to central and the second one
to the peripheral behaviour, are shown. At both the energies cross sections, b-
dependent profile functions, corresponding values of mean impact parameters and
other interesting quantities characterizing pp collisions are calculated for each
alternative corresponding to different assumptions. The results obtained on the
basis of this eikonal model analysis at two very different high energies are then
compared.

The analysis of the 53 GeV data has been made by the author of the thesis and
together with the description of the revisited eikonal model may be found in
[21] (see also [22]). The performed analysis at 8 TeV aiming to compare and
test various assumptions and interpretation possibilities (such as demonstrating
the possibility of peripheral alternative) at this new energy together with study
of the whole theoretical background discussed in this thesis has represented
significant contribution of the author of this thesis to [36] published by the
TOTEM collaboration. Main results from [36] have been presented by the author
in [47].

Chapter 5

This chapter is devoted to more detailed discussion (including historical context)
regarding the centrality and peripherality of elastic collisions and corresponding
calculations (approaches) leading to the given character. The results concerning
b-dependent profile functions obtained by Miettinen at 53 GeV are compared to
the results at the same energy performed in chapter 4. Central character of several
contemporary models of hadronic amplitude analyzed in [48, 49] is commented
here, too. Discussion from this chapter has been published in [22].

Chapter 6
This chapter contains list of several newly identified open problems in all contem-
porary descriptions of elastic collisions of (charged) hadrons. This chapter has
been published as part of [22]. Some of the mentioned problems have been pointed
out also earlier in, e.g., [24, 50, 51].

Chapter 7

In this chapter new probabilistic model of elastic pp collisions which aims to
overcome limitations contained in contemporary descriptions of elastic scattering is
described and applied to experimental pp data at energy of 53 GeV. Probabilities
of total, elastic and inelastic hadronic collisions at given impact parameter together
with several other interesting quantities characterizing structure of protons and
their interactions are determined. It is demonstrated that with the help of it deeper
understanding of characteristics and interactions of fundamental particles might
be obtained. Some newly opened questions concerning structure of hadrons are
mentioned at the end of this chapter. The probabilistic model has been published
in [24] and explained to greater details in this thesis. It has been also extended
and applied to broader t-interval of measured data than in [24].

Concluding remarks may be found in Conclusion. Summary of all the main results
concerning dependence of elastic hadronic collisions on impact parameter has been
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recently published in [22]. The thesis covers both experimental and theoretical aspects
of (elastic) pp collisions and may be, therefore, useful for experimentally as well as
theoretically oriented readers. Both the aspects (theoretical and experimental) are,
of course, important for better understanding of corresponding matters of the given
physical process. Many explanatory comments concerning motivations and historical
context have been added, too. In the course of preparation of this thesis it has been
necessary to go through literature to find out and study many details and origins of
various models, techniques and methods. Many valuable references are, therefore,
provided throughout the whole thesis for convenience of readers, particularly students.

Fitting of the models of elastic scattering to experimental data (discussed in details
in chapter 4 and chapter 7) has been performed by the author of this thesis. For this
purpose, the models have been implemented in Python programming language (and
partially in C++ for performance reasons) with the help of ROOT [52] and SciPy [53]
libraries. The actual fitting has been done with the help of mainly Minuit2 minimization
package that is part of ROOT (see also [54]) and which allows a user to have more
control on various aspect of the fitting (which has been essential). Version control system
Subversion [55], Python testing tool pytest [56], automation server Jenkins [57] and
other widely available open source software tools have been used to simplify and speed
up the software development.
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Chapter 1

Production of pp collisions -
LHC accelerator at CERN

1.1 The LHC accelerator chain

The LHC at CERN is a successor of ISR mentioned in Introduction which may collide
protons at much higher energies. The protons which collide in LHC origin from hydrogen
atom - bounded system of electron and proton. A simple bottle of hydrogen gas provides
molecules Hs to duoplasmatron which uses electric field to strip hydrogen atoms of their
electrons to obtain protons, see fig. 1.1. These protons are then accelerated by the chain
of accelerators before they are injected into the LHC where dedicated particle detectors
may detect products of the collisions. The corresponding collision data represent very
important experimental input for studying the structure and interaction of protons
which is useful for the whole atomic physics, including mainly the simplest atom - the
hydrogen from which the protons originated.

The first accelerator in the LHC accelerator chain during the LHC Run 1 was LINear
ACcelerator 2 (LINAC2) which accelerated the protons to the energy of 50 MeV. They
were then injected into the Proton Synchrotron Booster (PSB) which accelerated them
further to 1.4 GeV, followed by the Proton Synchrotron (PS) which pushed the proton
energy to 25 GeV. Protons were then sent to the Super Proton Synchrotron (SPS) where
they were accelerated to 450 GeV and injected finally into the LHC. Photos of the 4
LHC pre-accelerators are in fig. 1.3.

The LHC has been operational since 2010 and was able to provide proton collisions
at energy up to 8 TeV during LHC Run 1. The LHC machine in the tunnel is shown in
fig. 1.4 where one can see also a (small) curvature of the tunnel and the machine. The
circumference of the LHC is about 27 km which makes it the biggest circular accelerator
in the world. The LHC is located underground approximately 100 m below the surface
as it is shown in fig. 1.2. The whole quite complex system of interconnected accelerators
in CERN is shown in fig. 1.6. Detailed description of the LHC with all the necessary
infrastructure (including various devices for beam diagnostics) may be found, e.g., in
[58] (see also [59-62]). Useful information about LHC beam instrumentation may be
found also in conceptual design report [63].
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_W A PROTON SOURCE

e —

Figure 1.1: Proton source - pre-injector to LINAC2
(part of an exhibition at CERN). The red bottle is filled
with hydrogen and duoplasmatron (bellow the bottle in
the transparent box) uses an electric field to separate
protons from hydrogen. The created protons are injected
to LINAC2 (not shown in the photo) for further acceler-
ation (Image: CERN).
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Figure 1.2: Schematic layout of LHC experiments at CERN. The
LHC accelerator is underground approximately 100 m below the
surface (Image: CERN).
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1.1 The LHC accelerator chain

(d)  Super Proton Synchrotron (Image:
CERN).

Figure 1.3: Preinjectors of LHC used to pre-accelerate protons before they are injected into
the LHC.

Figure 1.4: View of the LHC machine in  Figure 1.5: LHC superconducting radio-
the LHC tunnel (Image: CERN). frequency (RF) cavity in the LHC tunnel
(Image: CERN).
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Figure 1.6: CERN accelerator complex. Protons are first injected to LINAC2 then they are further accelerated by PSB, PS and SPS before they
are injected to the LHC where they can be even yet more accelerated before they are brought into collisions and then observed by dedicated detectors

(Image: CERN).
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1.2 Experiments at the LHC

Seven particle detector experiments have been constructed at the LHC. They are located
at different interaction regions, see fig. 1.7 (and also figs. 1.2 and 1.6). They detect
particles produced during collisions of beams circulating in LHC at various energies
higher than 450 GeV (LHC injection energy). They differ in used detector technology
according to corresponding physics purposes. The physics programs of the individual
experiments are partially overlapping and also complementary to each other:

ALICE
A Large Ton Collider Experiment. A detector specialised mainly in study of heavy
ions (Pb-Pb) collisions but it also studies pp (and p-Pb) collisions [65].

ATLAS
A Toroidal LHC ApparatuS. A general purpose particle detector designed to
cover the widest possible range of physics at the LHC from search of Higgs boson
to supersymmetry (SUSY), extradimensions, tests of quantum chromodynamics
(QCD) and many others as stated in [66]. It is able to detect products of pp, A-p
or A-A collisions where A stands for heavy ion. The purpose of the detector is
similar as the CMS one.

CMS
Compact Muon Solenoid. A general purpose particle detector similar to ATLAS
[67]. ATLAS and CMS detectors differ in chosen detector technology and design.

LHCb
Large Hadron Collider beauty. A detector dedicated to study of asymmetry
between matter and antimatter in the interaction of b-hadrons (heavy particles
containing a bottom quark) produced in collisions of protons or heavy ions [68].

LHCf
Large Hadron Collider forward. A special purpose small experiment for astroparti-
cle (cosmic ray) physics [69]. The aim of the experiment is to measure particle
produced in the direction very close to the beam (in forward region) in the proton-
proton collisions and provide experimental data at LHC energies which could help
to explain the origin of ultra-high-energy cosmic rays.

MoEDAL
Monopole and Exotics Detector at the LHC. A small experiment with primary
motivation to search for the magnetic monopole and other highly ionizing Stable
(or pseudo-stable) Massive Particles (SMPs) at LHC, see [70].

TOTEM
TOTal, Elastic and diffractive cross section Measurement. A special purpose
experiment focusing on detection of particles produced in forward region including
diffractively scattered protons which may provide very important information
about structure of protons [71]. The experiment will be discussed in more details
in chapter 2.

Some experiments with their own detectors share the same Interaction Region (IR)
(also called Interaction Point (IP)) and have, therefore, common physics program, such
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Figure 1.7: Schematic layout of LHC (Image: CERN).

as TOTEM and CMS experiments which are located in IR5, see fig. 1.7. Namely,
beam parameters during data taking at given time are, therefore, the same for both
the experiments (for this reason, e.g., measurement of instantaneous luminosity by
one experiment may be then used by the second one). One of the ATLAS projects is
Absolute Luminosity For ATLAS (ALFA) project [72] which has similar physics aim as
TOTEM.

1.3 Accelerator physics principles

In this section we remind some basic physics principles of particle accelerators, much
more details can be found, e.g., in [73-76]. The beam parameters may influence essen-
tially measurement of characteristics of proton-proton collisions. Namely, detection of
diffractive protons very close to the beam is influenced by them significantly. Monitoring
and precise measurement of beam parameters is always essential for operation of any
accelerator.

The force (Lorentz’s force) acting on a particle of charge ¢ moving with velocity ¢ in
the presence of an external electric field E and a magnetic field Bis given by

F=¢E+0xB)=p. (1.1)

It is the electric field E which is used to accelerate charged particles in accelerators
while the magnetic field B is used to change direction of motion of charged particles. In

16



1.3 Accelerator physics principles

particle trajectory
3

reference orbit

Figure 1.8: LHC co-moving coordinate system to describe the beam motion relative
to the orbit. The red line represents nominal beam trajectory (reference orbit) and
defines also s-coordinate with local curvature R. Transversal displacement of a
particle trajectory (blue line) from the nominal beam trajectory (red line) is then
described in the horizontal direction by z-coordinate and by y-coordinate in the
vertical direction.

the case of LHC the corresponding acceleration system (Radio Frequency (RF) system)
is installed at one place, see figs. 1.5 and 1.7. This system is also focussing the beam
in longitudinal direction and keeps bunch structure of the LHC beam. The LHC (or
any other similar accelerator) consists then of many magnets of several types. The
accelerator magnetic elements are designed to guide and focus the particle beam along
the reference circular orbit. The dipole magnets are used to bend the path of the charged
particles as they travel around the ring while several other types of magnets (namely
quadrupole magnets, see bellow) are designed for focusing of the beam. The physical
fundamentals of beam steering and focusing are standardly called beam optics due to the
fact that charged particle beam can be guided using magnets similarly as the guiding of
a light beam by optical lenses.

1.3.1 Transverse linear beam motion

The coordinate system used for the description of the particle motion inside a beam
pipe of an accelerator may be chosen as it is plotted in fig. 1.8. The particles travel
along the beam nominal closed orbit represented by red line (s-coordinate) and perform
transversal oscillation with respect to this reference orbit in horizontal x and vertical y
direction due to magnetic field.

Let us consider for the sake of simplicity only the horizontal oscillations of one
particle in the x-direction to show the most basic character of the transversal movement
of particles in the presence of a magnetic field of several quadrupole magnets periodically
displaced along the accelerator rings as these are the principal focusing elements in
modern synchrotrons. The strength £ of the quadrupole is characterized by gradient of
its magnetic field dB,/dx
1 dB,
~ BR dz

where the quantity BR is called magnetic rigidity and it is related to momentum p of a

k (1.2)
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beam particle of charge e by relation BR = p/e. The particle trajectory may have an
angle with respect to the reference orbit which may be expressed as

0, ~ do _ 2'(s). (1.3)

~ & =
The angular deflection given to a particle with nominal momentum p and passing
through a short quadrupole of strength £ and length ds at a displacement z is in a
linear approximation (hence the term linear beam motion)

d2’ = —kads. (1.4)

It may be rewritten to
z"(8) + ky(s)x =0 (1.5)

which is so-called homogeneous Hill’s equation of the motion (a second order linear
differential equation). The solution of this equation may be written in the form

2(s) = v/ Ba(s)ex cos[da(s) + Puol (1.6)

where f3,(s) is so-called beta function, also known as the amplitude function. The
constant €, is termed the emittance. The trajectory function z(s), therefore, describes
transverse oscillations about the orbit known as betatron oscillations (for historical
reasons) whose amplitude /(.(s)e, and phase ¢,(s) depend on the position s along
the orbit. Both the function ¢,(s) and 3, must have the same periodicity as the magnet
lattice represented by strength k(s); they are linked by condition

do, 1 *odd
¢ (S) - — or be(s): _8,
ds Bm 0 Bz(s )
The divergence equation of the particle’s motion can be obtained by differentiating
solution of the Hill’s equation (1.5)

(1.7)

/

B.(s)
2

€x

Be(s)

Up to now, we have been describing a motion of only one particle in the presence of a
magnetic field. However, the beam is an ensemble of many particles and it is, therefore,
important to know its parameters, too. The most basic beam parameters are the beam
size 0,(s) and the beam divergence D,(s) which can be expressed in terms of the beam
emittance € and the betatron amplitude 3,(s) as follows

02(5) = V€8x (s) (1.9)

Du(s) = 4/ 5:?5) . (1.10)

Such a definition of beam size is sometimes called the betatron beam size as it doesn’t
include the dispersion related beam size component (effect of off-momentum particles
which is not taking into account in this section). The so-called normalized emittance is

defined as

'(s) = —

cos[pz(S) + ¢zo)- (1.8)

sin[o,(s) + ¢z0] +

ex = Bre (1.11)
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where § and 7 are relativistic factors. The reason for introducing the normalized
emittance is that it does not change during beam acceleration. The fact that the beam
emittance 2 may be constant (s-independent) is (theoretically) related to the Louville’s
theorem which states that every element of a volume of phase space is constant with
respect to time if the particles obey the canonical equation of motions [74]. This is in
first approximation the case of circulating proton beams in LHC during a circulation,
however, the emittance of a bunch (beam) may blow-up in time in real machines due
to several effects [77]. More details about the concept of the emittance and technical
details about its measurement at the LHC can be found in [78]. In the case of LHC the
corresponding measurement of beam profiles is based on Wire Scanner (WS) (or Beam
Synchrotron Radiation Telescope (BSRT)) and measurement of 3 at the place s where
the bunch profiles are measured, see again [78].

Some properties of the beam or characteristics of particle collisions may be strongly
energy dependent. It is, therefore, necessary to measure energy of the colliding beams
(particles), corresponding details about energy calibration at LHC can be found, e.g., in
[79] and papers quoted there.

1.3.2 Concept of luminosity

If two beams collide at certain energy then a number of particle interactions of a
given type per unit of time (rate) is produced. This rate Ny, is proportional to the
corresponding cross section of the given process oppoc (in area units) and so-called
luminosity L (in per time and per area units)

Nproc = LO_proc (112)

(if they are not integrated over a time period as it is also common). Both the luminosity
L and observed rate Ny 0f a given process generally depend on time but their ratio,
i.e., corresponding cross section, is always constant in time - it is a property of the
colliding particles. The symbols Ny, and L have sometimes meaning of corresponding
quantities integrated over time (the meaning should be always clear from the context).
In order to experimentally determine the cross section one needs, therefore, to measure
the rate and the luminosity. The way how the rate of, e.g., elastically scattered protons
may be measured will be discussed in chapter 2. In the following we will summarize the
main steps how the luminosity may be defined and measured.

In the case of the LHC the colliding beams consists of certain number of bunches
(bunched beams, as opposite to the ISR beams which were coasting - no bunch structure,
see, e.g., [80] for some comments concerning luminosity at ISR). In the following we will
consider only two colliding bunches for the sake of simplicity (the overall luminosity is
just summed over all the colliding bunches). We will take into account only head-on
collisions of the two bunches moving with velocities ¥ 5 (¥ || U3) and assuming that
all the particles in a bunch have the same velocity v} 5 (also during collision). We may
assume without further lost of generality that only the second bunch is moving (¢, = 0,
Uy = A¥; AU being the relative velocity) parallel to z-axis.

Each of the two colliding bunches has certain number of particles N; 5 (intensity)
with corresponding distribution functions p;(z,y, z) (for the first bunch at rest) and
p2(x,y, z — zp) (for the second bunch displaced by longitudinal distance zy from the first
bunch), see fig. 1.9. The distance zy depends on time according to zg = |Av|t. The
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20

Figure 1.9: Schematic view of two bunches colliding head-on. Relative
longitudinal distance zg of the bunches is changing in time according to
zo = |Ad|t. One bunch at rest with N; particles with density distribu-
tion p1(x,y, z) collide with another one which has N» particles distributed
according to pa(x,y, z — 29) distribution function.

particle distributions are taken as normalized so that [ p12(z,y,2)dzdydz =1 at any
2o (or time t).

The luminosity corresponding to single pair of counter-rotating bunches colliding at
one interaction region is defined as [81-85]

+o0
lﬁﬁWMﬁw[wW‘/M%%@M@WJ—%MﬂWhMO (1.13)

where fie, is a revolution frequency of the two bunches (i.e., how often they collide per
unit of time in a circular accelerator at certain interaction region). An effective transverse
area Aeg in which the collisions take place may be defined using the convolution integral

as
1 Feo
A = //// p1<x,y,z)p2<$,y,2 - Zg)dl'ddedZO (114)
eﬁ — 00

Using this definition, the luminosity may be also written in the form

_ N1N2frev

L
Aeff

(1.15)

The luminosity corresponding to single pair of counter-rotating bunches may be expressed
using explicitly the time variable ¢ (see, e.g., [85] and also [81-84])

+o0
D B L (1.16)

where the relativistic kinematic factor K for bunches with arbitrary velocities ¥ 2
introduced by Mgller [86] is

K = /(0 — )2 — () x T)2/c?. (1.17)

In our case of exactly head-on collisions (¢ || ¥%2), the kinematic factor K = |Ad]
and eq. (1.16) can be rewritten into the form given by eq. (1.13) (using substitution
2o = |AT|t with corresponding Jacobian being equal to 1/]A%]).

The overlap integral (convolution of the time dependent particle distribution functions
of the two bunches) in eq. (1.13) or eq. (1.16) can be calculated analytically for certain
bunch profiles. We may assume, e.g., uncorrelated Gaussian profiles of bunches in all
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dimensions of the form

1
pin(ut) = ———exp | == | wherei=1,2; u=ux,y; (1.18)
\% 27 Oiu O—izu

1 z
p1=(2) = NP (_W) ; (1.19)
1z 1z

pre(s) = S (—@) - (1.20)

Such bunch profiles are generally taken as a good first approximation; the determination
of the real bunch profiles is generally much more delicate problem. The distribution
functions p; 2 may be, therefore, factorized as follows

p1(z,Y, 2) = pra(x) pry (¥) p12(2) (1.21)
p2(x,y, 2 — 20) = poz () pay(y)p2-(2 — 20). (1.22)

In the simplified case when the bunches have equal sizes (01, = 09, = 04, 01y =
o9y = 0y and 0y, = 09, = 0,) the integral in eq. (1.13) can be rewritten to the form

NN rev oo _ﬁ ﬁ _ 22 _ (= z0)2
7T U$0ygz

and after a substitution Zy = 2z — 2y with corresponding Jacobian equal to 1 we may
obtain (writing again 2, instead of Zy)

2 2

NyNy fron TR e by A 2
[ NN Te 7o 2o w2 drdydadz,. (1.24)
( 27 8020202

Yy z

Taking into account relation for the Gaussian integral (a > 0)

+o0 2
/ e o dt =+/ma (1.25)

o0

the integral in eq. (1.24) can be analytically calculated with the result

N1N2frev

L= )
dro,oy

(1.26)

In the case that the transversal sizes of the two bunches are different oy, # 09,
o1y # 09, and that longitudinal sizes are equal 01, = 09, more general formula can be
derived

_ N1N2frev

1.27
21320, ( )

where

¥y, =/0%, + 03, . (1.29)

Ya =0t + 03, (1.28)
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The quantities ¥, , characterize the horizontal and vertical convoluted beam widths. It is
worth mentioning that the luminosity given by eq. (1.26) or eq. (1.27) does not depend
on the longitudinal bunch size o,.

The formula (1.26) can be rewritten in terms of bunch emittance and beta function
at interaction point using eq. (1.9) as

NlNereV

4, /ﬁ;efﬁ;eg '

b
Y

I — NlNZfrev
4 Breb
The luminosity, therefore, depends on 5* as L o< 1/3*.

L= (1.30)

In the even more symmetric case when €2 = € = ¢ and 38, = 8, = 3* we may write

(1.31)

The revolution frequency fie, in a collider is known quite precisely and the number
of particles in a given bunch can be continuously measured (it decreases with time). The
concept of the methods how bunch (or beam) charge can be measured is described, e.g., in
[87]. Two types of devices are used to measure the bunch intensities at LHC: Fast Bunch
Current Transformers (FBCT) which are measuring just a relative bunch intensities
without a normalization and Direct Current Current Transformers (DCCT) which are
measuring intensity of a beam (the relative bunch intensities are then cross normalized
with respect to that value). However, it is technically quite difficult measurement when
relatively precise values are required, for more technical details about the measurement
needed for the absolute determination of the luminosity see [88-91]. The main problem of
the absolute luminosity determination is generally the determination of the convolution
integral (effective transverse area Ag), see eq. (1.14)). They are several methods how
to determine the effective transverse area A.g.

The transversal (convolved) bunch sizes 3, , (effective transverse area) needed to
calculate the luminosity according to eq. (1.27) may be determined using so-called
beam-separation scans (also called van der Meer (VDM) scans according to Simon
van der Meer who pioneered this method at ISR [92]): one beam is swept stepwise
across the other while measuring a collision rate as a function of the beam displacement.
Performing this measurement in the two transverse planes then allows to determine the
(convolved) bunch sizes.

This type of scans are performed at LHC in dedicated runs at all interaction points
at each collision energy (few times to study also the variation between the scans and to
determine more precisely the precision of the measurement). In normal runs only the
relative luminosity is measured and the calibration constant is taken from the dedicated
runs where the absolute luminosity has been determined.

Determination of the absolute luminosity from the machine parameters (at LHC)
based on the beam-separation scans has been summarized in detail in [84] where one can
found also explicit formulas and discussion for the luminosity if the bunches, e.g., do
not collide head on (collision offset), the bunches collide with a certain crossing angle
or some other effects which need to be taken into account, too; see also [81-83, 85, 86,
92-95].

Conceptually interesting is also a method for determination of the absolute luminosity
in a colliding-beam experiment at circular accelerators by measuring interaction vertices
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of beam—gas interaction to determine the beam shapes and overlap which was originally
proposed for LHC by M. Ferro-Luzzi [96]. This beam-gas imaging method does not require
displacing the beams (like the separation scan method) and can be thus used during
normal data taking. This method was first tried at ISR but it has been successfully
applied for the first time in LHCDb [97] as the method requires dedicated detector
apparatus for precise reconstruction of the vertices, see also [98].

Another quite different method of determination of (transversal) beam sizes needed
for the luminosity calculation is based on measurement of so-callled luminous region.
When two bunches collide with revolution frequency f..,, particles may inelastically
interact producing some particles at a given interaction vertex. The distribution of
these vertices in space - luminous region - can be measured (typically using an inner
tracker such as the one of CMS which can reconstruct the vertex of an inelastic event
from detected tracks with good spacial resolution). The luminous region has certain
center and size (0,,,,) which is in general equal neither to the size of a bunch nor
the convoluted beam sizes ¥, , (in transversal direction). For the Gaussian profiles
of bunches with pair-wise equal bunch sizes the relation between (transversal) beam,
convoluted beam and luminous region sizes is given by known formula

x Eiﬂ
Toy _ Zow, (1.32)

Teyl =y Ty
The concept of luminous region and it’s relation to the luminosity may be found, e.g., in
sect. 3.3 of [83]. Measuring the luminous region from reconstructed interaction vertices
provides another way of the measurement (estimation) of transverse beam sizes needed
for the absolute luminosity calculation.

Last but not least there is also a possibility to calculate the transversal bunch sizes
for the luminosity calculation from the corresponding measured beam emittances (see
sect. 1.3.1), which in principle provide yet another independent measurement of the
luminosity (see eq. (1.30)).

All the (different) methods of determination of the convolution integral (effective
transverse area Aqg, see eq. (1.14)) have their advantages and disadvantages (different
precision and systematics). The main problem is generally the determination of the
underlying bunch profiles as, e.g., the formula (1.27) or (1.26) was derived only for
certain (specific) bunch profiles and the determination of the transverse area A.g should
also correspond to these profiles or it is necessary to start again from the general
expression (1.13). The primary method of the luminosity determination at LHC is
currently based on the beam-separation (VDM) scans determining the transverse area
which are considered to be the most reliable for that purpose.

The determination of the luminosity based, e.g., on the separation scans has the
advantage that it is determined from beam and machine parameters only. In such a case
one can measure rates of some processes and determine experimentally corresponding
cross sections using eq. (1.12) which may be then compared to the ones predicted by
some models (or used to constrain some models).

In this section we have shown just the most basic formulas concerning the luminosity
measured from beam and machine parameters. In practice the actual determination of
the (absolute) luminosity in real machines like LHC is more complex than one could
expect at first glance and it requires a lot of effort if a precision at the level of few percent
is to be reached, see, e.g., luminosity determination at IP5 [99-105] (see also [106-109]).
Last but not least very useful and quite detailed review of luminosity determination at
proton colliders including the ISR and LHC may be found in [110].
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As we have already mentioned, the primary absolute luminosity determination at
LHC is currently based on the VDM scans. The more precise determination of the
luminosity calibration should be reached the more difficult the measurement is. It is,
therefore, always necessary to have strong physics motivation for it, see also [80].
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Chapter 2

Measurement of pp collisions -
TOTEM experiment at LHC

2.1 Physics program and objectives

When two particle beams collide one may observe corresponding products. TOTEM
experiment is one of the LHC experiments at CERN [37, 71] (see also [111-114]) which
may measure some of these collision events. The TOTEM acronym stands for TOTal,
Elastic and diffractive cross section Measurement which reflects some of its main physics
aims - measurement of pp (diffractive) collisions at LHC energies:

e clastic pp scattering in the largest possible interval of scattering angle (including
extremely low scattering angles where Coulomb interaction has dominant effect)

e the total and inelastic pp cross section,
o diffractive processes including single, double diffraction and central production.

TOTEM is, therefore, dedicated experiment to measure mainly processes with at least
one proton surviving a collision. Measurement of these processes provides very important
data for studying proton structure and interactions which are still poorly understood.
There is also common measurement and analysis with CMS to extend further physics
potential of both the experiments which share the same interaction point (IP5), see
fig. 1.7 and fig. 1.2. TOTEM detectors are located in forward region while the CMS ones
are mainly in the central region, see fig. 2.1. There is also a physics program related to
collisions between proton and lead ions but it is not covered here.

2.2 Detector apparatus

To achieve TOTEM physics goals dedicated detector apparatus has been needed. The
one described in this chapter corresponds to the first LHC data taking period before
LS1 (for upgrades see [39, 41], for a new common CMS-TOTEM Precision Proton
Spectrometer (CT-PPS) project see [40]).

TOTEM detector apparatus consists of Telescope 1 (T1) and Telescope 2 (T2) for
tracking of charged particles from inelastic collisions and of a system of so-called Roman
Pots (RPs) equipped by dedicated detectors for detection of elastically and diffractively
scattered protons close to outgoing beam (the scattering angles being so low that the
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Figure 2.1: The TOTEM forward trackers T1 and T2 embedded in the CMS
detector; right side of IP5 only (left side being symmetric).

RP 147 RP 220
Near Far Near Far
RN S - ) e
X = = Horizontal = I Horizontal I
| i T e 5 [ e

Bottom Bottom
L 1 1 1 1 1 1 1 »
v L L L} L L] L) L) »~
0 75m 10.5m 13.5m 149.1m 1503 m 214.8 m 219.8 m

Figure 2.2: The TOTEM forward trackers T1, T2 and two Roman Pot (RP) stations
at distances of about 147 m (RP147) and 220 m (RP220); right side of IP5 only (left
side being symmetric).

protons stay in the beam pipe). All the TOTEM detectors are located symmetrically on
both sides of IP5 (see figs. 2.1 and 2.2 for right side of IP5 only) and are trigger capable
trackers. In the following we shall summarize only some basic aspects of the TOTEM
detector system, detailed description of the used technology may be found in [71].

The detectors T1 and T2 detect charged particles only in certain limited range
of the angle 6 between trajectory of a particle and the beam axis (z). The so-called
pseudorapidity is then defined as

v ()] )

For zero angle the pseudorapidity is diverging n = +oo while n = 0 for particles
perpendicular to the beam axis (§ = 7/2). It is used often in the forward region to
distinguish between particles with (very) small angles. Pseudorapidity is odd about

0 =m/2(n) =—n(m—0)).

2.2.1 Telescopes T1

Two detectors T1 are installed in two cone-shaped regions in the endcaps of CMS, one
on either side of IP5, at a distance between 7.5 m and 10.5 m from the interaction point,
see figs. 2.1 and 2.4. T1 is made of 5 planes per arm, each plane consist of 6 trapezoidal
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Figure 2.3: One T1 quarter consisting of 5 Figure 2.4: T1 (one arm) during an instal-
planes; each of them containing 3 trapezoidal lation to a cone-shaped region in the endcaps
CSC detectors. of CMS.

Cathode Strip Chambers (CSCs) (multi wire proportional chambers with segmented
cathode read-out), see fig. 2.3. The n-acceptance of T1 is 3.1 < |n| < 4.7. This detector
has full azimuthal coverage Ay = 27 (it surrounds the beam pipe). T1 may detect
charged particles with transverse momentum pr > 100 MeV.

2.2.2 Telescopes T2

Each of two T2 telescopes is made of 20 half circular sectors of Gas Electron Multipliers
(GEMs) (10 plains), see figs. 2.5 and 2.6. They are located at £13.5 m on both sides
of IP5, see figs. 2.1 and 2.2. The n-acceptance of T2 is 5.3 < |n| < 6.5 which allows
to detect particles in even more forward region then the one of T1. T2 has also full
azimuthal coverage Ap = 27 as T1. T2 is able to detect charged particles with transverse
momentum pr > 40 MeV.

Figure 2.5: One semi-circular sector of the Figure 2.6: T2 detector (one arm) before
TOTEM T2 GEM detector plane without an installation in CMS.
front-end electronics and cooling pipes.
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2.2.3 System of Roman Pots

Diffractive protons at high energies are scattered to very small angles such that they
move close to the beam and may gradually deviate from it with distance from the
interaction region in dependence also on the magnetic field along the path. They may
be quite separated from the proton beam sufficiently far away from the interaction point,
so that they may be detected by detectors which are put close to the beam. To detect
particles in the beam pipe the detectors are placed in movable beam insertions called
Roman Pots (RPs) so that the detectors inside the RP can be moved near or far from
the beam. They are placed inside a secondary vacuum vessel (called a pot, see fig. 2.12)
and moved into the primary vacuum of the machine through vacuum bellows. The
primary vacuum is then preserved against an uncontrolled out-gassing of the detector’s
materials by a thin window as it is shown in fig. 2.12. If the beam does not have stable
position and shape (before stabilization) then it is necessary to hold detectors far from
the beam. After stabilization of the beam the detectors may be moved near to the beam
for measurement. The detection of very forward protons in the movable beam insertions
is an experimental technique introduced at ISR [115]. It has been successfully used in
other colliders like the SppS, TEVATRON, RHIC, HERA and it is used also at LHC.

The specific constraints of the LHC such as the thin high-intensity beam, the ultra
high vacuum and the high radiation fluxes have required the development of new RPs for
TOTEM. In order to improve the detector acceptance, the new RPs have thin window
and the bottom face towards the beam is 150 um thick as shown in fig. 2.12. Another
difference to RPs designed for earlier machines is in the driving mechanism which must
have high precision and radiation hardness. Even newer type of RP has been also
proposed for TOTEM detector upgrade [39].

To detect protons as close to the beam as possible novel planar silicon detectors with
so-called Current Terminating Structure (CTS) have been developed, see [71, 113]. All
TOTEM RP silicon detectors have the CTS on one edge which faces the beam. The
CTS collects the current generated in the highly damaged region at the cut edge and so
avoids its diffusion into the sensitive detector volume. Full detection efficiency starts
already at ~ 50 pm from the physical edge. This is the reason why this kind of detectors
is sometimes called “edgeless”. Such detector technology improves acceptance of protons
moving very close to the beam. Each detector has 512 strips with pitch of 66 ym. The
strips in the detectors are at angle of 45° with respect to the edge facing the beam. The
detail of the edge of one plane of the silicon strip detector is shown in fig. 2.7.

Each TOTEM RP is equipped with a stack of 10 edgeless silicon strip detectors, see
figs. 2.10 and 2.11. Half of them have their strips oriented at angle of +45° with respect
to the edge facing the beam, and the other half at angle of —45°. The measurement
of each track projection in 5 planes is advantageous for the reduction of uncorrelated
background via programmable coincidences, requiring, e.g., collinear hits in a majority
of the planes and so selecting only particles at small angles with respect to the beam
axis. The disadvantage of having only two readout projections is the difficulty of
reconstruction of more tracks than one. However, if the whole RP units are tilted with
respect to each other than the reconstruction of events with higher multiplicities may
be significantly improved, see TOTEM upgrade proposal [39] (the RPs were not rotated
before LS1).

To reconstruct protons in very forward region from both sides of the IP5, TOTEM
uses RP system which is symmetric with respect to the IP. TOTEM RP system consisted
of 4 RP stations during LHC Run 1, 2 stations on both sides of the IP at distances
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Cut Edge

Figure 2.7: Planar silicon strip detector Figure 2.8: One of the RP station in the
with 512 strips with pitch of 66 pm. The LHC tunnel during installation of necessary
magnification of a portion of the edge region infrastructure.

(bottom) shows the details of the CTS [71].

Figure 2.9: A RP station (two RP units,
see fig. 2.13) installed in the LHC tunnel.
Each of the 6 pots is housing a package of
silicon detectors, see fig. 2.11. One can see
also two separated beam pipes in the figure;
the pots are mounted only on the beam pipe
corresponding to the beam coming from the
interaction point.

of £147 m and £220 m!, see figs. 2.2 and 2.14. A RP station is an ensemble of 2 RP
units, each unit consists of two vertical and one horizontal RP as it is visible on fig. 2.13
(see also fig. 2.2). The TOTEM RP system has thus 24 RPs in total. A RP station
installed in the LHC tunnel is shown in figs. 2.8 and 2.9. All the TOTEM pots are
housing trigger capable tracker detectors and they can be (individually) moved far and
near the beam as needed for measurement.

Mainly the stations at 4220 have been used for measurement and data analysis.
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Figure 2.10: One planar silicon strip de- Figure 2.11: A package of 10 silicon strip
tector (see fig. 2.7) mounted on a RP hybrid detector planes (one of them is shown in
with four readout chips. fig. 2.10).

Figure 2.12: A Roman Pot which hosts a Figure 2.13: A RP unit with one horizontal
package of detectors, see fig. 2.11. The beam and two vertical pots.

is passing through the front face window

which is 500 pm thick while the bottom face

(towards the beam) is 150 pum thick. The

Ferrite collar (black) is needed to reduce the

beam coupling impedance.
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2.3 Proton transport IP — RP

2.3 Proton transport IP — RP

A proton may survive an interaction at the IP but it may lose some energy and/or
change (slightly) direction of motion. Such a proton is then passing through LHC
magnet lattice between IP and RPs which changes its kinematic variables before it may
be detected by RPs (as we have discussed also in sect. 1.3.1), see fig. 2.14.

Understanding and determination of the proton transport is, therefore, essential
for determination of the proton kinematics just after an interaction at the interaction
region from corresponding measured tracks by RPs located quite far from the IP (this
procedure is sometimes denoted as proton reconstruction). The good knowledge of the
optics (magnet settings between IP and position of a RP which detect the proton) is
one of the key experimental problems; the basic concept will be, therefore, summarized
in the following (see [38, 44, 71, 116-120] for more details).

Proton inside a beam pipe may be characterized by transverse position x and y as
function of distance s from the interaction point, as it was mentioned in sect. 1.3.1.
Momentum of the proton in spherical coordinates may be written as

sin @ cos ¢
pP=p|sinfsing (2.2)
cosf

where ¢ is azimuthal angle and 6 is angle relative to the beam axis. A diffractive proton
after an interaction at IP may lose some momentum which may be denoted as & = Ap/p
where p is momentum of the proton before a collision and Ap is the momentum loss.
The quantity ¢ is, therefore, by definition dimensionless quantity lying in the interval
(0,1) and it is equal to zero for elastically scattered protons. The energy of the protons
guided by LHC magnetic field during transport from IP (after an interaction) to a RP
station is conserved, therefore, prp = pip and {rp = &p (a star superscript will be also
frequently used to denote corresponding quantities at IP, as it is common). One may
define projection of the angle 6 to the transversal directions (see also eq. (1.3))

0. = 0 cos @, g, = 0sinp (2.3)

and also projection of momentum transfer ¢

t, = tcos® ¢*, t, = tsin? ©* (2.4)
t=t,+t,~ —p0~ = —p*(0," + 0,) (2.5)
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Figure 2.14: The LHC beam line with magnet lattice (quadrupole magnets Q1-Q6,
dipoles D1 and D2, correctors, drift spaces...) on one side of the interaction point
IP5 and the TOTEM Roman Pots at distances of about 147 m (RP147) and 220 m
(RP220).
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where low scattering angle approximation has been used in the last relation (see eq. (3.9),
the kinematics of two elastically scattered protons will be discussed more in details later
in sect. 3.1).

The proton transport through the part of the LHC magnet lattice IP — RP (con-
taining around 30 magnets per beam) can be expressed mathematically using transport
matriz, which is an inhomogeneous Hill’s equation in x and y direction for a particle
with a momentum loss £ (more simple case of homogeneous Hill’s equation was discussed
in sect. 1.3.1)

T Uy L, 0 0 D, T
0, dv,/ds dL,/ds 0 0 dD,/ds 0,
Y = 0 0 vy L, D, y (2.6)
6, 0 0 dv,/ds dL,/ds dD,/ds 6,
Ap/p RP 0 0 0 0 1 Ap/p)

where the properties of the optics may be expressed by the dispersion function D, ,(s)
(nominally D,(s) =0 at LHC) and the two optical functions effective length L, ,(s) and
magnification v, ,(s) (these functions are also called optical functions). These two last
functions of distance s from the IP are particularly important for proton reconstruction
and they are defined by the betatron function f(s)

Luy(5) = \/Bry(8)0z, sin Dpiay(s) (2.7)

Uy y(8) = /6’%+(3) o8 Ay () (2.8)

.y
where the phase advance Ay, ,(s) is defined as

RP
IP Br,y(sl)

The beta function at the LHC interaction point is nominally equal in both the
transverse coordinates 3y = 87 = §*. This parameter  is one of the main parameters
of the optics influencing proton acceptance by RPs system; it is also used as a "unique’
label for a given optics even if there may be more different set of parameters of the
magnet settings leading to the same value of 5*. Quite difficult problem is to develop an
optics (magnet configuration) which would allow reconstructing all the proton kinematic
variables and vertex (position) in all coordinates at IP from detected tracks by RP
detectors with good resolution for all the variables. Each of the magnet settings is,
therefore, optimized for reconstruction of only some variables in limited kinematical
regions. An example of the (nominal) optical function at two different optics is shown
in fig. 2.15.

The aim of experiments similar to TOTEM is to measure the kinematical variables of
protons after an interaction in the widest possible range - most importantly momentum
transfer ¢ (or equivalently scattering angle 6*) and momentum loss £ of diffractively
scattered protons at IP. The corresponding distribution of these variables represents
important experimental input needed for some further theoretical studies of proton
interactions and its structure as it was mentioned in Introduction.

Ay y(s) = ds’. (2.9)

)
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Figure 2.15: Example of (nominal) optical functions for 8* = 90 m (solid) and
1540 m (dashed) as function of the distance s to IP5: effective length L, , in meters
(left) and magnification v, (right); taken from [71].

2.3.1 Determination of optics for elastically scattered protons

TOTEM developed a novel method of machine optics determination: direct LHC
optics measurement (which is quite difficult) is improved by making use of angle-
position distributions of elastically scattered protons observed in the TOTEM RP
detectors. Magnet and beam parameters are varied within some tolerances to match
TOTEM observables (constrains). This procedure is, therefore, called optics matching
or optics tuning [44, 117-120]. It is some kind of offline alignment of magnets and their
strengths. Determination of the transport matrix for elastically scattered protons may
be significantly improved by this novel method, e.g., in the case of 8* = 90 m optics
one may reach the precision: ?LL;//;SS < 1% and 0L, /L, < 1% — 0t/t ~ 0.8 — 2.6% [44,
117-120].

2.3.2 Determination of optics for non-elastically scattered pro-
tons

Kinematical variables (most importantly ¢ and £) of non-elastically scattered proton
may be determined also from detected tracks at RPs, similarly as in the case of elastic
scattering. However, non-elastically scattered protons are shifted in horizontal x-direction
at RP position due to optics - mainly dispersion function D,(s) of the beam (nominally
D,(s) =0 at LHC). Proton transport from IP to a RP at position s for non-elastically
scattered protons is then given by (see eq. (2.6))

y(s) = vy(s).y" + Ly (5.6, (2.10)
V(8).x" + Ly (8).05 + ED,(s) . (2.11)

Generally v, y, Ly, and D, are functions of £ which means that the reconstruction is a
non-linear problem and, therefore, there is no “easy” optics matching like in the case of
elastically scattered protons mentioned in the previous section. TOTEM can determine
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Figure 2.16: An example of simulated hit maps of protons scattered at the IP and
detected by far unit of RP220 for two different optics [39] (one horizontal and two
vertical pots, shape of the detectors is also visible, see fig. 2.7).

t and £ of a non-elastic proton (at least in some cases), too, but the resolution is lower
than for elastically scattered protons.

An example of simulated hit distributions of protons detected by far unit of RP220
for two different optics configuration (4* = 3.5 m and 8* = 90 m) taken from [39] is in
fig. 2.16. The figure clearly demonstrates the effect of the optics which may enormously
influence the detection of scattered protons at the IP (acceptance of RPs detectors).

In the case of low §* = 0.55 m (one of the standard optics at LHC) functions L,
and L, are low and protons are, therefore, shifted in x-direction due to &, see eq. (2.11)
(shift due to non-zero vertex x* is not critical due to relatively small transverse IP
beam size for low 5*). For the low * TOTEM RP220 station has £ > 2 % acceptance.
Non-elastically scattered protons are mainly in horizontal RP. Elastically scattered
protons may be detected by a vertical RP near z =~ 0 only for large scattering angles for
such a low §* optics.

In the case of higher * = 90 m (special optics for RP runs [121, 122]) L, = 0 and L,
is large (£ > 0 coverage, |t,| > 0.01 GeV?). Large transverse beam size oir, = = 200 um
implies that v, , are important (deterioration of {-resolution). Non-elastically scattered
protons are mainly in vertical RPs. Elastically scattered protons are also in RPs in
narrow band at x &~ 0. This dedicated higher g* optics changes acceptance of RPs
such that much lower elastic scattering angles can be detected; for more details see [39].
One of the property of the 90 m optics developed for TOTEM is that it eliminates the
dependence on transverse position of the proton at the collision point (the magnification
v, is close to zero, Ap = 7/2 and the place of the detection of the protons) - so-called
parallel-to-point focusing property in y (vertical) coordinate. In the case of such an
optics y coordinate of the interaction vertex cannot be measured at all in favour of
better determination of scattering angles in y projection 6 2 at lower values as high
effective length L, pushes the protons vertically into the acceptance of the RP detectors,
see also [71]. In one of the planed optics for TOTEM with * = 1540 m, developed in
[123], the parallel-to-point focusing condition is required in both z and y transversal
directions to reach yet lower values of ¢ of elastic scattering with sufficient resolution.
Another high 5* = 1000 m optics [124] has been already used for TOTEM measurement

%i.e., t,, full scattering angle * is then calculated using some symmetries
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which allowed to reach so far the lowest value of |t| at LHC, see sect. 2.5.1.

The acceptance of proton by RP detectors, therefore, in general depends mainly
on the following factors: protons kinematics at interaction point (collision energy,
momentum loss, scattering angle,...), the optics configuration (magnet settings), position
of the RP detectors with respect to the beam and also by any aperture limitations in
machine elements between the IP and the RP detectors.

One of the side effect of using higher 5* for changing RPs proton acceptance is that
the luminosity proportionally decreases as L o< 1/5* (see eq. (1.31)) which may bring
some advantages as well as disadvantages. As we have mentioned in preceding, it is not
easy (or even possible) to optimize an optics for all possible kind of measurements and
a given optics (or other LHC or detector settings) is generally suitable only for some
kind of measurement.

2.4 Diffractive classes of pp events

In the following only some very basic principles how elastic scattering, single diffraction,
double diffraction and so-called central production might be measured will be shown on
example of TOTEM (and CMS) detector apparatus. More detailed discussion about
measurement of diffractive processes and corresponding technical details may be found,
e.g., in [39, 40, 125].

2.4.1 Elastic scattering pp — pp

In the case of elastic scattering (ES) of two protons pp — pp the two outgoing protons
are collinear and did not lose any energy (¢ defined in sect. 2.3 being zero), see also
fig. 3.1. The two outgoing protons may be detected by TOTEM RPs which are
sufficiently far from the interaction point, see fig. 2.17. Corresponding scattering angle
(t variable) or other kinematic variables after an elastic interaction of two protons at
the interaction point are then determined using information about magnet settings -
backward transport to the interaction point as we have mentioned in sect. 2.3. An
example of elastic scattering of two protons in 7 — ¢ space (1 being pseudorapidity and
¢ azimuthal angle) is plotted in fig. 2.18. One of the main experimental aim concerning
elastic scattering is then measurement of elastic differential cross section

do®l(s)
dt

(2.12)

in the widest possible range of ¢ values and at various collision energies /s The basic
steps leading to the determination of this quantity in the case of measurement performed
by TOTEM will be briefly summarized in sect. 2.5.2.

2.4.2 Single diffraction pp — pX or Yp

Single diffraction (SD) pp — pX or Yp is a similar process to the elastic scattering
except that one of the protons breaks up, producing particles in a limited pseudorapidity
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Figure 2.17: Schematic detection of two elastically scattered protons (represented
by the two arrows) by TOTEM Roman Pots on each side of the interaction region

(represented by black dot at the center). No other particles originating from the same
pp elastic interaction at the interaction region are produced.
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Figure 2.18: n — ¢ diagram of an elastic event. Two protons (represented by two
dots) are separated by pseudorapidity (angular) gap where no particles are produced.

region. Outgoing proton with a small fraction momentum loss £ is separated from the
diffractive system X (Y) by a pseudorapidity gap An which might be measured, see [126]
for a definition of An in the case of a single diffraction without considering (detecting)
the leading proton (see also [127]). The average pseudorapidity gap width as a function
of momentum loss £ is commonly calculated using the following formula (see [128] for
corresponding derivation, used assumptions and relation to so-called rapidity y)

An =~ —1n(¢). (2.13)

The mass of the diffractive system is then calculated as (see again [128] for the corre-
sponding derivation and involved assumptions)

Msp = \/¢s. (2.14)

An example of single diffraction in n — ¢ space is plotted in fig. 2.20.

The leading proton may be detected by RPs and the particles from the diffractive
system may be detected by T1 or T2 detectors in the case of TOTEM experiment (if
the detector acceptance allows). From the n-acceptance region of T1 and T2 and from
the rapidity gap requirement in the case of SD one may classify SD events into four
classes as it has been done in fig. 2.19. One can see from the table that the single
diffractive events with mass = 3.4 GeV < Mgp < 1.1 TeV can be detected by these two
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Figure 2.19: Single diffraction classified into 4 mass ranges according to T1 and T2 n-
acceptance ranges. It is an example how some events may be divided into groups according to
the detector acceptance. The red wedges represent an angular region where some particles

may be detected (no other particles being produced outside this region).
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Figure 2.20: A single diffractive event in n — ¢ space. One proton is produced
on one side from the interaction region while on the other side several particles
may be produced and detected. The leading proton and the particles from the
diffractive system are separated by a pseudorapidity (angular) gap where no particles
are produced.

TOTEM detectors. The scattering angle (¢ variable) of the single diffractive proton can
be again determined using RPs and optics, similarly as in the case of elastic scattering,
see sect. 2.3. The £ variable may be also determined from the optics, if the resolution is
sufficient. In that case one may experimentally test relation (2.13). If the resolution of £
determined from optics is not sufficient, the relation (2.13) is often used to determine &
from measured pseudorapidity gap (this is especially the case for experiments which do
not detect the leading proton at all). From the experimental point of view one would
like to measure, e.g., double differential cross section of the single diffraction

d2JSD(S)

G (2.15)

in the widest possible range of ¢ and £ values (at various energies /s’) but sometimes
only partially integrated differential cross section corresponding to a certain £ range (see,
e.g., fig. 2.19) may be determined due to too low statistics or low & resolution. From the
physics point of view it is good, if also the processes are measured ideally exclusively; if
one can determine all the particle types of the diffractive system of the broken proton
and their kinematics; this is, however, in general quite difficult and it might be done
only in some cases with dedicated detector apparatus.

2.4.3 Double diffraction pp — XY

Double diffraction (DD) pp — XY is similar to single diffraction except that both the
protons breaks up, each producing particles in a limited rapidity region. Two diffractive
systems X and Y are separated by a rapidity gap which is the essential difference to non
double diffractive inelastic events, see fig. 2.21. No particles are produced (detected)
in this rapidity gap. The detectors in these regions are thus used as veto, see fig. 2.22.
Similarly as in the case of the single diffraction the experimental aim is generally to
detect and determine kinematics of all the outgoing particles and their types, measure
differential cross section of DD events (or just some selected channels) in dependence on
the rapidity gap, etc.
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Figure 2.21: A double diffractive event in n — ¢ space. Two diffractive systems
are separated by a pseudorapidity gap where no particles are produces (the gap
distinguish DD events from the non-diffractive inelastic ones).
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Figure 2.22: Schematic example of a DD event with particles (tracks) in T2 on both
sides of the interaction point and no particles in RPs, T1 or CMS (pseudorapidity

gap).

2.4.4 Central production pp — pXp

As a central production (CP) is denoted an interaction pp — pXp in which both the
leading protons survive the collision (losing only some energy, momentum) and another
particles X are produced in a pseudorapidity region separated by a pseudorapidity
gap from each of the proton (hence the ”central” production), see fig. 2.25. This kind
of process is sometimes denoted also as double pomeron exchange (DPE) or central
diffraction (CD). This type of events has been observed already at the first hadron
collider ISR [129], e.g., the reaction pp — pr"7 p (the two pions produced in the
central rapidity region) at /s = 31 GeV has been detected and discussed in [130] (see
also [131-133]). A process pp — p(pm7~) is sometimes denoted as single diffraction,
even if also the second proton somehow survives the collision and two pions are produced
close to it (small rapidity gap). This kind of events may be very important for better
understanding of the structure and dynamics of proton as it may be qualitatively very
different from the ES, SD and DD events which we have mentioned so far, as both the
protons survive the collision and “something more” is produced (e.g., the two pions or
something else).

One of the experimental challenges is to have sufficient resolution for the double arm
proton reconstruction and to measure also the other produced particles. In the case of
TOTEM and CMS, the two leading protons may be detected by TOTEM RP system
(two arm proton reconstruction of both ¢ 5 and & » using optics), similarly as in the case
of single diffraction. One may then try to detect particles from the system X by CMS
and also by T1 and T2, see figs. 2.23 and 2.24 with two examples of different topology of
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Figure 2.23: Example of a CP event with “bottom-top” proton topology; this

proton pair topology is similar to an elastic one (having either ”top-bottom” or
"bottom-top” topology).
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Figure 2.24: Example of a CP event with "top-top” proton pair topology which is
quite different from the one of a pair of elastic protons where only ”top-bottom” or
”bottom-top” topology is possible.

the produced (detected) proton pair in vertical detectors (topologies with horizontal RP
detectors are possible, too). One may also try to look for jets in the diffractive system
X (similarly as in SD and DD) which may provide also another important information
concerning proton structure and dynamics.

The two arm proton reconstruction of ¢, and &; 2 using RPs and optics has been
done by TOTEM for the first time recently (with relatively low statistics); upgrade of
TOTEM detector apparatus is foreseen to increase also statistics of these processes as
the cross sections of these processes are relatively small, see [39, 40] for more details.

The understanding of diffractive processes is in general still quite low even if some of
them have been observed already at the ISR. In fact, also the term “diffraction” has
not very clear meaning (see, e.g., an introduction chapter in [128] for same definitions
of this term). This term is used mainly for historical reasons; it was introduced in
nuclear high energy physics in analogy with some optics phenomena, even thought
any analogy with optics may be quite misleading for description of collisions of two
particles. Benefiting from the preceding text one could say for the sake of simplicity
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Figure 2.25: 1 — ¢ correlation plot of a CP event pp— pXp; produced system X is
separated by two rapidity gaps.

that “diffractive” processes are mainly those with at least one proton surviving collision
(ES, SD or CD) and processes “similar” to them like, e.g., double diffraction mentioned
in the preceding. It is also the classification of diffractive events based on the concept
of (pseudo)rapidity gaps (as presented in preceding) which should be questioned and
studied in more detail, especially with relation to precise measurement of the kinematics
of the leading protons and corresponding diffractive systems [39, 40].

2.5 TOTEM results concerning pp collisions

2.5.1 Data taking - LHC Run 1

TOTEM experiment performed several measurements of pp collisions before LS1 (from
September 2010 to February 2013) at 2.75, 7 and 8 TeV. As it has been mentioned in the
preceding, it is the magnet settings (optics) which changes significantly the acceptance of
RP detectors. TOTEM took data at various (dedicated) f* and at different RP detector
positions as it is summarized in table 2.1 (TOTEM has also some data corresponding to
proton-lead collisions not mentioned in the table). In 2012 TOTEM and CMS, which are
located at the same interaction point, successfully managed to exchange triggers so that
also common data taking has been possible (TOTEM and CMS have independent Data
AcQuisition (DAQ) systems responsible for storing data from detectors). Dedicated
various high £* runs are needed to detect protons at very low scattering angles. However,
this in turn means decreasing the luminosity due to the fact that L o 1/8* (see
eq. (1.31) and also the end of sect. 2.3). This types of runs are, therefore, not suitable for
maximizing overall integrated luminosity (required for looking for some very rare events)
but rather for providing very important (complementary) experimental data mainly of
diffractive processes for studying proton characteristics. Some proton characteristics
may be determined only from diffractive processes (e.g., all contemporary methods
determining total pp hadronic cross section require measurement of elastic scattering,
as it will be shown in more detail in next chapters). The measurement of SD and
CP, including detection of both the protons and possibly also some jets, may provide
very important information, too. In the following we shell go briefly through already
published physics results by TOTEM collaboration with more emphasis on measurement
of elastic scattering as the next chapters will be devoted to theoretical description of
this process.

41



CHAPTER 2. Measurement of pp collisions - TOTEM experiment at LHC

Detector NCCA .
Date configuration [TeV] [m] Some main pp analyses
Sep/Oct 2010 RP at 180peam 7 35 ES2<t <35 GeV?
Oct 2010 RPS at 70hean 7 35 ES0.36< |t <25 GeV? [27]
T2
May 2011 RPs at 50peam; 7 1.5  dNgy/dn for 5.3 < |n| < 6.4 [29]
T1, T2
Jun 2011 RPs at 100peam; 7 90 ES0.02 < |t| < 0.33 GeV?, (lumi-
T1, T2 nosity independent) total and in-
elastic cross sections [28, 32]
Oct 2011 RPs at 4.8 - 6.50peam; 7 90  ES 0.005 < [t| < 0.37 GeV?, (lu-
T1, T2 minosity independent) total and in-
elastic cross sections [30-32], SD,
DD [34],...
Jul 2012 RPs at 6 - 9.50pcam; 8 90 ES 1072 < |t < 1.2 GeV?, (lu-
T1, T2, CMS minosity independent) total and
inelastic cross section [33]; ES
0.027 < || < 0.2 GeV? [35];
d N, /dn [43], SD, DD, CP, ... (com-
mon data and analysis with CMS
and/or TOTEM alone)
Oct 2012 RPs at 3 - 100peam; 8 1000 ES at very low [t| (6 x 107% < |¢t| <
T1, T2 0.2 GeV?), study of Coulomb and
hadronic interactions, total and in-
elastic cross sections,...
Feb 2013 RPs, T1, T2, CMS 2.76 11 ES, total and inelastic cross

(not all together,
various settings)

sections,...

Table 2.1: Some of the most important TOTEM pp data taking periods during LHC Run 1
(before LS1) and the corresponding main analysis channels. opeanm denotes transversal size of
the beam at a position of a RP - either horizontal or vertical.
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2.5.2 Measured elastic differential cross section

In this section the main steps of the measurement of pp elastic differential cross sections
which was made by TOTEM collaboration at 7 and 8 TeV and published in [27, 28, 30,
35, 36] (see also [32, 33]) will be briefly summarized. Some steps may vary for different
runs and need to be (sometimes) repeated iteratively. The order of the steps mentioned
in the following is, therefore, only indicative. We will concentrate on the basic concept
only, more details of the measurement may be found also in [38, 116, 134] (for similar
measurement at LHC by ATLAS-ALFA see [135-137]). The quoted papers of TOTEM
contain much more details concerning the measurement of elastic collisions than it has
been ever provided by a similar experiment.

Trigger settings

When two beams collide at LHC one would like to read-out detectors (all their segments)
and store data containing information about the collision for subsequent analysis.
However, there may be so many collisions (pp interactions or “events”) per unit of
time that corresponding amount of data from the detectors would be so high that it
would not be technically possible to read-out and store all the information (moreover,
most of the data would be of very little or no physics importance). For this reason
particle detectors have dedicated trigger system that selects only the events that are
potentially interesting (based on some predefined criteria, e.g., coincidence of some hits
in detectors). It usually consists of both hardware and software parts. Data AcQuisition
(DAQ) system is then responsible for recording only the events selected by the trigger
system. In the case of detection of protons by a RP silicon strip detector information
about hit strips is stored for each event. Understanding dedicated trigger settings which
allows measurement of elastic scattering is, therefore, the first important step in data
analysis. Detailed information concerning TOTEM trigger may be found in [138, 139],
description of DAQ system is given in [140, 141]; see also [38, 71].

Reconstruction of proton kinematics (alignment and optics)

In this step proton kinematical variables just after an interaction at IP are determined
from measured tracks (hits) by RPs. Firstly, strip hits are used to reconstruct a local
track in a RP and then global track reconstruction is made for each arm separately.
The reconstruction requires mainly very good understanding of the steering magnets
guiding the protons from IP to RP detectors - optics discussed in sect. 2.3. Precise
determination of position of RP detectors with respect to the beam during measurement
(order of pm) is needed for good physics performance, too. The corresponding alignment
of RP detectors is, therefore, done in three steps [38, 134]:

e beam-based alignment - During special LHC run a collimator® scrapes the beam
creating a sharp beam edge; the RPs are then moved one at a time towards the
sharp beam edge until an increase in the beam losses is detected downstream of
the RPs. This online procedure determines only approximately the position of RP.

e [ocal track based alignment - The individual RP detector planes in each RP are
aligned with respect to each other using reconstructed tracks in the overlap between
the vertical and horizontal RPs as shown in fig. 2.16; this determines relative
alignment of each RP unit (offline procedure).

3A collimator is a moveable device which may scrape away particles from beam that have gone
slightly off track in order to prevent damages to the beam pipe and the magnets.
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e global alignment using elastic events - The local alignment can not determine
common shifts or rotations of the entire RP unit with respect to the beam; these
parameters can be constrained by exploiting known symmetries by certain physics
processes, most importantly by elastic events (offline procedure).

The alignment and optics are of the key-importance for reconstruction of proton
kinematics.

Event selection - elastic tagging

Once a local track reconstruction or even global proton reconstruction is done one
may try to select only the elastic events. In that case the basic requirements on the
selection following from the definition of elastic events are: 2 anti-collinear protons
from the same vertex (= comparison of left and right reconstructed protons), no
forward momentum loss of the two protons (optics = correlation hit position vs. track
angle at RPs, removal of protons shifted due to beam dispersion as discussed in sect. 2.3).

Background subtraction
The aim of this step is to subtract all non-elastic events which passed the selection cuts
(may require additional assumptions, dependence on some models).

Acceptance corrections

The elastic events are detected (and reconstructed) always only in certain limited
range of scattering angle 6 (¢ variable) and azimuthal angle ¢ due to finite size of
RP detectors, LHC apertures and optics (see also table 2.1). Moreover, only some
elastic events produced in this range are detected by RP detectors, the corresponding
event-count in each bin dt¢ has to be accordingly corrected for this reason (using, e.g., ¢
azimuthal symmetry of elastic scattering = geometrical corrections, beam divergence
= correction for missing protons at RP edges,...).

Unfolding of resolution effects (unsmearing)
The aim of this procedure is to determine and eliminate impact on do/d¢ caused by the
non-zero beam divergence and the finite detector pitch (see fig. 2.7). The unfolding may
require some additional assumptions in some cases.

Corrections of various inefficiencies

There may be various (non-negligible) inefficiencies for which the elastic differential
event rate dN/dt need to be corrected for: DAQ inefficiency, trigger inefficiency,
uncorrelated one-RP inefficiencies, near-far correlated RP inefficiencies, " pile-up” related
inefficiencies (elastic event and another track in a RP) etc., which are discussed more in
details, e.g., in [30]. TOTEM data were taken at quite low luminosity leading to also
negligible pile-up of physics processes at IP (more than one collision of protons at 1P
during one bunch crossing); the effect of pile-up, however, may be taken into account in
some cases t0o, see [142] for some explicit formulas.

Luminosity

The luminosity is needed for absolute normalization of the rates, i.e., to transform
fully corrected elastic differential rate d/N/d¢ into the elastic differential cross section
do/dt (see eq. (1.12)). They are currently two methods of luminosity determination
relevant to TOTEM data normalization. The luminosity determined using VDM scans

44



2.5 TOTEM results concerning pp collisions

(measured by CMS, see sect. 1.3.2) and TOTEM measurement of luminosity based on
optical theorem (this method will be described more in detail in sect. 2.5.3 and sect. 3.5.3).

Besides physics itself (determination of proton characteristics) which will be discussed
mainly in next chapters, the measurement of elastic scattering is also very interesting
and important tool to improve experimental performance. It is used to improve optics
determination of elastically scattered protons (sect. 2.3.1) and, as we have seen in this
section, for fine tuning of RP detector alignment. The same alignment may be then used
for detection of non-elastic protons from SD or CP (it, therefore, indirectly improves
measurement precision of these processes). The determination of (differential) cross
sections of non-elastic collision processes uses similar steps as in the elastic case which
are generally just more complex and complicated; the idea of the steps remains, however,
often the same.

The first measured pp elastic differential cross section at LHC at /s = 7 TeV by
TOTEM at LHC [27] is shown in fig. 2.26 (Oct 2010 data at f* = 3.5 m). The measured
t-dependence in range 0.36 < [t| < 2.5 GeV? is similar to the one observed earlier at
ISR, see fig. 2; namely the dip-bump structure has been observed again by TOTEM at
LHC since the era of ISR (where it has been observed for the first time [6]). One can
see also a comparison to several contemporary phenomenological models of elastic pp
scattering in the fig. 2.26, see also [48]. The measured |t|-range at the same energy has
been extended to lower values from 0.02 to 0.33 GeV? in [28] corresponding to Jun 2011
data at 8* = 90 m. Even yet lower value of [¢t| = 0.00515 GeV? has been reached in [30]
corresponding to Oct 2011 data (also 5* = 90 m) where the RP detectors were closer to
the beams then in June 2011, see table 2.1. More details about corresponding comparison
of these TOTEM measurements at /s = 7 TeV may be found in [30] where measured
values of pp elastic differential cross section in the range 0.00515 < |t| < 2.5 GeV? are
tabulated together with statistical and systematical uncertainties for each measured
point (bin), see fig. 2.27.

TOTEM has measured also nearly exponential differential elastic pp cross-section at
Vs = 8 TeV in the range of four-momentum transfer squared 0.027 < [t| < 0.2 GeV? [35],
see fig. 2.28. In a dedicated LHC run with high #* = 1000 m optics TOTEM has measured
elastic scattering in |t|-range from 6 x 107* to 0.2 GeV? [36] including significantly non-
exponential part attributed standardly to Coulomb-hadronic interference, see fig. 2.29.
The measured elastic differential cross section at 8 TeV will be used in chapter 4 for
obtaining several characteristic of protons at this very high collision energy (using eikonal
model).

2.5.3 Determined total, elastic and inelastic hadronic cross sec-
tions

Measurement of elastic differential cross section in the widest possible t-range provides
very important experimental input for determination of some proton characteristics
such as total, elastic and inelastic hadronic integrated cross sections. In this section
we summarize corresponding results published by TOTEM collaboration at collision
energy of 7 and 8 TeV together with used method which led to the results. These
calculations are always model dependent (based on several additional assumptions). Most
importantly it is the theoretical description of elastic pp scattering which is essential for
such calculations. TOTEM compared 3 different (not completely independent) methods
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Figure 2.26: First measurement of pp elas-
tic differential cross section at /s' =7 TeV
by TOTEM (black line) compared to several
phenomenological models of elastic scattering
[27].
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Figure 2.28: Measured elastic pp differen-
tial cross section in the region 0.027 < |t]| <
0.2 GeV? at /s = 8 TeV by TOTEM [35].
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of determination of total hadronic cross section in the similar way how it was done
firstly at the ISR in the past; these methods were used similarly by other experiments,
too. We shell show some formulas on which the methods are based and how they have
been applied by TOTEM. These methods will be discussed in greater detail in sect. 3.5
after explaining the corresponding theoretical background as the whole problem is more
delicate than it may seem at first glance.

e Method OL: Method based on optical theorem and luminosity

This method is based on the following formulas

167 (hc)? doehN
tot,N
oo = , (2.16)
\/ L+p*  dt |
dO_eI,N
el,N
7 / dt (2.17)
oinel — gtot.N _ JelN (2.18)

where the formula (2.16) for the total hadronic cross section has been derived
using optical theorem.

These formulas were applied by TOTEM at LHC energy of 7 TeV using the
measured pp elastic differential cross section mentioned in the previous section
(i.e., elastic events measured by TOTEM RPs and the luminosity determined by
CMS on the basis of VDM scans), see [30] and also [28]. To apply the formulas it
was assumed that the measured differential cross section is given only by hadronic
interaction in the given measured region of |t| and the hadronic differential cross
section may be extrapolated to ¢ = 0 in the unmeasured region of |t| as an
exponential function (i.e., with so-called diffractive slope being t-independent) for
the needs of both the optical theorem in eq. (2.16) and the integration in eq. (2.17).
This method requires (due to the optical theorem) dedicated runs with special
high * optics (see sect. 2.3) which allows detection of elastically scattered protons
at very low values of [t|. The parameter p = 0.141 £ 0.007 (at /s = 7 TeV) has
been taken from COMPETE [143] extrapolation [144] based on dispersion relations
(the parameter p, as we will see in chapter 3, is determined usually primarily from
Coulomb-nuclear interference but the data at 7 TeV, however, did not allow such
determination). It is worth mentioning that the total hadronic cross section given
by eq. (2.16) is determined without measuring any inelastic rate (cross section).
The key experimental input for this method is measurement of differential cross
section of elastic pp scattering in the widest possible t-range.

e Method TR: Method of total rate
This method requires simultaneous measurement of elastic and inelastic event rate
and also determination of luminosity for the normalization. The total cross section
is calculated according to

O_tomN _ Nel,N N Ninel
TR T Js
where the integrated elastic hadronic cross section is calculated according to
eq. (2.17).

— Uel,N + O_inel (219)
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TOTEM determined the value of the total hadronic cross section on the basis of
this method under assumptions that the measured elastic differential cross section
in the measured t-range is given by hadronic interaction only and that it can
be extrapolated to ¢ = 0 again as an exponential function. The inelastic rate
(cross section) has been measured by T2 and also corrected, on the basis of a
model, to take into account also events undetected by T2 (events outside detector
acceptance) [31]. Both the elastic and inelastic rates measured by TOTEM were
normalized using the luminosity measurement of CMS based on VDM scans. More
details about the measurement of the total cross section based on this method of
total rate by TOTEM collaboration at 7 TeV may be found in [32].

e Method OLI: Luminosity independent method
This method of total cross section determination is a combination of the two
previous ones where the measurement of the luminosity is eliminated. According
to this method the total hadronic cross section is given by the formula

9 Nel,N
167 (he)*  ~ar |,
tot,N =0
oLt = 1+ p2 NeLN + Ninel® (220)
Similarly the luminosity may be calculated (determined) according to
1 ’ Ne Nine 2
L = ——F (Nt & Nina) (2.21)

167T(FLC)2 dNei N
dt

t=0

under exactly the same assumptions and from the same simultaneous measurement
of elastic and inelastic rate as the total cross section given by eq. (2.20).

TOTEM applied this method at 7 TeV in [32] under assumption that the measured
elastic rate in the measured t-range is given by hadronic interaction only and that
it can be extrapolated to ¢ = 0 as an exponential function. The p = 0.141 £ 0.007
parameter has been taken from the COMPETE preferred extrapolation [144]. The
inelastic rate has been corrected on the basis of a model for undetected events by
T2.

The values of the total, elastic and inelastic hadronic cross sections determined by
TOTEM at energy of 7 TeV on the bases of the three methods are in table 2.2. As
we can see, the values are quite similar. The values of the inelastic cross section o™
may be compared also to the measurements by other LHC experiments (measuring
the rate of inelastic events and luminosity, see eq. (1.12)) at /s = 7 TeV ("inelastic
rate/luminosity”) as it was also done in [32]. The inelastic cross section at 7 TeV has
been measured by CMS [145], ATLAS [146] and ALICE [147]

ols = (68.0 & 2.0%°" 4 2.4M™ + 4,0%7P) mb
ol o = (69.1 4 2.4 4 6.9UP) mb
ol op = (73.275:8med £ 2.6"™) mb
see the quoted papers also for the visible cross sections only - without model dependent
estimation of undetected events (events outside detector acceptance). These values of

the inelastic cross section are similar to those determined by TOTEM using the three
methods.
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Method OL Method OLI Method TR

[30] (see also [28]) [32] [32] (see also [31])
N [ 08.6 £ 2.2 08.0 £ 2.5 00.1 £ 4.3
el [mb)] 73.2+ 1.3 729+ 15 73.7+£ 3.4
oN [mb] 25.4 4+ 1.1 25.1+1.1 254+ 1.1

Table 2.2: Determined values of proton-proton total, inelastic and elastic
hadronic cross section at energy of v/s' =7 TeV by TOTEM using three
different methods.

Proton-proton hadronic cross section were determined by TOTEM collaboration
using luminosity independent method also at v/s'= 8 TeV [33] (similarly as at 7 TeV)
with the result

o*N = 101.7 £ 2.9 mb,
ol = 747+ 1.7 mb,
oN =271+ 1.4 mb.

The value p = 0.140 £ 0.007 at 8 TeV has been taken from COMPETE extrapolation
similarly as in the case of \/s' = 7 TeV. The values of the hadronic cross section at
energy of 8 TeV are according to these results slightly higher than at 7 TeV. All the
mentioned pp hadronic cross sections are plotted in fig. 2.30 together with some similar
results at different energies obtained in the past.

The luminosity given by eq. (2.21) has been determined in the similar way how the
total cross section has been calculated using eq. (2.20). This method of luminosity
determination based on optical theorem has been compared to the independent luminosity
determination based on VDM scans (measured by CMS) at LHC energy of /s = 7 TeV
during October 2011 special LHC run at * = 90 m. Both methods gave similar central
values of the luminosity with the uncertainty at the level of 4% for both of the two
methods, see [32] for more details about the comparison.

2.5.4 Charged particle pseudorapidity density distribution

So-called charged particle pseudorapidity distribution dNg,/dn is often used to character-
ize angular production of (charged) particles in inelastic collisions. This quantity may
be defined as the mean number of charged particles per single pp inelastic collision and
unit of pseudorapidity n defined by eq. (2.1).

TOTEM has measured this quantity at /s = 7 TeV by T2 detector, see figs. 2.31
and 2.32. The measurement corresponds to at least one primary charged particles
reconstructed in T2 acceptance region 5.3 < |n| < 6.4. The experimental points (black
squares) represent the average of the four T2 quarters with the error bars including both
statistical and systematic errors. Main contributions to the systematic error ~ 10%
are subtraction of a large fraction of secondaries from the data, track reconstruction
(in)efficiency and misalignment uncertainties. The measurement refers to charged
particles with pr > 40 MeV and with mean lifetime greater than 0.3 x 107! s, directly
produced in pp interactions or in subsequent decays of particles having a shorter lifetime,
see [29] and [148] for more details.
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40 MeV in events where at least one pri-
mary charged particle is generated in the
5.3 < |n| < 6.5 range [29, 148].

Similar measurement of dNy,/dn has been done also at 8 TeV [42]. In this paper
it was possible to combine TOTEM and CMS data in one common analysis to better
profit from the advantage of having relatively very wide CMS and TOTEM 7 acceptance
region: |n| < 2.2 and 5.3 < |n| < 6.4. TOTEM experiment further extended this region
at 8 TeV when measured d N, /dn within the range 3.9 < n < 4.7 and —6.95 <1 < —6.9
using data collected in a low intensity LHC run with collisions occurring at a distance
of 11.25 m from the nominal interaction point [43].

2.5.5 Double diffractive cross section in the forward region

The first double diffractive cross-section measurement in the very forward region has been
measured by the TOTEM experiment at the LHC at /s = 7 TeV [34]. The very forward
TOTEM tracking detectors T1 and T2 (with |n| range up to 6.5) were used to select a
sample of double diffractive pp events. The cross-section opp(a.7<|num|<6.5) = (116425)ub
has been determined for events where at least one particle is detected in each of the
T2 detectors and no particles are detected in T1 detectors (both diffractive systems
have 4.7 < |N|min < 6.5). This is, therefore, just a very specific sub-class of DD events.
Main source of uncertainty are DD events that have |nm;,| smaller than corresponds to
T1 n-range but with no particles in T1. Improvements may be expected, for example,
at 8 TeV combining data from TOTEM and CMS) where it is possible to check the
particle activity in the central (CMS) n-range (to decrease dependence on some models).
Combined TOTEM and CMS data may allow measuring much greater part of double
diffractive cross section with better classification.
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Chapter 3

Contemporary descriptions of
elastic collisions of (charged)
hadrons

The principles of measurement of elastic pp scattering (distribution of scattering angles)
have been explained in the preceding. This chapter is devoted to commonly used
theoretical descriptions of elastic scattering of charged hadrons (namely pp, resp. pp)
based on elastic scattering amplitudes and the possibilities and limitations of these
descriptions.

Kinematics of elastic collision process of two particles is summarized for convenience in
sect. 3.1. They are two approaches of describing the elastic scattering of charged hadrons
at the present. The first one (historically older) is the approach of West and Yennie
which has been commonly used for analysis of experimental data and which contains
some important limitations; e.g., it does not take into account dependence of collisions
on impact parameter. The second approach is the eikonal model approach which has
been introduced to derive some characteristics of collisions also in dependence on impact
parameter and enables, therefore, to understand better the whole collisions process. The
important assumptions included in both the approaches describing Coulomb-hadronic
interference will be emphasized and commented in sects. 3.2 and 3.4. Electromagnetic
form factors (determined from ep scattering) entering into the given descriptions will be
explained in sect. 3.3.

The understanding of both experimental and theoretical aspects of elastic scattering
including corresponding assumptions is a key point for understanding, e.g., contemporary
measurement of total hadronic cross section as all the approaches require measurement
of elastic scattering (some of them also inelastic). Three different methods (formulas)
of total hadronic cross section determination will be, therefore, discussed in detail in
sect. 3.5. Sect. 3.6 then contains comments to some widely used parameterizations of
elastic hadronic amplitude which is usually determined by fitting it to experimental
data.

In chapter 4 the eikonal model approach will be then applied to experimental data of
elastic pp scattering at energy of 53 GeV and 8 TeV. It will allow to obtain important
numerical values of corresponding quantities characterizing hadronic collisions.
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Figure 3.1: Two-body elastic scattering in center of mass system.

3.1 Relativistic kinematics of two-body elastic scat-
tering

In this chapter we shall employ commonly used conventions and formalism to describe
relativistic kinematics of two elastically scattered particles, see [8, 128, 149-151] (for
classical description of two-body elastic scattering see, e.g., [152]). The four-momentum
of a particle may be written as

P = (E,p) (3.1)

where FE is total energy of the particle and p'is its three-momentum (magnitude of p’
will be denoted as p). Natural units A = ¢ = 1 will be made used of. Scalar product of
two four-momenta may be defined as

P? = 9w P'p” = E? —]72 (3.2)

where the metric tensor g,, = diag(+1, -1, —1, —1).
A special case of two-body reaction is the elastic scattering

1+2—1+2 (3.3)

where the structures of the colliding particles remain the same and direction of motion of
each colliding particle is changed in agreement to conservation of energy and magnitude
of momentum. The four-momentum of the i-th incoming (outgoing) particle is denoted
by P (P!) for i = 1,2; see fig. 3.1 in the case of center of mass system.

The kinematics of the given process is fully described by two independent variables
(if some further characteristics such as spins are not taken into account). It is possible to
choose these two parameters among the three Mandelstam variables which are defined
as

S = (ﬁl + ﬁ2)2, (34)
t= (ﬁl - ﬁll)2’
u= (P, — P> (3.6)

We shall use s and ¢ kinematic variables as it is common. It is further convenient to
choose center of mass system. The variable s has the meaning of the square of the
total energy of colliding particles and the variable ¢ is the squared four-momentum
transfer in the given reference frame. In the case of pp elastic scattering the magnitude
of three-momenta of incoming and outgoing particles (denoted by p, resp. p’) are the
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3.2 Approach of West and Yennie

same in this reference frame and both the particles have equal masses m. The relations
between the center of mass scattering angle 6 and three-momentum p (see fig. 3.1) and
variables s and t are

s = 4(p* + m?), (3.7)

t = —2p*(1 — cos 0) = —4p*sin® g (3.8)

In the approximation of low scattering angles 6, i.e., when sin /2 ~ /2 one may write
t ~ —p*6?, (3.9)

which is often used in experiments as all observed elastic scattering angles are relatively
very small.
It follows from the relation (3.8) that

—4p* <t <0, (3.10)

i.e., the value of ¢ is not positive and its minimal value t,,;, is —4p?, in contrast to s
which is always positive. Using eq. (3.7) the value of ¢,,;, may be expressed also as

tmin = —5 + 4m? (3.11)

In high energy limit, i.e., for s >> m? (or even s — co) the mass m may be neglected
in formulas (3.7) and (3.11).

Elastic differential cross section of two spinless particles in the relativistic theory
may be defined in Mandelstam variables s and ¢ as follows (see, e.g., [128, 150] and also
Section 3.1 in [149])

do(s,t) T 2
= — |F(s,t 3.12
i = PG (3.12)

where we have introduced elastic scattering amplitude F'(s,t) in s and ¢ variables and
also corresponding normalization in center of mass system (for some other commonly
used normalizations see, e.g., [153]; the normalization term is just a matter of definition
of the amplitude).

In the given theoretical framework, any collision process is regarded as fully described
provided its scattering amplitude is given; it may be a complex function. In the case
of hadronic (resp. Coulomb) elastic scattering it is, therefore, necessary to know or
establish corresponding amplitude FN(s,t) (resp. F¢(s,t)). Elastic scattering of charged
hadrons is being then currently described with the help of a complete elastic scattering
amplitude denoted as FCN(s,t).

3.2 Approach of West and Yennie

In the case of collisions of two protons (charged hadrons) the measured elastic differential
cross section has been standardly described by complete elastic scattering amplitude
FCHN(s,t) (spin effects neglected) describing the common influence of both Coulomb
and hadron interactions, see eq. (3.12).
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According to Bethe [154] (1958) the complete amplitude has been commonly de-
composed into the sum of the Coulomb scattering amplitude F'¢(s,¢) and the hadronic
amplitude FN(s,t) bound mutually with the help of relative phase ag(s,t)

FON(s,t) = FC(s,t) D L FN(5, 1) (3.13)

where o = 1/137.036 is the fine structure constant'. According to the formula (3.13)
the complete amplitude F“™N(s, ¢) is not given by a mere sum of hadronic and Coulomb
amplitude but an interference of the two amplitudes is introduced. Bethe further derived
with the help of a WKB method? in the potential theory for the relative phase the

following expression
2In1.06

ay/—t
where parameter a characterizes the dimension of nucleon and the upper (lower) sign
corresponds to the scattering of hadrons with the same (opposite) charges. This expresion
was derived for a given FN(s,t) corresponding to a specific collision model of Bethe.
Formulas (3.13) and (3.16), therefore, cannot be used for arbitrary ¢-dependent hadronic
amplitude FN(s,t).

Several authors then tried to derive more general formula for complete amplitude
FC*N(s,t) than the one given by eqgs. (3.13) and (3.16). The ¢ dependence of relative
phase a¢(s,t) has been determined on various levels of sophistication. The dependence
having been commonly accepted in the past was proposed by West and Yennie [14]
(1968) within the framework of Feynman diagram technique (one-photon exchange) in
the case of charged point-like particles and partially in the high energy limit (s > m?,
m standing for nucleon mass) as

oo (5) - ]

The upper (lower) sign corresponds to the scattering of particles with the same (oppo-
site) charges. According to eq. (3.17) the t-dependence of the relative phase between
the Coulomb and hadronic amplitudes may be calculated from t-dependent hadronic
amplitude FN(s,t) entering into the integrand. In order to derive eq. (3.17) also the
Coulomb amplitude has been used (assuming a "known” form from QED, see [14] for
details). Note that in order to derive eq. (3.17) only a Coulomb amplitude for point-like
scattering particles has been used; no form factors have been taken into account at this
stage of calculations (see [14] also for used phase of Coulomb amplitude F€(s,t)).

¢(S7t)Bethe ~ =+ (316)

!The fine structure constant « is (in SI units)

B e? N 1
“ T Ureghe - 137.036

(3.14)

where e is the elementary charge, / is the reduced Planck’s constant, ¢ is the speed of light in a vacuum,
and ¢g is the permittivity of free space. The fine structure constant expressed in the natural units
(ep=h=c=1)is

a=2 (3.15)

2WKB approximation or WKB method is a method for finding approximate solutions to linear
partial differential equations with spatially varying coefficients. It is named after physicists Wentzel,
Kramers and Brillouin who developed it in 1926.
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3.2 Approach of West and Yennie

The hadronic amplitude F~(s,t) may be then written using its modulus |FN(s,t)|
and phase (N(s,t) as

FN(s,t) = i|[FN(s, t)] e 77 (1) (3.18)

Formula (3.17) containing the integration over all admissible values of four-momentum

transfer squared ¢’ seemed to be complicated when it was proposed. To perform analytical
integration it has been assumed for the two following quantities:

e the ratio of real to imaginary part of hadronic amplitude

Re FN(s,t)
== 1
e and diffractive slope defined as
d do™ 2 d
B(s,t) = — |In —(s,t)| = ————— |FN(s,t 2
(5) = 5y [ 5.0)] = i PG (3:20)

to be t-independent for all kinematically allowed t values®, see [14, 155] and [156, 157].
The diffractive slope being t-independent means that the modulus !F N(s, t)| has been
taken as purely exponential function of ¢. With the help of egs. (3.18) and (3.19) one
may obtain relation

tan (N (s, t) = p(s,t) (3.21)

which implies that the assumption of t-independent quantity p(s,t) is equivalent to
requirement of ¢-independent hadronic phase (N(s, t).

For the relative phase between the Coulomb and elastic hadronic amplitude the
following simplified expression has been then obtained for small values of t only:

ad(s,t) = Fa {m (‘B;S)t) + 7} (3.22)

where v = 0.577215 is Euler constant and B is t-independent diffractive slope. As
introduced in [158, 159] some other high energy approximations and limitations were
added, too.

Optical theorem relating the imaginary part of elastic hadronic scattering amplitude
at t = 0 (corresponding to zero scattering angle) to total hadronic cross section

47
O,tot,N s) =
(5) pV's

has been then applied to and the complete elastic scattering amplitude (3.13) of Bethe
has been written as

Im FN(s,t =0) (3.23)

O.tot ( 8)
47

The two quantities G1(t) and Go(t) stand here for the electric form factors taken
commonly in standard dipole form (see, e.g., [153]) as

F\%—{}N(S, t) = :l:%Gl(t)Gg(t) elad(st) pv's (p(s) +1) eBEN/2 (3.24)

GR(t) = <1 — %) B (3.25)

3These important assumptions have been explicitly pointed out also in 1973 in [155] where the WY
approach has been applied to experimental data for the first time.
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where A? = 0.71 GeV?. The electric form factors as Fourier-Bessel (FB) transformation
of electric charge distribution of colliding hadrons have been put into formula (3.24) by
hand. The second term on the right hand side of this equation represents the hadronic
amplitude Ff(s,t).

The Coulomb differential cross section (including form factors) has been, therefore,

taken as . )

LA T GHOGH) (3.26)
i.e., diverging at t = 0 %. The integrated Coulomb differential cross section over the
whole kinematically allowed region of ¢ is infinite due to this divergence at ¢ = 0 (which
is also a reason why total proton-proton cross section usually automatically refers to
short-ranged hadronic interaction for which the cross section is finite). In high energy
limit, see eq. (3.7), the Coulomb differential cross section (3.26) may be further simplified
to

do®© (s, t)

dt

The simplified formula (3.24) of WY has been commonly applied to experimental
data (using eq. (3.12)) for determination of ¢**N_ p and B at various energies in very
narrow interval of small values of |¢| (as the validity of WY approach has been limited
only to these small values). The eqs. (3.22) and (3.24) derived by WY were derived in
similar form also by Locher [161] even one year earlier (in 1967).

Integrated elastic hadronic cross section may be obtained from established hadronic
amplitude FN(s,t) and eq. (3.12) as follows

_ 47;20‘2 G2(1)G(1). (3.27)

0

ael’N(s):/dst(s,t)dt. (3.28)

tmin

The inelastic cross section may be then defined as

Uinel(s) — Utot,N(S) . Oel’N(S). (329)

As to the mentioned assumptions and problems included in the simplified formula
of WY (3.24), they have been discussed in details in 1989 [156] and later in even more
details in 2005 [158] (see also [48], [162] and [157]). In the following main points are
summarized.

The assumption concerning neglecting spin dependent effects in unpolarized beams
has been discussed, e.g., in [162] and [157]. According to these papers the spin effects
have negligible impact in the case of forward elastic hadronic pp scattering at ISR energy
range of /s’ i.e., from 23.5 GeV to 62.5 GeV, and in all high energy elastic hadron
scattering. More detailed analysis of elastic collisions in dependence on spin would be
surely very interesting as it could bring some new information about the structure of
corresponding particles. From experimental (technical) point of view it is, however,
much more difficult to prepare spin-polarized beams than spin-unpolarized ones. In the
case of pp collision there are some data obtained with spin-polarized protons beams,

4The Coulomb scattering is known in literature also as Rutherford scattering, see the treatment
of the problem in classical physics (scattering on potential) in [152] (pages 53-55) and [160] (pages
516-519) for analogous calculations in non-relativistic quantum mechanics (QM).
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3.2 Approach of West and Yennie

e.g., at RHIC®. The influence of spin is usually not taken into account in contemporary
description of elastic hadronic scattering as it represents quite complicated problem.

On the other hand the assumptions of ¢-independent quantities p(s,t) and B(s,t)
in the whole kinematically allowed region of ¢ are much more important. They are
introducing a priory strong limitations on the hadronic amplitude FN(s,t) without any
reasoning. The simplified formula of WY defined by eqgs. (3.22) and (3.24) has been
used for the analysis of differential cross section data in the interference region only,
i.e., in the case of elastic nucleon scattering for [t| < 0.05 GeV? at ISR energies (see,
e.g., [153, 155], [115, 163-175]). For higher values of || it has been believed that the
influence of Coulomb scattering may be, on the basis of the simplified formula of WY,
completely neglected. Other formulas of hadronic amplitude FN(s, ) not corresponding
to these limiting assumptions have been then commonly used to fit measured elastic
differential cross section at higher values of |[t|. The whole t-dependence of elastic
scattering has been, therefore, simultaneously described with the help of two inconsistent
(contradictory) approaches as it has been pointed out and further analyzed in, e.g., [49,
157, 176, 177].

The assumed purely exponential t-dependence of the modulus of the hadronic
amplitude has been in contradiction to the measured elastic nucleon differential cross
section for higher values of |t| where a dip-bump (resp. shoulder) structure has been
clearly visible, see fig. 2 in the case of pp (resp. pp) elastic scattering. This assumption
was introduced before the diffractive structures in elastic hadronic collisions was observed.
Measurement of neutron-proton (np) elastic scattering in 1984 provided a (more) direct
measurement of the hadronic scattering also at lower values of |¢| where some non-purely
exponential effects have been observed, see appendix A.1.

It has been further shown in [159] (2007) that already the fact that the relative
phase ¢(s,t) between the Coulomb and hadronic amplitude given by the original integral
formula (3.17) is real implies that the quantity p(s,?) (hadronic phase) has to be t-
independent; even the return to the eq. (3.17) does not, therefore, remove a priory
limitation on the hadronic phase included in the approach of WY. Similar return to
the original integral formula (3.17) has been recently suggested, e.g., in [178]. In this
paper the elastic hadronic amplitude has been divided into real and imaginary part and
both of them parameterized as an exponential function of ¢. In such a case, however,
the hadronic phase has been allowed to be t-dependent which is in contradiction to the
“hidden” assumption of ¢-independent phase under which the integral formula (3.17) for
real phase has been derived.

To take into account space distribution of electric charge (for non point-like hadrons)
some electromagnetic form factors have been added by hand to the simplifed formula
of WY (3.24) at the end of all the calculations; they have not been taken into account
in any previous step of the derivation of the formula. The relevance of such approach
should be questioned, too.

It is evident that the description of elastic scattering in the approach of WY has
been based on very limiting assumptions simplifying corresponding calculations without
any physical motivation (e.g., the dependence of p and B on ¢ has not been considered).
Dependence of (elastic) hadronic collisions on impact parameter has not been taken
into account in the given approach. Any attempt has not been done to study some
correlations of initial state characteristics and final state ones which should be the main

SRHIC achieved maximal collision energy 500 GeV in 2009 of polarized proton - the highest in the
world at that time.
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goal of any experimental data analysis.

In elastic collisions one should take into account mainly correlations between impact
parameter values of colliding particles and angle deviations (i.e., values of t) of scattered
particles. The first attempt in this direction has been done with the help of the eikonal
model which will be explained in sect. 3.4. It is, however, convenient to discuss proton
electromagnetic form factors in more detail first.

3.3 Electromagnetic proton form factors deter-
mined from elastic ep scattering

The proton cannot be taken as point-like object, which represents a modification of the
simple Coulomb interaction as its charge is distributed in a larger space. The shape
of this distribution and its influence on the corresponding interactions are commonly
characterized by elastic electromagnetic form factors, see eq. (3.26). The form factors
have been established on the basis of analysis of ep (not pp) scattering. The corresponding
elastic ep differential cross section g—g (in the one-photon exchange) in the laboratory
frame has been described by Rosenbluth formula (see [179-183]) which has been rewritten

later by Sachs [184] in the form

(j—g) -(8). s let@ + @) +rat@e (5) )

(3.30)
where
Q? =4 EE'sin® (g) , (3.31)
Q2

and F and E’ are the incident and final electron energies, respectively, which are bound
due to the conservation of the total four-momentum by relation

E

F = —
1+ 2E gin?(%)

(3.33)

0 is the scattering angle of the electron in the laboratory frame. G and G stand for
electric and magnetic form factor. The expression

do o? £ 0
9 (.0 L e Y 3.34
<d9( )>Mott 1 sn'(9) B (2) (3.54)

is the Mott formula [185] (in one-photon exchange approximation) for the differential
cross section describing the elastic scattering of Dirac electron with point-like and
spinless charged particle of proton mass m at incident energy E in the same frame (see,
e.g., [180]).

The formula (3.30) contains electric form factor Gg(Q?) and magnetic form factor
GMm(Q?) which depend only on the square of exchanged momentum transfer

t=—Q? (3.35)
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and which should satisfy the initial conditions

Ge(0) = Gu(0)/pp = 1 (3.36)

here 1, = 2.793 is the proton magnetic moment divided by nuclear magneton.

From early measurements of the elastic ep scattering at lower energies it has been
also deduced that electric Gg(t) proton form factor can be described by the dipole
formula (3.25) and the magnetic one by

Gu(t) = 1GE(t) - (3.37)

Borkowski et al. [186, 187] analyzed elastic ep scattering data at several energies with
the help of Rosenbluth differential cross section formula (3.30) where the t-dependencies
of both the electric and magnetic form factors have been parametrized by the formulas

3 wEg (3.38)

=1

SRS 9 (3.39)

<.

inspired by the vector dominance model. The original values of the parameters gEM

and w,];] (being different for both the electric and magnetic form factors) may be found
in [187] the corresponding electric and magnetic form factors may be denoted as GE©(t)
and GTO(t). Different shapes of electromagnetic form factor parametrizations have been
proposed by Arrington et al. [188, 189] (denoted as Ga®(t) and Gyf(t)) and Kelly [190]
which has been applied by Puckett [191] (denoted as GEY(t) and GV (t)), too.

Extending the measurements of the proton electric and magnetic form factors to
higher values of |t| has offered a chance for a better description of the influence of
electromagnetic proton structure in the elastic pp collisions at high energies. However,
this approach may be considered as fully entitled assuming that the electric and magnetic
form factors determined from an analysis of elastic ep scattering are identical with the
form factors involved in a description of pp elastic scattering (which should be tested in
the future).

The relatively recent determination of ¢-dependent electric and magnetic form factors
has been done by Arrington et al. [189] (see also [182, 188]) in the relatively broad
region of —t € (0.007,5.85) GeV?2. In this region we may express (refit) the form factors
using the parameterizations of Borkowski given by eqgs. (3.38) and (3.39). The fitted
parameters are in table 3.1; the corresponding electric and magnetic form factors (which
we will use extensively later) may be denoted as GEN(¢) and GEN(¢). The mentioned
electric and magnetic form factors GRR;(t), GEQ(£), GEQi(t), GE\i(t) and G\ (t) are
shown in figs. 3.2 and 3.3.

The effective electromagnetic form factor squared (7 = —t/(4m?))

appearing in eq. (3.30) has been introduced in [192] for analysis of elastic pp scattering as
the term in eq. (3.30) proportional to tan? ( ) can be neglected in linear o approximation
(one-photon exchange) [189]. One may define effective electric form factor squared as

Gys (1) = TG (1) (3.41)

T G +7 GuO)] (3.40)
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k 1 2 3 4
gE 0.1344 5.014 -7.922 2.747
wE 0.2398 1.135 1.530 2.284
g};/[ 0.2987 27.73 -28.15 0.1274
w}g/[ 0.3276 1.253 1.276 6.361
Table 3.1: The values of parameters specifying the new Borkowski’s et

al. electromagnetic proton form factors GE™ (t) and GEN(t)/u, taken from
[189]; here the parameters have been expressed in units of GeV?.
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Figure 3.2: Proton electric form factors Figure 3.3: Proton magnetic form factors
Gg(t). Gwm(t)/pp having very similar ¢t-dependence.

and effective magnetic form factor as

Gy oy (1) = J_—TGi/[(t) . (3.42)

The graphs of the effective electric form factor G%, . (t), the effective magnetic form
factor Gy () and effective electromagnetic form factor GZ;(t) corresponding to the
GEN(t) and GEN(t) (i.e., Borkowski’s parameterization with the newly determined values
of free parameters) are shown in fig. 3.4. For the comparison also the electric form factor
(GEO)2(t) used in [20] is plotted.

Fig. 3.4 shows that the t-dependence of the effective electromagnetic form factor
GZ(t) in eq. (3.40) is different from that one appearing in original Borkowski’s et
al. parameterization eq. (3.38) which has been used in analysis of experimental elastic
pp data in [20]. One may ask what may be the difference in the result if also magnetic
form factor is included. In next section it will be, therefore, shown how to generalize
the approach in [20] to take into account the effective electromagnetic form factors in
the eikonal model description of elastic pp collisions.
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Figure 3.4: Effective form factors corresponding to
GEN(t) and GBN(t) (see egs. (3.40) to (3.42)) and com-
pared to (GEO)2(t).

3.4 Eikonal model approach

3.4.1 Coulomb-hadronic interference formula

One of the fundamental differences between the eikonal model approach and the approach
of WY (based on Feynman diagram technique) is that the former one is trying to take
into account the influence of impact parameter and establish some characteristics of
hadron collisions depending on this fundamental parameter. The complex amplitude of
elastic collisions of two spinless hadrons has been expressed in the form

F(s,¢* = —t) = e / A% iThe20(sb) _q] (3.43)

Qp

where (), represents two-dimensional Euclidean space of impact parameter b and
§(s,b) is so-called eikonal function. The vector ¢ is defined as difference g— p/ of
particle momenta before and after elastic scattering. In the case of elastic hadronic
scattering the first (approximate) form of eq. (3.43) was suggested by Glauber [193]
(1959) in high energy limit. Mathematically more rigorous derivation of elastic scattering
amplitude in the impact parameter representation which respects a finite admissible
region of momentum transfers at finite collision energies was given by Adachi and Kotani
[194-199] (1965-1968) and also by Islam [200, 201] (1968-1976).

The eikonal d(s,b) may be calculated from energy-dependent spherically symmetric
potential V' (s,r) according to [200-202] as

OOV(S,?‘)Td?”
N b/ e (3.44)

Potential V(s,7) corresponds to potential between particles at momentary mutual
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positions during their motions and might be generally represented by a complex function®.
Due to eq. (3.43) the complete elastic amplitude FC+N(s,¢) of two charged and spinless
hadrons is fully determined by the complete eikonal §°*N(s,b). Taking into account
the linearity of potential V' (s,r) in expression (3.44) and the additivity of Coulomb and
hadronic potentials complete eikonal 6N (s, b) is given by the sum of individual eikonals
6%(s,b) and 0N (s, b) for the Coulomb and hadronic eikonals

§9N(s,b) = 6(s,b) + 0~ (s, b). (3.45)

Due to the fact that potentials in eikonal model are allowed to be complex (having non-
zero imaginary part) their additivity is not obvious and it may have deeper implications
then the additivity of real potentials in classical physics.

The complete elastic amplitude of charged hadrons in the eikonal model may be
rewritten as

4mi
Qp

FCN(s, ¢ = —t) = i/de eiq*.B[em(aC(s,b)+5N(s,b)) —1). (3.46)

The Coulomb and hadronic elastic scattering in the eikonal approach is determined by
the complete eikonal 6N (s, b). Due to eq. (3.44) the often mentioned “interference”
between the Coulomb and hadronic interactions follows thus in the eikonal model from
the mere sum of corresponding potentials.

According to [203] and [204] one may further write

FQ?JN(s,t) = FC(s,t) + FN(s,t) + F'(s,1)

= FC(s,t) + FN(s,t) + ﬁ / d%b P02 (50) _1) (20" (D) 1) (3.47)
Qp

where the interference term F'(s,t) have been introduced. Due to the eq. (3.47) the
complete elastic scattering amplitude in the eikonal model is, therefore, not given by
mere sum of Coulomb F®(s,t) and hadronic FN(s,t) scattering amplitudes.

Cahn [204] in 1982 further established phase of Coulomb amplitude F€(s,t) in the
following (formal) way. He started from the Born shape of the Coulomb scattering

amplitude
as

g+ p?
where the upper (lower) sign corresponds to the scattering of the same (opposite) charges
and p is a fictitious rest non-zero mass of a photon standardly used in order to remove
infrared divergences; in the final expression one passes to a limit © — 0. Using eq. (3.43)
coulomb eikonal ¢ (s, b) has been written as

F]gorn(87 = _QQ) =+ (348)

1 _izE
50(57[)) = 2_71'8 /d2qe 0 FBcorn(SaQQ) (349)
Qp
which can be simplified to
6(s,b) = afln(1/2bp) + v + O(bp)] (3.50)

6The meaning of complex potential in quantum mechanics is, however, not so straightforward as
meaning of real potential in classical physics. Imaginary part is sometimes used to open (describe)
inelastic scattering while real part describes elastic scattering.
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3.4 Eikonal model approach

where + is the Euler constant. The Coulomb amplitude has been obtained when eq. (3.50)
has been inserted into eq. (3.43)

FC(s,t=—¢%) = F— @) (3.51)

where the quantity (©(¢?) is the phase of the Coulomb amplitude for point-like particles
in the eikonal model and is equal to

2
¢¢(¢?) = In (%) . (3.52)

Similar (mathematical) procedure of establishing Coulomb phase taking into account
dipole form factors may be found also in [204]. Both the modulus and phase of the
Coulomb amplitude (3.51) are singular at ¢ = ¢> = 0 which causes non-direct application
of optical theorem for Coulomb interaction.

Using eqgs. (3.51) and (3.52) Cahn was able to rewrite eq. (3.47) in a form similar
to the relative phase of WY given by eq. (3.17). In this procedure several limiting
assumptions have been introduced as the goal of Cahn was mainly to rederive the relative
phase of WY.

However, in course of deriving a formula for complete amplitude F“*N(s, ¢) suitable
for analysis of experimental data one should not impose any a prior limitation on
hadronic amplitude FN(s,t) without corresponding justification. Mistakenly constrained
FN(s,t) may lead to completely wrong physical conclusions.

Kundrat and Lokajicek in [20] (1994) tried to remove unjustified approximations and
limitation imposed mainly on hadronic amplitude FN(s,t) and to derive more general
expression for complete amplitude FC*N(s,¢) which could be then used for analysis of
experimental data. According to the paper [20] it is possible to derive from Cahn’s
eq. (3.47) and Coulomb amplitude in the form given by eq. (3.51) for the complete
elastic amplitude F°TN(s,¢) in the eikonal model the following relation

FSHN(s,t) = i%Gl(t)Gg(t) + FN(s,t)[1 FiaG(s,1)] (3.53)
where
G(s,t) = / dt/ {ln (%/) %[Gl(t’)GQ(t’)] - % {% - 1} I(t,t’)} (3.54)
and .

(1) = / dqu. (3.55)

0

Quantities G1(t) and G5(t) in eq. (3.53) stand for form factors reflecting the electromag-
netic structure of colliding charged hadrons and ¢ =t 4+ ' + 2v/tt’ cos " in eq. (3.55).
The minimal kinematically allowed value ¢, in (3.54) is given by eq. (3.11) in the case
of two hadrons with the same masses m. The upper (lower) sign in (3.53) corresponds
then to the scattering of particles with the same (opposite) charges.

Formula (3.53) has been derived for any s and t value with the accuracy up to
terms linear in «. It has been derived with the aim not to put any a priori unreasoned
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strong restriction on hadronic amplitude FN(s,t) (to avoid limitations on FN(s,t) in
the WY approach). The formula (3.53) may be, therefore, used in two distinct ways.
Firstly, it is possible to perform an analysis of measured differential cross section in
the whole measured ¢-region (i.e., not only in very limited interval of small values of ¢
as it is in the case of the approach of WY) and to determine corresponding hadronic
amplitude FN(s,t). For this purpose one may chose suitable parametrization of the
corresponding modulus and phase and try to determine £~ (s, t) from experimental data
as it has been done in [20]. Secondly, the formula (3.53) for complete elastic scattering
amplitude F°N(s,¢) may be used, too, to obtain prediction of measured differential
cross section with the help of eq. (3.12) if the hadronic amplitude FN(s,t) has been
specified within a framework of some phenomenological model description (see, e.g., [48]
where several model predictions of pp elastic differential cross sections including the
influence of Coulomb interaction at the LHC have been made). The former usage of the
formula (3.53) will be applied to in chapter 4.

The determination of total hadronic cross section from the hadronic amplitude
FN(s,t) in the eikonal model has been based on optical theorem given by eq. (3.23)
similarly as in the approach of WY. The main advantage (and motivation) of the eikonal
model over the approach of WY is that it allows studying some characteristic of collisions
in dependence on impact parameter as it will be shown in the following.

The use of electromagnetic form factors reflects the influence of both the electric and
magnetic charge structures of colliding nucleons. Only the electric form factors given by
eq. (3.38) have been used originally in [20] to calculate FS™N(s,¢) according to eq. (3.53)
for analysis of experimental data. It has enabled to include in the elastic scattering
the influence of electric space structure of colliding protons. Such an approach can be
generalized by taking into account also the influence of the proton magnetic form factor,
i.e., the interaction of magnetic moment of the proton with Coulomb field of the other
colliding proton.

The influence of the magnetic form factors in the case of elastic pp scattering at high
energies have been theoretically studied by Block [175, 192]. However, this approach has
been based on the application of standard WY complete elastic amplitude containing
originally only the dipole electric proton form factors given by eq. (3.25) which have
been replaced by effective electromagnetic form factor (3.40) containing also dipole
magnetic form factor (3.37). Such an approach, however, contains many limitations and
deficiencies as it has been discussed in sect. 3.2.

Unlike the approach of WY (see sect. 3.2) the electromagnetic form factors form the
part of Coulomb amplitude from the very beginning in the eikonal model. Due to the
integration over all kinematically allowed region of ¢’ in eq. (3.54) the t’-dependence of
effective electromagnetic form factors should describe the charges distributions in the
largest interval of momentum transfers ¢’ as possible. For some suitable ¢t-dependent
parameterizations of electromagnetic proton form factor the integral I(¢,¢') may be ana-
lytically calculated (see sect. 3.4.2) which helps in numerical calculations in application
of the eikonal model to experimental data. The elaborated approach then enables to
study either the influence of individual effective electric or magnetic form factor or the
common influence of both of them.
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3.4 Eikonal model approach

3.4.2 Analytical expression of integral [(¢,t)

It has been mentioned in sect. 3.4.1 that the integral involving the electromagnetic
proton form factors (3.55) may be calculated analytically for some form factors. It is
sufficient to integrate only over a finite region of momentum transfers in formula (3.53)
since the whole integral is multiplied by the elastic hadronic amplitude FN(s,t) the
modulus of which decreases at high |t| approximately like [¢t|~* - see, e.g., [205]. The
used limited integration region of momentum transfers allows us to use some simpler
formulas for the ep form factors enabling us much simpler analytical calculation.

In [20] the integral I(¢,t') given by eq. (3.55) was analytically calculated only for
electric form factor parameterized according to (3.38). The integral may be analytically
calculated for more complex t-dependence of effective electromagnetic form factor given
by eq. (3.40) if the corresponding electric and magnetic form factors are given by
egs. (3.38) and (3.39).

The analytical calculation of the new form of the integral I(¢,t') in eq. (3.55) has
been calculated with the program Mathematica [206] and equals to the sum of two
contributions coming from the electric and magnetic form factors which contain now
some kinematical factors (r, = —7/t = 1/(4m?))

[Z 9595 Wikt t) Tt 1) + rppy” Z It W (1, 1') Tk ()
m,n=1
(3.56)
The contribution of electric form factor in this equation is given as follows. For j # k it

holds

E no_ (U -1)° (R—-1)°
Gilt ) =2m VU'(U - R)(U — PP)(U — PF) T VRR-U)R- PE)(R — PF)
N (FF—1)? N (B —1)°
PE(PP — U)(PP — R)(PF — PF)  VPF (PP =U)(PF = R)(PF - PP)|
(3.57)

while for j = k one has

-1 (R—1)
VUW-RWU-Ffp  VRER-U)R- PP
(PE— 12
20— PPV (R— PP (P

E —
I5(t, ) =2m

+

(U (R+5RP} —3PF(PF +1)) + P (=3R(P]" + 1) + Pj*(5 + P}"))]
(3.58)

The quantities U, R and PjE are the functions of ¢ and ¢’ variables defined as

(V=t +V=1") R:1+rp(\/3+ —1)? (V4 )2

(V= = V=) (V= =V j:w%w?—w(—?);‘
3.99

U:
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Similarly the quantity Wﬁc is also the function of ¢ and ¢’ variables and equals
WE ) = [[wf + (V=F = VIl + (V=F = V=T )
_ (3.60)
V=T = V=P + 1V = VY

The contribution of magnetic form factor is represented by the second term in eq. (3.56).
The integral for m # n equals to

M / (PTI'I\:I — 1>2
I (t,t) =2m
ol VP (Pl = R)(Pal = PaY)
+ Ci 1)2 (3.61)
VR (R - P))(R—P))
N (PM 1)
V(P = R)(PY = oY)
and for m = n it equals
Mgy (R—1) (B =1 [P(PN +3) = R +1)]
lonl00) =27 | TR (R = By 2 ()7 — P (302
The quantities PM and WM are the functions of ¢ and ¢’ variables and equal
M W+ (V)
P = Nt (VT — T (3.63)
and
W = [+ (VI VNl (VI VY (VT V|
(3.64)

Then the complete elastic scattering amplitude in the eikonal model describing the
common influence of Coulomb and hadron scattering in one-photon exchange approach
which is valid at any s and ¢ up to the terms linear in « is generally given by egs. (3.53)
to (3.55) with the quantity I(¢,t') given by eqs. (3.56) to (3.64). This form of the
complete elastic scattering amplitude will be used for the analysis of pp elastic scattering
data in chapter 4.

3.4.3 Unitarity of S matrix and b-dependent profile functions

According to van Hove [207, 208] (1963-1964) the unitarity condition of S matrix
(STS = 1) may be written in terms of ¢-dependent hadronic amplitude FN(s,t) as (see
also [200])

Im FN(s,t) =

p / AN* N N " )
47r\/8_/dQF (5, ) FN(s,#") + Gnar(s, ) (3.65)

where d€Y = sin?/d¥'d®’, t = —4p? sin2§, t' = —4p®sin® 192/ —4p? 81112% and

cos’ = cosvcos + sinsind cos®’. Variables ¢, ¥ and 19’ are angles defining
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3.4 Eikonal model approach

corresponding momentum transfers squared ¢, ¢’ and ¢” in the center-of-mass system and
Glinel (s, 1) is the so-called inelastic overlap function (introduced by van Hove) representing
summation over all possible production (inelastic) states as well as the integration over
all other kinematical variables.

The t-dependent elastic hadronic amplitude FN(s,t) is standardly expressed in
b-space using FB transformation as

he(s,b) = FNst%bM t)dt (3.66)

4pf

where Jy is Bessel function of the first kind of order zero defined as

2

1 .
Jo(z) = I /e“cowdgo. (3.67)
0

Function ginel (s, b) has been then similarly introduced as FB transformation of Gine (s, t).
The unitarity condition (3.65) is then usually expressed in impact parameter space
as

Im hei(s,0) = |ha(s, b)|2 + Giner(s,0). (3.68)

Practically all approaches of hadron-hadron scattering in the impact parameter space
have been based on FB transformation (3.66) and unitarity condition (3.68) (see, e.g.,
[16, 128, 209-214]) as some physical meaning has been attributed to the b-dependent
terms in eq. (3.68) using so-called profile functions DX (s, b) (X=tot, el, inel) defined as

D(s,5) = 4[ha(s, )" (3.69)
D™(s,b) = 4 Im hg(s,b), (3.70)
D™ (5,b) = 4 ginai(s, b). (3.71)

The factor 4 in egs. (3.69) to (3.71) follows from our normalization of the scattering
amplitudes, see eq. (3.12); the factor may be different in different conventlons This
definition of profile functions has been chosen so that cross sections o may be obtained
by integrating of corresponding profile functions in impact parameter space as

o0

aﬁgzzw/mmpﬁam. (3.72)

The factor 27b in eq. (3.72) corresponds to the weight of initial states distinguished by
impact parameter as mentioned in Introduction; this factor is, therefore, not part of the
profile functions. Such definition will be convenient in chapter 5 for easier comparison of
our profile functions (obtained from analysis of experimental data in chapter 4) with the
earlier results of Miettinen. It should hold for the profile functions due to the unitarity
condition (3.68) in b-space

D' (s,b) = D(s,b) + D™(s,b). (3.73)

However, Adachi and Kotani [194-199] and Islam [200] showed that no direct physical
meaning can be attributed to the terms in the unitarity equation (3.68) (i.e., to profile

69



CHAPTER 3. Contemporary descriptions of elastic collisions of (charged) hadrons

functions given by eqs. (3.69) to (3.71)) at finite collision energies /s due to Im he (s, b)
being repesented by oscillating function. It has been shown in the quoted paper that it
is necessary to distinguish integrations over physical and unphysical region of ¢ in (3.66),
i.e., t € (tmin,0) and t € (—00, tmin) (and similarly also for g (s, b)).

The elastic hadron scattering amplitude he(s,b) in the impact parameter space at
finite energies may be then defined by FB transformation of the elastic hadron scattering
amplitude FN(s,t) as (see [194-199], [200-202] and [215, 216] for more details)

hei(s,b) = hi(s,b) + hQ(S b)

mln

FN (5,1)Jo( bF)dt+ — / s,1)Jo(by/—t)dt (3.74)

4pf

in

where the first term hy (s, b) represents the contribution of the FB transformation of
FN(s,t) from the physical region of ¢ and the second one represents the contribution
corresponding to the unphysical region of ¢. The unknown function A(s,t) is assumed to
fulfill (obey) some conditions [200]. At infinite energies ¢, is equal to —oo in eq. (3.74)
according to eq. (3.11). The function gine(s,b) has been then similarly defined as FB
transformation of the inelastic overlap function Gi,e(s,t) such that integration over
physical and unphysical region of t-values has been separated: ginel(s,b) = g1(s,b) +
92 (S ) b)

To obtain non-oscillating profile functions the following definitions have been intro-

duced (instead of egs. (3.69) to (3.71))

D% (s,b) = 4 |hi(s,b)|%, (3.75)
D™"(s,b) = 4 (Im hy(s,b) + c(s,b)), (3.76)
D™ (s,b) = 4(g1(s,b) + K(s,b) + c(s,b)) (3.77)

and the unitarity condition at finite energies has been written in the form
Im hy(s,b) +c(s,b) = |hi(s,b)[* + g1(s,b) + K(s,b) + c(s,b) (3.78)

where the real function ¢(s, b) has been chosen so that the total and inelastic profile
functions have been non-negative and main characteristics of the scattering of the
scattering (like total cross section calculated from eq. (3.23)) have remained unchanged,
see appendix B for more details. The function K (s,b)

K(S b ]_67'{'2 /dtl / dtQFN* S tQ (S,tl)
b b

X |:J0 <% —tl (4]?2 + t2> > JO <2_p —t2(4p2 + tl) ) — J()(b\/ —tl )J()(b\/ —tQ ) .

(3.79)

is a quite negligible correction that is to be added when unitarity condition at finite
energies is to be fulfilled.

In [215] the function c(s,b) has been then parameterized and fitted to experimental
data together with hadronic amplitude FN(s,t). In the following we shall make use of
a different approach as we shall choose total profile function D'!(s,b) in quite fixed
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(Gaussian) form as it has usually been assumed; the function ¢(s,b) may be then
determined for a given amplitude F™(s,t) on the basis of egs. (3.74) and (3.76). Tt is,
however, convenient to introduce formulas for mean values of impact parameters first.

In [216] mean-square values of impact parameter b (for different collision types) have
been defined as (see also some previous attempts in, e.g., [19, 197, 217])

T " w(b) DX (s, b)db

(bM* = (3.80)

[ w(b)DX(s, b)db

with n = 2 and w(b) = 27b. It has been shown in [216] that the mean-squares (b*)%
(defined by eq. (3.80)) of total, elastic and inelastic processes may be determined from
the t-dependent elastic hadronic amplitude FN(s,t). The elastic mean-square (b?)°' may
be written as sum of two terms (see also [218])

<b2>e1 :<b2>m0d + <b2>ph

4 f dtlt| (& |FN(s, 1)) 4 fo dt | FN(s, ) |* [t] (L¢N(s, 1))

tmin + tmin

0 0
[ dt|FN(s,t)|? [ dt|FN(s,t)|°

tmin tmin

(3.81)

where the contributions of the modulus and of the phase have been separated. The first
term (b?)™°4 depends only on the modulus of the hadronic amplitude F™(s,t) while the
second term (b?)P! may be influenced significantly also by the hadronic phase (N (s, t).

Similarly, the total mean-square (b?)** and inelastic (b*)™! may be evaluated with
the help of FN(s,t) as

inel

(b?)tor = 4 <—d_t|l‘7§(s<i;|)‘ — tan CN(s,t)%CN(s,t)> ; (3.82)
<b2>inel _ UtOtyN(S) <b2>t0t _ JELN(S) <b2>el. (3.83)

O-inel (S)

Egs. (3.81) and (3.83) allow comparison of (b*)"! and (b*)¢! corresponding to a given
hadronic amplitude FN(s,t) and, therefore, may provide basic information whether
elastic collisions are more peripheral or central than the inelastic ones, as it has been
discussed in Introduction.

To compare our results to those of Miettinen (see Introduction) we may chose
Gaussian shape of total profile function D**(b) corresponding to the commonly assumed
one as [177]

D (b) = g e ™Y (3.84)

where a; and @y are some parameters which may be expressed using egs. (3.72) and (3.80)
as

1

ELl - W, (385)
. O.tot,N
a9 = W. (386)
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The total profile function D** given by eq. (3.84) may be, therefore, determined from
given values of "N and (b?)'" using optical theorem (3.23) and eq. (3.82), i.e., from
t-dependent elastic amplitude FN(s, ). It means that using FB transformation (3.74) of
FN(s,t) and eq. (3.73) the total, elastic and inelastic profile functions may be determined
for a given FN(s,t) (e.g., from fitting experimental data as it will be done in chapter 4).

Other shapes of the total profile function than the Gaussian one (3.84) should be
admitted in principle, too; the whole problem of impact parameter picture of hadron
collisions is, however, more complicated than it may seem at first glance, see the following
chapters.

3.5 Contemporary methods (formulas) determining
total hadronic cross section

In the previous text some important aspects and assumptions included in the contempo-
rary description of the Coulomb and hadronic interactions acting simultaneously in the
case of charged hadrons have been discussed. In the following we shell analyze to greater
details three different formulas (methods) on the basis of which the total hadronic cross
section has been commonly determined from experimental data (see also recent result of
TOTEM in sect. 2.5.3). Some additional assumptions included in the corresponding
“measurement” will be identified (similarly, as it was partially done for one of the formula
in [45]). These assumptions are often tacitly added without sufficient reasoning, even
thought they may significantly influence values of several quantities or the interpretation
of the given collision process.

3.5.1 Method of total rate (TR method)

One may detect simultaneously elastic and inelastic events (total rate (TR)). Measuring
independently also the corresponding luminosity (e.g., by separation scan, see sect. 1.3.2)
the total hadronic cross section may be determined with the help of the following formula

o Nel,N + Ninel
o = —F (3.87)

However, the usage of this formula is not as straightforward as it may seem at first
glance. First of all, one can measure the elastic and inelastic events always only in a
certain limited region of detector acceptance - only “visible” rates N¢, and N2\, The
method of total rate, therefore, also requires

e estimation (extrapolation) of the undetected events (both elastic and inelastic),

e determination of elastic hadronic rate N°'N from the measured one which is
strongly influenced by the Coulomb interaction at very low scattering angles; some
non-hadronic interaction may play significant role also at other scattering angles
especially at lower collision energies.

These model dependent aspects are always determined on the basis of some additional
assumptions. Different models may, of course, lead to different values of total hadronic
cross section. The models (assumptions) should be, therefore, properly reasoned and
studied.
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3.5 Contemporary methods (formulas) determining total hadronic cross section

If we use only one assumption that the measured elastic rate is given by hadronic
interaction N&, = N\'filéN (i.e., Coulomb or any other non-hadronic effects being negligible)

then we may derive the following lower limit on the total hadronic cross section
Ne} + Nir}el
tot,N vis vis
’ A L 3.88
X (389
This limit may provide first estimation of the total cross section independently of some

other assumptions such as validity of optical theorem included in the two following
methods of total cross section determination.

3.5.2 Method based on optical theorem and luminosity mea-
surement (OL method)

A different method (formula) of total cross section determination has been based on
optical theorem (given by eq. (3.23)) and independent luminosity measurement (this
method will be, therefore, denoted as OL method). Adding the relation for the elastic
hadronic differential cross section (3.12) to the optical theorem the following formula for
total cross section may be derived

dNel,N
tot,N 167 dt

oL TN 11 pt=02 L

|
167 doelN
=0 — 3.89

\/1 +p(t=0)2 dt |_, (3:89)

where the p(t = 0) parameter is defined by eq. (3.19). This method requires simultaneous
measuring of

e clastic differential rate,
e and luminosity,

i.e., elastic differential cross section. However, any application of the formula (3.89) also
requires

e determination of hadronic elastic scattering from the measured elastic differential
cross section (measured elastic rate), including, e.g., Coulomb interaction,

C,.el,N

e optical theorem and, therefore, also extrapolation of both the modulus (d ) and
phase (p quantity) of the hadronic amplitude to the unmeasurable point at ¢ = 0.

There are different approaches which may deal with these model dependent aspects
in different ways. The approach of WY and the eikonal approach have been discussed
in sects. 3.2 and 3.4. These two approaches determine the total cross section also on the
basis of eq. (3.89) and experimental data given by measured elastic differential cross
section (requires mainly detection of protons scattered at very low scattering angles
in so-called Coulomb-nuclear interference region which requires dedicated accelerator
settings, see sect. 2.3). The total hadronic cross section corresponding to the two
performed fits in chapter 4 has been calculated on the basis of eq. (3.89).

Current methods based on the formula (3.89) determine total hadronic cross section
from elastic processes without measuring (taking into account) the inelastic ones. The
inelastic cross section is calculated by subtracting the elastic hadronic cross section from
the total one, see egs. (3.28) and (3.29).
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3.5.3 Luminosity independent method (OLI method)

The other formula for total cross section has been derived from the combination of
formulas (3.87) and (3.89) when the total cross sections have been identified

dNY
167 dt
tot,N t=0
o= . 3.90
UOLI 1 pQ Né\ll N ( )

inel

Determination of total cross section is in this method based on optical theorem and
does not require luminosity measurement - it will be, therefore, denoted as OLI method.
This method has been used for the first time in [164].

Eliminating oY from (3.87) and (3.89) it has been possible to derive the following
formula for the luminosity

1 + p2 (Ng + Ninel)2

167 dNg
at |,

Lows = (3.91)

The quantities which are measured for application of the formula (3.90) (or (3.91))
are only elastic and inelastic rates. The two formulas, however, further require (see
comments in sects. 3.5.1 and 3.5.2)

e determination of elastic hadronic rate from the measured one (effect of other
interactions subtracted),

e optical theorem and, therefore, also extrapolation of both the elastic hadronic rate
N
el

dt

and phase (p quantity) to the unmeasurable point at ¢t = 0,
e estimation (extrapolation) of the inelastic events which escape detector acceptance.

It is necessary to stress that the formula for total cross section given by eq. (3.90)
has been derived under the assumption that the TR and OL methods give the same
results, i.e., that JEFIQ’N = ag’E’N. This is in fact an additional assumption that should
be carefully tested and verified before applying the luminosity independent method to
some data. Such testing requires, however, a luminosity measurement independent of

optical theorem (e.g., using VDM scans mentioned in sect. 1.3.2).

3.5.4 Some general aspects of total hadronic cross section de-
termination

The discussed methods of total hadronic cross section determination have several common
aspects. It is interesting to see that all the methods require measurement of elastic
scattering (some of them also inelastic one). It is also not possible to determine the
total cross section only from data without adding another important assumption. The
additional assumptions are related mainly to

e determination of elastic hadronic scattering from the measured one (it is mainly
the Coulomb interaction at very low values of scattering angles which need to be
taken into account),

e cstimation (extrapolation) of undetected elastic and inelastic events,
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e and validity of optical theorem (if applied) and accompanying extrapolation of
both the modulus and phase of hadronic amplitude to unmeasurable and limit
zero elastic hadronic scattering angle.

The determination of total hadronic cross section, therefore, requires necessarily a
reliable model of (elastic) collisions.

However, all the commonly used methods of total cross section determination have
been based on only some mathematical-phenomenological models under very limiting,
simplifying or even false assumptions, as we have seen, e.g., in the case of WY approach
in sect. 3.2 which has been used as standard tool to determine total cross section from
region of very low scattering angles.

The OL and OLI methods based on optical theorem (and also the method of total
rate) have been applied and compared in [164] (1976) for the first time at ISR energies
ranging from energy of 23.5 GeV to 62.7 GeV by CERN-Rome and Pisa-Stony Brook
collaborations. The methods based on optical theorem require the value of quantity p
at t = 0, see egs. (3.89) and (3.90). The value p(t=0) was taken in [164] as an external
input based on the simplified WY Coulomb-hadronic interference formula (3.24). Also
the total hadronic cross section determined by the WY approach has been used (due to
a “correction for electromagnetic effects”, see Eq. (13) in [164]) for “new” determination
(measurement) of total cross section. Such an application of the formulas egs. (3.89)
and (3.90) (OL and OLI methods) is, however, necessary to denote as mistaking (circular)
as it does not provide any “new and independent measurement” of total cross section.

Similarly inconsistent application of the OL and OLI methods has been commonly
used since that time, see past results on total cross section determination based on
optical theorem recently summarized in [110] (see mainly the papers quoted there). The
problematic approach may be identified whenever quantity p(t=0) is taken from some
“external calculations” which determine also total cross section under the same set of
assumptions (e.g., combining the numerical results obtained at lower energies based
on WY approach with some high energy extrapolations using dispersion relations [128,
219] as it is sometimes suggested; see, e.g., [144]). Taking only the quantity p(t =0)
in eq. (3.89) or eq. (3.90) for “new” measurement of total cross section is, therefore,
misleading. Determination of quantity p(t=0) and o**N based on optical theorem are
quite inseparable problems.

The quantity p(t=0) and total cross section o should be determined consistently
from one method only (based on one consistent set of assumptions only). In the given
theoretical framework all the properties of elastic hadronic collisions are determined
from the corresponding scattering amplitude and, therefore, it is necessary to establish
the modulus and phase of elastic hadronic amplitude in the widest possible t-range for
better understanding of the given process (which was possible to do, at least partially,
in the eikonal model approach but not in the approach of WY). All contemporary
methods of total cross section determination which do not even try to establish the
t-dependent modulus |FN(s,t)| and phase (N(s,t) also cannot, therefore, provide any
deeper understanding of the given collision process (namely the behaviour of collisions
in the impact parameter space), either. It means that these methods cannot provide
any deeper reasoning of the value of total cross section. The measurement of total cross
section is as reliable as a collision model on the basis of which the determination has
been made (i.e., as much understood the whole physical process is).

Last but not least one should be also aware of the fact that the assumptions
under which the optical theorem has been derived have not been practically tested

tot,N
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experimentally. All hitherto experimental tests of optical theorem have corresponded
basically only to comparison of values of total hadronic cross sections determined with
and without using optical theorem (using the OL and OLI methods of measurement);
see, e.g., [220, 221] (7wp scattering), [164] (pp scattering) or recent interesting comparison
made at much higher energy of 7 TeV by TOTEM [32] (pp scattering) as it was discussed
in sect. 2.5.3. However, even if both the values of total cross section may be found to be
similar one cannot conclude that the optical theorem is valid (contrary to statements in
220, 221]). The (experimental) testing is more delicate as the derivation and application
of the optical theorem is always accompanied by some other strong assumptions, see [51]
for detailed study of this topic. One should mainly better understand elastic collisions
in dependence on impact parameter as this question is often not addressed at all or with
only partial success as we will see in next chapters.

3.6 Elastic hadronic amplitude

For the description of hadron interactions, mainly in the case of deep inelastic scattering
processes, QCD has been commonly made use of. However, in the case of elastic
and other diffractive processes there has not been any significant progress in spite of
enormous effort having been produced. The point is that the perturbative methods,
being principally involved in QCD descriptions of hard processes, may be hardly applied
to in the case of soft diffractive processes.

This has been especially the case of elastic hadronic amplitude describing the
scattering of charged nucleons where differential cross section data have been obtained
with relatively large statistics. The observed dip-bump (or shoulder) structure of high-
energy data has been usually described with the help of a complex hadronic amplitude
FN(s,t) having the dominant imaginary part in a large region of lower || and vanishing
at the diffractive minimum. The real part (very small in the region of low deviations)
has been introduced to obtain a non-zero value at the diffractive minimum.

This currently accepted dominance of the imaginary part of the hadron elastic
amplitude has seemed to be supported by the theorems derived at asymptotic energies
and has been introduced on the basis of some a priori assumptions (being accepted by
most physicists) [222-229]. However, it has been shown [156, 157, 230, 231] that the
experimental data, e.g., for pp and pp elastic hadron scattering at the ISR energies, have
behaved according to these theorems at most only in a very narrow interval of ¢ close to
t = 0 where the dominance of imaginary part may exist while fundamental deviations
may appear in a greater interval. Consequently, the application of the mentioned
assumptions to elastic hadron scattering at present energies in a broad interval of
momentum transfers can be hardly justified.

The mentioned standard properties of hadronic amplitude might seem, of course,
to be justified for the authors of the first papers analyzing the elastic pp scattering at
the ISR energies [16, 209-212]; consequently, they obtained the central profile function
of elastic hadron scattering D®(s,b) in the impact parameter space, represented by a
Gaussian function narrower than that obtained for inelastic one. All consequences have
been denoted as reliable results, even if the colliding protons have had to behave as
transparent objects in elastic collisions.

Similar amplitude characteristics have been used as a starting point of many analyses
concerning the elastic pp and pp scattering at different energies; see, e.g., [232-244].
These authors have tried to determine the elastic hadronic amplitude directly from the
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experimental data of ‘31—‘; provided the following assumptions were accepted [245]: the
elastic hadronic amplitude has been taken as smoothly energy dependent and purely
imaginary. Then the imaginary part has been parameterized by a sum of n (n < 5)

differently weighted exponentials in ¢:

Im FN(s,t) = ImFN(s,0) ) " a;(s)e N, (3.92)

J=1

The role of the real part has been admitted only as a small partial fraction of correspond-
ing imaginary part, i.e., the number of its contributing terms has been smaller than
n (as, e.g., in [234, 235, 239, 245]); or specified with the help of derivative dispersion
relations as in [233, 236-238, 242]. Also additional linear logarithmic t-dependencies
of all quantities ;(s) and quadratic logarithmic ¢-dependencies of all quantities «;(s)
have been introduced in order to better reproduce the corresponding differential cross
section. Similar behaviour of elastic hadronic amplitude has been also used in papers
(240, 241] where the model of stochastic vacuum to the pp and pp elastic scattering
has been applied to. The individual free parameters specifying the quantities «;(s) and
B;(s) have been determined by fitting measured differential elastic cross section.

However, as the FB transform of FN(s,t) (see egs. (B.9) and (3.66)) is additive and
as it holds (see formula (6.631.4) in [246])

r 1

[V AV O R = e,
J

0

final elastic impact parameter profile D® (s, b) must be interpreted as superpositions of
different central Gaussian functions with the maximum at b = 0; their shapes being
chosen from the very beginning as central. It is already the choice of the parameterization
of FN(s,t) which predetermined the result independently of actual values of the free
parameters.

Similar weak t-dependence of hadron phase (N(s,) in quite broad internal of lower
|t| values and imaginary part of FN(s,t) being equal to zero at the position of the dip
has been used in majority of contemporary published papers practically without any
deeper reasoning - see, e.g., [247, 248] and discussion of some other phenomenological
models in [48]. It means that in all cases the elastic collisions have been taken as central
from the very beginning.

However, the existence of minimum (dip) in the differential cross section observed
practically in all elastic hadron collisions (see, e.g., [7]) does not require zero value
for imaginary part of the amplitude; only the sum of the squares of both the real and
imaginary parts should be minimal at this point. The mentioned requirement that the
imaginary part should vanish at this point represents much stronger and more limiting
condition that the theory and experiment require.

It has not been respected at all, either, that a very different behaviour may be derived
with the help of a non-dominant imaginary part as it has been shown already earlier in
1981 [19]. In such a case a quite peripheral behaviour of elastic processes may be derived.
It has been shown then in [20, 156, 157, 249-251] that one may obtain a peripheral
picture of elastic hadron scattering for pp collisions at the ISR energies (53 GeV) and
for pp scattering at the energy of 541 GeV if the hadron phase (N(s,t) changes rather
rapidly (see the second term in eq. (3.81)). In peripheral case the imaginary part of
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the amplitude goes to zero at value of |t| ~ 0.1 GeV?. It means that the imaginary
part of the elastic hadronic amplitude may be dominant only in a very narrow region of
momentum transfers near the forward direction; the given behaviour of the hadron phase
(N(s,t) being still in a full agreement with the assertions of the mentioned asymptotic
theorems.

If one assumes that the measured elastic differential cross section is given by hadronic
interaction (Coulomb effects neglected), i.e., 42 = %, then according to eq. (3.12) the
measured differential cross section is determined only by the square of the modulus
}F N(s, t)‘ of elastic hadronic amplitude. As its phase (N(s,t) does not enter into the
calculations a conveniently parameterized t-dependence of the modulus alone can be
used for fitting the experimental data.

On the other hand for the determination of both the real and imaginary parts of
elastic hadronic amplitude the knowledge of its modulus is not sufficient; the behaviour
of t-dependent phase (N (s, t) should be known, too. Performing the FB transformation
of both of these parts the behaviour of all the profiles in the impact parameter space
may be determined. Thus the ¢-dependence of the phase (N(s,t) specifies the behaviour
of elastic hadron scattering in the impact parameter space.

If in fitting procedure some arbitrarily chosen parameterizations of both the imaginary
and real parts have been used as it has been done, e.g., in [232-244], then the dominance of
the imaginary part of elastic hadronic amplitude in a much broader region of momentum
transfers then needed has been implicitly incorporated; it has led to the central image of
elastic hadron collisions. Therefore, more general parameterizations of both the modulus
|FN(s,t)| and of the phase (N(s,t) should be preferred than those used in the quoted
papers.
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Chapter 4

Application of the eikonal model to
53 (GeV and 8 TeV pp data

4.1 Fitting procedure

It has been shown in sect. 3.3 that the recent analyses of both the ¢-dependent elec-
tromagnetic proton form factors showed some deviations from standardly used dipole
formulas. One may see in fig. 3.4 that the effective electromagnetic form factor has quite
different values than the widely used electric one for analysis of pp experimental data.
It is clear that the inclusion of magnetic form factor might have an impact also on the
results of analysis of elastic pp scattering data at high energies.

We have, therefore, performed new analysis of pp elastic scattering data at the
ISR energy of 53 GeV with the help of the eikonal model (see sect. 3.4) similarly as
it has been done in [20] but now with the help of effective electric form factors (3.41)
and effective electromagnetic form factors (3.40). Form factors GEN(¢) and GEN(t) (i.e.,
Borkowski’s et al. parameterizations (3.38) and (3.39) specified by parameters taken
from table 3.1) have been used for this purpose.

For both the form factors the description of pp elastic collision data based on hadronic
phase corresponding to the widely used assumptions (namely to the dominance of its
imaginary part in quite broad region around ¢ = 0) and leading to the central behaviour
of elastic collisions has been compared to the alternative peripheral description having
different ¢-dependence of the phase. In the peripheral case some new possibilities
corresponding to different values of 1/(b?)¢! have been newly performed.

Conveniently parameterized elastic hadronic amplitude FN(s,¢) have been fitted to
the measured pp elastic differential cross section at 52.8 GeV (denoted as 53 GeV) in
broad interval [t| € (0.00126,9.75) GeV? [8] with the help of eq. (3.12) and complete
amplitude FC+N(s,t) given by eqs. (3.53) and (3.54). The data include observed dip
at tqip = —1.375 GeV?, see the data points in fig. 4.1. The aim of the calculations at
53 GeV has been to produce also new numerical results (namely of the b-dependent
profile functions) suitable for comparison to corresponding results of Miettinen as many
contemporary descriptions of elastic scattering have been based on a quite similar
approach.

The results at 53 GeV have been then compared to similar analysis at much higher
energy of 8 TeV. Elastic pp differential cross section has been recently measured at LHC
by TOTEM at 8 TeV in the region 0.000741 < |¢| < 0.2010 GeV? [36] which contains
the Coulomb-hadronic interference region. Nearly exponential elastic pp differential
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Figure 4.1: Measured elastic pp differential cross section at 53 GeV and 8 TeV.

cross section at the same energy has been measured by TOTEM [35] in the region
0.027 < |t] < 0.2 GeV? (see fig. 2.28). These two data sets will be combined and
continuously extended by renormalized 7 TeV TOTEM data corresponding to the
region 0.2 < |t| < 2.5 GeV? [30] which contains dip-bump structure, see fig. 2.26. This
compilation of data will be denoted as “8 TeV data” in the following (only statistical
errors will be taken into account), see fig. 4.1. The extension by the renormalized 7 TeV
data is only an approximation since the measured data at 8 TeV in this region are not
(yet) available. This is also one of the reason why we will be more interested in overall
character of the elastic collision model fitted to data rather than in determination of
exact numerical values of some quantities.

The integral (t,¢') in eq. (3.54) have been analytically calculated using egs. (3.56)
to (3.60) and parameters from table 3.1 and then also compared to corresponding
numerical integration. All the fits have been performed by minimizing the corresponding
x? function with the help of program MINUIT [52, 54]. Quoted uncertainties have been
estimated with the help of HESSE procedure in MINUIT.

4.2 Energy of 53 GeV

4.2.1 Central case

The analysis of experimental data with the help of egs. (3.53) and (3.54) requires a
convenient parameterization of the complex elastic hadronic amplitude FN(s, ), i.e., its
modulus and its phase. The modulus may be parameterized as

[FN(s,t)| = (a1 + agt) 028508 (o) 4 opt) ehitdati+dat® (4.1)

The hadron phase (N(s,t) corresponding to the widely used assumptions leading to
central behaviour of elastic collisions in impact parameter space may be parameterized
as (see, e.g., [214])

N(s,t) = arctan — L0 (4.2)
1 _ t

tdip
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where tg;, = —1.375 GeV? is the position of the dip in data and py = p(t=0). All
parameters specifying the modulus and the phase of elastic hadronic amplitude FN(s,t)
may be energy dependent. Similar ¢-dependence of the hadronic phase has been used
in Miettinen’s calculations leading to the central behaviour of elastic collisions in
dependence on impact parameter. This parameterization reproduces the dominance of
imaginary part of elastic hadronic amplitude in a rather broad region of |t| and zero
imaginary part at position of the dip (¢ = t4;,) commonly assumed in many contemporary
phenomenological models (even if no reasoning of such strong and limiting assumptions
has been given). Such "standard” form of the phase leads to central behaviour of elastic
collisions as it has been demonstrated for several models at the LHC energies in [48],
see also sect. 3.6.

The fitted values of all free parameters are in table 4.1 for both the effective electric
form factor (Fit I) and effective electromagnetic form factor (Fit II). Both the fits are
quite straightforward (the functional ¢-dependence of the standard phase is very limited)
and very similar. Fig. 4.2 shows fitted elastic pp differential cross section d”g: - together
with corresponding Coulomb dg—tc and hadronic dg—? differential cross sections. The
corresponding elastic hadronic amplitudes for both the fits have dominant imaginary
parts in the large region of ¢ around forward direction which decrease with increasing |¢|
and vanish in the diffraction dip (as commonly assumed), see fig. 4.3.

Determined values of several physically interesting quantities calculated from the
fitted hadronic amplitude for each fit may be found in table 4.1. The total hadronic
cross section ™" has been calculated using the optical theorem (3.23), integrated elastic
hadron cross section o using the first equation in eq. (B.15) and inelastic o' as their
difference. The values of quantities 0**, p(t =0) and B(t =0) in table 4.1 may be
compared to similar values

el

o™ = 4238 +0.27 mb, p(t=0)=0.078 £0.010, B=13.1+0.2 GeV %  (4.3)

determined earlier in [252, 253] on the basis of the simplified WY formula (3.24).
However, the simplified WY complete amplitude (3.24) has been applied to only in the
very narrow region || € (0.00126,0.01) GeV ™2, while the Fits I and II have been realized
in much broader measured region of [¢| € (0.00126,9.75) GeVZ. While in eq. (3.24) it
has been assumed that p(t) (or (N(s,t)) and B(t) are t-independent the quantities in the
Fit I and II are ¢t-dependent, see figs. 4.3 and 4.4. Corresponding ¢t-dependent diffractive
slope defined by eq. (3.20) may be found in fig. 4.4. This figure shows that diffractive
slope is not constant in the analyzed region of ¢; therefore one of the assumptions used
in derivation of simplified WY complete amplitude (3.24) is not fulfilled. The simplified
WY complete amplitude does not hold and it cannot be used for the correct analysis of
experimental ((11—‘: data.

Values of mean impact parameters /(b2)tt, \/(b2)el, 1/ (b2)in¢l” determined with the
help of egs. (3.81) to (3.83) may be found also in table 4.1. It holds /(b2)¢l < /(b2)inel
i.e., elastic collisions according to this description should correspond in average to lower
impact parameters than average impact parameter corresponding to inelastic collisions
(~ 0.68 fm against ~ 1.09 fm). This centrality of elastic collisions may be further seen
from the profile functions DX(b) calculated as explained at the end of appendix B,
see fig. 4.5a. Elastic profile function D®(b) has Gaussian shape with a maximum at
b = 0. Some other b-dependent functions characterizing hadron collisions in b-space
which have been discussed in appendix B may be found in fig. 4.6a. The integrated
cross sections o* and mean impact parameters /(b2)X discussed above have been
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Fit I 11
Case central central
Form factor effective electric effective electromagnetic
£o 0.0763 + 0.0017 0.0766 + 0.0017
a1 12225 £ 24 12237 £ 24
sy [GeV ™2 10500 + 100 10440 £ 110
by [GeV 2] 5.908 £+ 0.019 5.909 + 0.022
by [GeV ] 3.760 £+ 0.075 3.757 + 0.087
b3 [GeV~E] 1.750 £ 0.058 1.757 £ 0.069
c1 -16 £ 21 -24 £+ 20
Co [GeV ™2 -82 + 14 -90 + 11
dy [GeV 2] 1.400 4 0.055 1.425 4+ 0.025
dy [GeV ] 0+ 0.014 0.0038 + 0.0086
ds [GeV~E] -0.0045 £+ 0.0012 -0.00430 + 0.00081
x* /ndf 326.763/205 323.268/205
p(t=0) 0.0763 £ 0.0017 0.0766 + 0.0017
B(t=0) [GeV 2] 13.517 £ 0.055 13.514 £ 0.050
o't [mb] 42.70 £+ 0.16 42.71 £ 0.15
ol [mb] 7.471 7.472
ginel [mb] 35.23 35.23
ocl/otet 0.1750 0.1750
doN/dt(t=0) [mb.GeV~? 93.70 93.74
\/<b2>tot‘ [fm] 1.027 1.027
(b?)e! [fm] 0.6764 0.6764
(h?)inel [fm] 1.086 1.086
D'**(b=0) 1.29 1.29
D (b=0) 0.536 0.536
Dmel(h=0) 0.753 0.753

Table 4.1: pp elastic scattering at energy of 53 GeV. Values of free parameters obtained
by fitting experimental data with the help of new formula (3.53) and (3.54), and values
of physically significant quantities characterizing the standard picture of elastic hadron
scattering in the impact parameter space.
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Figure 4.2: Eikonal model of Coulomb-hadronic interaction fitted to measured elastic pp
differential cross section at energy of 53 GeV in the interval [t| € (0.00126,9.75) GeV? for
central picture of elastic pp scattering (Fit II). All the Fits I - VIII give very similar figure.

also calculated integrating the corresponding profile functions D*(b) with the help of
egs. (3.72) and (3.80) leading to the same values.

It is evident from table 4.1 that the fitted quantities characterizing the elastic
hadronic amplitudes are practically unchanged when derived with the help of the proton
effective electric or the effective electromagnetic form factors.

4.2.2 Peripheral case

Next fits of the same differential cross section data have been performed similarly as in
the previous case but now with the different parameterization of elastic hadron phase

(to =1 GG‘VQ)

K

s t) =G+ G || ¢ (4.4)

t
Lo
enabling to include a fast increase of (N(s,t) with increasing [t| and, consequently, a
peripheral behaviour of elastic hadron scattering.

The parameterization (4.4) is much more general and flexible than (4.2) as it may
reproduce quite broad class of t-dependent functions which all fits measured data and
lead to either central or peripheral behaviour. To obtain peripherality we have required
V(B2 >/ (b?)mel and D®(b) to have its maximum at some non-zero impact parameter
b. However, the fit has not been unique. We have, therefore, further required value
of parameter ¢; to be around 2000 and 4/ (b?)¢! to be around 1.6, 1.75 and 1.9 fm and
looked for the values of all the free parameters separately in these 3 cases. If all these
additional conditions bounding the values of fitted free parameters have been imposed
on them corresponding unambiguous fits have been found®.

I Mathematically speaking one had to solve the problem of bounded extrema of the x? function, i.e.,
of the function of the n free parameters = (1, ..., £, ) which may be solved with the help of penalty
functions technique. If at the minimum of the x2 the values of the free parameters x are limited at point
7o by some condition g(x=x() then one may add to the minimized x? function additional function
[g(z) — g(x=x¢)]* * C,, where C,, is some chosen constant value (weight of the penalty function). In the
case of several limiting conditions the resulting penalty function is given by the sum of all individual
penalty functions which is added to the original x? during minimization. Performing the minimization

83



CHAPTER 4. Application of the eikonal model to 53 GeV and 8 TeV pp data

— peripheral
‘‘‘‘‘ central
= .
z
o
1.5 2.0 2.5 3.0 3.5 4.0
lt| [GeV?]

Figure 4.3: Elastic hadron phases (N (s, )
for central (Fit II) and peripheral (FIT VII)
pictures of elastic pp collisions at energy of
53 GeV. Both the Fits I and II leading to cen-
trality of elastic collisions correspond to the
same shape of the phase. The peak around
0.5 GeV? in the Fits III-VIII corresponding
to the peripherality changes slightly its maxi-
mum.
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Figure 4.4: t-dependence of elastic hadron
diffractive slopes B(t) for standard and periph-
eral pictures of elastic pp collisions at energy
of 53 GeV - Fit II (central) and Fit VII (pe-
ripheral), all the other fits give similar figure.
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Figure 4.5: Proton-proton profile functions at 53 GeV in the central and peripheral case
determined on the basis of egs. (3.73), (3.75) and (3.84). Full line corresponds to total
profile function, dashed line to elastic one and dotted line to inelastic one.

84



4.2 Energy of 53 GeV

0.4 : : ‘ ‘ ‘ 0.4
I~ \ - C - C
\ - -
0.3F Imh, || o3l Imh, ||
1 T Reny || | Reh,
\
e 9
02F "~
N
3
Y
0.1F N
AN
A
\\.
0.0 ,—/\._\‘~
—0.1 ‘
0 1 2 3 4 5 6
b [fm] b [fm]
(a) central case (b) peripheral case

Figure 4.6: Some additional functions characterizing pp collisions in dependence on
impact parameter at 53 GeV in the central and peripheral case.

Table 4.2 contains the results of three fits corresponding to the different values of
v/ (b?)¢! and the effective electric form factors (Fits I1I-V). In all the three fits it indeed
holds /(b%)el > (/(b?)inel ag required. Table 4.3 shows the results of the next three
analogous fits of peripheral elastic hadron pp collisions but with effective electromagnetic
form factor (Fits VI-VIII). These two tables also contain the final values of penalty
functions Ax? which are small compared to the y? values.

Differential cross sections 92~ , do%  and d"st corresponding to the Fits ITI-VIII

are very similar to those plotteddtin ﬁg.dil.Q; there is not any significant difference between
the central and peripheral cases. The diffractive slope B(t) for Fit VII is shown in
fig. 4.4; its t-dependence is quite similar for all the central and peripheral pictures of
elastic pp scattering discussed here. However, the phases (N(s,¢) in the peripheral fits
are very different than in the central case already at very small values of |¢|, see fig. 4.3.
It may be interesting to note that the central phase does not fulfill Martin’s theorem
[254] (derived later in 1997) requiring the real part of elastic hadronic amplitude to be
zero at smaller value of [¢|. The theorem is fulfilled, however, in all the peripheral cases.

For the total y/(b%)tt practically the same value of ~ 1.02 fm has been obtained in
all the Fits I - VIII. As to the numerically greater values (~ 1.6 + 1.90 fm) of /(b?)!
in the peripheral cases it is given by the second term in eq. (3.81) representing the
influence of the phase; inelastic /(b?)*¢! being correspondingly lower.

The profile functions in fig. 4.5b for the Fit VII. Fig. 4.6b shows some other functions
corresponding to the Fit VII and further characterizing hadron collisions in dependence
on impact parameter b. Quantitatively similar plots may be obtained also for the other
peripheral fits. It may be seen from fig. 4.5 that even if data may be fitted in the
central and peripheral cases equally well the behaviour of proton collisions in impact
parameter space is completely different. In the peripheral case one may obtain elastic
profile function D®(b) having its maximum at some b > 0. The non-zero function c(s, b)
discussed in sect. 3.6 and shown in fig. 4.6 in the peripheral case enables to define

procedure one can significantly influence the way how the position of the minimum can be achieved.
When performing several successive minimizations one has to decrease successively the values of all the
penalty constants C), in such a way that the position of the minimum is being preserved. Using this
approach the added value of total penalty function Ax? may become finally very small compared to
the value of pure 2.
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non-oscillating and non-negative profile functions. In the central case the function c(s, b)

plays much less significant role.
Similarly as in sect. 4.2.1, it has been checked for all the Fits III-VIII that after

integration of profile functions DX (b) according to eqs. (3.72) and (3.80) one obtains
the same values of integrated cross sections o* and mean impact parameters 1/ (b2)X as
in tables 4.2 and 4.3.
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4.2 Energy of 53 GeV

Fit
Case
Form factor

II1
peripheral
effective electric

v
peripheral
effective electric

Vv
peripheral
effective electric

Co

0.0793 £ 0.0018

0.0795 £ 0.0018

0.0801 £ 0.0018

G 2000 =+ 12 2000 4 12 2000 =+ 12
K 3.256 4 0.086 3.226 + 0.082 3.148 £ 0.059
v [GeV~2] 7.93 £ 0.39 7.72 £ 0.35 7.69 4+ 0.17
a 12205 + 25 12209 + 23 12225 4+ 17
as [GeV~2] 10640 4 100 10650 =+ 100 10630 + 130
by [GeV~2] 5.877 4 0.019 5.876 & 0.020 5.873 4 0.018
b [GeV™Y] 3.528 + 0.073 3.531 £ 0.075 3.524 £ 0.064
bs [GeV~F] 1.579 £ 0.052 1.582 4 0.054 1.581 4 0.042
c1 34 + 23 31 + 21 19 £ 17
Ca [GeV~2] 43 + 30 45 + 24 -60.6 + 3.8
d; [GeV~2] 1.24 +0.24 1.25 £ 0.19 1.353 4 0.073
ds [GeV—Y] -0.013 & 0.040  -0.012 £ 0.035  0.004 + 0.026
d3 [GeV~®]  -0.0046 4 0.0026 -0.0046 + 0.0025 -0.0038 + 0.0023
X2 /ndf 264.49/202 265.78,/202 269.8/202
Ax? 0.42 0.63 4.1
p(t=0) 0.0795 £+ 0.0017  0.0797 + 0.0018  0.0802 =+ 0.0018
B(t=0) [GeV~2] 13.444 £+ 0.042  13.445 + 0.042  13.443 + 0.037
otot [mb] 42.79 £ 0.17 42.79 4 0.15 42.80 £ 0.12
o°! [mb] 7.512 7.513 7.517
oinel [mb] 35.274 35.28 35.29
ol /gtot 0.1756 0.1756 0.1756
doN/dt(t=0) [mb.GeV~? 94.14 94.16 94.22
V/ (b2)tet [fm] 1.024 1.024 1.024
(b2)el [fm] 1.602 1.736 1.902
(b2)inel [fm] 0.8513 0.7933 0.7078
Dt (b=0) 1.30 1.30 1.30
D (b=0) 0.0611 0.0613 0.0664
Dl(h=0) 1.24 1.24 1.23

Table 4.2: pp elastic scattering at energy of 53 GeV. Values of free parameters obtained
by fitting experimental data with the help of formulas (3.53) and (3.54) for complete elastic

amplitude with electric effective form factors.

Values of physically significant quantities

characterizing the peripheral picture of elastic hadron scattering in the impact parameter

space.
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Fit VI VII VIII
Case peripheral peripheral peripheral
Form factor effective ‘ effective ‘ effective .
electromagnetic  electromagnetic  electromagnetic
Co 0.0798 £ 0.0018  0.0800 + 0.0018  0.0804 + 0.0018
G 2000 £+ 12 2000 + 12 2000 £+ 12
K 3.254 4+ 0.073 3.225 + 0.066 3.175 + 0.058
v (GeV 2] 7.92 + 0.34 7.70 + 0.29 7.56 £ 0.23
ay 12189 + 15 12190 + 20 12194 + 15
as (GeV 2] 10704 4+ 91 10720 + 140 10727 £+ 88
by (GeV 2] 5.864 + 0.020 5.865 + 0.023 5.864 + 0.020
bo (GeV ] 3.477 + 0.073 3.474 + 0.084 3.468 £+ 0.071
b3 (GeV~E] 1.538 £ 0.051 1.535 £ 0.063 1.533 £ 0.050
c1 53 £ 11 53 £ 16 52 £+ 10
Co (GeV 2] -1.44+76 -1+ 10 -3.1+£73
dy (GeV 2] 0.77 + 0.14 0.76 £ 0.35 0.79 + 0.14
do (GeV ] -0.061 + 0.037 -0.062 4+ 0.062 -0.061 4+ 0.034
ds (GeV~E] -0.0068 £ 0.0029 -0.0068 =+ 0.0045 -0.0068 4 0.0027
x?%/ndf 259.69/202 260.16,/202 263.37/202
Ax? 1.29 0.31 2.67
p(t=0) 0.0799 + 0.0018  0.0802 £ 0.0018  0.0806 4 0.0018
B(t=0) (GeV 2] 13.417 £+ 0.041 13.420 £+ 0.048 13.421 £+ 0.040
otot [mb] 42.795 + 0.090 42.80 + 0.13 42.809 £ 0.087
ol [mb] 7.525 7.525 7.527
el [mb] 35.27 35.28 35.28
ol /gtot 0.1758 0.1758 0.1758
do™ /dt(t=0) [mb.GeV~? 94.18 94.21 94.26
V/ (b2)er [fm] 1.023 1.023 1.023
(b2)el [fm] 1.612 1.746 1.908
(h?)inel [fm] 0.8456 0.7868 0.7023
D**(b=0) 1.30 1.30 1.30
D (b=0) 0.0606 0.0625 0.0783
Dinel(h=0) 1.24 1.24 1.22

Table 4.3: pp elastic scattering at energy of 53 GeV. Values of free parameters obtained by
fitting experimental data with the help of formulas (3.53) and (3.54) for complete elastic ampli-
tude with effective electromagnetic form factors. Values of dynamical quantities characterizing
the peripheral picture of elastic hadron scattering in the impact parameter space.
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4.3 Energy of 8 TeV

To understand better the dependence of various characteristics of pp collisions on
collision energy the eikonal model has been applied also to recent experimental data at
8 TeV (see sect. 4.1) very similarly as it has been done at the energy of 53 GeV. In this
8 TeV case the results corresponding only to effective electromagnetic form factors will
be shown.

The hadronic amplitude FN(s,t) parameterized according to egs. (4.1) and (4.2)
has been fitted to 8 TeV data, see fig. 4.7. In this case the fit (denoted as central) is
quite straightforward (unique) as it was at 53 GeV. Using parameterization of F™(s,t)
given by eqs. (4.1) and (4.4) one may again find several peripheral alternatives; only
one example fit having been chosen. In both the fits (central and peripheral) values of
parameters dy and d3 have been chosen to be zero and not varied during the fit.

The values of all the fitted parameters may be found in table 4.4. In both the central
and peripheral cases the fitted hadronic phases (N(s,t) in fig. 4.8 and diffractive slopes
B(t) in fig. 4.9. In the peripheral case one may again observe steep increase of the phase
with rising |¢| similarly as in at 53 GeV, see fig. 4.3.

In table 4.4 one may further find several interesting hadronic quantities. One
may see that it indeed holds 4/(b?)¢! < 4/(b?)"¢l in the denoted central case and
V(B2 > (/(b?)nel in the peripheral one (as required). The corresponding b-dependent
profile functions in fig. 4.10. Some other b-dependent functions further characterizing
the collisions in dependence on impact parameter in fig. 4.11.

It may be seen from fig. 4.12 that the ”Coulomb-hadronic” ¢-region is much broader
at 53 GeV then at 8 TeV. Only few points corresponding to do“*N/dt > do™/dt are
available at 8 TeV (and with higher statistical uncertainty than at 53 GeV). It implies
much more ambiguity on separation of Coulomb and hadronic effects at 8 TeV than at
53 GeV.

The results concerning the central and peripheral fits of the same experimental data
at 8 TeV obtained in this section are consistent with the very recent results determined
by TOTEM in [36] where one may find also estimation of uncertainties of various
quantities.

Strong dependence on collision energy of some physically significant hadronic quan-
tities characterizing pp collisions may be seen from tables 4.1 to 4.4 where one can
compare the numerical values at two very different energies. E.g., the value of total cross
section at 8 TeV is more than twice greater than at 53 GeV (= 42 mb vs. ~ 103 mb).
The increasing value of proton total cross section with rising collision energy is known
already for quite a long time, see also fig. 2.30, but it is still not fully understood.
It is, e.g., not clear how the dependence looks like at even higher collision energies
(especially in the limit y/s" — 00). Measured elastic pp scattering at even higher collision
energy may provide important experimental input to solve some of the corresponding
open questions®. The question of energy dependence of some quantities (e.g., total
cross section) should be addressed together with several open fundamental problems in
contemporary descriptions of elastic collisions which will be discussed later in chapter 6.

2TOTEM at LHC has recently (October 2015) performed measurement of pp elastic scattering at
13 TeV which might be quite useful in this respect.

89



CHAPTER 4. Application of the eikonal model to 53 GeV and 8 TeV pp data

) 10* ‘
10t : d C+N d
10° N (IUC+N(t)/dt O'C (t)/dt
20 % 94
— 181 R doC(t)/dt c\‘T dUN(t)/dt
T ' - - doN(t)/dt
- 0T | o 0/
8 o datado(t)/it]| O 1 1 datado(t)/dt
g 107 E
= 107° S
f\\ 1074 =
N 10—5 \g
T s =
1077 ..... el 1 B
10-8L L L L 102 . . ! L
0.0 0.5 10 15 2.0 0.000 0.005 0.010 0.015
lt] [GeV?] It [GeV?]
(a) 8 TeV, full fitted t range (b) 8 TeV, region of very low values of |¢|

Figure 4.7: Eikonal model fitted to measured pp elastic differential cross section at energy of
8 TeV in the central case (the peripheral case having similar ¢-dependence): (a) - full fitted
t-range, (b) - zoom to very small values of |t|. Individual points - experimental data, full line -
Coulomb-hadronic elastic differential cross section do®*N(t)/dt given by eikonal model and
fitted to the experimental data, dotted line - Coulomb differential cross section do®(t)/dt,
dashed line - hadronic differential cross section do™(t)/dt.
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Case central peripheral
effective effective
Form factor electromagnetic electromagnetic
0o 1.3488e-1 -
Laip [GeV?] -0.53 (fixed) -
Co - 0.14013
(1 - 1.4520e3
K - 2.5290
v [GeV 2] - 9.4511
ay 6.6577€e8 6.6046e8
as [GeV—2 1.6419¢9 1.7098¢9
by (GeV 2 8.2651 8.1147
by [GeV 9.1852 7.1060
bs (GeV 0 14.567 11.479
1 1.6486e7 2.6603e7
Co (GeV 2 -2.8896e7 -6.8805e6
dy (GeV 2 2.7272 2.3998
ds [GeV ™1 0 (fixed) 0 (fixed)
ds (GeV 6 0 (fixed) 0 (fixed)
ototN [mb] 103.4 104.0
o°bN [mb] 27.7 28.0
el [mb] 75.7 76.1
do™N/dt(t=0) [mb.GeV~? 556 564
p(t=0) 0.135 0.141
B(t=0) (GeV 2] 21.0 20.7
V/ (b2)ter [fm] 1.28 1.27
(b2)el [fm] 0.879 1.97
(h?)inel [fm] 1.40 0.882
D**(b=0) 2.01 2.05
De(b=0) 1.02 0.180
Del(b=0) 0.983 1.87

Table 4.4: Values of free parameters of elastic hadronic amplitude FN(s,t) in the
central and peripheral case as fitted to measured pp elastic differential cross section
at 8 TeV and corresponding values of some physically interesting hadronic quantities.
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Figure 4.10: Proton-proton profile functions at 8 TeV in the central and peripheral
case. Full line corresponds to total profile function, dashed line to elastic one and
dotted line to inelastic one.
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Figure 4.11: Functions ¢(s,b), Im hy(s,b), Re hi(s,b) and g1 (s, b) in dependence on
impact parameter at 8 TeV in the central and peripheral case.
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4.4 Summary
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Figure 4.12: Elastic pp differential cross sections at 53 GeV and 8 TeV
- region of the lowest measured ¢ values (8 TeV part being above 53 GeV
part). Dashed (resp. solid) vertical line corresponds to ¢ value for which
do®/dt ~ doN/dt at 53 GeV (resp. 8 TeV).

4.4 Summary

The measurement of elastic differential cross section Ccll—‘z represents main source of

experimental data for the analysis of elastic processes of protons. The goal of quantum-
theoretical description consists in separating Coulomb and elastic hadronic collisions
and determining elastic hadronic amplitude FN(s, ), from which conclusions concerning
structure (or hadronic interaction) of colliding particles should be derived. However,
there has not been any actual theory until now which would reliably determine its
corresponding t-dependence.

In the past the simplified approach of West and Yennie has been made use of for
separation of Coulomb and hadron interactions. However, this method is not theoretically
consistent and is not in sufficient agreement with the measured data. It contains many
limitations as it has been discussed in sect. 3.2. It has been applied to the analysis of
the data only in a very narrow region of momentum transfers in forward direction and
the influence of Coulomb scattering at higher values of momentum transfers has been
always neglected by definition. The elastic scattering at higher values of momentum
transfer has been always described phenomenologically as purely hadronic scattering.
Such a duality approach in the description of elastic hadron collisions can be hardly
justified.

The eikonal model approach, based on the complete elastic scattering amplitude
FCHN(s, 1) fulfilling eqgs. (3.53) to (3.55), provides more reliable basis for analysis of elastic
collisions of (charged) hadrons. In principle it is established on the fact that the common
influence of the Coulomb and hadronic elastic scattering can be reliably described
by the sum of the Coulomb and elastic hadronic eikonals and without any a priori
limitation on t-dependence of the elastic hadronic amplitude. However, in such a case
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the complex hadronic component FN(s,¢) cannot be uniquely established; in principle,
only its modulus may be determined from experimental differential cross section while
the t-dependence of its phase has been only partially limited when Coulomb-hadronic
interference (the region of very small |¢|) has been taken into account.

In the majority of published analyses of experimental data the corresponding freedom
has been, however, strongly limited by the choice of amplitude parameterization. The
imaginary part has been assumed usually to be dominant in a great interval of ¢t and
vanishing in the diffractive minimum; with the real part determining the non-zero value
of differential cross section in the diffractive minimum; see, e.g., the earlier papers [16,
128, 209-214], [255-263] and also recent papers [232-244, 247, 248, 264]. Only a very
small change of phase with rising |¢| has been allowed in a great region of |t|. The
so-called central behaviour in impact parameter space has been then obtained in such
a limited case; elastic processes being more central (i.e., existing for very small b even
at b = 0) than inelastic ones. Transparent elastic processes may be hardly brought to
agreement with the existence of inelastic processes when hundreds of particles have been
formed at the same energy in many other collision events. Description corresponding to
these widely used assumptions has been fitted to experimental data at energy of 53 GeV
in sect. 4.2.1 and at 8 TeV in sect. 4.3.

Much more general parameterization of the hadronic amplitude FN(s,t) has been
used in sect. 4.2.2 and sect. 4.3. A rather steep rise of phase (N(s,t) with increasing
|t| already at very small values of |t| has been allowed. It has been possible to obtain
strongly peripheral impact parameter profile for elastic processes at both the analysed
energies.

It has been shown how to solve the problems concerning the oscillating profiles (at
finite energy), even if the given questions require a deeper analysis. The determined total,
elastic and inelastic profile functions (under different assumptions) strongly characterize
behaviour of proton collisions in dependence on impact parameter. It has been shown,
too, at both the analysed energies, that inclusion of the effective electromagnetic form
factor into the description instead of just the effective electric one does not substantially
influence the determined hadronic quantities. One should be, however, aware that the
electromagnetic form factors in ep and pp processes need not be the same, which should
be tested in the future.

It is possible to say (against earlier conviction) that there is not any reason against
more realistic interpretation of elastic processes when protons are regarded as rather
compact (non-transparent) objects. The central and peripheral fits at 53 GeV performed
in this chapter will be further discussed and compared to corresponding results of
Miettinen in chapter 5.
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Chapter 5

Centrality or peripherality of elastic
collisions?

Basic experimental characteristic established in elastic collisions of protons has been
represented by measured differential elastic cross section. In the case of unpolarized
proton beams its t-dependence has exhibited very similar structure in all cases at
contemporary high energies: there has been a dip-bump or shoulder structure following
the diffraction peak characterizing the behaviour at small || (close to ¢t = 0) practically
for all colliding hadrons [7-12], see the data points at 53 GeV and 8 TeV in fig. 4.1
as example. If the influence of Coulomb interaction (existing mainly in the region of
very small deviations) has been separated the elastic hadronic differential cross section
has been represented by the modulus of corresponding amplitude (see eq. (3.12)). It
means that the modulus of amplitude has been strongly constrained by the given
experimental data while the corresponding phase (see eq. (3.18)) has remained in
principle undetermined (limited only by optical theorem, imaginary part of amplitude
at t = 0 corresponding to total hadronic cross section).

It was probably the main reason why in the first analyses the phase of elastic
hadronic amplitude was taken as t-independent in a small interval around zero; see
the approach of WY [14] (1968) summarized in sect. 3.2 where the phase has been
taken as t-independent in the whole region of kinematically allowed values of ¢. The
simplified formula (3.24) of WY was used as standard tool in the era of the ISR mainly
for determining total (hadronic) pp cross section from measured elastic scattering at very
low values of scattering angle. However, it has been shown later that several important
and very limiting assumptions have been involved in the approach of WY, see sect. 3.2.
Most importantly, the dependence of elastic collisions on impact parameter has not been
taken into account in the approach of WY at all.

The influence of impact parameter value on hadronic collisions was not considered
in the first descriptions (phenomenological models) of elastic scattering, even thought
the individual collision results depend surely strongly on it. As it has been mentioned
in Introduction, one of the first discussion concerning the influence of impact parameter
and interpretation of (elastic) hadronic collisions in b-space has been done by Miettinen
[15, 16, 209] (1973-1975). According to his papers a rather great ratio of elastic processes
should correspond to central collisions; around 6% of all collisions should be elastic
even at impact parameter b = 0 (i.e., head-on collisions) in the whole ISR energy range
(approximately 20 — 60 GeV).

The given results followed from profile functions (called b-dependent overlap functions
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Vs =53 GeV
pp - scattering

Im hel (S,b)
Inelastic
X8| Elastic

Figure 5.1: Impact structure of pp scatter- BLACK DISK LIMY

ing at /s' = 53 GeV derived by Miettinen
[15]. Characteristics in b space are presented:
imaginary part of elastic hadronic ampli-
tude (corresponding to total profile function
eq. (3.69) in our notation) and b-dependent
elastic and inelastic overlap functions (elastic
and inelastic profile functions in our terminol-
ogy). The “black disc limit” indicates value 1
assumed to correspond to the maximum value
of inelastic overlap (profile) function allowed ' 0
by unitarity (100% absorption). b (fermi)

Overlap function G (s,b)

by Miettinen) determined on the basis of FB transformation (3.66) and unitarity
condition (3.68). The inelastic profile function was then identified by Miettinen with
inelastic probability function P™¢(b) and subtracted from 1 (”black disc limit” assumed
to represent the maximum value of the inelastic profile function allowed by unitarity -
100% absorption).! According to fig. 5.1, a Gaussian shape having maximum at b = 0
and decreasing with increasing b has been obtained for the profile (probability) functions
of inelastic as well as elastic collisions.

It is not, however, clear from [15, 16, 209] why the elastic probability at b = 0 was
calculated from the inelastic one (it was put P(b=0) = 1 — P™°!(b=0)) and not directly
taken from elastic profile (probability) function which was also established and which
had the value of approximately 50% at b = 0 (which is very different value than the
previous 6%). It has not been explained, either, why total profile function being the sum
of elastic and inelastic profile (probability) functions (imaginary part of elastic hadronic
amplitude Im he (s, b) in Miettinen’s notation, see fig. 5.1) has been significantly greater
than 1 at values of b < 0.6 fm.

The suggested central character of elastic collisions (according to [15] p. 6: "hadrons
seem to be rather airy objects’) was very confusing due to the fact that the single
inelastic diffraction seemed to be peripheral (see again [15] or, e.g., Giovannini et al. [17]
from 1979). Such significant different physical interpretations of elastic processes and
inelastic diffraction processes (mainly single diffractive) having very similar dynamics

!Definition of black disc model may be found in [149]. Colliding particles have been represented
by discs of finite radius R such that for impact parameters b < R only absorption (inelastic) events
have been allowed and for b > R there has not been any hadronic interaction at all. In such a case
one would expect corresponding elastic cross section being zero. However, the elastic channel has been
opened in the given mathematical description when corresponding elastic scattering amplitude was not
chosen to be zero; the elastic cross section in black disc model has been taken as one half of the total
cross section corresponding to the disc.
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Model \/<b2>tot‘ \/<b2>el‘ \/<b2>ine1‘
Bourelly et al. 1.249 0.876 1.399
Petrov et al. (2P)  1.227 0.875 1.324
Petrov et al. (3P)  1.263 0.901 1.375
Block et al. 1.223 0.883 1.336
Islam et al. 1.552 1.048 1.659

Table 5.1: Values of root-mean-squares of impact parameter (in
femtometers) predicted by several contemporary phenomenological
models of pp collisions at collision energy of 14 TeV. All the models
predict 1/(b2)el’ < /(b2)inel’ i.e.; central behaviour of elastic hadronic
scattering [48, 49].

may hardly correspond to reality. This kind of ”transparency” of protons (in elastic
collisions) has been denoted as a puzzling question, too, already at that time (see, e.g.,
Giacomelli and Jacob [18], 1979) as it may be hardly accepted for collisions of two
matter objects (when in other collision events hundreds of other fundamental particles
may be produced).

The result of Miettinen concerning behaviour of collisions in impact parameter space
(shape of profile functions) has followed mainly from assumptions that have limited the
phase (N(s,t) as he used hadronic phase of the "standard” shape, see our comments
next to eq. (4.2); in his papers the used parameterizations, fitted parameters and several
other details of his calculations have not been, unfortunately, explicitly mentioned. It
is, therefore, not so surprising that our profile functions in the central case shown in
chapter 4 (obtained in eikonal approach) are similar to that of Miettinen (see fig. 4.5a
and fig. 5.1); both the approaches have been based on very similar assumptions (some
differences existing but with quite minor impact on the result).

Very similar approach as that of Miettinen has been commonly used up to now by
many other authors. Different parameterizations of the (”standard”) hadronic phase
(N(s,t) which assume (under influence of WY approach) the dominance of imaginary
part of elastic hadronic amplitude at ¢ = 0 and in a quite wide region of higher values of
|t| have always been applied to. This is also, e.g., the case of recently published papers
[243, 264] where one may find (elastic) profile functions at 53 GeV very similar to those
of Miettinen. As to some other contemporary descriptions of elastic scattering suggested
by other authors they have been analyzed at the LHC energies in [48]. All these models
assume the "standard” form of the hadronic phase; all of them also lead to the centrality
of elastic collisions as it has been demonstrated in [48], see table 5.1 for corresponding
values of root-mean-squares of impact parameter.

In [19] (1981) it has been shown that the assumptions of t-independent hadronic phase
(t-independent quantity p) and purely exponential modulus ‘F N(s, t)‘ (t-independent
diffractive slope B) included in the simplified formula (3.24) of WY have led to the given
central character of elastic collisions. It is evident that the centrality of elastic collisions
has been derived on the basis of a number of assumptions (having influenced mainly
the phase) that have not been sufficiently specified and reasoned; the b-dependence of
elastic collisions having not been considered at all.

The following question has been then solved in [19] (in 1981), i.e., what ¢-dependence
of the phase (N(s,t) is to be if elastic processes might be interpreted as peripheral (or
even more generally what must be changed in a given theoretical framework to obtain
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more acceptable behaviour of elastic collisions in dependence on impact parameter). It
has been shown that peripheral interpretation of hadronic collisions may be obtained if
the phase has strong t-dependence (see also [249] from 1987). The result concerning
peripherality in [19] has been obtained without taking into account Coulomb-hadron
interference. In chapter 4 it has been shown that one may obtain similar result if
Coulomb interaction has been included on the basis of interference formula (3.53), see
figs. 4.3 and 4.8 (and also [20] from 1994 and [251] from 1992).

To interpret elastic hadron collisions as peripheral has gained support also in the
analysis of elastic hadron processes between light nuclei. Franco and Yin [265, 266] (1985-
1986) studied the elastic scattering of o particles on various targets (‘H, 2H, *He, *He).
They tried to reproduce the momentum transfer distribution of elastic collisions of the
two objects composed of individual nucleons using the Glauber model approach [193, 267].
As an input they used the ”elementary” nucleon-nucleon elastic scattering amplitude,
assuming (in the first approximation) to be the same for all possible combinations of
nucleons involved in the scattering. The data were selected in order to have practically
the same energy per one nucleon. They obtained an agreement with experimental data in
all considered types of scattering if they introduced the strongly t-dependent elementary
elastic hadron phase of the form (N(s,t) = L + const with || > 10 GeV~2. Such a
simple t-dependence of the phase together with a purely exponential ¢-dependence of
the corresponding modulus was chosen in order to perform analytically all the needed
integrals involved in the Glauber model approach. Their elementary nucleon - nucleon
elastic scattering amplitude had imaginary part vanishing at [t| < 0.1 GeV?, which
corresponded to the result obtained in [19, 156, 157).2

The formulas (3.81), (3.83) and (3.82) determining root-mean-squares of impact
parameter \/(b?) corresponding to elastic, inelastic or total hadronic events have been
derived in [216] (2002). They have allowed testing whether a given ¢-dependent hadronic
amplitude FN(s,t) leads to central or peripheral behaviour of elastic collisions without
the need to establish the whole profile functions, see sect. 3.4.3. In the quoted paper
it has been shown that similar results to the behaviour of pp collisions in the impact
parameter space mentioned up to now were obtained in the case of elastic pp scattering
at energy of 541 GeV, too (see also [20]).

The mean impact parameters of total, elastic and inelastic processes 1/ (b?)X have
been defined with the help of eq. (3.80) where n = 2 and w(b) = 2wb. The factor
w(b) = 27wb has corresponded to the assumed weight of initial two-particle states (of
their impact parameter values) in corresponding experiment. Such a definition of mean
impact parameters has been commonly used in the past [19, 197, 216, 217] as it has been
assumed that the profile functions had some meaning of probabilities or distributions of
impact parameter value b. This definition of mean impact parameter with w(b) = 27b
depends, however, rather strongly on the b-dependent frequency of produced two-particle
collisions.

For discussion of centrality and peripherality of elastic collisions (reflecting different
instant structures and orientations of colliding particles) it seems, however, to be more
suitable to put w(b) = 1 in eq. (3.80). Comparison of the corresponding numerical values
of mean impact parameters with w(b) = 27wb and w(b) = 1 in the central Fit IT and
peripheral Fit VII discussed in chapter 4 may be found in table 5.2. One may see that

2The technique similar to the Glauber approximation has been also used by Franco [203] (1973) in
re-deriving the WY integral formula for the relative phase (3.17) appearing in the Coulomb-hadronic
interference.
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Fit I1 IT VII VII

Case central central peripheral peripheral
w(b) 1 2mh 1 27h
Vet [fm]  0.726  1.03 0.723 1.02
(b2)el [fm] 0.473  0.676 1.19 1.75
(b2)imel [fm]  0.800 1.09 0.647 0.787
(b)tet [fm] 0.579  0.910 0.577 0.907
(b)e! [fm] 0376  0.595 0.956 1.47
(b)inel [fm] 0.655  0.977 0.532 0.937

Table 5.2: Comparison of different definitions of mean impact parameter
values corresponding to total, elastic and inelastic scattering calculated on
the basis of eq. (3.80) for n = 1,2 and w(b) = 1 or w(b) = 27b in the central
Fit II and peripheral Fit VII of pp data at 53 GeV discussed in chapter 4.

the values are quite different; both the definitions have also different physical meaning.

One may also calculate in both the fits the mean impact parameters using n = 1
instead of n = 2 in eq. (3.80) (for both the weights w(b)) as it is common in mathematics
for definition of mean value of random variable. The numerical values of (b)X might
be then compared to values of /(b?)X | see table 5.2. The values of "mean impact
parameters” might be very different according to chosen definition. For the two fits
from chapter 4 the mean impact parameter corresponding to elastic collisions remains
lower (greater) than for the inelastic case in the central (peripheral) fit independently of
the chosen definition.

It has been shown in chapter 4 that measured elastic differential cross section
at given energy may be fitted as central or peripheral according to assumptions (or
parametrizations) influencing ¢-dependence of phase; the corresponding profile functions
commonly interpreted as some probabilities or distribution functions of impact parameter
might be very different. One of the main and very basic problems lies in the fact that
the theory of elastic collisions has been introduced in particle physics with strict analogy
to description of some optics phenomena (light meeting an obstacle of a given profile
which describes its absorptive properties), see [128]. However, in the case of particle
physics it has never been shown in sufficient details why the profile functions should have
the meaning of distribution functions of impact parameter of total, elastic or inelastic
events or that they should have meaning of some probabilities. The physical meaning of
the commonly calculated profile functions in particle physics is quite unclear.

It is evident that a number of important open questions and problems exists, which
should be solved before one will be able to get some really reasoned conclusions concerning
the structures of corresponding particles; some of them will be discussed in next section.
There is not, however, any doubt that it is the analysis based on impact parameter
representation of incoming collision states that has opened quite new insight.
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Chapter 6

Open problems in contemporary
descriptions of elastic collisions

In the preceding we have tried to show main results concerning proton structure and
corresponding characteristics derived from elastic collision data on the basis of eikonal
model introduced in [20]. The results of elastic collisions have been interpreted on the
basis of eikonal model, of course, also in the framework of other theoretical approaches.
In these cases the eikonal model has not been used, however, for a construction of
the complete elastic scattering amplitude F©+N(s,t) (i.e., for description of common
influence of both Coulomb and elastic hadronic scattering, see sect. 3.4) but for a
construction of elastic hadronic amplitude FN(s,t) only. The Coulomb effect has been
usually added using the WY approach described in sect. 3.2.

One of the recent attempts [268-270] to interpret elastic hadronic scattering has been
done within the standard Regge pole model; it has been endeavored to determine the
final hadronic effect as the sum of eikonal contributions corresponding to the exchange
of different (pomerons or others) trajectories. All of the individual contributions have
had a typical central Gaussian shape in the impact parameter space which has held
for the resulting eikonal 6™ (s, b), too. Corresponding elastic profile function D® (s, b)
has had, therefore, also Gaussian shape leading to central behaviour of elastic collisions
in dependence on impact parameter [48]. Hadronic amplitude FN(s,t) has been then
determined on the basis of eq. (3.43). The influence of Coulomb scattering has been
finally described within the standard WY approach.

The analysis of results obtained in elastic collision experiments at LHC has been
done on the basis of similar Reggeon trajectories also in papers [271] and [272]. The
corresponding model has been more complex being based on three channel eikonal
model trying to describe also single diffraction collision. The limitation concerning the
existence of central elastic collisions has remained, as in the previous case.

Similar eikonal model approach has been used, too, in so-called QCD-inspired model
of Block et al. [273-276]. Also in this case the eikonal model has been used for specifying
the elastic hadronic amplitude FN(s,t) on the basis of eikonal function 6™ (s,b) and
eq. (3.43). The interaction between hadrons has been defined in terms of the interactions
of their constituents (quarks and gluons) corresponding to hadronic eikonal function.
The model has been applied to elastic pp scattering at 7 TeV LHC energy [276]. Very
similar multichannel eikonal approach has been also used in the already mentioned paper
[264].

All these models have been proposed, of course, earlier; it has been demonstrated
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in [48] that they have given central elastic scattering; no attention has been devoted
to this fact in original papers, even if some b-dependent characteristics have been
calculated. In both the kinds of these eikonal approaches (Regge and QCD-inspired
models) the peripheral interpretation might be undoubtedly obtained, too, if they were
correspondingly generalized.

In the corresponding experiments we need to establish the complex scattering
amplitude FN(s,t) from the measured elastic differential cross section. However, from
experimental data it is possible to determine practically the modulus of this amplitude
only; the shape of phase has not practically any relation to experimental data. Its
t-dependence has been usually strongly limited by other (often latent) assumptions.
However, the t-dependence of phase determines central or peripheral character of the
collisions. The given behaviour has been then strongly influenced by a very limited
parametrization of free (fitted) functions in the standard approach, while in the model
applied to in chapter 4 much more broader parametrization of elastic collisions has been
made use of.

However, the results derived from corresponding experimental data have been in-
fluenced also by some theoretical assumptions contradicting experimental conditions.
The attention to one mistaking assumption (admission of infinite impact parameter)
has been called in [36] concerning the recent results at 8 TeV obtained by TOTEM
experiment at the LHC at CERN. In the quoted paper the comparison of standard
central behaviour of elastic collisions with the peripheral one obtained with the help of
the eikonal model discussed in this paper has been presented, too.

There are, however, other problems and open questions in contemporary theory of
collision processes which will be introduced and discussed in the following:

1. Coulomb interaction and experimental conditions
In experimental analysis it is always necessary to "subtract” the effect of Coulomb
interaction of charged particles which is currently done under assumptions being
in partial disagreement with corresponding experiments.

(a) (Non)divergence att =0

The Coulomb differential cross section has always been assumed to be given
by eq. (3.26), i.e., diverging at ¢t = 0. Contemporary Coulomb-hadronic
interference formulas include integration over the corresponding diverging
t-dependence of Coulomb amplitude (which has been also the case of both
egs. (3.24) and (3.53)). However, such a dependence does not correspond to
conditions in any relevant experiment as the singular point ¢t = 0 may exist
only for events corresponding to infinite impact parameter value while in real
experiments corresponding values are to be less than micrometers.

(b) Multiple collisions
In real experiments very small deviations (scattering angles) should be de-
scribed rather as the sum of multiple Coulomb scattering of one particle at
higher yet possible impact parameters and of standard Coulomb scattering
of two colliding particles. It means that also the ¢-dependence of elastic
hadronic cross section in the region of the smallest measured deviations might
be strongly influenced by subtraction of the given Coulomb interaction effect.
The effect of multiple scattering was discussed already by Rutherford, Geiger
and Marsden when they started to interpret first fixed-target experiments
in 1911, see [1]. It has been taken into account in some other analyses of

102



fixed-target experiments in order to determine corresponding characteristic
of only single scattering. It should be considered also in colliding-beam
experiments.

(c) Electromagnetic form factors
The dependence of Coulomb interactions on impact parameter has not been
satisfactorily taken into account probably not only in elastic pp scattering but
also in elastic ep scattering for determination of electromagnetic proton form
factors (e.g., in [189] the influence of impact parameter on particle collisions
not having been mentioned at all, either).

2. Different mechanism of Coulomb and strong forces

One should ask, too, whether the standardly used Coulomb-hadronic interference
formulas have described the given collision data in full agreement with reality when
the corresponding forces have had very different characteristics. The Coulomb
force acts at any distance being efficient practically during the whole evolution
time while the hadronic force should be interpreted rather as a contact force being
efficient for a very short time interval at very small impact parameter values only.
One should, therefore, ask how much the contact hadronic interaction may be
influenced by earlier Coulomb interaction acting at greater distances.

3. Weak interaction

The existence of some weak forces (their range being probably limited similarly as
for strong ones) has been standardly considered in the description of fundamental
particles but until now the elastic hadron collisions have been interpreted as
superpositions of strong and Coulomb interactions only. Considering corresponding
problems in a much broader context (see, e.g., probable dimension of hydrogen
atom and the distances of hadronic objects in solid substances [24]) one may come
to the conclusion that the proton might interact also weakly at greater distances,
the strongly interacting matter being surrounded by other matter interacting
only weakly. One should, therefore, ask whether the hadronic collisions are not
influenced more by such a weak interaction than by Coulomb force.

4. Properties of S matriz and structure of Hilbert space

It is also the usual definition of S operator that should be newly analyzed and
tested. If the collision processes are to be represented in a Hilbert space correctly
the initial and final states should be represented by vectors in two mutually
orthogonal subspaces (see, e.g., [277, 278] and also [24, 279, 280]). The given
Hilbert structure has been, however, excluded by Bohr in 1927 [281] who asked
for the Hilbert space representing the evolution of any physical system to be
spanned always on one basis of Hamiltonian eigenvectors (instantaneous states of
incoming and outgoing particle pairs having always been represented by the same
vector). The S matrix in Bohr’s Hilbert space may, therefore, hardly represent
the transition probabilities from initial state to final one

Pisy = [(fIS 1D (6.1)

as it is usually assumed. There is also problem with the interpretation of §
matrix unitarity. It will be probably necessary to define a transition operator
between incoming and outgoing states (i.e., between two mutually orthogonal
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Hilbert subspaces) caused by a ”contact” force; however, it will be hardly possible
to ask for it to be unitary (see [51]).

Optical theorem

All contemporary models of elastic hadron collisions have been based on validity of
optical theorem which correlates the total cross section to the value of imaginary
part of elastic amplitude at one point (¢ = 0), see eq. (3.23). The theorem has been
taken from optics and applied to strong interaction collisions while any proof of its
validity in strong interactions (particle physics) has not been given until now, see
[51] (and also [50, 282, 283]) for detailed discussion. It has been shown in [51] that
the attempts to prove optical theorem in particle physics assume unitarity of S
matrix (given by eq. (3.65)) and initial state(s) not properly distinguished according
to impact parameter. Another problem is related to the fact that the so-called
"non-interacting” final states have been arbitrarily interchanged with elastic states
at t = 0. Both the cases correspond to zero scattering angle but the corresponding
states have completely different frequencies in experiments, which has not been
respected and taken into account. Detailed discussion of these problems and some
others may be found in [51] where one may find also historical context (see also
[284]). The impact of the constraining optical theorem in contemporary models
is not quite clear as it is accompanied by other assumptions. It has, however,
strongly influenced contemporary extrapolations of elastic hadronic amplitude to
t = 0 (choice of its parameterizations) since its first application to experimental
data. One should, therefore, look for description without this limitation and make
corresponding comparisons.

Determination of b-dependent probability functions of hadron collisions

If the colliding objects are not spherically symmetrical and randomly oriented
in space in the time of collision then one may expect that the particles collide
elastically at a given value of impact parameter with some probability P°(b).
Miettinen tried to identify (without any justification) profile functions with the
corresponding probabilities but without sufficient reasons. Even if profile functions
(or other b-dependent quantities) have been calculated by many authors up to now
it has been quite rare to find in corresponding papers at least some comments
related to the actual meaning of these functions. Their relation to clearly defined
b-dependent probabilities of corresponding collisions has not been given, which
has strongly limited the possibilities of interpreting measured collision data, see
chapter 5.

Distribution of elastic scattering angles for a given impact parameter

In description of elastic collisions one should take into account correlations between
impact parameter value of colliding particles and angle deviations (values of t) of
scattered particles, i.e., correlations between initial and final elastic states. Two
particles may interact elastically at impact parameter b with probability P¢(b)
and be scattered with a value of ¢ in (rather broad) t-range. The corresponding
t-distribution at each value of b may be denoted as dy(t). This ¢-distribution is
different from that corresponding to t-dependent differential cross section (3.12)
(elastic hadronic amplitude FN(s,t)) as the later one does not correspond to only
one value of b. Standardly used FB transformation (3.66) and (3.74) connecting
t-dependent elastic hadronic amplitude with b-dependent may, therefore, hardly



provide basis for determination of the functions P°(b) and dj(t).

It is evident, due to the mentioned problems, that the usually applied theory of
elastic collisions has remained practically in its initial stage. Many assumptions have
been made use of to obtain agreement with some experimental data without testing
their conformity with other experimental observations. Any assumptions concerning the
structures of colliding objects have not been practically tested.

Any progress in the given area may consist evidently in abandoning corresponding
mistaking assumptions and in analyzing systematically the dependence of collisions on
impact parameter. Assumptions without clear physical meaning (arbitrarily chosen
mathematical conditions like, e.g., a priori assumed t-dependence of elastic hadronic
amplitude) should be substituted by new assumptions with direct relation to correspond-
ing possible particle structures; purely mathematical-phenomenological descriptions
should be substituted by ontological models of physical reality, see [285]. The outcome
of collision models fitted to experimental data should have clear relation to particle
structure while, e.g., the quantity p(¢t = 0) commonly calculated up to now under
influence of the approach of WY (see sect. 3.2) does not have such property. Any model
of elastic collisions (even if based possibly on very different assumptions) should analyze
collisions in dependence on impact parameter and be able to determine b-dependent
probability function P°(b) and the t-distribution dy(¢) that might be further discussed
as they strongly reflect the structure of colliding particles. It is necessary to evaluate
newly all assumptions concerning description of elastic scattering, which includes the
commonly applied optical theorem, too.

In the next chapter a very preliminary version of a model corresponding to the
mentioned requirements will be presented. It is based on simple assumptions concerning
some b-dependent collision characteristics that might be expected on the basis of
ontological approach that represents the backgrounds of classical physics.
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Chapter 7

New probabilistic model of elastic
collisions

We have seen in chapter 6 that one of the main problems of contemporary descriptions
of elastic particle collisions has been related to the fact that the influence of impact
parameter has not been systematically taken into account. Some b-dependent functions
have been derived but their physical meaning have been very unclear. Even if the
given physical process has been commonly denoted as probabilistic the corresponding
probabilities in dependence on impact parameter (or transition probabilities of initial
state to final one) have not been determined from corresponding experimental data.

To overcome the mentioned difficulties new probabilistic model of elastic particle
(proton) collisions has been recently proposed in [24] (some very first ideas may be found
in [23]). In the quoted papers the model has been applied for guidance to a smaller
part of elastic pp collisions data obtained at CERN ISR at the center-of-mass collision
energy of 52.8 GeV (denoted also as 53 GeV).

In the following the model for short-ranged hadron (proton) collisions will be described
to a greater detail (see sect. 7.1) and applied to the experimental data in wider region
of |t| values, see sect. 7.2. Some new open questions will be then discussed in sect. 7.3.
Several concluding remarks will be contained in sect. 7.4.

7.1 Model formulation

7.1.1 Basic ideas

To obtain some further information about structure of particles from their mutual elastic
collisions at given collision energy three important points concerning description of this
physical process in dependence on impact parameter should be taken into account:

1. Different frequency of initial two particle collision states distinguished by impact
parameter
Initial two particle collision states are distributed according to experimental
conditions and the corresponding b-distribution need to be taken into account
correspondingly in descriptions of elastic collisions in order not to mix events at
different impact parameters (see also comments related to factor w(b) in chapter 5).

2. b-dependent probabilities of collisions
In the collisions of two hadrons (protons) at higher energies two different (elastic
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and inelastic) processes may exist. In standard ontological approach the collisions
at very small impact parameter values should be mainly inelastic, while at higher
impact parameters the elastic processes should prevail. No hadronic collisions
should then exist at impact parameter values greater than 6™ corresponding
to maximum dimensions of colliding objects (range of short-ranged hadronic
interaction). If the colliding hadrons are taken as normal matter objects, e.g., of
ellipsoid-like shape (differently oriented in the space) then we may assume, too,
that b-dependent probability of hadronic (elastic or inelastic) interaction P**(b)
will be a non-increasing function of b € (0,6™*). It is also natural to expect
similarly that the ratio of elastic to total probability P™(b) at given b will be
non-decreasing in the same impact parameter interval. The probability of elastic
collision P¢(b) at given impact parameter is then given by product of the two
monotone functions

P°(b) = P™(b) P™(b). (7.1)

The probability of inelastic processes as a function of impact parameter b may be
then defined as (conservation of probability)

P (b) = P*%(b) — P°(b). (7.2)

For short-ranged (contact) hadronic processes it should always hold P**(b) =
Pel(b) = Pel(b) = 0 for any b > b™**. It is evident that it should hold further:
Pt(b) =1 and P™*(b) =0 at b = b™** and P™*(b) =0 and P**(b)=1at b=0
(head on collisions). The values of the probabilities P*'(b), P°(b), P (b) and
function P (b) may lie in the interval (0,1) in dependence on b € (0, b™>).

3. Distribution of elastic scattering angles for a given impact parameter
It is necessary to admit (for non-spherical particles) that initial two particle states
characterized by a given b value may pass in the case of elastic processes to a
continuous set of ¢ values (if P°'(b) > 0, the elastic probabilities at the limits of
the given interval will tend to zero). The corresponding t-distribution dy(t) of ¢
values for given impact parameter b (discussed in chapter 6) will have maximum
at certain value of ¢(b).

It is generally assumed that all hadrons consist of other objects that are bound
strongly together. It holds also for protons which means that some changeable internal
structures are to exist, which may influence the results in individual collisions, too.
The contemporary models describe the corresponding processes practically in a phe-
nomenological way representing individual colliding objects by one common average
mathematical function. It will be shown in the following that more realistic description
may be obtained if the existence of different internal structures will be taken into
account. The measured elastic differential cross section of two colliding hadrons should
be then interpreted as the sum of elastic collision channels corresponding to different
combinations of internal hadron states.

There are, therefore, two main assumptions in the new model of elastic (hadron)
collisions based fully on ontological approach:

1. hadrons may exist in different internal states which may behave differently in
mutual collisions

2. the probability function P'**(b) should be non-decreasing and the function P™*(b)
non-increasing in the interval (0, 6™**) for each corresponding collision channel
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7.1 Model formulation

The model will be described in more details in the following.

7.1.2 Frequencies and maximal dimensions of hadron states

We shall assume that the collision characteristics may be significantly influenced also by
the instantaneous states of colliding hadrons and denote the corresponding probabilities
(frequencies) of these states as py (>, pr = 1) for one particle and p; (3>, pr = 1) for
the second one. If two particles of different types (e.g., proton and pion) collide then
the individual probabilities of corresponding collision channels r;; are equal to pgp;. In
the case of two particles of the same type (e.g., two protons) one may write

Tki = : (7.3)
201D 1fk%l,]€<l

The factor 2 in the last relation follows from the fact that for £ # [ the cases with
interchanged collision types k, [ and [, k are the same and the corresponding probabilities
may be summed, but in such a case it is necessary to introduce convention k£ < [ to count
each distinct collision type only once. The two indexes k and [ in r;; may be, therefore,
substituted for convenience by only one index j using a one-to-one correspondence
(k,1) > j. It holds 3, r; = 1 if we sum over all possible collision types.

If we take the strong interaction as contact one (short-ranged) the maximum effective
impact parameter for which two hadrons may still interact in their mutual collisions is
equal to

X (dy 4 dy) 2. (7.4)

where dj (d;) represents maximum size (dimension) that the corresponding hadron
structure may exhibit. The two indexes k and [ in D'} may be again substituted for
convenience by only one index j (b'i* < 07**). The value of b7** may be, therefore,
different for each j collision channel; it holds also for the b-dependent probabilities and

other functions introduced in sect. 7.1.1.

7.1.3 Impact parameter and corresponding values of scatter-
ing angle

For the sake of simplicity we shell assume in the following that the value ¢;(b) represents
the only t value for a given impact parameter and collision channel. The corresponding
monotonic inverse function may be denoted as b;(t). The ¢-distribution d, ;(t) for a given
j-th collision channel (as well as t-distribution dj(t) corresponding to all j channels and
which has been mentioned in chapter 6) is given by a Dirac delta function in this special
(simplified) case.

7.1.4 (Differential) cross sections and other hadronic quanti-
ties

It is then possible to write for elastic hadronic differential cross section corresponding to
j-th collision channel

doj'(t) db;(t) el
T = 2mhi(t) == B (05(1) (7.5)
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where the factor 27b represents frequency (weight w(b)) of initial collision states dis-
tinguished by impact parameter if the colliding particles are distributed uniformly in
cross plane. This assumption represents good approximation in the case of short-ranged
hadronic interactions in collision experiments where non-zero collision probabilities
correspond to impact parameters less than several femtometers; the problem would be
more complicated in the case of long-ranged Coulomb interaction. The elastic hadronic
differential cross section of colliding protons is then given by the sum of individual
contributions of all individual collision types

do™(t) do(t)
— = ; : 7.6
dt ;” dt (7.6)

The values of individual integrated cross sections may be calculated from corre-
sponding probabilities for given j-th collision channel as (collision type X = tot, el or

inel)

pmax

oXN = or / " bdb PX(b). (7.7)
0
Total, elastic and inelastic hadronic cross sections averaged over all j collision channels

are then given by
X,N
oN = eraj : (7.8)
J

If two hadrons collide at given impact parameter b then the mean (overall) probability
of individual collision kinds will be expressed as a weighted sum of all the individual

hadronic collision channels
PX(b) =) i Pr(b). (7.9)
J

Function P™'(b) mentioned in sect. 7.1.1 may be then defined using eqs. (7.1) and (7.9).
Integrated cross sections given by eq. (7.8) may be written also as

pmax

oN = 2r / bdb P*(b). (7.10)
0

To characterize further the behaviour of hadronic collisions in impact parameter
space on the basis of the probabilistic model one may define n-th moment (n > 1) of
impact parameter b for different processes (X = tot, el or inel) in individual collision
channels as

. pimax
. O O R OLAOLE -
T TumPX o) bjmfaxw(b)PX(b)db |
0 0 J
and corresponding averages over j for different processes as (using eq. (7.9))
Frw®PXB)a 1, bjf b w(b) PX(b)db
(X =2 - Objmx . (7.12)

w(b)PX(b)db ST Of w(b) PX(b)db

The mean impact parameters given by egs. (7.11) and (7.12) may be again calculated
for comparison with the factor (weight) w(b) = 1 and w(b) = 27b as it was discussed in
chapter 5.
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7.1.5 Coulomb and hadron interaction

If two protons collide then in addition to hadronic force the elastic collision process is
influenced significantly also by Coulomb interaction mainly in the region of very small
|t| values. There is, however, great difference between these two kinds of interactions.
While the Coulomb interaction acting also at rather great distances is usually taken as
being well described with the help of potential formed by electrically charged matter
objects the potential interpretation may be denoted as only approximate in the case of
strong interactions, as it is evident that this interaction is to be taken practically as zero
at any distance greater than dimensions of corresponding objects. Some new possibility
of describing this contact characteristics of this strong force should be looked for.

The Coulomb and hadronic collision kinds may be taken, therefore, practically as
mutually independent at high collision energies. The corresponding probabilities of the
Coulomb or hadronic collisions in dependence on impact parameter may be summed for
any impact parameter value at high collision energies (at least in a good approximation).
The hadronic interaction is described using the j collision channels. To describe also the
Coulomb effects separately for these collision channels would be needlessly complicated
as the given contribution concerns rather small values of || where only very small
differences between individual channels may be expected. Consequently, we shall write
for the elastic differential cross section which takes into account also Coulomb effect:

do“™N(t)  do™(t) N do(t)
dt dt dt

=3 dai(t) + 90 (7.13)

dt

where the Coulomb differential cross section will be established in sect. 7.2 directly as a
part of fitted experimental data (measured do“*+N(¢)/dt).

In such a case it is, of course, necessary to devote sufficient attention to the parame-
terization of corresponding Coulomb part of fitting formula. It will be admitted to play
a role only in the interval of very small values of |¢|. It is further necessary to realize that
it is not possible to use usual t-dependence of Coulomb differential cross section (3.26)
requiring infinite value at ¢t = 0 as such ¢ value may occur only at impact parameter
values going to infinity. However, in any real collision experiments the corresponding
impact parameter values are limited by maximal distances between individual colliding
objects in corresponding targets. It is evident that a great part of corresponding events
will then represents the results of several subsequent collisions, see one of the problems
discussed in chapter 6. Consequently, the region of very small (practically unmeasurable)
values of |t| may be represented approximately by a constant (maximum) value of
do®(t)/dt followed by steeper decrease with rising |¢|. Single Coulomb scattering should
then exist, which should be respected in the given formula, too.

There is no doubt that such a description of Coulomb effect is currently only very
phenomenological and more detailed study should be devoted to interpretation of
measured elastic differential cross section at very low values of || in the future as will
be further commented later in sect. 7.3.
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7.2 Application of the probabilistic model to exper-
imental pp data at 53 GeV

7.2.1 Choice of data and parameterizations of corresponding
functions

As we have already mentioned, the given probabilistic model has been applied in [23]
and then also in [24] to the pp data represented by measured elastic differential cross
section obtained earlier at CERN ISR [8] at the energy of 52.8 GeV (denoted also as
53 GeV). The eikonal model has been applied to the same data in chapter 4. It has
been shown in [24] that two proton states exhibiting the largest dimensions may be
responsible for the part of measured elastic differential cross section data corresponding
to [t| € (0.00126,1.25) GeV? (|t| = 0.00126 GeV? being the lowest measured value at the
given collision energy). In the following a more detailed analysis will be presented. We
will show that if a further (third) proton state is taking into account then we may describe
the measured elastic differential cross section in wider interval of [¢t| € (0.00126, 5.) GeV?
which includes also observed dip-bump structure around ¢t = —1.375 GeVZ.

If one proton in a k-state (k=1,2,3) collides with another proton in a [-state (I=1,2,3)
we may define collision channel j using one-to-one correspondence (k,l) <> j (where
k < 1) which will be used in the following: (1,1) <> 1, (1,2) <> 2, (2,2) <> 3, (1,3) <> 4,
(2,3) +» 5 and (3,3) <> 6. We have thus 6 different hadronic collision channels that will
be used to fit the given part of measured elastic differential cross section.

To apply the model to experimental data represented by measured elastic pp dif-
ferential cross section it is necessary to parameterize suitably all corresponding func-
tions needed to calculate Coulomb-nuclear differential cross section given by eq. (7.13).
Our aim consists in describing truly the corresponding dependences. Consequently,
our parametrization will be rather general. First of all flexible representations of all
monotonous functions P;°*(b), Pj*'(b) and b;(t) must be chosen; the following parame-

J
terizations will be used for the 6 individual collision channels

1 if 0 <b< pjo
Pt () — (1+uj,3) if 1o < b < bmax (7.14)
J (i1 0=ng )% 15,3 ) ’ |
0 if b > b
(1 + Vj72)

rat .
Py (b) = (vj.o(pmex—p)) it (7.15)

e + V2

|75| 1/, 1/
A 7.16
<>\j,0> ]) (716)

where p0.3, Vj0.2 and Ao o are free parameter sets that are to be determined from
experimental data for each collision channel (j =1, ...,6) together with free parameters
Pk and dk (/{Z = 1,2,3)

The remaining function which needs to be parameterized in applying our model
to experimental data is Coulomb differential cross section do®(t)/dt. The following

™

2
b(t) = b7 <— arccos
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parameterization has been chosen

do(t) 1+
g~ ot 771|t\)m
1+
+ Cu(Golt)® & (7.17)

Gl ¢,

where (, =1 mb.GeV~? and No..4 and (p. 4 are additional free parameter sets.

In the presented preliminary model of hadron (pp) collisions some quite new phys-
ical ideas are considered and tested to initiate further study with the help of other
experimental data (e.g., at different collision energies or for different particles). The
number of free parameters used in the corresponding analysis may seem to be rather
high. However, if the goal does not consist in testing some simplified mathematical
model but actual complex physical mechanism is to be truly described the number of
parameters should be regarded as quite irrelevant, especially if the possibilities of a new
model in description of experimental data are to be demonstrated.

7.2.2 Elastic differential cross sections

The probabilistic model of elastic pp collisions characterized by eq. (7.13) has been fitted
to experimental data at the given energy in the interval of |t| € (0.00126, 5.) GeV?.
Elastic hadronic differential cross sections do} (t)/dt given by eq. (7.5) are plotted for all
6 distinct collision channels in fig. 7.1. The proper contributions of individual hadronic
channels to measured differential cross section have been obtained after multiplying the
pictured dependences by corresponding probabilities 7;. The complete differential cross
section doC*N(t)/dt represented in the figure by full line is in good agreement with the
experimental data.

Separated Coulomb and nuclear elastic differential cross sections at lower values of
|t| are plotted in fig. 7.2. One may see that at very low values of |t| the Coulomb effect
prevails and exhibits some strong decreasing |t|-dependence. The elastic hadronic differ-
ential cross section rises from zero value of |¢| which is completely different ¢-dependence
than the commonly assumed (quasi)exponential dependence in all contemporary models
based on optical theorem (optical theorem not having been applied to in our probabilistic
model for the reasons given in chapter 6). In the region of very small values of |¢| it
holds do™(t)/dt ~ r1dol(t)/dt. The hadronic effect is then responsible for all higher
values of [t|.

The dip-bump structure in the measured elastic differential cross section is shown in
fig. 7.3. It is formed by hadronic collision channels j = 4,3 and 5 in our fit; their proper
contributions after multiplying by r; being plotted.

The Coulomb interaction being responsible mainly for the lowest values of |t| may
be then described by formula (7.17) with the following values of free parameters:

no = 1070 mb.GeV 2,
m = 1.63 x 105 mb.GeV™*,

1y = 388,
ns = 1.42 x 10° GeV 2,
ns = 0.291
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Figure 7.1: Proton-proton elastic differential cross sections at energy of 53 GeV in proba-
bilistic model. Individual points - experimental data, full line - probabilistic model fitted to
experimental data, other lines - individual hadronic collision channels (top - individual differ-
ential cross sections da?(t) /dt, bottom - hadronic contributions 1“jd0§\I (t)/dt to the differential

cross do©tN(t)/dt).
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Figure 7.3: {-region around dip-bump

structure in elastic pp scattering at 53 GeV;

collision channels j = 3,4 and 5.

and

Co = 4.00 x 103GeV 2,

¢ = 0.291,
G =146 x 1072,
(3 =176 GeV 2,
¢ =1.33.

The numerical values of free parameters and other quantities characterizing the hadronic
part will be presented in the following.

7.2.3 Characteristics of individual hadronic channels

The maximal dimensions of individual proton structures established on the basis of
fitting the probabilistic model to the given experimental data are

dy = 1.976 fm, dy = 1.960 fm, d3 = 1.948 fm
and the corresponding probabilities are
p1 = 0.63, ps =0.23, p3 =0.076.

The probabilities of individual collision channels given by parameters r;, see eq. (7.3),
are shown in table 7.1. Corresponding maximal effective impact parameters b7 at
which protons may still interact strongly (calculated with the help of eq. (7.4)) are shown
in table 7.1, too; they equal approximately 2 fm, being slightly different for individual
collision channels j. Total, elastic and inelastic hadronic cross sections having been
calculated on the basis of eq. (7.7) for all considered collision channels j are also given
in table 7.1.

According to our very rough model the proton at the moment of interaction with
another proton may be in one of the three considered internal states with probability
p1+ p2 + p3 = 0.93. It means that in 7% of cases the proton is to be in different internal
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j 1 2 3 4 5 6 56
k1 L1 1.2 2,2 1,3 2,3 3,3 i=1
T 1] 039 0.28 0.051 0.095 0.034 0.0057 0.86
pmax [fm] 1.976 1.968 1.960 1.962 1.954 1.948 -
ooty [mb] 87.0 60.4 58.6 46.8 35.2 32.4 -
ot [mb] 17.2  1.03 8.02x107* 864x 1072 648 x 10~* 4.65x10~* -
ety [mb] 69.7 59.4 58.6 46.8 35.2 32.4 -
rio N [mb] 34.1 17.1 3.00 4.44 1.20 0.186 60.0
rios [mb] 6.76 0.291 4.104x 1075 819 x 107 2.22x 107 267 x 1075 7.06
ot [mb] 27.3 16.8 3.00 4.43 1.20 0.186 52.9
G oEN i
26” I 1] 057 0.29 0.050 0.074 0.020 3.1x107% 1
j=1"3%;
el,N
% 1] 096 0041 58x10% 12x10° 31x10°% 38x1077 1
=173
yinel,N .
ey 1 052  0.32 0.057 0.084 0.028 35x107% 1
=170
j= J
b)tet — [fm] 0.833 0.696 0.684 0.612 0.531 0.509 -
J
(b)¢! I [fm] 159 1.50 1.55 1.34 1.25 1.21 -
(byine! S [fm] 0.746 0.689 0.684 0.611 0.531 0.509 -
\/<b2>;0t [fm] 0.964 0.806 0.791 0.708 0.616 0.591 -
@< I [fm] 159  1.50 1.55 1.34 1.25 1.21 -
3
(b2)inel [fm] 0.862 0.798 0.791 0.707 0.616 0.590 -
OFE T [fm] 112 0.933 0.915 0.819 0.714 0.684 -
() I lfm] 159 150 1.55 1.34 1.25 1.21 -
(byine! 5 [fm] 0996 0.923 0.915 0.818 0.714 0.684 -
\/<b2>;.°t‘ o [fm] 118 0992 0971 0.870 0.760 0.727 -
[S3
s 9 [fm] 160 1.50 1.55 1.34 1.25 1.21 -
(p2)imel = [fm]  1.06  0.980 0.971 0.869 0.761 0.727 -

Table 7.1: Values of some physically significant quantities characterising proton-proton
collisions (individual hadronic collision channels) obtained as a result of the probabilistic model
fitted to corresponding experimental data at energy of 53 GeV.

w(b) 1 27h
byt [fm] 0.752  1.02
(b)e! fm] 1.58 1.59
(b)inel fm] 0.703 0.946
SO [fm] 0.877  1.09
®) [fm] 1.59  1.59
V@) [fm] 0.816  1.01

Table 7.2: Comparison of different definitions of mean impact parameter
values corresponding to total, elastic and inelastic hadronic scattering
calculated on the basis of eq. (7.12) for n = 1,2 and w(b) = 1 or w(b) = 27b
in the probabilistic model fitted to pp data at 53 GeV.
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states. As to the collision processes the given 6 hadronic channels correspond to the
probability Z?Zl r; = p? + 2p1pa + P + 2p1ps + 2paps + p3 = 0.86. The additional
internal states may be responsible for measured differential cross section outside the
t-range considered by us (for [t| > 5. GeV?); partially also in combination with the three
already considered proton states.

It means that the actual total and inelastic cross sections will be higher than
the values introduced in table 7.1: o™tN > Z 705N = 60.0 mb (resp. o™ >

Z? rjot = 52.9 mb), while the increase of elastic hadronlc cross section will be
negligible: ¢*N ~ 39 =170 JEIN = 7.06 mb. The contributions of collision channels

j=3,..,6 to o™~ are negligible, see table 7.1. The values of integrated cross sections
corresponding to averaged values over the 6 collision channels may be compared to the
values from our previous analysis based on the eikonal model, see table 7.2.

The b-dependent monotonous functions Pj°*(b), Pi*(b) and b;(t) given by eqs. (7.14)
to (7.16) for all the hadronic channels are plotted in ﬁg 7.4. The corresponding values
of free parameters may be found in table 7.3. The basic properties of probabilities of
total, elastic and inelastic events in dependence on impact parameter are quite similar
for all the 6 collision channels and may be demonstrated using hadronic collision channel
J = 1 which also contributes the most to the average behaviour of hadron collisions
(averaged over the 6 collision channels) as it is the most frequent collision channel.

The three monotonous functions for 7 = 1 are shown in fig. 7.5 where also probabilities
Pl (b) and Pi"¢l(b) have been added. The greater change concerns the function Pgl(b)
(defined by eq. (7.1)); its maximum value (0.8 at around b = 1.6 fm) diminishes rather
strongly for greater j values. This value b = 1.6 fm represents also approximate average
value of impact parameter for elastic processes, see the values for j = 1 in table 7.1
and the average values over all the 6 considered j channels in table 7.2. The plot
also shows that the probability of inelastic collision Pi*!(h) and the total probability
Pi°*(b) are practically equal to 1 for impact parameters lower than approximately
1.4 fm; the probability P¢(b) of elastic events being practically zero in this interval. For
all considered elastic hadronic channels the non-zero values of Pf'(b) exist at impact
parameters greater than approximately 0.75 fm, which may represent an additional
important information in studying more detailed proton structure.

Probabilities of total, elastic and inelastic hadronic collision PX(b) and ratio Pt(b)
given by eqgs. (7.1) and (7.9) are plotted in fig. 7.6. Probability P**(b) is 0.86 at b =0
which corresponds to Z?Zl r;, i.e., to the fact that only 3 internal proton states (6
collision channels) have been considered in our fit. As one can see from the plot the
elastic probability P¢(b) is maximal at b = 1.6 fm which corresponds again to the
already mentioned mean impact parameter of elastic collisions.

To characterize further basic behaviour of hadronic collisions in the impact parameter
space one may calculate mean values of impact parameter for total, elastic and inelastic
collisions according to eq. (7.11) for n = 1,2 and weight w(b) equal to 1 or 27b with

result shown in table 7.1. It holds ()¢ > (b)i*! and \/ <b2>§1‘ > \/ <b2>ij“e1‘ for each

j j

j-th collision channel. The same relation holds also for corresponding average values
calculated using eq. (7.12), see table 7.2, i.e., elastic collisions are in average more
peripheral than inelastic collisions (independently of used definition of mean impact
parameter in this case). Values of mean impact parameters in table 7.2 may be compared
to corresponding values in table 5.2 obtained on the basis of the eikonal model applied
to the same experimental data.

117



CHAPTER 7. New probabilistic model of elastic collisions

102 102
() M TS ] 10
~ee Ty {10!
0.8} 1 0.8} 1
10° {10°
> J=1 g > g
£ 06} plot § ] % £ 06} é >
3 - SR VRO - S L
g P Al = 35 Al =
- 3 S
& -— ) = =z & = =
0.4 El = 0.4 B =
102 {1072
0.2 0.2 1
1073 {107
0.0 mememm e 4104 0.0 mem e e e ) 3104
0.0 0.5 0.0 .0
10° 10°
1.0 —_— R q 1.0F
T ey, ; {10! J10!
0.8} : E 0.8}
4100 10°
= J= « N « g
= 06 _ Plet g 1 %) = 06 g, %}
g ; < e 3 < J1m S
8 P Al = < Al =
x -—  |talb = S = =
O o4l 0l 1 2 &gyl =
41072 1072
0.2} 0.2}
{10°® 1079
0.0f -o-mieemns e EEEIRSTTRIPer > N Py 0.0 : : . . 10-4
0.0 0.5 2.0 0.0 . . . 2.0
10% 10%
10 1.0
110! 110!
0.8} 1 0.8 1
{100 {100
z Lo g
£ 061 ;é q (% = 06 é q 8
o = -1 o = —1
< J10'< S 110712
g MUE g &l s
o = a =z
0.4 4= 0.4 4=
{1072 {1072
0.2} 1 0.2 1.
110+ 110+
0.0 , ; . M Py 0.0 . foome? n NI PP
0.0 . I . 2.0 0.0 . . . 2.0

Figure 7.4: The shapes of all parameterized monotonous functions for individual collision
channels fitted to experimental data. Full lines - Pj°*(b), dash-dotted line - Pf*(b), dotted lines
- |t;(b)|; individual points - experimental values of |t| corresponding to b values in individual
channels.
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] 1 2 3 4 5 6
o [fm] 0.543 0.857 0.850 0.814 0.270 0.723
prov(p)  Hia [fm™'] 105 178 285 353 127 3.24
J wia (1] 6.72 535 342 3.02 826 3.80
wis (1] 25.1  0.151 50.2 21.1 0.975 0.241
vio [fm™'] 198 226 431 203 178 1.84
PR b) vy (1) 816  6.77 342 649 691 564
via (1] 0.0993 4.27 933 50.7 151 2.67
Mo [GeV?] 443 384 30.0 40.0 207 234
bi(t) A1 [1] 0.703 0.686 0.597 0.712 144 1.19
N2 (1] 438 364 1.76 411 556 4.03

Table 7.3: Values of free parameters of monotonous functions P} (b), Pf*(b) and
b;(t) characterising hadronic pp collisions at 53 GeV in the impact parameter space
for all 6 considered collision types given by parametrizations (7.14), (7.15) and (7.16).
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Figure 7.5: Probabilities in dependence on impact parameter b for hadronic
collision state j = 1 and function |¢1(b)[; individual points represent then
impact parameter values corresponding to the interval of measured values
of |t| (calculated with the help of |b;(¢)| function).
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Figure 7.6: Probabilities of total, elastic and inelastic hadronic collision
PX(b) and function P*'(b) calculated on the basis of egs. (7.1) and (7.9)
representing corresponding average probabilities over all hadronic collision
channels considered in the fit.



7.3 Some open questions

7.3 Some open questions

The given numerical results in the presented form of the probabilistic model may be,
of course, influenced rather strongly by our very rough approximation neglecting the
distributions of transversal momenta at individual impact parameter values as it was
discussed in sect. 7.1.3. It is possible, too, that in fact a greater number of different
collision channels will correspond to the given t-range of differential cross section than in
the case considered by us. The presented results must be, therefore, taken only as quite
orientation ones. Our rough model shows, however, that the given probabilistic model
represents a quite new way how to interpret the structures of protons more realistically.

One may expect that after introducing the ¢-distributions d, ;(t) for each j collision
channel and for any b the model will be much more flexible and that the ambiguity
during fitting will increase. It will be necessary to look for good agreement between
results derived from experiments of other kinds, too.

In the new collision model some assumptions concerning the b-dependent probabilities
has been formulated from the very beginning. It is then interesting to compare eqs. (7.2)
and (7.10) for b-dependent probabilities to eqs. (3.72) and (3.73) for b-dependent profile
functions as they have the same form. The b-dependent profile functions calculated on
the basis of unitarity condition and FB transformation given by egs. (3.66) and (3.68)
have several properties as the b-dependent probability functions but the profile functions
cannot be identified with the probabilities as it has been discussed in chapters 5 and 6.

If all known results concerning the fundamental particles are taken into account
(including the results obtained on the basis of the probabilistic model) then the main
question concerns the proper internal structure of proton. It is possible to assume that
any fundamental particle consisting of some other constituents (some quasi-quarks)
should exhibit internal evolution, which is required practically by the existence of
different decay modes of unstable particles. It seems that during this evolution hadrons
may exist also in the form of different parton pairs; these partons consisting of very
(super) strongly bound quasi-quarks while the binding forces between them correspond
approximately to known strong force. Otherwise, the corresponding hadrons may form
a compact structure of very small dimensions. If an internal parton pair exists the
corresponding hadron may be in the form of, e.g., ellipsoid of greater external changing
dimensions. This variable dimensional size of proton may be then characterized by the
functions Pj°'(b) derived with the help of our probabilistic model.

Consequently, at least two kinds of forces should exist in any hadron, some super
strong forces between quasi-quarks and some other (weaker) forces between corresponding
partons (corresponding approximately to standard strong forces). However, these forces
may be hardly defined with the help of a potential; a new description according
to corresponding characteristics should be looked for (some kind of contact forces).
If an excited hadron consists of a parton pair and the sum of rest masses of the
two partons is less than that of corresponding hadron the hadron may decay (in an
appropriate internal arrangement). In the case of stable hadrons (e.g., protons) the
elastic collision evolution may become evident only by the different maximal dimensions
(dy) of individual structures or by different characteristics, e.g., by functions P*(b) and
b;(t). The corresponding parton pairs should change quite randomly; each alternative
existing in average with probabilities py..

One should ask, of course, how the forces existing between individual partons
and being practically equivalent to usual strong forces may be described. As already
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mentioned they cannot by represented with the help of a potential as it is commonly
assumed now (see also sect. 3.4). Corresponding potential should be surely equal to
zero when the given partons are not in mutual contact. However, even if two partons
are mutually bound (forming an oscillating closed system) it may happen in the case
of unstable particles that this force may be coincidentally exceeded by internal energy
of corresponding partons. The given property might influence partially also the elastic
processes in the time when a contact force acts between two partons belonging to different
colliding hadrons. Suitable description of this physical situation might represent quite
new problem in the theory of fundamental particles.

Also the existence of different proton (hadron) states may open quite new question
concerning the standard quantum theory. It is evident, e.g., that it is not possible to
explain how different quantum states of hydrogen atom may be formed when an electron
of very low energy is attracted to proton. It is necessary to take into account some
mutual repulsive force (or a similar corresponding assumption) that should have to
be efficient (in addition to attractive Coulomb interaction) at rather small distances
corresponding to the dimensions of hydrogen atom.

However, a better explanation might be given by the impenetrability of both the
attracted objects and by the existence of some weak adhesive contact force between
electron and proton. In such a case the existence of possible different internal proton
states might play important role and one should ask, e.g., whether the states derived from
elastic collision data might be brought into correspondence to the energy spectrum of
absorbed or emitted photons. It would be interesting to study similarly elastic collisions
of anti-protons (and also pp) and energy spectrum and other properties of anti-hydrogen
which are currently studied by, e.g., Antihydrogen Laser PHysics Apparatus (ALPHA)!
and Antihydrogen TRAP (ATRAP) experiments at CERN. Another interesting physical
phenomena to study could be charge exchange collisions of various particles (mainly
neutron-proton), see appendix A.2. It could shed more light on some questions related
to both matter and anti-matter.

The other important problem concerns the region of very low scattering deviations.
In our fit the Coulomb interaction is significant for measured values at [t| < 0.015 GeV?;
hadronic interaction prevails at higher values. However, only a purely phenomenological
parametrization of the Coulomb differential cross section (7.17) has been used in our fit;
much more detailed analysis should be devoted to this ¢ region in the future. One should
mainly ask how big role may be played by multiple Coulomb collisions in elastic collisions
in the given region of ¢ at given collision energy. In considering corresponding problems
in a much broader context (see, e.g., probable dimension of hydrogen atom and the
distances of hadronic objects in solid substances [24]) one may come to the conclusion
that the proton might interact also weakly at greater distances; the strongly interacting
matter being surrounded by other matter interacting only weakly. Consequently, much
more detailed analysis of elastic processes of different particles at various energies (both
low and high) in dependence on impact parameter will be required to estimate the forces
corresponding to the Coulomb, weak and strong interactions.

The probabilistic model of elastic pp collisions was applied to experimental data at
one collision energy of 53 GeV at the present. It will be important to apply it also to
other data measured at other energy values to establish actual energy dependence of
main characteristics. Especially the energy dependence of total probability of hadronic
interactions P;Ot(b) on impact parameter might represent very important information.

LALPHA and ALFA are two different experiments (collaborations).
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7.4 Summary

The corresponding analysis of elastic collision data with the help of new ontological
model has opened in principle two new problems: existence of different internal proton
(hadron) states and the question concerning actual dimension of individual protons. The
answers to the given question might open also a quite new way in solving problems of
contemporary quantum theory [24].

7.4 Summary

The probabilistic model of elastic collisions used in the preceding has been based in
principle on two basic assumptions. Firstly, protons should exist in different states
which behave slightly differently in mutual collisions and, secondly, that the functions
Pi°'(b) and Pj*(b) are monotonous in agreement with the standard ontological view
concerning the corresponding closed matter objects.

The model proposed originally in [23] and later improved in [24] has been extended
to describe greater part of differential elastic proton-proton cross section. It has been
shown that the t-dependence of measured differential cross section in the region of
|t| € (0.00125, 5.) GeV? (which includes also observed nontrivial dip-bump structure)
may be explained on the basis of three most probable proton structures. To describe also
the part corresponding to yet higher values of |¢| it will be necessary to take also other
less probable proton states into account. All these structures seem to exhibit only very
slightly different maximum dimensions (approximately 2 fm) but they behave rather
differently in mutual collisions. The given structures are assumed to change randomly
during internal proton evolution.

The given model has allowed deriving some further important characteristics, too,
without adding any other assumptions; e.g., to derive the probabilities of different
proton structures and the values of different kinds of cross sections in individual collision
channels. Some values (e.g., total hadronic cross section) are, of course, different from
those derived in the papers published in the past. One reason may consist in that our
approach has been based for the sake of simplicity on a very rough approximation when
for any impact parameter only the average value of momentum transfer has been taken
into account and not the whole interval of corresponding ¢-values (see sect. 7.1.3).

However, these differences might have more serious reason, too. All earlier results
(concerning elastic proton scattering) have involved some important assumptions that
have not been sufficiently reasoned. They have been based, e.g., on the validity of
optical theorem for hadronic interactions or on the standard diverging t-dependence
of Coulomb differential cross section in the region of very small |¢| values (existing
at infinite impact parameter values only, which does not correspond to experimental
conditions) or on other problematic assumptions discussed in details in chapter 6 (in
fact, the results obtained from the probabilistic model significantly helped to identify
some main problems).

Even if the probabilistic model is only preliminary (it has not yet addressed all
the problems and suggestions discussed in chapter 6) it has opened a new way how to
interpret structure and interaction of fundamental particles in dependence on impact
parameter. It is formulated and based only on assumptions and quantities of clear
physical meaning which might be further discussed and tested.
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Conclusion

In previous chapters different theoretical as well as experimental aspects of elastic pp
collisions have been discussed in greater details with the aim to provide better insight
into the given physical process.

In chapters 1 and 2 one could learn that the measurement of (elastic) pp collisions by
TOTEM at the LHC is actually quite complex and requires understanding of the used
detector apparatus as well as the accelerator. Good understanding of the measurement
is also necessary for proper interpretation of the given physical process.

The description of elastic collisions of charged hadrons suggested by original West-
Yennie model has influenced significantly many recent descriptions of elastic scattering in
interpreting the b-dependence of elastic collisions, even if the corresponding dependence
on impact parameter has not been tested and taken originally into account at all. Main
limitations of the WY approach have been summarized in sect. 3.2. This approach has
been used commonly in past for determination of total hadronic cross section (often
denoted as "measurement” even if many unreasoned assumptions have been involved).
More relevant value of the total cross section and all other characteristics of protons
may be obtained when elastic scattering processes will be better understood.

The eikonal model described in sect. 3.4 has allowed studying the characteristics of
elastic collisions of charged hadrons in dependence on impact parameter. In chapter 4 the
model has been applied to experimental data at ISR energy of 53 GeV (for comparison
of results obtained in the past) and at much higher energy of 8 TeV measured recently
by TOTEM experiment at the LHC at CERN. Mean impact parameters corresponding
to total, elastic and inelastic collisions have been determined at both the energy values
together with corresponding profile functions characterising the collision frequency in
dependence on impact parameter. It has been shown that the numerical results depend
strongly not only on collision energy but also on some additional assumptions included
in the given model. Two diverse types of fits have been performed at both the energies
to demonstrate different interpretation possibilities of the given physical process. One
has corresponded to commonly used assumptions included in many phenomenological
models which lead to central character of elastic collisions. The second type of fits
has explicitly showed that experimental data may be described equally well while the
interpretation of the collisions in dependence on impact parameter is completely different
- elastic collisions being more peripheral than inelastic ones.

Eikonal model analysis of experimental data with the help of egs. (3.53) to (3.55) has
been done already earlier in [20]. However, several different alternatives of the peripheral
behavior at 53 GeV have been newly shown in chapter 4. In [20] only electric form factors
have been taken into account. It has been also newly shown that addition of magnetic
form factors does not lead to significant change of determined amplitude FN(s,t) (at
both 53 GeV and 8 TeV). For the purpose of this analysis integral I(¢,¢') defined by
eq. (3.55) has been calculated also analytically for one suitable parameterization of the
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electromagnetic form factors, see sect. 3.4.2. The whole eikonal model approach has
been revisited and prepared (see also [21]) for the analysis of pp elastic scattering at the
LHC energies, see the very first results of similar analysis of 8 TeV data measured by
TOTEM in [36]. One may see very significant change of several quantities characterizing
proton collisions with rising energy by comparing the results of the performed eikonal
model analysis at 53 GeV and 8 TeV.

The eikonal model has allowed determining some characteristics in dependence on
impact parameter but the relation of some b-dependent functions (e.g., profile functions)
to corresponding b-dependent probabilities P°(b) and t-distribution for a given impact
parameter dy(t) has not been established with sufficient reliability. It means that even if
the collision process has been denoted as probabilistic the corresponding probabilities
have not been determined. It has been shown, however, that the often proclaimed
centrality of elastic collisions between fundamental particles has followed from a series
of assumptions that may hardly correspond to situation in matter reality as it was
pointed out for the first time already in 1981, see chapter 5. Some other fundamental
open problems contained in all contemporary descriptions of elastic collisions have been
identified and formulated to a greater detail in chapter 6, see also [22, 51]. It is possible
to say that the main source of problems has been related to the fact that the dependence
of elastic collisions on impact parameter has not been systematically taken into account
and studied in corresponding analyzes (models) of experimental data.

As to the fundamental particles it is possible to say, too, that at the present significant
progress may be expected from the study of elastic collisions. More general models
trying to solve the newly identified problems in chapter 6 and allowing testing some new
assumptions concerning the influence of impact parameter values on elastic collisions
should be looked for. One should keep in mind that some quantities (e.g., total hadronic
cross section) have always been determined on the basis of measured elastic collisions,
see detailed discussion in sect. 3.5. New view and new possibilities will be opened by
comparing the results obtained with the help of these models to the contemporary
results. Some first steps in this direction have been done in chapter 7 where the new
preliminary probabilistic model of elastic collisions in dependence on impact parameter
has been introduced.

126



Bibliography

1]

[12]
[13]
[14]

[15]

E. Rutherford, “LXXIX. The scattering of o and (8 particles by matter and the
structure of the atom”, Philosophical Magazine Series 6 21, 669-688 (1911).

E. L. Feinberg and I. Pomerancuk, “High energy inelastic diffraction phenomena”,
I1 Nuovo Cimento (1955-1965) 3, 652-671 (1956).

M. L. Good and W. D. Walker, “Diffraction dissociation of beam particles”, Phys.
Rev. 120, 1857-1860 (1960).

U. Amaldi, P. Bryant, P. Darriulat, and K. Hubner, eds., /0th Anniversary of the
First Proton-Proton Collisions in the CERN Intersecting Storage Rings (ISR).
Proceedings, Colloquium, Geneva, Switzerland, January 18, 2011, CERN-2012-004,
arXiv:1206.4876 (2012).

P. Desgrolard, M. Giffon, and E. Martynov, “Elastic pp and pp scattering in the
modified additive quark model”, The European Physical Journal C - Particles
and Fields 18, 359-367 (2000).

A. Bohm et al., “Observation of a diffraction minimum in the proton-proton
elastic scattering at the ISR”, Phys. Lett. B 49, 491-496 (1974).

M. K. Carter, P. D. B. Collins, and M. R. Whalley, “Compilation of Nucleon-
Nucleon and Nucleon-Antinucleon Elastic Scattering Data”, RAL-86-002 (1986).

J. Bystricky et al., “Nucleon nucleon and kaon nucleon scattering”, edited by
H. Schopper, part of Landolt-Bornstein - Group I Elementary Particles, Nuclei
and Atoms, Vol. 9a, doi:10.1007/b19945 (1980).

W. F. Baker et al., “Observation of structure in large-momentum-transfer 7m—p
elastic scattering at 200 GeV/c¢”, Phys. Rev. Lett. 47, 1683-1686 (1981).

R. Rubinstein et al., “Large-momentum-transfer elastic scattering of 7%, K=,
and p* on protons at 100 and 200 GeV/c”, Phys. Rev. D 30, 14131432 (1984).

Z. Asad et al., “Pion-proton elastic scattering at 20 and 50 GeV/c incident mo-
menta in the momentum transfer range 0.7 < [t| < 8.0 (GeV/c)?”, Phys. Lett. B
118, 442446 (1982).

Z. Asad et al., “New results on kaon-proton elastic scattering at large momentum
transfers”, Phys. Lett. B 123, 265-268 (1983).

C. Broll, “A study of the reaction pp — p(n 7") at the CERN intersecting storage
rings”, Ann. Phys. (Les Ulis) 1, 5-72 (1976).

G. B. West and D. R. Yennie, “Coulomb interference in high-energy scattering”,
Phys. Rev. 172, 1413-1422 (1968).

H. Miettinen, “Impact structure of diffraction scattering”, CERN-TH-1864 (1974).

127


http://dx.doi.org/10.1080/14786440508637080
http://dx.doi.org/10.1007/BF02746068
http://dx.doi.org/10.1103/PhysRev.120.1857
http://dx.doi.org/10.1103/PhysRev.120.1857
http://cds.cern.ch/record/1456765
http://arxiv.org/abs/arXiv:1206.4876
http://dx.doi.org/10.1007/s100520000537
http://dx.doi.org/10.1007/s100520000537
http://dx.doi.org/10.1016/0370-2693(74)90644-3
http://inspirehep.net/record/222981
http://dx.doi.org/10.1007/b19945
http://dx.doi.org/10.1103/PhysRevLett.47.1683
http://dx.doi.org/10.1103/PhysRevD.30.1413
http://dx.doi.org/10.1016/0370-2693(82)90220-9
http://dx.doi.org/10.1016/0370-2693(82)90220-9
http://dx.doi.org/10.1016/0370-2693(83)90435-5
http://cds.cern.ch/record/874011
http://dx.doi.org/10.1103/PhysRev.172.1413
https://inspirehep.net/record/89539

BIBLIOGRAPHY

[16]

[17]

[18]
[19]
[20]
[21]

22]

128

H. Miettinen, “Geometrical description of hadronic collisions”, Acta Physica
Polonica B6, 625 (1975).

A. Giovannini, G. Mantovani, and S. Ratti, “Old And New Variables, Old And
New Optical Concepts In High-energy Hadron Hadron Interactions”, La Rivista
del Nuovo Cimento 2N10, 1-99 (1979).

G. Giacomelli and M. Jacob, “Physics at the CERN ISR”, Phys. Rept. 55, 1-132
(1979).

V. Kundrat, M. Lokajicek, and M. V. Lokajicek, “Are elastic collisions central or
peripheral?”, Czech. J. Phys. B31, 1334 (1981).

V. Kundrat and M. V. Lokajicek, “High-energy scattering amplitude of unpolar-
ized and charged hadrons”, Z. Phys. C63, 619-630 (1994).

J. Prochazka and V. Kundrat, “Eikonal model analysis of elastic hadron collisions
at high energies”, arXiv: hep-th/1606.09479 (2016).

J. Prochazka, M. V. Lokajicek, and V. Kundrat, “Dependence of elastic hadron
collisions on impact parameter”, Eur. Phys. J. Plus 131, 147 (2016), see also
arXiv: hep-ph/1509.05343 (2015).

M. V. Lokajicek and V. Kundrat, “Elastic pp scattering and the internal structure
of colliding protons”, arXiv: hep-ph/0909.3199 (2009).

M. V. Lokajicek, V. Kundrat, and J. Prochazka, “Schrodinger equation and
(future) quantum physics”, in Advances in quantum mechanics, edited by P.
Bracken (InTech Publisher, 2013), pp. 105-132.

J. Prochézka, “Elastic hadron scattering at high energies”, Bachelor thesis (Charles
University, Prague, 2007).

J. Prochézka, “Elastic proton collisions at high energies”, MA thesis (Charles
University, Prague, 2009).

TOTEM Collaboration, “Proton-proton elastic scattering at the LHC energy of
Vs =7 TeV”, Europhys. Lett. 95, 41001 (2011).

TOTEM Collaboration, “First measurement of the total proton-proton cross
section at the LHC energy of /s =7 TeV”, Europhys. Lett. 96, 21002 (2011).

TOTEM Collaboration, “Measurement of the forward charged-particle pseudora-
pidity density in pp collisions at /s = 7 TeV with the TOTEM experiment”,
Europhys. Lett. 98, 31002 (2012).

TOTEM Collaboration, “Measurement of proton-proton elastic scattering and
total cross-section at /s =7 TeV”, Europhys. Lett. 101, 21002 (2013).

TOTEM Collaboration, “Measurement of proton-proton inelastic scattering cross-
section at y/s' = 7 TeV”, Europhys. Lett. 101, 21003 (2013).

TOTEM Collaboration, “Luminosity-independent measurements of total, elastic
and inelastic cross-sections at /s’ = 7 TeV” | Europhys. Lett. 101, 21004 (2013).

TOTEM Collaboration, “A luminosity-independent measurement of the proton-
proton total cross-section at /s = 8 TeV”, Phys. Rev. Lett. 111, 012001 (2013).

TOTEM Collaboration, “Double diffractive cross-section measurement in the
forward region at LHC”, Phys. Rev. Lett. 111, 262001 (2013), see also CERN-
PH-EP-2013-170, arXiv:1308.6722.


https://inspirehep.net/record/90438
https://inspirehep.net/record/90438
http://dx.doi.org/10.1007/BF02724358
http://dx.doi.org/10.1007/BF02724358
http://dx.doi.org/10.1016/0370-1573(79)90019-X
http://dx.doi.org/10.1016/0370-1573(79)90019-X
http://dx.doi.org/10.1007/BF01595377
http://dx.doi.org/10.1007/BF01557628
https://inspirehep.net/record/1473090
http://dx.doi.org/10.1140/epjp/i2016-16147-x
http://arxiv.org/abs/1509.05343
https://inspirehep.net/record/831518
http://www.intechopen.com/books/advances-in-quantum-mechanics/schro-dinger-equation-and-future-quantum-physics
http://dx.doi.org/10.1209/0295-5075/95/41001
http://dx.doi.org/10.1209/0295-5075/96/21002
http://dx.doi.org/10.1209/0295-5075/98/31002
http://dx.doi.org/10.1209/0295-5075/101/21002
http://dx.doi.org/10.1209/0295-5075/101/21003
http://dx.doi.org/10.1209/0295-5075/101/21004
http://dx.doi.org/10.1103/PhysRevLett.111.012001
http://dx.doi.org/10.1103/PhysRevLett.111.262001
http://cds.cern.ch/record/1595226
http://cds.cern.ch/record/1595226
http://arxiv.org/abs/1308.6722

BIBLIOGRAPHY

[42]

[43]

[44]

[45]

TOTEM Collaboration, “Evidence for non-exponential elastic proton-proton
differential cross section at low |t| and /s’ = 8 TeV by TOTEM”, Nucl. Phys. B
899, 527-546 (2015), see also CERN-PH-EP-2015-083, arXiv:1503.08111.

TOTEM Collaboration, “Measurement of elastic pp scattering at /s = 8 TeV in
the Coulomb-nuclear interference region — determination of the p-parameter and
the total cross-section”, CERN-PH-EP-2015-325 (2015).

TOTEM Collaboration, “Status of the TOTEM experiment at LHC”, Nuclear
Instruments and Methods in Physics Research A 718, 21-25 (2013).

TOTEM Collaboration, “Performance of the TOTEM detectors at the LHC”,
International Journal of Modern Physics A 28, 1330046 (2013), see also CERN-
PH-EP-2013-173, arXiv:1310.2908.

TOTEM Collaboration, TOTEM Upgrade Proposal, CERN-LHCC-2013-009,
LHCC-P-007 (Geneva, June 2013).

CMS and TOTEM Collaborations, “CMS-TOTEM Precision Proton Spectrome-
ter: Technical Design Report”, CERN-LHCC-2014-021, TOTEM-TDR-003, CMS-
TDR-13 (2014).

TOTEM Collaboration, “Timing Measurements in the Vertical Roman Pots of
the TOTEM Experiment: Technical Design Report”, CERN-LHCC-2014-020,
TOTEM-TDR-002 (2014).

CMS and TOTEM Collaborations, “Measurement of pseudorapidity distributions
of charged particles in proton-proton collisions at /s = 8 TeV by the CMS and
TOTEM experiments”, Eur. Phys. J. C 74, 3053 (2014).

TOTEM Collaboration, “Measurement of the forward charged particle pseudora-
pidity density in pp collisions at /s = 8 TeV using a displaced interaction point”,
Eur. Phys. J. C75, 126 (2014), see also CERN-PH-EP-2014-260, arXiv:1411.4963.

TOTEM Collaboration, “LHC optics measurement with proton tracks detected
by the Roman pots of the TOTEM experiment”, New Journal of Physics 16,
103041 (2014), see also CERN-PH-EP-2014-066, arXiv:1406.0546.

J. Prochédzka (TOTEM Collaboration), “Total pp cross section at TOTEM”, in
Proceedings of the Workshop Forward Physics at the LHC, La Biodola, Elba Island,
Italy, May 27-29, 2010, edited by F. Ferro and S. Lami, arXiv: hep-ex/1012.5169
(2010), pp. 36-43.

J. Prochazka (TOTEM Collaboration), “Diffraction and Forward Physics at
TOTEM”, Workshop on QCD at Cosmic Energies - VI, Paris, France, 14 - 17
May (2013), https://indico.cern.ch/event /252570/.

J. Prochazka, “Elastic pp scattering at 8 TeV in the Coulomb-nuclear interference
region measured by TOTEM”, LHCC students poster session, CERN, Mar (2016),
https://indico.cern.ch/event/491582/.

J. Kaspar, V. Kundrat, M. Lokajicek, and J. Prochazka, “Phenomenological
models of elastic nucleon scattering and predictions for LHC”, Nucl.Phys. B843,
84-106 (2011).

129


http://dx.doi.org/10.1016/j.nuclphysb.2015.08.010
http://dx.doi.org/10.1016/j.nuclphysb.2015.08.010
http://cds.cern.ch/record/2002559
https://cds.cern.ch/record/2114603
http://dx.doi.org/10.1016/j.nima.2012.08.084
http://dx.doi.org/10.1016/j.nima.2012.08.084
http://www.worldscientific.com/doi/abs/10.1142/S0217751X13300469
https://cds.cern.ch/record/1598868
https://cds.cern.ch/record/1598868
http://arxiv.org/abs/1310.2908
http://cds.cern.ch/record/1554299
http://cds.cern.ch/record/1554299
https://cds.cern.ch/record/1753795
https://cds.cern.ch/record/1753795
https://cds.cern.ch/record/1753189
https://cds.cern.ch/record/1753189
https://cds.cern.ch/record/1699728
http://dx.doi.org/10.1140/epjc/s10052-015-3343-7
http://cds.cern.ch/record/1954699
http://stacks.iop.org/1367-2630/16/i=10/a=103041
http://stacks.iop.org/1367-2630/16/i=10/a=103041
http://inspirehep.net/record/1298981
http://arxiv.org/abs/1012.5169
http://arxiv.org/abs/1012.5169
https://indico.cern.ch/event/491582/
http://dx.doi.org/10.1016/j.nuclphysb.2010.09.020
http://dx.doi.org/10.1016/j.nuclphysb.2010.09.020

BIBLIOGRAPHY

[49]

130

V. Kundrat, M. Lokajicek, J. Kaspar, and J. Prochazka, “Problems of phe-
nomenological description of elastic pp scattering at the LHC; predictions of
contemporary models”, in Proceedings of the Workshop Forward Physics at the
LHC, La Biodola, Elba Island, Italy, May 27-29, 2010, edited by F. Ferro and
S. Lami, arXiv: hep-ex/1012.5169 (2010), pp. 26-35.

M. V. Lokajicek, V. Kundrat, and J. Prochézka, “Elastic hadron scattering and
optical theorem”, arXiv: 1403.1809 (2014).

J. Prochéazka, V. Kundrat, and M. V. Lokajicek, “Elastic scattering of hadrons
without optical theorem”, arXiv: 1502.00468 (2015).

R. Brun and F. Rademakers, “ROOT: An object oriented data analysis frame-
work”, Nucl. Instrum. Meth. A389, 81-86 (1997), see also http://root.cern.ch.

E. Jones, T. Oliphant, P. Peterson, et al., SciPy: open source scientific tools for
Python, scipy.org, 2001

F. James and M. Roos, “Minuit - a system for function minimization and analysis
of the parameter errors and correlations”, Computer Physics Communications

10, 343-367 (1975).

Subversion (version control system), subversion.apache.org.

H. Krekel et al., Pytest (full-featured python testing tool), pytest.org.
Jenkins (automation server), jenkins.io.

L. Evans and P. Bryant, “LHC Machine”, Journal of Instrumentation 3, SO8001
(2008).

The LHC study group, The Large Hadron Collider: Conceptual Design, edited by
T. S. Pettersson and P. Lefevre, CERN-AC-95-05 LHC (Geneva, Oct. 1995).

O. S. Bruning et al., eds., LHC Design Report Volume I: The LHC Main Ring
(CERN, Geneva, 2004).

O. S. Bruning et al., eds., LHC Design Report Volume II: The LHC' Infrastructure
and General Services (CERN, Geneva, 2004).

M. Benedikt et al., eds., LHC Design Report Volume III: The LHC Injector Chain
(CERN, Geneva, 2004).

J. Bosser et al., “LHC beam instrumentation: Conceptual design report”, CERN-
LHC-PROJECT-REPORT-370 (2000).

K. Hanke, M. Chanel, and K. Schindl, “The PS Booster hits 40", CERN Courier
52N7, 33-37 (2012).

ALICE Collaboration, “The ALICE experiment at the CERN LHC”, Journal of
Instrumentation 3, S08002 (2008).

ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron
Collider”, Journal of Instrumentation 3, SO8003 (2008).

CMS Collaboration, “The CMS experiment at the CERN LHC”, Journal of
Instrumentation 3, S08004 (2008).

LHCb Collaboration, “The LHCDb detector at the LHC”, Journal of Instrumenta-
tion 3, S08005 (2008).


http://arxiv.org/abs/1012.5169
http://arxiv.org/abs/1012.5169
https://inspirehep.net/record/1285006
http://inspirehep.net/record/1342488
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://root.cern.ch
scipy.org
http://dx.doi.org/10.1016/0010-4655(75)90039-9
http://dx.doi.org/10.1016/0010-4655(75)90039-9
subversion.apache.org
pytest.org
jenkins.io
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://cds.cern.ch/record/291782
https://cds.cern.ch/record/782076
https://cds.cern.ch/record/815187
https://cds.cern.ch/record/815187
https://cds.cern.ch/record/823808
http://inspirehep.net/record/525382
http://inspirehep.net/record/525382
http://inspirehep.net/record/1194411
http://inspirehep.net/record/1194411
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1088/1748-0221/3/08/S08005

BIBLIOGRAPHY

LHCf Collaboration, “The LHCf detector at the CERN Large Hadron Collider”,
Journal of Instrumentation 3, SO08006 (2008).

MoEDAL Collaboration, “Technical Design Report of the MoEDAL Experiment”,
CERN-LHCC-2009-006, MoEDAL-TDR-001 (2009).

TOTEM Collaboration, “The TOTEM experiment at the CERN Large Hadron
Collider”, Journal of Instrumentation 3, S08007 (2008).

ATLAS Collaboration, ATLAS Forward Detectors for Measurement of Elastic
Scattering and Luminosity, Technical Design Report ATLAS-TDR-18 CERN-
LHCC-2008-004 (CERN, Geneva, 2008).

K. Wille, The physics of particle accelerators: an introduction (Oxford University
Press, Oxford, 2000).

E. J. N. Wilson, An Introduction to Particle Accelerators (Oxford University
Press, Oxford, 2001).

H. Wiedemann, Particle accelerator physics, 3rd ed. (Springer-Verlag Berlin
Heidelberg, 2007).

D. Brandt, ed., Intermediate accelerator physics. Proceedings, CERN Accelerator
School, Zeuthen, Germany, September 15-26, 2003, CERN-2006-02 (2006).

D. Mohl, “Sources of emittance growth”, in Intermediate accelerator physics.
Proceedings, CERN Accelerator School, Zeuthen, Germany, September 15-26,
2003, edited by D. Brandt, CERN-2006-02 (2006), pp. 245-269.

F. Roncarolo, “Accuracy of the transverse emittance measurements of the CERN
Large Hadron Collider”, PhD thesis (SB, Lausanne, 2005).

J. Wenninger, “Energy Calibration of the LHC Beams at 4 TeV”, CERN-ATS-
2013-040 (2013).

R. Schmidt and W. Herr, “Experience at CERN with luminosity monitoring and
calibration, ISR, SPS proton antiproton collider, LEP, and comments for LHC...”
in LHC Lumi Days: LHC Workshop on LHC Luminosity Calibration, 13 - 14 Jan
2011, edited by H. Burkhardt, M. Ferro-Luzzi, A. Macpherson, and M. Mangano,
CERN-Proceedings-2011-001 (CERN, 2011), pp. 95-97.

O. Napoly, “The luminosity for beam distributions with error and wake field
effects in linear colliders”, Part. Accel. 40, 181-203 (1993).

W. Herr and B. Muratori, “Concept of luminosity”, in Intermediate accelerator
physics. Proceedings, CERN Accelerator School, Zeuthen, Germany, September
15-26, 2003, edited by D. Brandt, CERN-2006-02 (2006), pp. 361-378.

W. Kozanecki et al., “Interaction-point phase-space characterization using single-
beam and luminous-region measurements at PEP-IT", Nucl. Instrum. Meth. A607,
293-321 (2009).

S. M. White, “Determination of the absolute luminosity at the LHC”, CERN-
THESIS-2010-139, LAL-10-154, PhD thesis (Orsay, Universite Paris-Sud 11,
2010).

V. Balagura, “Notes on van der Meer Scan for absolute luminosity measurement”
Nucl. Instrum. Meth. A654, 634-638 (2011).

131


http://dx.doi.org/10.1088/1748-0221/3/08/S08006
http://cds.cern.ch/record/1181486
http://dx.doi.org/10.1088/1748-0221/3/08/S08007
http://cds.cern.ch/record/1095847
http://cds.cern.ch/record/1095847
http://cds.cern.ch/record/560708
http://cds.cern.ch/record/513326
http://inspirehep.net/record/714563
http://inspirehep.net/record/714563
http://infoscience.epfl.ch/record/56043
http://infoscience.epfl.ch/record/56043
https://cds.cern.ch/record/1546734
https://cds.cern.ch/record/1546734
http://cds.cern.ch/record/1347440
http://inspirehep.net/record/338879/
http://inspirehep.net/record/714563
http://dx.doi.org/10.1016/j.nima.2009.05.046
http://dx.doi.org/10.1016/j.nima.2009.05.046
http://inspirehep.net/record/886925
http://inspirehep.net/record/886925
http://dx.doi.org/10.1016/j.nima.2011.06.007

BIBLIOGRAPHY

[36]

[87]
[33]

[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]

[105]

132

C. Mgller, “General properties of the characteristic matrix in the theory of
elementary particles 1., K. Dan. Vidensk. Selsk.”, Mat. Fys. Medd. (1945).

D. Belohrad, “Beam charge measurements”, CERN-BE-2011-019 (2011).

G. Anders et al., “LHC bunch current normalisation for the April-May 2010 lumi-
nosity calibration measurements”, CERN-ATS-Note-2011-004 PERF, BCNWG
Note 1 (2011).

A. Alice et al., “LHC bunch current normalisation for the October 2010 luminosity
calibration measurements”, CERN-ATS-Note-2011-016 PERF, BCNWG Note 2
(2011).

G. Anders et al., “Study of the relative LHC bunch populations for luminosity
calibration”, CERN-ATS-Note-2012-028 PERF, BCNWG Note 3 (2012).

A. Alici et al., “Study of the LHC ghost charge and satellite bunches for luminosity
calibration”, CERN-ATS-Note-2012-029 PERF, BCNWG Note 4 (2012).

S. van der Meer, “Calibration of the effective beam height in the ISR”, CERN-
ISR-PO-68-31, ISR-PO-68-31 (1968).

C. Rubbia, “Measurement of the luminosity of p—p collider with a (generalized)
Van der Meer Method”, CERN-pp-Note-38 (1977).

H. Burkhardt and P. Grafstrom, “Absolute luminosity from machine parameters”,
CERN-LHC-PROJECT-REPORT-1019 (2007).

S. Mittig, “Luminosity measurement with the ATLAS detector”, PhD thesis
(Hamburg, University of Hamburg, 2012).

M. Ferro-Luzzi, “Proposal for an absolute luminosity determination in colliding
beam experiments using vertex detection of beam-gas interactions”, Nucl. In-
strum. Meth. A553, 388-399 (2005).

LHCb Collaboration, “Prompt K? production in pp collisions at 1/s = 0.9 TeV”,
Phys.Lett. B693, 69-80 (2010).

C. Barschel, “Precision luminosity measurement at LHCb with beam-gas imaging”,
CERN-THESIS-2013-301, PhD thesis (RWTH Aachen U., 2014).

CMS Collaboration, “Measurement of CMS Luminosity”, CMS-PAS-EWK-10-004
(2010).

CMS Collaboration, “Absolute luminosity normalization”, CERN-CMS-DP-2011-
002 (2011).

CMS Collaboration, “Absolute calibration of luminosity measurement at CMS:
summer 2011 update”, CMS-PAS-EWK-11-001 (2011).

CMS Collaboration, “Absolute calibration of the luminosity measurement at
CMS: winter 2012 update”, CMS-PAS-SMP-12-008 (2012).

CMS Collaboration, “CMS Luminosity Based on Pixel Cluster Counting - Summer
2012 Update”, CMS-PAS-LUM-12-001 (2012).

CMS Collaboration, “CMS Luminosity Based on Pixel Cluster Counting - Summer
2013 Update”, CMS-PAS-LUM-13-001 (2013).

CMS Collaboration, “Luminosity Calibration for the 2013 Proton-Lead and
Proton-Proton Data Taking”, CMS-PAS-LUM-13-002 (2014).


http://www.sdu.dk/media/bibpdf/Bind%2020-29%5CBind%5Cmfm-23-1.pdf
http://cds.cern.ch/record/1372200
http://cds.cern.ch/record/1325370
http://cds.cern.ch/record/1325370
http://cds.cern.ch/record/1333997
http://cds.cern.ch/record/1333997
http://cds.cern.ch/record/1427726
http://cds.cern.ch/record/1427728
http://cds.cern.ch/record/296752
http://cds.cern.ch/record/296752
https://cds.cern.ch/record/1025746
http://inspirehep.net/record/763718
http://www.physnet.uni-hamburg.de/services/fachinfo/___Volltexte/Stefan___Maettig/Stefan___Maettig.pdf
http://dx.doi.org/10.1016/j.nima.2005.07.010
http://dx.doi.org/10.1016/j.nima.2005.07.010
http://dx.doi.org/10.1016/j.physletb.2010.08.055
http://cds.cern.ch/record/1693671
http://inspirehep.net/record/925294
http://inspirehep.net/record/925294
http://cds.cern.ch/record/1335668
http://cds.cern.ch/record/1335668
http://inspirehep.net/record/925179
http://inspirehep.net/record/1199085
http://inspirehep.net/record/1199207
http://inspirehep.net/record/1260876
http://cds.cern.ch/record/1643269

BIBLIOGRAPHY

[106] ATLAS Collaboration, “Improved luminosity determination in pp collisions at
/s =7 TeV using the ATLAS detector at the LHC”, Eur.Phys.J. C73, 2518
(2013).

[107] P. Hopchev, “Absolute luminosity measurements at LHCb”, CERN-THESIS-
2011-210, PhD thesis (Grenoble U., Grenoble, 2011).

[108] H. Burkhardt, M. Ferro-Luzzi, A. Macpherson, and M. Mangano, eds., LHC
Lumi Days: LHC Workshop on LHC Luminosity Calibration, 13 - 14 Jan 2011,
CERN-Proceedings-2011-001, CERN (CERN, Geneva, 2011).

[109] LHCb Collaboration, “Precision luminosity measurements at LHCb”, Journal of
Instrumentation 9, P12005 (2014), see also LHCB-PAPER-2014-047, CERN-PH-
EP-2014-221, arXiv:1410.0149.

[110] P. Grafstrom and W. Kozanecki, “Luminosity determination at proton colliders”,
Progress in Particle and Nuclear Physics, doi:10.1016/j.ppnp.2014.11.002 (2014).

[111] TOTEM Collaboration, Total cross section, elastic scattering and diffraction
dissociation at the LHC: TOTEM Letter of Intent, CERN-LHCC-97-049, LHCC-
[-11 (CERN, Geneva, 1997).

[112] TOTEM Collaboration, Total Cross Section, Elastic Scattering and Diffraction
Dissociation at the LHC: TOTEM Technical Proposal, CERN-LHCC-99-007,
LHCC-P-5 (Geneva, Mar. 1999).

[113] TOTEM Collaboration, Total cross-section, elastic scattering and diffraction
dissociation at the Large Hadron Collider at CERN: TOTEM Technical Design
Report, CERN-LHCC-2004-002, TOTEM-TDR-001 (CERN, Geneva, 2004).

[114] TOTEM Collaboration, Total cross-section, elastic scattering and diffraction dis-
sociation at the Large Hadron Collider at CERN: Addendum to the TOTEM Tech-
nical Design Report, TOTEM-TDR-001-add-1, CERN-LHCC-2004-020 (CERN,
Geneva, 2004).

[115] U. Amaldi et al., “The Energy dependence of the proton proton total cross-section
for center-of-mass energies between 23 and 53 GeV”, Phys. Lett. B 44, 112-118
(1973).

[116] H. Niewiadomski, “Reconstruction of Protons in the TOTEM Roman Pot Detec-
tors at the LHC”, CERN-THESIS-2008-080, PhD thesis (University of Manchester,
Manchester, 2008).

[117] F. Nemes and H. Niewiadomski, “LHC optics measurement with proton tracks
detected by the Roman pots of the TOTEM experiment”, CERN-TOTEM-NOTE-
2015-001 (2015).

[118] F. Nemes and H. Niewiadomski, “LHC optics measurement with proton tracks
detected by the Roman pots of the TOTEM experiment”, CERN-TOTEM-NOTE-
2015-001 (2015).

[119] F. Nemes, “Elastic scattering of protons at the TOTEM experiment at the LHC”,
PhD thesis (E6tvos Lorand University, Budapest, Oct. 2015).

[120] F. Nemes, H. Niewiadomski, and H. Burkhardt, “LHC optics determination with
proton tracks measured in the Roman pots detectors of the TOTEM experiment”,
in Proceedings of IPAC2012, Louisiana, USA, May 20-25 (2012), pp. 136-138.

133


http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://cds.cern.ch/record/1433396
http://cds.cern.ch/record/1433396
http://cds.cern.ch/record/1347440
http://dx.doi.org/10.1088/1748-0221/9/12/P12005
http://dx.doi.org/10.1088/1748-0221/9/12/P12005
http://inspirehep.net/record/1319638
http://inspirehep.net/record/1319638
http://arxiv.org/abs/1410.0149
http://dx.doi.org/10.1016/j.ppnp.2014.11.002
http://cds.cern.ch/record/335255
http://cds.cern.ch/record/335255
http://cds.cern.ch/record/385483
http://cds.cern.ch/record/385483
http://cds.cern.ch/record/704349
http://cds.cern.ch/record/743753
http://dx.doi.org/10.1016/0370-2693(73)90315-8
http://dx.doi.org/10.1016/0370-2693(73)90315-8
http://inspirehep.net/record/803638
https://cds.cern.ch/record/2016034
https://cds.cern.ch/record/2016034
https://cds.cern.ch/record/2016034
https://cds.cern.ch/record/2016034
http://inspirehep.net/record/1125458

BIBLIOGRAPHY

[121]
[122]

[123]
[124]

[125]

[126]

[127]

[128]
[129]

[130]
[131]
[132]
[133]
[134]

[135]

[136]

[137]

[138]

[139)]

134

TOTEM Collaboration, “Early TOTEM running with the 90 m optics”, CERN-
LHCC-2007-013/G-130 (2007).

H. Burkhardt and S. White, “High-3* optics for the LHC” , CERN-LHC-Project-
Note-431 (2010).

A. Verdier, “TOTEM optics for LHC V6.5”, CERN-LHC-Project-Note-369 (2005).

H. Burkhardt et al., “Commissioning and operation at beta®* = 1000 m in the
LHC”, CERN-ACC-2013-0187 (2013).

The CMS and TOTEM diffractive and forward physics working group, “Prospects
for diffractive and forward physics at the LHC”, LHCC-G-124, CERN-LHCC-
2006-039-G-124, CMS-Note-2007-002, TOTEM-Note-2006-005, CERN-TOTEM-
Note-2006-005 (2006).

J. Welti, “Event classification and estimation of low mass diffraction at the
TOTEM experiment at the LHC”, MA thesis (University of Helsinki, Helsinky,
Finland, 2011).

J. C. Collins, “Light cone variables, rapidity and all that”, arXiv:hep-ph/9705393
(1997).
V. Barone and E. Predazzi, High-Energy Particle Diffraction (Springer, 2002).

L. Baksay et al., “Evidence for double pomeron exchange at the CERN ISR”,
Phys.Lett. B61, 89 (1976).

M. Della Negra et al., “Study of Double Pomeron Exchange in pp Collisions at
/s =31 GeV”, Phys.Lett. B65, 394-396 (1976).

D. Drijard et al., “Double pomeron exchange in the reaction pp — pprtn~ at
ISR energies”, Nucl. Phys. B 143, 61-80 (1978).

J. Armitage et al., “A study of the reaction p + p — p + p + X at ISR energies”,
Phys. Lett. B 82, 149-154 (1979).

W. Meyer, “Pomeron interactions at the ISR”, Nucl. Phys. B - Proceedings
Supplements 12, 135-148 (1990).

J. Kaspar, “Elastic scattering at the LHC”, CERN-THESIS-2011-214, PhD thesis
(Charles University, Prague, 2011).

ATLAS Collaboration, “Measurement of the total cross section from elastic
scattering in pp collisions at /s = 7 TeV with the ATLAS detector”, Nucl. Phys.
B889, 486-548 (2014), see also arXiv:1408.5778 and ATLAS-CONF-2014-040.

S. A. Khalek, “Measurement of the total proton-proton cross section with ATLAS
at LHC”, LAL-13-375, PhD thesis (Orsay, 2013).

ATLAS Collaboration, “Measurement of the total cross section from elastic
scattering in pp collisions at /s = 8 TeV with the ATLAS detector”, CERN-EP-
2016-158, arXiv:1607.06605 (2016).

J. Kopal, “TOTEM trigger system”, in 2013 International Conference on Applied
Electronics (AE), Pilsen 10-12 September 2013 (2013).

J. Kopal, “Development of the TOTEM trigger system”, PhD thesis (University
of West Bohemia, Pilsen, Mar. 2015).


http://cds.cern.ch/record/1020108
http://cds.cern.ch/record/1020108
http://cds.cern.ch/record/1274461
http://cds.cern.ch/record/1274461
http://cds.cern.ch/record/836613
http://cds.cern.ch/record/1595221
http://cds.cern.ch/record/1005180
http://cds.cern.ch/record/1005180
http://cds.cern.ch/record/1005180
http://www.helsinki.fi/~jwelti/TOTEM/Gradu.pdf
http://arxiv.org/abs/hep-ph/9705393
http://arxiv.org/abs/hep-ph/9705393
https://cds.cern.ch/record/558211
http://dx.doi.org/10.1016/0370-2693(76)90570-0
http://dx.doi.org/10.1016/0370-2693(76)90251-3
http://dx.doi.org/10.1016/0550-3213(78)90448-0
http://dx.doi.org/10.1016/0370-2693(79)90447-7
http://dx.doi.org/10.1016/0920-5632(90)90185-W
http://dx.doi.org/10.1016/0920-5632(90)90185-W
http://inspirehep.net/record/1186254
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.019
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.019
http://cds.cern.ch/record/1740971
https://cds.cern.ch/record/1696899
https://cds.cern.ch/record/2201004
https://cds.cern.ch/record/2201004
https://arxiv.org/abs/1607.06605
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6636498
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6636498

BIBLIOGRAPHY

[140] M. Quinto, “Design development and characterization of 2nd level trigger system
for very forward detector at LHC”, Presented 18 Mar 2015, CERN-THESIS-2014-
300, PhD thesis (Bari University, 2014).

[141] A. Fiergolski, “Vol. 28 - Hardware implementation of the track identification
algorithm in the Scalable Readout System for the TOTEM experiment”, CERN-
ACC-2015-0050, PhD thesis (Warsaw University of Technology, Feb. 2015).

[142] M. Deile, “Pileup probabilities and events per bunch-crossing”, CERN-TOTEM-
NOTE-2007-002 (2007).

[143] V. Ezhela et al., “Overview of the COMPETE program”, arXiv:hep-ph/0212398,
47-61 (2002).

[144] J. Cudell et al., “Benchmarks for the forward observables at RHIC, the Tevatron
Run IT and the LHC”, Phys.Rev.Lett. 89, 201801 (2002).

[145] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at
Vs =7 TeV”, CERN-PH-EP-2012-293, arXiv: hep-ph/1210.6718 (2011).

[146] ATLAS Collaboration, “Measurement of the Inelastic Proton-Proton Cross-
Section at /s = 7 TeV with the ATLAS Detector”, Nature Commun. 2, 463
(2011).

[147] ALICE Collaboration, “Measurement of inelastic, single- and double-diffraction
cross sections in proton—proton collisions at the LHC with ALICE”, arXiv: hep-
ph/1208.4968, CERN-PH-EP-2012-138 (2011).

[148] M. Berretti, “Measurement of the forward charged particle pseudorapidity density
in pp collisions at /s = 7 tev with the TOTEM experiment”, CERN-THESIS-
2012-231, PhD thesis (Siena University, Sept. 2012).

[149] B. E. Y. Svensson, “High-energy phenomenology and Regge poles, Proceeding of
the 1967 CERN school of physics Vol. II”, CERN-TH-776 (1967).

[150] H. M. Pilkuhn, The interaction of hadron (North-Holland, 1967).
[151] H. M. Pilkuhn, Relativistic quantum mechanics (Springer, 2005).

[152] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Volume 1:
Mechanics, second edition, english translation (Pergamon Press, 1969).

[153] M. M. Block and R. N. Cahn, “High-energy pp and pp forward elastic scattering
and total cross sections”, Rev. Mod. Phys. 57, 563-598 (1985).

[154] H. A. Bethe, “Scattering and polarization of protons by nuclei”, Ann. Phys. 3,
190-240 (1958).

[155] U. Amaldi et al., “Measurements of the proton-proton total cross section by means
of Coulomb scattering at the CERN intersecting storage rings”, Phys. Lett. B
43, 231-236 (1973).

[156] V. Kundrdt and M. Lokajicek, “Critical comments on the standard description of
elastic hadron scattering”, Phys. Lett. B 232, 263-265 (1989).

[157] V. Kundrat and M. Lokajicek, “Description of high-energy elastic hadron scat-
tering in both the Coulomb and hadronic domains”, Mod. Phys. Lett. A 11,
2241-2250 (1996).

135


http://cds.cern.ch/record/2008211
http://cds.cern.ch/record/2008211
https://cds.cern.ch/record/2017348
https://cds.cern.ch/record/2017348
http://cds.cern.ch/record/1109356
http://cds.cern.ch/record/1109356
http://inspirehep.net/record/605692
http://inspirehep.net/record/605692
http://dx.doi.org/10.1103/PhysRevLett.89.201801
http://inspirehep.net/record/1193338
http://dx.doi.org/10.1038/ncomms1472
http://dx.doi.org/10.1038/ncomms1472
http://inspirehep.net/record/1181770
http://inspirehep.net/record/1181770
http://cds.cern.ch/record/1508392
http://cds.cern.ch/record/1508392
https://cds.cern.ch/record/868665
https://archive.org/details/Mechanics_541
http://dx.doi.org/10.1103/RevModPhys.57.563
http://dx.doi.org/10.1016/0003-4916(58)90017-4
http://dx.doi.org/10.1016/0003-4916(58)90017-4
http://dx.doi.org/10.1016/0370-2693(73)90277-3
http://dx.doi.org/10.1016/0370-2693(73)90277-3
http://dx.doi.org/10.1016/0370-2693(89)91698-5
http://dx.doi.org/10.1142/S021773239600223X
http://dx.doi.org/10.1142/S021773239600223X

BIBLIOGRAPHY

[158]

[159]

[160]

161]
162]
[163]

164]

[165]

[166]

[167]

[168]

[169]

[170]

171]

[172]
[173]

[174]

136

V. Kundrat and M. Lokajicek, “Interference between Coulomb and hadronic
scattering in elastic high-energy nucleon collisions”, Phys. Lett. B 611, 102-110
(2005).

V. Kundrat, M. Lokajicek, and I. Vrkoc¢, “Limited validity of West and Yennie
integral formula for elastic scattering of hadrons”, Phys. Lett. B656, 182-185
(2007).

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Volume 3:
Quantum Mechanics - non-relativistic theory, second (revisited) edition, english
translation (Pergamon Press, 1965).

M. P. Locher, “Relativistic treatment of structure in the coulomb interference
problem”, Nucl. Phys. B 2, 525-531 (1967).

V. Kundrat, Elastic hadron scattering at high energies, Doctor of Mathematical
and Physical sciences Thesis, Institute of Physics AV CR, 1996.

V. Bartenev et al., “Real part of the proton-proton forward-scattering amplitude
from 50 to 400 GeV”, Phys. Rev. Lett. 31, 1367-1370 (1973).

CERN-Pisa-Rome-Stony Brook Collaboration, “New measurements of proton-
proton total cross section at the CERN intersecting storage rings”, Phys. Lett. B
62, 460-466 (1976).

L. Baksay et al., “Measurements of the proton-proton total cross section and
small angle elastic scattering at ISR energies”, Nucl. Phys. B 141, 1-28 (1978).

E. Nagy et al., “Measurements of elastic proton-proton scattering at large mo-
mentum transfer at the cern intersecting storage rings”, Nuclear Physics B 150,
221-267 (1979).

L. A. Fajardo et al., “Real part of the forward elastic nuclear amplitude for pp,
pp, ©tp, 7 p, K*p, and K~ p scattering between 70 and 200 GeV/c¢”, Phys. Rev.
D 24, 46-65 (1981).

D. Favart et al., “Measurement of pp Elastic Scattering at /s’ = 52.8 GeV at
the CERN Intersecting Storage Rings”, Phys. Rev. Lett. 47, 1191-1194 (1981).

N. Amos et al., “Comparison of small-angle pp and pp elastic scattering at 52.8
GeV center-of-mass energy at the CERN intersecting storage rings”, Physics
Letters B 120, 460-464 (1983).

G. Carboni et al., “Precise measurements of proton-antiproton and proton-proton
total cross sections at the CERN intersecting storage rings”, Nuclear Physics B
254, 697736 (1985).

D. Bernard et al., “The real part of the proton-antiproton elastic scattering
amplitude at the centre of mass energy of 546 GeV”, Physics Letters B 198,
583-589 (1987).

M. Bozzo et al., “Low momentum transfer elastic scattering at the CERN proton-
antiproton collider”, Physics Letters B 147, 385-391 (1984).

M. Bozzo et al., “Elastic scattering at the CERN SPS collider up to a four-
momentum transfer of 1.55 GeV?”, Physics Letters B 155, 197-202 (1985).

C. Augier et al., “A precise measurement of the real part of the elastic scattering
amplitude at the SppS”, Physics Letters B 316, 448-454 (1993).


http://dx.doi.org/10.1016/j.physletb.2005.02.025
http://dx.doi.org/10.1016/j.physletb.2005.02.025
http://dx.doi.org/10.1016/j.physletb.2007.09.030
http://dx.doi.org/10.1016/j.physletb.2007.09.030
https://archive.org/details/QuantumMechanics_104
https://archive.org/details/QuantumMechanics_104
http://dx.doi.org/10.1016/0550-3213(67)90188-5
http://dx.doi.org/10.1103/PhysRevLett.31.1367
http://dx.doi.org/10.1016/0370-2693(76)90685-7
http://dx.doi.org/10.1016/0370-2693(76)90685-7
http://dx.doi.org/10.1016/0550-3213(78)90331-0
http://dx.doi.org/10.1016/0550-3213(79)90301-8
http://dx.doi.org/10.1016/0550-3213(79)90301-8
http://dx.doi.org/10.1103/PhysRevD.24.46
http://dx.doi.org/10.1103/PhysRevD.24.46
http://dx.doi.org/10.1103/PhysRevLett.47.1191
http://dx.doi.org/10.1016/0370-2693(83)90487-2
http://dx.doi.org/10.1016/0370-2693(83)90487-2
http://dx.doi.org/10.1016/0550-3213(85)90242-1
http://dx.doi.org/10.1016/0550-3213(85)90242-1
http://dx.doi.org/10.1016/0370-2693(87)90922-1
http://dx.doi.org/10.1016/0370-2693(87)90922-1
http://dx.doi.org/10.1016/0370-2693(84)90138-2
http://dx.doi.org/http://dx.doi.org/10.1016/0370-2693(85)90985-2
http://dx.doi.org/10.1016/0370-2693(93)90350-Q

BIBLIOGRAPHY

[175] M. M. Block, “Hadronic forward scattering: Predictions for the Large Hadron
Collider and cosmic rays”, Phys. Rept. 436, 71-215 (2006).

[176] V. Kundrét, M. Lokajicek, and D. Krupa, “High-energy elastic hadron collisions
and space structure of hadrons”, in Proceedings of the 8th International Confer-
ence on Elastic and Diffractive Scattering, Protvino, Russia, Jun 28 - Jul 2, 1999,
edited by P. V. A. Petrov and A. V. Prokudin, arXiv:hep-ph/0001047 (2000),
pp. 333-338.

[177] V. Kundrat, J. Kaspar, and M. V. Lokajicek, “Theoretical aspects of high energy
elastic nucleon scattering”, in Proceedings of the 13th International Conference
on Elastic and Diffractive Scattering, Switzerland, CERN, Jun 29 - Jul 3, 2009,
edited by M. Deile, D. d’Enterria, and A. De Roeck, arXiv:hep-ph/1002.3527
(2010), pp. 35-41.

[178] A. Kohara, E. Ferreira, and T. Kodama, “Amplitudes and observables in pp
elastic scattering at /s =7 TeV”, Eur. Phys. J. C73, 2326 (2013).

[179] M. N. Rosenbluth, “High energy elastic scattering of electrons on protons”, Phys.
Rev. 79, 615-619 (1950).

[180] A. W. Thomas and W. Weise, The structure of the nucleon (WILEY-VCH, 2001).

[181] P. Jain and S. Mitra, “Proton electromagnetic form factors at large momentum
transfer”, Pramana 66, 703-708 (2006).

[182] J. Arrington, C. D. Roberts, and J. M. Zanotti, “Nucleon electromagnetic form
factors”, Journal of Physics G: Nuclear and Particle Physics 34, S23 (2007).

[183] V. Punjabi et al., “The structure of the nucleon: Elastic electromagnetic form
factors”, Eur. Phys. J. A 51, 79 (2015).

[184] R. G. Sachs, “High-energy behavior of nucleon electromagnetic form factors”,
Phys. Rev. 126, 22562260 (1962).

[185] N. F. Mott, “The collision between two electrons”, Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 126,
259-267 (1930).

[186] F. Borkowski et al., “Electromagnetic form-factors of the proton at low four-
momentum transfer”, Nucl. Phys. A222, 269-275 (1974).

[187] F. Borkowski, G. G. Simon, V. H. Walther, and R. D. Wendling, “Electromagnetic
form factors of the proton at low four-momentum transfer (I1)”, Nuclear Physics
B 93, 461-478 (1975).

[188] J. Arrington, “Extraction of two-photon contributions to the proton form factors”,
Phys. Rev. C 71, 015202 (2005).

[189] J. Arrington, W. Melnitchouk, and J. A. Tjon, “Global analysis of proton elastic
form factor data with two-photon exchange corrections”, Phys. Rev. C 76, 035205
(2007).

[190] J. J. Kelly, “Simple parametrization of nucleon form factors”, Phys. Rev. C 70,
068202 (2004).

[191] A. J. R. Puckett, “Final results of the GEp-III experiment and the status of the
proton form factors”, arxiv:1008.0855 [nucl-ex] (2010).

137


http://dx.doi.org/10.1016/j.physrep.2006.06.003
http://inspirehep.net/record/522804
http://inspirehep.net/record/522804
http://arxiv.org/abs/1002.3527
http://arxiv.org/abs/1002.3527
http://dx.doi.org/10.1140/epjc/s10052-013-2326-9
http://dx.doi.org/10.1103/PhysRev.79.615
http://dx.doi.org/10.1103/PhysRev.79.615
http://dx.doi.org/10.1007/BF02704801
http://dx.doi.org/10.1088/0954-3899/34/7/S03
http://dx.doi.org/10.1140/epja/i2015-15079-x
http://dx.doi.org/10.1103/PhysRev.126.2256
http://dx.doi.org/10.1098/rspa.1930.0006
http://dx.doi.org/10.1098/rspa.1930.0006
http://dx.doi.org/10.1098/rspa.1930.0006
http://dx.doi.org/10.1016/0375-9474(74)90392-3
http://dx.doi.org/10.1016/0550-3213(75)90514-3
http://dx.doi.org/10.1016/0550-3213(75)90514-3
http://dx.doi.org/10.1103/PhysRevC.71.015202
http://dx.doi.org/10.1103/PhysRevC.76.035205
http://dx.doi.org/10.1103/PhysRevC.76.035205
http://dx.doi.org/10.1103/PhysRevC.70.068202
http://dx.doi.org/10.1103/PhysRevC.70.068202
axiv.org/abs/1008.0855

BIBLIOGRAPHY

192]

193]

[194]
[195]
[196]
197]
[198]
199]

200]

201]
202]

203]
204]

[205]
[206]
207)
[208]

209]

[210]

211]

138

M. M. Block, “Are we really measuring the phase of the nuclear scattering
amplitude?”, Phys. Rev. D 54, 43374343 (1996).

R. J. Glauber, “High energy collision theory”, in Lectures in Theoretical Physics,
Vol. 1, edited by W. E. Brittin and L. C. Dunham (Interscience Publishers N.Y.,
1959), pp. 315-414.

T. Adachi and T. Kotani, “An impact parameter formalism”, Progress of Theo-
retical Physics Supplement E65, 316-331 (1965).

T. Adachi and T. Kotani, “Unitarity relation in an impact parameter representa-
tion”, Progress of Theoretical Physics Supplement 37, 297-305 (1966).

T. Adachi, “An impact parameter formalism. II”, Progress of Theoretical Physics
35, 463484 (1966).

T. Adachi and T. Kotani, “An impact parameter formalism. III”, Progress of
Theoretical Physics 35, 485-507 (1966).

T. Adachi and T. Kotani, “An impact parameter representation of the scattering
problem” | Progress of Theoretical Physics 39, 430-452 (1968).

T. Adachi and T. Kotani, “An impact parameter representation of the scattering
problem” | Progress of Theoretical Physics 39, 785-816 (1968).

M. M. Islam, “Impact parameter description of high energy scattering”, in Lectures
in Theoretical Physics, Vol. 10B, edited by A. O. Barut and W. E. Brittin (1968),
pp- 97-156.

M. M. Islam, “Impact parameter representation from the Watson-Sommerfeld
transform”, Nucl. Phys. B 104, 511-532 (1976).

M. M. Islam, “Bethe’s formula for coulomb-nuclear interference”, Phys. Rev. 162,
1426-1428 (1967).

V. Franco, “Coulomb-nuclear interference”, Phys. Rev. D 7, 215-217 (1973).

R. Cahn, “Coulombic-hadronic interference in an eikonal model”, Zeitschrift fiir
Physik C Particles and Fields 15, 253-260 (1982).

A. Donnachie and P. Landshoff, “Total cross sections”, Physics Letters B 296,
227-232 (1992).

S. Wolfram, Mathematica: A system for doing mathematics by computer (Addison
Wesley, 1991).

L. van Hove, “A phenomenological discussion of inelastic collisions at high ener-
gies”, Nuovo Cimento 28, 798-817 (1963).

L. van Hove, “High-energy collisions of strongly interacting particles”, Rev. Mod.
Phys. 36, 655-665 (1964).

E. H. De Groot and H. I. Miettinen, “Shadow approach to diffraction scattering”,
Invated talk presented at the VIIIth Recontre de Moriond, Merible-les-Allues
1973, RL-73-003 (1973).

U. Amaldi, M. Jacob, and G. Matthiae, “Diffraction of Hadronic Waves”, Ann.
Rev. Nucl. Part. Sci. 26, 385-456 (1976).

U. Amaldi and K. R. Schubert, “Impact parameter interpretation of proton-proton
scattering from a critical review of all ISR data”, Nuclear Physics B 166, 301-320
(1980).


http://dx.doi.org/10.1103/PhysRevD.54.4337
http://dx.doi.org/10.1143/PTPS.E65.316
http://dx.doi.org/10.1143/PTPS.E65.316
http://dx.doi.org/10.1143/PTPS.37.297
http://dx.doi.org/10.1143/PTP.35.463
http://dx.doi.org/10.1143/PTP.35.463
http://dx.doi.org/10.1143/PTP.35.485
http://dx.doi.org/10.1143/PTP.35.485
http://dx.doi.org/10.1143/PTP.39.430
http://dx.doi.org/10.1143/PTP.39.785
http://dx.doi.org/10.1016/0550-3213(76)90115-2
http://dx.doi.org/10.1103/PhysRev.162.1426
http://dx.doi.org/10.1103/PhysRev.162.1426
http://dx.doi.org/10.1103/PhysRevD.7.215
http://dx.doi.org/10.1007/BF01475009
http://dx.doi.org/10.1007/BF01475009
http://dx.doi.org/10.1016/0370-2693(92)90832-O
http://dx.doi.org/10.1016/0370-2693(92)90832-O
http://cds.cern.ch/record/344280
http://dx.doi.org/10.1103/RevModPhys.36.655
http://dx.doi.org/10.1103/RevModPhys.36.655
http://inspirehep.net/record/83497
http://inspirehep.net/record/83497
http://dx.doi.org/10.1146/annurev.ns.26.120176.002125
http://dx.doi.org/10.1146/annurev.ns.26.120176.002125
http://dx.doi.org/10.1016/0550-3213(80)90229-1
http://dx.doi.org/10.1016/0550-3213(80)90229-1

BIBLIOGRAPHY

[212] R. Castaldi and G. Sanguinetti, “Elastic scattering and total cross section at
very high energies”, Annual Review of Nuclear and Particle Science 35, 351-395
(1985).

[213] D. S. Ayres et al., “Impact-parameter analysis of elastic scattering from 50 to

175 GeV/c”, Phys. Rev. D 14, 3092-3102 (1976).

[214] J. L. Bailly et al., “An impact parameter analysis of proton-proton elastic and
inelastic interactions at 360 GeV /c”, Z. Phys. C 37, 7-16 (1987).

[215] V. Kundréat, M. V. Lokajicek, and D. Krupa, “Nucleon high-energy profiles”,
in Proceedings of the 9th International Conference on Elastic and Diffractive
Scattering, Pruhonice, Czech Republic, June 9-15, 2001, edited by V. Kundrat
and P. Zavada, http://inspirehep.net/record/593128 (2002), pp. 247-256.

[216] V. Kundrét, M. V. Lokajicek, and D. Krupa, “Impact parameter structure derived
from elastic collisions”, Phys. Lett. B 544, 132-138 (2002).

[217] M. Ida, “Phenomelogical analysis of the high-energy collisions of elementary
particles”, Prog. Theor. Phys. 28, 945 (1962).

[218] F. S. Henyey and J. Pumplin, “Measuring the geometrical size of multiparticle
processes”, Nucl. Phys. 117, 235-249 (1976).

[219] R. J. Eden, “Theorems on high energy collisions of elementary particles”, Rev.
Mod. Phys. 43, 15-35 (1971).

[220] P. Eberhard, “Tests of the optical theorem”, Nucl. Phys. B 48, 333-342 (1972).

[221] P. Eberhard et al., “A test of the optical theorem”, Phys. Lett. B 53, 121-124
(1974).

[222] L. V. Hove, “An extension of Pomeranchuk’s theorem to diffraction scattering”,
Physics Letters 5, 252-253 (1963).

[223] L. V. Hove, “Exchange contributions to high energy scattering and imaginary
character of the elastic amplitude”, Physics Letters 7, 76-77 (1963).

[224] A. A. Logunov, N. V. Hieu, I. T. Todorov, and O. A. Khrustalev, “Asymptotic
relations between cross sections in local field theory”, Physics Letters 7, 69-71
(1963).

[225] A. A. Logunov, N. van Hieu, and I. T. Todorov, “Asymptotic relations between
scattering amplitudes in local field theory”, Annals of Physics 31, 203-234 (1965).

[226] H. Cornille and A. Martin, “A *pomeranchuk™® theorem for elastic diffraction
peaks”, Phys. Lett. B40, 671-674 (1972).

[227] H. Cornille and A. Martin, “Asymptotic equality of cross sections for line-reversed
reactions”, Nuclear Physics B 48, 104-116 (1972).

[228] A. Martin, “Asymptotic behaviour of the real part of the scattering amplitude at
t unequal 0”, Lett. Nuovo Cim. 7S2, 811-812 (1973).

[229] G. Auberson, T. Kinoshita, and A. Martin, “Violation of the Pomeranchuk
theorem and zeros of the scattering amplitudes”, Phys. Rev. D 3, 3185-3194
(1971).

[230] V. Kundrat and M. V. Lokajicek, “Geometrical scaling in high-energy hadron
collisions”, Phys. Rev. D 31, 1045-1050 (1985).

139


http://dx.doi.org/10.1146/annurev.ns.35.120185.002031
http://dx.doi.org/10.1146/annurev.ns.35.120185.002031
http://dx.doi.org/10.1103/PhysRevD.14.3092
http://dx.doi.org/10.1007/BF01442063
http://inspirehep.net/record/593128
http://dx.doi.org/10.1016/S0370-2693(02)02481-4
http://dx.doi.org/10.1143/PTP.28.945
http://dx.doi.org/10.1016/0550-3213(76)90571-X
http://dx.doi.org/10.1103/RevModPhys.43.15
http://dx.doi.org/10.1103/RevModPhys.43.15
http://dx.doi.org/10.1016/0550-3213(72)90173-3
http://dx.doi.org/10.1016/0370-2693(74)90361-X
http://dx.doi.org/10.1016/0370-2693(74)90361-X
http://dx.doi.org/10.1016/S0375-9601(63)95540-3
http://dx.doi.org/10.1016/0031-9163(63)90449-9
http://dx.doi.org/10.1016/0031-9163(63)90446-3
http://dx.doi.org/10.1016/0031-9163(63)90446-3
http://dx.doi.org/10.1016/0003-4916(65)90238-1
http://dx.doi.org/10.1016/0370-2693(72)90623-5
http://dx.doi.org/10.1016/0550-3213(72)90052-1
http://dx.doi.org/10.1007/BF02725393
http://dx.doi.org/10.1103/PhysRevD.3.3185
http://dx.doi.org/10.1103/PhysRevD.3.3185
http://dx.doi.org/10.1103/PhysRevD.31.1045

BIBLIOGRAPHY

[231]
232]
[233]
[234]
[235]

[236]

237]

238

[239]
[240]
[241]
[242]
[243]

[244]

[245]
[246]

1247]

[248]

140

V. Kundrat and M. Lokajicek, “Applicability of Martin’s equations in high-energy
elastic hadron scattering”, Phys. Rev. D 55, 3221-3224 (1997).

P. A. S. Carvalho and M. J. Menon, “Evidence for eikonal zeros in the momentum
transfer space”, Phys. Rev. D 56, 7321-7324 (1997).

P. A. S. Carvalho, A. F. Martini, and M. J.Menon, “Eikonal representation in
the momentum-transfer space”, Eur. Phys. J. C 39, 359 (2005).

M. J. Menon, “Topics on high-energy elastic hadron scattering”, Brazilian Journal
of Physics 35, 100-121 (2005).

M. J. Menon, “On the Franca and Hama analysis of elastic hadron scattering”,
Brazilian Journal of Physics 37, 9-12 (2007).

R. F. Avila, S. D. Campos, M. J. Menon, and J. Montanha, “Phenomenological
analysis connecting proton-proton and antiproton-proton elastic scattering”, Eur.
Phys. J. C47, 171-186 (2006).

R. F. Avila, S. D. Campos, M. J. Menon, and J. Montanha, “On model-
independent analyses of elastic hadron scattering”, Brazilian Journal of Physics
37, 675677 (2007).

R. F. Avila and M. J. Menon, “Eikonal zeros in the momentum transfer space from
proton-proton scattering: An Empirical analysis”, Eur. Phys. J. C54, 555-576
(2008).

G. L. Pereira da Silva, M. J. Menon, and R. F. Avila, “Proton profile function at
52.8 GeV”, Int. J. Mod. Phys. E16, 20232926 (2007).

E. Ferreira and F. Pereira, “Hadronic sizes and observables in high-energy scat-
tering”, Phys. Rev. D 56, 179-183 (1997).

F. Pereira and E. Ferreira, “Eikonal profile functions and amplitudes for pp and
pp scattering”, Phys. Rev. D 59, 014008 (1998).

S. D. Campos, “Phenomenological Analysis of pp and pp Elastic Scattering Data
in the Impact Parameter Space”, Int. J. Mod. Phys. A25, 1937-1950 (2010).

D. A. Fagundes, M. J. Menon, and G. L. P. Silva, “Model-independent data
reductions of elastic proton-proton scattering”, Eur. Phys. J. C71, 1637 (2011).

D. A. Fagundes and M. J. Menon, “Applicability of a Representation for the
Martin’s Real-Part Formula in Model-Independent Analyses”, Int. J. Mod. Phys.
A26, 3219-3247 (2011).

H. M. Franca and Y. Hama, “Energy dependence of the eikonal in p — p elastic
collisions”, Phys. Rev. D 19, 3261-3267 (1979).

[. S. Gradshteyn and I. M. Ryzhik, High-Energy Particle Diffraction (Academic
Press, San Diego, 1980).

A. 1. Shoshi, F. D. Steffen, and H. J. Pirner, “S-matrix unitarity, impact parameter
profiles, gluon saturation and high-energy scattering”, Nuclear Physics A 709,
131-183 (2002).

M. G. Ryskin, A. D. Martin, and V. A. Khoze, “Soft diffraction at the LHC: A
Partonic interpretation”, Eur. Phys. J. C54, 199-217 (2008).


http://dx.doi.org/10.1103/PhysRevD.55.3221
http://dx.doi.org/10.1103/PhysRevD.56.7321
http://www.citebase.org/abstract?id=oai:arXiv.org:hep-ph/0312243
http://dx.doi.org/10.1590/S0103-97332005000100006
http://dx.doi.org/10.1590/S0103-97332005000100006
http://dx.doi.org/10.1590/S0103-97332007000100005
http://dx.doi.org/10.1140/epjc/s2006-02530-x
http://dx.doi.org/10.1140/epjc/s2006-02530-x
http://dx.doi.org/10.1590/S0103-97332007000400039
http://dx.doi.org/10.1590/S0103-97332007000400039
http://dx.doi.org/10.1140/epjc/s10052-008-0542-5
http://dx.doi.org/10.1140/epjc/s10052-008-0542-5
http://dx.doi.org/10.1142/S0218301307008732
http://dx.doi.org/10.1103/PhysRevD.56.179
http://dx.doi.org/10.1103/PhysRevD.59.014008
http://dx.doi.org/10.1142/S0217751X10048354
http://dx.doi.org/10.1140/epjc/s10052-011-1637-y
http://dx.doi.org/10.1142/S0217751X1105378X
http://dx.doi.org/10.1142/S0217751X1105378X
http://dx.doi.org/10.1103/PhysRevD.19.3261
https://cds.cern.ch/record/558211
http://dx.doi.org/http://dx.doi.org/10.1016/S0375-9474(02)01042-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0375-9474(02)01042-4
http://dx.doi.org/10.1140/epjc/s10052-007-0514-1

BIBLIOGRAPHY

[249] V. Kundrét, M. Lokajicek, and D. Krupa, “Momentum-transfer dependence of
the elastic-amplitude phase in high-energy hadron scattering”, Phys. Rev. D 35,
1719-1722 (1987).

[250] V. Kundrat, M. Lokajicek, and D. Krupa, “Role of the phase and impact-parameter
picture of pp elastic scattering at CERN Collider energy /s = 546 GeV”, Phys.
Rev. D 41, 1687-1690 (1990).

[251] V. Kundrat, M. Lokajicek, and D. Krupa, “High-energy elastic hadron scattering
in Coulomb and hadronic regions”, Phys. Rev. D 46, 4087-4090 (1992).

[252] U. Amaldi et al., “The real part of the forward proton proton scattering amplitude
measured at the cern intersecting storage rings”, Physics Letters B 66, 390-394
(1977).

[253] U. Amaldi et al., “Precision measurement of proton-proton total cross section at
the cern intersecting storage rings”, Nuclear Physics B 145, 367-401 (1978).

[254] A. Martin, “A theorem on the real part of the high-energy scattering amplitude
near the forward direction”, Physics Letters B 404, 137-140 (1997).

[255] P. Heckman and R. Henzi, “Overlap function analysis of pp elastic scattering
data at ISR energies”, Phys. Lett. B41, 189-191 (1972).

[256] F.S. Henyey, R. Hong Tuan, and G. L. Kane, “Impact parameter study of high
energy elastic scattering”, Nucl. Phys. B70, 445-460 (1974).

[257] R. Henzi and P. Valin, “The inelastic differential cross-section in impact parameter
space at ISR energies”, Phys. Lett. B48, 119-124 (1974).

[258] R. Henzi and P. Valin, “On elastic proton proton diffraction scattering and its
energy dependence”; Nucl. Phys. B148, 513 (1979).

[259] R. Henzi and P. Valin, “Towards a blacker, edgier and larger proton”, Phys. Lett.
B132, 443-448 (1983).

[260] R. Henzi and P. Valin, “On the validity of Martin’s real part formula”, Phys.
Lett. B149, 239 (1984).

[261] R. Henzi and P. Valin, “Does the proton look BEL at super-t and super colliders?”,
Phys. Lett. B160, 167 (1985).

[262] R. Henzi and P. Valin, “What is elastic scattering past the diffraction dip telling
us?”, Z. Phys. C27, 351-364 (1985).

[263] R. Henzi, “Energy dependence of diffraction maxima, interaction radius and
absorption of proton”, Nucl. Phys. B104, 52 (1976).

[264] P. Lipari and M. Lusignoli, “Interpretation of the measurements of total, elastic
and diffractive cross sections at LHC”, Eur. Phys. J. C, 73:2630 (2013).

[265] V. Franco and Y. Yin, “Elastic scattering of « particles and the Phase of the
nucleon-nucleon scattering amplitude”, Phys. Rev. Lett. 55, 1059-1061 (1985).

[266] V. Franco and Y. Yin, “Elastic collisions between light nuclei and the phase
variation of the nucleon-nucleon scattering amplitude”, Phys. Rev. C 34, 608618
(1986).

[267] R. J. Glauber, “Multiple diffraction theory of high-energy collisions”, in High-

energy physics and nucleon structure, edited by G. Alexander (North-Holland,
Amsterdam, 1967), p. 311.

141


http://dx.doi.org/10.1103/PhysRevD.35.1719
http://dx.doi.org/10.1103/PhysRevD.35.1719
http://dx.doi.org/10.1103/PhysRevD.41.1687
http://dx.doi.org/10.1103/PhysRevD.41.1687
http://dx.doi.org/10.1103/PhysRevD.46.4087
http://dx.doi.org/10.1016/0370-2693(77)90022-3
http://dx.doi.org/10.1016/0370-2693(77)90022-3
http://dx.doi.org/10.1016/0550-3213(78)90090-1
http://dx.doi.org/10.1016/S0370-2693(97)00510-8
http://dx.doi.org/10.1016/0370-2693(72)90458-3
http://dx.doi.org/10.1016/0550-3213(74)90442-8
http://dx.doi.org/10.1016/0370-2693(74)90658-3
http://dx.doi.org/10.1016/0550-3213(79)90148-2
http://dx.doi.org/10.1016/0370-2693(83)90344-1
http://dx.doi.org/10.1016/0370-2693(83)90344-1
http://dx.doi.org/10.1016/0370-2693(84)91592-2
http://dx.doi.org/10.1016/0370-2693(84)91592-2
http://dx.doi.org/10.1016/0370-2693(85)91486-8
http://dx.doi.org/10.1007/BF01548638
http://dx.doi.org/10.1016/0550-3213(76)90072-9
http://dx.doi.org/10.1140/epjc/s10052-013-2630-4
http://dx.doi.org/10.1103/PhysRevLett.55.1059
http://dx.doi.org/10.1103/PhysRevC.34.608
http://dx.doi.org/10.1103/PhysRevC.34.608

BIBLIOGRAPHY

[268]
[269]
[270]
271]

272]

273]

[274]
[275]
[276]

[277]
[278]

279

[280]
[281]
[282]

[283]

[284]
[285)

[286]

142

V. Petrov and A. Prokudin, “The first three pomerons...”, Eur. Phys. J. C 23,
135-143 (2002).

V. Petrov, E. Predazzi, and A. Prokudin, “Coulomb interference in high-energy
pp and pp scattering”, Eur. Phys. J. C 28, 525-533 (2003).

V. A. Petrov and A. Prokudin, “Three Pomerons versus DO and TOTEM data”,
Phys. Rev. D 87, 036003 (2013).

M. G. Ryskin, A. D. Martin, and V. A. Khoze, “Proton opacity in the light of
lhe diffractive data”, Eur. Phys. J. C 72, 1-8 (2012).

V. A. Khoze, A. D. Martin, and M. G. Ryskin, “T dependence of the slope of the
high energy elastic pp cross section”, Journal of Physics G: Nuclear and Particle
Physics 42, 025003 (2015).

M. M. Block, E. M. Gregores, F. Halzen, and G. Pancheri, “Photon-proton and
photon-photon scattering from nucleon-nucleon forward amplitudes”, Phys. Rev. D
60, 054024 (1999).

M. M. Block and F. Halzen, “Forward hadronic scattering at 7 TeV: An update
on predictions for the LHC”, Phys. Rev. D 83, 077901 (2011).

M. M. Block and F. Halzen, “Forward hadronic scattering at 8 TeV: Predictions
for the LHC”, Phys. Rev. D 86, 014006 (2012).

M. M. Block, L. Durand, P. Ha, and F. Halzen, “Eikonal fit to pp and pp scattering
and the edge in the scattering amplitude”, Phys. Rev. D 92, 014030 (2015).

P. D. Lax and R. S. Phillips, Scattering theory (Academic Press, 1967).

P. D. Lax and R. S. Phillips, Scattering theory for automorphic functions (Prince-
ton University Press, 1976).

M. V. Lokajicek, “Einstein-Bohr controversy after 75 years, its actual solution
and consequences”, in Some Applications of Quantum Mechanics, edited by M. R.
Pahlavani (2012), pp. 409-424.

M. V. Lokajicek, V. Kundrét, and J. Prochazka, “Two different physical interpre-
tations of Schroedinger equation”, arXiv: quant-ph/1305.5503v2 (2014).

N. Bohr, “The quantum postulate and the recent development of atomic theory”,
Nature 121, 580-590 (1928).

M. V. Lokajicek and V. Kundrat, “Optical theorem and elastic nucleon scattering”,
arXiv: hep-ph/0906.3961 (2009).

M. V. Lokajicek and V. Kundrat, “Optical theorem and elastic nucleon scattering”,
in Proceedings of the 13th International Conference on Elastic and Diffractive
Scattering, Switzerland, CERN, Jun 29 - Jul 3, 2009, edited by M. Deile, D.
d’Enterria, and A. De Roeck, arXiv:hep-ph/1002.3527 (2010), pp. 62—66.

R. G. Newton, “Optical theorem and beyond”, American Journal of Physics 44,
639-642 (1976).

M. V. Lokajicek, “Phenomenological and ontological models in natural science”,
Concepts of Physics 4, 657-670 (2007), see also arXiv:0710.3225 [physics.hist-ph].

A. Arefiev et al., “Measurement of np elastic scattering at high energies and very
small momentum transfers”, Nucl. Phys. B 232, 365-397 (1984).


http://dx.doi.org/10.1007/s100520100838
http://dx.doi.org/10.1007/s100520100838
http://dx.doi.org/10.1140/epjc/s2003-01191-7
http://dx.doi.org/10.1103/PhysRevD.87.036003
http://dx.doi.org/10.1140/epjc/s10052-012-1937-x
http://stacks.iop.org/0954-3899/42/i%20=%202/a%20=%20025003
http://stacks.iop.org/0954-3899/42/i%20=%202/a%20=%20025003
http://dx.doi.org/10.1103/PhysRevD.60.054024
http://dx.doi.org/10.1103/PhysRevD.60.054024
http://dx.doi.org/10.1103/PhysRevD.83.077901
http://dx.doi.org/10.1103/PhysRevD.86.014006
http://dx.doi.org/10.1103/PhysRevD.92.014030
http://www.intechopen.com/books/some-applications-of-quantum-mechanics/einstein-bohr-controversy-after-75-years-its-actual-solution-and-consequences
http://www.intechopen.com/books/some-applications-of-quantum-mechanics/einstein-bohr-controversy-after-75-years-its-actual-solution-and-consequences
http://www.intechopen.com/books/some-applications-of-quantum-mechanics
http://arxiv.org/abs/1305.5503
http://dx.doi.org/10.1038/121580a0
http://arxiv.org/abs/0906.3961
http://arxiv.org/abs/1002.3527
http://arxiv.org/abs/1002.3527
http://dx.doi.org/10.1119/1.10324
http://dx.doi.org/10.1119/1.10324
http://www.hrpub.org/journals/article_phy_info.php?aid=2418
http://arxiv.org/abs/0710.3225
http://dx.doi.org/10.1016/0550-3213(84)90034-8

BIBLIOGRAPHY

[287]
[288]
[289]
[290]

[291]

[292]

C. E. DeHaven et al., “Neutron-Proton Elastic Scattering from 70 to 400 GeV/c”,
Phys. Rev. Lett. 41, 669-672 (1978).

M. N. Kreisler, M. B. Davis, M. J. Longo, and D. D. O’Brien, “Neutron-proton
charge-exchange scattering from 8 to 29 GeV/c”, Nucl. Phys. B 84, 3-54 (1975).

G. N. Watson, A treatise on the theory of Bessel functions (Cambridge University
Press, 1962).

T. M. MacRobert, “Fourier integrals”, Proc. Roy. Soc. Edinburgh Sect. A 51,
116-126 (1931).

T. M. MacRobert, “IV. Some applications of contour integration”, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 38, 45-51
(1947).

I. N. Sneddon, Fourier Transforms (McGraw-Hill Co., 1951).

143


http://dx.doi.org/10.1103/PhysRevLett.41.669
http://dx.doi.org/10.1016/0550-3213(75)90535-0
http://dx.doi.org/10.1080/14786444708521585
http://dx.doi.org/10.1080/14786444708521585
http://dx.doi.org/10.1080/14786444708521585

BIBLIOGRAPHY

144



Appendix A

Some older experimental results

A.1 Neutron-proton elastic scattering

The np elastic differential cross section has been also measured for incident neutron
momenta 100 — 400 GeV /c in the very low |¢| range from 6 x 107% to 5 x 107! (GeV/c)?
in the (NA-6) experiment at CERN SPS [286] (1984), see fig. A.1. The np data of
this experiment provided a first direct measurement of the hadronic scattering for
t| < 1072 (GeV/c)? (being non-purely exponential). The data for |t| < 107* (GeV /c)?
were consistent with a rise attributed to Schwinger scattering, caused by the interaction
of the neutron magnetic moment with the proton, see fig. A.2.

- O =
s 8,5
T

S
S, 3

do/dt(mb/ (GeV/c)?)
o
o

10r

3
—T

A
AN
W\

O‘s

3%
£ % ;
s\ .

‘$ . iffﬂ" L]

%
QQT! LY

)
L]
Tﬁf’ [ X} .
| | | L |

;\ \ ‘n
00 % , fff £§100 Gev/e

;\\ "oy

150 GeV/e

} t

§ 2006eV/c

$ 245 Gev/c

¥ 280 Gevre
$320 GeV/c

360 GeV/
¢

4
[

000

\ L]
(]
¢
100 200

'o.\'\.. !ﬁff,,! .
ﬁﬁi! ] :
-1(Gev/c)?

|
300 401

Figure A.1: Neutron-proton elastic differ-
ential cross sections in the range 0.15 < [t S
3.6 GeV? for seven incident momentum bins
[287]; the momenta indicated are the cen-
ter of the bins (collision energy /s’ is two
times higher). The data also exhibits a dip at
|t| ~ 1.4 GeV? for incident momenta above
200 GeV; the dip is more pronounced if the
momentum increases.
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Figure A.2: Neutron-proton elastic differential cross section measured in
the NA-6 experiment [286] for incident neutron momenta from 100 to 400
GeV (data points). Dashed line - calculated pp elastic differential cross
section (including Coulomb interaction dominating at [t| < 1072 GeV?).
Dotted line - calculated Schwinger np scattering (involving the interaction
between the magnetic moment of the neutron and the proton charge). Solid
line - purely exponential elastic hadronic differential cross section as assumed
in the two previous cases.



A.2 Neutron-proton charge exchange

A.2 Neutron-proton charge exchange

One of the very interesting type of process is also charge exchange in, e.g., neutron-proton
collision
np — pn . (A.1)

It represents an interaction in which electric charge is somehow transfered from the
incident proton to the neutron which leads to abnormal (backward) scattering angles
not expected at high energies in elastic scattering where no charge is exchanged. The
differential cross sections for neutron-proton charge exchange scattering have been
measured, e.g., in an experiment performed at the Brookhaven Alternation Gradient
Synchrotron before 1975 [288] for incident neutron momenta between 8 and 29 GeV and
for four-momentum transfer || between 0.002 and 1.0 GeV2. A neutron beam with a
broad momentum spectrum was scattered from liquid hydrogen target in this experiment.

Charge exchange reactions are discussed also, e.g., in these proton-proton collisions:

pp—=n+ATT s n+prt (A.2)
pp — AP+ AT = 4prt (A.3)
pp — AP+ AT = prT + prt (A.4)
or also in the case of
pr~ — nr’. (A.5)

Such processes indicate, e.g., that the distribution of electric charge inside proton is
quite different than the distribution of hadronic matter. It could help also in considera-
tions concerning the different states derived on the basis of the new probabilistic model
discused in chapter 7.
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Appendix B

Impact parameter representation of
elastic hadronic amplitude at finite
energies

The function he(s,b) defined by eq. (3.66) determines the impact parameter profile
in the limit of s going to infinity as the FB transformation introducing the impact
parameter representation of elastic scattering amplitude requires the amplitude to be
defined for all values of ¢ from the interval (—oo,0) [194-200]. For finite energy values
the function FN(s,t) may be specified, however, in the kinematically allowed interval
only: t € (tmin,0), where ty, = —s + 4m? and m is the nucleon mass in the case of
elastic nucleon scattering. It should hold FN(s,ty,) = 0.
In the following we shall follow the approach proposed in [200]. One may write

0
V=t = 2py, y = sinﬁ, (B.1)

where 6 stands for elastic scattering angle in the center-of-mass system. Let us define
then the function A(s,y) by relation

_ ) FR(s,) 0<y<1
Al = {A(s,y) = An(,9) +iM(5,y) 1<y <o B2

where A(s,y) is unknown complex function the real and imaginary parts of which are
supposed to have following properties:

o [ yl/z/\RJ(s, y)dy are absolutely convergent,
1

e A\r(s,y) are of bounded variation for 1 <y < oco.

Then according to Hankel theorem [289] the amplitude A(s,y) has FB transformation
for 0 <y < o0

Als,y) = g—; / 848 Jo(By) h(s, B). (B.3)
ha(s, B) = \/—]io/ydy Jo(By) A(s,y); (B.4)
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here we have introduced a new variable 5 = 2pb.

More detailed insight to inverse FB transformation offers MacRoberts theorem [290-
292] which may be formulated as follows. Let the function F'(s,y) is holomorphic in the
interval p < y < ¢ and let the function a(s, §) can be expressed by the integral

q
2
als. ) = = [ vy 1.(5) Fls.n) (5.5
P
for 0 <p<qg<oo and Rev > —1 then
\/57o F(s,y) for p<y<q,
A(s,y) = — dsg J, a(s, ) = B.6
(s,9) 2p055(5y)(5) 0 for 0<y<p or y>op. (B.6)

MacRobert’s theorem may be used to the FB transformation of function F(s,y) as the
elastic hadronic amplitude FN(s,y) is the holomorphic function inside Lehman’s ellipse
with foci -1 and 1 (see, e.g., [219]).

Then the original elastic scattering amplitude FN(s,t) is given by relation

FN(s,t) = 2p\/§/bdb Jo(bv/=t) he(s,b), (B.7)

which is the representation of elastic scattering amplitude in the impact parameter space.
With the help of relation (B.2) the inverse relation to the relation (B.7) has a form

ha(s, 8) = (s, B) + ha(s, ), (B5)
where .

(s 8) = 2 [ wdy h(Bn) P (s.0) (B.9)
and 0 _

(s ) = <= [ vy o) M) (B.10)

The function A(s,y) as well as its FB image ha(s, 5) are in general complex functions.

Similar relations may be derived also for the inelastic processes. Starting from the
unitarity condition (3.65) in ¢ variable (expressed now in y variable) and performing the
FB transformation of the real inelastic overlap function Giel(s,y) one may obtain

ginel(‘gaﬁ) :gl(s7ﬁ)+g2<87ﬁ)> (Bll)
where ,
91(s,B8) = %O/ydy Jo(By) Ginei(s, ) (B.12)
and

@ﬁ—%deww@w (B.13)
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where the real function p(s,y) must fulfill the same conditions as real and imaginary
parts of function A(s,y).

The representation of elastic hadronic amplitude in the impact parameter space, i.e.,
hi(s, B) in the physical region, should contain the same amount of physical information
as the original amplitude FN(s,t). With the help of the optical theorem given by
eq. (3.23) the total cross section may be expressed using the b-dependent function
hi(s,b) as [194-200]

AT 2m r r
t(s) = Im FN t:O:—/dIh =2 /bdb41h b);
g (8) p\/; m <87 ) p2 / ﬁ ﬂ m 1(875) 7TO m 1(87 )7
(B.14)
and also the integrated elastic cross section may be written as
1 00 00
el 8 N o 2m 2 2
75 = [y |PN ) = 25 [ 505 (s, 5)F =2 [ bab (s, . (B15)
0 0 0

The integrated inelastic cross section (0! = gt — ) is then given by relation [194-
200]

ine 2 I T
75 = 2 / BAB g1(5, B) = 2 / belb 4g, (s, 1). (B.16)

The unitarity equation in the impact parameter space can be written in a generalized
form as [194-200]

Im Ay (s, B) = |hi(s,0)|* + g1(s, B) + K(s, ) (B.17)

where the correction function K (s, 3) is limited by a condition
/Bdﬁ K(s, ) =0. (B.18)
0
Also the functions hq(s, 5) and go(s, 3) are limited by the similar conditions [194-200],
i.e.,
[ 5 s, 5) =0, [ 845 (s =0 (.19
0 0

The function K (s, 3) equals [194-199]

0 0

/dtl/dt2 FN*(s,t9) FN(s,t1) M(B;t1,ts) (B.20)

tmin tmin

B 1
~ 16m2s

K(s, B)

where

M(ﬁ;tl,m:Jo(ﬁ 0 —1))%(6 (2 —1))—%(6@)%(5@»

min tmin
(B.21)
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The function K (s, ) vanishes at 5 = 0 and b — oo; and also at asymptotic energies
(tmin — —00) [194-200]. Detailed analysis of high energy elastic pp scattering [48] has
showed that the value of function K(s,b) is very small and may be neglected.

The shape of elastic amplitude in the impact parameter space he (s, 3) determined
by eq. (B.8) depends on the t-dependence of elastic hadronic amplitude FN(s,t) in
the unphysical region of . As shown by Islam [201] the uniqueness of the FN(s,t)
can be achieved if two t-dependent parts of the amplitude FN(s,t) in the physical and
unphysical regions are bounded by the Sommerfeld-Watson transformation. The elastic
amplitude he (s, 5) in the impact parameter space oscillates at larger S values; the
oscillations disappear at infinite energies only.

The representation of the scattering amplitude in the impact parameter space has
been defined in [194-200] as an analogy to partial wave analysis. From the requirement of
equivalence of both these representations the question arises which conditions imposed on
the elastic hadronic amplitude FN(s,t) guarantee the existence of its impact parameter
representation. It has been shown in [194-200] that the finiteness of the integrated
elastic cross section (B.15) at finite energies guarantees its existence.

It has been shown in [20] that Im hy(s,b) and g;(s, b) obtained with the help of the
FB transformation oscillate at larger values of impact parameter b due to the fact that
the region of kinematically allowed values of momentum transfers ¢ at finite energies is
limited and the region for ¢t < t,,;, is not taken into account. The oscillations appear
not only in the case of peripheral behaviour of elastic hadron scattering where they are
very significant but also in the case of central behaviour. The physical meaning may be,
therefore, hardly attributed to the functions 4Im hy(s,b) and 4g;(s,b) in egs. (B.14),
(B.16) and (B.17), even if their integrals represent corresponding cross sections, see also
[201]. Only the non-negative function 4|h;(s,b)|* has been denoted as elastic profile
function. According to [49, 176, 177, 215, 216] non-negative (non-oscillating) total and
inelastic profile functions at finite energies may be defined if a convenient real function
c(s,b) is added to both the sides of the unitarity equation (B.17). In such a case one
obtains eq. (3.78). It is then possible to define at finite energies total, elastic and inelastic
profile functions DX (s, b) (X=tot, el, inel) according to eqs. (3.75) to (3.77) and rewrite
the unitarity condition in b-space in the form given by eq. (3.73). The shape of D™*(s, b)
and D™!(s,b) might be then modified to become non-negative; the shape of elastic
profile remains the same. The function c¢(s,b) should, however, fulfill some additional
conditions. The total and inelastic cross section given by eq. (3.72) (see egs. (B.14)
to (B.16)) remains unchanged if

/ b db (s, b) = 0. (B.22)

The other physical quantities which should be preserved are the mean squared values of
the total and inelastic impact parameters, i.e., function c(s,b) should not change the
quantities (b*)** and (b?)"! defined according to eq. (3.80). These quantities will be

preserved if also
oo

/b3 db c(s,b) = 0. (B.23)

By definition all the mentioned processes (total, elastic and inelastic) are realized by
strong interactions which are of finite ranges. Therefore both the integrals appearing in
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eq. (3.80) should be convergent. Condition 8Y/2h,(s,3) € L*(0,00) guarantees that all
three integrals (for total, elastic or inelastic type X) in the denominator of eq. (3.80)
are convergent; for the inelastic case also on the basis of unitarity condition given by
eq. (B.17) (the influence of the correction function K (s, 3) as it has been mentioned
can be neglected). However, this condition does not guarantee the convergence of the
integrals in the nominator of eq. (3.80); in order to achieve this we have to require the
validity of stronger condition, i.e., that 5%2h, (s, 3) € L?(0,00). Due to the unitarity
equation the remaining two integrals corresponding to the elastic and inelastic scattering
will be convergent, too.

The function ¢(s, b) should fulfill, therefore, the following conditions: it must remove
the oscillations (provide the non-negative function D**(s, b)) and fulfill eq. (B.22) and
eq. (B.23).

It follows then from the Islam’s approach [201] that the two conditions given by
egs. (B.22) and (B.23) are fulfilled when

c(s,b) = — Imhy(s,b), (B.24)

where hs(s,b) is defined by eq. (B.10) and is based on analytical continuation of complex
amplitude FN(s,t) that fulfills the condition

FN(5,tmim) = 0. (B.25)

It means also that one can hardly determine the function c¢(s,b) quite exactly on the
basis of the conditions above and experimental data of elastic scattering corresponding
always to very limited ¢-region (see also [49, 177]). The functions c¢(s,b) and profile
functions DX(b) may be determined if some other assumptions are added, see the end of
sect. 3.4.3.
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Acronyms

ALFA

ALICE

ALPHA

ATLAS

ATRAP

BSRT

CD

CERN

CMS
COMPETE

cp

CsC

CT-PPS

Absolute Luminosity For ATLAS. A project under ATLAS with similar
physics aims as the ones of TOTEM experiment.

A Large Ion Collider Experiment. An LHC experiment at CERN, see
sect. 1.2.

Antihydrogen Laser PHysics Apparatus. An experiment at CERN
aiming to compare hydrogen atoms with their antimatter equivalents —
antihydrogen atoms (similar to ATRAP experiment).

A Toroidal LHC ApparatuS. An LHC experiment at CERN, see
sect. 1.2.

Antihydrogen TRAP. An experiment at CERN aiming to compare
hydrogen atoms with their antimatter equivalents — antihydrogen atoms
(similar to ALPHA experiment).

Beam Synchrotron Radiation Telescope. A device for measuring
transversal beam profile.

central diffraction. See CP.

European Organization for Nuclear Research. Conseil Européen pour
la Recherche Nucléaire (Geneva, Switzerland).

Compact Muon Solenoid. An LHC experiment at CERN, see sect. 1.2.
COmputerised Models, Parameter Evaluation for Theory and Experi-
ment. A collaboration whose program was defined in [143].

central production. A process pp — pXp where both protons survive
but lose certain momentum and a system of particles X is created. The
definition often also requires the system X to be separated from the
two protons by two rapidity gaps. This process is sometimes denoted
also as central diffraction (CD) (or double pomeron exchange (DPE)
which suggest an intepretation).

Cathode Strip Chamber. Multiwire proportional chamber with seg-
mented cathode read-out. A detector technology chosen for T1 detec-
tor.

CMS-TOTEM Precision Proton Spectrometer. Joint CMS and
TOTEM project which is intended to add precision proton track-
ing and timing detectors in the very forward region on both sides of
CMS at about 200m from the IP, see [40].
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Current Terminating Structure. Part of the TOTEM RP silicon strip
detector used to collect the current generated in the highly damaged
region at the cut edge and so avoids its diffusion into the sensitive
detector volume, see sect. 2.2.3.

Data AcQuisition. Refers to software and/or hardware systems respon-
sible for recording data during measurement.

Direct Current Current Transformers. A beam instrumentation for
measuring of overall beam charge.

double diffraction. A process pp — XY which is similar to single
diffraction (SD) except that both the protons breaks up, each producing
particles in a limited rapidity region.

double pomeron exchange. See CP.

elastic scattering. A process pp — pp with two outgoing collinear
protons which did not lose energy.

Fourier—Bessel. Refers to Fourier—Bessel transformation.
Fast Bunch Current Transformers. A beam instrumentation for mea-
suring of relative bunch charge.

Gas Electron Multiplier. Type of gaseous ionization detector. A
detector technology used for T2 detector.

Hadron-Electron Ring Accelerator. A particle accelerator at DESY in
Hamburg.

Interaction Point. Used commonly in the sama meaning as IR.
Interaction Region. A place where two opossite beams may collide in
LHC (IR1, IR2, IR5 or IR8) sometimes also used for indication of a
LHC octant as shown in fig. 1.7. Also known as Intersection Region or
Intersection Point.

Intersecting Storage Rings. A past accelerator (storage rings) which
was at CERN; the world’s first proton (hadron) collider.

Large Hadron Collider. An accelerator at CERN, see sect. 1.1.

Large Hadron Collider beauty. An LHC experiment at CERN, see
sect. 1.2.

Large Hadron Collider forward. An LHC experiment at CERN, see
sect. 1.2.

LINear ACcelerator 2. A linear proton accelerator at CERN, see
sect. 1.1.

Long Shutdown 1. Refers to first long shutdown of LHC which started
in first quoter of 2013 and took ~2 years.

Monopole and Exotics Detector at the LHC. An LHC detector (exper-
iment) at CERN, see sect. 1.2.
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North Area 6. A past experiment at CERN SPS which measured
neutron-proton elastic scattering at very small scattering angles.
neutron-proton. Refers to a collision of neutron and proton.

Optical theorem Luminosity. Refers to a method of total cross section
determination based on optical theorem and luminosity, see sect. 3.5.2.
Optical theorem Luminosity Independent. Refers to luminosity inde-
pendent method of total cross section determination based on optical
theorem, see sect. 3.5.3.

proton-proton. Refers to a collision of two protons.
antiproton-proton. Refers to collision of antiproton and proton.
Proton Synchrotron. An accelerator at CERN, see sect. 1.1.

Proton Synchrotron Booster. An accelerator at CERN, see sect. 1.1.

quantum chromodynamics. Relativistic quantum field theory of strong
interactions.

quantum mechanics. Non-relativistic quantum theory based on
Schrodinger equation (also known as quantum physics).

Radio Frequency. Refers to radio frequency system (RF system) used
to accelerate charged particles, see chapter 1.

Relativistic Heavy Ion Collider. A heavy-ion colliders which is able to
collide some other particles including spin-polarized proton beams at
high energies (Run-9 achieved center-of-mass energy of 500 GeV on 12
February 2009 - the highest in the world). It is located at Brookhaven
National Laboratory (BNL) in New York, USA.

Roman Pot. A moveable device which can be equipped by detetors to
measure particles very close to a particle beam.

Roman Pot. TOTEM RP station at distance of about 147 m from
interaction point IP5, see fig. 2.2.

Roman Pot. TOTEM RP station at distance of about 220 m from
interaction point IP5, see fig. 2.2.

Run 1. LHC running period during 2009 — 2013, before LS1.

single diffraction. A process pp — pX or Yp which is similar to elastic
scattering (ES) except that one of the protons breaks up, producing
particles in a limited rapidity region.

The SPS operated as a proton—antiproton instead of proton-proton
collider from 1981 to 1984 - it was, therefore, called SppS.

Super Proton Synchrotron. An accelerator at CERN, see sect. 1.1.
supersymmetry. A theory proposing symmetry of nature relating
particles which have integer-valued spin (bosons) to particles having a
half-integer spin (fermions).

Telescope 1. One of the TOTEM detector detecting charged particles
originating from inelastic collisions.
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Telescope 2. One of the TOTEM detector detecting charged particles
originating from inelastic collisions.

It was a circular particle accelerator in the USA, at the Fermi Na-
tional Accelerator Laboratory (Fermilab) that accelereted protons and
antiprotons to energies of up to 1 TeV (which is the reason for its
name).

TOTal, Elastic and diffractive cross section Measurement. An LHC
experiment at CERN, see sect. 1.2 and chapter 2.

total rate. Refers to rate of elastic and inelastic events.

van der Meer. Refers to beam separation scans pioneered by Simon
van der Meer, see sect. 1.3.2.

Wire Scanner. A device for measuring transversal beam profile.
West and Yennie. Authors of one of the Coulomb and hadronic
interference formulas, see sect. 3.2.
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