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PREFACE 

This thesis discusses four endogenous retroviruses. The first one is an 

endogenous Lentivirus detected in the genome of Galeopterus variegatus. The 

second is (rather a remnant of) an endogenous Deltaretrovirus described in the 

genomes of Miniopteridae bats. The third one is an endogenous Gammaretrovirus in 

the genome of Odocoileus hemionus; and the fourth is the presumed 

Gammaretrovirus present in the Cricetulus griseus genome (or rather in the cells 

obtained from this species and widely used in biotechnology). 

These animals come from only remotely related taxa and the studied retroviruses 

come from several groups. Therefore, in the introduction, I try to discuss the general 

phenomenon of endogenization, the individual groups of retroviruses, and the host 

restriction towards retroviral infection. The overview of the possible outcomes of the 

presence of an endogenous retrovirus for the host, and other aspects of the presence 

of an endogenous retrovirus in the animal genome are discussed not so elaborately.  

The Methods section is divided into sub-chapters, each discussing methods used 

in an individual project connected to a particular retrovirus. This is so that the reader 

has an easier job following this thesis. If a particular method is used in various 

projects, it is described only once and a cross-reference is included to it in the other 

project section. 

The results and discussion sections normally occurring in two individual chapters 

are merged, for with so many different projects, I found it easier to follow for the 

reader. In many cases, the methods, results or discussion texts might highly resemble 

the ones occurring in the published papers. Several figures are the ones included in 

the attached manuscripts, for several results discussed in this thesis or closely 

connected to it have been already published. All of these manuscripts are in the 

Supplement to this thesis. I tried to include the data I feel I contributed with to the 

presented papers (if not stated otherwise further on in the text), even though it is 

complicated in some cases (due to the facts stated in the declaration).  
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I also tried to discuss the data not published in the papers (for they are either 

preliminary or were proven to be a dead end analyzes) more in detail than the ones 

that could be found in the attached manuscripts. These data and figures from them 

are generally rather preliminary, yet already informative. 

Taken together, I believe the experiments reported in this thesis would add to 

our understanding of the assorted diversity of interactions between endogenous 

retroviruses and their hosts.  
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ABSTRACT 

Endogenous retroviruses (ERVs) originate by germline infection and subsequent 

mendelian inheritance of their exogenous counterparts. With notable exceptions, all 

mammalian ERVs are evolutionarily old and fixed in the population of its host species.  

Some groups of retroviruses were believed not to be able to form endogenous 

copies. We discovered an additional endogenous Lentivirus and a first endogenous 

Deltaretrovirus. Both of these groups were previously considered unable to form 

endogenous copies. Endogenous lentiviruses were discovered only recently and are still 

quite rare. These are still just small pieces of evidence insufficient to give a broader 

picture about the history of virus endogenization. We described a novel endogenous 

Lentivirus in the genome of Malayan colugo (Galeopterus variegatus) denoted ELVgv 

(endogenous Lentivirus of G. variegatus). Based on several analyzes we proved that this 

is the oldest Lentivirus discovered up to date and confirmed its presence in the only 

other extant species of Dermoptera - Cynocephalus volans. 

Endogenous deltaretroviruses were the last group without a single endogenous 

member. We detected the remnants of endogenous Deltaretrovirus in the genome of 

Natal Long-fingered bat (Miniopterus natalensis). However, this sequence was present in 

the genome only in one copy. We subsequently amplified and sequenced the provirus 

remnants from other related Miniopteridae bats. 

Besides filling in the gaps of missing types of endogenous retroviral copies in 

genomes, we tried to add to current knowledge about the process of endogenization. 

The processes accompanying endogenization and the features of viruses capable of 

endogenization are still not well elucidated. 

This might be owed to absence of a suitable model of endogenization. We 

propose such a model. Besides endogenous retrovirus in koalas, ERV in mule deer 

(Odocoileus hemionus) forms new germ line insertions in the natural host population in 

the present evolutionary time and might serve as an important model of the retrovirus 

endogenization process. We have determined complete genome sequence of the deer 

ERV, denoted cervid endogenous retrovirus (CrERV). In the previous studies, thousands 

of highly polymorphic CrERV integrations in approximately 50 animals were 
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characterized. Notable polymorphism within the population of mule deer with CrERV 

integration sites allocated to specific area verify the predicted young age of the virus as 

well as the current process of endogenization. 

We performed experiments to characterize CrERV from virological perspective 

and explain the inefficiencies in virus replication cycle, for CrERV exhibits xenotropic 

behavior despite being efficient in creating new germ line copies. Experiments tackling 

this question were only partially successful and several questions remained unanswered. 

Besides these experiments, we tried to assemble retrovirus restriction factors from 

Cervidae species' genomes and perform analyzes to estimate possible presence of their 

positive selection.  

We also came across of concept, which could elucidate the occurrence of a 

replication block of viruses with amphotropic envelope in Chinese hamster ovary cells 

(CHOK1). We propose that these cells (widely used in biotechnology applications) bear 

an endogenous retrovirus unable to produce infectious particles, but able to produce 

defective Env protein. This protein might inhibit infection by exogenous retrovirus by 

competitive inhibition at the receptor. 
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ABSTRAKT  

Endogenní retroviry  (ERV) vznikají retrovirovou infekcí zárodečné linie a 

následným přenosem do dalších generací podle pravidel Mendelovy dědičnosti. Až na 

pár výjimek jsou všechny druhy savčích ERV evolučně staré a fixované v populaci svých 

hostitelských druhů. 

O některých skupinách retrovirů se předpokládálo, že nejsou schopny vytvářet 

endogenní kopie. Objevili jsme další příklad endogenního Lentiviru a první endogenní 

Deltaretrovirus. Obě tyto skupiny byly dříve považovány za neschopny vytvářet 

endogenní kopie. Endogenní lentiviry byly objeveny pouze nedávno a stale se považují za 

velmi vzácné. Toto jsou stále jen minoritní důkazy z kterých nemůžeme získat celkový 

obraz o průběhu virové endogenizace. Popsali jsme nový endogenní Lentivirus v genomu 

letuchy malajské (Galeopterus variegatus) a nazvali ho ELVgv (endogenous Lentivirus of 

G. variegatus). Na základě několika analýz jsme dokázali, že se jedná o nejstarší dosud 

objevený Lentivirus, a potvrdili jsme jeho přítomnost v jediném jiném současném druhu 

Dermopter - Cynocephalus volans.  

Endogenní deltaretroviry byly poslední retrovirovou skupinou bez nalezeného 

endogenního člena. Našli jsme zbytky endogenního Deltaretroviru v genomu netopýra 

létavce natalského (Miniopterus natalensis). Tato retrovirová sekvence byla přítomna v 

genomu pouze v jedné kopii. Následně jsme tento provirus amplifikovali pomocí PCR a 

osekvenovali také z jiných příbuzných druhů čeledi Miniopteridae.  

Kromě vyplnění mezery v typech endogenních retrovirových kopií nalezených v 

hostitelských genomech jsme se dále snažili rozšířit současné poznatky o vlatním 

procesu retrovirové endogenizace. Procesy doprovázející endogenizaci a vlastnosti virů 

schopných endogenizace nejsou stále dostatečně objasněny.  

To je částečně zapříčiněno chybějícím vhodným modelovým systémem pro 

endogenizaci. Jako vhodný model navrhujeme ERV jelence ušatého (Odocoileus 

hemionus), který vytváří nové inzerce v zárodečných buňkách v populaci svého hostitele 

v nedávne evoluci, a může sloužit jako důležitý model pro studium procesu retrovirové 

endogenizace. Popsali  jsme kompletní sekvenci genomu jelenčího ERV, nazvaného 

cervid endogenous retrovirus (CrERV). V předchozích studiích byly charakterizovány 
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tisíce vysoce polymorfních integrací CrERV v přibližne 50 zvířatech. Tento pozoruhodný 

inzerční polymorfismus v populaci severoamerických jelenců, s jednotlivými integracemi 

CrERV typickými pro konkrétní geografické lokality, naznačuje předpokládaný mladý 

evoluční věk viru a také současně probíhající proces endogenizace.  

Provedli jsme experimenty zaměřené na charakterizaci CrERV z virologického 

hlediska a na vysvětlení bloků retrovirového replikačního cyklu, protože CrERV vykazuje 

xenotropismus navzdory efektnímu vytváření nových zárodečných kopií. Tyto 

experimenty byly úspěšné jemom zčásti a mnohé otázky zůstaly stále otevřené. Kromě 

těchto experimentů jsme se dále snažili sestavit sekvence retrovirových restrikčních 

faktorů z genomů jelenovitých druhů a provést analýzy na možnou přítomnost 

pozitivního selekčního tlaku 

Dále jsme se pokusili objasnit přítomnost replikačního bloku virů s amfotropní 

retrovirovou obálkou na linii ovarialních buněk čínského křečka (Chinese hamster ovary 

cells - CHOK1). Předpokládame, že tyto buňky (hojně využívané v biotechnologii) v sobě 

nesou endogenní retrovirus neschopný produkce infekčních částic, ale schopný 

produkce a sekrece defektního obalového glykoproteinu (Env). Tento glykoprotein může 

působit inhibičně na infekci exogenním retrovirem, mechanismem kompetitivní inhibice 

na virovém receptoru. 
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1 HYPOTHESES AND AIMS 

1) The first aim of this thesis is to characterize the findings of the computational 

screening of all publicly available genomes. This screen was aimed at the 

discovery of novel or unusual endogenous retroviruses. We chose two hits from 

this screen to be characterized in this work. 

 Discovery of an endogenous Lentivirus in Galeopterus variegatus 

(Malayan colugo) denoted ELVgv (Endogenous Lentivirus in Galeopterus 

variegatus). 

o Characterize the orthologous and paralogous sequences found in 

Galeopterus variegatus and the only other extant species from 

Dermoptera - Cynocephalus volans. 

o Characterize the relationship of ELVgv and its host. 

 Discovery of the first endogenous Deltaretrovirus found in the genomes 

of Miniopteridae bats denoted MINERVa (Miniopterus endogenous 

retrovirus). 

2) The second aim of this thesis was to induce Cervid endogenous retrovirus 

(CrERV) from mule deer cells by cocultivation with susceptible human cells to 

characterize virus by virological methods. 

3) The third aim was to describe the host-virus interactions of CrERV. The original 

idea was to use gammaretroviral pseudotypes to identify the replication block of 

the virus in mule deer cells. This approached was later complemented with 

marker rescue assay. 

4) The fourth aim is the further description of host-virus interactions of CrERV by 

assembling the host retrovirus restriction factors in silico and estimating the 

magnitude of the positive selection towards them. 

5) The fifth aim of the study was to analyze whether the infection block of Chinese 

hamster ovary (CHOK1) cells occurs due to the presence of endogenous 

retrovirus fragments secreted by CHOK1 cells. 

Figure 1 schematically shows the planned pseudotype constructs (MLV core and CrERV 

envelope and vice versa) and what would the infectivity outcomes on mule deer or 

human cells indicate. 
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Figure 1: Possible outcomes of the pseudotyping experiment. The parts used from MLV virus are 
depicted in red and parts of CrERV virus are depicted in blue. Hexagon indicates gag-pol and 
ovals indicate env. The infectivity is depicted by + (susceptible) or – (resistant).  
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2 INTRODUCTION 

2.1 Retroviruses  

 Retroviruses are the causative agents of various pathologies (e.g. tumors, 

immunodeficiency, and neurological disorders). Retroviruses compose roughly 10% of 

mammalian genomes, composing approximately 50% of genomes together with the 

other retroelements. Retroviruses are enveloped single-stranded RNA viruses containing 

reverse transcriptase enzyme. Reverse transcriptase enables retroviruses to be an 

exception in the central dogma of molecular biology, being a key player in transcribing 

their RNA genome to DNA (hence the name retro-viruses). They are used as a molecular 

biology tool and their close examination brought several important discoveries 

(carcinogenesis, cellular growth control, oncogenes, signal cascades and various other 

issues in molecular biology). Therefore, the continuous interest in them and close 

examination of their possible exploitation is still an issue. This is also exemplified by the 

fact that retroviral vectors have been used in more than 300 clinical trials.  

2.1.1 Retroviral structure 

 

Figure 2: Schematic structure of a retrovirus (Gammaretrovirus). The pictures depict schematic 
structure of an immature and mature virion. The Env is depicted as a trimer of a surface (SU) and 
transmembrane (TM) subunit. Pictures are adapted from webpages of Swiss institute of 
Bioinformatics (http://viralzone.expasy.org/). 

 

The three major genes in the retroviral genomes are gag (group antigen), pol 

(polymerase) and env (envelope glycoprotein). Proteins coded by gag are MA (matrix), 

CA (capsid), NC (nucleocapsid); proteins coded by pol are PR (protease), RT (reverse 

http://viralzone.expasy.org/
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transcriptase), IN (integrase); and the env gene codes for the SU (surface) and TM 

(transmembrane) subunits of the retroviral envelope. Retroviruses have a pseudodiploid 

RNA genome encapsulated in the viral core. Schematic structure of a retrovirus is 

depicted in Figure 2. The structure of the cores and genomes varies among retroviral 

genera.  

2.1.2 Retroviral life cycle 

Retroviral life cycle consists of early phase (from entry into the cell up to 

integration into the host genome) and late phase (expression of the integrated 

retrovirus, assembly, and release of the retroviral particles). During several steps of this 

process retroviruses hijack the host molecular machinery for their replication. Starting 

from entry, which is enabled via host surface proteins (virus receptors), then continuing 

with exploitation of host transcription and translation complexes to acquiring lipid 

bilayer from host cells.  

 Entry into the cell is the first step in the retroviral life cycle. The viral Env 

interacts with the cellular receptor and this induces conformational changes in the 

transmembrane Env subunit (TM). Many examples demonstrate that the interaction of 

cellular receptor and retroviral Env might not be sufficient for the retroviral entry into 

the cells (e.g. presence of co-receptors is needed). However, cellular receptor and Env 

interaction is still believed to be the most crucial aspect of the cellular entry.  

 Reverse transcription occurs right after the viral particle enters the cytoplasm. 

The process of reverse transcription was discovered while studying Rous sarcoma virus 

(RSV) (reviewed in (Baltimore, 1995). It is dependent on the two activities of reverse 

transcriptase: DNA polymerase (able to utilize both, DNA and RNA as template) and a 

nuclease (ribonuclease H). The product of the process is a double stranded DNA 

genome. 

Reverse transcription starts with one RNA of the pseudodiploid genome, utilizing 

as a primer a cellular tRNA bound to PBS (primer binding site). The elongation continues 

towards the 3‘end (left RNA LTR-long terminal repeat) synthetizing the left DNA LTR. 

When the RNA template for the elongation ends, the original RNA LTR is digested and 

the newly synthesized DNA part of the LTR binds to the right (downstream) RNA LTR. 
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Subsequently elongation continues until the newly synthesized first DNA strand reaches 

the PBS used for the first binding of the primer. The remaining RNA is digested except 

for PPT (polypurine tract) located right next to the downstream LTR. The remaining RNA 

serves as a primer for the synthesis of the second DNA strand. When the synthesis 

reaches right LTR, the DNA double strand disassociates and the newest shorter strand 

(already without PPT) serves as a primer for a full length double strand viral DNA 

synthesis. This results in the fact that after the process of reverse transcription is over, 

the dsDNA has a complete LTR (consisting of U3-R-U5 sequences) on both sides. 

Retroviruses can recombine during reverse transcription by template switching during 

DNA synthesis. After mixed infection, half of the produced retroviruses are 

recombinants (Goodrich & Duesberg, 1990). 

 Some retroviruses are known to be able to actively enter the nucleus. They are 

heavily disassembled in the host cell cytoplasm and are subsequently able to exploit the 

host nuclear transport machinery (e.g. HIV). Other retroviruses have to wait for the 

division of the cell nucleus in the cell cycle when the nuclear envelope is temporarily 

disassembled (e.g. MLV). These processes were reviewed recently (Cohen, Au, & Pante, 

2011). 

 Prior to integration, a pre-integration complex is formed. It is a complex of host 

and viral proteins which can be isolated from infected cells (Farnet & Haseltine, 1990). 

This complex enables performance of three steps of the integration: processing, joining, 

and repair. Processing of the retroviral DNA ends (cleavage of two nucleotides from both 

ends) and joining of viral and host DNA is mediated by viral protein integrase. The 

integration is finalized in the last step when occurring gaps in DNA strands are filled by 

host polymerases. The result of the retroviral life cycles up to this step is integrated viral 

DNA (called provirus) with identical LTRs on both ends ready for transcription. Upon 

integration, short target site duplication (TSD) of host DNA is formed. 

 Transcription produces RNA templates for subsequent translations of retroviral 

genes as well as full RNA genomes to be later packed into the newly released viral 

particles. Transcription is performed by the host transcriptional machinery (RNA 

polymerase II). The organization of the genomes of particular retroviral genera with 

weak and strong stop codons enables translation of particular genes to occur in desired 
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orders and amounts. For example, lentiviruses have a weak stop codon ending the pol 

sequence which enables the read-through transcription of gag or gag-pol. The env is 

transcribed after a read-through and a frameshift, for Env is needed in lesser amount for 

retroviral assembly. Splicing occurs abundantly and is present also in simple retroviruses, 

generally for env (see Figure 2 for reference), and in complex retroviruses for additional 

accessory genes. The following translation must occur in the right moment in order to 

produce sufficient amount of particular gene product, the last being the products of gag 

and env to prepare enough protein for the retroviral particle assembly. 

 The process of retrovirus assembly occurs in the cellular cytoplasm close to the 

cytoplasmic membrane. The site of assembly varies for different retroviruses. When the 

retrovirus assembly is complete, the virus buds from the cell and finally is released. 

These processes are determined mainly by the products of the gag gene. Encapsidation 

signals on the unspliced RNAs are recognized by nucleocapsid proteins and the 

encapsidated RNA is then not to serve as a transcription template. 

 When the retrovirus is released from the cell, the particles undergo so-called 

maturation. This step enables the particles to become infectious for further processing 

of Gag and Gag-pro-pol is required. Mutants in the retroviral PR (protease) domain or 

particles assembled in the presence of PR inhibitor are not able to undergo this step. For 

example, gammaretroviral R-peptide (prevents fusion with host cell membranes before 

budding) needs to be cleaved in order to create efficient Env protein (Schneider et al., 

2011). 
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2.1.3 Retrovirus classification 

 

 

Figure 3: Phylogenetic relationship of retroviral groups (adapted from (Ruboyianes & Worobey, 
2016). 

 

The retroviral family is composed of seven genera (see Figure 3). 

Alpharetroviruses, betaretroviruses, and gammaretroviruses are simple retroviruses 

encoding only basic retroviral genes and mostly lack accessory genes. Deltaretroviruses, 

epsilonretroviruses, and lentiviruses are complex retroviruses coding for several 

accessory genes. Spumaviruses (Foamy viruses) are a special clade of retroviruses that 

generally do not cause pathologies.  

2.2 Genomics state of art as a defining factor in discovering 

endogenous retroviruses 

 The current state of the overall sequenced genomes is the major factor in 

determining the advances in the endogenous retroviruses research. The number of 

currently sequenced animal genomes available at NCBI (National Center for 

Biotechnology Information) is 4 amphibians, 73 birds, 80 fishes, 32 flatworms, 82 

roundworms, 222 insects, 127 mammals, 16 reptiles, and 83 other unclassified genomes 

(data from January 2017). Importantly, the assemblies of these genomes are of a 
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variable quality. ERVs, which are mostly present in many highly similar copies, are often 

either missing or assembled and annotated incorrectly in the genomes. 

 The cost of sequencing has been decreasing rapidly during the past few years and 

this might have been a factor in new initiatives such as Genome 10K project. This project 

aims to sequence ten thousand vertebrate genomes (Genome, 2009). One of the first 

groups of sequenced animals is 48 avian species (SJ, Haussler, & Ryder, 2014). In two 

years since the project was launched, the number of sequenced genomes increased 

from 26 to 277 (Koepfli, Paten, Genome, & O'Brien, 2015). The project was enlarged and 

gave rise to an initiative by Avian phylogenomics consortium to sequence ten thousand 

bird genomes (Birds10K) by the year 2020 (Zhang et al., 2015). Other large-scale projects 

such as Bat1K (Skibba, 2016), which aims to analyze bat communication via sequencing 

thousand bat genomes, provide set of sequencing data which can be further utilized to 

screen for endogenous retroviruses.  

 The rapid accumulation and development of Next generation sequencing (NGS) 

data sets available for public use from various species enables everyone with required 

skills to screen for sequences of their interest. Besides all possibilities, it potentially 

provides data to deepen our understanding of evolution of retroviruses. Evolutionary 

events in extant and recently infecting retroviruses combined with population genetics 

might elucidate the biology of retroviruses from various aspects, including 

endogenization (Johnson, 2015). Other areas of biology could benefit from sequencing 

and assembling various animals’ genomes as well. The technology designed for 

sequencing human genome and other large scale projects (such as 10,000 human 

genomes (Genomes Project et al., 2010) and ENCODE (http://www.encodeproject.org)) 

might be further utilized in this aspect to fill in the gaps of understanding major biology 

questions in various fields (Richards, 2015). 

2.3 Retrovirus endogenization 

Endogenous virus is a virus which infected and integrated into the germline cells 

and is further inherited vertically in mendelian fashion. The process of establishing the 

presence of a virus in the host cell is called endogenization. The term ‘endogenous 

retrovirus’ can be used to denote both, the integrated DNA sequence, and the infectious 
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particles produced by this sequence. The fate of the endogenous retrovirus in the 

infected population might vary. Generally, three possible outcomes are present. First, 

the virus might become fixed in the population; second, it might remain in a 

polymorphic state; and third, it might get washed out from the population completely 

(Katzourakis, Rambaut, & Pybus, 2005). 

The presence of the endogenous retrovirus might provide an advantage to the 

infected host. This might result in an enhanced spreading of the endogenous retrovirus 

element and a higher probability of its fixation in the host population. This scenario is 

probably rare, with best example provided by the presence of Syncytin gene originating 

from a retrovirus infection among placental animals. Syncytin produces fusogenic 

protein utilized in placentation (discussed in the chapter 2.6.3 Endogenous retroviruses 

with a role in the host physiology ). 

The presence of the endogenous retrovirus might not have an impact on the host 

whatsoever. Such neutrality is presumably the most common case. These proviruses 

might as well get fixated or vanish from the population, as well as they might be present 

in the genome in the polymorphic integration in the host genomes. While there is 

neither positive nor negative selection towards the fixation of an endogenous retrovirus 

in the host genome is rather random (Rouzine, Rodrigo, & Coffin, 2001). Such a situation 

is desired in the model used to study processes accompanying endogenization on a 

population scale.  

The presence of the endogenous retrovirus might be a burden for the host. The 

product of the virus might be toxic or even lethal for the host. The major disadvantage 

of the presence of the provirus for the host occurs if the provirus integrates into a gene 

exon or into intron in the plus orientation and therefore disrupts it or causes aberrant 

splicing. Such a provirus will be usually lost from the population early after integration 

(van de Lagemaat, Medstrand, & Mager, 2006).  

All of the three possible scenarios of retroviral spread in the population are 

depicted in the Figure 4.  
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Figure 4: The possible fate of endogenous retrovirus integration in the population. The virus 
might have no remarkable impact on the host, so the spread of the virus in the population is 
affected by other non-evolution related events (e.g. geographic barrierrs, bottleneck); leading to 
different integration patterns in different sub-populations. 

 

Despite the fact that retroviruses were believed to be the only viruses capable of 

endogenization, further examination of sequences suggested that this process is not 

exclusive to them (see Table 1 for reference). This illustrates that retroviruses might not 

be the only viral elements shaping the animal genomes. 
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Table 1: List of remnants of non-retroviral viruses among animal genomes. 

Positive sense single strand RNA viruses 

Flaviviruses Yellow fever mosquito (Katzourakis & Gifford, 2010) 

Negative sense single strand RNA viruses 

Bornaviridae Ground squirrel 
Snakes 
Thirteen-lined ground squirrels  
Bats 

(Horie et al., 2010)  
(Gilbert et al., 2014) 
(Suzuki, Kobayashi, Horie, & 
Tomonaga, 2014) 
(Cui & Wang, 2015) 

Double strand RNA viruses 

- - - 

Viruses utilizing reverse transcriptase in their life cycle 

Hepadnaviruses Passerine birds (Katzourakis & Gifford, 2010) 

Single strand DNA viruses 

Dependoviruses Domestic dog, Guinea pig, Nine-
banded armadillo, Horse, Tammar 
wallaby, African elephant, Mouse, 
Little brown bat, Pika, Duckbilled 
platypus, European rabbit, 
Hamadyras baboon, Cape hyrax, 
Malayan flying fox, Brown rat, 
Bottlenose dolphin, Alpaca 

(Feschotte & Gilbert, 2012) 

Parvoviruses Guinea pig, Tenrec, Rat, Tammar 
wallaby, Opossum 

Amdoviruses Cape hyrax 

Circoviruses Domestic dog, Cat, Giant panda, 
and Opossum 

Double strand DNA viruses 

Herpesviruses Human, Aye-aye, Bonobo, 
Philippine tarsier 

(Aswad & Katzourakis, 2014) 

Pappillomaviruses Platypus (Cui & Holmes, 2012b) 
 

2.3.1 Estimating the age of integrated ERV elements 

Endogenized viruses are a valuable tool in studying deeper evolutionary history 

of viruses. Upon endogenization the virus genome starts to mutate at a much slower 

rate (being the mutation rate of the host mammalian genome) than exogenous 

retrovirus, this difference can be up to 106-fold. Thanks to this fact, we are able to 

connect events in recent and ancient viral evolution (Aiewsakun & Katzourakis, 2015).  

The time of the integration of ERV elements into the host genome might be 

estimated by several approaches. The most straightforward way is to determine the 

presence or absence of ERV in the genomes of phylogenetically related species 
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(Johnson, 2015). In general, any ERV infiltration should have occurred in the most recent 

common ancestor of all the species bearing the ERV studied. This method is very robust, 

but yields usually a quite broad time interval for the ERV age estimated.  

A second method is dubbed ‘LTR aging’. This approach exploits the fact that both 

LTRs are identical at the time of integration, and uses the number of sequence 

differences that occurred since that time until present. The calculation of the time (T) 

needed to accumulate a given number of sequence differences (N) in the combined LTR 

length (L), assuming e.g. a neutral genomic substitution rate (R) of 2.3 × 10−9 to 5 × 10−9 

per site per year, following formula: T = N/(R × L) can be used for the age estimation of 

the ERV integration (Johnson & Coffin, 1999). This provides additional data about dating 

individual viral groups as well as it might serve as an additional marker in dating host 

species divergence. However, limitations of this method such as presence of a single 

LTR, recombination, gene conversion, and probable differences in the mutation rate at 

different sites must be taken into account. 

A third method uses the fact that genomic loci with ERV integration might 

duplicate in the evolutionary history of the host species. If the virus is present in both 

regions, then the duplication event must have occurred after virus integration and a 

minimal time estimate can be obtained (Hron, Fabryova, Paces, & Elleder, 2014; 

Katzourakis, Tristem, Pybus, & Gifford, 2007).  

The fourth approach is the time-calibrated phylogenetic analysis of orthologous 

proviral sequences from multiple species (using molecular clock). This is the most 

sophisticated method and provides information about the whole ERV lineage, not just 

about specific ERV integrations (Jha et al., 2009; Kamath et al., 2014; Tonjes & Niebert, 

2003). 

All of the methods used in estimating the age of integration of the endogenous 

retrovirus have limitations. Statistically speaking, the used method to estimate the time 

of the integration must ‘fit the data’ (Shapiro et al., 2011). For example, analyzes of 

extremely old retroviruses (pushing their origin to more 450 MYA) must often consider 

the accuracy of the methods when it comes to such old retroviruses (Aiewsakun & 

Katzourakis, 2017).  
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2.3.2 Proposed models for studying endogenization of retroviruses 

The process of endogenization and the events accompanying it are still poorly 

elucidated. As reviewed previously, endogenization might occur among virus families 

other than retroviruses, but rather rarely. Endogenous retroviruses (with emphasis on 

the rare ones) and some of their exogenous analogues are described in the next chapter. 

Here, the viruses perceived to have a potential to elucidate the events accompanying 

endogenization are described.  

2.3.2.1 Koala retrovirus (KoRV) 

One of the possible models for studying the process of endogenization is a 

recently discovered virus in Australian koalas, Koala endogenous retrovirus (KoRV). Its 

integration polymorphism (the presence of a proviral DNA at a particular integration site 

only in some individuals and a complete presumed lack in others) is a reason to consider 

it a young endogenous retrovirus (Tarlinton, Meers, & Young, 2006). Despite the fact, 

that insertional polymorphism was described already in other species (e.g. mice 

(Frankel, Stoye, Taylor, & Coffin, 1990), cats (Banerji, Kapur, & Kanjilal, 2007), sheep 

(Chessa et al., 2009)), so far it was always only a small number of integrations. The 

process of endogenization and subsequent adaptation in the host genome is still not 

elucidated. 

KoRV particles were first described in the tissues of leukemic koalas (Canfield, 

Sabine, & Love, 1988). The virus was sequenced and detected in stimulated peripheral 

blood cells as well as in three leukemia-positive koalas. The virus displayed sequence 

similarity (78% sequence identity) to Gibbon ape leukemia virus (GaLV) (Hanger, 

Bromham, McKee, O'Brien, & Robinson, 2000). The elevated level of KoRV transcripts in 

leukemic koalas is suggestive to the fact that KoRV causes neoplastic diseases in koalas 

(Tarlinton, Meers, Hanger, & Young, 2005). However, no causative studies have been 

performed yet.  

The sequence similarity of GaLV and KoRV remained an issue to resolve. An 

endogenous virus in Melomys burtoni might be the link between these two viruses 

(Simmons, Clarke, McKee, Young, & Meers, 2014). An insight into this problem was given 

by comparison of GaLV, KoRV, and Murine leukemia virus (MLV with Amphotropic 
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envelope 4070A) infectivity and receptors. These studies indicate that the host range of 

GaLV and KoRV do overlap, but their envelopes alter. Both GaLV and KoRV are capable 

of infecting a wide species range (Oliveira, Farrell, & Eiden, 2006). 

There was another possible mode of transmission of KoRV described. The 

possible vertical transmission of the retrovirus combined with the fact that KoRV copy 

number varies among individuals suggests that the virus is probably invading the 

genome of koalas. The prevalence of KoRV varies based on the geographic region. None 

of the samples obtained from Kangaroo Island (Australia) were positive. This enabled us 

to witness the initial entry of the endogenizing retrovirus into the wildlife species 

population (Tarlinton et al., 2006). 

The phenomenon of varying KoRV presence was also observed when koalas kept 

in ZOOs were analyzed (reviewed in (Denner & Young, 2013)). This fact combined with 

the presence of currently active exogenous variants of KoRV suggested to cause 

pathologies in koalas makes it an interesting platform to study the process of 

endogenization. The significance of the virus is emphasized by the veterinary importance 

(reviewed in (Kinney & Pye, 2016)). 

However, the usage of KoRV as a model to study endogenization has its pitfalls. 

Attempt to characterize its integration sites occurred only recently. The results indicate 

that the koala genome might have been invaded by KoRV at least seven times with the 

most recent integrations up to 50,000 years ago (Ishida, Zhao, Greenwood, & Roca, 

2015) The samples obtained from living koalas were compared to the historic museum 

samples (Avila-Arcos et al., 2013). The results indicate that only a small number of KoRV 

integrations sites recognized as recently integrated are shared by multiple animals. The 

regional differences in KoRV fixation were proposed, despite the fact that only small 

number of animals was analyzed. Beside that, the genome of koala is still not assembled 

and released, therefore the closest genome (Tammar wallaby - Macropus eugenii) is 

often used for KoRV analyzes (Cui et al., 2016). 

2.3.2.2 Cervid endogenous retrovirus (CrERV) 

 A situation similar as the one occurring in koala genome is also occurring in the 

genome of North American mule deer (Kamath et al., 2014). Despite the virus being 
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already described (Aaronson, Tronick, & Stephenson, 1976), only current methods 

enabled its thorough examination. 

 Initially, CrERV was described as the first endogenous retrovirus in the a species 

originating in the New World. It was described to possess distinct immunological 

properties. The endogenous retrovirus was induced by cocultivation with both, human 

and equine cells. The virus was described to exhibit xenotropic behavior. In most of the 

studies connecter to CrERV, the struggle with low virus titers was present (Aaronson et 

al., 1976). 

 At the time of the initial description of the virus, sequencing techniques were not 

widely avaliable. The tools available to use to determine the endogenous retrovirus 

sequence similarity to other endogenous retroviruses of other members of related phyla 

(such as Artiodactyla) were mainly hybridization techniques. The obtained CrERV 

sequence at the time hybridized strongly with the members of Cervidae (approximately 

85% similarity) clade, less effectively with the Bovidae clade (approximately 20% 

similarity) and did not hybridize with the related virus sequences obtained from more 

distant animal clades (Tronick, Golub, Stephenson, & Aaronson, 1977). 

 After more than 30 years, the CrERV caught the eye of researchers again. Its 

partial sequence was identified in a metagenomics screening of pathogens present in 

mule deer lymph nodes (Wittekindt et al., 2010). Eventually complete CrERV sequence 

was obtained and the endogenous nature of the virus was described (Elleder et al., 

2012). The presence of specific CrERV integrations in the mule deer and absence in the 

white-tailed deer suggested that the virus is rather evolutionary young for these two 

species split approximately 1 million years ago (MYA). Moreover, the provirus was 

proven to be transcriptionally active (Wittekindt et al., 2010). Using the adapted method 

based on PCR and next generation sequencing (NGS), hundreds of CrERV integrations 

were described in the genome of each and every mule deer individual examined (Le Bao, 

2014). The integrations were discovered to be highly polymorphic. This means that the 

germinal cells of mule deer must have been infiltrated by CrERV several times. All this 

evidence points to the fact that the virus is probably currently endogenizing, thus it 

seems to be a suitable model to study the processes accompanying endogenization 

(Elleder et al., 2012).  



23 
 

 Further studies of the provirus sequence consisted of sequencing 14 proviruses 

and following their presence/absence in various mule deer populations. The pattern of 

the presence of specific proviruses showed that individual CrERV integrations tend to 

cluster in localized geographic regions. This served as strong independent evidence that 

these integrations are extremely evolutionarily young, possibly only a few generations of 

the deer host. The polymorphic nature of CrERV integrations can also be utilized as a 

powerful genetic marker to study the population structure and history of the host 

species (Kamath et al., 2014). In general, endogenous retrovirus-derived genetic markers 

are very powerful, for the following reasons: (I) their ancestral state is known (absence 

of virus), (II) extremely high number of variants, because retroviruses can effectively 

target any position in mammalian genome, and in two orientations of integrated 

provirus, (III) once integrated, the provirus basically cannot be completely excised from 

the genome (Biek, Drummond, & Poss, 2006). 

 All of the aforementioned recent studies of CrERV were based on genetic analysis 

of its sequences, but did not study the virological aspects of the provirus. Replication of 

the original Aaronson cocultivation experiments was performed (Aaronson et al., 1976). 

The induced virus (originally named Deer Kidney Virus – DKV – by Aaronson) was shown 

to be sequentially identical to the sequences of CrERV used in the recent studies. The 

virus was proven to be xenotropic and its particles sediment in the area of the Iodixanol 

gradient typical for retroviruses. Replication-competent clone of the virus was 

constructed and the infection kinetics was described (Fabryova, Hron, Kabickova, Poss, 

& Elleder, 2015).  

2.3.2.3 Jaagsiekte sheep retrovirus (JSRV), Enzootic nasal tumor virus 

(ENTV), and endogenous retroviruses (enJSRVs) 

JSRV is a Betaretrovirus causing infectious lung cancer in sheep flocks. The JSRV, 

ENTV, and enJSRV have been studied due to their evolutionary interplay and also 

restriction effect of enJSRV Gag on exogenous JSRV (discussed later). However, presence 

of endogenous JSRV and currently infecting JSRV is highly suggestive of the fact that 

JSRV might be currently endogenizing. The oldest copy of enJSRV invaded the sheep 

genome approximately 7 MYA. The presence of orthologous copies not only in sheep 

genome, but also in the genome of goats, himalayan thar, and takin indicate, that the 
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invasion of the genome occured prior to the speciation of the Ovis genus. The presence 

of another provirus in takin and sheep, but not in goats and thar indicate that another 

invasion of the genome occured later on in the genus evolution. Positive selection 

pressure towards enJSRV is indicated, making it tempting to assume, that the presence 

of enJSRV in the selected ungulate genomes might be an asset for the animals (Arnaud 

et al., 2007a).  

2.3.3 Other evolutionary young endogenous retroviruses 

The aforementioned viruses are currently the best characterized models for 

studying the processes acompanying endogenization. However, they are not the only 

cases of evolutionary young endogenous retroviruses, and two other examples are 

presented below. 

2.3.3.1 Polar Bear (Ursus maritimus) Endogenous Retrovirus (UrsusERV) 

Polar bear genomes harbor retroviruses phylogenetically related to such 

evolutionary young viruses as PERV (porcine endogenous retrovirus) and KoRV. The 

provirus detected in the bear genome was overall intact. None of the integrations of the 

provirus in the genome were orthologous to integrations among bear species and 

analysis of the UrsusERV LTRs present in the genome indicates, that the bear genome 

was invaded by a virus forming an endogenous copy at least twice (Tsangaras, Mayer, 

Alquezar-Planas, & Greenwood, 2015). 

2.3.3.2 Unfixed Chimeric Endogenous Betaretrovirus in Armadillo (DnERV) 

Endogenous retrovirus with gammaretroviral env gene and otherwise 

Betaretrovirus features was discovered in the genome of armadillo (Dasypus 

novemcinctus). DnERV has not yet reached fixation in the armadillo genome, because 

insertional polymorphism was detected among Dasypus genus and only haploid copies 

of it are common (Malicorne et al., 2016). 
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2.4 Non-human endogenous retroviruses in vertebrates and their 

exogenous counterparts 

 Up to date there was no vertebrate genome described to lack retroelements or 

endogenous retroviruses. Recent massive sequencing of human and animal genomes led 

to the realization of the fact that almost 10% of mammalian genomes consist of ERVs. 

For a long time, it was thought that only simple retroviruses (alpha-, beta-, and 

gammaretroviruses) are able to create endogenous copies. This theory was proven 

wrong upon the discovery of the first endogenous Lentivirus - RELIK (Katzourakis et al., 

2007) and other endogenous complex retroviruses were subsequently described. These 

chapters summarize some of the endogenous retroviruses in the animal kingdom and 

their relationships to exogenous counterparts (if existing). With respect to the topics 

discussed in this thesis, lentiviruses are discussed in more detail.  

2.4.1 Alpharetroviruses 

 Alpharetroviruses as a model system helped to clarify quite a few phenomena of 

modern molecular biology. Despite playing a crucial role in elucidating many 

phenomena in the past, interest in them seems to be declining recently. Endogenous 

copies of retroviruses were first found in avian alpharetroviruses; hence they are 

included in this chapter. 

2.4.1.1 Avian sarcoma leukosis virus (ASLV) and Rous sarcoma virus (RSV) 

 The ASLV and RSV might be considered one the most important viruses forming 

the field of retrovirology in twentieth century. The discoveries based on studies of ASLV 

were awarded the Nobel Prize three times. First, it was discovered, that chicken 

leukemia can be transmitted from animal to animal by cell-free tissue filtrate (Ellermann 

and Bang) and cell-free tumor filtrate (Rous, 1910). Peyton Rous was then awarded the 

Nobel Prize in 1966. Proceeding in the studies of ASLV and RSV it was proven that these 

viruses contain RNA genomes. The elucidation of the process of reverse transcription 

and integration of produced viral DNA was discovered by Howard Temin and two years 

later H. Temin and David Baltimore independently discovered reverse transcriptase. 

They were both awarded the Nobel Prize for the discovery in 1975. 
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  ASLV and RSV are genetically very similar, but RSV contains a complete ORF for 

the src gene. The discovery of this gene was awarded the Nobel Prize to J. Michael 

Bishop and Harold E. Varmus for their discovery of "the cellular origin of retroviral 

oncogenes". Src is a tyrosine kinase, which triggers uncontrolled growth of cells. The 

virus acquired the src gene (denoted v-src) from the host cell (cell analogue denoted c-

src) during its replication. However, cellular and viral src genes differ. v-Src lacks tyrosine 

527 and is therefore constitutively active without possible inhibitory regulation whereas 

c-src is a strictly regulated proto-oncogene active only when required (Czernilofsky et al., 

1980; Smart et al., 1981). Similar cases of cellular proto-oncogenes present in other 

retroviruses are overviewed in the chapter Oncoretroviruses. 

 ASLV is still currently studied not only for its ability to trigger cancerogenesis, but 

also for the fact that its subtypes require different receptors for viral entry (see Table 2 

for reference). ASLV is also studied to elucidate the restriction processes resulting in 

avian retroviruses inability to infect mammalian cells (Lounkova et al., 2014). 

Endogenous copies of retroviruses were first found in avian alpharetroviruses. First, 

avian leukosis virus in the domestic fowl (Gallus gallus) was discovered, and murine 

leukemia virus and murine mammary tumor virus in the laboratory mouse (Mus 

musculus) followed (Weiss, 2006). Transcriptionally active ASLV promoters were found 

in pathogen free chickens (McNally, Wahlin, & Canto-Soler, 2010). 

2.4.2 Betaretroviruses 

 MMTV and JSRV might not be particularly rare retroviruses, but they are among 

the suitable models for studying the processes accompanying endogenization. The 

species present in this genus include JSRV - Jaagsierte sheep retrovirus, MPMV - Mason 

Pfizer monkey virus, MMTV - Mouse mammary tumour, HML1-10 - Human mouse 

mammary tumor virus like, Beta like retroviruses, Python-molurus. Selected examples of 

endogenous betaretroviral species are described in this chapter. 

2.4.2.1 Murine mammary tumour virus (MMTV and Mtv) 

 MMTV is a milk-transmitted retrovirus (Bittner, 1936). Despite the fact that 

several mice bear an endogenous copy (denoted Mtv), and the possible mode of 
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transmission is also via the maternal milk enables the virus to spread via two routes. The 

virus transmitted via the exogenous route is capable of creating tumors later in life.  

 Mtv is a simple retrovirus, but its genome encodes for additional gene sag. 

Endogenous copies are either able or not able to produce the functional viral particles 

due to several mutations, but in most cases the reading frame for sag remains intact 

(reviewed in (Holt, Shevach, & Punkosdy, 2013)). The sag probably has some beneficial 

features for the host with its ability to regulate the host immunity response by affecting 

the nature of the T-cell reservoir (Kang et al., 1994). This results in affecting the mode of 

other not exclusively viral infections as well. MMTV also encodes for a gene which is a 

self-regulatory RNA export gene rem (Mertz, Simper, Lozano, Payne, & Dudley, 2005). 

2.4.2.1.1 Pika-BERV 

 An endogenous analogue to MMTV was found in the genomes of pikas 

(Ochotona sp.) and denoted Pika-BERV (Pika-beta endogenous retrovirus). The invasion 

of the genome was dated to be 3-7 MYA and the proviral sequence was described in 

several Ochotona species (Lemos de Matos et al., 2015). 

2.4.2.2 Jaagsiekte sheep retrovirus (JSRV) and its endogenous counterpart 

(enJSRV) 

 The sheep genome is colonized with the endogenous copies of JSRV (the copies 

being denoted enJSRV). This virus was already discussed as a model used for studying 

the phenomenon of endogenization. Due to the presence of an interesting interplay 

between JSRV and enJSRV, this virus is discussed in more detail in the chapter 2.6.4. 

Endogenous retrovirus genes and exogenous virus infection. 

2.4.2.3 Python morulus endogenous retrovirus (PyERV) 

PyERV probably causes a fatal disease - boid inclusion body disease - in boid 

snakes. Despite the clame that this retrovirus is unclassifiable, some place the virus in 

the genus Betaretrovirus. An endogenous copy of PyERV was named PyT2RV (Huder et 

al., 2002). 

2.4.2.4 Pan troglotydes endogenous retroviruses (PtERVs) 

 PtERVs are a LTR retrotransposons present in three classes: CERV (Chimpanzee 

endogenous retrovirus) – gammaretroviruses, CERV II - betaretroviruses, CERV III - 
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spumaviruses. Majority of the chimpanzee-specific insertions belong to classes I and II. 

Frameshifts and substitutions damaged the ORFs of the proviruses so no functional gene 

could be expressed but eight copies could be retrotransposition-competent. Overall, 

PtERVs could drive genomic changes after the divergence of chimpanzees and humans 

(Mun, Lee, Kim, Kim, & Han, 2014). 

 Using viral constructs with MLV cores and reconstructed Envs of extinct CERV, 

the receptor of the virus was detected as the copper transporter (CTR1). The presence of 

the receptor on human germline cells does not support the fact that the presence 

enables endogenization, for no endogenous PtERVs or related sequences were detected 

in human genomes (Soll, Neil, & Bieniasz, 2010).  

2.4.3 Gammaretroviruses 

 The presence of a Gammaretrovirus in any genome mostly does not occur to one 

as a surprise. The proportion of endogenous gammaretroviruses in host genomes is 

illustrated in the Figure 5. Since endogenous gammaretroviruses are abundant, one 

could expect to be more likely to come across a Gammaretrovirus that might be 

currently endogenizing. Despite the expectations resulting in presence of polymorphic 

integration in some genomes, the opposite is true. To thoroughly examine the process of 

endogenization, one needs a population with the similar integration pattern within it as 

well as the pattern being different to a one described elsewhere. This situation was so 

far described in the population of Australian koalas and mule deer inhabiting Northern 

part of America (discussed in previous chapters). The species in the genus are: HERVs - 

Human endogenous retroviruses, PERV - Porcine endogenous retrovirus, GALV - Gibbon 

ape leukemia virus, FeLV - Feline leukemia virus, MLV - Murine leukemia virus, KoRV - 

Koala retrovirus, CrERV - Cervid endogenous retrovirus. 
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Figure 5: Endogenous gammaretroviruses among vertebrate genomes. The number of ERVs is 
depicted by the size of the outter gray circle. The proportion Class I ERV (Gamma- and 
Epsilonretrovirus) is depicted by inner circle. The proportion of gammaretroviruses is depicted by 
red in the inner circle (pie chart). The figure is adapted from (Hayward, Grabherr, & Jern, 2013). 

 

2.4.3.1 Cervid endogenous retrovirus (CrERV) 

 The studies of CrERV dates back to the discovery of the first type C 

Gammaretrovirus discovered in the mammalian species of the New World origin 

(Aaronson et al., 1976). The discovered virus was denoted Deer kidney virus (DKV). The 

DKV virus was obtained by cocultivation with susceptible cells.  

 However, the virus became to be of higher interest when it was proved to be 

highly polymorphic and subsequently integration sites specific for a host population 

were described (Elleder et al., 2012; Kamath et al., 2014). Currently CrERV is a virus with 

one of the most polymorphic integration sites, whereas some patterns of integrations 

cluster geographically. This indicates that the endogenous copies of the retrovirus are 
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evolutionarily young and therefore the virus is a suitable model for studying the 

processes accompanying the early steps of endogenization. Despite the fact that the 

virus is efficient in creating new endogenous copies, it is inefficient as an exogenous 

virus in the original host species (discussed in this thesis). 

2.4.3.2 Gibbon ape leukemia virus (GALV) 

 GaLV together with WMV (Wooly monkey virus) were the first exogenous 

retroviruses associated with leukemia in primates (Kawakami, Kollias, & Holmberg, 

1980). Both of the viruses share a high sequence similarity together with KoRV (koala 

retrovirus). An endogenous copy of GaLV was detected in a rodent Melomys burtoni 

(Alfano et al., 2016). This finding might help explain the close relatedness of GaLV and 

KoRV for gibbons and koalas are not even geographically overlapping and the transfer of 

the retrovirus used to be rather a mystery. 

2.4.3.3 Feline endogenous leukemia virus (FELV)  

 FeLV is one of the most studied endogenous retroviruses due to being the main 

caus of leucosis occurring in domestic cats which is their most common form of 

malignancy (Priester & Mantel, 1971). However, FeLV is not a threat to several 

populations of domestic cats only, but it also occurred in captive Asian leopard (Rasheed 

& Gardner, 1981), wildcat (Felis silvestris) (Boid et al., 1991), captive bobcat (Felis rufus) 

(Sleeman, Keane, Johnson, Brown, & Woude, 2001), in captive cheetah (Acinonyx 

jubatus) (Marker, Munson, Basson, & Quackenbush, 2003), but not in free ranging 

(Munson et al., 2004), panthers (Nolen, 2004), Florida pumas (Puma concolor 

coryi)(Cunningham et al., 2008), Iberian lynx (Lynx pardinus)(Meli et al., 2009), Pallas' 

cats (Felis manul) (Naidenko, Pavlova, & Kirilyuk, 2014), and guignas (Leopardus guigna) 

(Mora, Napolitano, Ortega, Poulin, & Pizarro-Lucero, 2015).  

 Being a threat to domestic cats and endangered species, a broad research 

concerning this pathogen has been conducted. Four FeLV subgroups (FeLV-A, FeLV-B, 

FeLV-C, and FeLV-T) were described. Subgroup B (which presence is an indicator of a 

poorer prognosis of leukemia (Sheets, Pandey, Jen, & Roy-Burman, 1993)) and C (causing 

non-fatal anemia (Mackey, Jarrett, Jarrett, & Laird, 1975)) are generated from subgroup 

A. Subgroup T is associated with immunosuppressive disease (Donahue et al., 1991). 
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2.4.3.4 Koala retrovirus (KoRV) 

 Leukemic and lymphoid neoplasia was proven to be present in koalas a long time 

ago. Findings in the year 1988 of gammaretroviral particles in koalas indicated that the 

pathologies might have a retroviral etiology (Canfield et al., 1988). Later the virus 

sequence was discovered to be similar to the sequence of GALV. Despite the high 

sequence similarity, the geographical distribution of koalas and gibbons makes the direct 

transmission among the two species highly improbable. However, these two viruses 

might have a common ancestor (Melomys burtoni retrovirus- MbRV) (Simmons et al., 

2014).  

2.4.3.5 Melomys burtoni retrovirus (MbRV) 

 MbRV was discovered by screening 42 either native or introduced species to 

Australia for the presence of KoRV-like retrovirus. The viral genome was sequenced. The 

sequence of pol and env cluster with KoRV and GaLV in the phylogeny trees. The 

presence of the virus particles was proven by electron microscopy, but the virus 

probably does not cause any cytopathic effect (Simmons et al., 2014).  

2.4.3.6 Murine leukemia virus (MLV) 

 The MLV genome was the starting material in vector constructions in gene 

therapy. It is used as a model system in studies analyzing retroviral integration 

preferences. It may be due to the fact that it has a simple, well described genome 

(reviewed in (Rein, 2011)) and its subtypes are able to show different tropism: 

amphotropic - infecting all species, xenotropic - infecting only species different to the 

original host, and ecotropic - being able to infect only the original host. MLV is present in 

mice in endogenous form in many copies and some polymorphic integrations were 

described, but not in sufficient numbers to be utilized as a model for studying processes 

accompanying endogenization.  

2.4.3.7 Porcine endogenous retrovirus (PERV) 

 PERV is considered a threat when it comes to xenotransplantation. 

Xenotransplantation has been performed in the passing of the history of medicine, 

mainly due to the lack of knowledge about the immunological interspecies barrier. 

However, using organs of other species for transplantation is still a current topic and 

some success was reported transplanting pig liver at least for the prolonged waiting time 
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for the human donor organ (Makowka et al., 1994). Still, the presence of PERV in the pig 

genome and possible zoonotic infection is still a major obstacle to overcome when it 

comes to xenotransplantation (reviewed in (Mattiuzzo, Takeuchi, & Scobie, 2012)). One 

of the most promising approaches towards this problem is the use of CRISPR-Cas 

technology to eliminate the presence of PERV in the pig genome (Yang et al., 2015). Due 

to its clinical significance, PERV is one of the best described endogenous retroviruses. 

2.4.4 Deltaretroviruses 

 Deltaretroviruses are possibly the most mysterious group of retroviruses. An 

endogenous copy of Deltaretrovirus was not found for a long time. The belief that 

deltaretroviruses are not capable of creating endogenous copies was supported by the 

general belief that complex retroviruses are not efficient in infecting germline cells. 

However, we were successful in identifying the first presence of an endogenous 

deltaretroviral sequence. 

As mentioned before, deltaretroviruses possess complex genomes coding for 

gag-pol-env and the sequences of additional genes. The additional genes for 

deltaretroviruses are Tax, Rex, and HBZ. Tax is an activator of viral and cellular 

transcription; Rex binds and stabilizes viral RNA, and HBZ plays a role in leukemogenesis 

and has multiple other functions. HBZ has the ORF of the sequence in the opposite 

strand compared to the rest of the provirus sequence. The species in this genus are: 

HTLV-1,2,3,4 - Human T-lymphotropic virus 1-4; STLV-1,2,3,4 - Simian T-lymphotropic 

virus 1-4; and BLV- Bovine leukaemia virus. 

2.4.5 Epsilonretroviruses 

 Epsilonretroviruses are an exception for despite the fact they have complex 

genomes; they are able to form endogenous copies quite efficiently (see Figure 5 for 

reference). Epsilonretroviruses is the newest genus of Orthoretrovirinae. Endogenous 

copies of these viruses were found in fish and amphibians.  

Walleye dermal sarcoma virus (WDSV) causes dermal sarcomas in its piscine host 

- walleye (Stizostedion vitreum). The accessory genes regulate the host metabolism and 

induce cancerogenous changes. The most distinc feature of the cancerogenesity is its 

seasonal cycle (Bowser, Wolfe, Forney, & Wooster, 1988) and a complex life cycle with 
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varying gene expression pattern throughout the replication of the virus and stage of the 

disease (Quackenbush, Holzschu, Bowser, & Casey, 1997).  

Walleye epidermal hyperplasia virus (WEHV) was found in two subtypes: WEHV1 

and WEHV2. Both are probably causing hyperplasia in walleye. Similarly to WDSV, the 

occurrence of the pathology has seasonal cycles (LaPierre, Holzschu, Wooster, Bowser, 

& Casey, 1998).  

Xenopus laevis endogenous retrovirus (Xen1) with length over 10 kb is probably 

of the largest endogenous retrovirus known. It has only four frameshift mutations and 

no obvious stop codon. The 99% similarity of the provirus LTRs suggests that the virus 

integrated into the genome recently (Kambol, Kabat, & Tristem, 2003). 

2.4.6 Lentiviruses 

Lentiviruses were thought to be a young genus of retroviruses for their 

endogenous copy was not detected for a long time. Due to the quite recent HIV 

outbreak, lentiviruses might be currently the most studied retroviruses. They cause 

severe pathologies. The members of this group with the important notion are HIV 

(human immunodeficiency virus) and other immunodeficiency viruses such as of simian 

species (SIV) and felids (FIV). Lentiviruses possess complex genomes. Besides gag, pol, 

and env, they also bear additional accessory genes.  

Discoveries of their endogenous copies pushed the knowledge about their 

evolution several million years deeper. These discoveries also provide an interesting 

insight about host-interaction evolution via combining information about accessory 

genes and analysis of evolution of their counteracting restriction factors.  

2.4.6.1 Lentiviral regulatory and accessory genes 

Not all of the lentiviruses bear all of the regulatory and accessory genes. Based 

on the discoveries of their endogenous forms we are able to study the evolution of 

lentiviral accessory genes as well. The evolutionary tree indicating the evolutionary 

dynamics of presence/absence of some accessory genes is depicted in the Figure 7. 
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2.4.6.1.1 Regulatory genes 

2.4.6.1.1.1 Tat  

Tat acts as a trans-activator during transcription to enhance initiation and 

elongation. Tat binds nascent RNA with TAR (Tat-responsive element) in LTR. It works in 

cooperation with cellular protein pTEFb which binds Tat and TAR. pTEFb phosphorylates 

polymerase II and thus increases the processivity of the polymerase (reviewed in (Zou, 

Peng, Wang, & Zhou, 2016)). Tat is not present in feline lentiviruses, but many binding 

sites for enhancer proteins are present in LTRs of felid lentiviruses. However, their 

presence was not proven to be essential for replication of felid lentiviruses (Miyazawa, 

Tomonaga, Kawaguchi, & Mikami, 1994).  

2.4.6.1.1.2 Rev  

The abbreviation Rev stands for “regulation of expression of virion proteins”. Rev 

contains and arginine-rich RNA binding domain which binds to RRE (Rev responsive 

element). The Rev responsive element acts post-transcriptionally, regulating mRNA 

splicing and transport to the cytoplasm. It works with cellular proteins binding Rev (e.g. 

importin). Rev contains NLS (nuclear localization signal) which aids its return to the 

nucleus (reviewed in (Grewe & Uberla, 2010). Presence of Rev was not detected in 

endogenous Lentivirus of Malayan colugo (Han & Worobey, 2015; Hron et al., 2014). As 

discussed previously, the accessory gene might have been present in the circulating 

retrovirus at the time of infection, but due to being heavily mutated, we are not able to 

detect it, so our presumption of its absence might be biased. However, if Rev was 

lacking in the genome of the virus which integrated into the colugo genome, the virus 

might have been using different replication strategy than current lentiviruses. It was 

proven that viruses with impaired Rev exhibit faulty replication in various steps 

(Blissenbach, Grewe, Hoffmann, Brandt, & Uberla, 2010).  

2.4.6.1.1.3 P6 

P6 is technically not a regulatory gene, but is included here for if it is disrupted, 

the lentiviruses coding for P6 in its genome are budding only with difficulties and 

therefore its evolutionary study might give an additional insight on host-Lentivirus 

interactions. P6 is a proline-rich protein interacting with endosomal vesicles. However, 

besides studying it in HIV and primate lentiviruses (Bibollet-Ruche et al., 2004), not 
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much attention is paid to it. It was not described in any of the discovered endogenous 

lentiviruses.  

2.4.6.1.2 Other accessory genes 

When it comes to identification of accessory genes in endogenous retroviruses, 

two possible scenarios if the accessory gene is stated to be lacking might occur. Either 

the area bearing was already heavily mutated and hence the presence of an accessory 

gene cannot be determined properly or the accessory gene was lacking in the virus that 

endogenized. This leads to contradictions presented in the works studying lentiviral 

accessory genes. 

2.4.6.1.2.1 Vif 

The abbreviation Vif stands for virus infectivity factor. Vif aids virion maturation 

and infectivity. Vif is not present in equine lentiviruses and was not detected in the 

endogenous Lentivirus of colugo (Han & Worobey, 2015). Vif is stated to be present in 

RELIK by some (Han & Worobey, 2015) and stated to be lacking by others (Katzourakis et 

al., 2007). However Vif is detected in the genome of ELVmpf (endogenous Lentivirus of 

Mustela putorius furo) which happens to be dated as an older lentiviral lineage. 

Therefore the presence of Vif in the retrovirus endogenizing as RELIK occurs as more 

probable.  

2.4.6.1.2.2 Nef  

Nef is also known as a negative factor for originally it was described as a 

redundant accessory gene. However, it was proven to aid pathogenicity of the virus and 

if deleted from the SIV genome, it reduces pathogenicity in macaques (reviewed in 

(Laguette, Bregnard, Benichou, & Basmaciogullari, 2010). It was proposed that infection 

by Nef-lackig SIV might protect macaques from infection by more aggressive SIV forms. 

Nef was probably acquired only by simian and human immunodeficiency viruses.  

2.4.6.1.2.3 Vpu  

Vpu stands for “Viral protein-unknown”. Vpu downregulates CD4 in cells and 

increases virion release from the cells. The gene coding for Vpu was detected only in 

HIV-1 and HIV-1 related SIV isolates. HIV-2 and majority of the SIV isolates lack this 

accessory gene (Hussain, Wesley, Khalid, Chaudhry, & Jameel, 2008). It was proven to be 
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capable of counteracting the cellular restriction factor Tetherin. However, the HIV-1 

group O uses Nef to counteract the action of Tetherin (Bush & Tebit, 2015). This general 

absence of Vpu in the lentiviral group might indicate that this is rather a young accessory 

gene. 

2.4.6.1.2.4 Vpr (Vpx) 

Vpr stands for “Viral protein-regulatory”. Vpr induces G2 arrest of the cell cycle 

and induces apoptosis. Vpr is encoded by HIV-1. HIV-2, SIVsm, and SIVmac encode two 

proteins that are homologous to HIV-1 Vpr, namely Vpr and Vpx (reviewed in (Planelles 

& Barker, 2010). Vpx is encoded by HIV-2 and simian immunodeficiency viruses. Vpx 

counteracts the actions of SAMHD1 (Herrmann, Happel, & Gramberg, 2016). As with 

Vpu, the presence of this accessory gene only in human and simian immunodeficiency 

viruses indicates its rather recent acquisition by lentiviral genomes.  

2.4.6.1.2.5 dUTPase 

dUTPase is technically not an accessory gene. It is not a solitary gene, but is 

encoded by the pro gene or part of pol gene in some viruses. However, I discuss it here 

for its interesting evolutionary dynamics among lentiviruses. What comes as a surprise is 

the fact that dUTPase is encoded in various places in viral genomes (see Figure 6). This 

suggests that viruses might have acquired dUTPase during various evolutionary events 

(Hizi & Herzig, 2015). 

dUTPase is present in the genomes of EIAV (Equine infectious anemia virus), FIV 

(Feline immunodeficiency virus), and CAEV (Caprine arthritis encephalitis virus), but not 

in primate lentiviruses. The function of dUTPase in lentiviral genomes is still not clearly 

elucidated. EIAV and FIV with removed dUTPase replicate poorly in the cultured 

macrophages and viral load or severity of symptoms might be decreased in in vivo 

infections (Lerner et al., 1995; Lichtenstein et al., 1995). 

However, when it was removed from the CAEV, the virus was shown to replicate 

slowly in macrophages, but after some time it replicated at the same rate as wild-type 

CAEV. CAEV without dUTPase differs in pathogenesis compared to virus with intact 

dUTPase. The presence of dUTPase was also shown to increase genomic stability of 

CAEV by preventing G-to-A mutations (Turelli, Guiguen, Mornex, Vigne, & Querat, 1997). 
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Figure 6: Position of dUTPase in retroviral genomes. The schemes are not drawn to scale. The 
figure is adapted from (Hizi & Herzig, 2015). 

 

 

Figure 7: Presence/absence of the accessory genes. Adapted from (Han & Worobey, 2015). 
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2.4.6.2 Endogenous lentiviruses 

Lentiviruses were believed not to form endogenous counterparts for quite a long 

time. Firstly, they were believed to be evolutionary young and secondly, they are 

complex retroviruses which were thought not to be able to form an endogenous copy at 

all. This was hypothesized to be either due to lack of receptor on germline cells or due to 

virus cytopathic effects. This belief was proven to be wrong. Endogenous Lentivirus was 

first discovered in the rabbit genome (Katzourakis et al., 2007). Subsequently, 

endogenous lentiviruses were discovered in lemurs (Keckesova, Ylinen, Towers, Gifford, 

& Katzourakis, 2009) and ferrets (Cui & Holmes, 2012a). 

2.4.6.2.1 Endogenous Lentivirus of Mustela putorius furo (ELVmpf) 

 ELVmpf was the third endogenous Lentivirus discovered. Besides lentiviral gag-

pol-env genes, Vif-like element was detected. The insertion into the ferret genome was 

estimated to occur 12 MYA (Cui & Holmes, 2012a). The further study of ELVmpf 

confirmed its presence in the species of Lutrinae and Mustelinae subfamilies but not the 

Martinae subfamily. This confirmed the estimated age of the provirus. An additional 

accessory gene was identified in endogenous lentiviruses- vif (Han & Worobey, 2012). It 

was proposed that ferrets could be used as a model to study lentiviral-host interactions 

for their cells can be productively infected by HIV-1 (Fadel et al., 2012) 

2.4.6.2.2 Endogenous simian immunodeficiency virus (pSIV) 

 An endogenous form of simian immunodeficiency virus was detected in the WGS 

(whole genome shotgun) data of Grey mouse lemur (Microcebus murinus) and denoted 

pSIVgml. The presence of pSIVgml was subsequently detected in samples from six 

additional species of lemur. The invasion of the genome was estimated to have occurred 

4 MYA. This estimation is still an object to be questioned, for pSIV is present both in 

lemurs inhabiting Madagascar and African landmass. These two areas are divided by a 

400 km wide and deep ocean for the last 130 million years, creating a geographical 

barrier hard to be crossed by lemurs. pSIV is the first and so far only evidence of an 

endogenous Lentivirus presence in a primate genome. Vpr and possibly nef sequences 

are present in the proviral sequence, but dUTPase seems to be lacking (Gifford et al., 

2008). 
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2.4.6.2.3 Rabbit endogenous Lentivirus type K (RELIK) 

 The first endogenous Lentivirus was discovered in the genome of European 

rabbit (Oryctolagus cuniculus). The provirus bears full-length gag, pol, and env genes, 

but highly mutated (frameshifts and stop codons included). The endogenous copy 

posseses an element resembling genes for tat and rev. The presence of relatively intact 

endogenous copies and several solo LTRs point out the established germline infection 

occuring approximately 5 MYA (Katzourakis et al., 2007). 

 The CA of RELIK was proven to interact with Trim5α. Trim5α was also proven to 

be under positive selection in Leporidae (Yap & Stoye, 2013). These facts might indicate 

the relationship between Trim5α and RELIK, but it is very hard to assign the presence of 

a positive selection towards a restriction factor to a specific virus. The CA of RELIK was 

also proven to interact with cyclophilinA (CypA). CypA was packaged into virions 

containing ancient lentiviral CA. The complex CA-CypA of ancient proviruses probably 

enabled the viruses to infect nondiving cells, protected them from restriction factors or 

play a role in the virion assembly or CA uncoating (Goldstone et al., 2010). 

2.4.7 Spumaviruses 

 Placed outside of the Orthoretroviral clade, spumaviruses make up a special 

retroviral group. Due to the fact they they do not cause severe pathologies, they were 

not of a deeper interest for a long time. This feature became lately an advantage for it 

makes them a great candidate to be used in gene therapy. As exogenous, they infect 

broad range of animals. Some of the species in the genus are: African green monkey 

simian foamy virus, Macaque simian foamy virus, Bovine foamy virus, Equine foamy 

virus,  Feline foamy virus.  

2.4.7.1 Sloth endogenous foamy virus (SloEFV) 

The presence of approximately 11,5 kb long SloEFV is the evidence that foamy 

viruses could be infecting ancestral mammals more than 100 MYA (Katzourakis, Gifford, 

Tristem, Gilbert, & Pybus, 2009). Despite the fact that SloEFV was described for some 

years, not much attention was paid to it nor was its more recent evolution studied. This 

might be partly owed to the fact that not many extant relative host species exist. The 

most recent work analyzes the ancient sequence found in modern sloths and 13,000 and 
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20,000 years old samples. Lineage-specific SloEFV copies were detected and the age of 

the repeated recent endogenization (10-20 MYA) was proposed (Slater et al., 2016).  

2.5 Retroviral life cycle and the host 

 When it comes to discussing any pathogen and the host relationship, the Red 

Queen Hypothesis proposed by Van Valen always comes to notice. Retroviruses are no 

exception. Since the hosts and retroviruses co-existed for millions of years, their 

relationship naturally evolved as well. 

2.5.1 Receptor block 

 The receptor is the virus’s gateway to the cell, making it the first line of defense 

against the virus for the cell. As mentioned before, retroviruses usually exploit cellular 

receptors used for physiologically occurring transport of various substances to the cell. 

However, the presence or absence of a particular receptor does not rule out nor indicate 

the potential of a retrovirus to endogenize. Some viruses utilize the same receptor, 

whereas some subtypes of a retrovirus utilize different receptors (see Table 2 for 

review). The occurrence of the replication block at a receptor lever might be determined 

by changed conformation of receptors or co-receptors. 

The other possible scenarios for the occurrence of receptor block are the changes 

in viral envelope. Of all the genes of retroviruses, env probably displays the most 

variable functionality and possess the most rapidly evolving sequence. The major 

function is the binding to the receptor. Some additional activities were detected in 

various retroviral Envs. For example, in MuLV, Env was proven to affect membrane 

fusion. JSRV Env transforms cells in vitro and work as an oncogene in vivo. The C-

terminal tail of Env in lentiviruses is uncommonly long and besides determining Env 

structutal and functional features, plays a role in the maturation of virions and 

formation of late endosomes (reviewed in (Steckbeck, Kuhlmann, & Montelaro, 2014)). 
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Table 2: Retrovirus receptors 

Retrovirus Receptor Reference 

HIV, SIV CD4 helper T cell receptor, 
CXCR4, CCR5, and others 

(Dalgleish et al., 1984) 
(Klatzmann et al., 1984) 
(Maddon et al., 1986) 

MLV-E CAT-1 (SLC7A1) (Specific 
membrane receptor expressed 
on mouse cells) 

(Albritton, Tseng, Scadden, & 
Cunningham, 1989) 

MLV-A Ram-1 and GLVR-2 (Cellular 
receptor for amphotropic 
murine retroviruses)  

(Miller, Edwards, & Miller, 1994) 
(van Zeijl et al., 1994) 

GALV GLVR-1 (O'Hara et al., 1990) 

GALV, 10A1 MLV, 
FeLV-B, woolly 
monkey virus 

Pit1 (SLC20A1) (phosphate 
transport) 

Reviewed in (Overbaugh, Miller, 
& Eiden, 2001) 

A-MLV, 10A1 MLV, 
FeLV-B, BLV 

Pit2 (SLC20A2) (phosphate 
transport) 

Reviewed in (Overbaugh et al., 
2001) 

Xenotropic and 
Polytropic MLVs 

XPR1 (G-protein coupled 
signaling) 

Reviewed in (Overbaugh et al., 
2001) 

MMTV Mtvr, Protein of unknown 
function 

(Stewart, 2002) 

FeLV-B The same receptor as GALV (Takeuchi et al., 1992) 

FeLV-C Flvcr (anion transporter) (Quigley et al., 2000) 

FeLV-T FeLIX and Pit1 (SLC20A1); Env 
like protein 

(Anderson, Lauring, Burns, & 
Overbaugh, 2000) 

ASLV-A tva-member of LDL receptor 
family 

(Gilbert, Bates, Varmus, & 
White, 1994) 

ASLV-C tvc (member of 
immunoglobulin superfamily) 

(Elleder, Plachy, Hejnar, Geryk, 
& Svoboda, 2004) 

ASLV-B Various alleles of tvb (member 
of TNF receptor superfamily) 

(Smith, Brojatsch, Naughton, & 
Young, 1998) 

ASLV-D (Smith et al., 1998) 

ASLV-E (Klucking, Adkins, & Young, 
2002) 

RD-114, type D SRV, 
BaEV, HERV-W 

RDR(SLC1A5) or RDR2(SLC1A4) 
(neutral amino acid transport) 

Reviewed in (Overbaugh et al., 
2001) 

BLV Blvr reported by (Ban et al., 
1993), was reported to be 
wrongly identified; the receptor 
is cationic amino acid 
transporter CAT1 
(SLC7A1) 

Reported at Cold Spring Harbor 
Retrovirusese meeting by Jean-
Luc Battini 

JSRV HYAL2 (hyaluronidase)  (Miller, 2008) 
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2.5.2 Later replication blocks 

 The block of the retrovirus replication might occur later in the retrovirus life 

cycle. After the entrance into the cell, the efficient disassembly of the viral particle, 

formation of pre-integration complex, reverse transcription or integration might be 

restricted (early blocks). The transcription of the integrated provirus as well as 

translation, efficient assembly, release or maturation of the viral particle might be 

restricted as well (late blocks). Cells usually possess mechanisms to block various step of 

the retroviral life cycle. Some of them might be mediated by intracellular host restriction 

factors.  

2.5.3 Intracellular restriction factors  

Restriction factors are a part of the innate immune system of the host cell. These 

intrinsic proteinaceous antiviral immune effectors are often induced by IFNα or antiviral 

activity. In complex viruses, viral antagonists for specific restriction factors are found. 

They do not share a specific trait, such as a sequence motif or specific structure. The list 

of restriction factors described deals with the most studied ones in relationship with 

retroviruses.  

2.5.3.1 APOBECs and AID family 

The abbreviation APOBEC stands for apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide-like. AID encoded by aicda gene stands for Activation-induced 

cytidine deaminase. APOBECs are a family of evolutionary young proteins catalyzing 

cytidine deamination (C to U editing reaction). APOBECs are present in the vertebrate 

genomes in many subtypes (up to 11), whereas present in only one in sub-vertebrates. 

APOBECs 3 are supposed to be under positive selection (based on dN/dS ratio) and 

probably occurred as an APOBEC1/AID duplication (reviewed in (Harris & Dudley, 2015)). 

 APOBECs are widely studied in relationship with HIV. The sequences are 

assembled only in some ungulate species and well annotated only in Bos taurus and Ovis 

aries. The APOBECs functions described in human are listed in Table 3. 
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Table 3: The individual APOBEC and AID functions.  

 Function Reference 

APOBEC1 Cholesterol metabolism, oncogene, 
viral restriction 

(Rosenberg, Hamilton, Mwangi, 
Dewell, & Papavasiliou, 2011) 

APOBEC2 Muscle and heart specific APOBEC (Liao et al., 1999) 

APOBEC3A Cytosine deamination of foreign DNA (Stenglein, Burns, Li, Lengyel, & 
Harris, 2010) 

APOBEC3B 
APOBEC3C 
APOBEC3E 

RNA editing, cell cycle control (Jarmuz et al., 2002) 

APOBEC3F RNA editing, cell cycle control 
Could inhibit accumulation of HIV-1 RT 
products 

(Jarmuz et al., 2002) 
(Holmes, Koning, Bishop, & 
Malim, 2007) 

APOBEC3G Affects HIV replication in various steps: 
RT- Inhibits priming of tRNA and thus 
production of viral ssDNA 
Integration- APOBEC3 can cause 
aberrant LTRs formation, incapable of 
integration into the host genome 
Have been also shown to inhibit: 
gammaretroviruses, 
deltaretroviruses, 
lentiviruses 
spumaviruses, 
and retrotransposition of endogenous 
murine gammaretroviruses, 
mainly by cytosine deamination of 
foreign DNA 

(Jarmuz et al., 2002) 
(Guo, Cen, Niu, Saadatmand, & 
Kleiman, 2006) 
(Mbisa et al., 2007) 
(Doehle, Schafer, Wiegand, 
Bogerd, & Cullen, 2005) 
(Sasada et al., 2005) 
(Lochelt et al., 2005) 
(Esnault et al., 2005) 

APOBEC3H Antiviral function in old world monkeys, 
but suppressed in humans 

(OhAinle, Kerns, Malik, & 
Emerman, 2006) 

APOBEC4 Lacks cytidine deaminase activity; 
boosts promoter activity and HIV 
replication. 

(Marino et al., 2016) 

AID Expressed in B-cells. Immunoglobulin 
gene class switches DNA recombination 
and somatic hypermutation. 

(Muramatsu et al., 2000) 

 

2.5.3.2 Mx 

Mx (Myxovirus resistance) is one of the interferon-inducible restriction factors. 

Mx1 codes Mx1 in mice and MxA in humans. Myxovirus A resistance protein (MxA) is 

elevated in the blood after the viral infection independent of the virus species, but is 

mostly studied in relationship with Orthomyxoviruses. Mx2 (also known as MxB) was 
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shown to inhibit HIV-1 and similar Lentivirus infections (Goujon et al., 2013; Kane et al., 

2013; Liu et al., 2013). 

Mx2 was shown to inhibit the HIV-1 nuclear entry (Goujon et al., 2013). Mx2 was 

also shown to interact with HIV-1 capsid and mediate the block of retroviral replication 

early after virus enters the cell. Cyclophilin might play a role in mediating the restriction 

in other HIV-1 life cycle stages as well (Bulli et al., 2016) 

2.5.3.3 SAMHD1 

 SAMHD1 (Sterile alpha motif and histidine-aspartate domain containing protein 

1) is a restriction factor that depletes the dNTP pool in the cell to block retroviral 

replication by restriction of reverse transcription. It is counteracted by the accessory HIV 

gene product Vpx. The mutations in the SAMHD1 gene cause Aicardi-Goutières 

syndrome which is a genetic encephalopathy mimicking congenital viral infection 

(Powell, Holland, Hollis, & Perrino, 2011).  

 This indicates that SAMHD1 probably plays a role in regulating innate immune 

response. The counteracting viral gene product Vpx is present only in HIV-2 and some 

SIV strains making these viruses more resistant to SAMHD1 restriction via unique clade 

specific SAMHD1-Vpx interactions (Wu et al., 2015). 

 SAMHD1 has enzymatic activities such as acting as a dNTPase and nuclease as 

well as being able to bind single-stranded DNA/RNA. The precise molecular action of 

SAMHD1 is still not completely elucidated despite thorough studies of the protein, 

including the structural ones (reviewed in (Ahn, 2016)). 

2.5.3.4 TREX1 

 Formerly known as DNaseIII, TREX1 (three prime repair exonuclease 1) is the 

major 3’ to 5’ DNA-specific exonuclease in mammalian cells (Hoss et al., 1999). The 

mutation in the TREX1 gene are associated with autoimmune diseases (reviewed in 

(Rice, Rodero, & Crow, 2015)). TREX1 plays a role in HIV infection via inhibiting cytosolic 

DNA sensing pathway and thus modifying the interferon response to infection as well 

(reviewed in(Hasan & Yan, 2014)). 
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2.5.3.5 TRIM5α 

 TRIM5α (Tripartite motif alpha) is a member of one of the eleven subgroups of 

TRIM proteins (see Figure 8 for reference). TRIMs are intrinsic immunity factors and 

have direct antiviral activity. Various TRIMs have been proven to act against different 

viruses (reviewed in (Nisole, Stoye, & Saib, 2005)). TRIM5 induces NFκB activation. 

TRIM5 recognizes the retroviral capsid by its PRY/SPRY domain. These facts indicate that 

TRIM5 as well as TRIM21 might be directly acting as pattern recognition receptors 

(Keeble, Khan, Forster, & James, 2008; Pertel et al., 2011). TRIM5α in macaques was 

proven to inhibit reverse transcription activity of HIV-1 as well as abort efficient 

disassembly of the viral particles (Campbell et al., 2015). 

 

Figure 8: Domain organization of TRIMs (from (Versteeg, Benke, Garcia-Sastre, & Rajsbaum, 
2014)). 

 

2.5.3.6 Viperin 

 Viperin was not shown to play a role in fighting retroviral infections. 

2.5.3.7 Tetherin 

 Tetherin was discovered as a protein expressed on the surface of human 

plasmatic cells in cell lines (Goto et al., 1994). The function of Tetherin is to tether the 

viral particles inside the host cells and therefore preventing the further spreading of 
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infection. The HIV-1 codes an accessory gene product Vpu which counteracts this 

restriction. However, when the Vpu is lacking, virions are retained at the cell surface and 

consequently endocytosed (Perez-Caballero et al., 2009).  Despite the fact that Tetherin 

is known to be one corresponding gene present in one isoform in human, it is present in 

three isoforms in sheep (Arnaud et al., 2010) and in three isoforms in cattle (Takeda et 

al., 2012). Tetherins of various species were proven to inhibit PERV replication (Abe, 

Fukuma, Yoshikawa, Miyazawa, & Yasuda, 2014; Bae & Jung, 2014a, b; Mattiuzzo, Ivol, & 

Takeuchi, 2010; Mattiuzzo & Takeuchi, 2010). 

2.6 Endogenous retrovirus presence in the host genome 

 The presence of an endogenous retrovirus in the host genomes might have 

various impacts. Besides the fact, that the presence of a retrovirus might be a cause of 

pathology, it might be an asset for the host. The endogenous retrovirus might either 

work as a restriction factor preventing other infections or even play a part in the normal 

physiology or cellular functions. This phenomenon is reviewed in this chapter. However, 

there are other mechanisms how the retroviral integration at a specific integration site 

might affect the host.  

The insertion of the retrovirus into a gene may cause the gene disruption or gene 

up-regulation. Based on the site of integration, the virus can bring a promoter 

indefinitely inducing a transcription of a particular gene, leading to undesired pathology. 

The studies dealing with the integration site of a retrovirus (or a model construct 

representing one) often analyze not only the sequence of the integration site, but also 

the epigenetics of the chromosome area (e.g. methylation) of the site in order to 

estimate the probability of the retrovirus being transcribed.  

There is another mechanism by which a virus can cause deregulation in the 

signaling pathway. The virus might code a gene from the pathway leading to 

overexpression of the gene while the virus genes are expressed. Some genes coded by 

various retroviruses that might deregulate the signaling pathways. The first described 

proto oncogene coded in a retrovirus genome was src in the genome of RSV (reviewed in 

(Martin, 2004)). 
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2.6.1 Endogenous retrovirus and the immunity of the host 

 Besides triggering the action of restriction factors, a new concept of role of 

endogenous retroviruses in innate immunity response was recently proposed in T-cell 

independent B-cell response. Multivalent molecules with repetitive structures trigger 

antibody response through B cell receptor crosslinking with T-cell help absent. This 

causes upregulation of endogenous retrovirus RNAs in antigen-specific mouse B cells 

which may be detected by MAVS (mitochondrial antiviral signaling protein) triggering 

the MAVS-dependent RNA sensing pathway. The RNAs might be transcribed in the 

presence of reverse transcriptase and trigger the cGAS-cGAMP-STING [cGAS (Cyclic 

GMP-AMP synthase) –cGAMP (Cyclic guanosine monophosphate–adenosine 

monophosphate) –STING (Stimulator of interferon genes)] pathway promoting the 

immunoglobulin M production. Deficiency of MAVS, cGAS or reverse transcriptase in the 

cell dramatically decreases the immunological response suggesting that endogenous 

retroviruses might play a role in the B-cell response (Zeng et al., 2014) . 

2.6.2 Endogenous retrovirus genes and exogenous virus infection 

 The presence of retrovirus might have an impact on the host not only by 

affecting the genes surrounding its integration site or by delivering oncogenes to the 

host. It might be also utilized as a source of gene products included in the antiviral 

immunity. This concept was described as “Fighting fire with fire” by (Malfavon-Borja & 

Feschotte, 2015). On the contrary, products of endogenous retroviruses might be 

required for successful infection by an exogenous retrovirus. These cases are reviewed 

in the chapter 2.6.1.1.2 “Adding fuel to the fire”. 

2.6.2.1 “Fighting fire with fire”  

A longstanding concept that aberrant expression of retroviral genes might serve 

as a protection against further retroviral infection has been studied for several decades 

(Robinson, Astrin, Senior, & Salazar, 1981). Especially the proteins coded by the env 

(Malfavon-Borja & Feschotte, 2015) and gag (Mura et al., 2004) genes were shown to 

act as restriction factors in chicken, mice, sheep, and cats. 
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2.6.2.1.1 Fv1 

Fv1 was first described as a gene determining the susceptibility of mice to various 

strains of MLV. The precise mechanism of Fv1 action is not known, but it was proved 

that it restricts the infection after reverse transcription and prior to integration 

(Jolicoeur & Baltimore, 1976). Fv1 shares the general structural features with TRIM5. 

Both Fv1 and TRIM5 bind the retroviral capsid and restrict the virus in the similar 

manner. (Sanz-Ramos & Stoye, 2013). Fv1 gene is present in multiple alleles. The levels 

of expression from individual alleles vary. Different alleles show restriction specificity, 

which is not generally affected by their expression level (Li, Yap, Voss, & Stoye, 2016). 

Fv1 is sequentially homologous to gag gene of an endogenous retrovirus. Fv1 

was found to be under positive selection in all analyzed Mus subgenera, consistent with 

its role in antiviral defense (Yan, Buckler-White, Wollenberg, & Kozak, 2009). The 

evolutionary analysis revealed that mice have probably acquired endogenous retrovirus 

giving rise to Fv1 approximately 5 MYA (Yap, Colbeck, Ellis, & Stoye, 2014). 

2.6.2.1.2 Fv4/Akvr1 

Fv4 and Akvr1 are alternative names for the same gene, which is an expressed 

env gene of an endogenous ecotropic MLV (Kozak, 2014). Fv4 restricts the infection by 

binding to the receptor for exogenous ecotropic MLV, however the restriction is not 

absolute (Takeda & Matano, 2007). A mild restriction effect on amphotropic MLV was 

proven as well. 

2.6.2.1.3 Rmcf 

Resistance to mink cell focus-forming virus (Rmcf) is a product of an endogenous 

polytropic MLV and protects against polytropic MLV infection. Rmcf structure resembles 

the one of Fv4. Mus castaneus was proven to lack endogenous retrovirus producing 

Rmcf. The interference mechanism was characterized in receptor restriction mediated 

by Rmcf (Jung, Lyu, Buckler-White, & Kozak, 2002). 

2.6.2.1.4 Rmcf2 

Rmcf2 is a protein similar to Fv4, becuase it is an expressed env of a xenotropic 

provirus present in Mus castaneus genome, unable to produce infectious particles. It 

protects Mus castaneus against polytropic MLVs through interference. Rmcf2 is the third 
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described mouse gene of retroviral origin delivering protection against MLV infection 

(Wu, Yan, & Kozak, 2005).  

2.6.2.1.5 enJSRV gag and JSRV 

The Gag of enJSRV was the first endogenous retroviral Gag described as one with 

interfering properties to exogenous retrovirus infection by mediating late-stage 

replication block (Mura et al., 2004). This process is called JLR (JSRV late restriction), it 

became a model for studying late replication blocks in the retroviral life cycle. Because 

of the fact that JSRV is not able to grow in cell tissue culture (due to the lack of 

permissive cell line), the experiments performed after retroviral transfection studied the 

formation of the Gag aggregates and their disruptions (Arnaud, Murcia, & Palmarini, 

2007b). 

Still, there exists one exception to this restriction. An evolutionary young copy of 

JSRV (estimated as approximately 200 years old), denoted enJSRV26, is able to 

overcome the restriction mediated by endogenous gag. The counteraction of 

endogenous restriction is mediated by the env of enJSRV26. Amplification of the copies 

of enJSRV26 within the genome indicates that the sheep genome is still probably 

invaded by JSRV both endogenously and exogenously (Armezzani et al., 2011).  

2.6.2.1.6 Refrex-1 and FeLV 

Endogenous copies of FeLV were detected in the cat genomes. Exogenous feline 

retroviruses and feline ERVs have complicated genetic interactions: recombination 

between FeLV and ERV-DC (feline ERV) generated FeLV-D. Lately, a subgroup of FeLV-D 

was experimentally constructed combining an env of endogenous FeLV of domestic cats 

(ERV-DC) and exogenous FeLV. Close examination of the construct led to the discovery 

of the endogenous restriction factor Refrex-1 originating from env of ERV-DC (Ito et al., 

2013). By reverse mutation, functional env was reconstructed from ERV-DC. This 

“reverse evolution experiment” indicates, that env of FeLV was repeatedly inactivated 

(Ito, Baba, Kawasaki, & Nishigaki, 2015). 

2.6.2.1.7 CHOK1 cells and amphotropic retroviruses 

Chinese hamster ovary cells (CHOK1) harbor a variety of endogenous 

retroviruses. Chemical activation of CHOK1 cells with 5-Bromodexouridine induced 
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production of atypical retroviral C-type particles (Manly, Givens, Taber, & Zeigel, 1978). 

CHOK1 cells are not susceptible to infection by exogenous retroviruses or retroviral 

vectors with an amphotropic MLV envelope. CHOK1 cells are widely used for 

biotechnology applications and amphotropic viruses are commonly used as vectors. 

Introduction of human amphotropic or mouse ecotropic retrovirus receptor or 

tunicamycin treatment of the cells (deglycosylation of the receptor) was shown to 

rescue the aforementioned susceptibility (Miller & Miller, 1992). However, no detailed 

characterization and explanation of the resistance mechanism was available. 

2.6.2.2  “Adding fuel to the fire” 

As reviewed in the previous chapter, products of the endogenous retroviruses 

can serve as endogenous restriction factors, preventing infection by exogenous viruses. 

On the other hand, some remnants of endogenous retroviruses might act as enhancers 

of retroviral infection or can even be required for the infection to proceed. These 

products of endogenous retroviruses are reviewed in this chapter.  

2.6.2.2.1 FeLIX and FeLV 

Besides multiple membrane-spanning receptor molecules (e.g. Pit1), the 

subgroup T of FeLV (FeLV-T) requires a cellular cofactor FeLIX for productive infection. 

FeLIX is endogenously expressed and is sequentially similar to the env of FeLV (Anderson 

et al., 2000). Several sequences of endogenous FeLVs were detected in cats, but none of 

them was genetically fixed. However, FeLIX activity was detected in sufficient amounts 

in all of the tested cats from various domestic regions. This finding indicates that the 

FeLV capable of producing FeLIX entered the cat genome prior to the FeLVs recently 

isolated (Sakaguchi, Shojima, Fukui, & Miyazawa, 2015). 

2.6.3 Endogenous retroviruses with a role in the host physiology  

Besides all of the impacts of the presence of a retrovirus in the host genome 

listed above, one symbiotic relationship of the host and ERV stands out - endogenous 

retroviruses domesticated (also called exaptation) to play a role in a normal physiology.  

 Human endogenous retroviruses were first discovered in human placenta (Kalter 

et al., 1973). Human ERVW1 expresses its defective env Syncytin which was proven to 

play a role in formation of placenta. Syncytin is expressed mainly at placental 
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syncytiotrophoblasts where it causes the fusion of cells and formation of giant syncytia 

(Mi et al., 2000). Syncytin gene with its fusogenic function was also described in 

marsupials (Cornelis et al., 2015) and many other mammalian hosts. Multiple ERV 

variants are present in the reproductive system of Placentalia and have a fusogenic 

function. The presence in all of the major clades with placenta formation indicates that 

the presence of fusogenic ERV might be a requirement in order to increase success in 

reproduction (Imakawa, Nakagawa, & Miyazawa, 2015). 

 Digging deeper into the Env glycoprotein evolution, an ORF coding for abberant 

expression env with possible role for placentation was discovered in the spiny-rayed 

fishes. Spiny-rayed fishes are a unique clade, for they evolved placentation. The 

insertion of the gene is predicted to occur more that 110 MYA, making the detected ORF 

the oldest gene of retroviral origin (Henzy, Gifford, Kenaley, & Johnson, 2016). 

2.7 Expression of endogenous retroviruses 

 The expression of the integrated provirus is influenced by the environment of the 

integration site, including the genomic and epigenetic features of the site. No general 

preference of the integration site of the retroviral DNA was proven, however different 

groups of retroviruses prefer sites with distinct features (Derse et al., 2007; Elleder, 

Pavlicek, Paces, & Hejnar, 2002; Mitchell et al., 2004; Narezkina et al., 2004; Schroder et 

al., 2002; Wu, Li, Crise, & Burgess, 2003). 

 The transcription of the intgerated retroviruses is often suppressed (retrovirus is 

silenced). This might occur due to the CpG methylation of retroviral DNA and and is also 

influenced by various histone modifications (Blazkova et al., 2009; Poleshko et al., 2010). 

Transcriptional silencing is also one of the key mechanisms leading to the establishment 

of HIV latent reservoir (Bednarik, Cook, & Pitha, 1990; Blazkova et al., 2009). 

2.7.1 Endogenous retroviruses as promoters for mammalian genes 

The ERVs present in the host genome are often a source of alternative promoters. 

However, the presence of ERV does not usually affect the general expression pattern. 

LTR is rarely preferred as a source of a promoter hence it affects the expression of 

individual genes minorly, but provides an evolutionary opportunities for modifying the 

gene expression (Cohen, Lock, & Mager, 2009).  
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The CRISPR-Cas deletion of ancients ERVs from human genomes in three cell lines 

led to impaired pathways of IFN signaling. This might be owed to the missing promoters 

for the genes utilized in the pathway (Chuong, Elde, & Feschotte, 2016). 

2.8 Embryonic stem cells and endogenous retroviruses 

As mentioned previously, retroviruses need to infect germ line cells in order to 

endogenize. The analysis of transcription occurring in induced pluripotent murine stem 

cells revealed that majority of the transcripts originates in LTRs and contains fragments 

of murine endogenous retroviruses. It was also shown that murine embryonic stem cells 

and their pluripotency might be related to the presence of endogenous retroviruses and 

their expression, hence be shaping the early stages of mammalian development 

(Macfarlan et al., 2012).  

This phenomenon was also studied in human stem cells. The embryonic stem cells 

express HERV-H RNA abundantly. This transcription occurs in reduced amount in 

induced pluripotent stem cells, and is almost absent in differentiated cells. HERV-H is 

also regulated in early development and bears binding sites for pluripotency 

transcription factors. These facts indicate that endogenous retroviruses play a role in 

early stages of development and cell differentiation (Santoni, Guerra, & Luban, 2012).  
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3 MATERIALS AND METHODS 

3.1 Methods related to the screen of unusual endogenous 

retroviruses 

3.1.1 Endogenous Lentivirus in Malayan colugo 

3.1.1.1 Computational screen of vertebrate genomes 

The first step of the best bidirectional hit (BBH) strategy was performed by 

tBLASTn (Johnson et al., 2008) search in vertebrate genome database (including 104 

vertebrate genomes available at GenBank) to identify candidate endogenous Lentivirus 

fragments. In this step the following Pol amino acid sequences (employed for the screen 

because pol is the most conserved retroviral gene) were used as baits: human 

immunodeficiency virus type 1 (HIV-1), feline immunodeficiency virus (FIV), Visna/maedi 

virus, rabbit endogenous Lentivirus type K (RELIK), gray mouse lemur prosimian 

immunodeficiency virus (pSIVgml), and domestic ferret (Mustela putorius furo) 

endogenous Lentivirus (ELVmpf). The cutoff for the BLAST (Johnson et al., 2008) search 

was set at E-value < 10−5. To filter out non-lentiviral sequences, translated hits were 

used as a query for backward BLASTp (Johnson et al., 2008) search against database of 

retroviral Pol sequences belonging to all retroviral genera. Hits aligned with the best bit 

score to lentiviral sequences in the backward BLAST search were further analyzed. 

 

Figure 9: Screening strategy used for screening vertebrate genomes 

 

3.1.1.2 Source of the analyzed samples 

Three samples of genomic DNAs, covering both of the extant dermopteran 

genera, were kindly provided by W. Murphy (Texas A&M University). These included two 

G. variegatus subspecies (designed as GVA3, and GVA5) and Cynocephalus volans (CVO).  

The sample identity was confirmed by PCR amplification of FES and CHRNA1 loci, 

which were described for these specimens before (Janecka et al., 2008), using 
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Colugo1F/1R and Colugo2F/2R primer pairs, respectively (see Table 4). The CHRNA1 

locus was verified by sequencing of the PCR products in all specimens and comparison 

with previously described sequences. 

3.1.1.2.1 Whole genome amplification (WGA) of DNA samples 

Due to the low amounts available, dermopteran DNA samples were amplified by 

whole-genome amplification for majority of the applications using illustra GenomiPhi V2 

DNA Amplification Kit (GE Healthcare) according to the manufacturer's protocol. 

3.1.1.3 PCR amplification 

The ELVgv RT region was amplified using two primer pairs, ELVgvF1/R1 and 

ELVgvF2/R2, yielding PCR products of around 245 and 215bp. The short junctions 

between ELVgv 3'end and the host genomic DNA were amplified with one primer 

anchored in ELVgv 3'LTR (primer ColugoLTR) and the second primer anchored in the 3' 

flanking region of proviruses A, B and C (primers ColugoA1/B1/C1). The PCR products 

from proviruses A, B and C were 359, 337 and 268 bp long, respectively, and their 

identity was verified by sequencing. The empty pre-integrations sites were detected 

using primer pairs ColugoA1/A2, ColugoB1/B2 and ColugoC1/C2. To amplify the 3-kb 

regions from 5'parts the ELVgv proviruses, a semi-nested PCR approach was used: first 

amplification was performed with internal viral primer ELVgvR1 and a second primer 

anchored in the 5' flanking region of proviruses A, B and C (primers ColugoA2/B2/C2). 

Second PCR was then performed with viral primer ELVgvR2 and the same flanking primer 

as in the first PCR. In cases when this approach was not successful, variant viral primers 

ELVseq8 or ELVseq10, closer to the 5'flank, were used. The PCR products obtained were 

sequenced; in cases when heterozygosity was detected, the products were subcloned 

into pGEMTeasy vector (see 3.2.3 DNA cloning and vectors used) and multiple clones 

were re-sequenced. For the primer sequences see Table 4. 

The general PCR conditions for a typical 20 µl reactions were the following: 1x 

Phusion polymerase buffer, 200 µM d NTPs, 0,5 µM forward and reverse primer (each), 

2% DMSO, 0,5 units of Phusion polymerase (New England Biolabs), and 200ng WGA 

amplified DNA. 
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The reactions were run according to the following protocol: initial denaturation 

at 98°C for 30 sec; 33 cycles of 98°C for 8 sec, 54°C for 25 sec, 72°C for 1 min (per 1kbp 

amplified); the final elongation at 72°C for 10min. 

Table 4: Primers used for ELVgv and control genes amplification and sequencing 

Primer Sequence (5’-3’) Description 

ELVgvF1 GAATAATGCAGGGCCAGGTA ELVgv virus PCR 

ELVgvR1 GGGTTTCAAATCCCCACTTT ELVgv virus PCR 

ELVgvF2 TCCTAAGATACAAACAGAAAACATTCA ELVgv virus PCR 

ELVgvR2 GCTTTTGATGGACAGCTCCT ELVgv virus PCR 

Colugo1F  GGGGAACTTTGGCGAAGTGTT control gene (FES) 

Colugo1R  TCCATGACGATGTAGATGGG control gene (FES) 

Colugo2F  GACCATGAAGTCAGACCAGGAG control gene (CHRNA) 

Colugo2R  GGAGTATGTGGTCCATCACCAT control gene (CHRNA) 

ColugoLTR  CCCAGAACTTTGTGTCTGGTTT ELVgv LTR for 3' junction 

ColugoA1  TGAGGCATCTCTTTCGGTATTC ELVgv integration A 

ColugoA2  CAGCACAGAATACAAGCAGTAGG ELVgv integration A 

ColugoB1 ACAGCAAATCTCACCCTCCA ELVgv integration B 

ColugoB2 GGGTTGTCCATAAAAACAGAACC ELVgv integration B 

ColugoC1 TCTTGATGTTGGCATCAGTTTG ELVgv integration C 

ColugoC2 CCAGCAAGAAGCTGGACATC ELVgv integration C 

ELVseq1 GCAACCAGAAACCAGACACA Sequencing the 5’ 3kb fragment 
of ELVgv 

ELVseq2 CAGCTGGCTAAAACATATATAAGACAT Sequencing the 5’ 3kb fragment 
of ELVgv 

ELVseq3 CAGGGAAGACAGCACACTGG Sequencing the 5’ 3kb fragment 
of ELVgv 

ELVseq4 GGATTTATGCCAGGTAGAAGTAAAAGG Sequencing the 5’ 3kb fragment 
of ELVgv 

ELVseq5 ACCATGATGGCAGAGGCTTT Sequencing the 5’ 3kb fragment 
of ELVgv 

ELVseq6 ATGATCAAGTTAAAATGACATGGAAT Sequencing the 5’ 3kb fragment 
of ELVgv 

ELVseq7 CATCCAGCAGGGTTTTCACA Sequencing the 5’ 3kb fragment 
of ELVgv 

ELVseq8 GCCTTTTACTTCTACCTGGCATAAA Sequencing the 5’ 3kb fragment 
of ELVgv 

ELVseq9 ATTCCATGTCATTTTAACTTGATCATA Sequencing the 5’ 3kb fragment 
of ELVgv 
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3.1.1.4 Phylogenetic analyzes 

The alignment was generated in MEGA5 software (Tamura et al., 2011) using the 

MUSCLE algorithm (Edgar, 2004). The ML tree was constructed in MEGA5 software, 

using the rtREV amino acid substitution matrix (Dimmic, Rest, Mindell, & Goldstein, 

2002), Nearest-Neighbor-Interchange ML heuristic method and otherwise default 

parameters. Support for ML tree was assessed by 1,000 nonparametric bootstrap 

replicates. Bayesian analysis was run for 200,000 steps, sampling every 1,000 steps and 

discarding first 25% of the trees. Average standard deviation of split frequencies 

converged during 10,000 steps bellow 0.001. The amino acid model F81 in program 

MrBayes was used (Huelsenbeck & Ronquist, 2001).  

The analysis of phylogenetic relationship of ELVgv to other exogenous and 

endogenous lentiviruses was based on alignment including 2,350 most conserved 

nucleotides of gag-pol from 31 lentiviruses (Gilbert, Maxfield, Goodman, & Feschotte, 

2009), together with ELVmpf (Cui & Holmes, 2012a; Han & Worobey, 2012), and ELVgv 

sequence. The alignment was generated in MEGA5 program (Tamura et al., 2011) using 

the MUSCLE algorithm (Edgar, 2004). The ML analysis was performed using MEGA5 

program under Tamura-Nei model, Nearest-Neighbor-Interchange ML heuristic method 

and otherwise default parameters. Bootstrap supports were calculated as a percentage 

out of 1,000 replicates. To establish the phylogenetic placement of ELVgv within 

lentiviruses, we have aligned the amino acid sequence of the highly conserved reverse 

transcriptase (RT) region of pol with sequences from representatives of all retrovirus 

genera. In subsequent phylogenetic analysis maximum likelihood (ML) and Bayesian 

methods were combined.  

3.1.2 Endogenous Deltaretrovirus in the genome of Miniopteridae 

bats 

3.1.2.1 In silico sequence analysis 

Sequence datasets available at NCBI SRA from Miniopterid species genome or 

transcriptome (accession numbers PRJNA270665, PRJNA270639 and PRJNA218524) 

were queried by BLAST or downloaded and analyzed using CLC genomics workbench 9.5 

(http://www.clcbio.com) or DNASTAR Lasergene 10.0.0 (http://dnastar.com). This initial 
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analysis was mainly used to correct errors in the original MINERVa-containing contig 

from the M. natalensis genome assembly. 

3.1.2.2 Source of the analyzed samples and sample processing 

The bat tissue samples were obtained from museum specimens (National 

Museum Prague) as parts of the pectoral muscles and from released bats caught during 

various ecological studies as wing punch biopsies. The bat species were identified with 

respect to their external morphological traits and the identification was further 

confirmed by amplification and sequencing of cytochrome b or RAG2 loci. 

The DNA was isolated from the ethanol-preserved samples according to phenol-

chloroform extraction protocol (See section 3.2.13). 

Table 5: List of bat species analyzed 

Latin name Common name Family Gene locus 
used for 
classificatio
n 

Miniopterus schreibersii Schreibers' long-fingered 
bat 

Miniopteridae cytB 

Miniopterus fraterculus Lesser bent-winged bat Miniopteridae cytB 

Tadarida teniotis European free-tailed bat Molossidae RAG2 

Myotis myotis Greater mouse-eared bat Vespertilionidae RAG2 

Eptesicus serotinus Serotine bat Vespertilionidae RAG2 

Hypsugo savii Savi's pipistrelle Vespertilionidae RAG2 

Plecotus austriacus Grey long-eared bat Vespertilionidae RAG2 

Pipistrellus pipistrellus Common Pipistrelle Vespertilionidae RAG2 

Cistugo seabrae Angolan hairy bat Vespertilionidae RAG2 

Miniopterus natalensis Natal long-fingered bat Miniopteridae cytB 

Miniopterus africanus African long-fingered bat Miniopteridae cytB 

Miniopterus minor Least Long-fingered Bat Miniopteridae cytB 

Epomops dobsonii Dobson's fruit bat Epomophorini cytB 

Epomophorus 
gambianus 

Gambian Epauletted Fruit 
Bat 

Epomophorini cytB 

 

3.1.2.3 PCR, sequencing, and further analysis of the genomic DNA 

The PCR amplifications were performed with a 1:200 mixture of Deep Vent and 

Taq polymerases and LongAmp Taq buffer (all from New England Biolabs) with the 

following conditions: 1 cycle of 4 minute 95°C; 3 pre-amplification cycles of 20 sec 95°C, 

2 min 52-55°C (according to primer used), and 1,5 min (per 1kb amplified) 65°C; 30 
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cycles of 20 sec at 95°C, 30 sec annealing at the temperature 4°C higher than in the pre-

amplification steps, 1,5 min (per 1kb amplified) 65°C. 

The full-length MINERVa provirus was amplified only from 2 samples (genomic 

DNA from M.schreibersii and M.fraterculus) using a nested PCR approach with primers 

DeltaGF6 and DeltaGR4 in the first PCR run; and DeltaGF5 and Delta GR5 in the second 

round. The product was sequenced using primers DeltaGR4, DeltaGF5, DeltaF3, DeltaR1, 

DeltaF1.  

The 5’ end of the provirus was amplified from the genomic DNA from all of the 

analyzed samples (M. schreibersii, M.fraterculus, M.natalensis, M.africanus, and 

M.arenarius) using primers DeltaR1+DeltaGF6. The 5’ end product was sequenced using 

primers DeltaR1, DeltaGF6, DeltaF1, DeltaR6. The 3’ end of the provirus was amplified 

using semi-nested PCR from all of the samples with primers GF6+GR4 in the first round 

and primers F1+GR4 in the second PCR reaction. The 3’ end product was sequenced 

using primers DeltaGR4, DeltaF1, DeltaF8, DeltaF3, DeltaR3, DeltaR6. 

The primers R3 and F1 were used for amplification from genomic DNA to check 

for the possible presence of a more complete pol and env gene elsewhere in the 

genome without yielding any longer product than the one predicted from the single 

deleted provirus described. The control gene cytB was amplified from genomic samples 

using primers cytBMVZ04 and cytBMVZ05 (Smith & Patton, 1991). The same primers 

were used for sequencing of this PCR product. Due to the fact that cytB amplification 

was not successful from some Chiroptera species (Tadarida, Myotis, Eptesicus, Hypsugo, 

Plecotus, Pipistrellus, and Cistugo), we amplified an additional control gene RAG2 using 

primers RAG2_968R and RAG2_428F (Smith & Patton, 1991). For the M. schreibersii, M. 

natalensis and M. fuliginosus we designed species-specific cytB primers denoted 

cytB_natalR and cytB_natalF. 

All of the used primers are listed in Table 6. Desired PCR products were 

sequenced directly after isolation from the agarose gel. We performed further PCR 

reactions to confirm the presence/absence of MINERVa proviruses in the examined 

species using primers which amplify the empty integration sites, LTRs, and gag regions 

of the provirus. 
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Table 6: Primers used in experiments associated with endogenous Deltaretrovirus in 
Miniopteridae bats 

Primer  Sequence (5’-3’) Primer localization 

DeltaF1 GACAAGGGTCGAGTCACCTCCTAA MINERVa gag  

DeltaF2 AATCTCTCCTTCTGGCCTCTCACA MINERVa gag  

DeltaF6 ATTCATGAGGTGCACGTTTAAGCA 5’flanking region of MINERVa provirus 

DeltaF8 TATGTTTCCCCATACCTTGCCATCA MINERVa LTR 

DeltaR1 GAGGTCGCAGGGTTATATGGAGGT MINERVa gag  

DeltaR4 GGCATCAAAAGGTAAACAGAAGCA 3’flanking region of MINERVa provirus 

DeltaR5 CATGGTTCCACTGGTTATCATTTACA 3’flanking region of MINERVa provirus 

DeltaR6 CAATCGGCGGGGAGCTTAC MINERVa LTR 

DeltaF5 GGTGCACGTTTAAGCACATACTCG 5’flanking region of MINERVa provirus 

CytBnatalL GTTGCTCCTCAGAAAGATATTTGTCCTC  Miniopterus cytochrome B locus 

CytBnatalR ATGACCTGTGATATGAAAAACCACTGTTG  Miniopterus cytochrome B locus 

DeltaF4 GTTGGTTGCTCTCTTGCC TAGTCG MINERVa LTR 

DeltaF10 GGAATACCCGTTTCAGAGAGCAGA Miniopterus genomic locus 1 

DeltaR9 TGATCCCTGAGATGACAGAAGTCG Miniopterus genomic locus 1 

DeltaF9 TTCAGTATTGTGAAAGGGCTCTGC Miniopterus genomic locus 2 

DeltaR8 TCACTCTCTGGCTTTAGAGTCCTTCA Miniopterus genomic locus 2 

DeltaF7 TCATGTAAATGATAACCAGTGGAACC Miniopterus genomic locus 3 

DeltaR7 TGCAATGTGAGTTGTTGAAAGTGAAA Miniopterus genomic locus 3 

 

3.1.2.3.1 Sequence assembly 

The sequence chromatograms obtained were checked and sequences were 

edited and assembled using SeqMan software (Lasergene 10.0.0 (http://dnastar.com)). 

3.1.2.3.2 Sequence annotation and ORF detection 

For sequence annotation, the obtained sequence was aligned with other 

Deltaretrovirus sequences (HTLV-1 and BLV) annotated in NCBI Nucleotide database. 

The sequences were aligned using MAFFT algorithm included in the MegAlign software 

from LASERGENE package 10.0.0 (http://dnastar.com). Splice site acceptor and splice 

site donor sites were determined using the online prediction algorithm 

(http://www.fruitfly.org/seq_tools/splice.html). The ORFs were predicted using ExPASy 

translate tool from the ExPASy portal (http://web.expasy.org/translate/). 

3.1.2.3.3 Prediction of RNA secondary structures in LTR 

Secondary structure prediction of MINERVa putative Rex Response element was 

performed. Stem loop prediction in the 5’LTR in MINERVa was compared to other 

deltaretroviruses. The sequences used for secondary structure prediction in mfold 

http://dnastar.com/
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(http://unafold.rna.albany.edu/) were the following: MINERVa consensus sequence, 

HTLV-1 (GenBank accession number M37299), and BLV (K02120).  

3.2 Methods related to the CrERV project 

3.2.1 Tissue cultures 

3.2.1.1 Cells & media 

All cells were cultured in a humidified incubator at 37°C and 5% CO2. 

3.2.1.1.1 Human rhabdomyosarcoma cell line A-673 

Human rhabdomyosarcoma cell line A-673 (ATCC product number CRL-1598) was grown 

in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma–Aldrich, St. Louis, MO) 

supplemented with 10% fetal calf serum, penicillin (100U/ml) and streptomycin (100 µg 

/ml).  

3.2.1.1.2 Human embryonal kidney 293T cells and their derivates 

Human embryonal kidney 293T cells (HEK293T) were grown in in DMEM, with 

serum supplements (4% fetal calf and 4% calf serum or 10% fetal calf), penicillin 

(100U/ml) and streptomycin (100 µg /ml). HEK293T cells expressing gag and pol genes 

derived from MLV virus were grown as unmodified HEK293T cells, but on tissue culture 

dishes covered with Poly-L-lysine (1mg/ml in H2O). HEK-293T cells producing PERV 

14/220 (Bartosch et al., 2004) were grown as regular HEK293T cells and used as a source 

of PERV particles. HEK293T cells stably transfected with molecular clone of CrERV were 

grown as regular HEK293T cells and denoted as Cr5. HEK293T cells producing molecular 

clone of CrERV and a GFP-encoding vector with two LTRs (denoted as C10 line) were 

used as a source of CrERV marked with GFP. HEK293T cells stably expressing a viral 

(MLV-based) construct with amphotropic envelope were maintained in the same 

medium as regular HEK293T cells.  

3.2.1.1.3 Primary cells of Cervidae species 

Primary mule deer (Odocoileus hemionus) kidney cells (OHK, ATCC product number CRL-

6193) were grown in DMEM supplemented with 10% fetal calf serum, penicillin 

(100U/ml) and streptomycin (100 µg /ml).  
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Primary red deer (Cervus elaphus) and fallow deer (Dama dama) cells were grown in 

DMEM supplemented with 10% fetal calf serum, penicillin (100U/ml) and streptomycin 

(100 µg /ml).  

3.2.1.2 Cryopreservation of the cells 

For cryopreservation, the cells were harvested and spun at 200 g for 5 min at 4°C. 

The cellular pellet was then resuspended in the cultivation medium containing 10% 

DMSO. The mixture was slowly cooled in the tubes in the freezing box with isopropanol 

(Nalgene) at -80°C for 24 hours and after that the tubes were stored in liquid nitrogen. 

3.2.1.3 Co-cultivation of human and primary deer cells 

The co-cultivation experiment was set by mixing equal amount of deer CRL-6193 

and human A-673 cells. The cells were kept in the co-culture for several weeks. Every 

week, fresh cells from both species were added to the coculture at a 1:1 ratio. At 

indicated time points, samples of the culture medium were harvested for the RT assay. 

The samples were centrifuged at 3,000 RPM for 5 min and filtered by a 0.22 m syringe 

filter in order to remove cellular debris. The samples were frozen at -80°C before further 

analysis. 

 

Figure 10: Schematic of the cocultivation experiment  

 

3.2.1.4 Ultracentrifugation methods -Iodixanol gradient 

Iodixanol (OptiPrepTM) was purchased from Axis Shield (Dundee). Thirty milliliters 

of cell-free supernatants from virus-producing cells were centrifuged to remove cell 

debris (3,000 RPM for 5 minutes at 4°C). Subsequently the supernatants were 

centrifuged through a 20% iodixanol cushion in a SW28 rotor (Beckman Coulter) for 2h 

at 23,000 RPM. The centrifuged pellet was resuspended in 1 ml of ice-cold PBS. Two-
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milliliter layers containing 50%, 40%, 30%, 20%, and 10% Iodixanol were layered in tubes 

for the SW41Ti rotor (Beckman Coulter) and the resuspended pellet in PBS was applied 

on top of the prepared gradient. The gradient was centrifuged for 17 h at 35,000 RPM at 

4°C. Twelve gradient fractions were collected from the top and their density was 

determined by refractometry. Aliquots from each fraction were used for the PERT assay. 

3.2.1.5 Electron microscopy 

Virus particles from the culture medium of infected cells were pelleted by 

ultracentrifugation as described above and fixed in 2% formaldehyde. Samples 

negatively stained with 3% phosphotungstic acid (PTA) were then viewed with Jeol JEM, 

2000 CX microscope (JEOL). 

3.2.2 PCR methods 

3.2.2.1 Conventional PCR 

Each PCR reaction mixture had a total volume of 20 μl, containing 1.5 μl of the 

DNA (up to 0.5 μg) solution and 300 nM (each) the forward and reverse primers, and 

160 μM of each dNTP. The PCR amplifications were performed with One Taq polymerase 

and its according buffer (all from New England Biolabs) with the following conditions: 1 

cycle of 4 min 95°C; and 25 cycles of 15 sec 94°C, 25 sec 55-60°C (according to the 

primer used), 1 min (per 1kb amplified) at 68°C; final elongation for 10 min at 68°C. 

 For determination of an integration pattern of CrERV, ExTaq polymerase 

(Takara) was used with the following PCR program: 1 cycle of 95°C for 2 min, and 31 

cycles of 94°C for 20 sec, 55°C for 30 sec, 68°C for 2 min, and final elongation for 10 min 

at 68°C. The primers used were Prp1 and Cervus2 (see Table 7). 
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Table 7: Primers used for CrERV amplification, insertion pattern determination and sequencing. 

Primer  Sequence (5’-3’) 

MDfor5 GACAATTCCGGCAAACAATAA 

MDRe6R CGAGGACGGAGGTTTTGGAGC 

MDfor5 GACAATTCCGGCAAACAATAA 

QMDgagR1 GCAAGAGGCATCCTGAAAGA 

MDfor4 CCCAGAGTTACCGTCATCCA 

MD1810R CAACTGTTGGCAATCATCCC 

MDpol704F GACTGCAGAGGAAAGGGAAGAACG 

sMDpol1R GATGGACTTGGACAACCGATA 

sMDpol2F CAGTGGCTGCAATGATGC 

sMDpol1F CTGTCCGAAATCCCCTTTCT 

MDRint4R ACAAAGGCAGGTCCGTTATCAGAG 

QMDgagR2 TGTATAAGGCCCGATTTTCG 

QMDgagF1 CCAGGTCCCTTATATCGTGGT 

MDPpol2391R ACCAAGTGTACTCAGGCAGCAGA 

Prp1 GCAACCCATTCCAGTATTCTT 

Cervus2 TGGTAGAGAGAACGCAATGG 

 

3.2.2.2 Real-time quantitative PCR 

MESA GREEN qPCR mastermix (Eurogentec) was used for standard real-time 

quantitative PCR. Each reaction mixture had a total volume of 20 μl, containing 2 μl of 

the cell lysate and 300 nM (each) the forward and reverse primers. The samples were 

run on a Bio-Rad CFX96TM Real-Time System (Bio-Rad) with a two-step protocol (1 cycle 

of 5 min at 95°C and then 44 cycles consisting of 15 sec at 95°C and 60 sec at 60°C), 

followed by melting curve analysis in the CFX Manager software (Bio-Rad) to ensure the 

specificity of the amplification. An absolute standard curve for each assay was obtained 

by using as templates serial dilutions of a plasmid containing the corresponding 

amplicon. The results were normalized using the parallel amplification of a single-copy 

human genomic locus in porphobilinogen deaminase gene (Konig et al., 2008).  

Table 8: Primers used for qPCR to quantify the amount of CrERV env 

Primer Sequence (5’-3’) 

QMDenvF1 TGACCCCATGTTTGAATGTG 

QMDenvF2 CAAACCAAGGAGCTGTCCTC 

QMDenvR1 GAGGACAGCTCCTTGGTTTG 

QMDenvR2 CCCACCTTGCTGAAGAAAAA 
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3.2.2.3 Digital droplet PCR 

For highly accurate absolute quantification of viral DNA, droplet digital PCR 

(ddPCR) system QX200 (Bio-Rad) was used. Each reaction mixture had a total volume of 

20 μl, containing 1x QX200 ddPCR Evagreen Supermix (Bio-Rad), 2 μl of the cell lysate (1-

5 ng DNA), and 250 nM (each) the forward and reverse primers. The reactions were 

treated for droplet generation according to the manufacturer's manual and then 

amplified with the following conditions: 1 cycle of 5 min at 95°C and then 40 cycles 

consisting of 15 sec at 95°C and 40 sec at 59°C followed by 1 cycle of 5 min at 72°C, 5 

min at 4°C and 5 min at 90°C. Samples were analyzed by droplet reader and QuantaSoft 

software (Bio-Rad) with thresholds set manually. 

*None of the data obtained by ddPCR are presented in this thesis, but can be found in the 

publications connected to this thesis. 

3.2.2.4 Product enhanced reverse transcriptase (PERT) assay  

The PERT assay was adapted from previously published protocols (Lovatt et al., 

1999; Pizzato et al., 2009; Sears & Khan, 2003). The samples (2 µl of culture supernatant 

or gradient fraction) were lysed in 8 μl of solution containing 1% TRITON X-100, 0.4 U/ μl 

RNasin (Promega), and 1x ProtoscriptII buffer (New England Biolabs) at room 

temperature for 30 minutes. Then, two master-mixes were prepared, with the following 

amounts per one reaction: Mix 1 contained 20 ng of the template RNA of MS2 phage 

(Roche), 0.5 μl of the reverse primer MS2b (5'- GCCTTAGCAGTGCCCTGTCT) and 10.1 μl 

water. Mix 2 contained 3.6 μl of 5x ProtoscriptII buffer, 2 μl of 100 mM DTT, 0.8 μl of 10 

mM dNTP2, and 6.4 μl water. Mix 1 was incubated at 65°C for 5 minutes and slowly 

cooled down to allow primer annealing. Next, the mixes were pooled and aliqoted by 18 

μl. To each aliquot, 2 μl of the lysates were added and incubated at 37°C for 30-60 

minutes (reverse transcription step), then inactivated at 70°C for 10 minutes. The newly 

generated MS2 cDNA was quantified by real-time PCR assay with forward MS2a (5'- 

AACATGCTCGAGGGCCTTA) and reverse MS2b primers and fluorescent probe (FAM-

TGGGATGCTCCTACATG-TAMRA). Each reaction contained 1.5 μl of the cDNA sample, 

1xqPCR master mix (Eurogentec), 7.5 pmol of each primer and 3.75 pmol of probe in a 

total volume of 15 μl. The samples were run on a Bio-Rad CFX96TM Real-Time instrument 

with a three-step protocol: 1 cycle of 10 min at 95°C and then 45 cycles consisting of 15 

sec at 95°C, 20 sec at 60°C and 20 sec at 72°C. Cycles of quantification (Cq) values were 
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generated by the CFX Manager software. With each run, one calibrator sample (MLV 

virions pseudotyped with VSV-G) was assayed and all values were expressed as relative 

values compared to the calibrator. 

3.2.3 DNA cloning and vectors used 

3.2.3.1   Preparation of DNA inserts 

3.2.3.1.1  Plasmids with env derived from CrERV 

CrERV env was amplified from OHK cell line genomic DNA using primers 

CrENVe1 (5'-cttaagcttccaccATGGAAGGCGAATGCTCATC) with ctt overhang (green), 

HindIII restriction site (underlined), Kozak sequence (blue) and proviral env (start codon 

red and other coding sequence yellow) and downstream primer CrENVe2 

acgttgaattcTTATGGGGAGGAATCTTCCTCT with overhang (green), EcoRI restriction site 

(underlined) and stop codon (red). 

CrENVFLAG was amplified from subcloned CrERVenv vector with primer 

CrEnvApa (5'-CTCCTGGGCCCACTTTTACT) with ApaI restriction site (underlined) and 

primer CrEnvFLAG, (5'-

AAgggcccTCACTTGTCATCGTCGTCCTTGTAGTCTCCTGGGGAGGAATCTTCCTCT) amplified 

from the genomic DNA sample 

AGAGGAAGATTCCTCCCCAGGAGACTACAAGGACGACGATGACAAGTGAgggcccTT where 

yellow is the env sequence, glycine is gray, FLAGtag is green (stop codon red) and ApaI 

restriction site is underlined 

CrERVnT was amplified from subcloned CrERVenv vector using CrEnvApa primer 

and primer CrENVnT (5'-AAGGGCCCTCAATTTAAAATACAAGGCCCAATTGTAA) targeting 

the sequence 

CTCCTGGGCCCACTTTTACTGTTAATACTAATACTTACAATTGGGCCTTGTATTTTAAATTGAgggc

ccTT introducing an early stop codon (red). 

3.2.3.1.2 Plasmids with env derived from amphotropic MLV  

Amphotropic env was amplified from commercial plasmid PCL Ampho 

(Addgene) using primer AmphoENV1 (5'-aatgGATCcACCATGGCGCGTTCAACGCT) with 

KpnI restriction site (underlined) and Kozak sequence (blue) and primer AmphoENV2 (5'-

gctctaGATCATGGCTCGTACTCTATGG) with XbaI restriction site (underlined). 
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AmphoenvFLAG was amplified from the subloned Amphotropic env vector 

using primer AmphoCla1 (5'-TGCATTCTCAATCGATTAGTCC) with ClaI restriction site 

(underlined) and primer AmphoenvFLAG (5'-

ATTCTAGATCACTTGTCATCGTCGTCCTTGTAGTCTCCTGGCTCGTACTCTATGG) generating a 

sense strand sequence 

CCATAGAGTACGAGCCAGGAGACTACAAGGACGACGATGACAAGTGATCTAGAAT with 

glycine (gray), FLAGtag (green, stop codon red) and XbaI restriction site (underlined).  

3.2.3.2 Plasmid vectors 

For DNA cloning procedures, the plasmid pGEM-T Easy (Promega) was used. For 

constructing expression vectors, expression plasmid pcDNA3 (Addgene) was used.  

3.2.3.3 Ligation 

All DNA inserts were first subcloned into the pGEM-T Easy vector according to 

the manufacturer's protocol using molecular ratio insert to vector 3:1; transformed to E. 

Coli (see chapter bacterial transformation), the colonies were screened by PCR and the 

products were sequenced. The constructs were then digested and re-cloned to 

expression vector pcDNA3. The constructs were again transformed to bacteria, colony 

screened and sequenced. Prior to ligation of the CrERVenvFLAG construct with pcDNA3 

plasmid, the plasmid was dephosphorylated using rAPiD alkaline Phosphatase (Sigma 

Aldrich) according to manufacturer’s protocol. 

3.2.3.4 Bacterial transformation 

The plasmids with cloned inserts were transformed to E.Coli strain XL1 blue (if 

restriction enzymes were sensitive to bacterial dam methylation, SCS110 strain was 

used). Aliquots of the ligation mixture were incubated with bacteria on ice for 40 

minutes. After that heat shock at 42°C was peformed for 1 minute. The mixture was 

immediately added to 0.5 ml of the LB media and recovered for 40-60 minutes at 37°C. 

The recovered bacterial culture was seeded to LB-agar plates with ampicilin (1 µg/ml, 

Sigma), IPTG (3mg/ml, Thermo Scientific), and S-gal or X-gal (both 30 mg/ml, Thermo 

Scientific), to enable blue/black-white colony screening. The plates were incubated 

overnight at 37°C. 
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3.2.3.5 Colony screen PCR 

 The white colonies were transferred to 20 μl of LB media with ampicillin. The 2 x 

OneTaq master mix (New England Biolabs) was used to mix reactions of 15 μl containing 

1.5 μl of bacterial mixture. Primers designed to anneal to the end of bacterial vectors 

were used: M13F and M13R for pGEMTeasy vector and pcDNA3F and pcDNA3R for 

pcDNA3 vector. 

3.2.4 Other used plasmid vectors 

 pVSV-G is a 6.5 kbp long plasmid bearing an envelope protein of VSV-G (vesicular 

stomatitis virus G) with cytomegalovirus (CMV) promoter. 

 pLG is a 5.658 kbp long plasmid bearing two MMLV and MMSV LTRs and EGFP 

with Ampicilin resistance and enhanced packaging singnal. 

 pBS-CMV-gagpol is a 9.333 kbp long plasmid bearing an MLV gag-pol available 

from Addgene (catalogue number 35614). 

3.2.5 Plasmid DNA isolation 

For the isolation of plasmids for sequencing or re-cloning, QIAprep Spin Miniprep 

Kit (Qiagen) was used according to manufacturer’s spin protocol. 

 The plasmids used for transfection were grown in bacteria in LB medium and 

isolated using GenElute HP Plasmid DNA Midiprep Kit (Sigma Aldrich) according to 

manufacturer’s protocol. The isolated plasmids were stored at 4°C. 

3.2.6 Storage of the transformed bacteria 

The bacteria bearing desired plasmids grown in LB medium overnight were mixed 

with 10% glycerol in 7:3 volume ratios and subsequently stored at -80°C. 

3.2.7 Transfection  

 For obtaining the retroviral constructs in sufficient amounts, calcium phosphate 

transfection was used. Cells were seeded to reach approximately 60% confluence on a 

100 mm plate. Up to 30 g of DNA was dissolved in 1080 l of water, mixed with 135 l 

2M CaCl2 and subsequently dripped stepwise to the mixture of 1120 l 2xHBS and 22 l 

100xPO4 while being lightly shaken to let the mixture form a precipitate; then the 

mixture was added to the cells (with medium changed at least one hour prior to the 
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procedure) in a dropwise manner. After 5 h incubation, cells were washed with warm 

(37°C) 15% glycerol in 1xHBS for 30 sec, washed with PBS and supplied with a fresh 

medium. The medium with the product of transfection was collected on day two and 

three after transfection. It was spun at 200 g for 10 min at 4°C to get rid of cell debris 

and immediately used or stored at -80°C. 

3.2.8 Infection 

 For infections, medium from virus-producing cells was harvested, spun for 10 min 

at 4°C at 200 g to remove cell debris and either used to infect the cells directly or was 

stored at -80°C. Medium harvested from cells expressing a reasonably high viral titer 

was filtered through 0.45 m filter. 

 If a virus was concentrated prior to use, it was spun at 23,000 RPM for 2 h in a 0-

micron environment at 4°C in a SW28 rotor (Beckman Coulter). 

 Virus vectors with an envelope not stable in ultracentrifugation procedures (e.g. 

Env of amphotropic viruses) were concentrated using RetroConcentin (System 

Biosciences) according to manufacturers’ protocol concentrating the viral stock 20x. 

 In case RetroNectin (Takara) was used to enhance the viral infectivity, the culture 

dishes were coated with RetroNectin according to manufacturer's spin protocol. 

RetroNectin reagent is a recombinant human fibronectin fragment that contains three 

functional domains. RetroNectin enhances retrovirus-mediated gene transduction by 

aiding the co-localization of target cells and viral particles. Specifically, virus particles 

bind RetroNectin via interaction with the H-domain, and target cells bind mainly through 

the interaction of cell surface integrin receptors VLA-5 and/or VLA-4 with the fibronectin 

C-domain and CS-1 sites, respectively. By facilitating close physical proximity, the 

RetroNectin reagent can enhance viral-mediated gene transfer to target cells expressing 

integrin receptors VLA-4 and/or VLA-5. 

In case polybrene was used to enhance retroviral infection, it was added directly 

to the viral stock to obtain a medium with a polybrene concentration of 4 µg/ml. 

Polybrene is presumed to enhance the retrovirus uptake in the cell in the assays for 

retrovirus gene transfer (Davis, Morgan, & Yarmush, 2002). 
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3.2.9 Retrovirus envelope pseudotypes 

 Retroviral pseudotypes were constructed by co-transfecting plasmids into 

HEK293T cells by calcium phosphate transfection. The constructs with concentration of 

individual plasmids are listed in Table 9. 

Table 9: Amounts of plasmid constructs used in the production retroviral pseudotypes 

Pseudotyope 
designation 

Envelope construct Gag-pol MLV 
plasmid 

GFP reporter 
plasmid (pLG) 

CrERVenv 5 µg 10.75 µg 12.5 µg 

CrERVenvFLAG 5 µg 10.75 µg 12.5 µg 

CrERVenvnT 5 µg 10.75 µg 12.5 µg 

Ampho 5 µg 10.75 µg 12.5 µg 

AmphoenvFLAG 5 µg 10.75 µg 12.5 µg 

Gag-pol 0 µg 25.75 µg 12.5 µg 
 

 The medium from the transfected cells was harvested two or three (or both) days 

after transfection and used for infection of cells.  

3.2.9.1 Western blot 

The cell lysates harvested from tissue culture plates were applied to a 8% (upper 

and 12% (lower) SDS polyacrylamide gel and transferred to PVDF membrane, which was 

subsequently blocked in 5% reduced milk. Membrane was subsequently incubated with 

an anti-FLAG antibody and a secondary anti-rabbit antibody with covalently bound 

horseradish peroxidase (Cell Signaling Technology). The luminescent reaction was 

performed using LumiGLO solution (Cell Signaling) and exposed on an X-ray film (Agfa). 

Coomasie brilliant blue staining of gels was performed as loading control. 
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3.2.10 Retrovirus marker rescue assay 

 

Figure 11: Strategy used for the marker rescue assay. The cells bearing CrERV were transfected 
with an expression plasmid with VSV-G envelope. HEK293T cells stably transfected with GFP and 
infected with CrERV were transfected with a plasmid with a VSV-G envelope to produce a virus 
with CrERV core and Env, GFP marker, and VSV-G. 

 

 To perform the marker rescue, the HEK293T cell line bearing a molecular clone of 

CrERV and GFP was transfected with pVSV-G plasmid. The standard protocol for calcium 

phosphate transfection was used. The idea behind the strategy of marker rescue is 

depicted in the Figure 11. 

 2ml of fresh C10 cells (cells used to generate the rescued GFP-marked virus) 

medium was used for infection or 1ml of cells medium of CrERV positive cells 

transfected with VSV envelope. Three days after infection, cells were fixed and stained 

with DAPI (4′,6-Diamidine-2′-phenylindole dihydrochloride) to mark the nuclei. 

3.2.11 Flow cytometry (FACS) 

 Infected cells were harvested and centrifuged (200 x g, 5 min, 22°C), the cellular 

pelet was resuspended in Hoechst 33258 in PBS (1 μg/ml). Uninfected cells were treated 

the same way and used as a negative control to distinguish GFP+ and GFP- cells. The 

number of Hoechst-negative (live) and GFP-positive cells was measured using BD LSRII 

(BD Biosciences). The data were analyzed using FlowJo software 

(http://www.flowjo.com). 

 For fixation, the cells were resuspended in 1% paraformaldehyde (PFM) in PBS 

after harvesting and centrifugation. Prior to measurement, they were strained through 

50 µm strainer (Cell Trics, Sysmex) in order to remove the cell clumps.  

http://www.flowjo.com/
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3.2.12 Cell fixation for DAPI staining 

The cells were seeded on a cover slip in a 35 mm Petri dish and washed three 

times after 24 hours with PBS (heated to 37°C). The cell were fixed with 2 ml of 3% PFM 

in PBS (37°C) and incubated for 20 min at a room temperature. The slips were washed 

with PBS three times (with 15 min between washes), then washed in a demineralized 

water. A drop of Mowiol+DAPI was placed at the microscope slides. The cover slips were 

placed on the miscroscope slides so that no air bubbles would be introduced between 

the slides and slips and surplus fluid was removed. 

3.2.12.1 Preparation of 3% paraformaldehyde 

3 grams of PFM were dissolved in 70 ml PBS and mildly heated. The pH was 

adjusted to 6.9 using KOH. The PBS was added up to 100 ml, the solution was filtered 

and stored at -20°C in aliquots.  

3.2.13 Genomic DNA isolation by phenol-chloroform extraction 

The cellular pellet was resuspended in 800 μl of lysis buffer (containing water; 

0.5M EDTA-pH 8.0; and 10% SDS in the ratio 4:5:1). 40 μl of proteinase K (20 mg/ml) was 

added and the mixture was incubated at 55°C overnight in a rolling tube. The next 

morning, 2.5 μl of RNase A (100 mg/ml) was added and the mixture was incubated in the 

rolling tube at 37°C for 1 h. 800 μl of phenol:chloroform (1:1, pH 7.9) was added and 

thoroughly but not vigorously mixed. The mixture was subsequently centrifuged at room 

temperature at 16,000 g for 3 min. Aqueous phase-containing DNA was collected and 

mixed with an equal amount of cold (-20°C) 96% ethanol. The mixture was mixed and 

centrifuged (16,000 g, 15 min, 12°C) and the supernatant was removed. The pellet was 

washed with cold (-20°C) 80% ethanol and centifuged (16000 g, 15 min, 12°C). After 

removal of the supernatant, the pellet was air dried at 37°C and dissolved in 50 μl T10E0.1 

(10 mM TRIS, 0.1 mM EDTA) buffer.The samples were stored at 4°C. 

3.2.14 Alignments & construction of the phylogeny trees 

 Alignments of sequences were generated using the MUSCLE algorithm included 

in the MEGA6 (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013) software package. 

The Neighbor-joining trees were constructed using algorithms in MEGA6 and visualized 
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in FigTree. The ProtTest analyzes trees were constructed using online ProtTest2.4 server 

(Abascal, Zardoya, & Posada, 2005).  

3.2.15 Assembly of the restriction factors sequences 

 Sequence datasets available from the Sequence Read Archive (SRA) at the 

National Center for Biotechnology Information (NCBI) from mule deer (BioSample 

PRJNA79789) were queried by BLAST (Johnson et al., 2008) using various ungulate 

restriction factor sequences as baits. The restriction factors with at least three hits to the 

mule deer SRA sequences were further processed. Sequencing data from lymph nodes 

of mule deer, sika deer, and European roe deer were used to assemble selected 

restriction factors using CLC genomics Workbench 9.5 (http://www.clcbio.com) or 

DNASTAR Lasergene 10.0.0 (http://dnastar.com). The assembled sequences and 

sequenced mined from the NCBI Nucleotide database were used for alignment 

construction, using MEGA6 software (Tamura et al., 2013) and further analyzed using 

DataMonkey algorithms (Delport, Poon, Frost, & Kosakovsky Pond, 2010) to detect the 

signatures of positive selection using the default parameters.   

3.3 Methods related to the CHOK1 cells project 

3.3.1 Tissue cultures 

All cells were cultured in a humidified incubator at 37°C and 5% CO2.  

3.3.1.1 The source of amphotropic virus 

S. Indik (University of Veterinary Medicine Vienna, Austria) provided HEK293T 

cells stably expressing a MLV-based retroviral construct with amphotropic envelope. The 

cells were maintained in the same medium as regular HEK293T cells. The virus-

containing cell culture medium was collected and spun to remove the cell debris (200 g, 

5 min, 4°C).  

3.3.1.2 Cultivation of CHOK1 cells 

The CHOK1 cells were maintained in NP medium (composition: 100 ml water; 104 

ml D-MEM/F12 2x; 4.5 ml 5% NaHCO3; 10.5 ml fetal calf serum; 10.5 ml calf serum; 

penicillin (100U/ml) and streptomycin (100 µg /ml); glutamine).  

http://dnastar.com/
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3.3.1.2.1 Tunicamycin treatment 

Cells were seeded at a 10% confluency. After four hours, tunicamycin was added 

to a final concentration of 0.4 µg per ml of medium. The infection was performed 19 h 

following the tunicamycin treatment. 

3.3.1.2.2 Harvesting of the conditioned medium 

In order to prepare sufficient amount of conditioned serum free medium we 

cultivated the CHOK1 cells grown to approximately 80% confluence in serum free NP 

medium for 24 hours. 

3.3.2 Infection 

 RetroNectin (Recombinant human fibronectin fragment, Takara) coating of the 

dishes was shown not to increase infectivity; hence it was not used in the experiment. 

Polybrene was used to enhance retroviral infection; it was added directly to the viral 

stock to obtain a medium with a polybrene concentration of 4 µg/ml. 

 To prove the inhibitory effect of the conditioned CHOK1 cells medium (or its 

fractions obtained by gel filtration), the conditioned medium (or the fractions) and 

prepared viral stock were added to the cells simultaneously in 1:1 volume ratio. As a 

control, fresh medium was added to the cells simultaneously in 1:1 volume ratio with 

prepared viral stock. 

3.3.3 Evaluation of the infection outcome 

To evaluate infection (and its inhibition) outcome, cells were either analyzed by 

flow cytometry or the number of foci of GFP-positive cells was manually counted under 

fluorescent microscope (both approaches discussed in the methods related to CrERV 

experiments).  

3.3.4 Medium concentration, fractionation, and mass spectrometry 

The Laboratory of Structural Biology (BIOCEV) performed medium concentration 

and fractionation. The mass spectrometry was performed by the core facility at BIOCEV.  

500 ml of CHOK1 conditioned media was concentrated to 12 ml using Amicon 

ultrafiltration device (MW cutoff = 10 kDa). 4 ml frozen aliquots of the concentrated 
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medium was stored at -20°C. 2x4 ml was separated on Superdex HR 75 16/60; fractions 

were collected by 3 ml.  

3.3.5 Evaluation of the mass spectrometry results 

The protein sequences obtained were used in BLAST searches against NCBI, TrEMBL, 

and SwissProt database and a personalized amino acid sequence database. The 

personalized database was created by predictions of endogenous retrovirus env 

sequences present in the CHOK1 genome. The best BLAST hits against hamster genome 

were obtained using the following bait sequences: 

Amphotropic_murine_leukemia_virus_strain_1313_AF411814.1, 

Amphotropic_Murine_leukemia_virus_4070A_M33469.1, 

Ampho_Cricetulus_griseus_env_U09104.1,  

Ampho_FIV_EF455613.1,  

Ecotropiv_MLV_env_KJ668270.1,  

Xenotropic_MLV_env_M59793.1,  

Polytropic_MLV_env_KJ668271.1,  

KoRV_NC_021704.1, GaLV_NC_001885.2,  

GaLV_SEATO_AF055060 
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4 RESULTS AND DISCUSSION 

4.1 Screens for the unusual endogenous retroviruses in 

mammalian genomes 

4.1.1 Endogenous Lentivirus in Malayan colugo (Galeopterus 

variegatus) 

 We performed a computational screen of 104 mammalian genomes available at 

the time, aimed at detecting unusual cases of endogenous retroviruses, including 

endogenous lentiviruses (see Figure 12) and deltaretroviruses. We detected a novel 

endogenous Lentivirus in the Malayan colugo genome, denoting it ELVgv. We were able 

to assemble three endogenous copies of ELVgv. Construction of the phylogenetic trees 

confirmed that the provirus is sequentially most related to lentiviruses. However, ELVgv 

is evolutionary old and does not clearly cluster with any Lentivirus group, forming a 

separate group within lentiviruses.  

 

Figure 12: A. Schematic of the computational pipeline used for screening the vertebrate 
genomes. B. The outcome of the analysis. Every blast hit is denoted by 1 vertical line. The height 
of the line depicts the value of the bit score of the hit. The individual species are distinguished by 
various colors. Figure from (Hron et al., 2014). 

 

BLAST searches of the colugo genomic contigs revealed the presence of three 

complete ELVgv proviruses (provirus Ι at positions 11,594-19,841 of contig 

JMZW01084956; provirus ΙΙ at positions 14,164-23,469 of contig JMZW01174031; 
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provirus ΙΙΙ at positions 40,701-51,516 of contig JMZW01021293). All three detected 

proviruses in the genome are displayed in the Figure 14. The majority consensus 

sequence of the proviruses was used to construct the phylogenetic trees depicted in the 

Figure 13. 

To estimate the phylogenetic relationship of ELVgv to other lentiviruses, we have 

constructed phylogenetic trees using alignment of the amino acid sequences of reverse 

transcriptase. Reverse transcriptase is a highly conserved region of pol with sequences 

available from representatives of all retrovirus genera. In subsequent phylogenetic 

analysis using both, maximum likelihood (ML) and Bayesian methods, ELVgv RT clustered 

inside the Lentivirus clade with high support (ML bootstrap 100, Bayesian posterior 

probability = 1), see Figure 13 for reference. In accordance with this clustering, the 

highest-scoring BLASTp hits of ELVgv gag, pol and env genes were the genes from a 

Lentivirus, feline immunodeficiency virus (FIV; the similarity/identity to FIV counterparts 

of gag, pol and env genes were 48%/31%, 54%/35% and 27%/17%, respectively).  

 

Figure 13: Phylogenetic analysis of ELVgv. The sequence of ELVgv clusters with good support with 
other members of Lentivirus genus. Bootstrap supports as well as posterior probability of 
Bayesian tree is displayed at the nodes (left). The situation within the lentiviral genus is depicted 
as well (right). The endogenous lentiviruses are indicated by a dot. None of the endogenous 
forms of lentiviruses clusters in a group with recent lentiviruses. The numbers represent the 
bootstrap values.  
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To analyze the relationship of ELVgv to other lentiviruses in more detail, we have 

used the dataset of conserved regions of lentiviral gag and pol (Gilbert et al., 2009), 

adding the recently described ELVmpf to the analysis (Cui & Holmes, 2012a; Han & 

Worobey, 2012). The ML phylogeny analyzes indicate that ELVgv forms a deep branch in 

the Lentivirus tree, indicating its ancient origin and distinct position in the lentiviral 

genus. ML tree differed slightly from the phylogeny obtained by Bayesian analysis. While 

in the ML analysis ELVgv clustered with weak bootstrap support (46.7) together with the 

ovine/caprine Lentivirus subgroup, it formed an isolated deep branch in the Bayesian 

tree. Separate analysis of the gag and pol genes excluded any evident recombination 

event. Re-running the analysis with the three individual provirus sequences instead of 

the reconstructed ELVgv consensus sequence also did not influence the results (shown 

in the supplementary material of (Hron et al., 2014)). Based on these facts, the precise 

relationship of ELVgv to primate and nonprimate Lentivirus groups could not be 

determined. 

 

Figure 14: The assembly and structure of three ELVgv proviruses in the colugo genome; age 
estimation of individual ELVgv integrations based on LTR aging is depicted on right. Figure from 
(Hron et al., 2014). 

 

Dermoptera order contains only two extant species - Galeopterus variegatus and 

Cynocephalus volans. Dermoptera is considered the basal branch to primates. We 

obtained dermopteran genomic DNA samples in very low amounts. The samples were 

amplified by whole genome amplification and their correct identification was validated 
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by sequencing CHRNA1 control gene and comparing the sequences to the ones 

published in GenBank (alignment depicted in Figure 15). The identity of all samples was 

confirmed in this way. 

 

Figure 15: Sequence alignment of CHRNA1 control locus from dermopteran specimens analyzed . 
CHRNA1 locus was PCR-amplified and sequenced from dermopteran genomic DNA to confirm the 
identity of specimens analyzed. Sequences with the following GenBank accession numbers were 
used for comparison: CVO1 CHRNA1 (FJ151285), GVA5 CHRNA1 (FJ151283) and GVA3 CHRNA1 
(FJ151281).The polymorphic sites used for comparison are highlighted in black. 

 

 The presence of ELVgv in Galeopterus and Cynocephalus genome was confirmed 

by PCR detection of RT region from whole genome amplified (WGA) samples. The 

presence of ELVgv in both of the species confirms the prediction, that ELVgv integrated 

in the genome of ancestor of the currently living dermopteran species more than 20 

MYA (see Figure 16). 
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Figure 16: Presence/absence of ELVgv among species. The numbers associated with the nodes 
depict the time of the divergency of the species according to TimeTree 
(http://www.timetree.org/).  

 

 Further studies of the ELVgv confirmed the estimated age of the provirus and 

marginally dealt with the host-virus relationship. We were able to detect and sequence 

partial provirus from the other extant species from the Dermoptera clade. We partially 

sequenced the three endogenous copies of the provirus in three specimens. We looked 

for empty integration site from all of the proviruses, but detected none (see Figure 17). 

This fact indicates that the provirus insertion is homozygous and in the same genomic 

loci in all animals tested.  

 

Figure 17: Detection of ELVgv integrations in the dermopteran genomic samples. Upper: 
schematics of ELVgv provirus with primer positions. Lower: PCR amplifications using primers 
targeting two regions of the ELVgv reverse transcriptase (RT), the three individual virus-host 
junctions and their corresponding pre-integration sites (proviruses A, B, and C), and two control 
loci (FES, CHRNA1) in dermopteran genome (Janecka et al., 2008). CVO - C. volans; GVA3, GVA5 - 
G. variegatus specimens; NTC - non template PCR control. 

http://www.timetree.org/
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 We were successful in sequencing proviral parts from the 5’ end of the provirus 

from all three dermopteran individuals (GVA3, GVA5, CVO). Due to the limited amount 

and fragmentary nature of whole genome-amplified DNA, we were not able to obtain 

longer sequences than the ones depicted in Figure 18. We compared the obtained 

sequences to the sequence assembled from the GenBank data.  

 Due to the mutated nature of proviruses, we were able to amplify only four 

fragments of approximately 3 kb and shorter fragments of 0.7 – 1 kb in length in another 

four analyzed proviruses. In the GVA3 specimen, we were able to amplify only the very 

end of the provirus C sequence, probably either due to the low quality of whole 

genome-amplified template DNA or due to the mutations/deletions in the regions 

targeted by the primers. All together, we obtained a total of 11 partial ELVgv sequences 

from four animals, including three provirus sequences reconstructed in silico in GVAgb 

genome assembly (GenBank: KX022581-9).  



81 
 

 

Figure 18: Sequence variability of three ELVgv proviruses integrated in the dermopteran genome. 
Upper: Schematic depiction of ELVgv genomic organization (Hron, et al. 2014). Region analyzed 
by sequencing is highlighted by grey box. Lower: Graphical representation of individual partial 
proviral sequences, with scale indicated above. Each line represents one proviral sequence in 
particular specimen (CVO, GVA3, GVA5, GVAgb). Three blocks of lines correspond to the three 
proviral integrations (A, B, and C), where the sequence from GVAgb is taken in each case as a 
reference. Vertical lines indicate single nucleotide substitutions relative to the reference 
sequence. Insertions and deletions are depicted by upward and downward-pointing triangles, 
respectively, with the length indicated below. Heterozygous sites are indicated by asterisks. 

 

The A, B and C proviruses, which represent independent integration events, are 

mutually different. Moreover, each provirus differs in many sites between individual 

animals. These differences have accumulated in the provirus after the split of the 

dermopteran lineages analyzed. The differences detected include substitutions, short 

indels and three long insertions (formed by integrations of SINE and LINE repetitive 
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elements). For each provirus, the sequences in CVO always substantially differ from the 

sequences in Galeopterus (GVA3, GVA5, GVAgb), reflecting the separate evolution of the 

Cynocephalus and Galeopterus species. The pattern of sequence differences observed 

for each proviral integration enabled us to further analyze the ELVgv evolutionary 

history in Dermoptera. This included more detailed analysis of ELVgv evolutionary 

history, confirming its position as the oldest lentivirus detected to date, and analysis of 

selection pressure acting at the antiretroviral restriction factor TRIM5 (Hron 2016). 
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4.1.2 Discovery of the first endogenous Deltaretrovirus in the 

genome of long-fingered bats (Chiroptera: Miniopteridae) 

 Deltaretroviruses are an enigmatic genus of retroviruses. Up to this finding, no 

endogenous copy of a Deltaretrovirus was detected. In our screening efforts, we have 

detected remnants of endogenous Deltaretrovirus in the genome of Miniopteridae bats. 

We denoted this provirus MINERVa (Miniopteridae endogenous retrovirus).  

 We proved that this provirus is present in the Miniopterus genome only in a 

single copy, by thoroughful screen of the avaliable NGS and RNAseq data and by utilizing 

highly quantitative digital droplet PCR with primers designed to amplify LTR and gag 

sequences (see attached Manuscript).  

 We obtained samples from several bat species and confirmed their identity by 

sequencing their cytB or RAG2 loci (see Table 5 for reference). The presence of MINERVa 

was confirmed by PCR detection using primers to amplify LTR (for detection of possible 

solo LTRs) and gag sequence, respectively. The MINERVa sequence was proven to be 

orthologous among all Miniopteridae specimens analyzed, but was not present in other 

analyzed bat species (see Figure 19).  

 

 
 
Figure 19: Absence/presence analysis of the MINERVa sequence in the bat samples. The time 
estimation at the nodes are the ones stated in TimeTree (http://timetree.org/). 

http://timetree.org/
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 MINERVa sequence was annotated by comparisons to two other well described 

deltaretroviruses (BLV and HTLV1). Splice site donor and splice site acceptor sequences 

were predicted using FruitFly (http://www.fruitfly.org/seq_tools/splice.html). Two 

additional ORFs were detected, which we presume to encode accessory genes (see 

Figure 20).  

 

http://www.fruitfly.org/seq_tools/splice.html
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Figure 20: Annotation of the MINERVa sequence; PBS - primer binding site, p19 - matrix, p24 -
capsid, polyA - polyadenylation signal site, ORF - open reading frame, SD - splice donor, SA - 
splice acceptor, PPxY - late doomain in gag. 

 

Presence of the accessory gene coding for Rex in the genome was further 

indicated by prediction of stem loop structures characteristic for the Rex response 

element present in the LTR (see Figure 21). The predicted structure resembles the 

structures obtained by the same prediction approach in BLV and HTLV1. 
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Figure 21: Prediction of a stem-loop structure in various deltaretroviruses using mfold software. 
The characteristic structures for the Rev Response element are highlighted in gray.  

 

The presence of an intact ORF in the gag sequence was indicative of the fact that 

the provirus might produce a functional peptide sequence, leading to its purifying 

selection during Miniopteridae evolution. However, a pilot mass spectrometry analysis 

of the miniopterus muscle tissue did not yield a result confirming a presence of such a 

peptide. However, a muscle tissue is not optimal as a sample source in mass 
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spectrometry analysis, but was the only accessible at the time the analysis was 

performed. 

This is the first report of a Deltaretrovirus possibly infecting a new mammalian 

order (Chiroptera). Interestingly, deltaretroviruses (namely BLV) are capable of 

replicating in a cell line derived from Tadarida species (personal communication with 

Kathryn Radke). Deltaretroviruses cause slow persistent infections in general, the viruses 

are predominantly spread via cell-to-cell transmission and if the immune cells are 

latently infected, clonal expansion occurs (Rafatpanah, Farid, Golanbar, & Jabbari Azad, 

2006). 

The deep evolutionary history of deltaretroviruses is not known. The sequences 

we detected and analyzed possess features of deltaretroviruses. Besides the mentioned 

sequential similarity to currently circulating deltaretroviruses, the sequence is cytosine-

rich. It was previously shown, that HTLV nucleotide composition is biased due to being 

cytosine-rich and adenine-poor whereas the opposite applies to HIV (Kypr, Mrazek, & 

Reich, 1989). 

Evidence of the presence of an endogenous Deltaretrovirus sequence is not only 

filling in the gap of knowledge of the last genus of retroviruses lacking in the currently 

available sequenced genomes, but might also help to understand the deep evolution of 

deltaretroviruses. 
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4.2 Molecular biology characterization of the currently 

endogenizing retrovirus (CrERV) 

 CrERV was recently studied due to its high insertional polymorphism among mule 

deer population in North America. However, almost all of the studies were only 

sequence-based or computational, and a virological characterization of the virus was 

lacking.  

We were succesful in inducing the virus by cocultivation with susceptible human 

cells. The RT activity was measured in the coculture every week to monitor the start of 

the virus production. The normalized values of the RT activity and its growth during the 

analyzed time course is shown in the Figure 22.  

This approach was based on the experiments performed upon the discovery of 

the inducible deer Gammaretrovirus, named DKV (Deer kidney virus) at that time 

(Aaronson et al., 1976). It also provided a source of the infectious virus at the first stages 

of the experimental work.  

 

Figure 22: The relative RT activity of the medium on various days of cocultivation. 

 

Because these experiments provided the first definitive virological identification 

of CrERV, and the titers obtained were extremely low, the particles of the induced CrERV 

were analyzed by various aproaches. First, we performed a gradient ultracentrifugation 

to test whether the virus sediments in the characteristic region of the Iodixanol gradient 

(See Figure 23). In sucrose density gradients, retrovirus particles sediment around 1.16 
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mg/ml (Contreras-Galindo et al., 2012). Iodixanol ultracentrifugation and visualisation of 

retroviral particles were performed on PERV in parallel. PERV and CrERV were used for 

comparison due to the fact, that PERV is widely studied in context of 

xenotransplantation and therefore a well characterized endogenous Gammaretrovirus 

(Kimsa et al., 2014).  

 

Figure 23: Presence of RT activity in Iodixanol gradient fractions for CrERV (left) and PERV(right) 
Comparisons of these fractions from two gradients confirmed, that the induced CrERV sediments 
in the fraction with density characteristic for retroviruses (A). Electron microscopy pictures of the 
retrovirus particles- CrERV (left) and PERV (right).  

 

Second, we sequenced the full genome of the induced provirus and compared it 

to four closest full-lenght endogenous CrERV copies present and annotated in the mule 

deer genome (Kamath et al., 2014). As expected, the induced virus is the most similar to 

the endogenous copies estimated to be the youngest and differs the most from the 

proviruses with the oldest integration time estimates. This is in agreement with the 

assumption that among the hundreds of CrERV copies present in the mule deer genome, 

the evolutionary youngest copies have the greatest potential for induction and particle 

production. Based on the analysis of the obtained sequence of the induced virus and its 

comparison to other proviruses, the viral env presumably mutates at the fastest rate and 

the viral pol remains more conserved (Fig. 24). Based on the origin of the virus 
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(cocultivation by cells used by (Aaronson et al., 1976)), this comparison confirms the 

supposed identity of CrERV and DKV. 

 

Figure 24: Comparison of full length seqences of the induced CrERV and its endogenous copies. 
The ticks representing the mutations in LTR and other noncoding viral sequences are aligned to 
center of the line representing each sequence. The ticks aligned above the line representing the 
sequence represents nonsynonymous mutations and the ticks aligned below the line represents 
the synonymous mutation. The ratio of mis-sense to sense mutation in individual genes is 
depicted above the individual lines representing the virus sequence. Insertions are depicted by 
triangles pointing towards the line, the deletions are depicted by triangles pointed outwards the 
line. Deletions or insertions in frame are depicted by black triangles, the frameshift indels are 
depicted by white triangles. The letters on both sides of the line represent the TSD sequence.  

 

 We further confirmed that the induced infectious virus (CrERV-IND) clusters with 

the evolutionary youngest copies in the mule deer genome by constructing a 

phylogenetic tree using 1 kb sequences from endogenous CrERV proviruses (Fig. 25). The 

extent of the 1 kb sequence was selected to minimize the impact of recombination 

events predicted in the various virus genomes.  
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Figure 25: Phylogenetic analysis of the induced CrERV and other CrERV copies in the mule deer 
genome using 1 kb sequence located at the 3‘ end of the provirus. The induced virus clusters with 
the evolutionary young copies.  

 

 The early and late infectious kinetics of the induced provirus was studied. The 

amount of newly made virus DNA (env gene product) of CrERV was estimated up to 48 h 

after infection. The experiment was performed in parallel with PERV and the infectious 

kinetics of the two viruses were compared (Figure 26). Early virus infection kinetics was 

shown to be regular, however only tiny fraction of cells was infected by CrERV (left); 

during long term infection of human cells, copy number around 1 viral DNA per cell was 

reached (right). The long-term spread of infection in the culture was also documented 

by repeated RT measurements.  

 

Figure 26: Early virus infection kinetics depicted (left), comparison of CrERV (circles) and PERV 
(triangles) env copy numbers per diploid cell up to 48 hours post infection; Long term infection of 
human cells, monitored up to 32 days post infection (right). 

 

Despite being efficient in creating new endogenous copies, the virus shows 

xenotropic behavior (see Figure 31), in agreement with the previous observations of the 

Aaronson laboratory (Barbacid, Daniel, & Aaronson, 1980). For subsequent work, we 

prepared and tested an infectious molecular clone of the provirus. To be able to 
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genetically distinguish the endogenous CrERV proviruses and also the the newly made 

clone, we introduced four point mutation in the pro gene region to generate a mutant 

version of the molecular clone, CrERVmut (Fig. 27). 

This allowed us to design PCR primers that amplified only the newly generated 

CrERVmut DNA and not any of the endogenous CrERV copies or the parental CrERV virus 

(Figure 27, lanes 7 and 8). The infectivity of the CrERVmut was confirmed on HEK293T 

cells (Figure 27, lanes 5 and 6). However, no viral DNA was detected when the CrERVmut 

virus was used to infect deer OHK cells (Figure 27, lanes 1 and 2). We therefore 

proposed the existence of a replication block in deer cells, occuring at a receptor level or 

a block occuring at an early stage of the retrovirus infection (virus uncoating or start of 

reverse transcription) blocking the efficient production of virus DNA. To analyze the 

capacity of CrERV to elicit a receptor interference, HEK293T cells were infected with 

wild-type exogenous CrERV and subsequently infected with CrERVmut. The cells 

chronically infected with wild type CrERV had close to one copy per cellular genome 

equivalent and presumably all expressed the virus envelope with the potential to block 

cellular receptors used for virus entry. The wild-type CrERV infected HEK293T cells did 

not exhibit production of CrERVmut virus DNA (Figure 27, lanes 3 and 4), in contrast with 

naive HEK293T cells. This is consistent with receptor interference being the cause of the 

resistance to CrERV on both deer cells and chronically infected human cells. 
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Figure 27: Construction of a CrERV molecular clone and its mutated form in order to distinguish 
endogenous and introduced copies of CrERV (A). CrERV-mut was used to infect deer OHK cells 
(lane 1), HEK 293 T cells (lane 5) and HEK 293 T cells chronically infected with CrERV-IND (lane 3). 
Heat-inactivated (h.i.) virus was used in each case as a negative control to exclude virus DNA 
contamination (lanes 2, 4, and 6). Cells were harvested 20 h after infection and cellular lysates 
were prepared as described in Methods. CrERV-mut (lane 7) and CrERV-IND (lane 8) plasmid DNA 
was used as a control for speci fi city of PCR amplification. The upper panel shows PCR products 
generated with primers mut-fw and mut-rv, which detect speci fi cally the CrERVmut DNA. The 
lower panel shows PCR products generated with primers WT-fw and WT-rv. These primers 
amplify the “ wild-type ” variants of CrERV, i.e. the endogenous CrERVs in deer cells (lanes 1 and 
2), and CrERV-IND in chronically infected 293 T cells (lanes 3 and 4). The experiments were 
performed twice with identical results; one representative experiment is displayed. M, molecular 
size marker; NTC, non-template control. (B). 

 

The cellular receptor for CrERV is not known and the possibility that it might be 

mutated in deer remains unresolved. The mutation of CrERV receptor in mule deer 

might be an alternative explanation for the xenotropic behaviour of CrERV. Mutations of 

ERV receptors have been described in endogenous ALVs and MLVs (Barnard, Elleder, & 

Young, 2006; Kozak, 2014). The treatment of the cells with tunicamycin (inhibitor of N-

linked glycosylation) has been shown to deglycosylate the cellular receptors or virus Env 

and thus enable the retrovirus entry by overcoming the receptor block (Koo, 

Parthasarathi, Ron, & Dougherty, 1994; Miller & Miller, 1992). However, tunicamycin 

treatment of both, deer and chronically infected cells did not rescue the cells 

susceptibility to virus infection (data not shown).  
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More variants of CrERV envelope genes may exist, utilizing different receptors 

and hence can overcome the interference blocks (Mary Poss, personal communication). 

This mechanism was described in FeLV and KoRV (Overbaugh et al., 2001; Xu, Gorman, 

Santiago, Kluska, & Eiden, 2015). More complex mechanisms were described for PERV, 

where disruption of a highly conserved PHQ motif in the N-terminus of Env enables 

transactivation of such viruses by unrelated gammaretroviral envelopes (Lavillette & 

Kabat, 2004). The PERVs with disrupted PHQ motif gain the ability to infect cells that lack 

the cognate PERV receptors and also to overcome restrictions caused by receptor 

interference. This property was suggested to provide novel opportunities to infect germ 

cells (Lavillette & Kabat, 2004). Interestingly, we observe a tendency toward disruption 

of the PHQ motif in the evolutionarily young CrERVs (data not shown).  

Besides the phylogenetic analyzes of the CrERV induced by cocultivation, we 

performed further phylogenetic analyzes using a broad collection of gammaretroviral 

sequences. The accession numbers of the sequences are listed in the legend of the 

Figure 28. The ProtTest analysis of pol sequences of various retroviruses suggests that 

the closest endogenous retrovirus among the vertebrate endogenous retrovirus 

reservoir is an endogenous retrovirus in Greater horseshoe bat (Rhinolophus 

ferrumequinum). This result supports the notion that mammalian gammaretroviruses 

originated in bats (Cui et al., 2012). However, we did not include poorly characterized 

OERV (Ovine endogenous retrovirus) (Klymiuk, Muller, Brem, & Aigner, 2003) in this 

analysis, which could be evolutionary closer to CrERV than the aforementioned RfRV 

(data not shown).  
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Figure 28: CrERV position in Gammaretrovirus phylogeny: Pol sequences were used for 
calculating the best fit tree to depict the protein evolution by algorithm used in Prot Test 
analysis; numbers displayed at nodes are the predicted age estimates calculated in ProtTest 
analysis; the accession numbers of the sequences used for the construction of the tree are: 
BaEV_BAA89659.1 (Baboon endogenous virus), FeLV_NP_955577.1 (Feline leukemia virus), F-
MuLV_NP_040333.1 (Friend murine leukemia virus), GaLV_NP_056790 (Gibbon ape leukemia 
virus), KoRV_BAM67146.1 (Koala retrovirus), McERV_AGP25480.1 (Mus caroli endogenous 
retrovirus), MDEV_AAC31805.1 (Mus dunni endogenous virus), MIRV_AFM52260.1 (Megaderma 
lyra retrovirus), M-MuLV_NP_057933.1 (Moloney murine leukemia virus), PERV-A_AAM29192.1 
(Porcine endogenous retrovirus A), PERV-B_AAM29194.1 (Porcine endogenous retrovirus B), 
PERV-C_CAC39617.1 (Porcine endogenous retrovirus C), RaLV_AAC78249.1 (Rat leukemia virus), 
REV_YP_223871.1 (Reticuloendotheliosis virus), RfRV_AFA52559.1 (Rhinolophus ferrumequinum 
retrovirus), RIRV_AFM52262.1 (Rousettus leschenaultii retrovirus), R-MuLV_NP_044738.1 
(Rauscher murine leukemia virus), WMSV_YP_001165470.1 (Woolly monkey sarcoma virus), 
DIAV_AGV92859.1 (Duck infectious anemia virus), Echidna_ERV_AGV92856.1, 
Galidia_ERV_AGV92853.1, CrERV_AKA58521.1 (Cervid endogenous retrovirus). 

 

4.2.1 Screening for CrERV polymorphism by pattern PCR 

PCR between CrERV LTR and ubiquitous ungulate genomic SINE repeat was 

previously shown to yield pattern of bands, each corresponding to individual CrERV 

integration site (see Figure 29). This simple PCR-based assay can be used to screen for 

the presence of retrovirus integration site polymorphism, without the need to perform 

laborious NGS sequencing or repeated integration site cloning (Elleder et al., 2012). 
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Figure 29: Strategy for determining the CrERV integration sites using primers targeting the 
abundant BovTA repeat and proviral LTR (left). Pattern PCR using these primers on various mule 
deer genomic samples (results of the further PCRs designed to amplify individual CrERV 
integrations are depicted in (Elleder et al., 2012). 

 

By using the primers designed to amplify the BovTa repeat abundantly present in 

the Cervidae genomes, we tried to perform the pattern PCR to show the integration 

polymorphism of CrERV in other deer species (see Figure 30).  

Figure 30: Pattern PCR from various Cervidae species. First lane is the molecular weight marker, 
next three lanes are various mule deer genomic samples and following three are various elk 
(Cervus canadensis) genomic samples (left ELFO). The right ELFO depicts the result of pattern PCR 
from various 15 red deer (Cervus elaphus) genomic samples (G1-15) and a genomic sample (G16) 
from European roe deer (Capreolus capreolus). 

 

 The pattern PCR assay performed did not distinguish between individual animals. 

However, the patterns of integration differs between species, indicating that BovTA 

repeat and CrERV were not present in the same loci in the common ancestor of the 
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analyzed Cervidae species. According to our current data, CrERV is present in all cervid 

species, however the extensive insetional polymorphism and continuing recent 

endogenization was only detected in the Odocoileus genus (mule deer and white-tailed 

deer (Elleder et al., 2012)) 

4.2.2 Further studies of CrERV tropism 

 As stated previously and in the presented work (Fabryova et al., 2015), CrERV 

exhibits xenotropic behavior. This finding is in contrast with the fact that CrERV is very 

efficient in creating new germ line copies, hence the high polymorphism among mule 

deer populations (Elleder et al., 2012). We tried to further characterize the replication 

blocks in CrERV infection, with emphasis on receptor-mediated stage of infection, using 

retroviral pseudotypes of CrERV and amphotropic MLV. We performed a marker rescue 

assay on permanently transfected human cells with CrERV using the VSV-G envelope 

(see the chapter 4.2.2.3 Marker rescue assays). The fact that titers of CrERV are 

extremely low caused large technical problems in reproducibility and conclusiveness of 

our results. Therefore, the results if this section are of preliminary nature and this topic 

is still actively persued in our laboratory. 

 

Figure 31: Infectivity of the amphotropic virus tested versus the infectivity of CrERV. Amphotropic 
virus infects both, the cells of the host as well as cells of other species, whereas xenotropic virus is 
not able to infect the cells obtained from the original host. The pictures of GFP positive cells are 
illustrative. 

 

4.2.2.1 Retrovirus envelope pseudotypes 

 As mentioned above, in the experiments producing pseudotypes we struggled 

with a low titer of infectious particles produced. Some of the experimental results were 
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obtained by using flow cytometry, but due to low percentage of GFP-positive cells, the 

results could be biased by ambiguous setting of the threshold values.  

 Viral envelope-expressing constructs bearing a FLAG tag were also prepared to 

enable detection of particles by Western blot, and to check for levels of env expression 

and particle incorporation. Due to the very low env expression, the Western blots were 

not amenable to quantify the signals obtained. However, these vectors were proven to 

infect the cells more effectively than wild-type CrERV Env.  

After many failed attempts to detect the percentage of GFP-positive cells using 

flow cytometry, we tried to observe the foci of green cells under fluorescent microscope 

3 dpi. The first three infections were performed in weekly period on a 100 mm tissue 

culture dish yielding the following results: 

Experiment 1: The cells were infected with AmphoenvFLAG construct, CrERVenvFLAG 

construct produced by transfection of HEK293T cells by according plasmids. For the 

reference about the experiment set up see Table 9. Transfection of sole gag-pol 

construct was was used as negative control in infectivity. The infection with construct 

with AmphoenvFLAG yielded 24 GFP-positive foci and construct with CrERVenvFLAG 

yielded 20 foci after infection of HEK293T cells. 

Experiment 2: This experiment was a replication of the Experiment 1. Transfection of 

sole gag-pol construct was inefficient; the infection with construct with AmphoenvFLAG 

yielded 48 foci and construct with CrERVenvFLAG yielded 15 foci after infection of 

HEK293T cells. 

Experiment 3: The aim of this experiment was to repeat Experiments 1 and 2 and try to 

increase the number of yielded GFP-positive cells by using RetroNectin. The infection of 

sole gag-pol construct yielded no GFP positive cells; the infection with construct with 

AmphoenvFLAG yielded 75 foci and construct with CrERVenvFLAG yielded 5 foci after 

infection of HEK293T cells. We tried to enhance the effectivity of infection using 

RetroNectin (see the chapter 3.2.8 Infection for reference about the mechanism of 

action) using the spin procedure according to manufacturer’s protocol.  
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Figure 32: RetroNectin treatment of the tissue culture plates increases the number of infected 
cells by an amphotropic virus. The results of FACS analysis of infection without the use of 
RetroNectin (left) and with RetroNectin (right) indicate the more than two fold increase. 

  

We examined the potential of elevating the number of infected cells by using 

RetroNectin using medium from the cells stably producing a virus with amphotropic 

properties. The usage of RetroNectin elevated the number of infected cells more than 

two-fold (see Figure 32 for reference).  

Experiment 4: The RetroNectin-coated 6-well plates with 4 ml of produced virus spun on 

them were used. Cells HEK293T were seeded in 10% confluence and green foci were 

counted 3 dpi. The usage of RetroNectin did not significantly increase the number of 

GFP-positive cells after infection with a construct with an amphotropic Env. However, it 

was shown to increase the number of GFP-positive cells afer infection with a construct 

CrERVenvFLAG (see Table 10). 

Table 10: Increasing the virus infectivity on HEK 293T cells by coating the dishes with RetroNectin. 
The numbers represent the number of GFP-positive cell foci on the analyzed dishes. 

Construct 4ml of virus per 
well 
Without 
RetroNectin 

4ml of virus per 
well 
With RetroNectin 

2ml of virus per 
well 
With RetroNectin 

Gag-pol only 0 0 0 

AmphoenvFLAG 8 11 10 

CrERVenvFLAG 2 19 4 
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Experiment 5: Juxtaposition of infectivity of the pseudotyped virus on HEK293T cells and 

and HEK293T cells bearing a copy of CrERV (denoted Cr5). The number of cell foci is 

counted on day 3 and on the day 4 (depicted as number of foci at day3/ number of foci 

at day4). What came as a surprise in this experiment was the fact, that Cr5 cells did not 

exhibit a decreased sensitivity to a pseudotype with a CrERVenv compared to HEK293T 

cells. This result was never replicated. 

Table 11: Juxtaposition of infectivity of the pseudotyped virus on HEK293T cells and and HEK293T 
cells bearing a copy of CrERV (denoted Cr5). The number of cell foci is counted on day 3 and on 
the day 4 (depicted as number of foci at day3/ number of foci at day4). 

Construct Cr5 HEK293T 

Gagpol only ND 0/0 

CrERVenvFLAG 7/9 4/9 

AmphoenvFLAG 9/10 59/uncountable 
 

Experiment 6: Juxtaposition of infectivity of the pseudotyped virus on HEK293T cells and 

and HEK293T cells bearing a copy of CrERV (denoted Cr5). RetroNectin was used this 

time, but cells were seeded at a low confluence (15,000 cells/well in 6 well plate). The 

number of foci was counted 7 dpi. Due to the result from the previous experiment, we 

infected Cr5 cells also with the medium from C10 cells (HEK293T cells producing CrERV 

and transfected with a plasmid with GFP). The Cr5 cells were shown not to be 

susceptible to either, infection by CrERVenvFLAG pseudotype nor C10 supernatant (see 

Table 12). 

Table 12: Comparison of HEK293T cells susceptibility and HEK293T cell line chronically infected 
with CrERV construct 

Infected by Cr5 cell line HEK293T 

C10 supernatant 0 17 

CrERVenvFLAG 0 2 

AmphoenvFLAG 12 2 

 

Experiment 7: The previous experiments were repeated. This time the flow cytometry 

analysis to estimate the percentage of GFP positive cells was used. Due to low 

percentage of GFP-positive cells, the results could be biased by ambiguous setting of the 

threshold values. All of the cells infected with the medium from cells transfected only 

with gag-pol and pLG plasmid (to control possible contamination with GFP-positive cells 
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from the transfected cells) examined by eye were considered negative. However, these 

measurements indicate that HEK293T cells are infected by constructs with 

CrERVenvFLAG approximately ten times more effectively than Cr5 cells (see Table 13).  

Table 13: Percentage of GFP positive cells after infection 

Construct HEK293T Cr5 

RetroNectin w/o RetroNectin RetroNectin w/o 
RetroNectin 

Gag-pol MLV 
only 

0.002 0.0026 0.0064 0.0016 

CrERVenvFLAG 0.05 0.035 0.0016 0.0037 

AmphoenvFLAG 0.033 0.017 0.014 0.014 

 

Experiment 8: After obtaining cells from two different cervid species, we infected them 

with our pseudotype constructs. We used 10 cm plates and infected the cells with 12 ml 

of the prepared construct. The foci were counted 7 dpi. Cells were fixed (see chapter 

3.2.12 Cell fixation for DAPI staining) and the pictures were taken using fluorescent 

microscope (see Table 14). 

Table 14: Infecting deer species and human cells with various viral constructs 

Cells infected Gag-pol  CrERVenvFLAG Ampho 

RED DEER 0 0 1 

FALLOW DEER 0 0 0 

OHK 0 0 3 

HEK 293T 0 0 10 
 

 This result indicate that the replication block is not present only in mule deer 

cells (OHK) but presumably also in cells obtained from other Cervidae species (see Table 

14). Cells from Cervidae species were proven to be less sensitive to infection by both 

CrERVenvFLAG and AmphoenvFLAG constructs than HEK293T cells (see Figure 33). 
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Figure 33: Outcome of the pseudotyping experiment 8. The cells photographed in bright field are 
displayed in the upper rows, the capture of the GFP positive cells is displayed in the lower rows.  
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Despite the fact that we repeatedly confirmed that the constructs with MLV envelope 

are able to infect mule deer, red deer, and fallow deer cells whereas the constructs with 

CrERV envelope are not, we always detected only a small number of GFP-positive cells in 

the experiment set up with the susceptible cells. HEK293T cells were generally shown to 

be more susceptible to infection. After repeated attempts and only minor success in 

elevating the percentage of GFP-positive cells to enable us to provide more rigid data, 

we started using the marker rescue assays as an alternative approach.  

4.2.2.2 Increasing the effectivity of the CrERV by removing the cytoplasmic 

domain of the env  

In order to increase the effectivity of the infection, we constructed a plasmid 

with env lacking the cytoplasmic domain (aforementioned envnT in methods). This 

approach was proven to enhance the effectivity of the infection in SIV (Kuwata, Kaori, 

Enomoto, Yoshimura, & Matsushita, 2013), HIV (Ye et al., 2004), and enhance specifity in 

immunoblotting assay in HTLV1 and HTLV2 detection (Varma et al., 1995). However, we 

were not successful in elevating the efficiency of the infection sufficiently to enhance 

the quality of the outcomes of the pseudotyping experiments.  

4.2.2.3 Marker rescue assays 

 For the first experiment with marker rescue assay, 2 ml of fresh C10 cells medium 

was used for infection or 1 ml of medium of CrERV positive cells transfected with VSV 

envelope. Three days after infection, cells were fixed and stained with DAPI to yield 

highly fluorescent nuclei and no detectable cytoplasmic fluorescence. After two weeks, 

PERT assay was performed to estimate the RT activity in the medium.  

 After infecting Cervidae cells with medium from CrERV positive cells, no GFP 

signal was detected under fluorescent microscope (data not shown) contrary to infecting 

HEK293T cells. After infecting both Cervidae and human cells with medium from CrERV 

positive cells transfected with VSV-G envelope GFP signal was observed (see Figure 35). 

The medium from cells cotransfected with GFP plasmid, MLV gag-pol and VSV-G env was 

used as a control. However, the cotransfection did not produce replication competent 

virus, so no reverse transcriptase activity was detected in the medium two weeks post 

infection (see Figure 34). 
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Figure 34: PERT assay after two weeks post infection with CrERV rescued VSV env. The 
experiments were performed in a technical duplicates and tetraplicates. The numbers on the y 
axis represent the relative RT activity. The individual columns (from left, duplicates) represent 
uninfected mule deer cells, uninfected red deer cells, uninfected fallow deer cells, uninfected 
HEK293T cells. The mule deer cells infected with medium from C10 cells (tetraplicate), the mule 
deer cells infected with medium from C10 cells transfected with VSV envelope (tetraplicate), with 
medium from C10 cells (tetraplicate), with construct with MLV gag and pol and VSV env unable 
to replicate itself (tetraplicate). The red deer cells and fallow deer cells were infected in 
duplicates in the same fashion. The HEK293T cells were infected in the same manner as mule 
deer cells in tetraplicates.  

  

The marker rescue is an alternative approach to pseudotype experiments. The 

infection by a medium from C10 cells transfected with a VSV-G plasmid yields GFP-

positive cells. The medium from HEK293T cells co-transfected with an MLV gag-pol 

plasmid, VSV env and a plasmid with a GFP signal yields a number of GFP positive cells 

comparable to the number obtained after infection with the rescued virus.  
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Figure 35: The marker rescue experiment - 3 days post infection. Cells used for infection are listed 
next to the row, the virus construct strategy is denoted above the pictures. The outcomes of 
infection by C10 medium are not displayed for fallow deer, red deer, and mule deer cells for they 
were all negative.  
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4.2.2.4 Late block of CrERV infection 

 Based on the previous results, we concluded that a late block of replication might 

be present in CrERV infection of deer cells. We therefore transfected the cells using Cell 

Line Nucleofector Kit (LONZA, Switzerland), and thus made sure that virus is delivered 

directly to the nucleus. RT activity in the medium using PERT assay was measured after 

transfection, three days post transfection, six days post transfection, and seventeen 

days post transfection. However, we detected RT activity only in the medium of 

HEK293T cells after transfection and not in the mule deer, fallow deer and red deer cells. 

Three days post transfection we did not detect the RT activity even in the medium of 

HEK293T cells. Six and seventeen days post transfection all of the transfected cells (or 

rather the medium in which they were cultivated) remained negative.  

 These preliminary results need further validation and additional experiments are 

needed.  
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4.2.3 Host restriction factor assembly and analysis 

4.2.3.1 APOBEC 

 

Figure 36: The Neighbor joining tree using Muscle alignment of APOBECs available in NCBI 
nucleotide database (accession numbers displayed in the tree) and APOBECs, AIDs, and ADARs 



108 
 

listed in (Conticello, Thomas, Petersen-Mahrt, & Neuberger, 2005). Mule deer APOBEC assembled 
from NGS data is highlighted in blue.  

 

 We attempted to assemble APOBEC3 gene using the mule deer NGS data. 

However, the data available yielded low coverage in some areas of the gene. Because 

APOBEC isoforms are poorly described in Cervidae species (see Figure 36) we were 

unable to neither determine nor assemble precisely one particular isoform of the 

APOBEC. Hence, we were unable to perform analysis of positive selection for it would be 

greatly biased.  

4.2.3.2 SAMHD1 

 

Figure 37 The Neighbor joining tree using Muscle alignment of SAMHD1s available in NCBI 
nucleotide database (accession numbers displayed in the tree) and SAMHD1 sequences 
assembled in CLC Workbench (denoted as asmbl). 

 

 We assembled SAMHD1 in the mule deer using SRA data from lymph nodes. 

SAMHD1 was assembled in additional species, being sika deer (Cervus nippon), 

Przewalski’s horse (Equus przewalski), and European roe deer (Capreolus capreolus). We 

constructed a phylogenetic tree using SAMHD1 sequences avaliable at NCBI. The 
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obtained sequences cluster with related species with high bootstrap supports (shown at 

the nodes in Figure 37). 

4.2.3.2.1 Branch-site REL (random effects likelihood) analysis 

 

Figure 38: Branch site REL analysis of the SAMHD1 gene. The accession numbers of the used 
sequences are depicted in the branches. Sika, Equus przewalski, mule deer, and Capreolus are de 
novo assembled sequences of the sika deer (Cervus Nippon), Przewalski’s horse (Equus 
przewalski), mule deer (Odocoileus hemionus), and European roe deer (Capreolus capreolus). 

 

 The obtained sequences were analyzed in respect to possible presence of their 

positive selection. The results are depicted in the Figure 38. The thickness of the 

horizontal lines represent p-values calculated for each branches, the thickness of vertical 

lines depicts the p-value calculated for the nodes. The thick line depicts the p-value of 

less than 0,05. The length of the branch displays the number of nucleotide changes 

compared to the neighbor sequences. The hue of each color indicates strength of 

selection, with primary red corresponding to dN/dS >5, primary blue to dN/dS = 0 and 



110 
 

grey to dN/dS = 1. The width of each color component represents the proportion of sites 

in the corresponding class (Kosakovsky Pond et al., 2011). 

Hence we can state the most SAMHD1 nucleotide sites of mule deer is under 

neutral selection based on the dN/dS calculation with significant p-value calculated for 

the analyzed branch. However, some nucleotides under positive selection (dN/dS >5) are 

present, but they are low in number and their presence is not eligible from the 

presented tree (see Figure 38). 
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4.3 Analysis of the infection block in CHOK1 cells 

Mounting evidence supports the concept of products (or secreted products) of 

some endogenous retroviruses blocking infection by particular exogenous retroviruses 

(Malfavon-Borja & Feschotte, 2015). CHOK1 cells are not susceptible to infection by 

exogenous retrovirus with an amphotropic envelope. Introduction of human 

amphotropic or mouse ecotropic retrovirus receptor or tunicamycin treatment of the 

cells was shown to rescue the aforementioned susceptibility. However, at the time of 

these findings, current methods were not available and the exact mechanism of the 

resistance was not explained. The sequence of the CHOK1 genome (Lewis et al., 2013) as 

well as availability of the proteome (Baycin-Hizal et al., 2012) became accessible only 

recently and the cells are still being characterized from various aspects (Hefzi et al., 

2016). 

We were successful in rescuing the CHOK1 susceptibility to amphotropic MLV 

vector by tunicamycin treatment (see Table 15), which is probably modifying the cell 

receptor properties. Importantly, previous reports indicate inhibitory effect of the 

medium conditioned by CHOK1 cells and detect the presence of secreted inhibitors of 

retrovirus infection of protein nature. This protein was proven not be an interferon by 

replicating the infectivity experiments on CHOK1 deficient in the interferon production 

(Miller & Miller, 1992). The inhibitory agent is presumed to be a protein secreted by 

hamster cell lines; it is also present in the Syrian hamster (Mesocricetus auratus) and 

Chinese hamster (Cricetulus griseus) serum. Mutation in the glycosylation pathway was 

proven to increase the susceptibility of CHOK1 cells to the amphotropic MLV (Miller & 

Miller, 1993). 
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Table 15: Reproduction of the infectivity experiment using CHOK1 cells performed by (Miller & 
Miller, 1992, 1993). The conditioned medium column depicts the addition (+) or absence (-) of the 
medium in which CHO cells were grown for 24 hours. This medium contains the studied secreted 
inhibitors (Miller & Miller, 1992). For details about the infections see the chapter 3.3 Methods 
related to the CHOK1 cells project. 

Tunicamycin 

treatment 
Conditioned medium RetroNectin 

 

GFP positive cells (%) 
3 d.p.i. 

+ - - 1.76 

+ - + 0.016 

+ + - 0.012 

+ + + 0 

+ + (without serum) - 0.42 

- - - 0.057 

- - + 0.01 

  

As previously displayed (see Figure 32) the usage of RetroNectin elevated the number of 

infected cells more than two-fold. However, RetroNectin did not increase the number of 

the infected cells in this experimental setup (Table 15), possibly due to the fact that it 

might interfere with the deglycosylation of the receptors mediated by Tunicamycin. We 

also tested the inhibitory activity of the conditioned medium without serum; the use of 

serum-free medium is necessary for our planned mass spectrometry analysis. The 

presence of the serum was shown not to interfere with the block to virus infection (see 

Table 15, lane 5). However, depletion of the serum decreased the inhibitory activity of 

the conditioned medium to some extent. This might be due to the fact that the cultured 

cells were deficient for some nutrients for 24 hours, which might lead to the decreased 

secretion of the inhibitory proteins into the medium. 

After replicating the previously reported experiments, we concentrated and 

fractionated the conditioned medium by gel filtration. Thirty-two fractions of the 

medium were harvested. The secreted inhibitors were reported to have molecular 

weight between 10-50 kDa (Miller & Miller, 1992). These expected molecular weights 

were supposed to be present in fractions 9 – 22. The fractions 1-8 presumably contained 

the proteins larger than 70 kDa. The concentration of the proteins was checked by SDS-

PAGE (Figure 39). 
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Figure 39: SDS-PAGE analysis of the CHOK1 conditioned medium. The largest band probably 
represents the leftover BSA (66 kDa) present in the medium. This analysis was performed in the 
Laboratory of Structural Biology (BIOCEV). 

 

The inhibitory effect of individual fractions was determined. The major inhibitory 

effect was observed in the fractions 7, 8, and 9 (Figure 40). These fractions were mixed 

and submitted for the mass spectrometry analysis to identify the spectrum of proteins 

present.  

Due to the fact that mass spectrometry analysis does not generally provide data 

for organisms without the existing protein database, the obtained amino acid sequences 

were first used in blast search against a database consisting of retroviral genes and 

CHOK1 proteome. These searches only yielded results with a high background probably 

caused by the carryover serum proteins present in the analyzed medium. We proceeded 

with the search using a personalized database, generated from retroviral envelope 

genes predicted in the CHOK1 genome. Due to their repetitive nature, retroviral gene 

products are generally not annotated in commonly used proteins databases such as 

Uniprot. 

Seven peptides were identified by analysis of the mass spectrometry data using 

the CHOK1 endogenous retrovirus database. Importantly, two of the peptides were 

scored as high confidence hits (NW_003617793.1_49834_49998 and 
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NW_003614069.1_559612_559788). Each of the identified proteins was present only on 

one peptide, which might be caused by the short sequences provided in the database. 

 Analysis of protein sequences of these two hits showed that they originate from 

gammaretrovirus envelopes related to, but not identical, to FeLV. This is consistent with 

the previous hypothesis that the secreted inhibitors are soluble fragments of envelope 

glycoproteins, produced from ERVs in the hamster genome (Miller & Miller, 1992). 

These proteins would have the ability to bind to and saturate the amphotropic receptor 

and cause the infection block. Our results enable us to test specific hamster endogenous 

retrovirus loci for the capability to block the amphotropic MLV infection. These 

experiments are currently in progress. 
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Figure 40 (left): Inhibitory effects of 
fractions of CHOK1 medium. The y axis 
depicts the number of GFP-positive foci. 
The assays were performed in duplicates. 
All of the infections were performed using 
the same virus with an amphotropic 
envelope. The fractions were tested in 
three consecutive experiments. The first 
experiment is depicted in red, second in 
light blue and third in dark green. In third 
experiment, half the amount of the virus 
was used compared to the amount used 
in testing the first two experiments. The 
first group of columns depicts the amount 
of foci if CHOK1 cells were infected 
without previous tunicamycin treatment. 
The second group of columns depicts the 
infectivity of the virus on the tunicamycin 
treated cells with fresh medium in the 
culture. The third group of columns 
depicts the infectivity of the of the virus 
on the tunicamycin treated cells with 
conditioned CHOK1 medium in the 
culture. The fourth and fifth group of 
columns depicts the inhibitory effect of 
the 10x concentrated CHOK1 conditioned 
medium; the 10x concentrated medium is 
further 10x diluted in the fourth column 
to check the strenght of the inhibition. All 
of the subsequent groups of columns 
depict the the infectivity of the virus on 
the tunicamycin treated cells with 
particular medium fractions in the 
culture. The GFP-positive foci were always 
counted three days post infection. 
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5 CONCLUSION 

5.1 Screening for endogenous retrovirus presence 

 We performed several computational screens in order to find unusual 

endogenous retroviruses in vertebrate genomes. The most compelling cases from these 

screens were further characterized computationally and genetically. 

5.1.1 ELVgv 

 We detected a novel endogenous Lentivirus (ELVgv) in the genome of 

Galeopterus variegatus, a close relative of primates. The outstanding evolutionary age of 

this novel lentiviral lineage (up to 60 MYA) was confirmed with three approaches:  

 Orthologous integrations in extant dermopteran species were present (we 

detected an orthologous endogenous Lentivirus in the only other extant species 

– Cynocephalus volans – in the Dermoptera clade.). 

 Sequence comparison and phylogenetic analysis of three complete ELVgv 

proviruses indicated the estimated age. 

 LTR aging method confirmed the predicted age.  

 Considering this and the fact that endogenous lentiviruses are still rare (only four 

documented cases in mammals up to date), this finding provides new insight on the 

earliest lentiviral evolution and endogenization. 

5.1.2 MINERVa 

We detected remnants of endogenous Deltaretrovirus (MINERVa) in the genome 

of Miniopterus natalensis. This is the first report of an endogenous Deltaretrovirus. In 

addition, it is the first Deltaretrovirus described in the order Chiroptera. We detected 

and sequenced the provirus orthologues in other species of miniopterid bats.  

 The MINERVa provirus is present in the Miniopterus genome only in one (diploid) 

copy. 

 Orthologous MINERVa proviruses were detected in all other miniopterid species 

analyzed and not in species from other bat families.  

 The described provirus contains a large internal deletion, encompassing the pol 

and env genes; however both LTRs are present in the sequence. 
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 Additional ORFs presumably coding for virus accessory genes were detected. 

 The presence of presumed rex accessory gene was further indicated by 

predicting the characteristic RNA secondary structure of Rex Response element 

in the LTR of MINERVa. 

 The predicted protein product of ORF present in the gag gene was not detected 

in the analyzed muscle sample by mass spectrometry. 

5.2 Host-virus relationship of currently endogenizing CrERV 

 We were able to induce the endogenous retrovirus by co-cultivation of mule deer 

cells with susceptible human cells. We sequenced the induced virus and performed 

phylogenetic and sequence analyzes which confirmed that it is closely related to the 

young endogenous CrERV copies present in the deer genome. The induced virus shows 

xenotropic behavior despite the fact that CrERV is described as very effective in creating 

new endogenous copies.  

 The induced CrERV particles sediment in the density gradient regions 

characteristic for retroviruses. 

 The sequence of the induced provirus clusters closely with young ERVs in the 

mule deer genome. 

 Retrovirus pseudotypes and marker rescue experiments indicate the presence of 

a block at the level of receptor-mediated virus entry, which could at least partly 

explain the xenotropic nature of CrERV. However, continuous struggle with low 

virus titers is preventing definitive conclusions to be made. 

 Mule deer, fallow deer, and red deer primary cells all interact with CrERV in the 

similar fashion. 

 Marker rescue experiments indicate the presence of the rescued provirus (GFP 

marker) several days after infection, but PERT assay on these cells indicate that 

the virus is probably inable to propagate in the deer cells. 

 Nucleofection experiments indicate that the block of CrERV infection might also 

occur at the later stages of the infection. 
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 We tried to assemble several retroviral restriction factors from the mule deer 

genome, but currently we were successful only with SAMHD1 because we did 

not possess enough sequence data to assemble other restriction factors reliably. 

 

5.3 Determining the infection block in the CHOK1 cells 

We were successful in replicating the experiments, which lead to conclusion that a 

secreted protein factor produced by CHOK1 cells has an inhibitory effect on infection by 

a virus with amphotropic envelope glycoprotein. The preliminary analyzes of the 

medium fraction with the highest inhibitory activity are in agreement with the 

previously published proposal that the infection block is mediated by the presence of an 

endogenous retrovirus-encoded Env protein. We propose a competitive inhibition 

mediated by the defective product of the env gene of the presumably present 

endogenous retrovirus in the CHOK1 cells genome.  

 We replicated the previously reported experiments rendering the susceptibility 

of CHOK1 cells to the infection by amphotropic retrovirus. 

 We fractionated the proteins present in the medium conditioned by CHOK1 cells. 

The fractions of the conditioned CHOK1 medium containing inhibitory proteins 

with the size predicted in previous studies were tested and proved to be 

inhibitory in infections with amphotropic MLV virus. 

 The mass spectrometry analysis of the fractions inhibiting the infection yielded 

data indicative of the fact that the inhibitory effect is mediated by the presence 

of an endogenous gammaretroviral env gene producing Env protein. The 

identification of the causative ERV element is the subject of our ongoing work. 
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6 SIGNIFICANCE OF RESULTS AND FUTURE PROSPECTS 

We discovered the fourth endogenous Lentivirus lineage known up to date, present 

in the genome of Galeopterus variegatus. We showed that this virus lineage constitutes 

currently the oldest known Lentivirus. Based on ancient nature of the virus, structural 

studies of any of the proteins possibly produced by the ELVgv provirus might provide an 

insight into the evolution of viral genes and their products. 

We detected remnants of endogenous Deltaretrovirus in the genome of 

Miniopterus natalensis. Even though the remnants of a provirus were found only in a 

single copy, its orthologues were found among Miniopteridae bats. Deltaretroviruses 

were the last genus of retroviruses lacking in an endogenous form across the sequenced 

genomes, so this finding is filling in the gap of evolutionary evidence. 

We induced an endogenous mammalian gammaretrovirus (CrERV), which is 

presumed to be currently endogenizing in the genome of mule deer. This was the first 

study which aimed to analyze CrERV not only from sequential, but also virological 

perspective. We were partially successful in analyzing its xenotropic behavior. However, 

the results need to be further validated and the behavior presumably compared to other 

well characterized endogenous gammaretroviruses (e.g. PERV). Establishing CrERV as a 

model of mammalian ERV endogenization will enable us to characterize epigenetic 

modifications across a large spectrum of endogenous copies with various evolutionary 

ages (T. Hron et al, manuscript in preparation). 

We detected presence of products of endogenous retroviruses in the culture 

medium from Chinese hamster ovary cells (CHOK1). These products presumably have an 

inhibitory effect on amphotropic retrovirus infection. Further causative studies (using 

CRISPR-Cas technology and ectopic overexpression the inhibitory product of the 

endogenous retrovirus) are needed in order to validate our current data and specify the 

inhibitory ERV elements in the CHOK1 genome. 

It is indeniable that endogenous retroviruses shape the genetic information we bear 

within. For this, I believe that by studying the perplexity of the interactions between 

endogenous retroviruses and their hosts, we would be able to grasp the concept of our 

co-evolution. By understanding the concept and answering some of the questions from 
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the occurring pleiad, we would understand not only the evolution of viruses, but origin 

and development of the other forms of life as well.  
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7 INVOLVEMENT OF THE STUDENT IN THE PUBLICATIONS  

The published papers and a currently reviewed manuscript associated with this thesis 
are in the Supplement of this thesis.  

Publication 1: Endogenous Lentivirus in Malayan colugo (Galeopterus 
variegatus), a close relative of primates 
Shared first authorship 

 Help with the preparation of BLAST database 

 Phylogeny analyzes 

Publication 2: Life History of the Oldest Lentivirus: Characterization of ELVgv 
Integrations in the Dermopteran Genome 
Second author 

 PCR amplification and Sanger sequencing of the provirus sequences 

 PCR amplification and Sanger sequencing of the control loci 

 Participation in phylogenetic analyzes 

Publication 3: Discovery of the first endogenous Deltaretrovirus, in the genome 
of long-fingered bats (Miniopteridae) 
Shared first authorship 

 PCR amplification and Sanger sequencing of the provirus sequences 

 PCR amplification and Sanger sequencing of the control loci 

 Annotation of the sequence 

 Prediction of the secondary structures in LTRs 

Publication 4: Induction and characterization of a replication competent cervid 
endogenous Gammaretrovirus (CrERV) from mule deer cells 
Shared first authorship 

 Maintenance of the co-culture, other cell cultures and virological assays 

 Preparation of the cells for electron microscopy 

 PERT assays 

 Centrifugation methods 

 Western blotting 

 Participation in PCR amplifications and Sanger sequencing 

7.1.1 Prospective publications 
Publication 5: Characterization of xenotropic behavior of CrERV and its later 
replication blocks 

 Pseudotyping experiments 

 Marker rescue experiments 

Publication 6: Elucidation of the block to amphotropic MLV infection in CHOK1  
 Infection assays, testing of conditioned media fractions 
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