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1. Introduction

In the English language, when we want to use a specific meaning of a word, we
can use prepositions such as “of” or “for”: a club for sports, a bottle of water.
Here, the first noun remains the head of the entire constituent, and the second
one is the modifier used for restricting the kind of the first noun (along with other
functions, see Chapter 2). In other words, a bottle of water is still a bottle (but
not a water).

Alternatively, the words can be combined without prepositions by merely
using them sequentially. In this case, the modifier is the first noun, and the
second one is the head: a sports club, a water bottle.

In some languages (called compounding languages here) this process of form-
ing compounds results in words that (orthographically) look like proper words
themselves. There are a few examples of these kinds of words in English, too,
but they are lexicalized and largely come from the German influences of English:
A bookshelf is a shelf for books, but a bottleshelf is not a shelf for bottles, it is a
non-word; the correct form would at best be bottle shelf.

In compounding languages sets of nouns can freely be combined into other
nouns. In German, a water bottle is called Wasserflasche (water + bottle), a
shelf for bottles could be called Flaschenregal (bottle + shelf). This process
can be repeated recursively, such that a shelf for water bottles could be called a
Wasserflaschenregal, and so on, leading to famous extreme examples such as Rind-
fleischetikettierungsüberwachungsaufgabenübertragungsgesetz (roughly beef label-
ing supervision task delegation law, a compound with 7 parts). This results in
longer word lengths in compounding languages (see Figure 1.1).

For processing of natural language, this can cause problems: The more com-
plex a compound is, the lower the likelihood of it appearing in corpora, and while
some common compounds can be found in dictionaries, a large part of them will
not. We cannot dismiss these words as made-up words or names and ignore the
problem, because any typical speaker of such a language will effortlessly under-
stand their meaning. They also make up a significant part of language: Schiller
[2005] find that in a newspaper corpus, 5.5% of all tokens and 43% of all types
were compounds.

Consider, for example, the task of Machine Translation from German to En-
glish: Compounds that are encountered need to be translated, and without having
ever seen them before, this becomes difficult (see for example Koehn and Knight
[2003]). In addition, this is problematic for word alignment, because one word in
the source language has to be aligned to two or more words in the target language,
or vice versa. This difficulty is illustrated in Figure 1.2.

In Information Retrieval, compounds can also cause problems: A user search-
ing for a rare compound will not get many results, but if the compound can be
analyzed and understood, more relevant results (not containing the original com-
pound, but its head and modifier) can be retrieved. This is especially relevant in
cross-lingual Information Retrieval.
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Figure 1.1: Word lengths of tokens in our evaluation corpus (see Chapter Corpora.
Compared to English, where the most common word length is 7 [Adda-Decker
and Adda, 2000], compounding languages have higher modes of 9 (Swedish), 10
(Hungarian) or even 11 (German).

Die1 Wasserflasche2 steht3 auf4 dem5 Holztisch6.

The1 Water2 bottle3 is4 on5 the6 wooden7 table8.

Figure 1.2: Word alignment is tricky between compounding and non-
compounding languages: Wasserflasche2 has to be aligned with Water2
bottle3, and Holztisch6 with wooden7 table8.

The solution of these problems of course lies in reversing the process: de-
compounding, splitting a compound into its parts. A system that has not seen
Wasserflasche, but has seen both Wasser and Flasche, can, once it knows that
Wasserflasche indeed consists of those two parts infer that the word must mean
“water bottle”.

Decompounding is not always as easy as in the previous example. Some com-
pounding languages insert letters between the parts when phonologically required,
so called linking morphemes : The German word for eye drops is Augentropfen,
consisting of Auge (eye), tropfen (drop), and an n in the middle.

The process also is not necessarily unambiguous, for (at least) two reasons:
morphosyntactic ambiguity and morphological ambiguity.

Compounds that are truely morphologically ambiguous are not that common,
but they exist, for example in the German word Fluchtraum (shelter; safe room):
It can either (correctly) be split into Flucht (escape) and Raum (room), or (in-
correctly) into Fluch (curse) and Traum (dream). There is no systematic reason
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the former is correct, in fact, in the right context, one could even use it with the
second way of splitting it meaning something akin to nightmare. The only reason
shelter is the more “correct” solution is that it is a somewhat commonly used
word.

Morphosyntactic ambiguity is more common, but also less of a problem. In
any compound of three or more parts, there is a question of hierarchy, with this
problem also arising in languages that do not freely compound: Is a house door
key a key for the house door, or is it a door key of the house? The question is as
difficult to answer as it is irrelevant for most purposes.

Most previous work has focused on German, since it is the compounding
language with the biggest population by far. In this work, we take a look at more
compounding languages, and build a system that is largely independent of any
specific language. In the process, we also contribute a multi-lingual evaluation
corpus for this task.

There are a few goals for our system:

• Language agnosticism. While a few languages are built-in, it should be
possible to extend it to new languages in a short amount of time.

• Low resource friendliness. Not all languages have as much annotated
data and NLP tools as German, so the system should work with as little
annotated data as possible. Usage of raw text corpora is fine, since they
exist wherever such a system may be needed.

• Usability. The system should be easy to set up, not require large depen-
dencies, and be quick to run.

The rest of this thesis is organized as follows: In Chapter 2, we look deeper
into the process of compounding itself, followed by investigating previous work in
the area in Chapter 3. We continue by describing the creation of our corpora in
Chapter 4. In Chapter 5 we explain the general algorithm and our improvements,
with our specific implementation being described in chapter 6. Its performance
is evaluated compared to previous work in Chapter 7, and in Chapter 8 we con-
clude and discuss possible improvements and related challenges to be addressed
in future work.
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2. Compounds

Compounding is an extremely frequent process occurring in many languages. It
is the process of combining two or more content words to form a novel one. While
in many languages (such as English), these are typically expressed as multi-word
expressions, in a few languages, such as German, Dutch, Hungarian, Greek, and
the Scandinavian languages the resulting words, or compounds, are written as a
single word without any special characters or whitespace in-between. In this work,
these languages are called compounding languages, even though compounding in
a broader sense also occurs in languages that write compounds as separate words,
such as English.

The most frequent use of compounding by far [Baroni et al., 2002] is com-
pounds consisting of two nouns, but adjectives and verbs form compounds as
well. Compounds are also formed from any combination of nouns, verbs, and
adjectives.

Languages such as English also have a few examples of compounds that are
written as a single word, but these cases are lexicalized, i.e. they have become
words of their own. New compounds of this kind cannot be arbitrarily created,
whereas in compounding languages they can. In compounding languages, there
exists some kind of fluid lexicality, as frequently used compounds are fully lexical-
ized, newly created ones are not lexicalized, while most compounds are somewhere
in-between; not lexicalized in the sense that you would find them in a dictionary,
but frequent enough, that many speakers will have heard or even used them.

Looking at the German noun compounds as an example, compounding per-
forms different semantic functions on the compound parts, but in all cases the first
part is the modifier and the second part is the head: A Taschenmesser (pocket
knife), consisting of Tasche (pocket) and Messer (knife) is a certain kind of knife,
not a certain kind of pocket (see Figure 2.1).

In some cases, it is no longer true that the resulting compound is still some
kind of its head: A Geldbeutel (wallet) consists of Geld (money) and Beutel
(bag), and while one probably would not call a wallet a bag, it is still clear that
the bag is the head of the compound and the money the modifier. In many of
these cases this has historical reasons: At some point in time, a compound got
lexicalized, then it later shifted in meaning. According to Lieber and Stekauer
[2009], endocentric compounds are compounds where the compound is an instance
of the head (e.g. a bookshelf is also a shelf), while exocentric compounds are those
where they are not (a skinhead is not a head).

The compounding process can be repeated in a recursive way: A Taschen-
messerklinge (blade of a pocket knife) consists of the compound Taschenmesser
(pocket knife) and Klinge (blade). This way of combining existing compounds
could conceivably be repeated, making compounding a recursive process.

Taschenmesser

Tasche messer

Figure 2.1: Decompounding Taschenmesser. The head is marked in bold.
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Taschenmesserklinge

Taschenmesser

Tasche messer

klinge

Taschenmesserklinge

Tasche messerklinge

messer klinge

Figure 2.2: Morphosyntactic ambiguity: The correct (left) and incorrect (right)
way of splitting Taschenmesserklinge.

As soon as three parts are combined to a compound as above, morphosyntactic
ambiguity arises: A Taschenmesserklinge could also be constructed from Tasche
(pocket) and Messerklinge (knife blade). For an illustration of this effect, see
Figure 2.2.

In most cases these ambiguities are either not perceivable by humans, or
one reading is strongly preferred, other readings not even considered. This is
especially true when a compound part is a lexicalized compound itself, like with
Taschenmesser.

Morphological ambiguity is more subtle, and occurs when a word has several
possibilities to be split into compound parts. The already mentioned Fluchtraum
is one example, and there are even cases of non-compounds that can be analysed
as compounds: Verbrennen is a verb meaning to burn something, which can (but
should not) be analysed as a compound of Verb and Rennen, or “verb running”.

The compounding process is not always a simple concatenation of the com-
pound parts: In Taschenmesser, the n is neither part of Tasche nor of messer,
it is a so called linking morpheme (German: Fugenmorphem or Fugenelement)1.
Sometimes, linking morphemes can be interpreted as endings of an inflected form
of the modifying compound part (in this case Taschen is the plural of Tasche),
but oftentimes they cannot.

Any given language can have several linking morphemes, and some of them
can even be “negative”: A Schulbuch (school book) consists of Schule (school)
and Buch (book), but the final e of Schule is removed when using it as the first
part of a compound.

The choice of a linking morpheme depends entirely on the modifier, never on
the head [see Baroni et al., 2002].

During composition, more changes can happen to the modifier than just an
attached linking morpheme: In some cases, umlauting is happening to a vowel in-
side the modifier: Combining Blatt and Wald creates the compound Blätterwald.
Due to the unpredictability of this process, especially (for the author) in languages
other than German, we simply ignore this, as it does not occur very often: In
German, less than 0.3% of all compound types experience umlauting, according
to Langer [1998].

1Langer [1998] criticizes the term, prefering the term “compositional suffix”, since it does
not have much to do with the head of the compound, and must really be seen as just another
suffix, one that is used for composition.
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3. Related Work

Wanting to split German compounds, Koehn and Knight [2003] learn splitting
rules from both monolingual as well as parallel corpora. They generate all possible
splits of a given word, and take the one that maximizes the geometric mean of
the word frequencies of its parts, although they find that this process often leads
to both oversplitting words into more common parts (e.g. Freitag (friday) into
frei (free) and tag (day)), as well as not splitting some words that should be
split, because the compound is more frequent than the geometric mean of the
frequencies of its parts.

Since their objective is to improve machine translation, they then make use
of a parallel corpus: Given a split S of a compound c, if translations of the
parts of S occur in the translation of a sentence containing c, the word should
probably be broken up: Freitag will probably have never beed translated as
“free day”, so it would not be split. This, of course, can only work for those
compounds that actually occur in the parallel corpus, not for completely unseen
ones. Furthermore, they constrict parts using a part-of-speech tagger: Words that
are not usually parts of compounds (like determiners), are excluded with this
method. Their combined method using frequency information, parallel corpus
data and POS tag restriction gives them the highest result, with a recall of about
90.1% and a Precision of about 93.8%1.

Schiller [2005] use a weighted finite-state transducer to split German com-
pounds based on the output of a morphological analyser, which returns some,
but not all possible splits. The necessary weights for the finite-state transducer
are obtained from the frequencies of compound parts in manually decompounded
word lists. This work is also the source for the claim that the split with the lowest
number of (unsplittable) parts is the most likely correct one.

Marek [2006] also use weighted finite-state transducers, but the main contri-
bution of this work for us is the creation of an evaluation corpus and an anno-
tation scheme that was created for annotating it. Our own evaluation corpus is
annotated based on this annotation scheme.

Alfonseca et al. [2008] approach the task from an Information Retrieval per-
spective and wanting to handle noisy data in user input, such as misspellings.
They also propose that a split is more likely to be the correct split if its com-
pound parts have a positive Mutual Information: If they can be composed, that
means there must be some semantic relation between them. For instance, in the
compound Blumenstrauß (flower bouquet), consisting of the parts Blume (flower)
and Strauß (bunch, bouquet, but also: ostrich), the two parts will co-occur with
each other more often than would be expected of two random words of their
frequency.

Soricut and Och [2015] use vector representations of words to uncover morpho-
logical processes in an unsupervised manner. Their method is language-agnostic,
and can be applied to rare words or out-of-vocabulary tokens (OOVs).

Morphological transformations (e.g. rained = rain + ed) are learned from

the word vectors themselves, by observing that, for instance,
−−→
rain is to

−−−−→
rained

as
−−→
walk is to

−−−−→
walked. To be able to do that, candidate pairs are first extracted

1Precision and recall are defined slightly differently than usual, see Chapter 7 for details.
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by looking at whether it is possible to replace, add, or remove a suffix or prefix
of one word to get to the other word. Given that candidate list, they then use
word embeddings to judge the quality of candidate rules by trying to find several
analogy pairs with the same suffix/prefix in similar relations in the vector space.
This filters out spurious suffixes like -ly in only, or prefixes like s- in scream.

Daiber et al. [2015] apply the approach of Soricut and Och [2015] to decom-
pounding. Using word embeddings of compound and head, they learn prototyp-
ical vectors representing the modifier. During the splitting process, the ranking
occurs based on comparing analogies of the proposed heads with the entire com-
pound.

They achieve good results on a gold standard, and improved translation qual-
ity on a standard Phrase-Based Machine Translation setup.

Bretschneider and Zillner [2015] develop a splitting approach relying on a se-
mantic ontology of the medical domain. They first try to disambiguate candidate
splits using semantic relations from the ontology (e.g. Beckenbodenmuskel (pelvic
floor muscle) is split into Beckenboden and muskel using the part-of relation). If
that fails, they back off to using a frequency-based strategy.

Erbs et al. [2015] compare the performance of recent work in decompounding
using the evaluation corpus from Marek [2006], looking at the correctness scores of
the compared systems. They find that the ASV toolbox [Biemann et al., 2008]
delivers the best results. They then also investigate what benefit decompounding
has on the results of a specific task, keyphrase extraction.
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4. Corpora

This work made use of several corpora, and produced a new evaluation corpus
for evaluation of decompounding systems in German, Swedish, and Hungarian.

4.1 EMEA corpus

The EMEA corpus [Tiedemann, 2009] is a parallel corpus based on documents
by the European Medicines Agency1. It consists of parallel texts for each possi-
ble pairing of the numerous languages it contains, including English and all the
languages we are investigating (German, Swedish, and Hungarian). For English
and Swedish, the texts are also available as parsed corpus files, but the parsed
files were not used by us.

The corpus was chosen as the basis of our evaluation corpus because of our
decision to evaluate in the medical domain.

We also use it as the raw text corpus for our word embeddings, since its size
is approximately the same for all three languages, meaning we can later exclude
different training data size as a cause for differences in the results.

4.2 Wikipedia as a raw source

Our system requires some kind of lexicon to serve as a repository of known words.
A good source for arbitrary raw text is Wikipedia, because it is relatively big —
big enough to contain all kinds of words, in many kinds of inflections. As an
encyclopedia, the language use is not necessarily representative, but it was still
chosen because in contrast to some other more balanced corpora, it is available
for most languages in common use, such as the ones we are investigating here.

The corpus was created from publicly available Wikipedia dumps from the
Wikimedia download page2. The specific dump identifiers are listed in Table 4.1.

Language Precise Wikipedia dump

German dewiki-20170201-pages-articles-multistream.xml.bz2

Swedish svwiki-20170201-pages-articles.xml.bz2

Hungarian huwiki-20170201-pages-articles.xml.bz2

Table 4.1: List of Wikipedia dumps used. All dumps were created (by Wikimedia)
on February 1st, 2017.

The downloaded XML files are large in size (about 50 MB for Swedish and
Hungarian, about 100 MB for German). They contain — apart from XML tags
themselves — not raw text, but text written in a markup language called Wiki-
text3 (more precisely: The Wikipedia flavor of Wikitext). Wikitext is a relatively
concise language similar in spirit (but not in concrete looks) to Markdown4.

1http://www.ema.europa.eu/ema/
2https://dumps.wikimedia.org/backup-index.html
3https://en.wikipedia.org/wiki/Wiki_markup
4https://daringfireball.net/projects/markdown/syntax
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’’’Alan Smithee’’’ steht als [[Pseudonym]] für einen fiktiven Regisseur,

der Filme verantwortet, bei denen der eigentliche [[Regisseur]] seinen

Namen nicht mit dem Werk in Verbindung gebracht haben möchte. Von 1968

bis 2000 wurde es von der [[Directors Guild of America]] (DGA) für solche

Situationen empfohlen, seither ist es ’’’Thomas Lee’’’.&lt;ref&gt;[[Los

Angeles Times|latimes]].com: [http://articles.latimes.com/2000/jan/15/

entertainment/ca-54271 ’’Name of Director Smithee Isn’t What It Used to

Be’’], zuletzt geprüft am 2. April 2011&lt;/ref&gt; ’’Alan Smithee’’ ist

jedoch weiterhin in Gebrauch.

Alternative Schreibweisen sind unter anderem die Ursprungsvariante

’’Al&lt;u&gt;len&lt;/u&gt; Smithee’’ sowie ’’Alan Sm&lt;u&gt;y&lt;/u&gt;

thee’’ und ’’A&lt;u&gt;dam&lt;/u&gt; Smithee’’. Auch zwei teilweise

asiatisch anmutende Schreibweisen ’’Alan Smi Thee’’ und ’’Sumishii Aran’’

gehören { so die [[Internet Movie Database]] { dazu.&lt;ref name=&quot;

IMDb&quot;&gt;[http://www.imdb.com/name/nm0000647/ Eigener Eintrag für

’’Alan Smithee’’ in der IMDb]&lt;/ref&gt;

== Geschichte ==

=== Entstehung ===

Das Pseudonym entstand 1968 infolge der Arbeiten am Western-Film ’’Death

of a Gunfighter’’ (deutscher Titel ’’[[Frank Patch - Deine Stunden sind

gezählt]]’’). Regisseur [[Robert Totten]] und Hauptdarsteller [[Richard

Widmark]] gerieten in einen Streit, woraufhin [[Don Siegel]] als neuer

Regisseur eingesetzt wurde.

Figure 4.1: The first lines of the contents of the <text> tag of the first article
of the German wikipedia dump. Note the large amount of noise.

Wikitext documents can contain bold and italic text, images, (internal and
external) links, tables, references to templates and categories, and, depending on
the setup of the particular wiki, a subset of HTML, which is (because it is em-
bedded in XML) encoded with XML character entity references5. For illustration
purposes, the first lines of the German wikipedia dump (inside the <text> tag
only) can be seen in Figure 4.1.

To process this text, a Python script was written that, given a stream of
text of this kind, extracts word counts. The script is included in the attach-
ment as utils/counts from wikipedia.py, and expects raw text from stan-
dard input, meaning it is called with bzcat wikipedia-dump.bz2 | python3

counts from wikipedia.py.
The method of this script is now described in detail.
Due to the expectable format of the XML file, no XML parser is used: No

simple XML parser would have worked, since having the entire file in memory
might have posed problems. A streaming XML parser could have worked, but
instead, we use a simple line-based state model:

The script starts in the outside state, and stays in that state until it sees a
line that contains the starting <text> tag. It then switches to the inside state
and processes each line (including that first one, with the XML tag removed),

5For instance, > is encoded as &gt;
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until it finds a line that contains the closing </text> tag, at which point it will
revert to the outside state.

The processing of a line starts with using the unescape function from Python’s
html package to turn XML character entity references back into the original
characters (for example &gt; into >). Next, it removes triple and double single
quote characters (’’’ and ’’), which are used for bold and italic text in the
Wikitext language.

A line is skipped if it starts with any of the following:

• a template reference ({{ or }})

• part of a table (starts with | or !)

• a list (starts with *)

• a heading (starts with ==)

• a comment (<!-- and -->)

• an indentation (starts with :)

• a category reference (starts with e.g. [[Kategorie:)

As a next step, we try to replace links with their labels using a series of regular
expressions:

• Internal links: Anything matching \[\[(?:[^\]]*?\|)?([^|\]]*?)\]\]
gets replaced with the contents of the first capture group. This will replace
[[lemma|label]] with label and [[label and lemma]] with label and

lemma.

• External links: Anything matching \[\S+ ([^\]]*?)\] will be replaced
with the first capture group, replacing [http://example.com label] with
label.

• HTML/XML elements: Anything matching <[^>]*?>.*</[^>]*?>
is deleted, removing opening and closing HTML and XML tags (for example
<strong> and </em>).

• Template links: Anything matching {{[^}]+?}} is removed, purging tem-
plate references like {{Siehe auch|Geschichte Deutschlands}}.

• HTML/XML standalone elements: Anything matching <[^>/]*?/>
is removed, getting rid of standalone XML tags (for example <hr />).

After having done all these replacements on a line, all matches of the regular
expression [A-Za-zäöüÄÖÜßÅåÁáÉéÍı́ÓóŐőÚúŰű]+6 are extracted and added to
a word counter, after being transformed to all lowercase letters.

6This is admittedly an unelegant expression, but there is currently no better way to do this
within the standard library of Python. The regex module (https://pypi.python.org/pypi/
regex/), which is supposed to eventually replace Python’s builtin re module could use the
pattern \p{L}+ instead to refer to all sequences of all letters in all languages.
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Types Tokens Types
Tokens

(%)

German 7 089 242 748 064 839 0.95
Swedish 3 319 114 397 902 042 0.83

Hungarian 3 008 758 112 148 271 2.68

Table 4.2: Corpus statistics for the Wikipedia corpus

The resulting data structure is printed to a file, one word per line, with a
tab character separating the word and its count across the corpus, sorted by the
count, such that the most frequent words are in the beginning of the file. This
results in the lexicon files, such as lex/de.lexicon.tsv.

Corpus statistics about the resulting corpora can be seen in Table 4.2. The
German part is obviously the biggest one (the German Wikipedia is the second-
biggest Wikipedia, after the original English one), but what is interesting is that
Hungarian has by far the highest type to token ratio. This is due to the more
complex morphology of Hungarian, compared to the other languages.

4.3 Marek [2006]

The work of Marek [2006] includes an evaluation corpus that was created based on
articles from the German computer magazine c’t — Magazin für Computertech-
nik. The corpus itself is not used, but our own evaluation corpus annotation
format is based on it. We drop the annotation of part-of-speech of the com-
pound parts, and concentrate only on where a compound should be split. The
annotation scheme is described in more detail below.

4.4 Stopwords and affixes

In order for our simple heuristics to filter out obviously wrong splits, we also
employ the use of two additional corpora per language: A list of stopwords and
a list of suffixes.

The stop word lists7 contain 232 German words, 199 Hungarian words, and
114 Swedish words.

Because our candidate extraction algorithm goes from left to right (see Chap-
ter 5), it might happen that a word or subword is split into root and suffix, if the
root is a known word. Since this is just inflection, not compounding, we want
to filter out such cases. For this purpose, we extract a list of suffixes for each
language from Wiktionary (a sister project of Wikipedia):

We simply take all page titles in the Category:language prefixes and
Category:language suffixes8 and remove the dash at the beginning of each
page title. The resulting suffix list contains 115 suffixes in German, 85 suffixes in
Swedish, and 545 suffixes in Hungarian. The prefix lists contain 116 prefixes in
German, 48 prefixes in Swedish, and 100 prefixes in Hungarian.

7https://github.com/Alir3z4/stop-words
8For example https://en.wiktionary.org/wiki/Category:German_suffixes
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Original token Annotated token

anwendung anwendung

beachten beachten

weitere weitere

warnhinweise warn+hinweis(e)

vorsichtsmaßnahmen vorsicht|s+maßnahme(n)

cholestagel cholestagel

angewendet angewendet

einnahme einnahme

bondenza bondenza

anderen anderen

arzneimitteln arznei+mittel(n)

informieren informieren

apotheker apotheker

arzneimittel arznei+mittel

einnehmen einnehmen

anwenden anwenden

eingenommen eingenommen

verschreibungspflichtige verschreibung|s+pflichtig(e)

handelt handelt

lietuva lietuva

Table 4.3: The first lines of the German part of the evaluation corpus

4.5 Evaluation Corpus

The creation of the evaluation corpus started with the EMEA corpus, which was
first shuffled on the sentence level to ensure that the selection of words was not
biased. Care was taken however, to shuffle the corpus in exactly the same way
for each language, so that randomness did not introduce a difference between the
languages.

Next, the words were filtered based on their length. Since compounds consist
of at least two parts, they have a certain minimum length. Any word shorter
than seven characters was therefore discarded.

This number is a somewhat arbitrary number, but is based on the observation
that shorter words are less likely to be compounds, and if they are, they are more
likely to be lexicalized already. Had we chosen a lower number, the workload
of the annotators would have increased, too. Increasing the number to a much
higher one would make the task easier, since it is self-evident that the longer a
word is, the more likely it is to be a compound.

This list of words was then given to annotators, with the German part being
annotated by the author himself. The annotators were given the task to split
the words into compound parts using a plus character, when necessary. Non-
compounds were to be left untouched.

Word endings of compounds were put in parentheses, linking morphemes split
off with a pipe character (|). As in the original annotation scheme in Marek [2006],
ablaut and umlaut changes are annotated using capital letters.

As an example, the first lines of the annotated German corpus can be seen in
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German Swedish Hungarian

Words 958 565 3361
# Compounds 193 162 512
% Compounds 20.0% 28.7% 15.2%

% 2 parts 91% 93% 93%
% 3 parts 9% 7% 6%
% >3 parts <1% 0% 1%

Table 4.4: Corpus statistics of the evaluation corpora

Table 4.3.
When annotating anything there is a choice to be made between accuracy of

the annotation process, and the annotation feeling “natural” for native speakers.
A special case of this is how to handle fully lexicalized compounds: They are

not a problem for NLP, since they are frequent enough to be lexicalized. In fact,
splitting them could even worsen results in some cases, where the current meaning
of a compound is not directly related to the meaning of its parts anymore:

If a Machine Translation system wants to translate Geldbeutel, but translates
the decompounded parts instead, the translation might be “money bag” instead
of the correct “wallet”.

In our case, a decision was made to trust the annotators and let them annotate
as compounds what feels like a compound to them.

The German and Swedish parts of the corpus were each annotated by a single
person, whereas 10% of the Hungarian corpus was additionally annotated by a
second annotator to calculate inter-annotator agreement. Cohen’s Kappa was
determined to be at κ = 0.95.

The other part of data required for each language was the list of linking
morphemes. The German list is based on Alfonseca et al. [2008], Hungarian and
Swedish linking morphemes were extracted from the annotated corpora. They
are displayed in Table 4.5.

Corpus statistics about the evaluation corpora can be seen in Table 4.4. Most
compounds in the evaluation corpora have only two parts, there are very few
examples of compounds of three or more parts.

The evaluation corpus in all three languages is included in the Attachment in
the folder gold corpus/.
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Language Linking morpheme Example

German

s Hemdsärmel
e Hundehütte
en Strahlentherapie

nen Lehrerinnenausbildung
ens Herzenswunsch
es Haaresbreite
ns Willensbildung
er Schilderwald

Swedish s utg̊angsdatum

Hungarian

ó oldószer
ő gyűjtődoboz
ba forgalombahozatali
ı́tő édeśıtőszerként
es kékesbarna
s szürkésbarna
i ı́zületifájdalom
a koraszülött

Table 4.5: Linking morphemes in German, Swedish, and Hungarian
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5. Algorithm

This chapter describes the basic algorithm decompounding is based on and our
improvements and experiments upon it. As input, the algorithm takes a word as
a string of characters of non-zero length. The output is one of the possible splits
of the word.

A split of a word is any unique division of a word into parts. A split of a word
of length n has at least 1 and at most n parts. Since every character of a word
can either belong to the previous part or form a new part, any word of length n
has 2n−1 different splits (see Figure 5.1).

foo →

foo (1 part)
fo+o (2 parts)
f+oo (2 parts)

f+o+o (3 parts)

Figure 5.1: The word foo has three characters, therefore it has 23−1 = 4 splits.
Splits of foo have at least one and at most three parts. Parts are separated by
plus signs.

The generation of candidate splits (see Section 5.3) is recursive and based on
binary splits : i.e. a split with up to two parts.We define a word as a sequence of
characters, since a part is also a (sub)sequence of characters, we can also apply
splitting on individual parts.

While splits of a word have the theoretical bound of 2n−1, in practice, the
number of somewhat sensible splits (as licensed by a given lexicon) is much lower.
We will use the term possible split to refer to splits where all parts (except for
the last one) are known words (from a lexicon) or linking morphemes.

5.1 General idea

The algorithm has three main steps:

1. Candidate generation: From a given word, a lexicon, and a list of linking
morphemes, a list of possible splits is generated. This is done in a greedy
way that is described in detail in Section 5.3.

2. Cleaning: The list of possible splits is changed, either by filtering (i.e.
removing) entries, or by modifying it in some way (for example to join
parts into one under some conditions). This is described in Section 5.4.

3. Ranking: The cleaned list of candidate splits is then ranked using one or
more methods. When multiple ranking methods are used, the second one
will make a decision only when the first one ranks two splits as equally
good, more on that in Section 5.5.

The last step returns one chosen split. If that split has only one part, the
“verdict” is that the word does not need to be decompounded.
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5.2 Initialization

Based on the language, the list of linking morphemes is set. This list is adapted
from Alfonseca et al. [2008] for German, and based on input from the annotators
for the other supported languages. The linking morphemes are listed in Table 4.5.

In addition to the linking morphemes, a lexicon of known words is read in. As
a source for the lexicon, a simple Wikipedia dumpis used (see Section 4.2). The
reason for opting for a raw text corpus instead of a real lexicon is that we will
find not only base forms, but also most inflected forms in it, and will not have to
worry about morphology too much. Since it is our goal to produce a system that
is adaptable to any language where it is needed, we want to use as little training
data as possible, in fact, the only piece of knowledge we do not obtain from a
raw corpus is the list of linking morphemes. This obviously does not include the
evaluation corpus, which is not needed for the system itself.

5.3 Generation of candidate splits

After this initialization, words can be decompounded by the system. First, a
sequence of possible binary splits (i.e. splits that have two parts) of a given word
is obtained. This includes the “split” where the point of splitting is after the
word, meaning nothing is split at all. Starting with the smallest possible split
from left to right, we check whether either

• the left part of the split is a known word

• the left part of the split is a linking morpheme

If neither of those conditions are met, the process continues. Otherwise, this
process is repeated recursively for the remaining part.

This method has several implications:

• The right-most part of the proposed split need not be a known
word. This helps alleviate the need for true morphological analysis as
endings of the head do not matter so much.

• The process succeeds for any given word. It may however return a
split which contains only a single word, i.e. is not a split at all.

• The process often returns several possible ways of splitting. Af-
terwards, a decision needs to be made which of the splits to keep.

5.4 Cleaning the splits

As a next step, initial cleaning of the candidate splits is being done. These
cleaning methods are intended as simple heuristics that disregard obviously wrong
candidates, or change candidates when it appears to be necessary. This is to make
it easier for the ranking methods later on, as the list of possible splits is reduced,
but there is often still a choice to be made. We use five different cleaning methods.
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5.4.1 general

• Linking morphemes cannot be at the beginning of a word. If the first part
of a split is a linking morpheme, it is merged with the second part.

• Given two consecutive parts, if the right one is not a known word, the left
one is a linking morpheme, and the concatenation of the two parts is a
known word, they are merged together. This does not need to be checked
the other way around, because of the left part always being either a known
word or a linking morpheme, based on the previous steps.

5.4.2 last parts

The motivation for this cleaning method comes from the assumption that base
forms of words are more likely to be known than inflected ones. As we assume
suffix-based morphology, this can lead to suffixes being split off.

Therefore, we merge the last two parts whenever the last part is shorter than
4 characters. This number is somewhat arbitrary, and could be reduced or in-
creased, with reducing it leading to a smaller effect of the cleaning method, and
increasing it leading to a higher number of falsely discarded candidate splits.

5.4.3 suffix

As a more informed variant of last parts, we also use our list of suffixes (see
Section 4.4) to further filter out incorrectly separated suffixes.

If the last part starts with a known suffix, and is not much larger than it, we
merge the last two parts. We do not simply check for the last part being identical
with a suffix, because we observed (in the German suffix list) that many suffixes
are also only listed in their base form (for example, -iv, the equivalent suffix to
the English -ive is found in the German suffix list, but not -ive, -iver, -ives, and
so on). The additional check for similar length is a protective one, because some
words may also start with the same characters as some suffixes.

From manual inspection of the affix lists, we estimate that this has the po-
tential to remove legitimate splits: For example, the German suffix list contains
-zentrisch (“centrical”), which could conceivably occur as the head of a com-
pound, but it is still our assumption that this filtering will improve more than it
will hurt recall.

5.4.4 prefix

In a similar way, we also use the list of prefixes. Since inflection does not seem to
happen in prefixes in the languages we investigate, we are stricter, and require a
part to be identical with a prefix. We do not just look at the first part, because
the prefix might be attached to the second (or third, ...) part of a compound.

If any part of a proposed split is a prefix, we disregard the split.
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5.4.5 fragments

Finally, this cleaning method tries to get rid of other obviously incorrect splits
by disregarding any splits that contain parts which:

• Consist of only one or two characters

• Are not in the list of linking morphemes

5.5 Ranking the splits

Next, we use one or more ranking methods to re-rank the list of candidate splits,
and return the top-ranked split.

When combining several ranking methods, the second one will decide the cases
that the first one could not decide, and so on. Our best methods (see Chapter 7)
are such combined methods.

The various ranking methods are described below:

5.5.1 most known

This ranking methods assigns a score to each split based on the fraction of known
words in its parts. For example, it would prefer master+arbeit (two out of two
parts are known words) over mast+erarbeit (one out of two parts are known
words).

Since a split may contain linking morphemes, we only take parts into consid-
eration that are not found in the list of linking morphemes here.

5.5.2 shortest and longest

shortest assigns a score to splits based on the number of parts, preferring splits
with fewer parts, following Rackow et al. [1992].

Just for completeness, we also have a method called longest that does the
opposite of shortest; it prefers long splits. This is a special-case ranking method
that does not make sense in a normal setting, but could have a use in recreational
linguistics (to find alternative compound interpretations of long words).

5.5.3 beginning frequency and avg frequency

Frequency information has been shown to be of use in previous work [Koehn and
Knight, 2003, Baroni et al., 2002]. Since we are working with a raw text corpus
as a lexicon, it is available to us, too.

Apart from using frequencies for filtering words (see Section 5.6.2), we also
rank using them:

The ranking method avg frequency takes the arithmetic mean of the fre-
quencies of the parts in our lexicon. To not distort our results, we disregard
parts that are linking morphemes.

We also implement a variant called beginning frequency that is for the most
part identical with avg frequency, but uses only the first six characters of the
part for lookup. For this purpose, a separate lexicon of beginnings is constructed
while the normal lexicon is loaded.
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Figure 5.2: A (hypothetical) 2D projection of a vector space. The splits of
“Kunstaktion” can be rated according to semantic vectors of their respective
parts.

5.5.4 semantic similarity

A relatively recent trend in Natural Language Processing is the use of semantic
vectors that represent the meaning of words or other textual entities. Such vectors
have been shown to be successful in tasks such as parsing [Socher et al., 2013] or
sentiment analysis [Maas et al., 2011].

Semantic vector spaces are constructed in such a way that vectors of semanti-
cally similar words are close to each other, and vectors of dissimilar words further
apart. One can then query such a space to compute the similarity between two
words (“How similar is book and newspaper?), or to retrieve a list of n closest
vectors to a given word.

If such a vector space is available, we could score a given split of a word
by looking at the distances of its parts. For example, given the German word
“Kunstaktion” (roughly art performance) could either be split into the parts
“Kunst” (art) and “Aktion” (action), or, incorrectly, into “Kunst” (art), “Akt”
(act), and “Ion” (ion). As shown in Figure 5.2, we assume that the vectors for
“Kunst” and “Aktion” would be closer to eachother on average than “Kunst”,
“Akt”, and “Ion”.

A fast, memory-efficient way to obtain a semantic vector space is a family of
methods called word2vec [Mikolov et al., 2013], of which we use the continuous
skip-gram variety: Word and context vectors are initialized randomly, then, iter-
ating over all words in a given corpus, the model tries to predict context words
from a given word. In the process, word vectors are brought closer to the context
vectors of their context words, and, using negative sampling, distanced from ran-
dom “noise” contexts. We use the default size of 100 dimensions and a window
size of 5, i.e. the distance between the current and the predicted word can be at
most five words.
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Distance between two vectors is measured in terms of cosine similarity ; the
cosine of the angle between the vectors. Using cosine similarity is equivalent to
using a euclidean distance between unit vectors, and results in values between 0
and 1, inclusive1:

cos(θ) =
A ·B
‖A‖‖B‖

=

n∑
i=1

AiBi√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

As word embeddings require only raw data, we also investigate its use in our
scenario. The idea is to look at the (proposed) parts of a split, and see if adjacent
parts are at least a little bit similar to each other, and then returning the split
with the highest average similarity. We choose the average of the similarities
because a product would massively favour short splits, and a sum would favour
longer splits. Comparing only adjacent parts makes sense, because we assume
only they share some meaning: In Taschenmesserklinge (pocket knife blade),
Tasche (pocket) and Messer (knife) are often seen together, even more so with
Messer and Klinge (blade), but Tasche and Klinge are likely not to be similar at
all.

One of the proposed splits is always the hypothesis that the given word is not
a compound, we also need to assign a value to this case. A default value of 1
would make it such that this ranking method never splits, making it equivalent
with the baseline described in Chapter Evaluation, we therefore assign a value of
0, which happens to force it to always split, if any other candidate has at least
one part of pairs for which the vectors return a non-zero similarity.

Typically, lemmatization or stemming is used as a preprocessing step for cre-
ating vector spaces. On any given language, we will not necessarily have tools
for that available, which is why we use a very primitive stemming method for all
languages: From all words, we strip away any characters after the 6th one. We
assume that this will be enough to uniquely identify most words, but also to strip
away any possible suffixes. Using this process, goat remains as is, but hamster is
transformed to hamste.

We use the gensim implementation [Řeh̊uřek and Sojka, 2010] of the skip-
gram model. As the gensim package has quite a few bigger dependencies2, we
save the vector spaces as pickled objects3, which means that gensim will only be
loaded when the respective ranking method is used.

We use the raw EMEA corpus for training the embeddings, throwing away
any tokens that contain non-alphabetic characters. The corpus contains about
23 million tokens in every language.

1Cosine distance results in values between -1 and 1, but if all vector components are always
positive, the resulting number will instead be at least 0.

2smart-open, six, scipy, and numpy
3https://docs.python.org/3/library/pickle.html
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5.6 Improvements

In addition to the above described, we experiment with other parameters of the
algorithm.

5.6.1 Stop words

Since compound parts are typically content words, we want to limit the available
words the system sees as valid. Since we are building on raw data, part-of-speech
tags are not available. We therefore use stop word lists: After the lexicon is read,
any words present in the list of stop words is removed from it again.

This prevents splits into pseudo-compounds which supposedly begin with a
closed-class word like a determiner. For example, Dermatologe (dermatologist) is
not a compound, but without excluding stop words from the list of known words,
it might be split into Der (nominative masculine singular “the”) and matologe
(spurious).

5.6.2 Frequency minimum

Any real-world corpus contains some amount of noise, especially web-based cor-
pora. No matter how well our scraping methods work, it is assumed that some
amount of noise will always make it into the data, in our case the lexicon. In order
to minimize spurious words, we therefore set a (low) limit of minimum frequency
for each word, meaning that we discard any word that occurs less than n times
for some n, in our case 2.

Because we impose a limit on the lexicon size, this does not have an effect
in our case, but with a smaller lexicon, or a higher word limit this might prove
beneficial.

5.6.3 Forcing decomposition

Finally, we experiment with whether it makes sense to insist on splitting words,
whenever possible: This setting causes the ranking system to always produce a
split with more than one part (i.e. the claim that any word is a compound).

We do not expect this to do better than the other methods, but assume it
might be useful when it is already known that a word must be a compound.
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6. Implementation

This chapter describes the implementation of the algorithm described in Chap-
ter 5. It consists of a script written in Python 3, and is not backwards compatible
with Python 2, because it makes heavy use of features missing in Python 2 (and
not importable from the future module).

The script reads a file containing one word per line, and prints a decom-
pounded (if necessary) version of every word. Alternatively, the Splitter class
can be imported from another module.

The source code, along with all the lexical resources required to get it to run,
is included as an Attachment. Except for the lexica, which are hosted separately,
the contents of the attachment are also published on Github1. This will also be
the place for further development.

6.1 Setup

As our system is written in the programming language Python 3, a recent version
of a Python interpreter (3.5 or higher) needs to be installed first. While this
was developed and tested with Python’s standard implementation CPython, it
should also work with up-to-date IPython [Pérez and Granger, 2007]. Python
interpreters that do not support C extensions (e.g. IronPython2) or are not up-
to-date (for instance, at the time of writing, PyPy33 implements Python 3.3) are
not supported.

Apart from Python itself, the system has one hard and one soft dependency:

• docopt4 is a command line argument parser that enables its users to write
the standard usage/help message and automatically parse arguments fol-
lowing the schema described. This module is used by our script to simplify
the creation of its command line interface. It is required to be installed in
order to use the decompounding system.

• The gensim package was used for training and handling the vector space.
If the word embedding method is being used, gensim and its requirements
need to be installed too. If this method is not used, it does not need to be
installed, the script will not try to import it in that case.

Both of these packages can be installed with

$ pip3 install -r requirements.txt

using the requirements file included in the distribution. In that case, the exact
versions used during development will be installed.

1https://github.com/L3viathan/compound-splitter
2https://github.com/IronLanguages/ironpython3
3https://pypy.org
4https://github.com/docopt/docopt
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6.2 Command-line interface

The system can be used in two different ways: As an imported module, or using
its command-line interface. The latter is described in this part.

The script takes one required argument, which is the name of a file which
contains the candidates to decompound. This file should contain a single word
per line. When the decomposition should happen on demand, the file name can
be replaced with - to instead read from standard input.

In addition, the script can take a number of options:

• A two-letter language5 code can be specified using the --lang option. This
defaults to --lang=de, German.

• If the list of stop words should not be used, one can pass --no-stopwords.

• If the system should try to split words whenever possible, one can pass
--force-split (or -f).

• To specify a minimum word frequency under which words should be dis-
carded from inclusion in the lexicon, the option --min-freq=... can be
used. By default, a value of 2 is used, meaning that any word occurring
less than twice will be discarded.

• An alternative way to restrict the amount of words the lexicon will consist
of can be achieved by passing the option --limit=<n>. If this option is pro-
vided, only the top n lines of the lexicon file are used, the rest is discarded.
By default, only up to 125,000 words are read in.

• For debugging purposes, the output can be made more verbose by giving the
option -v. This option can be provided several times, each time increases
the verbosity level (up to a maximum of 3).

• To customize the cleaning methods that should be used, a comma-seperated
list of methods can be specified with the --cleaning=... switch. The
available values by default are:

– general

– last parts

– suffix

– prefix

– fragments

Available methods are all methods of the Splitter class that start with
clean , more on that in Section 6.4. If this option is not specified, the
system will perform cleaning as it would if it had been called with the option
--cleaning=general,last parts,suffix,prefix. All cleaning methods
are described in Section 5.4.

5ISO 639-1; http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_

ics.htm?csnumber=22109

25

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=22109
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=22109


• The ranking methods can be specified in a similar manner, using the option
--ranking=.... The available values by default are:

– semantic similarity

– avg frequency

– beginning frequency

– most known

– longest

– shortest

Available methods are all methods of the Splitter class that start with
rank . When not explicitly specified, this option defaults to the value
avg frequency,semantic similarity,shortest. All ranking methods
are described in Section 5.5.

• When given the switch --evaluate, instead of decompounding a file con-
sisting of one word per line, the script expects a tab-separated file of one
word, and one gold annotation per line. It will then attempt to decompound
all words in the file and print evaluation metrics.

Wherever it makes sense, short-form arguments are also supported.

When called, the script first reads in the lexicon and then the list of stop
words from two files in the lex directory. Next, it will read the suffix and prefix
lists. All lexical files are named with the system language code.resource.filetype,
for example de.lexicon.tsv. Languages codes are the two-digit ISO 639-1 codes
for each languages (i.e. de, sv, and hu). How resource types relate to file format
is shown in Table 6.1.

Resource File type File extension

lexicon Tab-Seperated Values tsv

prefixes Raw text txt

suffixes Raw text txt

stopwords Raw text txt

vectors Pickled Python object pkl

Table 6.1: The file types of the different lexical resources.

While the lexicon is expected to contain one word per line, in the format fre-
quency\tword\n, it will also accept lines that start with some amount of whites-
pace. This is such that it can handle output from cat raw words.txt | sort

| uniq -c | sort -nr. The stop word list simply consists of one stop word per
line.

After this initial setup is done, the system will read words from the input file,
one at a time. The decompounded result is then printed to the standard output,
in the same format the evaluation corpus uses.

Because it does not wait for the input file to be read in completely, it is
possible to run the decompounding system as a server and use it on-demand, for
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example using a named pipe created using mkfifo, or by making it read from the
standard input by using - as a file name.

6.3 Python class interface

An alternative to using the command-line interface is writing Python code that
imports and uses the Splitter class. This has several advantages:

• All parameters including the list of cleaning and ranking methods can be
manually set, and even changed without having to restart (or re-import)
the software.

• Multiple Splitter objects with different settings or languages can be in-
stantiated at the same time.

• The program can be extended, for example to add new cleaning or ranking
methods. For details see Section 6.4.

When used from another Python script, the returned value can alternatively
be in tuple form, then the result will be a tuple of compound parts.

6.4 Extending the splitter

While it is possible to adapt our system to many needs by tweaking parameters,
there are a few cases in which it will not be enough:

• When wanting to use the system on a language other than German, Swedish,
or Hungarian

• When wanting to use new cleaning or ranking methods that are not in-
cluded.

• When wanting to change core parts of the program.

In these cases, instead of writing an entirely new system from scratch, one
can build on top of our system by sub-classing it. The program contains a single
class called Splitter, which a new class can inherit from.

What follows is a description of how to extend it in the most common ways.
If it is desired to change the program in a different way, one has to read the code
anyways, so it does not make sense to describe it here in detail.
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6.4.1 Adding languages

Adding support for a new language requires only a few lines of code. All that
needs to be done is to implement the method set language(self, language),
which takes a two-letter language code. In it one should:

1. Call super(type(self), self).set language(language) to set the lan-
guage and handle the existing languages

2. If a NotImplementedError occurs, check for language being any newly
supported language, in which case self.binding morphemes should be set
to a list of linking morphemes.

3. If language is not one of the newly supported languages, re-raise the error.

An example of how this would look is shown in Figure 6.1.
While this is the only code that would need to be written, lexical resources

will still need to be added to the lex/ folder, at the very minimum the lexi-
con (language code.lexicon.tsv), and depending on the cleaning methods, ranking
methods, and options used the lists of stopwords, prefixes, and suffixes, as well
as the vector space obtained from calling utils/train embeddings.py.

import splitter

class DanishSplitter(splitter.Splitter):

def set_language(self, language):

try:

super(type(self), self).set_language(language)

except NotImplementedError as e:

if language == ’da’:

self.binding_morphemes = [’en’, ’s’]

else:

raise e

Figure 6.1: Code example of adding a language.

6.4.2 Adding ranking or cleaning methods

Adding new ways to rank or clean the splits is done by adding new methods
with specific names: Any method starting with rank will be accessible from the
command-line interface as a ranking method, the same is true for clean and
cleaning methods.

Cleaning methods are given an iterable of splits (which are tuples of strings)
and are also supposed to return an iterable of splits. The built-in cleaning meth-
ods are all generators, meaning they use the yield keyword to return splits
individually and lazily. An example of a new cleaning method that removes all
splits that have exactly three parts is shown in Figure 6.2.
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import splitter

class SplitterWithCleaning(splitter.Splitter):

def clean_not_three_parts(self, splits):

for split in splits:

if len(split) != 3:

yield split

Figure 6.2: Code example of adding a cleaning method.

Ranking methods are given a split, i.e. a tuple of compound parts. They
return a number (floating point or integer6), where a higher number stands for a
better split. What range these numbers come from is irrelevant, as long as they
are comparable within one ranking method. An example of a new ranking method
that ranks splits by their number of breaks between double letters is shown in
Figure 6.3.

import splitter

class SplitterWithRanking(splitter.Splitter):

def rank_double_letter_splits(self, split):

return sum(

1 if left[-1] == right[0] else 0

for left, right in zip(split, split[1:])

)

Figure 6.3: Code example of adding a ranking method.

To be able to do anything serious with added cleaning or ranking methods,
one should read the entirety of the code as to get an understanding of the existing
data structures and the inner workings of the program.

6Technically, it does not even need to be a number, just a type that can be compared to
other values of its type, but for practical purposes a numerical type is probably always the best
choice.
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7. Evaluation

Our system is evaluated against other systems (in the case of German) and a
baseline (in all cases) here. The competing systems are:

• Baseline: This is a hypothetical1 identity system which when given any
word, returns the same word. When seen as a decompounding system,
it always postulates that any given word is not a compound. Since most
words in the evaluation corpus are not compounds, its Accuracy will be
fairly high, but Recall and F1-score are zero (since it never finds a single
compound), and its Precision is undefined.

• ASV Toolbox: This is a supervised system described in Biemann et al.
[2008].

• jWordSplitter: Originally created by Sven Abels, and now maintained
by Daniel Naber, this is a rule-based Java library for splitting German
compounds2.

Our system is evaluated in various configurations. They are named mostly
based on the ranking methods, using an abbreviation system:

• K stands for the ranking method most known, the fraction of known (in-
vocabulary) parts.

• F stands for the ranking method avg frequency; the arithmetic mean of
frequencies of the parts in our lexicon.

• B stands for a variant of avg frequency: beginning frequency, in which
we rank by the arithmetic mean of frequencies of the first (up to) six letters
of the part. An additional lexicon for this purpose is automatically created
when the normal one is read.

• S stands for shortest, the ranking method that will prefer splits with few
parts.

• L is the ranking method longest; the opposite of shortest.

• V stands for the ranking method semantic similarity; the vector-based
ranking method.

• force specifies that the --force-split switch was used, which makes the
program always prefer splits with at least two parts, if they exist.

A large number of combinations of ranking methods, cleaning methods, and
other options is possible, of which we will only evaluate a reasonable subset:

• K: This is the most basic version using the raw words without frequency
information. The splits are ranked based on how many parts are known
words.

1It was not actually implemented as its performance metrics are evident from the data.
2https://github.com/danielnaber/jwordsplitter
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• K+S: We now additionally chose the shortest of the splits (the split with
the fewest (non-linking-morpheme) parts) in the event of a tie.

• F+S: Instead of ranking by the fraction of known parts, we rank by the
average (arithmetic mean) of the parts.

• K+F: Next, we combine the two methods. Since the frequency-based
method is less likely to produce ties, we rank by the fraction of known
words first.

• B+S: This method uses the frequencies of the beginnings of parts. Since
this way of unifying parts is also used in the semantic similarity ranking
method, we test whether it also helps with the frequency-based methods.

• V+S: Ranks first by the average cosine distance between vectors of parts,
and then by length (preferring splits with fewer parts).

• K+V+S: We investigate whether we can improve the semantic method
with pure word knowledge.

• V+S+force: This method enforces splitting when possible. It is not ex-
pected to perform well, because of the high number of non-compounds in
the evaluation data (and in the real world). However, when this system is
used within another system that “knows” that a word is a compound, but
does not know how to split it, it could be of use. To enforce splitting, use
the command-line switch --force-split (see Section 6.2).

The default list of cleaning methods is used here, the effects of cleaning will
be evaluated separately.

7.1 Metrics

Since this is not a simple binary classification task, the definitions for Precision
and Recall (and therefore, F-Score) differ slightly:

Precision =
correct splits

correct splits + superfluous splits + wrong splits

Recall =
correct splits

correct splits + wrong splits + incorrect non-splits

As accuracy is only dependent on the correctness of the work, it keeps the
familiar definition:

Accuracy =
correct splits + correct non-splits

all instances

The F1-score is defined as a trade-off between Precision and Recall, giving
them equal importance:

F1-score = 2 ∗ Precision ∗ Recall

Precision + Recall
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Precision Recall Accuracy F1

Baseline - .00 .80 .00
ASV Toolbox .41 .42 .75 .41
jWordSplitter .88 .57 .91 .69

K .49 .41 .82 .45
K+S .50 .41 .83 .45
F+S .45 .46 .80 .45
K+F .53 .53 .84 .53
B+S .55 .43 .83 .48
V+S .78 .63 .91 .70
K+V+S .54 .54 .85 .54
V+S+force .31 .31 .66 .31

Table 7.1: Performance of all systems compared on the German evaluation corpus.
The best system for a score is marked in bold, the best of our systems in italic.

Whether the F1-score is a fitting evaluation metric depends on the task at
hand, on what is more important; Precision or Recall. Since we report both of
them here, too, only the F1-score is included here, but any other kinds of F-scores
can easily be computed from Precision and Recall.

7.2 Results

The results for the German evaluation task can be seen in Table 7.1. As with all
classification systems, the question is which metrics are more important to the
user:

Putting an emphasis on Recall means caring more about splitting all com-
pounds than about potential incorrect decompositions. Higher Precision focuses
on being more “careful”, and preferring to decompound easier compounds cor-
rectly, rather than decompounding too much. Since most words in the evaluation
corpora are not compounds, obtaining a high accuracy value is easy: The sim-
ple identity baseline obtains 80% accuracy, because 80% of the instances in the
German corpus are not compounds. One could argue for such a system to have
perfect Precision, but it is marked here as not having a value. However, a system
that has a few cases hard-coded could still easily obtain a precision of 100%.

In this task, it is not as easy to obtain a high Recall. Whereas in binary
classification tasks selecting every instance yields a recall of 100%, due to the more
complex job a decompounding system has, the same result cannot be obtained
here.

Our system with the setting V+S wins in Recall and F1-score against all
other systems. While its Precision is the highest among our systems, it loses
against the rule-based jWordSplitter. This is to be expected: With simple,
conservative rules, you can already achieve a high Precision, or even a perfect
one when hard-coding at least one case and not splitting anything else. Such a
system would have bad Recall and Coverage scores however.
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Precision Recall Accuracy F1

Baseline - .00 .72 .00

K .45 .33 .73 .38
K+S .45 .33 .73 .38
F+S .35 .32 .68 .33
K+F .44 .36 .73 .40
B+S .45 .32 .73 .38
V+S .78 .38 .81 .51
K+V+S .46 .37 .74 41
V+S+force .34 .30 .63 32

Table 7.2: Performance of all systems compared on the Swedish evaluation corpus.
The best system for a score is marked in bold.

That is not to say that jWordSplitter does this — it still performs quite well
in the other metrics and is almost as good in the F1-score, but its rule-based
nature does lead to a higher Precision and lower Recall.

While V+S is the clear winner, some observations can be made about the
other systems, too: Forcing decomposition (V+S+force) — as expected — is a
bad idea in general, it has the worst results of all compared systems. Running it
on a data set that consists entirely of compounds would be expected to improve
upon V+S — at the very least it will not make it worse.

Using frequency information from only the beginnings seems to be better than
using complete words. The idea of B was a trade-off: Losing a little informa-
tion through only considering the beginnings of words, but gaining information
through the much higher frequency of individual counts, and through reducing
data sparsity significantly. Depending on the lexicon (especially its size), this
might have more or less of an effect. In our case, despite having a very large
source for the lexicon, this method pays off, increasing Precision quite a bit,
while losing much less in Recall, if anything at all. It is expected that the tech-
nique would be more beneficial if a large source text for the creation of the lexicon
was not available.

As the situation is similar in the other languages, we set the configuration
V+S as the default configuration for our system.

In the Swedish data set (see Table 7.2), the situation is similar. While the
Precision of V+S is as high as on the German data, Recall is much lower. The
reason for this is not clear, but what is interesting is that the Accuracy of the
baseline is also worse than in German, which means that more of the data is com-
pounds. This does not mean that more Swedish words are compounds compared
to German, instead it could point to Swedish words being shorter in general,
leading to less non-compounds in the data set (since we removed words shorter
than seven characters prior to the annotation). This suspicion is confirmed on
our evaluation corpus (see Figure 1.1).

On the Hungarian corpus, the results are worse than on Swedish, and Precision
also drops significantly here. This could be due to language-specific details that
the author does not know about. Our methods (especially the cleaning methods)
are based mostly on our intuition with German (and Swedish, to an extent, which
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Precision Recall Accuracy F1

Baseline - .00 .85 .00

K .23 .18 .76 .20
K+S .23 .18 .76 .20
F+S .18 .17 .66 .18
K+F .23 .21 .74 .22
B+S .36 .25 .82 .30
V+S .46 .31 .85 .37
K+V+S .24 .21 .75 23
V+S+force .16 .16 .58 .16

Table 7.3: Performance of all systems compared on the Hungarian evaluation
corpus. The best system for a score is marked in bold, the best of our systems in
italic.

is of course much more similar to German than Hungarian). It is reassuring
though that V+S wins in all three languages, excluding the possibility of this
being the result of randomness.

Annotation quality discrepancies could also have played a role in the differ-
ences between the languages, but since the author speaks neither Swedish nor
Hungarian, that is merely another hypothesis.

It should be noted, that the numbers given here do not necessarily say much
about the usefulness of the decompounding systems within other tasks (this is why
it can be more insightful to evaluate using a task-based method; i.e. measuring
how much a system’s results on a task improve when using decompounding, this
is e.g. how Daiber et al. [2015] and Erbs et al. [2015] evaluate):

A given system using a decompounder is typically not completely unknowl-
edgable about what word is a compound: It will often have POS-tagged the
source text already, and might only resort to using the decompounding system
when a given word cannot be found in a lexicon. In such a case, Recall can be
more important than Precision.

We therefore also report coverage percentages, defined as the fraction of com-
pounds that are correctly identified as compounds by the various systems (but
not necessarily correctly split):

Coverage =
correct splits + incorrect splits (of compounds)

all compounds

The Coverage values can be seen in Table 7.4 for all languages. In this case,
Coverage cannot be seen as a direct measure of system quality, but more of
the eagerness of a system to split. From our systems and across all languages,
V+S+force is the one with the highest coverage, simply because it will always
split when it can, and therefore misses very few compounds, at the price of
decompounding many non-compounds.

The next-best systems in terms of coverage are those using the avg frequency

ranking method (F+S and K+F).
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German Swedish Hungarian

Baseline .00 .00 .00
ASV Toolbox .95
jWordSplitter .62

K .65 .54 .50
K+S .65 .54 .50
F+S .86 .64 .65
K+F .86 .61 .61
B+S .63 .53 .47
V+S .73 .43 .49
K+V+S .85 .60 .59
V+S+force .87 .66 .70

Table 7.4: Coverage of the various systems on all languages

7.3 Quantitative error analysis

We also do an error analysis of all systems but V+S+force (because the mistakes
it makes are expectable) in Table 7.5. Most of the time a system makes a mistake,
it is in how many splits a word should be split, rarely is there a case where a
system splits the compound in the right amount of pieces, but in the wrong
position(s). This is to be expected.

From our systems, we can see that once word frequencies are introduced,
the amount of under-split compounds is drastically reduced. Introducing word
embeddings significantly lowers over-splits, while at the same time not increasing
under-splits by a large degree.

What is interesting is that although B+S did not turn out to improve our
performance metrics, it does reduce over-splits and incorrect splits.

Interestingly, while in German we reach almost the same number of over- and
under-splits, in the other languages there are more under-splits by quite a bit.
This points to too many words not being known; i.e. a corpus that is too small.

7.4 Qualitative error analysis

To better understand the kinds of errors our system still makes, we looked into
some of these errors on the German data. The proportions of the results of this
analysis might be different in the other languages, but it would be surprising to
see other error types.

In our investigation we found 6 main error types:

1. over-splits because of spurious words in the lexicon: Noise in the
lexicon causes splits to be generated that make no sense at all. For example,
Senkung (reduction; lowering) gets split as Sen+kung, with both sen and
kung not being German words.

2. over-splits that could be considered correct, but were annotated
differently in the evaluation corpus: The annotation task was deliber-
ately left ambiguous in some cases, because the task is not always one with
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system under-split over-split wrongly-split

German

ASV Toolbox 12 214 7
jWordSplitter 76 13 0
K 73 81 28
K+S 73 80 27
F+S 30 140 32
K+F 29 106 28
B+S 77 78 15
V+S 59 27 15
K+V+S 34 95 28

Swedish

K 58 77 26
K+S 77 58 26
F+S 61 93 37
K+F 64 73 28
B+S 78 60 22
V+S 94 15 6
K+V+S 65 63 27

Hungarian

K 278 494 91
K+S 278 494 91
F+S 197 885 124
K+F 217 632 110
B+S 295 297 48
V+S 281 202 47
K+V+S 232 579 98

Table 7.5: Error analysis. under-split are those instances that are split into less
parts than they should have been. over-split are those instances that are split
into more parts than they should have been. wrongly-split are those instances,
which have the right amount of splits, but are incorrectly split.
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a single right answer. Annotators were told to annotate lexicalized com-
pounds as non-compounds, and non-lexicalized compounds as compounds,
but were free to make their own decisions in cases between lexicalized and
non-lexicalized compounds. For this reason, some of the errors made are
because the system made a different decision than the annotator, that could
in some cases also be considered correct. An example of this is Zeitraum,
which our system split into Zeit+raum, but was not split in the annotation.

3. under-splits that could be considered correct, but were annotated
differently in the evaluation corpus: The opposite of the previous case
also happens, and actually seems to be the most frequent kind of error.
In many cases, the author has to agree with the system more than with
his past self, such as splitting Zahnfleischbluten (gum bleeding) as Zahn-
fleisch+bluten (gum + bleeding), and not as annotated in the evaluation
corpus (Zahn+fleisch+bluten; tooth + meat + bleeding).

4. over-splits of morphological (non-compound) boundaries: In some
cases, despite our best efforts, the system still splits off sub-word units, like
derivational suffixes. For example, Schlaflosigkeit (sleeplessness), instead of
not being split at all, was split into Schlaf+losigkeit (sleep + “lessness”).

5. incorrect splits because of annotation errors: One case of undoubt-
edly incorrect annotation was found that the system correctly judged to be
a non-compound: Überdosierungen (overdosages) was incorrectly annotated
as Über+dosierungen.

6. incorrect ranking: The remaining cases are the truly ambiguous com-
pounds that the system split incorrectly. Patientinnen (patients (female))
was split into Patient+innen (patient inside).

In many cases, it is hard to unambiguously assign a given misclassification to
one of these error types, which is why we don’t report their distribution, as we
feel that such numbers would be skewed by subjectiveness.

7.5 Parameter analysis

In order to further investigate the results, we look into how our results change if
we use different settings (apart from the ranking methods). We first look at the
effect of lexicon size, then at our methods of cleaning the candidate splits.

7.5.1 Lexicon size

It is self-evident that the size of our “vocabulary”; our lexicon we use for generat-
ing candidate splits and ranking in the case of the ranking methods avg frequency,
beginning frequency, and most known has an influence on our scores, but the
question is how exactly that influence looks like.

We can certainly assume that the law of diminishing returns will apply, that
is: the more frequent a word is, the more it will help to have it in our lexicon,
while adding a very infrequent word will not help much, if at all.
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Figure 7.1: Impact of vocabulary size on Precision, Recall, F-Score, and Coverage.
The lines for Hungarian and Swedish cut off at their respective full vocabulary
size. German is cut off at 7 million, which is very close to its actual limit (see
Table 4.2).

We further proposed that at some point, adding more words will actually harm
our performance. This claim comes from the fact that our lexicon is based on
raw data, which no matter how well it is cleaned, contains some noise. The more
(infrequent) words we will take into our lexicon, the more likely is it that we also
include noise. Even in the case of a perfect, handcrafted lexicon, a similar effect
might be present where infrequent words are correct, but so unlikely that they
are even rarer to occur in compounds. The more words exist in our dictionary,
the more choice we give to our ranking methods, and the more chances to choose
the wrong answer.

We performed an experiment where we ran our best system (V+S) with a
given vocabulary size limit (--limit option in the command-line interface), and
plotted the Coverage, F1-score, Precision, and Recall in relation to that limit (see
Figure 7.1).

As expected, Coverage increases when the vocabulary size increases. This is
due to the fact that the system will know more ways to split a word.

The interesting results lie in how Precision, Recall, and F1-score behave: Ini-
tially, adding information drastically increases the performance, but it drops very
quickly afterwards (before 500,000). While this effect was expected, it is perhaps
a bit surprising just how quickly it starts to have an effect. On the other hand,
a vocabulary size of half a million is already quite big in languages without very
intricate morphology.

What is the most surprising is that in F1-score and Recall, the described effect
does not seem to occur in Swedish at all.
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7.5.2 Cleaning methods

V+S German Swedish Hungarian
without P R F P R F P R F

general +2% +2% +2% ±0% +1% +1% ±0% ±0% ±0%
last parts −9% −6% −7% −14% −2% −5% −9% −3% −5%
prefix −4% −1% −3% ±0% +1% +1% ±0% +2% +2%
fragments ±0% ±0% ±0% ±0% ±0% ±0% ±0% ±0% ±0%
suffix −12% −7% −9% −7% −1% −3% −4% −1% −2%

all −35% −22% −28% −56% −19% −32% −35% −19% −26%

Table 7.6: Change in Precision, Recall, and F1-Score by removing one of the
cleaning methods. While most methods help the scores, fragments does not
change anything at all, and general actually hurts the scores. This comparison is
made on our best system (V+S).

We also analyse the effect of the cleaning methods on the results. In Ta-
ble 7.6, our results of V+S with the default cleaning methods on all languages
are compared to the same system without one specific cleaning method. Remov-
ing either the cleaning methods last parts, or suffix makes Precision, Recall,
and F1-score worse in all three languages, so these are methods that always seem
to help.

prefix has a small benefit for German, and slightly hurts the results in
Swedish and Hungarian. The general cleaning method apparently hurts the
results in German and Swedish, and does not change anything in Hungarian.
Removing it changes our F1-score in German to 72%, and in Swedish to 52%.

Perhaps surprisingly, the fragments cleaning method does not change any-
thing anywhere, across all languages.

The analysis furthermore shows that although our intuition did not lead to
the best possible setup, the cleaning methods did significantly improve the results
together. Our reported F1-score would be about thirty percent worse across
languages without the use of any cleaning methods.

7.5.3 Stopwords

Finally, the effect of our stopword list is evaluated. We re-run the evaluation of
our best system (V+S), but provide the --no-stopwords switch to disable the
use of the stopword list. The change in percent compared to the normal system
can be seen in Table 7.7.

The effect is not large, and differs by language. In Swedish, the stopword lists
seems to help, whereas in German and Hungarian Recall is hurt slightly by using
them.

We offer two explanations for these results:

• Mistakes that would be solved by removing stopwords from the lexicon are
also resolved to a large degree by a cleaning method, for example prefix

(many stopwords, in particular prepositions, are also prefixes). In that case,
removing stopwords could occasionally prevent legitimate splits, reducing
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Precision Recall Accuracy F1-Score

German ±0% +1% ±0% ±0%
Swedish −3% ±0% −1% ±0%

Hungarian ±0% +1% ±0% ±0%

Table 7.7: Change in Precision, Recall, and F1-Score when using
--no-stopwords. The switch seems to have little effect. The comparison is
made on our best system

Recall (as it can be observed). This would also explain why removing
prefix did not have a big effect (see Table 7.6) — because the removal was
mitigated by the removal of stopwords from the lexicon.

• The results might be different on other ranking methods. We do not ex-
haustively evaluate on all possible configurations, partly due to the large
parameter space, and partly because it would be more likely that a con-
figuration wins purely by chance. It might be that our semantic method
(semantic similarity) is unlikely to rank splits containing stopwords be-
cause their vectors are very distant to content words in our vector spaces.
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8. Conclusion

This work compared previous work on decompounding applied to the medical
domain, and developed a new system that is compatible with German, Swedish,
and Hungarian, and can easily be extended to work with other languages as well.

It is clear that as easy as the task might seem at first, it is far from solved.
Given a good lexicon, all systems can decompound obvious, clear cases, but more
complex compounds, those that are ambiguous, and those being noisy in other
ways are still hard to split.

This is especially true in a specific domain such as the medical one, as the lan-
guage and the used compounds are different from regular language. While some
compounds, like Krankenschwester (nurse, literally “sick sister”, as in “sister for
the sick”) are in common use in colloquial language, more specific terms, such as
Thrombozytenzahlen are not. This makes the task more difficult than it would be
for non-expert language1, and explains the comparably low results of all systems
when compared to other evaluations (such as in Erbs et al. [2015]).

It is also apparent that the amount of data used influences the accuracy of
the various decompounding systems, as the results for German are consistently
higher than for the other languages.

Evidently this kind of language-agnostic word splitting system is one with
limited use. When building a system for a specific language, one could employ
any number of language-specific improvements. While we did end up using word
embeddings to improve the ranking procedure, our stemming method was very
primitive in order to stay language-independent. It was nevertheless required:

Given a candidate split S consisting of the parts A,B, we need to either
lemmatize or stem both A and B to be able to map them to their semantic
vectors. One benefit of our basic left-to-right system described in the Chapter
Methods is that we can largely ignore morphological changes like suffixes, because
they typically only happen to the head, apart from the binding morphemes that
we do handle. This is why we also chose such a simple stemming method, but
better pre-processing tools would probably improve our results.

The downsides of our system are also its benefits: Without any annotated
training data, it will likely work for any additional languages with composition
systems similar to Germanic, Skandinavian, or Uralic languages. For example,
Modern Greek also exhibits compounding, and given a Wikipedia dump or some-
thing similar as a source corpus, it is hypothesized that it will also work for
Greek.

1Usually, when solving a subset of a problem, or when solving a problem on a subset of some
amount of data, the problem gets easier, not harder. The average performance on a harder-
than-average subset can still go lower, if this subset is not a random subset, with respect to
difficulty. For example, in computer vision, the task of identifying the presence of an animal in
a picture might be easier in general then the sub-task of identifying zebras in tall grass. The
performance of identifying zebras in tall grass might be higher by restricting the system to all
tall-grass pictures, but the average performance of finding zebras in tall grass can still be lower
than the average performance of finding animals in pictures in general.
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Like all systems not exclusively concerned with semantics, it can handle both
endocentric and exocentric compounds, while some of the systems, like those that
are only based on word embeddings cannot decompound exocentric compounds
(e.g. Daiber et al. [2015]).

For future work we propose the following:

• Evalutating on other domains. Our medical evaluation corpus has
proven to be a tough one for all systems. A cleaner, balanced evaluation
corpus not restricted to a specific domain would be more informative re-
garding the performance of decompounding systems in naturally occurring
language.

• Learn from easy compounds. A system could, instead of splitting com-
pounds one by one, require a list of words to decompound, before it will
start the decompounding process. It could then first decompound those in-
stances that are less ambiguous, or for other reasons easier to decompound,
and then learn from those presumably correct splits. This way, the system
would stay unsupervised, but still acquire examples to learn from during
execution. In very recent work, Riedl and Biemann [2016] use a similar
method to generate a dictionary of “single atomic word units”.

• Evaluation on non-compounding languages. As a sort of “sanity
check”, one could run decompounding systems on non-compounding lan-
guages. Ideally, very few words would be tagged as compounds and split,
except possibly for lexicalized compounds.

• Knowledge transfer from high-resource languages. We purposefully
do not use methods requiring large amounts of annotated data, or language-
specific tools such as POS-taggers. One way of staying true to our goals, but
still using such methods would be to transfer information from high-resource
languages to low-resource languages: For example, word vectors could be
first trained on German corpora, and then retrained on other (Germanic)
languages, or a (more sophisticated) stemmer from German could be blindly
applied to other languages.

Looking back at our goals defined in the Chapter Introduction, Language
agnosticism is achieved, because the only expert knowledge required to extend
the system to another language is a list of linking morphemes of that language.
Even when not supplying this list, the system will work, although to a lesser
degree. The additional lexical resources are either automatically obtainable from
raw text (such as the word embeddings, and the lexicon), or optional and available
freely on the internet (the stopword lists and lists of affixes).

Another big goal was low resource friendliness. Corpora of the size we
used2 are available in many languages, not just the few big ones with lots of
attention from the NLP community. We also do not require the existence of any
other parts of the NLP pipeline (stemmers, lemmatizers, POS-taggers, parsers,
...).

2Although the Wikipedia corpora are still relatively big, we have shown diminishing returns
from larger sizes.
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In terms of usability, if the word embedding method is not used3, the system
has only one small dependency. Once the dictionary and the lists of stop words
and affixes are read in, decomposition takes less than a millisecond even for long,
complex examples.

3The gensim package required for the use of our embeddings requires bigger dependencies,
but those (namely numpy and scipy) are frequently used packages in the scientific Python
community.
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Attachments

An attachment has been uploaded to SIS as a zip file, containing:

1. splitter.py: The main system that this work is concerned with; a Python
script.

2. README.md: Usage instructions for the splitter in Markdown format.

3. requirements.txt: A requirements file for use with pip to install the
required dependencies.

4. gold corpus: A folder containing the evaluation corpus files in German,
Swedish, and Hungarian. Each file contains one word-annotation pair per
line, seperated by a tab character.

5. utils: A folder containing additional scripts for training of the embeddings
and creating the lexica from a raw Wikipedia corpus.

6. lex: A folder containing all the lexical resources used by the script (lexica,
stopword lists, affix lists, and word embeddings).
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