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Abstract

In our master thesis, we compare ten classification algorithms for credit scor-

ing. Their prediction performances are measured by six different classification

performance measurements. We use a unique P2P lending data set with more

than 200,000 records and 23 variables for our classifiers comparison. This data

set comes from Lending Club, the biggest P2P lending platform in the United

States. Logistic regression, Artificial neural network, and Linear discriminant

analysis are the best three classifiers according to our results. Random forest

ranks as the fifth best classifier. On the other hand, Classification and regres-

sion tree and k-Nearest neighbors are ranked as the worse classifiers in our

ranking.
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Abstrakt

V naš́ı magisterské práci jsme porovnávali deset klasifikačńıch algoritmů pro

kreditńı skórováńı. Jejich prediktivńı schopnosti byly měřeny šesti rozd́ılnými

technikami pro měřeńı klasifikačńı přesnosti. Pro porovnáńı klasifikátor̊u jsme

použili unikátńı datový set z P2P p̊ujčováńı s v́ıce jak 200.000 záznamy a 23

proměnnými. Tento datový set pocháźı z Lending Clubu. Lending Club je

největš́ı platforma pro P2P p̊ujčováńı ve Spojených státech amerických. Lo-

gistická regrese, umělá neuronová śıt’ a lineárńı diskriminačńı analýza jsou

tři nejlepš́ı klasifikátory podle našich výsledk̊u. Náhodný les se umı́stil jako

pátý nejlepš́ı klasifikátor. Na druhou stranu, klasifikačńı a regresńı strom a

k-nejbližš́ı okoĺı se umı́stily jako nejhorš́ı klasifikátory v našem žebř́ıčku.
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ers and lenders, experience an astonishing growth since their inception. For example,
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et al. (2015) has showed that P2P consumer lending more than doubled the amount
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December 2013. Our data set contains more than 200,000 loans and we know the

final status of all loans. We can extract training and testing data sample from our
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sification methods from Lessmann et al. (2015) is taken as our baseline.
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limited number of classifiers were used in these studies.

The purpose of our master thesis is comprehensive performance comparison of

various classification methods based on the Lending Club data set. Furthermore, we

want to overcome methodological shortcomings of afore-mentioned papers. Our main

contribution might be divided into three parts: data set used, number of classifiers

scored and performance measurement used.

Hypotheses

Hypothesis #1: Random forest is the best classification method based on the

Lending Club data.

Hypothesis #2: Artificial neural network outperforms Logistic regression based

on the Lending Club data.

Hypothesis #3: Linearly based classification methods under-perform on Par-

tial Gini index compared to other performance measurements.

Hypothesis #4: Lending Club data is only weekly non-linear.

Hypothesis #5: Logistic regression outperforms Support Vector Machine based

on the Lending Club data.

Methodology Our data set with loans issued between January 2009 and December

2013 contains more than 200,000 loans. We know the final status of issued 36-months

loans from this given period as they had time to mature. Furthermore, we know the

final status of 60-months loans issued in 2010. Furthermore, we do not use loans

from 2007 and 2008 because they have higher default rate and might be influenced

by the financial crisis in 2007/9.
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we use three different types of performance measurements. Using different measure-
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Chapter 1

Introduction

Warren Buffet famously said that he follows two rules for investing his money.

The first rule says: ”Never lose money.” and the second rule adds: ”Never

forget the first rule.” This rule in the context of retail banking or P2P lending

means that the money should not be lent to someone who will not pay them

back. There exist numerous classification algorithms, such as Logistic regres-

sion or Random forest, for assessment of borrower’s creditworthiness. These

classification techniques support the decision-making process of whether to lend

money to a borrower or not.

The remaining question is what the best credit scoring algorithm is?1 There

already are some comparison studies of classification algorithms, such as Bae-

sens et al. (2003) and Lessmann et al. (2015), that provide their ranking of

classifiers. In line with Salzberg (1997) and Wu (2014), we are, however, con-

cerned about the relevance of these findings for applications in the real world

because these studies are usually based on small data sets with unknown source

of origin. This might be a problem because classifier’s predictions are only as

good as the data sets used for its training.

We propose five hypotheses about classifiers’ performance based mainly on

the Baesens et al. (2003) and Lessmann et al. (2015)’s findings. The first and

second hypotheses are that Random forest and Artificial neural network are

better classifiers than Logistic regression. The third hypothesis says that lin-

early based classifiers rank in the better half of classifiers ranking. The next

hypothesis proposes that Logistic regression outperforms Support vector ma-

1Throughout our master thesis, we use terms credit scoring algorithm, classification algo-
rithm, classification technique, and classifier interchangebly.
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chines with different kernel functions. The last hypothesis declares that linearly

based classifiers underperform when their performance is measured by Partial

Gini index in comparison to other performance measurements.

The main contribution of our master thesis is the robust ranking of ten dif-

ferent classification techniques based on a real-world P2P lending data set. We

have at hand unique P2P lending data set with more than 200,000 records and

23 variables from Lending Club where the final loan resolution is known.2 Be-

sides that, our ranking is robust because we use 5-fold cross-validation method

and six different classifiers’ performance measurements. The hypotheses from

the previous paragraph are then tested with help of our classifiers’ performance

(Table 7.1) and ranking results (Table 7.2).

The thesis is organized as follows. In Chapter 2, we theoretically describe

P2P lending and credit scoring. Next chapter is devoted to the overview of

current literature comparing classification techniques. Based on the literature

review, we state our hypotheses in Chapter 4. Chapter 5 is dedicated to the

introduction and description of our unique P2P lending data set. The classi-

fication algorithms and performance measurements are presented in the next

chapter. Our performance results and classifiers ranking is included in Chap-

ter 7. Furthermore, Chapter 7 includes a summary of our key findings and

recommendations for further research. The last chapter concludes our master

thesis.

2Lending Club is the biggest P2P lending platform in the United States with more than
2 million of issued loans in the total value of $24.6 billion by the end of 2016. Source of
information: https://www.lendingclub.com/info/statistics.action



Chapter 2

Theoretical Background

Before starting the literature review of classification techniques in the financial

industry including P2P lending in Chapter 3, we provide the in-depth explana-

tion of terms P2P lending and credit scoring. We do believe that a reader will

benefit and better understand the rest of our master thesis after having clear

elucidation of P2P lending and credit scoring terms. Furthermore, we briefly

describe the history and current literature research of P2P lending and credit

scoring. Moreover, we include a part devoted to the loan application and lend-

ing process at Lending Club. We expect that description of these procedures

helps to better illuminate the way the data in our data set has been generated.

2.1 P2P Lending

Peer-to-peer (P2P) lending is a new on-line based financial intermediary con-

necting people willing to borrow (borrowers) with people willing to lend their

money (lenders/investors).1. Borrowers and lenders are connected through on-

line available P2P lending platforms. P2P lending platforms can provide loans

with lower intermediation costs than traditional banks because of their on-

line functioning. That is to say, P2P lending platforms do not have to pay

for costly branches. This fact allows offering more favorable conditions for

borrowers and lenders. Borrowers get on average lower interest rates on P2P

1There are two different kinds of people investing in P2P loans. The first kind is common
individuals who are called lenders These lenders usually buy only a fraction of a loan as
their personal investment. On the other hand, investor is term usually used for institutional
investors, such as asset managers, in P2P lending terminology. The investors usually buy
the whole loans in large quantities. These two terms are commonly used interchangeably in
many research papers. We use, however, only the term lender throughout our master thesis
for everyone on the money supply side of P2P lending.
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lending platforms than in banks. Similarly, lenders with well-diversified loan

portfolio achieve higher returns than on traditional saving accounts (Namvar,

2013; Serrano-Cinca et al., 2015). This makes P2P lending very popular for

borrowers as well as lenders.

Besides borrowers and lenders, P2P lending is popular for researchers too.

There are several different streams of P2P lending research topics. It is beyond

the scope of our master thesis to cover them all. Therefore, we choose only

the most relevant research topics. First, we introduce the research concerned

with the reason for P2P lending platforms emergence. Afterwards, the current

tremendous growth of P2P lending platforms is described. There are P2P lend-

ing platforms, such as Prosper or Lending Club, which make their data public.

In the part 2.1.3 Research based on P2P lending data, we introduce what re-

search has been done based on the publicly available P2P lending data. Our

master thesis can be categorized in this group as it is based on P2P lending

data from Lending Club. In the last part, we present the possible future of

P2P lending.

2.1.1 Emergence of P2P Lending

There are different competing hypotheses for the explanation of the rapid emer-

gence of P2P lending platforms. Havrylchyk et al. (2016) present three main

hypotheses as possible explanations. Their first hypothesis is competition-

related. The on-line based P2P lending platforms can operate efficiently with

low financial intermediation cost which enables to offer lower interest rate to

borrowers and higher return to lenders than traditional banks do. Namvar

(2013), Wu (2014) and Tsai et al. (2014) are all advocates of this hypothe-

sis. The second hypothesis, named crisis-related, is connected to the financial

crisis in 2007/2008. Banks limited their supply of credit which caused credit

rationing.2 Mills (2014) mainly supports this hypothesis. Moreover, Atz &

Bholat (2016) state that mistrust in the banking industry after financial crises

could favor P2P lending for lenders as well as for borrowers. The third hy-

pothesis, called internet-related, explores the readiness of society to use on-line

based financial services without the need to physically visit a bank branch. In

2Credit rationing is a situation when lenders (the supply side of credit) limit their offers
of credit even though borrowers (the demand side of credit) are willing to pay high-interest
rates (Mills, 2014).
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conclusion, Havrylchyk et al. (2016)’s findings support the competition-related

hypothesis. They, furthermore, add that P2P lending spread more in areas

with lower density of banks and their branches.

2.1.2 P2P Lending Growth

The first P2P lending platform was ZOPA. ZOPA was establisted in the United

Kingdom in 2005. Since then, it has been possible to observe the substantial

growth of P2P lending platforms all around the world. In the last couple of

years, we can even speak about the exponential growth of P2P lending plat-

forms. The compound annual growth rate (CAGR) of P2P lending in the

United States and the United Kingdom is 151% since 2010 according to Leech

(2015)’s study. Wardrop et al. (2015) state that the CAGR of P2P consumer

lending in continental Europe was 113% between 2012 and 2014. The com-

pound annual growth rate in China is expected to be even higher than in geo-

graphical areas mentioned above. Deer et al. (2015) and Leech (2015) estimate

the CAGR of China P2P lending to be more than 200% since its inception in

2007. It is, however, tough to estimate the growth of China P2P lending plat-

forms as there are hundreds of P2P lending platforms. Deer et al. (2015) states

that there were 1,575 P2P lending platform in China in 2014. Comparing the

countries based on the total value of issued loans, Leech (2015) claims that loans

in the value of $40 billion were issued in China in 2014. This number makes

China the biggest P2P lending marketplace in the world. For comparison, the

loans in the value of about $11 billion were issued in the United States and in

the value of about $4.6 billion in the United Kingdom in 2014. The continental

Europe is significantly behind with only $0.5 billion in issued P2P loans in 2014.

2.1.3 Research Based on P2P Lending Data

The majority of scientific papers based on publicly available P2P lending data

use Prosper data. Prosper was the first P2P lending platform which made its

P2P lending data public in 2007.3 Bachmann et al. (2011) say that availability

of Prosper P2P lending data has triggered a wave of scientific contributions

and interest in P2P lending. The popularity of Prosper data has been mainly

3Official Prosper website: www.prosper.com
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caused by social network features and Dutch auction for interest rate determi-

nation that used to be part of Prosper P2P lending platform. Prosper removed

the social network features from its platform after the Securities and Exchange

Commission (SEC) regulation in 2008. Similarly, the Dutch auction system for

interest rate determination has been removed from Prosper as well. The op-

timal interest rates for borrowers are currently determined by Prosper, which

is considered to be a standard at P2P lending platforms nowadays. Despite

the early popularity of Prosper data, P2P lending data from Lending Club are

currently more popular because of their better quality and higher number of

independent variables.

The research based on P2P lending data can be divided into four areas. The

first area of research is mainly focused on circumstances before the loans were

funded. This research is primarily based on Prosper data issued before 2008

because the data included social features and Dutch auction system as discussed

in the previous paragraph. Freedman & Jin (2014) and Lin et al. (2013) point

out to the importance of social network connections for loan funding success

and associated interest rate. People with better social network connections are

more likely to get their loans funded and have lower interest rates. Furthermore,

Duarte et al. (2012) found out that borrowers who included their photo and

were perceived to be trustworthy were more likely to get funded. The second

area of research examines the determinants of borrower’s default. Serrano-

Cinca et al. (2015) and Carmichael (2014) found out several determinants, such

as annual income or loan purpose, which are significant variables for borrower’s

default prediction. These two studies are then further discussed in Chapter 5,

called Data Preparation. The next research area is portfolio management based

on P2P lending data. For instance, Singh et al. (2008) divided with the help of

decision tree P2P lending loans into different groups based on the loan’s risk

and return. They calculated then optimal portfolio based on these groups. The

last area of research focuses on the comparison of classification methods based

on P2P lending data. Studies based on Lending Club data are discussed in

Section 3.2, named Comparison of classifiers based on Lending Club data. Our

master thesis can be categorized into this research area.
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2.1.4 Future of P2P Lending

P2P lending is often called the UBER of the financial industry. McMillan

(2014) is a supporter of this idea and considers P2P lending as one of the

biggest threads for the banking industry. Deloitte (2014)’s study: Banking dis-

rupted adds that P2P lending platforms are connecting borrowers with lenders

in a highly efficient manner with very low intermediation costs, which causes a

thread for the current banking business model. These findings are in line with

PwC (2015)’s study: Peer pressure. On the other hand, Foottit et al. (2016)

in their Deloitte (2016) study argue that at least in the United Kingdom the

competitive advantage of P2P lending platforms is not sufficient to threaten

bank’s mainstream lending. Moreover, they expect that P2P lending platforms

will more collaborate and integrate with traditional banks as it has already

been witnessed in the United States.

2.2 Credit Scoring

There are plenty of credit scoring definitions. We like the most the definition

provided by Anderson (2007). Anderson (2007) says that the term credit scor-

ing should be firstly divided into two parts - credit and scoring. The first word

credit comes from the Latin word credo. Credo means I trust in or I believe

in Latin. The word credit as we use it today means buy now and pay later.

The second word scoring refers to the use of numerical methods that helps us

to rank order cases to be able to differentiate between their qualities. In other

words, scoring is a method which assigns a score or a grade describing case

quality. Combining the meaning of credit and scoring, Anderson (2007) states

that credit scoring is the use of statistical models to transform relevant data

into a numerical score describing the likelihood of a prospective borrower’s de-

fault.

Abdou & Pointon (2011) say that even though the history of credit can

be traced back to around 2000 BC, the history of credit scoring is very short.

They estimate the length of credit scoring history to be only about six decades.

Moreover, Abdou & Pointon (2011) add that the credit scoring literature is very

limited. According to them, the use of credit scoring started to be broadly pop-

ular at the beginning of the 21st century. The increased popularity of credit
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scoring has been mainly caused by huge technological advancements and by

the introduction of advanced credit scoring techniques. Credit scoring falls

into the risk management category of banks and other financial institutions.

Apart from that credit scoring is regarded as an indispensable part of risk man-

agement helping to maximize the expected profit from clients.

The expected profit can be maximized when borrower’s default is mini-

mized. To minimize the borrower’s default, it is necessary to decrease the

information asymmetry between borrowers and lenders. Borrowers have more

information than lenders about their ability to pay back their liabilities. There-

fore, borrowers are asked to provide some information about themselves and a

loan itself as a part of their loan application. The loan application process at

Lending Club is described in the next section. Based on the loan application

information, a credit scoring model can predict the borrower’s creditworthiness.

Nevertheless, to be able to predict the borrower’s creditworthiness, the credit

scoring model must be firstly trained on similar past loan applications data

with known repayment results.

2.3 Lending Process at Lending Club

The knowledge of a lending process at Lending Club can help a reader better

understand what the criteria for loan application approval are. Moreover, the

reader gets to know the way the Lending Club data are generated. The bor-

rower’s credit characteristics, such as FICO score, needed for loan application

approval has changed several times so far. For example, the minimum FICO

score for loan application has been reduced to 600 points.4 Nevertheless, the

minimal borrower’s FICO score used to be about 650 points according to our

information. This number is in line with our Descriptive Statistics in Table 5.3

where the minimal FICO score in our data set is 662. As far as we know, the

fundamental process of loan application has not changed, even though the loan

application requirements and options alter in time.

4We do not have a personal experience with the lending process at Lending Club. There-
fore, we do use two websites as the source of our information. The first website is the official
Lending Club page with the How to Apply information: https://help.lendingclub.com/hc/en-
us/articles/214496857-How-do-I-get-a-loan-. The second website is a detailed review
for potential Lending Club borrowers: http://www.magnifymoney.com/blog/personal-
loans/lendingclub-review-borrowers-insiders-reveal578301843.
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The primary criterion that is expected to be a minimum requirement for

borrower’s loan application at Lending Club is the value of FICO score. As

being already discussed above, the minimum FICO application score should be

at least 600. The FICO score ranges from 300 to 850. The higher the FICO

score, the more creditworthy is the borrower. Borrower’s credit file information

of national credit bureaus in the United States are the main source for FICO

score computation. The exact formula for FICO score calculation is, however,

secret. Nevertheless, it has been disclosed that FICO score is computed based

on following five components with associated weights in percentage: 35% pay-

ment history, 30% debt burden, 15% length of credit history, 10% type of credit

used and 10% of recent credit inquiries.5

After passing the minimum requirement for loan approval described above,

the borrower needs to provide some more information about himself or herself

and a required loan. At first, the borrower is asked about his or her self-

reported annual income. Afterwards, the borrower should choose his or her

current home situation with possible options: mortgage, rent, own or other.

The employment status is asked next. The length of employment is known from

a borrower file based on his or her Social Security Number (SSN). Concerning

the loan information, the borrower is asked for a loan amount, a loan purpose

and a loan description. The loan amount ranges from $1,000 to $35,000 in our

data set. The loan purpose has fourteen different categories described in Table

5.4. The information about loan purpose is mandatory. The loan description is

optional and is, therefore, often left blank. Our descriptive statistics show that

the median length of loan description is 0 and the mean value is 103 characters.

Based on the afore-mentioned borrower’s credit file information and his or

her inputs, Lending Club’s credit scoring algorithm determines a borrower’s

creditworthiness. The borrower’s creditworthiness is represented by assigned

credit grade with a related interest rate. Immediately after being scored, loan

listing offer with obtained interest rate is offered to the borrower. If the bor-

rower accepts given loan offer, the loan is listed on the Lending Club platform.

A potential lender can right away find and fund the loan among Lending Club

loan listings. During the loan funding period, the borrower might be asked by

Lending Club to verify his or her self-reported annual income. If the loan is,

5The official FICO score website with information about FICO score composition:
http://www.myfico.com/credit-education/whats-in-your-credit-score/



2. Theoretical Background 10

however, funded in the meantime, then the loan is issued and verification is not

anymore needed. 65.1% of loans in our final data set are verified. The default

rate of verified loans is surprisingly higher (17.8%) than the default rate of not

verified loans (12.3%).6 The Lending Club might know based on the borrower’s

credit file if the verification is needed or not. If the borrower, however, fails

to verify his or her self-reported information, Lending Club removes the listed

loan from its platform.

6For further information regarding the descriptive statistics of our data sets, please, refer
to Chapter 5.



Chapter 3

Literature Review

We divide our literature review into two parts. The first part is devoted to

the current research papers comparing the classification techniques for credit

scoring. This part is connected to the credit scoring part discussed in Chapter

2. The second part of our literature review explores the current literature

comparing classifiers based on the Lending Club data.

3.1 Comparison of Classification Techniques

A proper credit scoring technique is a vital part of long-term success for fi-

nancial institutions including P2P lending platforms. Abdou & Pointon (2011)

conducted an in-depth review of 214 articles and books concerned with ap-

plications of credit scoring in various areas of business. They found out that

there does not exist single overall best classification technique for creation of

credit scoring models. Abdou & Pointon (2011) in line with Hand & Henley

(1997) argue that performance of classification techniques depends on many

characteristics. These characteristics might be available variables in data set,

data structure or just the objective of classification.

Even though one single best credit scoring technique might not exist ac-

cording to the Abdou & Pointon (2011), the amount of literature comparing

different classification algorithms is very rich. The majority of those studies,

such as Yeh & Lien (2009), Tsai et al. (2009) or Akkoc (2012), introduce some

new classification method. These new classifiers are then usually compared

with a limited number of classifiers including Logistic regression. Logistic re-

gression is regarded as an industry standard for credit scoring models (Ala’raj
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& Abbod (2015)). This approach is criticized by Lessmann et al. (2015). Less-

mann et al. (2015) argue that comparing some new classification method, often

specifically fine-tuned and without any prior hypotheses, to the limited number

of classifiers and showing its performance superiority to Logistic regression is

not a signal of methodological advancement.

Another issue, we observe in studies comparing different classification tech-

niques, is the choice of dataset. Some studies, such as Zhang et al. (2007) and

Chuang & Lin (2009), use the Lichman (2013)’s data sets called Australian and

German credit data. Both these data sets are freely downloadable from UCI

Machine Learning Repository. The Australian credit data set has 690 obser-

vations with 14 independent variables and default rate of 44.5%. The German

credit data set has 1,000 observations with 20 independent variables and default

rate of 30%. We regard both these data sets as inappropriate for classifiers’

comparison because of a low number of observations. Wu (2014) has the same

opinion regarding the data set size. Furthermore, although high default rates

of 44.5% and 30% ensure balanced data sets, they do not correspond to the

reality as we see it.

Based on our literature review comparing classification techniques, we con-

sider two studies methodologically outstanding. These studies are Baesens

et al. (2003) and Lessmann et al. (2015). The latter study is an update of the

former study incorporating new findings, such as new classifiers, performance

criteria and statistical testing procedures. Furthermore, Lessmann et al. (2015)

include more data sets than Baesens et al. (2003). Altogether, Lessmann et al.

(2015) compare 41 different classification algorithms based on eight data sets

measured by six various measurement methods.

For the purpose of our master thesis, we take Lessmann et al. (2015)’s

results of nine chosen individual classifiers and one homogenous ensemble clas-

sifier. These results were relatively recalculated for classifiers of our interest and

are depicted in Table 3.1. The nine individual classifiers are: Artificial neural

network (ANN), Logistic regression (LR), Linear discriminant analysis (LDA),

Support vector machine with radial basis kernel function (SVM-Rbf), Lin-

ear support vector machine (L-SVM), Bayesian network (B-Net), Näıve Bayes

(NB), k-Nearest neighbors (k-NN), Classification and regression tree (CART).

The only homogenous ensemble classifier is Random forest (RF). We include
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Random forest (RF) in our comparison because of its popularity and wide

range of usage. Each classifier was tested on eight different data sets, and its

results were measured by six various performance measurement techniques in

Lessmann et al. (2015)’s study. The six performance measures are Area under

the curve (AUC), Percentage correctly classified (PCC), Brier score (BS), H-

measure (H), Partial Gini index (PG) and Kolmogorov-Smirnov statistic (KS).

For example, looking at classifier Logistic regression, abbreviated as LR in

Table 3.1, a reader can see that Logistic regression was third best algorithm

measured by area under the curve, abbreviated as AUC, methodology based

on the eight data sets. Overall, the Logistic regression (LR) ranks as third best

classifier out of our ten chosen classifiers.

We do consider Lessmann et al. (2015)’s results in Table 3.1 as a baseline

ranking for classifiers of our interest. The main goal of our master thesis is,

however, to find the best classification technique based on the Lending Club

data set. Lessmann et al. (2015) do not use Lending Club data in their study.

Therefore, as Abdou & Pointon (2011) and Hand & Henley (1997) argue, we

might arrive at completely different results than Lessmann et al. (2015) based

on the Lending Club data set.

3.2 Comparison of Classifiers Based on Lending

Club Data

As far as we know, there are only three P2P lending platforms that make their

data about issued loans and borrowers characteristics public. These platforms

are Bondora, Prosper and Lending Club. We have not found any studies com-

paring classification techniques based on Bondora or Prosper data sets. Bon-

dora is the youngest P2P lending platform among these three platforms. Even

though Bondora was founded in 2009, it experienced the first rapid growth in

2013. The number of issued loans in January 2013 was almost fourteen thou-

sand and more than three times more in January 2014.1 The average loan

duration at Bondora is 47 months. It means that majority of loans has not

yet reached their maturity to be properly analyzed. We assume that current

immaturity of loans issued at Bondora might be the reason why we have not

1Statistics from Bondora webpage: https://www.bondora.com/en/public-statistics
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Table 3.1: Classifiers ranking according to the Lessmann et al. (2015)

Classifier
Performance Measurement

Avg.
Score

Total
Ranking

AUC PCC BS H PG KS

RF 1 1 1 1 2 1 1.2 1

ANN 2 2 7 2 1 2 2.7 2

LR 3 3 2 3 6 3 3.3 3

LDA 6 4 3 4 8 6 5.2* 4

SVM-Rbf 4 5 8-9 5 4 4 5.2* 5

SVM-L 5 6 8-9 6 3 5 5.7 6

B-Net 7 7 4 7 7 7 6.5 7

NB 9 8 5 8 5 8 7.2 8

k-NN 8 9 6 9 10 9 8.5 9

CART 10 10 10 10 9 10 9.8 10

Source: Authors’ own recalculation of Lessmann et al. (2015)’s ranking results.
Classifiers: RF - Random forest, ANN - Artificial neural network, LR - Logistic regression, LDA - Linear
discriminant analysis, SVM-Rbf - Support vector machine with radial basis kernel function, SVM-L -
Linear support vector machine, B-Net - Bayesian network, NB - Näıve Bayes, k-NN - k-Nearest neighbors,
CART - Classification and regression tree.
Performance measurements: AUC - Area under curve, PCC - Percentage correctly classified, BS - Brier
score, H - H-measure, PG - Partial Gini index, KS - Kolmogorov-Smirnov statistic
Avg. Score: Average score computes the average ranking of classifier based on rankings achieved under
different performance measurements.
* LDA and SVM-Rbf have in our simplified version of Lessmann et al. (2015)’s findings the same average
score. This is because of the simplification. In Lessmann et al. (2015), LDA outperforms SVM-Rbf.

Total Ranking: Total ranking ranks classifiers based on their average score.

yet seen any study comparing classifiers based on these data. There has al-

ready been written many papers, such as Herzenstein et al. (2011) and Zhang

& Liu (2012), based on the Prosper data set. Most of these papers, such as

Pope & Sydnor (2011) and Duarte et al. (2012), are mainly concerned with the

social features of Prosper. For example, Lin et al. (2013) state that borrowers

with stronger network relationships are less likely to default. We suppose that

it is impossible to isolate the effect of the social features in the Prosper data.

Therefore, these data might not be suitable for the comparison of classification

techniques. Lending Club does not support any social features, and all loans in
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our data set are matured. Therefore, we firmly believe that the data, we have

at hand, are convenient for the comparison of classification methods.

To the best of our knowledge, there are only four studies (Wu, 2014; Tsai

et al., 2014; Chang et al., 2015; Malekipirbazari & Aksakalli, 2015) comparing

classification methods based on the Lending Club data.2 We focus on three

aspects of these studies. The first aspect is the data set used. We are inter-

ested to know from which year the data are, how many observations is used

for classification and how many variables are considered. The second aspect is

the use of classifiers. Only one study uses five classifiers, two studies use four

classifiers and once even only two classifiers are used. The last aspect, we are

interested in, is the use of performance measurement techniques. Most of the

studies used three performance measurements. The most popular measurement

technique is Percentage correctly classified (PCC) that is used in three studies.

Each of the above studies was written with a different purpose. For exam-

ple, Wu (2014) argues that the performance of classifiers in the Kaggle.com

competition called ’Give me some credit’ cannot be taken as credible. Wu

(2014) criticizes the Kaggle data set for being artificially created, and that’s

why dubious. The primary goal of her study is to compare Logistic regression

and Random forest on the real data set. Next, the purpose of Tsai et al. (2014)

research is to avoid as many false positive predictions as possible. They, there-

fore, use precision as performance measurement. Moreover, Tsai et al. (2014)

use modified version of Logistic regression with penalty factor to avoid false

positive predictions. Chang et al. (2015) compares the performance of differ-

ent Näıve Bayes distributions and kernel methods for Support vector machine.

Chang et al. (2015) found that Näıve Bayes with Gaussian distribution and

Support vector machine with linear kernel have the best performance based

on the LC data. The main aim of Malekipirbazari & Aksakalli (2015) was to

compare different machine learning algorithms. Even though Malekipirbazari

& Aksakalli (2015) identified the Random forest as best scoring classifier, the

ranking of remaining classifiers is not in line with Lessmann et al. (2015)’s

findings.

2Jin & Zhu (2015) compare classification methods based on the Lending Club data set as
well. They classify, however, predictions into three or four categories instead of two which
makes the comparison with above-mentioned papers challenging. We do not, therefore,
include this paper into our comparison.
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Table 3.2: Classifiers comparison based on the Lending Club data

Credit scoring studies
based on

Lending Club data

Data Classifiers Performance
measurement
techniqueYear # of observations # of variables LR RF k-NN NB L-SVM SVM-P SVM-Rbf

Wu (2014) 2007-2011 33 571 22 1 2 PCC, AUC

Tsai et al. (2014) 2007-2013 91 520 n/a 1 3 4 2 PVV

Chang et al. (2015) 2007-2015 n/a n/a 3 1 2 4 5 PCC, G-mean

Malekipirbazari &
Aksakalli (2015)

2012-2014 68 000 16 4 1 3 2
PCC, AUC,

RMSE

Source: Authors’ information extraction and ranking computation based on Wu(2014), Tsai et al. (2014), Chang et al. (2015) and Malekipirbazari & Aksakalli (2015)’s
research.
Classifiers: LR - Logistic regression, RF - Random forest, k-NN - k-Nearest neighbors, NB - Näıve Bayes, L-SVM - Linear support vector machine, SVM-P - Support vector
machine with polynomial kernel function, SVM-Rbf - Support vector machine with radial basis kernel function.

Performance measurements: PCC - Percentage correctly classified, AUC - Area under curve, PVV - Postive predictive value / Precision, RMSE - Root-mean-square error
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We do consider Lessmann et al. (2015) classifier ranking as our baseline.

Nevertheless, none of the above-discussed papers using Lending Club data in-

cludes classifier rankings which resembles Lessmann et al. (2015)’s findings.

One of the possible explanations, as stated by Hand & Henley (1997) and

Abdou & Pointon (2011), might be the particular structure of data set, avail-

able variables or purpose of classification. In other words, studies based on the

Lending Club data may produce different rankings than the one from Lessmann

et al. (2015). To be able to confirm this, we need to overcome shortcomings of

studies from Table 3.2.

In our opinion, the studies based on Lending Club data set have three dif-

ferent types of shortcomings. The first shortcoming is the type of used data set.

We explain this deficit more deeply in Chapter 5 which is devoted to the data

preparation. The second shortcoming is the comparison of a limited number of

classifiers. At most five classifiers are compared. Moreover, none of the studies

includes nowadays very popular Artificial neural network (ANN) or other clas-

sification techniques, such as k-Nearest neighbors (k-NN). The last issue, we

observe, is the choice of classifiers performance measurements. For example,

Tsai et al. (2014) use only one performance measurement for classifier com-

parison. We firmly believe that performance results based on one performance

measurement cannot be robust. Nevertheless, more performance measurements

from the same measurement group might not improve the situation as well.3

Chang et al. (2015) uses, for instance, Percentage correctly classified, Precision

and G-mean as performance measures. All of them are, however, from the

same performance measurement group based on the confusion matrix. Thus,

the Chang et al. (2015)’s results might not be robust because measurement

techniques from this performance measurement group could favor some clas-

sification techniques. Furthermore, none of the studies from Table 3.2 has a

general framework for classifiers performance ranking. In other words, there

is no overall classifier performance ranking based on the chosen performance

measurements. In most cases, classifiers performance is compared based on

individual performance measurements. We create classifiers performance rank-

ing in Table 3.2 based on average classifier ranking across chosen performance

measures. For example, in Malekipirbazari & Aksakalli (2015)’s paper in Table

3.2, Random forest (RF), labeled with 1, is the best classifier based on average

3More information about different performance measurement groups and their advantages
and disadvantages might be found in Section 6.2 Performance Measurements.
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ranking of all three performance measurements. The last shortcoming, we ob-

serve, is the absence of modern performance measurement techniques, such as

Partial Gini index or Kolmogorov-Smirnov statistics. Neither of studies from

Table 3.2 uses these measures.

The main contribution of this master thesis is to overcome shortcomings of

the papers mentioned above, and to carry out the proper comparison ranking

of classifiers based on the Lending Club data set. Our contribution has three

parts. The first part is the data set used. Compared to the studies in Table 3.2,

we use the largest data set. Our data set has more than 200,000 records. All

of our records are matured. In other words, we know their final loan resolution

status. Moreover, our data preparation approach is more exhaustive and accu-

rate than in papers from Table 3.2. The second part of our contribution is the

number of classification methods used. The previous studies based on Lending

Club data have used at most five methods. We use ten classification methods,

which makes our comparison comprehensive. Finally, we use six performance

measurements from three different performance measurement groups. Using

different measurement techniques makes our findings robust. We do believe

that the aforementioned reasons make our master thesis unique.



Chapter 4

Hypotheses

As stated in the literature review part, we consider Lessmann et al. (2015)’s

findings as the baseline for our classifiers performance ranking. Their findings

are depicted in Table 3.1. Lessmann et al. (2015)’s findings state that Random

forest is the best classifier among the classification algorithms of our interest.

This finding is in line with Malekipirbazari & Aksakalli (2015) who conducted

their research based on the Lending Club data. Malekipirbazari & Aksakalli

(2015) used, however, only four classification methods altogether. Moreover,

Wu (2014) and Tsai et al. (2014) argue that Logistic regression is better clas-

sifier than Random forest based on the Lending Club data. Neither of these

studies based on the Lending Club data, nevertheless, compares Random forest

to other individual classification techniques, such as Artificial neural network

or Bayesian network. Based on our baseline ranking from Table 3.1, we state

following hypothesis:

H1: Random forest is the best classifier among our classifiers of interest based

on the Lending Club data.

Artificial neural network is an attractive alternative to conventional classi-

fication techniques, such as Logistic regression or Linear discriminant analysis.

Abdou et al. (2008) in line with Lessmann et al. (2015)’s findings found out

that Artificial neural network outperforms Logistic regression that is consid-

ered to be an industry standard. Nevertheless, Artificial neural network was

not used in either of studies based on the Lending Club data from Table 3.2.

Based on the above stated findings, we suggest:
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H2: Artificial neural network outperforms Logistic regression based on the

Lending Club data.

Baesens et al. (2003) conducted their comparison of classification methods

based on eight real-life credit scoring data sets. They measured the perfor-

mance of given classifiers by the Percentage of correctly classified cases (PCC)

and by the Area under the curve (AUC). Baesens et al. (2003) found out that

Logistic regression and Linear discriminant analysis performed very well. Ac-

cording to Baesens et al. (2003), this finding indicates that the credit scoring

data sets used in their study are only weakly non-linear. Moreover, looking at

our benchmark ranking in Table 3.1, we can observe that Logistic regression

is the third and Linear discriminant analysis is the fourth best classifier. As

our Lending Club data is a credit scoring data, we anticipate a good ranking

of linearly based classifiers. That’s why we introduce following hypothesis:

H3: Linearly based classifiers rank in the first half of classifiers’ ranking based

on Lending Club data.

There are several different distributions of Support vector machine. The

distributions differ from each other in used kernel functions. In the papers

from Table 3.2., we have Support vector machine (SVM) with linear, polyno-

mial and radial basis kernel function. The comparison of these distributions

with Logistic regression yields ambiguous results. Chang et al. (2015) argue

that Support vector machine with linear kernel function outperforms Logistic

regression, but Logistic regression yields better performance than SVM with

radial basis kernel function. On the other hand, Tsai et al. (2014) state that

their modified Logistic regression has higher performance than SVM with lin-

ear kernel function. Furthermore, Malekipirbazari & Aksakalli (2015) found

out that Logistic regression dominates in performance SVM with polynomial

kernel function. Only one performance measure was applied in studies of Chang

et al. (2015) and Tsai et al. (2014). Therefore, their results might be biased

because the performance measurement could favor either Logistic regression or

SVM. Our benchmark ranking says that Logistic regression outperforms SVM

with linear as well as radial basis kernel function. This inference gives rise to

our next hypothesis:
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H4a: Logistic regression outperforms Support vector machine with linear ker-

nel function based on the Lending Club data.

H4b: Logistic regression outperforms Support vector machine with radial basis

kernel function based on the Lending Club data.

Looking at classifiers ranking in Table 3.1, linearly based classifiers, namely

Logistic regression and Linear discriminant analysis, have significantly lower

rankings when measured by Partial Gini index compared to the rankings achieved

by remaining performance measurements. Logistic regression is ranked as the

third best classifier with the average ranking score of 3.3. Based on the Par-

tial Gini index measurement, Logistic regression is, however, the sixth best

classifier. This finding is similar to ranking differences for Linear discriminant

analysis too. Linear discriminant analysis is the fourth best classifier with av-

erage ranking score of 5.2. Nevertheless, Linear discriminant analysis is the

eighth best classifier based on the Partial Gini index. We find this outcome as

a clear indication that Partial Gini index might handicap linearly based classi-

fiers. To test this surmise, we pose following hypothesis:

H5: Linearly based classification methods underperform when measured by Par-

tial Gini index in comparison with other performance measurements.



Chapter 5

Data Description

We divide our Data Description chapter into four parts. In the first part, called

Data Preparation, we introduce all available data we have at hand. Further-

more, we describe why we choose the time frame from 2009 to 2013 for our

data set and which variables are not appropriate for our final data set. Data

Transformation is the second part of our Data Description. We describe here

which variables have been transformed and how was the transformation done.

The descriptive statistics of our data set are described in the third part, called

Descriptive Statistics. This part includes correlation coefficient matrix of indi-

vidual Lending Club variables too. The last part, called Training, Validating

and Testing Data, describes our 5-fold cross-validation approach we choose

for training, fine-tuning and testing of our classifiers. Besides all the above

mentioned, we show the advantages of our data preprocessing methodology in

comparison with papers from Table 3.2 that use Lending Club data too.

5.1 Data Preparation

Our data was downloaded from a registered Lending Club account on the 3rd

March 2017. The data can be downloaded from the Lending Club statistics web

page without registration as well.1 Nevertheless, as stated by Lending Club,

the full version of data files might be downloaded only after registration. For

example, we observe that the size of uncompressed CSV data file from years

2012-2013 downloaded with the registered account is about 4 MB bigger than

1Lending Club web page for data download: https://www.lendingclub.com/info/download-
data.action
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Figure 5.1: Number of issued loans by years

Source: Authors’ production based on downloaded Lending Club data.

the data file from same years downloaded without registration.2 What are the

exact differences between the data sets with and without registration is beyond

the scope of our master thesis.

Our downloaded data sets from years 2007 - 2013 has 227,963 observations

and 115 variables. Figure 5.1 shows the number of issued loans by years. Look-

ing at Figure 5.1, we can observe a rapid growth of issued loans. The number

of issued loans at Lending Club doubles each year. We have decided not to

include loans from years 2007 and 2008 into our final data set. We believe that

these loans might be influenced by the Great Financial crisis in 2007/2008.

Moreover, only 1,812 loans was issued in 2007 and 2008. We do not, there-

fore, lose many observations in our final data set. Furthermore, there are 115

variables in the downloaded data set. All 115 variables with their description

can be found in Appendix A. Majority of these variables, however, have a large

number of missing values or is not relevant for our default prediction. We do

discuss the detailed selection process of suitable variables later.

2The size of 2012-2013 CSV data file is 157,421 KB with registration and 153,016 KB
without registration
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We choose the time frame from 2009 to 2013 for our data set because the

majority of loans has already had its maturity. The loans at Lending Club

can be either issued at 36 or 60 months. Also, all our loans with 36-month

duration should have already had their maturity because they were issued no

later than in 2013. Besides, the majority of issued loans has 36-month dura-

tion. There are about four times more issued loans with 36-month than with

60-month duration. Further, loans with 60-month duration started to be first

issued at Lending Club in 2010. Not all loans with the duration of 60 months

issued from 2011 to 2013 have, however, reached their maturity yet. Such loans

are filtered out. This process is described in the following part of this chapter.

Even though not all our loans with 60-month duration have reached their ma-

turity yet, we do believe that our chosen time frame is better than in papers

from Table 3.2 using likewise Lending Club data. For example, Chang et al.

(2015) uses data from 2007 to 2015. Considering only loans with 36-month

duration, none of these loans issued between 2012 and 2015 could have reached

their pre-arranged maturity yet. In other words, all 36-month loans issued be-

tween 2012 and 2015 having a final status are either prematurely paid off or

defaulted. We do not know whether most loans are prematurely paid off or

defaulted. As the number of loans, however, doubles each year, the majority

of loans in the final data set can be prematurely paid off or defaulted, which

might skew the default rate. Such default rate does not then correspond to

the reality and makes the data set biased. Similarly to Chang et al. (2015),

Tsai et al. (2014) used data set from years 2007-2013 and Malekipirbazari &

Aksakalli (2015) used even data from 2012 to 2014.

Out of the 115 variables, we choose only 23 variables including the variable

with final loan status result. These variables might be found in Table 5.1.3

Otherwise, there are four main reasons for leaving out the majority of remain-

ing variables. The first reason is that many variables, such as open acc 6m and

total bal il, do not include any values.4 Another reason for leaving out variable

is a high number of missing values. We leave out variables, such as total bc limit

and pct tl nvr dlq with more than five percent of missing values. Variables with

3The description of variables with label No in column Transformed are taken from the
Lending Club official websites. The description of transformed variables is authors’ produc-
tion.

4We use abbreviated names of variables provided by Lending Club. These abbreviated
names of variables are written in italics for better clarity. The full description of abbreviated
names can be found in Appendix A.
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Table 5.1: Included Lending Club variables

Transformed Abbreviated Name Description

No acc now delinq The number of accounts on which the borrower is now delinquent.

No annual inc The self-reported annual income provided by the borrower during registration.

No chargeoff within 12 mths Number of charge-offs within 12 months.

No delinq 2yrs
The number of 30+ days past-due incidences of delinquency in the borrower’s
credit file for the past 2 years.

No delinq amnt
The past-due amount owed for the accounts on which the borrower is
now delinquent.

No dti
A ratio calculated using the borrower’s total monthly debt payments on the total
debt obligations, excluding mortgage and the requested LC loan, divided by
the borrower’s self-reported monthly income.

No home ownership
The home ownership status provided by the borrower during registration or
obtained from the credit report.

No inq last 6mths The number of inquiries in past 6 months (excluding auto and mortgage inquiries).

No loan amnt The listed amount of the loan applied for by the borrower.

No open acc The number of open credit lines in the borrower’s credit file.

No pub rec Number of derogatory public records.

No pub rec bankruptcies Number of public record bankruptcies.

No purpose A category provided by the borrower for the loan request.

No revol util
Revolving line utilization rate, or the amount of credit the borrower is using
relative to all available revolving credit.

No tax liens Number of tax liens.

No term
The number of payments on the loan. Values are in months and
can be either 36 or 60.

No total acc The total number of credit lines currently in the borrower’s credit file.

No verication status Indicates if income was verified by LC or not verified.

Yes loan status
Final status of loan has binary outcome. 0 for Fully paid loans and
1 for Charged off loans.

Yes emp length
Number of years in employment represented by continues variable
going from 0 to 10.

Yes desc Number of characters included in loan description.

Yes earliest cr line Number of years since the first credit line has been opened.

Yes fico range avg The average value of fico range low and fico range high.

Legend: The column Transformed signifies if a variable has its original form or if it has been transformed. For overview of
variables’ original descriptions see Appendix A. For overview of variables’ transformation see section 5.2 Data Transformation.

less than five percent of missing values, such as tax lieans and revol util, have

their missing values replaced.5 We replace these missing values with the help

of MICE R package. The abbreviation MICE stands for Multivariate Impu-

tation via Chained Equations. This package is well described in van Buuren

& Groothuis-Oudshoorn (2011). Under the assumption that missing data are

Missing at Random (MAR), the missing values are predicted by regression on

5Variables tax lieans and revol util have even less than one percent of missing records.
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observed values. Continues missing values are by default predicted by linear

regression. Another reason for leaving out variables was their constant values.

For example, variables pymnt plan and application type have only one constant

value for all observations. These variables do not have any significant impact

on borrower’s default and have been, therefore, removed. Last reason for leav-

ing out a variable is a lack of its information value. For example, variable url,

which represents web link to the loan listing, or variable member id, assigning

a unique number to a borrower, have in our opinion no information value for

default prediction.

Serrano-Cinca et al. (2015) and Carmichael (2014) research what are the de-

terminants of borrowers’ default based on the Lending Club data set. Serrano-

Cinca et al. (2015) identify ten variables which are significant for default pre-

diction. Carmichael (2014) identify ten variables too. These two papers have

six variables in common, for example annual inc and earliest cr line. We in-

cluded nine out of ten from Serrano-Cinca et al. (2015) and similarly nine out

of ten variables from Carmichael (2014) in our final data set. According to

us, this fact denotes the high quality of variables we have chosen. The only

variable similar for both studies which we have not included in our data set is

grade. The variable grade represents the grade assigned to the loan by Lending

Club. This variable has been created by Lending Club’s credit scoring system.

Therefore, the default identification power of this variable is very strong. That

is the reason why we leave out this variable. All variables included in our data

set are depicted in Table 5.1.

5.2 Data Transformation

There are several variables we have transformed. These variables are loan status,

emp length, desc, earliest cr line, fico range low, and finco range high.

Official Lending Club description of the untransformed version of these vari-

ables is included in Table A.1 in Appendix A. They are labeled with INC*. It

means that these variables are included in our data set, but they have been

transformed. All the transformed variables with authors’ description can be

found in Table 5.1. The loan status is evidently the most important variable

for our purpose. It used to describe what is the current status of a loan. There

were seven possible loan statuses. Overview of possible loan statuses includ-
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Table 5.2: Number of loans by loan status

Loan Status # of loans

Fully Paid 178,500

Charged Off 33,333

Current 13,307

Late (31-120 days) 543

In Grace Period 346

Late (16-30 days) 105

Default 17

Total 226,151

ing their issued numbers in our data set is displayed in Table 5.2. We are,

however, only interested in having loan status with the binary outcome - 0 for

paid back and 1 for defaulted loans. We have, therefore, labeled all loans with

status Fully Paid as 0 because they have been paid back.6 Otherwise, we have

filtered out all loans with status Current as we do not know their final status.

Loans with status Charged Off are defaulted loans. We have labeled them with

1. There are four more loan statuses used for loans with delayed payments.

A loan status In Grace Period means that a borrower is at most 15 days late

with loan repayments. Loan statuses with names Late (16-30 days) and Late

(31-120 days) are self-explaining in our opinion. Loans with status Default are

more than 120 days past due. According to the Lending Club statistics, loans

that are more than 90 days past due have 85% chance of not being paid back

at all.7 Based on this statistic, we have marked all loans with status Default

as defaulted, thus with 1. Moreover, all loans with more than 90 days past due

from Late (31-120 days) has been marked as defaulted too. All other loans

that are past due but not more than 90 days have been filtered out. Altogether

13,871 loans have been filtered out. Our data set has 212,280 records. Com-

paring the size of our data set to the papers from Table 3.2 or to Lessmann

et al. (2015), we have by far the biggest data set.

6For better clarity, we write the type of loan status, such as Fully Paid, in italics.
7Official Lending Club statistics: https://www.lendingclub.com/info/demand-and-credit-

profile.action
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The variable emp length describes how long has been a borrower employed

before asking for a loan. The values of emp length, such as 1 year, 2 years and

10+ years, make this variable categorical. For better usage, we have decided to

make this variable continues going from 0 to 10. The 0 value of our emp length

variable means that a borrower worked less than 1 year before applying for a

loan. The maximal value of emp length which is 10 includes all the borrowers

who have worked 10 or more years by the same employer.

Every borrower can describe why he or she needs to borrow money. This

loan description is included in Lending Club data under the variable desc. In-

stead of text description meaning provided by a borrower, we are interested in

a number of characters a borrower used for his or her description. That’s why,

our variable desc contains number of characters used in loan description.

As being already described in Chapter 2, the length of credit history is an

important part of FICO score. Furthermore, Serrano-Cinca et al. (2015) and

Carmichael (2014) argue that the length of credit history is a significant deter-

minant of borrower’s default. In our data set, we have variable earliest cr line,

in the form month-years, which represents the month and the year when the

first borrower’s credit line was opened. We have transformed this variable to

show how many years have passed since the first credit line was opened. As

we have the data from the end of 2016, we do consider the year 2017 as our

reference year. For example, a borrower with earliest cr line in value of 5 has

opened his or her first credit line 5 years ago.

The last variables, we have modified are fico range low and fico range high.

The Lending Club data does not contain the exact value of FICO score. It

contains FICO score in a range of four points with lower and upper bounds. In

other words, the difference between fico range high and fico range low is four

points. For our purpose, we have taken an average of these two variables. The

newly created variable is called fico range avg.
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5.3 Descriptive Statistics

We have chosen 23 variables including the loan status for our final data set. 18

out of 23 variables are continues. During our descriptive statistics of contin-

ues variables, we found out that there were some borrowers with suspiciously

high annual income. For example, there was a borrower with reported annual

income of $ 7,141,778 who applied for a loan in the value of $ 14,825. We

considered this record to be erroneous. Furthermore, there were altogether 28

records with reported annual income higher than $ 1 million. We deleted all

these records from our data set because they might have been erroneous and

skewed so our results. After this change, there are 212,252 records in our final

data set. Otherwise, we have not found any suspicious values by exploration of

remaining variables. The descriptive statistics of continuous variables including

loan status is shown in Table 5.3.

Looking at last column of Table 5.3, called t-test, we can see that for ma-

jority of our continues variables there are significant differences between their

average values for loans with status Fully Paid and Charged Off. Fully Paid

loans have significantly lower loan amount (loan amnt) and longer loan descrip-

tion (desc count) than Charged Off loans.8 Borrowers who paid off their loans

have higher annual income (annual inc), higher FICO score (fico range avg)

and longer credit history (earliest cr line) than defaulted borrowers. Besides,

borrowers with Fully Paid loans have lower debt-to-income ratio (dti), were less

deliquent in past two years (delinq 2yrs) and asked for less loans in past six

months than (inq last 6mths) borrowers with Charged Off loans. For further

information about significant differences of continues variables please refer to

Table 5.3.

The remaining five variables are categorical. These variables are loan status,

home ownership, purpose, term, and verification status. The descriptive statis-

tics of categorical variables, except for loan status, is depicted in Table 5.4.

Table 5.4 contains a column with default rate of given categorical variables.

Default rate is calculated based on loan status as ratio of Charged Off loans

to total number of loans. The overall default rate is 15.91% in our final data set.

8For better clarity, we add abbreviated names of variables in parentheses. The descriptive
statistics of these abbreviated variable names cas be found in Table 5.3.
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Table 5.3: Descriptive statistics of continuous variables

Statistics /
Abbreviated Name

Mean St. Dev. Min Median Max

Average value for
loan status:

Fully Paid Charge Off t-test

loan amnt 13,406 7,958 1,000 12,000 35,000 13,161 14,704 -31.23***

emp length 5.849 3.585 0.000 6 10 5.836 5.919 -3.93***

annual inc 70,986 45,017 4,000 60,000 1,000,000 72,103 65,086 28.45***

desc count 103.1 214.2 0 0 3,959 104.1 98.11 4.67***

dti 16.29 7.56 0.00 16.01 34.99 16.02 17.72 -37.97***

delinq 2yrs 0.22 0.67 0 0 29 0.212 0.232 -3.43***

earliest cr line 18.88 7.00 6 18 71 18.96 18.42 13.23***

fico range avg 702 32 662 697 848 704 694 62.51***

inq last 6mths 0.82 1.04 0 0 8 0.79 0.97 -27.17***

open acc 10.65 4.61 0 10 62 10.62 10.84 -7.89***

pub rec 0.098 0.385 0 0 54 0.097 0.104 -3.07***

revol util 0.565 0.243 0.000 0.587 1.404 0.556 0.608 -37.02***

total acc 24.04 11.19 2 23 105 24.1 23.71 5.77***

acc now delinq 0.002 0.052 0 0 5 0.002 0.003 -2.26**

chargeoff within 12 mths 0.004 0.074 0 0 5 0.004 0.004 1.71*

delinq amnt 6.81 476.48 0 0 65,000 6.62 7.82 -0.40

pub rec bancruptcies 0.078 0.279 0 0 8 0.077 0.083 -3.33***

tax liens 0.011 0.222 0 0 53 0.012 0.011 0.87

Source: Authors’ descriptive statistics of continues variables based on Lending Club data.

Legend: Stars in the column t-test signify whether the difference in average values for Fully Paid and

Charge Off loans is significant. *** denote significance at 1% level, ** at 5% level and * at 10% level.

Examining Table 5.4, it is clear that the main purpose for loan applica-

tion at Lending Club is debt consolidation (56.7% of all loans) or repayment of

credit cards (21.3% of all loans). Considering the default rate for different loan

purposes, the loans with purpose small business are by far riskier ones (default

rate of 26.2%). On the other hand, loans with purpose car (default rate of

11.1%) and major purchase (11.9%) belong to the safest loans. Looking at the

variable home ownership, mortgage (49.6% of all loans) and rent (42.2%) are

by borrowers the most commonly chosen options for description of their home

situation. Surprisingly, people who own their home have significantly higher

default rate (16.2%) than people who has mortgage (14.6%).9 Furthermore, the

majority of loans in our data set (80.6% of all loans) has 36-months duration.

9The p-value of this difference is 1.009 · 10−7.
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Table 5.4: Descriptive statistics of categorical variables

Variable name Percentage (number)
of loans

Default rate
(%)

- Levels of variable

purpose

- debt consolidation 56.7 % (120 285) 16.9 %
- credit card 21.3 % (45 119) 13.1 %
- home improvement 5.8 % (12 369) 13.8 %
- other 5.7 % (12 160) 18.5 %
- major purchase 2.6 % (5 574) 11.9 %
- small business 2.0 % (4 337) 26.2 %
- car 1.6 % (3 364) 11.1 %
- wedding 1.0 % (2 186) 12.4 %
- medical 1.0 % (2 150) 16.9 %
- moving 0.7 % (1 573) 16.7 %
- house 0.7 % (1 394) 16.3 %
- vacation 0.6 % (1 263) 15.8 %
- educational 0.1 % (260) 16.5 %
- renewable energy 0.1 % (218) 19.3 %

home ownership

- mortgage 49.6 % (105 229) 14.6 %
- rent 42.2 % (89 523) 17.3 %
- own 8.2 % (17 346) 16.2 %
- other 0.1 % (114) 21.9 %
- none 0.02 % (40) 17.5 %

term

- 36-months 80.6 % (171 137) 12.4 %
- 60-months 19.4 % (41 115) 30.5 %

verification status

- verified 65.1 % (138 148) 17.8 %
- not verified 34.9 % (74 104) 12.3 %

Source: Authors’ descriptive statistics of categorical variables based on Lending Club data.
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Moreover, 36-months loans have a significantly lower default rate (12.4%) than

60-months loans (30.5%). As being already discussed in section 5.1, we think

that the high default rate of 60-months loans is caused by the earlier default

of some loans and mainly because of the 60-months loans with the current sta-

tus which were filtered out. The last categorical variable is verification status.

Most of the loans (65.1%) has been verified. They have, however, significantly

higher default rate (17.8%) than loans with not verified information (12.3%).

Based on borrower’s credit file, Lending Club might not require the verifica-

tion of borrower’s self-reported information because the borrower is considered

to be creditworthy. This approach is justifiable because of the lower default

rate of loan with not verified information. For further information about the

descriptive statistics of categorical variables see Table 5.4.

The last table of our descriptive statistics part is correlation matrix of con-

tinues variables and is included in Appendix C. We were interested to know

which variables are correlated and how strong is the potential correlation. The

correlation which is higher than 0.5 in absolute terms is bold highlighted. There

are four cases when the correlation is higher than 0.5 in absolute terms. The

strongest correlation is between pub rec and pub rec bankrp. This correlation

coefficient is 0.76. Moreover, variable pub rec is considerably correlated (r =

0.63) with variable tax liens. We have, however, decided not to exclude vari-

able pub rec. By excluding variable pub rec, we could potentially lose some

important information about borrower’s public records which are not included

in variables pub rec bankrp and tax liens.

Looking at correlation matrix at Table B.1, we can observe that there are

almost no correlations between loan status and other variables. The variable

fico range avg has in absolute terms the strongest correlation with loan status

and this correlation coefficient is only -0.12. Interpreted in words, the higher

the FICO score, the lower the chance that the borrower will default. A reader

interested in correlation between variables is advised to see Table B.1 in Ap-

pendix C.
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5.4 Training, Validating and Testing Data

To be able to measure the classifiers’ performance, it is needed to divide the

original data set into at least two parts. One of the parts is then the testing

data set on which the classifiers can be scored. There exist many different

methods and their variations to split the original data set, and to create the

testing data set. We describe three most common methods. The first method

is a simple separation into training and testing data set. In the first step, the

classifier is trained based on the training set. In the second step, a trained

classifier is scored on the testing data set. The separation ratio of original

data set is usually between 70% and 80% for training data and remaining 30%

or 20% for testing data. The second method separates the original data set

into three parts - training, validation and testing data set. After the train-

ing of classifier, the validation data set is used for model fine-tuning. The

validation data set helps to improve the classifiers out of training data set ac-

curacy. Some classifiers might have near perfect accuracy based on the training

data. However, these classifiers might perform then very poorly on the test-

ing data. Therefore, the validation data set is used to fine-tune the classifier

before being scored on the testing data set. The last method is called k-fold

cross-validation. We have chosen this approach because it provides valid and

robust results (Salzberg, 1997; Huang et al., 2007) compared to the first and

second method. The detailed explanation of k-fold cross-validation is provided

in the following paragraph.

In the k-fold cross-validation method is the original data set randomly di-

vided into k subsets. Each of the k subsets is used as testing data set in one

of the k iterations. The remaining k-1 subsets are used for model training and

fine-tuning. Salzberg (1997) argues that this approach minimizes the impact of

data dependency. In other words, the risk that the performance of a classifier

depends on the choice of testing set is minimized because the classifier is scored

sequentially on the whole data set. Moreover, Huang et al. (2007) add that use

of k-fold cross-validation serves as guarantee of results validity.

We do use 5-fold cross-validation in our master thesis. So, our original data

set has been randomly divided into five subsets. The partition was done with

the help of IBM SPSS Modeler 18.0. These partitioned subsets are fairly even

in terms of default rates and numbers of observations. The subsets are depicted



5. Data Description 34

in the Table 5.5. We use three subsets for model training, one subset for model

fine-tuning and the last subsets for model testing. As suggested by Salzberg

(1997), after the model is trained and fine-tuned, we retrain the prepared model

on the training and fine-tuning subsets. This process should increase the clas-

sifier’s predictive power because it is retrained on a larger training set. The

sequence of subsets used in different iterations is displayed in Table 5.6 below.

For example in the first iteration, the subsets SS 1, SS 2 and SS 3 are used as

a training data sets. Subset SS 4 is used for model fine-tuning. The fine-tuned

model is then retrained on subsets SS 1, SS 2, SS 3 and SS 4. The model

performance is tested based on subset SS 5. We record classifier’s performance

for each iteration.

The last thing, we want to cover in this section, is the imbalance of de-

faulted and non-defaulted loans in our data set. It has been already shown in

the section 5.3 Descriptive Statistics that the default rate in our data set is

15.91%, which causes our target variable loan status to be imbalanced. Brown

& Mues (2012) show in their study that the higher the imbalance of target

variable in data set, the worse the classifier performance. The prediction per-

formance decreases because classifiers tend to overpredict the majority class the

more the data are imbalanced. HE & Garcia (2010) proposes under-sampling

of majority class, over-sampling of minority, synthetic minority over-sampling

Table 5.5: Partitioned subsets

Subset name # of observations Default rate

SS 1 42 533 15.92 %

SS 2 42 312 16.14 %

SS 3 42 583 15.79 %

SS 4 42 351 15.95 %

SS 5 42 473 15.77 %

Total 212 252 15.91 %

Note: The original data set was divided into five almost equal subsets.

We use abbreviations for our subsets. For example, SS 1 stands for

the first subset.
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technique (SMOTE) and other techniques as a remedy for imbalanced data

sets. In agreement with Lessmann et al. (2015)), we do, however, refrain from

balancing the target variable in our data set for following reasons. Lessmann

et al. (2015) argue that if the imbalanced data affects all classifiers in the same

way, then only the absolute classifiers performance is affected. Thus, this is not

an issue because the relative performance comparison of classifiers, we are in-

terested in, is not influenced. Nevertheless, if imbalanced data affects classifiers

differently, then any means of balancing data would hide the robustness of given

classifier. The second reason for not balancing our data is that the severity of

imbalance might be rather low considering the size of our data set. We have

212,252 observations in our data sets. Therefore, even with the default rate

of 15.91%, there are enough defaulted loans which can be used for classifiers

training. This might, however, be an issue in Brown & Mues (2012) because

their two biggest data sets have only 7,190 and 2,974 records. If Brown &

Mues (2012) use then highly imbalanced data sets with 2.5% or even 1% of the

minority class, it is debatable whether the classifiers performance deteriorates

because of highly imbalanced data or because of a low number of defaulted

loans available for training. Due to the above-stated reason, we believe that

there is no need for balancing our data set.

Table 5.6: Iteration sequence of testing

Iteration
Subsets

Training Fine-tuning Testing

1. SS 1, SS 2, SS 3 SS 4 SS 5

2. SS 5, SS 1, SS 2 SS 3 SS 4

3. SS 4, SS 5, SS 1 SS 2 SS 3

4. SS 3, SS 4, SS 5 SS 1 SS 2

5. SS 2, SS 3, SS 4 SS 5 SS 1

Legend: Five iterations of our 5-fold cross-validation method, and applica-

tion of our subsets in different steps of cross-validation.



Chapter 6

Methodological Background

Our methodological background is divided into two parts. The first part, called

Classification Techniques, theoretically describes all ten individual classifiers

which we use in our master thesis. The second part of our methodological

background is named Performance Measurement. We introduce and describe

here the performance measurement techniques we use to measure the perfor-

mance of our classifiers.

6.1 Classification Techniques

The classification techniques we use in our master thesis might be divided into

the three groups based on the type of algorithm they use. The classifiers use

a linear, non-linear or rule-based algorithm. Logistic regression (LR) and Lin-

ear discriminant analysis (LDA) are classification techniques based on linear

algorithms. The two linearly based classifiers are presented first. The classi-

fier using non-linear algorithm are described next. These are Support Vector

Machine (SVM), Artificial neural network (ANN), k-nearest neighbor (k-NN),

Näıve Bayes (NB) and Bayesian network (B-Net). The last group of rule-based

classifiers contains Classification and regression tree (CART) and Random for-

est (RF). A comprehensive description of our classifiers is beyond the scope

of our master thesis. Our classifiers description is briefly highlighting a key

classifier’s algorithm idea with accompanied equations. An interested reader is

provided with a link to literature explaining the classification techniques more

in depth.
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Before describing given classifiers, we introduce a formal notion which is

used throughout this chapter. x = (x1, x2, . . . , xj) ∈ Rj be a j-dimensional

vector containing borrower’s and loan’s characteristics. Let p(y = 1|xi) be a

probability that a borrower i will default on his or her loan given the input

vector xi with information about the borrower and the loan. Let y ∈ {0; 1}

be a binary outcome of a predicted loan status. The value y = 0 means that

borrower is predicted to pay off his or her loan and y = 1 signifies that borrower

will default on paying back the loan.

6.1.1 Logistic Regression

Logistic regression is the most widely used classification technique for credit

scoring. This algorithm is even considered to be an industry standard for clas-

sification (Ala’raj & Abbod, 2015). Among the main advantages of Logistic

regression belong an easy implementation, relatively high predictive power and

clear interpretation of input variables value for prediction. The following para-

graphs and formulas describing Logistic regression are mainly based on Wendler

& Gröttrup (2016) and Kuhn & Johnson (2013).

Logistic regression does not directly predict if borrower will or will not pay

back his or her loan. Instead, it estimates the probability p(y = 1|xi) that

borrower i will default given the information xi. The probability p(y = 1|xi)

of Logistic regression is estimated in two steps. The first ’regression’ step

estimates a linear regression function g(xi) based on the input variables from

vector xi:

g(xi) = β0 + β1 · xi1 + . . .+ βj · xij. (6.1)

In the second ’logistic’ step, results of regression function g(xi) must be

transformed to be bounded between 0 and 1 which represents then the proba-

bility p(y = 1|xi). The transformation of regression results is done by logistic

function. The logistic function can be mathematically expressed as follows:

f(t) =
et

1 + et
. (6.2)
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Combining regression function (6.1) with logistic function (6.2), we get for-

mula for Logistic regression probability p(y = 1|xi) prediction:

p(y = 1|xi) =
eg(xi)

1 + eg(xi)
. (6.3)

The formula 6.3 converges to 1 for high positive values of regression function

g(xi). On the other hand, probability p(y = 1|xi) goes to 0 for negative values

of regression function g(xi).

6.1.2 Linear Discriminant Analysis

There are two competing approach for explanation of Linear discriminant anal-

ysis (LDA). These approaches are from Welch (1939) and Fisher (1936). We

have decided for Welch (1939)’s approach described in Kuhn & Johnson (2013)

because it is more straightforward. According to this approach, Linear dis-

criminant analyses (LDA) minimizes the total probability of misclassification

based on class probabilities and distribution of input variables. We explain

Linear discriminant analysis (LDA) in two steps. In the first step, we explain

the general idea behind LDA on an example with single input variable. Linear

discriminant function is introduced in the second step as a solution for more

generalized cases with multiple inputs and multiple classes.

Considering binary classification with single input variable, the total prob-

ability of misclassification would be minimized when x is classified into class 1

if p(y = 1|x) > p(y = 0|x).1 Using Bayes’ theorem and previous inequality, x

is classified into class 1 if:

p(y = 1) · p(x|y = 1) > p(y = 0) · p(x|y = 0). (6.4)

To solve more general cases with multiple variable inputs or classes, we

introduce a linear discriminant function. Before defining linear discriminant

function, we must accept an assumption that multivariate distribution of input

1The x can represent in our case single variable vector including some information about
borrower. The p(y = 1|x) is posterior probability calculated with the help of Bayes’ theorem.
For Bayes’ theorem, we need prior probability p(y = 1), known in our case as default rate,
and conditional probability p(x|y = 1).
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variables is normal. Such multivariate distribution has then two parameters.

The first parameter is a multidimensional mean vector µC . It is assumed that

mean vector µC is different for each class. The second parameter of multivariate

distribution is covariance matrix ΣC . Here, we assume that covariance matrices

are identical for different classes. If the above stated conditions are satisfied, we

can mathematically express linear discriminant function for class C as follows:

X ′Σ−1µC − 0.5µ′

CΣ
−1µC + log(p(Y = C)). (6.5)

The equation 6.5 is linear in its input variables and defines separating

boundaries for given classes.

For more information about Linear discriminant analysis or Fisher (1936)’

approach please refer to Kuhn & Johnson (2013).

6.1.3 Support Vector Machine

Support vector machine (SVM) is very versatile and effective algorithm. It can

be used for classification, regression as well as novelty detection. Although be-

ing categorized as a non linear classification technique, Support vector machine

(SVM) can be considered as a connection between linear and non-linear classi-

fiers (Wendler, 2016). As described in Karatzoglou et al. (2006), SVM uses a

simple linear method to classify data in a high-dimensional feature space which

is derived by non linear methods from the original input space. In other words,

input data are transformed into the high-dimensional feature space in which

are the data linearly separable.

The transformation of the input data into the high-dimensional feature

space is done by a kernel function k. There are many different kernel functions

as discussed below. Karatzoglou et al. (2006) generally defines kernel function

k as:

k(x, x′) = 〈Φ(x),Φ(x′)〉, (6.6)

where Φ : X → H is a projection from feature space into high-dimensional



6. Methodological Background 40

feature space.

The data are then separated in the high-dimensional feature space by a

hyper-plane. The optimal hyper-plane has the maximal separation margins

between the two classified classes. The maximal separation is achieved by

solving quadratic optimization problem with constrains. The classification de-

cision function with hyper-plane as parameter can be mathematically expressed

as follows:

f(x) = sign(〈w,Φ(x)〉+ b), (6.7)

where w is a solution of quadratic optimization and b is a constant.

There are eight different kernel function described in Karatzoglou et al.

(2006). We use linear (SVM-L) and Gaussian radial basis (SVM-Rbf) kernel

function in our master thesis. We have chosen these kernel functions because

they have been both compared in Chang et al. (2015)’s study based on the

Lending Club data. Furthermore, Tsai et al. (2014) used SVM-L in their study

too.

The Support Vector Machine with linear kernel function (SVM-L) is the

simplest kernel functions with following expression:

k(x, x′) = 〈x, x′〉. (6.8)

Gaussian radial basis kernel function includes parameter gamma which is

achieved by fine-tuning the SVM-Rbf model. The gamma parameter deter-

mines the shape of hyperplane. An increase in parameter gamma usually means

an increased number of support vectors. The support vectors are the closest

data points which uniquely define the decision boundary. The Gaussian radial

basis kernel function can be expressed as:

k(x, x′) = exp(−γ‖x− x′‖2). (6.9)

For more information regarding Support vector machines and additional
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kernel functions, refer please to Karatzoglou et al. (2006) and Scholkopf et al.

(2000).

6.1.4 Artificial Neural Network

Similarly to the Support vector machines (SVM), an Artificial neural network

(ANN) is a black box algorithm. The ANN’s algorithm is hardly comprehen-

sible and interpretable because of its neuron mechanism with hidden layers.

Despite its black box nature, Artificial neural network is very popular and

powerful algorithm which might be applied to a variety of complex problems

(Wendler, 2016).

Wendler & Gröttrup (2016) says that the human brain served as an inspira-

tion for origin of ANN’s algorithm. Artificial neural network contains multiple

different neurons that functioning corresponds to basic brain processes. To

better explain ANN’s mechanism, we have included figure 6.1. There are three

different types of layers in ANN. The first layer is called an Input layer. Each

input variable from data set is represented by one neuron in the Input layer.

Figure 6.1: Artificial neural network’s mechanism

Source: Authors’ own production inspired by Wendler (2016).
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These neurons are then transformed with an activation function and passed to

neurons in a new layer. This new layer is called Hidden layer. There might be

one or multiple Hidden layer(s). The processed neurons from Hidden layer(s)

are then passed to the last layer. Neurons in the last layer, called Output layer,

belong to one of the final classes or contain prediction information, such as

probability prediction.

There exist different models of Artificial neural network which differ in use

of the activation function. We use Multilayer Perceptron (MLP) model of ANN

with hyperbolic tangent activation function ϕ in our master thesis. The whole

mechanism of ANN can be simply described with following formula:

yc = ϕ(
n
∑

i=0

ωi · xi), (6.10)

where ω0, ω1, . . . , ωn are weights for input neurons (x0, x1, . . . , xn), ϕ is the ac-

tivation function and yc represents the class of output neurons.

6.1.5 k-Nearest Neighbors

The k-Nearest neighbors (k-NN) is one of the simplest classification methods

according to the Wendler & Gröttrup (2016). To classify a new observation

from a testing set, the k-NN classifier simply identifies k nearest observations

from training sample, hence the name k-Nearest neighbors, and the prediction

for new observation is made based on the mean class of k nearest neighbors

from training set. Kuhn & Johnson (2013) add that the class prediction can

be based on median class of k nearest neighbors instead of mean class. In our

master thesis, we use the mean class prediction which is more common.

The accuracy of k-NN’s classification highly depends on the size of neigh-

borhood, i.e. the value of k. Small k value will include only several observations

which have then high impact on classification. It means that the final classifi-

cation might be affected by outliers or some noise in data. On the other hand,

the classification with large value of k is more robust and less prone to outliers

or noise. Nevertheless, in case of imbalanced data set, the majority class might

easily suppress the minority class in favour of majority class.
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There are several methods for measuring the distance between two observa-

tions. Kuhn & Johnson (2013) describe following two methods: Euclidian and

Minkowski distance. The Euclidian distance can be expressed with following

formula:

(

N
∑

i=1

(xai − xbi)
2

)1/2

, (6.11)

where xa and xb are individual observations. The Minkowski distance has

generalized form and is defined as follows:

(

N
∑

i=1

|xai − xbi|
p

)1/p

, (6.12)

where p > 0. For p = 1 is the Minkowski distance same as Manhattan distance

which is frequently used in k-NN algorithm. Furthermore, we can see that for

p = 2, the Minkowski distance is equivalent to Euclidian distance. We use

Euclidian distance in our master thesis. Lastly, it should be added that the

data must be normalized before distance measurement. The normalization is

done to put all variables on the same measurement scale.

For more information about k-Nearest neighbors refer please to Wendler &

Gröttrup (2016) and Kuhn & Johnson (2013).

6.1.6 Näıve Bayes and Bayesian Network

The last two non-linear classifiers in our classifiers’ description are Näıve Bayes

and Bayesian Network. These two classifiers are very similar because they both

use a Bayes rule and differ only in the strength of made assumptions. There-

fore, we have decided to describe both classifiers in one subsection.

The building block of Näıve Bayes and Bayesian Network is the Bayes rule.

The Bayes rule, also known as Bayes theorem, has following definition according

to the Kuhn & Johnson (2013):

p(y = cl|x) =
p(y = cl) · p(x|y = cl)

p(x)
, (6.13)
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where p(y = cl | x) is probability that y belongs to the class cl given vari-

able x. We have already used Bayes rule for explanation of Logistic regression

and Linear discriminant analysis in the previous subsections. Specifically, we

have used there following condition probability: p(y = 1|x). It estimates the

probability that borrowers will default given the input vector x containing bor-

rower’ and loan’s characteristics. The probability p(y = cl|x) is called posterior

probability. On the other hand, p(y = cl is the prior probability and signifies

unconditional probability of class cl being outcome y. The p(x) estimates the

frequency of input vector x in the sample. The last expression p(x|y = cl) is

conditional probability showing probability of observing input vector x given

the outcome class cl.

As being described above, the Näıve Bayes and Bayesian Network differ only

in the strength of their assumptions. The Näıve Bayes makes stronger assump-

tions than Bayesian Network classifier. For instance, the Näıve Bayes assumes

that all input variables in vectors x are independent of each other. Kuhn

& Johnson (2013) says that this assumption is extremely strong and difficult

to claim. However, the independence assumption simplifies the complexity of

computation. For example, under independence assumption the conditional

probability can be computed with the following formula:

p(x|y) =

q
∏

j=1

p(xj|y), (6.14)

where p(xj|y) is the conditional probability of individual input variables.

The Bayesian Network relaxes the independence assumption made in Näıve

Bayes. On the contrary, the Bayesian Network assumes correlation between

independent variables in input vector x. For instance, we use in our master

thesis Bayesian Network with tree augmented network (TAN) which allows

dependencies between individual input variables. In other words, the impact

of independent variable xi on output y depends as well on an independent

variable xj.
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6.1.7 Classification and Regression Tree

Classification and regression tree (CART) belongs to a rule-based classifiers

class. The rule-based classifiers, including Random forest (RF), have a dif-

ferent approach to classification than classifiers based on linear or non-linear

algorithms. Wendler & Gröttrup (2016) says that rule-based classifiers try to

find rules, hence the name, or structures in raw data for determination of final

class. The classification technique is then based on the found rules. These rules

can usually be represented by decision trees which are easily interpretable and

understandable.

There are various versions of decision trees. These versions mainly differ in

the method of node splitting. The Classification and regression tree (CART)

uses the binary splitting method which means that each non-leaf node splits

into two new branches, as described in Wendler & Gröttrup (2016). The node

splitting is determined with the split dispersion measure, called Gini coeffi-

cient.2 Wendler & Gröttrup (2016) defines the Gini coefficient as follows:

Gini(σ) = 1−
∑

l

(

N(σ, l)

N(σ)

)2

, (6.15)

where σ signifies the node, l is a class category, N(σ, l) is the count of obser-

vation with category l in node σ and N(σ) is the total count of observations

in node σ. There is no need for further splitting if Gini index is close to 0. It

happens when the ratio of N(σ, l) and N(σ) is close to 1 which means that the

vast majority of observation in the node σ belongs to the same category.

Gini Gain is used to determine whether and how the next split should be

made. The Gini Gain is defined by Wendler & Gröttrup (2016) with following

formula:

GiniGain(σ, s) = Gini(σ)−
N(σq)

N(σ)
Gini(σq)−

N(σr)

N(σ)
Gini(σr), (6.16)

where σq and σr represent two split nodes from σ and s describes the criteria for

2Please do not confuse the Gini coefficient used for splitting of decision trees with Gini

index used for classifiers performance measurement. Partial Gini index is used in our master
and its description might be found in subsection 6.2.5.
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splitting. From numerous binomial splits is chosen that one which maximizes

the GiniGain. The child nodes should be purer after such split. In other words,

one of the classes will be more prevalent in the child nodes.

6.1.8 Random Forest

Random Forest (RF) is the only homogenous ensemble classifier in our master

thesis. All other classifiers here are individual classifiers. The homogenous

ensemble classifiers combine prediction results of multiple base models. This

approach is supposed to increase the predictive performance of such classifier.

Lessmann et al. (2015) describe homogenous ensemble classification as two

stages process in their on-line appendix. A set of base models is created in the

first stage. In the second stage, final prediction is made by combination of base

model predictions. Lessmann et al. (2015) generally describes the ensemble

prediction, E(x,M), based on input vector x with following formula:

E(x,M) =
1

S

S
∑

s=1

βsMs(x), (6.17)

where S is a set of base models M = (M1,M2, . . . ,Ms), Ms(x) represents pre-

diction of individual base model Ms and βs is the weight of this prediction on

final prediction.

Cichosz (2015) explains that Random forest uses decision tree as base clas-

sifier for its predictions. To create different base models Ms, the independent

variables are randomly sampled at each node split. The first meta-parameter

of Random forest determines the number of randomly sampled variables. For

example, if the value of this meta-parameter is 5, then there will be 5 randomly

sampled variables used as candidates for node split. The size of set S is the

second meta-parameter of Random forest. This number determines how many

base models will be used for final prediction.
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6.2 Performance Measurements

We use six different performance measurements to evaluate classifiers perfor-

mance. These performance measurements might be divided into three groups.

The first group of performance measurements evaluates the correctness of clas-

sifiers’ categorical predictions, such as Percentage correctly classified (PCC) or

Kolmogorov-Smirnov statistics (KS). The second group contains performance

measurement which evaluate the accuracy of classifiers’ probability predictions,

such as Brier score (BS). The performance measurements using discrimina-

tory ability of classifier, such as Area under the curve (AUC), Partial Gini

index (PG) and H-measure (H), belongs to the last group. The classifiers’

performance results based on several performance measurements from different

measurement groups are more robust than results based on one performance

measurement or performance measurement from the same group.

Before explaining individual performance measurement techniques used in

our master thesis, we firstly introduce a confusion matrix, also known as an

error matrix. The introduction of confusion matrix is a prerequisite for ex-

planation of Percentage correctly classified (PCC) and Area under the curve

(AUC). Moreover, understanding confusion matrix is beneficial for explanation

of other performance measurements, such as Precision and Recall, used in stud-

ies from Table 3.2 because they are derived from confusion matrix.

The aim of classification is to predict the binary outcome of target variable.

However, as being already explained in the previous section 6.1 Classifica-

tion Techniques, classifiers do not directly predict a binary outcome of target

variable. The classifiers rather predict the probability of borrower’s default.

Mathematically expressed, let y ∈ {0; 1} be a binary outcome where y = 0

signifies that borrower paid back his or her loan and y = 1 means that bor-

rower defaulted on paying back the loan. Let x = (x1, x2, . . . , xj) ∈ Rj be a

j-dimensional vector containing borrower’s and loan’s characteristics. The clas-

sifier output is then p(y = 1|xi), which is the probability that a borrower i will

default on his or her loan. To be able to decide whether a loan will be granted

to a borrower i, the borrowers i default probability p(y = 1|xi) must be com-

pared to a chosen threshold τ . If p(y = 1|xi) > τ , the borrower i is predicted

not to pay back his or her loan. Otherwise, classifier predicts that borrower i

repays his or her loan. In other words, having a threshold τ , we can classify
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classifier’s probability predictions as binary outcome. In our case, loan status is

the target binary variable with true outcome values 0 and 1. Similarly to above

described binary outcome, 0 is for good and 1 is for bad borrowers. The binary

classification prediction might or might not be the same as the true outcome

of loan status. This originates 2x2 matrix, called confusion matrix, with four

possible states of classification prediction and true outcome. The four possible

states are described below. This information is based on Wendler & Gröttrup

(2016).

Figure 6.2: Confusion matrix

Source: Authors’ own production inspired by Wendler (2016).

� True positive (TP) - The true outcome is 1 and classification prediction

is 1. The borrower defaulted on his or her loan and the loan default was

predicted.

� True negative (TN) - The true outcome is 0 and classification predic-

tion is 0. The borrower paid back his or her loan and the loan repayment

was predicted.

� False positive (FP) - The true outcome is 0 and classification prediction

is 1. The borrower paid back his or her loan but the loan default was

predicted.

� False negative (FN) - The true outcome is 1 and classification pre-

diction is 0. The borrower defaulted on his or her loans but the loan

repayment was predicted.
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The confusion matrix with four possible classification states is displayed in

Figure 6.2.

There are many different performance measures, such as Precision and Re-

call, derived from confusion matrix. For example, Precision was used as per-

formance measure in studies of Tsai et al. (2014) and Chang et al. (2015).

Precision, also known as Positive predictive value (PVV), measures the per-

centage of correctly classified cases in positive prediction.3 It is defined as

follows:

PV V =
TP

TP + FP
. (6.18)

The next performance measurement, used by Wu (2014), is called Recall.

There are several other names, such as Sensitivity or True positive rate (TPR),

usually used for Recall. Recall measures the percentage of correctly classi-

fied cases in true positive outcome. This can be mathematically expressed as

follows:

TPR =
TP

TP + FN
. (6.19)

6.2.1 Percentage Correctly Classified

The most important and widely used performance measurement derived from

confusion matrix is, however, called Accuracy or Percentage correctly classi-

fied (PCC). As the name suggests, the Percentage correctly classified (PCC)

measures the percentage of correctly classified cases in confusion matrix. The

definition of PCC is following:

PCC =
TP + TN

TP + FP + TN + FN
. (6.20)

This performance measurement was used by Wu (2014), Chang et al. (2015)

and Malekipirbazari & Aksakalli (2015). In defiance of issues regarding the ap-

3We mark prediction 1 as positive, which means that a borrower is predicted to default.
On the hand, prediction 0, named as negative prediction, means that a borrower is predicted
to pay back his or her loan. We use the same notion of positive and negative cases for true
outcome too.
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propriate threshold value τ , we have decided to include Percentage correctly

classified (PCC) in our master thesis as well. Specifically speaking, we have

two reasons to include PCC measurement. The first reason is that this mea-

surement has been used in the three above mentioned studies. Using the same

performance measurement as they use will help us to compare our results on

the same basis. Moreover, Percentage correctly classified was used as perfor-

mance measurement in our benchmark classifier ranking in Table 3.2.

In the previous paragraph, we mentioned the issue of finding the appropri-

ate threshold value τ . This issue is typical for all performance measurements

based on confusion matrix. As being explained at the beginning of this chap-

ter, the threshold τ is chosen to classify the classifiers’ probability prediction

into binary predicted outcome - either 0 or 1. To compute appropriate τ , the

misclassification costs should be known. The misclassification costs represent

the trade-off between False negative (FN) and True negative (TN) errors. Ob-

viously, the False negative (FN) error is much worse than the True negative

(TN) error because the costs of loan granted to a borrower who defaults are

higher than revenue loss incurred by rejection of a good borrower. Hand (2006)

argues that misclassification costs significantly differ case by case and might

even change in time. Hand (2006) even expressed concern about the possibility

of knowing the right misclassification costs. We do, unfortunately, lack the

information about our misclassification cost for τ computation. Therefore, we

have decided to use the same approach for τ computation as Lessmann et al.

(2015). So the threshold τ is computed such that the percentage of predicted

positive cases is equal to the default rate in our data set. In other words, the

fraction of predicted positive cases, which are True positive (TP) and False

positive (FP), to all cases in confusion matrix is equal to roughly 15.9% which

is the default rate.

6.2.2 Kolmogorov-Smirnov Statistic

The Kolmogorov-Smirnov statistics (KS) is from the same performance mea-

surement group as Percentage correctly classified. Furthermore, the Kolmogorov-

Smirnov statistics uses classifiers predicted probability p(y = 1|xi) too but with

a fixed threshold value. Mays (2001) describes Kolmogorov-Smirnov statistics

as the maximum difference between the cumulative distribution function of
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negative (Fn,negative(q)) and positive cases (Fn,positive(q)). This can be mathe-

matically express as follows:

KS = max
q∈[L,H]

|Fn,positive(q)− Fn,negative(q)|, (6.21)

where L represents the minimum and H the maximum value of probability

score prediction.

6.2.3 Brier Score

The Brier score (BS) assess the accuracy of classifiers’ probability prediction.

The Brier score (BS) can be described as mean squared error of probability

prediction and true outcome. Let p(y = 1|xi) be the probability prediction

that borrower i defaults, N be the number of observations and θi be the true

binary outcome, then the Brier score (BS) can be mathematically described as

follows:

BS =
1

N

N
∑

i

(p(1|xi)− θi)
2. (6.22)

For more information about Brier score please refer to Hernandez-Orallo

et al. (2011) or Rufibach (2010).

6.2.4 Area Under Curve

The Area Under the Curve (AUC) is well-known and widely used performance

measure. The Area Under the Curve (AUC) measures the area under the Re-

ceiver Operating Characteristic curve (ROC). The ROC curve is based on two

performance measurements derived from the confusion matrix. These measure-

ments are True Positive Rate (TPR) and False Positive Rate (FPR). The True

Positive Rate (TPR) has already been described above and defined in equation

6.19. The False Positive Rate (FPR) is defined by following equation:

FPR =
FP

FP + TN
. (6.23)

As being previously discussed, the values of four possible states in confusion

matrix depends on the choice of threshold value τ . The same holds for TPR
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Figure 6.3: Receiver operating characteristics curve

Source: Authors’ recreation of code from joyofdata Github repository.

and FPR metrics. It means that values of TPR and FPR are functions of

threshold value τ - formally written TPR( τ) and FPR(τ). Let p be a point in

a 2-dimensional space with y-coordinate being TPR( τ) value and x-coordinate

being FPR(τ) value. Then by varying τ , we get collection of points pτ . The

Receiver Operating Characteristics curve is created by connecting all points

pτ for threshold value τ varying from 0 to 1. The ROC curve is depicted in

Figure6.3.4. As an example, for threshold value of 0.70 we have point p0.70 with

TPR of 0.55 and FPR of 0.05 lying on the intersection of dotted lines in Figure

6.3. Looking at Figure 6.3, we can see a clear trade-off between TPR and

FPR. If we want to increase the TPR value, the value of FPR will increase as

well. The closer the ROC curve is to the point [0.00;1.00] in upper left corner,

the better the trade-off between TPR and FPR and the higher the area under

the ROC curve. For AUC performance measurement holds the higher the area

4The Figure 6.3 has been created in R by master thesis authors based on the
code from joyofdata GitHub repository. Link to the joyofdata GitHub repository:
https://github.com/joyofdata/joyofdata-articles/tree/master/roc-auc
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under the ROC curve, the better the classifier. The Area Under the Curve can

be mathematically defined as follows:

AUC =

∫

∞

−∞

TPR(τ)FPR′(τ)dτ. (6.24)

6.2.5 Partial Gini Index

It should be highlighted at the beginning that there is a difference between

classical Gini index and Partial Gini (PG) index. As described in Wendler &

Gröttrup (2016), the classical Gini index can be computed by following formula:

Gini = 2AUC − 1. (6.25)

It is obvious from the equation 6.25 that classical Gini index is only lin-

ear transformation of Area Under Curve (AUC). It means that we would get

completely same classifiers ranking by using classical Gini index as by using

AUC measure. Therefore, we have decided to use a novel approach introduced

by Pundir & Seshadri (2012). This novel approach is called Partial Gini index

(PG) and is usually used for evaluation of income inequalities. The motivation

for using PG is to divide the whole data sample into portions and individually

analyze the portions. For example, in evaluation of income inequalities the

whole society can be divided into several classes, such as poor class or mid-

dle class, which are then individually measured. We believe that in the case

of credit scoring the classifier probability prediction p(y = 1|xi) might be di-

vided into several portions too. For instance, borrower i may be very likely

to default (represented by high value of p(1|xi)), somewhat likely or unlikely

(average value of p(1|xi)) or very unlikely to default (low value of p(1|xi)). We

are mainly interested to measure the Partial Gini index (PG) in the ”somewhat

likely or unlikely” class with the mean values of p(1|xi). That’s why, we use

two cut off values l and u for p(1|xi) values. The lower cut off value l is defined

as mean value of p(1|xi) minus one standard deviation of p(1|xi). Similarly, the

upper cut off value u is defined as mean value of p(1|xi) plus one standard devi-

ation of p(1|xi). These values are calculated for each classifier separately. The

Partial Gini index (PG) can be then mathematically described with following

equation:
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PG[l,u] = 1−
2
∫ u

l
L(p)dp

(l + u)(u− l)
, (6.26)

where L(p) is Lorenz curve and p is the cumulative distribution function of

p(1|xi). Further information regarding Partial Gini index is described in Pundir

& Seshadri (2012).

6.2.6 H-Measure

Even though the AUC, described in 6.2.4, is very popular performance measure-

ment, there is one serious deficiency in this measurement according to Hand

(2009). Specifically, he argues that the fundamental incoherence of misclas-

sification costs usage is the main deficiency of AUC. It means that different

misclassification cost distributions are applied for different classifiers. Hand

(2009) states that this fact causes the fundamental incoherence because the

relative severity of misclassification costs depends on the choice of classifier.

Hand (2009) proposes performance measurement, called H-measure, as a rem-

edy for AUC’s imperfection.

The main advantage of H-measure is that it uses a weight function which

is independent of classifier probability score distribution. This weight function

used in H-measure is a Beta distribution. Hand (2009) says that using the

Beta distribution in H-measure makes the classifier comparison fair. For com-

putation of H-measure, we use the R’s hmeasure package described in depth in

Anagnostopoulos et al. (2012).



Chapter 7

Empirical Results

This chapter is divided into four parts. In the first part, called Overview and

Benchmark Comparison, we describe the results of our classifiers’ performance

comparison. Next, we compare these results to Lessmann et al. (2015)’s clas-

sifiers benchmark ranking from Table 3.1. The second part of this chapter

compares our results with other studies based on Lending Club data from Ta-

ble 3.2. Hypotheses about classifiers’ performance from Chapter 4 are tested

in the third part of this chapter. The last part is devoted to the discussion of

our findings and recommendation of further research areas.

7.1 Overview and Benchmark Comparison

We compare ten classifiers on six different performance measurements with 5-

fold cross-validation method in our master thesis. The 5-fold cross-validation

method consists of five iterations. The performance results from these iterations

can be found in Appendix D. The aggregated results from single iterations are

displayed in Table 7.1. The Table 7.1 shows the average overall performance

of our classifiers across the six different performance measurements. The best

classifier according to the given performance technique is determined based on

the total performance. The best classifiers in Table 7.1 are underscored and

in bold face. We further calculate the standard deviation of classifier’s overall

performance as based on the results from iterations. The last metric included

in Table 7.1 in column M-W is a Mann-Whitney U statistic. The values of

Mann-Whitney U statistic is accompanied by stars showing if the classifier’s

performance is significantly different from the best classifier.
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Table 7.1: Average performance results

Classifier

Performance measurement

PCC KS BS AUC PG H

Perf. St. Dev. M-W Perf. St. Dev. M-W Perf. St. Dev. M-W Perf. St. Dev. M-W Perf. St. Dev. M-W Perf. St. Dev. M-W

LR 0.7913 0.0016 / 0.2885 0.0056 / 0.1239 0.0008 / 0.6979 0.0028 / 0.2502 0.0046 24** 0.1319 0.0039 /

ANN 0.7905 0.0011 17 0.2848 0.0039 17 0.1240 0.0009 11 0.6975 0.0019 14 0.2453 0.0081 25*** 0.1305 0.0031 15

LDA 0.7904 0.0021 16 0.2833 0.0048 20 0.1245 0.0008 8 0.6955 0.0028 19 0.2586 0.0075 17 0.1285 0.0039 19

L-SVM 0.7887 0.0034 18 0.2854 0.0053 17 0.1585 0.0003 0*** 0.6967 0.0029 18 0.2309 0.0068 25*** 0.1300 0.0040 17

RF 0.7883 0.0014 23** 0.2789 0.0074 20 0.1248 0.0010 6 0.6928 0.0032 23** 0.2236 0.0062 25*** 0.1243 0.0040 23**

B-Net 0.7878 0.0018 23** 0.2555 0.0032 25*** 0.1257 0.0007 1** 0.6787 0.0027 25*** 0.2108 0.0054 25*** 0.1122 0.0039 25***

SVM-Rbf 0.7818 0.0019 25*** 0.2104 0.0044 25*** 0.1306 0.0008 0*** 0.6519 0.0034 25*** 0.2641 0.0070 / 0.1089 0.0044 25***

NB 0.7836 0.0072 24** 0.2425 0.0066 25*** 0.1502 0.0076 0*** 0.6689 0.0031 25*** 0.2043 0.0226 25*** 0.1029 0.0028 25***

CART 0.7659 0.0144 25*** 0.2557 0.0090 25*** 0.2019 0.0073 0*** 0.6373 0.0048 25*** 0.1495 0.0249 25*** 0.0801 0.0053 25***

k-NN 0.7655 0.0170 25*** 0.2022 0.0026 25*** 0.1322 0.0006 0*** 0.6360 0.0015 25*** 0.1502 0.0082 25*** 0.0678 0.0015 25***

Source: Authors’ computation based on the five partial iteration results from Appendix D.

Legend: The abbreviation M-W stands for Mann-Whitney U test. The Mann-Whitney U statistics in column M-W are accompanied with stars signifying whether the classifier’s

performance is significantly different from the performance of the best classifier. *** denote significance at 1% level, ** at 5% level and * at 10% level.
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Three stars (***) shows that the classifier’s performance is significantly dif-

ferent from the best classifier at 1% significance level. Two stars (**) denote

significance at 5% level and one star (*) at 10% level. For example, Logistic

regression (LR) is the best classifier based on the Percentage correctly classifier

(PCC) measure according to our results. The performance of Logistic regres-

sion (LR) measured by PCC is, however, not significantly different from the

performance of Linear discriminant analysis (LDA) and two other classifiers at

5% significance level. On the hand, PCC performance of LR is significantly dif-

ferent from Random forest (RF) at 5% significance level, and from k-Nearest

neighbors (k-NN) at even 1% significance level. If not stated otherwise, we

always refer to the 5% significance level when speaking about significant dif-

ferences between classifiers’ performance.

Table 7.2: Classifiers’ ranking

Classifier
Performance Measurement

Avg.
Score

Total
Ranking

PCC KS BS AUC PG H

LR 1 1 1 1 3 1 1.3 1

ANN 2 3 2 2 4 2 2.5 2

LDA 3 4 3 4 2 4 3.3 3

L-SVM 4 2 9 3 5 3 4.3 4

RF 5 5 4 5 6 5 5.0 5

B-Net 6 7 5 6 7 6 6.2 6

SVM-Rbf 8 9 6 8 1 7 6.5 7

NB 7 8 8 7 8 8 7.7 8

CART 9 6 10 9 10 9 8.8 9

k-NN 10 10 7 10 9 10 9.3 10

Source: Authors’ ranking based on the average performance results from Table 7.1.

Avg. Score: Average score computes the average ranking of classifier based on rankings achieved under

different performance measurements.

Total Ranking: Total ranking ranks classifiers based on their average score.
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To be able to compare and rank our classifiers across all performance mea-

surements, we have created a Table 7.2. The Table 7.2 displays ranking of

classifiers based on given measurement techniques as well as total ranking.

The classifiers are ranked based on their performance. The best performing

classifier gets ranking 1, the second best performing classifier gets ranking 2

and so on. Looking at Table 7.2, we see that Logistic regression (LR) has

ranking 1 based on Percentage correctly classified (PCC) because it has the

highest PCC performance in Table 7.1. The rankings across different perfor-

mance measurement are averaged in column Avg. Score in Table 7.2. The total

ranking of classifiers, displayed in column Total Ranking, is derived from the

values of column Avg. Score.1

Our Table 7.2 is similar in structure to the Lessmann et al. (2015)’s Ta-

ble 3.2 from Chapter 3. We regard the Lessmann et al. (2015)’s ranking as

our baseline ranking. Comparing our baseline ranking from Table 3.2 and our

ranking from Table 7.2, we identify several differences between these rankings.

The biggest difference is in the ranking of the best classifier. In Lessmann

et al. (2015)’s ranking is the best classifier Random forest (RF), and Logistic

regression (LR) is the third best classifier. According to our results is Logistic

regression (LR) the best classifier, and Random Forest (RF) is only fifth best

classifier based on the Lending Club data. We see two possible reasons as the

explanation of these ranking differences.

The first possible explanation is fine-tuning of model’s meta-parameters.

The model’s meta-parameters, we have used, are described in Appendix C.

We demonstrate this potential explanation based on the lower performance of

Random forest (RF) in comparison with Logistic regression (LR). Similar to

Lessmann et al. (2015), we have not fine-tuned Logistic regression (LR) and we

have used two meta-parameters for fine-tuning of Random forest. These meta-

parameters are a number of grown trees and a number of randomly sampled

variables for node splitting. As shown in Appendix C, we have used 5 ran-

domly sampled variables for node splitting and 800 grown trees because it give

us the best performance of Random forest (RF) across individual iterations.

1There are several approaches to make classifiers’ ranking. Following a similar approach
used in Lessmann et al. (2015), we could rank our classifiers based on the performance in each
iteration rather than ranking them based on the average performance across five iterations
as described above. We tried both approaches and both do lead to the same ranking shown
in the Table 7.2.
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Malekipirbazari & Aksakalli (2015) fine-tuned Random forest (RF) with five

randomly sampled variables in their study based on Lending Club data too.

We were interested to know if we can replicate the Malekipirbazari & Aksakalli

(2015)’s results based on our Lending Club data set. Moreover, we wanted to

check if Random forest (RF)’s performance achieved by our meta-parameters in

R is comparable to the performance of Malekipirbazari & Aksakalli (2015)’s ap-

proach. Therefore, we have used the same analytical software, called WEKA, as

Malekipirbazari & Aksakalli (2015) used. Furthermore, we have used the same

meta-parameters, also 5 randomly sampled variables and 80 grown trees.2 With

this set-up, we have achieved AUC of 0.684 with Random forest (RF) based

on our data.3 However, Malekipirbazari & Aksakalli (2015) achieved AUC of

0.71 based on their Lending Club data. When searching for the cause of this

difference, we found out that the default rate in Malekipirbazari & Aksakalli

(2015)’s data set is 20.5% which is significantly higher than default rate in our

data set (15.9%). Brown & Mues (2012) argues that classifiers’ performance

deteriorates with higher data imbalance. That’s why we think that perfor-

mance of Random forest (RF) might deteriorate more than the performance

of Logistic regression (LR) based on Lending Club data. After all, we do not

believe that the worse performance of Random forest (RF) in our master thesis

is caused by inappropriate fine-tuning of meta-parameters, but we cannot deny

this possibility.

The second possible reason for classifier’s ranking difference between our

master thesis and Lessmann et al. (2015) is the use of data sets. In line with

Salzberg (1997) and Baesens et al. (2003), we believe that classifiers’ prediction

performance highly depends on the data sets used for model training. Less-

mann et al. (2015) used eight different data sets for their analysis. These data

sets together with our Lending Club data set are displayed in Table 7.3. Look-

ing at Table 7.3, we can clearly see that none of the Lessmann et al. (2015)’s

data sets resembles our data sets. Therefore, we suppose that the classifiers

ranking differences are caused by use of different data sets.

2Malekipirbazari & Aksakalli (2015) argue that growing more than 80 does not yield
considerable performance increase but significantly increases the computation run time.

3We have achieved average Random forest (RF)’s AUC of 0.6928 by using our meta-
parameters and randomForest’s R package. It means that our set-up is better than Malekipir-
bazari & Aksakalli (2015)’s set-up applied to our data set.
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Table 7.3: Comparison of data sets

Lessmann et al. (2015)’s data sets

Name # of observations # of variables Default rate Source

AC 690 15 0.445 Lichman (2013)

GC 1,000 21 0.300 Lichman (2013)

Th02 1,225 18 0.264 Thomas et al. (2002)

Bene 1 3,123 28 0.667 Baesens et al. (2003)

Bene 2 7,190 29 0.300 Baesens et al. (2003)

UK 30,000 15 0.040 Baesens et al. (2003)

PAK 50,000 38 0.261 http://sede.neurotech.com.br/PAKDD2010/

GMC 150,000 13 0.067 http://www.kaggle.com/c/GiveMeSomeCredit

Our Lending Club data set

Name # of observations # of variables Default rate Source

LC 212,252 23 0.159
https://www.lendingclub.com/
info/download-data.action

Source: Authors’ depiction of Lessmann et al. (2015)’s and own data set.

Despite the significant ranking differences of Random forest (RF) and Sup-

port vector machine with radial basis kernel function (SVM-Rbf) in our master

thesis and Lessmann et al. (2015)’s study, we think that our common results

bear more resemblance than difference. For example, Logistic regression (LR),

Linear discriminant analysis (LDA) and Artificial neural network (ANN) are

in both studies placed within the fourth first places. Moreover, three other

classifiers - Näıve Bayes (NB), Classification and regression tree (CART) and

k-Nearest neighbors (k-NN) are in both studies placed in the last three places.

We believe that this is a clear sign of resemblance of our and Lessmann et al.

(2015)’s findings.

7.2 Comparison with Other LC-based Studies

We have already discussed in Section 3.2 and shown in Table 3.2 four studies

comparing classifiers based on Lending Club data. Having our final classifiers

ranking, we would like to extend the Table 3.2 with our results. Therefore,

we have created Table 7.4 and added there our results. It is evident that

we have used by far the largest data sets with 212,252 records in comparison

with remaining studies. Furthermore, our data set has the most variables too.
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It contains 23 variables including the dependent variable of loan status. We

have included ten classifiers to make our comparison comprehensive. As be-

ing already discussed, the primary goal of remaining studies is not classifiers

comparison, but rather the introduction of new classifiers for default prediction.

That’s why these studies are not a comprehensive comparison as ours and com-

pare at most five classifiers. The last thing that differentiates our master thesis

from the remaining studies is the number of performance measurement used.

Altogether, we have used six different measurement techniques from three dif-

ferent performance measurement’s groups.4 Using a broad range of evaluation

techniques makes our results robust.

Comparing our final classifiers ranking to four studies from Table 7.4, we

observe that Wu (2014) and Tsai et al. (2014) rank Logistic regression (LR)

as the best classifier in their studies.5 On the other hand, Chang et al. (2015)

rank Logistic regression (LR) as the third and Malekipirbazari & Aksakalli

(2015) as the fourth classifier in their studies. Generally speaking, we believe

that comparison of these studies with our findings is unequal because authors

pursue different goals. For example, the main goal of Chang et al. (2015) is to

compare different distributions of Näıve Bayes (NB) and Support vector ma-

chines (SVM). That’s why, the data preprocessing and other steps are done to

suit these classifiers. For instance, Chang et al. (2015) say that the data set has

been rebalanced because Support vector machines (SVM) underperform with

imbalanced data sets. With this set-up, it might not be surprising that Näıve

Bayes (NB) is ranked as the best classifies, and Linear support vector machine

(L-SVM) as the second best classifier in Chang et al. (2015)’s study. Moreover,

these classifiers have been specifically fine-tuned to fit the data. Studies of Tsai

et al. (2014) and Malekipirbazari & Aksakalli (2015) are conducted in similar

manner to Chang et al. (2015). We, therefore, refrain from comparing our re-

sults with these studies because of unequal conditions for classifier comparison.

4For more information about performance measurement’s groups, please, refer to Section
6.2 Performance Measurements.

5It should be mentioned that Tsai et al. (2014) used a modified version of Logistic re-
gression (LR). For more information about this modification, please, refer to Tsai et al.

(2014).
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Table 7.4: Final classifiers’ comparison based on the LC data

Classification studies
based on

Lending Club data

Data Classifiers Performance
measurement
techniqueYear # of observations # of variables LR ANN LDA L-SVM RF B-Net SVM-Rbf NB CART k-NN SVM-P

Wu (2014) 2007-2011 33 571 22 1 2 PCC, AUC

Tsai et al. (2014) 2007-2013 91 520 n/a 1 3 2 4 PVV

Chang et al. (2015) 2007-2015 n/a n/a 3 2 5 1 4 PCC, G-mean

Malekipirbazari &
Aksakalli (2015)

2012-2014 68 000 16 4 1 3 2
PCC, AUC,

RMSE

This Study 2009-2013 212 252 23 1 2 3 4 5 6 7 8 9 10
PCC, KS, BS
AUC, PG, H

Source: Authors’ information extraction and ranking computation based on Wu(2014), Tsai et al. (2014), Chang et al. (2015), Malekipirbazari & Aksakalli (2015)’s, and own

research.
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7.3 Hypotheses Testing

In this section, we refer to the stated hypotheses from Chapter 4. For each

hypothesis, we provide a result below. For example, result 1, denoted as R1,

is our outcome for hypothesis 1, labeled as H1 in Chapter 4. The results of

our hypotheses are based on summary Tables 7.1 and 7.2.

R1: Random forest (RF) is not the best classifier among our classifiers of in-

terest based on the Lending Club data.

We reject our first hypothesis (H1) because Logistic regression (LR) is better

classifier than Random forest (RF) based on our Lending Club data. Looking

at Table 7.1, we can see that Logistic regression (LR) significantly dominates

Random forest (RF) based on four performance measurements (PCC, AUC,

PG and H). In the remaining two measurement techniques (KS and BS) has

Logistic regression (LR) higher overall performance but this performance is not

significantly better than the performance of Random forest (RF). Therefore,

Random forest (RF) cannot be the best classifier.

R2: Artificial neural network (ANN) does not outperform Logistic regression

(LR) based on the Lending club data.

Our second hypothesis (H2) is rejected because we have not found any ev-

idence that Artificial neural network (ANN) outperforms Logistic regression

(LR). On the contrary, Logistic regression (LR) outperforms in absolute num-

bers Artificial neural network (ANN) based on all performance measurements.

As can be seen in Table 7.1, the performance differences between LR and ANN

are, however, not significant.

R3: Linearly based classifiers rank in the first half of classifiers’ ranking based

on Lending Club data.

We cannot reject our third hypotheses (H3) because both of our linear

classifiers ranked within the first half of ranking. More specifically, Logistic

regression (LR) ranked as the best classifier and Linear discriminant analysis

(LDA) as the third best classifier. This can be seen in Table 7.2. In line with

Baesens et al. (2003), we believe that this finding is a clear sign that linearly
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based classifiers are well suited for predictions using credit scoring data.

R4a: Logistic regression (LR) outperforms Support vector machine with linear

kernel function (L-SVM) based on the Lending Club data.

R4b: Logistic regression (LR) outperforms Support vector machine with radial

basis kernel function (SVM-Rbf) based on the Lending Club data.

We reject neither hypothesis 4a (H4a) nor 4b (H4b). Considering H4a and

looking at Table 7.1, we can see that Logistic regression (LR) dominates in ab-

solute performance numbers Linear support vector machine (L-SVM). In five

out of six performance measurements are these superior performances, however,

not significant. Nevertheless, LR’s performance is significantly better than L-

SVM’s performance based on Partial Gini index (PG) measure. The p-value of

this difference is 0.008 according to the Mann-Whitney U test. Therefore, we

cannot reject H4a.

Support vector machine with radial basis kernel function (SVM-Rbf) is the

best classifier measured by Partial Gini index (PG). Moreover, SVM-Rbf is

significantly better than LR based on PG measurement. Logistic regression

(LR), however, significantly outperforms SVM-Rbf based on all five remaining

measurements. This fact does not allow us to reject H4b.

R5: Linearly based classification methods do not under-perform when measured

by Partial Gini index (PG) in comparison with other performance measure-

ments.

To test our last hypotheses (H5), we have added up the rankings of our

linearly based classifiers for different performance measurements from Table

7.2. We have got following numbers by adding up rankings of Logistic regres-

sion (LR) and Linear discriminant analysis (LDA): 4 for Percentage correctly

classifier (PCC), 5 for Kolmogorov-Smirnov statistics (KS), 4 for Brier score

(BS), 5 for Area under the curve (AUC), 5 for Partial Gini index (PG) and 5

for H-measure (H). The average added ranking based on all performance mea-

surements, but PG is 4.6. We do not believe that added ranking 5 of PG is

significantly different from the average value of 4.6. Moreover, there are three

other performance measurements (KS, AUC, and H) that have the same value
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of added ranking as our Partial Gini index (PG). This is for us a sufficient evi-

dence to reject the hypothesis (H5) that linearly based classifiers underperform

when measured by Partial Gini index (PG).

7.4 Key Findings

Several interesting findings are introduced in the previous sections. These find-

ings are based on Tables 7.1 and 7.2. We would like to, however, highlight only

three of them. According to us, following three findings, labeled with F, are

the key findings of our master thesis. Moreover, they should serve as take-way

messages for our readers.

F1: Logistic regression and Linear discriminant analysis are

proper classification algorithms for credit scoring.

Baesens et al. (2003), Lessmann et al. (2015) and our results provide suffi-

cient evidence that the above-mentioned classifiers perform very well on various

credit scoring data sets. Artificial neural network (ANN) performs very well

too. Nevertheless, as stated in Table 7.5, ANN is a black box algorithm. It

means that the model’s decision-making process is unknown. That’s why it

is almost impossible to determine the relevance and importance of given in-

dependent variables. This is particularly problematic for credit scoring as we,

for example, cannot explain which variables are the best determinants for bor-

rower’s default. On the other hand, it is easy to interpret Logistic regression

and Linear discriminant analysis models. Furthermore, as stated in Table 7.5,

there is no need for fine-tuning of linearly based classifiers, which makes them

easy to use. Based on the arguments mentioned above, it is not surprising

that Logistic regression is considered industry standard for credit scoring and

is nowadays used by many banks.

F2: Support vector machines with linear and radial basis kernel

functions are unsuitable classification algorithms for credit

scoring.

We do not recommend Support vector machines with linear and radial

basis kernel distributions because their medium performance is not justifiable
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in the context of their shortcomings. We identify two main shortcomings of

Support vector machines in Table 7.5. The first shortcoming is their black box

nature that is described in the previous paragraph. The second shortcoming of

Support vector machines is their very long-lasting model training. For exam-

ple, the training process of Support vector machines took up to 27 hours. We

believe that mediocre performance and these two shortcomings entitle us not

to recommend Support vector machines for credit scoring.

Table 7.5: Pros and cons of chosen classifiers

Total
Ranking

Classifier’s

Name Performance Pros & Cons

1.
Logistic Regression

(LR)
High

+ No need for fine-tuning
+ Model’s interpreability

2.
Artificial Neural Network

(ANN)
High - Black box

3.
Linear Discriminant Analysis

(LDA)
High

+ No need for fine-tuning
+ Model interpretability

4.
Support Vector Machine with

Linear Kernel Function
(L-SVM)

Medium
- Black box
- Demanding model training

7.
Support Vector Machine with
Radial Basis Kernel Function

(SVM-Rbf)

Medium
- Black box
- Demanding model training

9.
Classification and Regression Tree

(CART)
Low + Model’s interpretability

10.
k - Nearest Neighboor

(k-NN)
Low

+ Easy model training
- Prolonged prediction process

Source: Authors’ processing of chosen classifier’s results and feature.

Total Ranking: The total ranking is the same as our classifier’s ranking in Table 7.2.

Pros and Cons: Classifier’s pros are marked with plus sign (+) and cons with minus sign (-).

F3: Classification and regression tree and k-Nearest neighbors are

not well-suited algorithms for credit scoring.

These two algorithms do not simply perform well based on the credit scor-

ing data. Our as well as Lessmann et al. (2015)’s results ranked both classifiers

at the very bottom of the ranking. Even though there are advantages of using
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Classification and regression tree and k-Nearest neighbors, such as clear model

interpretability or easy model training, these advantages do not justify the low

performance of classifiers for their usage. That’s why we recommend avoiding

the use of these algorithms for credit scoring.

7.5 Further Research Opportunities

During the writing of our master thesis, we came across several interesting

research topics that deserve more investigation according to us. The first sug-

gested topic for further research is a general framework of rules used for classi-

fiers comparison. We think that such framework should be derived from studies

of Salzberg (1997), Hand (2006) and similar to them. We recognize a need for a

definition of such framework because the classifier comparison studies are oth-

erwise hardly comparable. For example, classifier’s ranking from studies which

do not use k-fold cross validation or several performance measurements can-

not be considered as robust. The second proposal for further research might

be classifiers performance in the context of imbalanced data sets. We have

already mentioned in our master thesis the main finding of Brown & Mues

(2012) who made such study. We are, however, concerned with the data sets

used for Brown & Mues (2012)’s study. Brown & Mues (2012) used five differ-

ent data sets with the largest data set having 7,190 records and second largest

having 2,974 records. We would be interested to know if their results are for

example reproducible based on our Lending Club data. As for last suggestion

for further research, we recommend searching for other P2P lending platforms

making their data public. Most of nowadays studies is based on data sets from

UCI Machine Learning Repository. These data sets have usually unclear origin

and rather small size (Salzberg,1997). It is then questionable whether findings

of studies based on the UCI repository are meaningful for real world data sets,

such as P2P credit scoring data. We, therefore, believe that having a new data

set at hand would trigger many interesting research questions.
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Conclusion

The main contribution of our master thesis is ranking of ten classification tech-

niques, displayed in Tables 7.1 and 7.2, based on our Lending Club’s data set.

To ensure robustness of our results, we use 5-fold cross-validation method and

six different performance measurements for classifiers’ predictions. We propose

five hypotheses based on our literature review. These hypotheses are tested

with the help of our classifiers’ ranking. Besides that, we highlight three key

findings that should serve as the take-away message for our readers.

According to our classifiers’ ranking, Logistic regression, Artificial neural

network, and Linear discriminant analysis are the three best algorithms based

on the Lending Club data. Random forest, the best algorithm in Lessmann

et al. (2015)’s study, ranks as the fifth best classifier in our master thesis. The

performance results of top classifiers are, however, often not significantly dif-

ferent from each other. On the other hand, Classification and regression tree

and k-Nearest neighbors rank at very bottom of our ranking.

Despite some differences, such as ranking of Random forest, our ranking results

do bear a resemblance to ranking of Lessmann et al. (2015).

Comparing our classifiers’ ranking with results of Wu (2014), Tsai et al.

(2014), Chang et al. (2015) and Malekipirbazari & Aksakalli (2015) who use

Lending Club data too, yield some ambiguous outcomes. This comparison

bears some resemblance to Wu (2014) and Tsai et al. (2014), but no resembles

to studies of Chang et al. (2015) and Malekipirbazari & Aksakalli (2015). Nev-

ertheless, it must be pointed out that the primary goal of these studies is not a

comprehensive and robust comparison of classifiers but rather an introduction
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of some new approaches.

Considering our hypotheses, we summarize them with their rejection status

in Table 8.1 below.

Table 8.1: Hypotheses’ results

# Hypothesis Rejected

H1:
Random forest is the best classifier among our classifiers of interest
based on the Lending Club data.

NO

H2:
Artificial neural network outperforms Logistic regression
based on the Lending Club data.

NO

H3:
Linearly based classifiers rank in the first half of classifiers’ ranking
based on the Lending Club data.

YES

H4a:
Logistic regression outperforms Support vector machine with linear kernel function
based on the Lending Club data.

YES

H4b:
Logistic regression outperforms Support vector machine with radial basis kernel function
based on the Lending Club data.

YES

H5:
Linearly based classication methods underperform when measured by Partial Gini index
in comparison with other performance measurements.

NO

Source: Authors’ processing of hypothese’ testing result from Section 7.3.

Finally, we present three key findings that we wish our readers would re-

member.

F1: Logistic regression and Linear discriminant analysis are proper classifica-

tion algorithms for credit scoring.

F2: Support vector machines with linear and radial basis kernel functions are

unsuitable classification algorithms for credit scoring.

F3: Classification and regression tree and k-Nearest neighbors are not well-suited

algorithms for credit scoring.
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Appendix A

All Lending Club Variables

There are all together 115 variables in downloaded Lending Club data set. All

these variables with their descriptions are depicted in Table A.1. The abbre-

viated names of variables as well as their descriptions have been taken from

LC Data Dictionary data set downloaded in download section at Lending Club

official web site1.

Each variable in Table A.1 has a status. Three possible values of variable

status are OUT, INC and INC*. The most common status is OUT. Variables

with status OUT are not included in our final data set. There are several differ-

ent reasons why majority of our variables is not part of our final data set. For

explanation see part 5.1 Data Preparation. Variables with status INC has been

unchanged included in our final data set. Furthermore, variables with status

INC* has been transformed. For detailed explanation of our transformation

steps see part 5.2 Data Transformation.

1Link to the data download section at Lending Club official web site:
https://www.lendingclub.com/info/download-data.action



A. All Lending Club Variables II

Table A.1: All Lending Club variables with description

Status Abbreviated Name Description

INC acc now delinq The number of accounts on which the borrower is now delinquent.

OUT acc open past 24mths Number of trades opened in past 24 months.

OUT addr state The state provided by the borrower in the loan application.

OUT all util Balance to credit limit on all trades.

INC annual inc The self-reported annual income provided by the borrower during registration.

OUT annual inc joint
The combined self-reported annual income provided by the co-borrowers
during registration.

OUT application type
Indicates whether the loan is an individual application or a joint application
with two co-borrowers.

OUT avg cur bal Average current balance of all accounts.

OUT bc open to buy Total open to buy on revolving bankcards.

OUT bc util
Ratio of total current balance to high credit/credit limit for all bankcard
accounts.

INC chargeoff within 12 mths Number of charge-offs within 12 months.

OUT collection recovery fee Post charge off collection fee.

OUT collections 12 mths ex med Number of collections in 12 months excluding medical collections.

INC delinq 2yrs
The number of 30+ days past-due incidences of delinquency in the
borrower’s credit file for the past 2 years.

INC delinq amnt
The past-due amount owed for the accounts on which the borrower is
now delinquent.

INC* desc Loan description provided by the borrower.

INC dti
A ratio calculated using the borrower’s total monthly debt payments
on the total debt obligations, excluding mortgage and the requested
LC loan, divided by the borrower’s self-reported monthly income.

OUT dti joint
A ratio calculated using the co-borrowers’ total monthly payments on the
total debt obligations, excluding mortgages and the requested LC loan,
divided by the co-borrowers’ combined self-reported monthly income.

INC* earliest cr line The month the borrower’s earliest reported credit line was opened.

INC* emp length
Employment length in years. Possible values are between 0 and 10
where 0 means less than one year and 10 means ten or more years.

OUT emp title The job title supplied by the borrower when applying for the loan.

INC* fico range high
The upper boundary range the borrower’s FICO at loan origination
belongs to.

INC* fico range low
The lower boundary range the borrowerâ¿�s FICO at loan origination
belongs to.

OUT funded amnt The total amount committed to that loan at that point in time.

OUT funded amnt inv The total amount committed by investors for that loan at that point in time.

OUT grade LC assigned loan grade.

INC home ownership
The home ownership status provided by the borrower during registration
or obtained from the credit report.

OUT id A unique LC assigned ID for the loan listing.

OUT il util Ratio of total current balance to high credit / credit limit on all install acct.

OUT initial list status The initial listing status of the loan.

OUT inq fi Number of personal finance inquiries.



A. All Lending Club Variables III

Status Abbreviated Name Description

OUT inq last 12m Number of credit inquiries in past 12 months.

INC inq last 6mths The number of inquiries in past 6 months (excluding auto and mortgage inquiries).

OUT installment The monthly payment owed by the borrower if the loan originates.

OUT int rate Interest rate on the loan.

OUT issue d The month which the loan was funded.

OUT last credit pull d The most recent month LC pulled credit for this loan.

OUT last fico range high The upper boundary range the borrower’s last FICO pulled belongs to.

OUT last fico range low The lower boundary range the borrower’s last FICO pulled belongs to.

OUT last pymnt amnt Last total payment amount received.

OUT last pymnt d Last month payment was received.

INC loan amnt The listed amount of the loan applied for by the borrower.

INC* loan status Current status of the loan.

OUT max bal bc Maximum current balance owed on all revolving accounts.

OUT member id A unique LC assigned Id for the borrower member.

OUT mo sin old il acct Months since oldest bank installment account opened.

OUT mo sin old rev tl op Months since oldest revolving account opened.

OUT mo sin rcnt rev tl op Months since most recent revolving account opened.

OUT mo sin rcnt tl Months since most recent account opened.

OUT mort acc Number of mortgage accounts.

OUT mths since last delinq The number of months since the borrower’s last delinquency.

OUT mths since last major derog Months since most recent 90-day or worse rating.

OUT mths since last record The number of months since the last public record.

OUT mths since rcnt il Months since most recent installment accounts opened.

OUT mths since recent bc Months since most recent bankcard account opened.

OUT mths since recent bc dlq Months since most recent bankcard delinquency.

OUT mths since recent inq Months since most recent inquiry.

OUT mths since recent revol delinq Months since most recent revolving delinquency.

OUT next pymnt d Next scheduled payment date.

OUT num accts ever 120 pd Number of accounts ever 120 or more days past due.

OUT num actv bc tl Number of currently active bankcard accounts.

OUT num actv rev tl Number of currently active revolving trades.

OUT num bc sats Number of satisfactory bankcard accounts.

OUT num bc tl Number of bankcard accounts.

OUT num il tl Number of installment accounts.

OUT num op rev tl Number of open revolving accounts.

OUT num rev accts Number of revolving accounts.

OUT num rev tl bal gt 0 Number of revolving trades with balance >0.

OUT num sats Number of satisfactory accounts.

OUT num tl 120dpd 2m Number of accounts currently 120 days past due (updated in past 2 months).



A. All Lending Club Variables IV

Status Abbreviated Name Description

OUT num tl 30dpd Number of accounts currently 30 days past due (updated in past 2 months).

OUT num tl 90g dpd 24m Number of accounts 90 or more days past due in last 24 months.

OUT num tl op past 12m Number of accounts opened in past 12 months.

INC open acc The number of open credit lines in the borrower’s credit file.

OUT open acc 6m Number of open trades in last 6 months.

OUT open il 12m Number of installment accounts opened in past 12 months.

OUT open il 24m Number of installment accounts opened in past 24 months.

OUT open il 6m Number of currently active installment trades.

OUT open rv 12m Number of revolving trades opened in past 12 months.

OUT open rv 24m Number of revolving trades opened in past 24 months.

OUT out prncp Remaining outstanding principal for total amount funded.

OUT out prncp inv Remaining outstanding principal for portion of total amount funded by investors.

OUT pct tl nvr dlq Percent of trades never delinquent.

OUT percent bc gt 75 Percentage of all bankcard accounts >75% of limit.

OUT policy code
Publicly available policy code = 1.
New products not publicly available policy code = 2.

INC pub rec Number of derogatory public records.

INC pub rec bankruptcies Number of public record bankruptcies.

INC purpose A category provided by the borrower for the loan request.

OUT pymnt plan Indicates if a payment plan has been put in place for the loan.

OUT recoveries Post charge off gross recovery.

OUT revol bal Total credit revolving balance.

INC revol util
Revolving line utilization rate, or the amount of credit the borrower is
using relative to all available revolving credit.

OUT sub grade LC assigned loan subgrade.

INC tax liens Number of tax liens.

INC term
The number of payments on the loan. Values are in months and
can be either 36 or 60.

OUT title The loan title provided by the borrower.

OUT tot coll amt Total collection amounts ever owed.

OUT tot cur bal Total current balance of all accounts.

OUT tot hi cred lim Total high credit / credit limit.

INC total acc The total number of credit lines currently in the borrower’s credit file.

OUT total bal ex mort Total credit balance excluding mortgage.

OUT total bal il Total current balance of all installment accounts.

OUT total bc limit Total bankcard high credit / credit limit.

OUT total cu tl Number of finance trades.

OUT total il high credit limit Total installment high credit / credit limit.

OUT total pymnt Payments received to date for total amount funded.

OUT total pymnt inv Payments received to date for portion of total amount funded by investors.
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Status Abbreviated Name Description

OUT total rec int Interest received to date.

OUT total rec late fee Late fees received to date.

OUT total rec prncp Principal received to date.

OUT total rev hi lim Total revolving high credit / credit limit.

OUT url URL for the LC page with listing data.

INC verification status
Indicates if income was verified by LC, not verified, or if the income source
was verified.

OUT verified status joint
Indicates if the co-borrowers’ joint income was verified by LC, not verified,
or if the income source was verified.

OUT zip code The first 3 numbers of the zip code provided by the borrower in the loan application.



Appendix B

Descriptive Statistics

There is only one descriptive statistics table included in Appendix C. It is Table

B.1 with correlation coefficients between variables in our data set. The result

description of this correlation matrix is provided in section 5.3 Descriptive

Statistics. Further descriptive statistics of our Lending Club data set might be

found in the above mentioned section 5.3.



B
.
D
escrip

tive
S
ta
tistics

V
II

loan
status

loan
amnt

emp
length

annual
inc

desc
count

dti
delinq
2yrs

earliest
cr line

fico
range
avg

inq
last
6mths

open
acc

pub
rec

revol
util

total
acc

acc
now
delinq

chargeoff
within
12 mths

delinq
amnt

pub
rec
bankr

tax
liens

loan status 1 0.07 0.01 -0.06 -0.01 0.08 0.01 -0.03 -0.12 0.06 0.02 0.01 0.08 -0.01 0.01 0.00 0.00 0.01 0.00

loan amnt 0.07 1 0.12 0.42 0.01 0.06 0.01 0.17 0.08 0.02 0.20 -0.06 0.09 0.25 0.01 0.01 0.00 -0.08 0.00

emp length 0.01 0.12 1 0.09 -0.08 0.06 0.03 0.22 0.00 -0.01 0.06 0.04 0.05 0.13 0.01 0.01 0.00 0.05 0.01

annual inc -0.06 0.42 0.09 1 0.00 -0.20 0.07 0.21 0.10 0.09 0.19 -0.02 0.03 0.29 0.02 0.02 0.01 -0.05 0.03

desc count -0.01 0.01 -0.08 0.00 1 -0.06 -0.03 0.00 0.10 0.01 -0.04 -0.04 -0.04 -0.03 -0.01 -0.01 0.00 -0.04 -0.01

dti 0.08 0.06 0.06 -0.20 -0.06 1 0.00 0.03 -0.16 0.01 0.32 -0.04 0.24 0.24 0.01 -0.01 0.00 -0.03 -0.01

delinq 2yrs 0.01 0.01 0.03 0.07 -0.03 0.00 1 0.09 -0.18 0.02 0.06 -0.02 -0.01 0.13 0.11 0.12 0.03 -0.03 0.00

earliest cr line -0.03 0.17 0.22 0.21 0.00 0.03 0.09 1 0.16 0.01 0.15 0.05 -0.02 0.32 0.02 0.02 0.00 0.05 0.02

fico range avg -0.12 0.08 0.00 0.10 0.10 -0.16 -0.18 0.16 1 -0.03 -0.03 -0.15 -0.54 0.04 -0.03 -0.04 -0.01 -0.16 -0.03

inq last 6mths 0.06 0.02 -0.01 0.09 0.01 0.01 0.02 0.01 -0.03 1 0.12 0.01 -0.09 0.15 0.00 0.01 0.00 0.01 0.01

open acc 0.02 0.20 0.06 0.19 -0.04 0.32 0.06 0.15 -0.03 0.12 1 -0.02 -0.10 0.67 0.01 0.01 0.00 -0.03 0.00

pub rec 0.01 -0.06 0.04 -0.02 -0.04 -0.04 -0.02 0.05 -0.15 0.01 -0.02 1 -0.02 -0.01 0.01 -0.01 0.00 0.76 0.63

revol util 0.08 0.09 0.05 0.03 -0.04 0.24 -0.01 -0.02 -0.54 -0.09 -0.10 -0.02 1 -0.08 -0.01 -0.01 0.00 -0.02 -0.01

total acc -0.01 0.25 0.13 0.29 -0.03 0.24 0.13 0.32 0.04 0.15 0.67 -0.01 -0.08 1 0.03 0.04 0.01 -0.01 0.00

acc now delinq 0.01 0.01 0.01 0.02 -0.01 0.01 0.11 0.02 -0.03 0.00 0.01 0.01 -0.01 0.03 1 0.06 0.23 0.00 0.01

chargeoff 12 m 0.00 0.01 0.01 0.02 -0.01 -0.01 0.12 0.02 -0,04 0.01 0.01 -0.01 -0.01 0.04 0.06 1 0.02 -0.01 0.00

delinq amnt 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.23 0.02 1 0.00 0.00

pub rec bankrp 0.01 -0.08 0.05 -0.05 -0.04 -0.03 -0.03 0.05 -0.16 0.01 -0.03 0.76 -0.02 -0.01 0.00 -0.01 0.00 1 0.06

tax liens 0.00 0.00 0.01 0.03 -0.01 -0.01 0.00 0.02 -0.03 0.01 0.00 0.63 -0.01 0.00 0.01 0.00 0.00 0.06 1

Table B.1: Correlation matrix of LC variables



Appendix C

Meta-parameters of classifiers

Table C.1 below displays following information: meta-parameters of classifiers

that we have fine-tuned, fine-tuned values of meta-parameters and analytical

software we have used. The symbol n/a in meta-parameters description denotes

that it was not needed to fine-tuned given classifier. We would like to point out

that it might happen that different analytical software require different meta-

parameters. Our main software for classifier’s scoring was IBM SPSS Modeler

18.0. We have chosen SPSS Modeler because of its reliability, ease of use and

authors’ proficiency in this software. Two classification methods, Näıve Bayes

and Random forest, are not covered by SPSS Modeler. Therefore, our second

software is R 3.4.0. The R’s packages we have used are included in parentheses.
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Table C.1: Meta-parameters of Classifiers

Classifier Meta-parameter Value Software

Artificial neural network
(ANN)

# of hidden nodes 2
SPSS Modeler

# of units in hidden nodes 22;10

Bayesian net
(B-Net)

Structure of network TAN SPSS Modeler

Classification and regressio tree
(CART)

Tree depth 6
SPSS Modeler

Min. leaf size 2%

k-Nearest Neighbor
(k-NN)

# of nearest neighbors 10 SPSS Modeler

Linear discriminant analysis
(LDA)

n/a SPSS Modeler

Logistic regression
(LR)

n/a SPSS Modeler

Linear support vector machine
(L-SVM)

Epsilon 0.1
SPSS Modeler

Lambda 5

Näıve Bayes
(NB)

n/a R (e1071)

Support vector machine - radial
(SVM-Rbf)

Epsilon 0.1
SPSS Modeler

Gamma 0.1

Random forest
(RF)

# of grown trees 800
R (randomForest)

# of randomly sampled variables 5



Appendix D

Results of Iterations

The 5-fold cross validation approach has been used to measure classifiers’ per-

formance. Below are, therefore, five partial results from five cross validation

iterations. The results of best classifiers based on given performance measure-

ments are underlined. These partial results serve as basis for average classifier

performance results displayed in Table 7.1.

Table D.1: Results from first iteration of 5-fold cross validation

Classifier
Performance measurement

PCC KS BS AUC PG H

RF 0.7892 0.2793 0.1240 0.6935 0.2213 0.1245
ANN 0.7906 0.2796 0.1232 0.6957 0.2347 0.1285
LR 0.7906 0.2874 0.1235 0.6952 0.2517 0.1271
LDA 0.7879 0.2846 0.1243 0.6934 0.2658 0.1243
SVM-Rbf 0.7819 0.2093 0.1295 0.6501 0.2572 0.1073
L-SVM 0.7876 0.2850 0.1583 0.6942 0.2365 0.1254
B-Net 0.7859 0.2544 0.1254 0.6748 0.2028 0.1066
NB 0.7864 0.2340 0.1423 0.6657 0.2146 0.0997
k-NN 0.7792 0.1972 0.1313 0.6334 0.1418 0.0663
CART 0.7484 0.2536 0.2114 0.6347 0.1356 0.0763



D. Results of Iterations XI

Table D.2: Results from second iteration of 5-fold cross validation

Classifier
Performance measurement

PCC KS BS AUC PG H

RF 0.7865 0.2693 0.1253 0.6892 0.2158 0.1206
ANN 0.7917 0.2864 0.1239 0.6994 0.2370 0.1339
LR 0.7925 0.2890 0.1237 0.6998 0.2457 0.1356
LDA 0.7929 0.2852 0.1242 0.6979 0.2521 0.1328
SVM-Rbf 0.7802 0.2146 0.1315 0.6501 0.2716 0.1065
L-SVM 0.7920 0.2876 0.1585 0.6988 0.2247 0.1342
B-Net 0.7892 0.2590 0.1254 0.6820 0.2126 0.1167
NB 0.7696 0.2455 0.1517 0.6698 0.2023 0.1045
k-NN 0.7442 0.2039 0.1328 0.6370 0.1527 0.0696
CART 0.7786 0.2587 0.2065 0.6440 0.1937 0.0867

Table D.3: Results from third iteration of 5-fold cross validation

Classifier
Performance measurement

PCC KS BS AUC PG H

RF 0.7905 0.2912 0.1235 0.6981 0.2334 0.1316
ANN 0.7915 0.2914 0.1230 0.6999 0.2479 0.1345
LR 0.7935 0.2968 0.1228 0.7002 0.2524 0.1359
LDA 0.7930 0.2886 0.1234 0.6980 0.2599 0.1325
SVM-Rbf 0.7852 0.2162 0.1298 0.6577 0.2723 0.1131
L-SVM 0.7919 0.2926 0.1582 0.6995 0.2352 0.1343
B-Net 0.7902 0.2585 0.1247 0.6800 0.2065 0.1154
NB 0.7900 0.2485 0.1624 0.6708 0.1734 0.1070
k-NN 0.7451 0.2041 0.1321 0.6360 0.1648 0.0666
CART 0.7527 0.2665 0.1998 0.6392 0.1421 0.0863



D. Results of Iterations XII

Table D.4: Results from fourth iteration of 5-fold cross validation

Classifier
Performance measurement

PCC KS BS AUC PG H

RF 0.7874 0.2808 0.1262 0.6937 0.2277 0.1240
ANN 0.7885 0.2834 0.1256 0.6975 0.2551 0.1285
LR 0.7890 0.2901 0.1252 0.7004 0.2569 0.1336
LDA 0.7888 0.2838 0.1258 0.6973 0.2670 0.1291
SVM-Rbf 0.7822 0.2080 0.1314 0.6537 0.2640 0.1145
L-SVM 0.7828 0.2854 0.1590 0.6986 0.2374 0.1308
B-Net 0.7878 0.2552 0.1269 0.6803 0.2167 0.1137
NB 0.7858 0.2496 0.1420 0.6731 0.2403 0.1035
k-NN 0.7792 0.2041 0.1329 0.6379 0.1441 0.0697
CART 0.7643 0.2602 0.2018 0.6296 0.1202 0.0763

Table D.5: Results from fifth iteration of 5-fold cross validation

Classifier
Performance measurement

PCC KS BS AUC PG H

RF 0.7881 0.2737 0.1251 0.6896 0.2199 0.1206
ANN 0.7903 0.2831 0.1243 0.6953 0.2519 0.1270
LR 0.7910 0.2794 0.1243 0.6939 0.2443 0.1274
LDA 0.7894 0.2743 0.1250 0.6911 0.2480 0.1236
SVM-Rbf 0.7796 0.2041 0.1307 0.6479 0.2554 0.1027
L-SVM 0.7891 0.2763 0.1587 0.6924 0.2207 0.1252
B-Net 0.7857 0.2502 0.1260 0.6763 0.2155 0.1086
NB 0.7862 0.2352 0.1526 0.6649 0.1908 0.0997
k-NN 0.7796 0.2018 0.1319 0.6357 0.1478 0.0667
CART 0.7856 0.2397 0.1898 0.6392 0.1558 0.0748
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