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Abstract: The ensemble Kalman filter (EnKF) is a recursive filter, which is used in
a data assimilation to produce sequential estimates of states of a hidden dynamical
system. The evolution of the system is usually governed by a set of differential
equations, so one concrete state of the system is, in fact, an element of an infinite
dimensional space.

In the presented thesis we show that the EnKF is well defined on a infinite
dimensional separable Hilbert space if a data noise is a weak random variable with
a covariance bounded from below. We also show that this condition is sufficient
for the 3DVAR and the Bayesian filtering to be well posed. Additionally, we
extend the already known fact that the EnKF converges to the Kalman filter in
a finite dimension, and prove that a similar statement holds even in a infinite
dimension.

The EnKF suffers from a low rank approximation of a state covariance, so a
covariance localization is required in real applications. The recently proposed
spectral diagonal ensemble Kalman filter (SDEnKF) allows a natural localiza-
tion of the state covariance, and is still computationally very efficient. We show
that, under reasonable assumptions, the SDEnKF uses a much better estimate
of the state covariance than the classical EnKF, and test the performance of the
SDEnKF using multiple chaotic models.
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1. Introduction

1.1 Motivation and main goals

Nowadays, computers allow us to create and use sophisticated models of complex
phenomenas in nature. These models are usually based on partial differential
equations, which have to be discretized on appropriate meshes, and often only
a numerical solution of these equations is known. Typical examples are models
describing an evolution of the atmosphere (Jacobson [2005], Kalnay [2003]) or
models describing an ocean current (Bennett [1992, 2002]). As an available com-
puter performance increases, finer meshes are used for numerical computations,
so the models are able to capture finer scale effects, e.g., convective rainfalls in
the atmospheric models.

Nevertheless, currently used models are still far away from being perfect, and
contain errors from multiple sources:

• errors caused by a necessary simplification of differential equations that
govern a modeled system,

• errors caused by a numerical method used to solve the equations,

• errors due to unknown or uncertain boundary conditions,

• etc.

Therefore, the models have to be verified against available observations. Also,
these observations have to be regularly used to correct forecasts produced by
these models, and to augment the forecasts towards the right trajectories. The
procedure of using observations to correct outputs of a numerical model is called
a data assimilation.

As one can imagine, there are many obstacles with assimilation of the observa-
tions into the numerical models. The most important obstacles are summarized
in the following list.

1. Available supercomputers and, already mentioned, finer meshes cause the
size of the state vector to surpass any imaginable number. For example,
the size of a state vector of the Aladin model, which is used for operational
numerical weather forecasting in the Czech Republic, exceeds 10 million
(Bénard et al. [2010]), and recently there have been done experiments with
atmospheric models with dimension exceeding 100 billion (Miyoshi et al.
[2014]). Therefore, many basic mathematical operations, e.g., manipula-
tion with a full covariance matrix of the state vector, may easily become
inapplicable even if one has access to the most powerful computer.

2. The observations are, similar to models, imperfect, and contain, at least, two
types of errors: measurement errors and representation errors (Desroziers
et al. [2005]). Hence, one never knows what the precise value of the modeled
state is.
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3. The observations are usually only a function of the state, and one cannot
observe the modeled variables directly. For example, we may model a state
of the atmosphere using air temperature, wind speed, pressure and amount
of water in the atmosphere, and observe the amount of precipitation. Ad-
ditionally, the observations are usually aggregated both in space and in
time.

4. In many real world applications, the size of the state vector is much larger
than the number of available observations. As we have already noted, a
model of atmosphere can easily have a state vector of size one billion, but,
without satellite images, the number of unique observations of the atmo-
sphere at a given time interval is usually equal to a few thousands, which
is obviously incomparable with the size of the state vector.

Many assimilation methods have been proposed and used over the time. One of
the basic methods is the Kalman filter (Kalman [1960], Kalman and Bucy [1961]),
but this method requires a manipulation with a state covariance, and that may
be, as already mentioned, often impossible. Therefore, this thesis is focused on
the ensemble Kalman filter, which is an assimilation method originally proposed
in Evensen [1994], and later improved in Houtekamer and Mitchell [1998].

A basic idea of the ensemble Kalman filter is to use an ensemble, i.e., a
set of possible trajectories of a modeled system, to represent the uncertainty in
the model, and to incorporate the observations using the Kalman filter equation
with a sample covariance in place of the true covariance. This approach may be
implemented very efficiently, and extensive discussion of possible implementation
is provided in Evensen [2009]. It is very well known (Le Gland et al. [2011],
Mandel et al. [2011]) that the solution using the ensemble Kalman filter converges
to the solution obtained using the Kalman filter almost surely and in Lp when
the size of the ensemble goes to infinity and the state is finitely dimensional.

However, a state of many of the modeled phenomena, e.g., state of the at-
mosphere, is, in fact, a random continuous function, so it is an element of an
infinite dimensional space. Hence, the interesting question is whether the en-
semble Kalman filter and other well known assimilation methods may be used
if we do not discretize the state. Also, some authors, e.g., Adcock and Hansen
[2015], Cotter et al. [2010], Stuart [2010], argue that the discretization should be
postponed to the least possible moment, so studying the ensemble Kalman filter
on an infinite dimensional space is of a primary interest.

Additionally, satellites allow us to obtain high resolution images of the Earth,
so one can easily assume that the observations are also elements of an infinite di-
mensional space. Yet, there immediately comes a question whether the ensemble
Kalman filter may still be defined, and whether it possesses the same properties
as in the finite dimension.

When the ensemble Kalman filter is used in a real world application, the size
of the ensemble is usually much smaller than the size of a state vector. Therefore,
a sample covariance is a very low rank approximation of a true covariance, and
this poor covariance estimate often causes spurious correlations. Hence, many
authors, e.g, Buehner [2011], Buehner and Charron [2007], Kepert [2009], Nerger
et al. [2012], recommend using some kind of a covariance localization in the
ensemble Kalman filter equations.
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According to the previous paragraphs, we state the two main goals that we
try to accomplish in this thesis.

1. To define the ensemble Kalman filter on an infinite dimensional space, and
to prove results similar to Le Gland et al. [2011] but in infinite dimensions.
Additionally, we will look whether the definition of the infinite dimensional
ensemble Kalman filter corresponds to some other assimilation methods,
such as the the 3DVAR or the Bayesian filtration.

2. To investigate properties of recently proposed FFT ensemble Kalman filter
(Mandel et al. [2010b]) and DWT ensemble Kalman filter (Beezley et al.
[2011]), which provide a natural localization of a forecast covariance. These
methods are computationally very efficient, and are believed to require
smaller ensembles than the classical ensemble Kalman filter. We will extend
these methods for a usage with a general spectral transformation, and test
the performance of these methods using some toy models.

1.2 Thesis outline

The thesis is divided into nine chapters. Each chapter except the first and the last
one is concluded by a section that details additional notes and related references.

The first chapter contains a motivation with a few references, a thesis outline,
and a notation convention.

The second chapter is devoted to a brief review of a functional analysis and
a measure theory, and the main topics of this chapters are Hilbert spaces, mea-
surable spaces and cylindrical sets. Basics definitions are recalled, but nearly all
statements are given without a proof as they can be found in any textbook. A
list of useful textbooks is presented in the last section of the chapter.

The third chapter introduces a probability on a separable Hilbert space. Sim-
ilar to the second chapter, this chapter is a review of an already known theory,
so a lot of statements are again presented without a proof. However, because
the theory of random variables on an infinite dimensional space is usually not
covered in basic statistical courses, we explain the problems with measurability
of random variables, and review the theory of weak random variables. A large
part of the chapter is devoted to Gaussian distributions, which are of our primary
interest in subsequent chapters.

The fourth chapter builds a state space model, which is a basic mathematical
framework for a data assimilation.

Chapters 2, 3 and 4 just review already known statements, and readers familiar
with these topics may skip these chapters, but we strongly recommend to look
at Definition 7 because it establishes the notation used in the all consecutive
chapters.

The fifth chapter summarizes well known assimilation methods: the 3DVAR,
the Kalman filter, the ensemble Kalman filter and the Bayesian filtration. Rela-
tions between solutions obtained using these methods are only briefly mentioned
as they can be found in many of the references noted in the last section of the
this chapter.

The sixth chapter discusses whether the methods introduced in the previous
chapter may be defined when both state and observational spaces are infinite
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dimensional. Sufficient and necessary conditions for some assimilation methods
to be well posed are also stated.

The seventh chapter is devoted to the properties of the ensemble Kalman filter
in infinite dimension. We identify the mean-field ensemble, and show that the
analysis obtained using the ensemble Kalman filter converges to the mean-field
ensemble in Lp.

The eighth chapter proposes an advanced ensemble Kalman filter, which uses
a diagonal sample covariance in an appropriate spectral space. We compare errors
of this advanced estimate of the covariance with a classical sample covariance.
Also, the performance of the proposed assimilation method is tested using mul-
tiple chaotic models.

Finally, the last chapter briefly summarizes the results obtained in this thesis.

1.3 Notation

We use calligraphic uppercase letters, e.g., H or G, to denote linear spaces. Ro-
man uppercase letters, e.g., A or T, denote linear operators between two spaces,
and, because matrices are liner operators, we use the same convention to denote
matrices.

If A is a complex matrix with n row and m columns, we use the notation
(A)i,j to denote the element of the matrix A in the ith row and the jth column,
and A∗ denotes a conjugate transpose of A. If A is a real matrix, A∗ denotes its
transpose. Deterministic vectors are denoted using italic lowercase letters, e.g.,
u, and vectors are assumed to be columns. If u ∈ Rn, then we use notation (u)j
to denote its jth element.

Random elements are denoted using italic uppercase letters, e.g. X, Y, re-
gardless of the dimension of the space on which they are defined. Italic lowercase
letters, e.g., x, k, denote constants or nonrandom elements of a linear space.

Angle brackets 〈x, y〉 are used to denote an inner product between x and y,
and curly brackets {x, y, . . .} denotes a set with elements x, y, . . . A deterministic
norm is denoted using single vertical bars |·| , and double vertical bars ‖·‖ are
reserved for stochastic norms.

A list of commonly used abbreviations is included at the end of the thesis.
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2. Mathematical background

This chapter recalls basic mathematical definitions and theorems that we rely on
in the subsequent chapters. Section 2.1 deals with measurable spaces. Section 2.2
contains a brief introduction to the functional analysis and Hilbert spaces, and
Section 2.3 introduces cylindrical sets and their properties. Finally, Section 2.4
contains references to useful textbooks covering all areas as nearly all statements
in this section are presented without proofs.

2.1 Measurable spaces

Given a vector space W over a field K, where either K = R or K = C, a function

ρ :W → R

such that:

1. ρ (ax) = |a| ρ (x) for all a ∈ K and all x ∈ W ,

2. ρ (x+ y) ≤ ρ (x) + ρ (y) for all x, y ∈ W ,

3. ρ (x) = 0 if and only if x is the zero vector

is called a norm on W , and a pair (W , ρ) is called a normed space, X = (W , ρ).
The second property of a norm is called a triangle inequality. If X is a normed
space, then for each element x ∈ X we use single vertical bars to denote its norm

|x|X = |x| = ρ (x) ,

and reserve double vertical bars for stochastic norms introduced later. Unless it
leads to confusion, we always use single vertical bars without an additional index
to denote the natural norm on a given space.

A sequence {xi}i∈N of elements belonging to a normed space X is said to be
Cauchy if for every positive ε there exist mε ∈ N such that

|xm − xn| ≤ ε

for all m,n ≥ mε. The space X is complete if every Cauchy sequence in X has a
limit in X .

Given a nonempty set X we denote 2X the collection of all subsets of X . We
say that A ⊂ 2X is algebra if A meets two conditions:

1. both X and ∅ are elements of A, and

2. if A,B∈ A, than A \B ∈ A.

Obviously, the second condition implies that if A,B∈ A, than both A ∩ B and
A ∪ B are elements of A. Additionally, A is called σ-algebra if {An}∞n=1 ⊂ A
implies that

∞⋃
n=1

An ∈ A.
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A pair (X ,A) where X is a nonempty vector space and A is an σ-algebra defined
on X is called a measurable space. If F ⊂ 2X , then the smallest σ-algebra
containing F is denoted σ (F) . In other words, let {Ai}i∈I , where I is an abstract
index set, be all σ-algebras in X , then

σ(F) =
⋂

i∈I: F⊂Ai

Ai.

A set F ⊂ X is open if for every x ∈ F exists εx > 0 such that

{y ∈ X : |x− y| < εx} ⊂ F.

If F is a collection of all open sets in X , σ (F) is called Borel σ-algebra, and we
denote it as B (X ) .

Let (X ,A) be a measurable space. A function

ν : A → [0,∞) ∪ {∞}

is a countable additive measure if

1. ν (∅) = 0, and

2. for any countable pairwise disjoint collection of sets {An}∞n=1 ⊂ A

ν

(
∞⋃
n=1

An

)
=
∞∑
n=1

ν (An) .

According to the definition it immediately follows

ν

(
∞⋃
n=1

An

)
≤

∞∑
n=1

ν (An)

for any {An}∞n=1 ⊂ A. If for every x ∈ X there is an open set Fx such that x ∈ Fx
and ν (Fx) < ∞, we say that the measure ν is locally finite. There is only one
translation invariant locally finite non zero measure on B (Rn) , n ∈ N, and this
measure is called the Lebesgue measure. The Lebesgue measure on Rn is denoted
as λn.

Assuming that (X ,A) and (Y ,D) are two measurable spaces, function

f : X → Y

is called measurable if for any D ∈ D the set

f−1 (D) = {x ∈ X : ∃y ∈ D, y = f (x)}

belongs to A. If the function f is measurable, then |f | is measurable as well, and
one can easily check that the expression

|f |p =

(∫
X
|f (x)|p dν (x)

)1/p

, (2.1)
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where ν is a locally finite measure on X , defines a norm for any p ≥ 1. Hence,
for any p ≥ 1 we define the space

Lp (X ,Y) =
{
f : X → Y ; |f |p <∞

}
, (2.2)

and we do not distinguish between functions that differ only on a set of zero
measure. More precisely, the space Lp (X ,Y) is a quotient space with respect to
a kernel of a functional

f ∈ Lp (X ,Y)→ |f |p ∈ R.
If f ∈ Lp (X ,Y) and g ∈ Lq (X ,Y) where p and q are Hölder’s coefficients, i.e.,
p, q ∈ (1,∞) and 1/p + 1/q = 1, then the Hölder’s inequality states that

|fg|1 ≤ |f |p |g|q . (2.3)

Note that the Hölder’s inequality holds even when p = 1 with

|g|∞ = inf
A⊂X ,ν(A)=0

{
sup
x∈X\A

f (x)

}
.

When P is a measure on a measurable space (Ω,A) such that

P (Ω) = 1,

then we say that P is a probability measure, and a triple (Ω,A, P ) is a probability
space.

2.1.1 Radon-Nikodym theorem

Let µ and ν be two probability measures on (Ω,A) . We say that µ is absolutely
continuous with respect to ν, denoted as µ << ν, if ν (A) = 0 implies that
µ (A) = 0 for every A ∈ A. If

µ << ν and ν << µ,

then we say that the measures µ and ν are equivalent, µ ∼ ν. If A and B are
disjunct sets such that

µ (A) = 1, ν (A) = 0, µ (B) = 0 and ν (B) = 1,

then we say that µ and ν are singular.

Theorem 1 (Radon-Nikodym theorem). Let (X ,A) be a measurable space with
two countable additive locally finite measures µ and ν. If µ is absolutely continuous
with respect to ν, then there exists a measurable function

dµ

dν
: X → [0,∞)

such that for each A ∈ A
µ (A) =

∫
A

dµ

dν
dν.

The function f is called a Radon-Nikodym derivative of µ with respect to ν.
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2.1.2 Lipschitz continuity

Let X and Y be two normed spaces. A function f : X → Y is Lipschitz
continuous if there exists a positive constant l such that for all x, y ∈ X

|f (x)− f (y)| ≤ l |x− y| ,

and f is locally Lipschitz continuous at x0 ∈ X if there exist l > 0 and δx0 > 0
such that

|f (x0)− f (y)| ≤ l |x0 − y|

for all y ∈ {x ∈ X : |x0 − x| ≤ δx0} . The function f is locally Lipschitz continu-
ous with at most polynomial growth in infinity if there exist positive constants s
and l such that

|f (x)− f (y)| ≤ l |x− y| (1 + |x|s + |y|s) (2.4)

for all x, y ∈ X .

Lemma 2. If function f : X → Y is locally Lipschitz continuous with at most
polynomial growth in infinity, then f is locally Lipschitz continuous at every x ∈
X .

Proof. By assumption there are constants s, l > 0 such that (2.4) holds for any
x, y ∈ X . Let x0 ∈ X . Then, for all y ∈ {x ∈ X : |x0 − x| ≤ 1}

|f (x0)− f (y)| ≤l |x0 − y| (1 + |x0|s + |y|s)
≤l (1 + |x0|s + (|x0|+ 1)s) |x0 − y|
≤l̃ |x0 − y| ,

where l̃ = l (1 + |x0|s + (|x0|+ 1)s) , and f is locally Lipschitz continuous at x0.

Lemma 3. If f : X → Y is locally Lipschitz continuous with at most polynomial
growth in infinity, then for every x, y ∈ X

|f(x)| ≤l1
(
1 + |x|s+1) , (2.5)

|f (x)− f (y)| ≤ l2 |x− y| (1 + |x|s) + l2 |x− y|s+1 , (2.6)

where l1, l2 are real positive constants, and s is defined by Equation (2.4).

Proof. Recalling the existence of positive constants s and l fulfilling (2.4), the
proof of (2.5) relies simply on the triangle inequality,

|f(x)| ≤ |f(x)− f (0)|+ |f (0)| ≤ l (|x− 0|) (1 + |x|s + |0|s) + |f (0)|
≤ l
(
|x|+ |x|s+1)+ |f (0)| ≤ l1

(
1 + |x|s+1) ,

where the existence of the constant l1 is obvious.
To prove (2.6), let x, y ∈ X . If |y| ≤ 2 |x− y|, then

|f (x)− f (y)| ≤ l |x− y| (1 + |x|s + |y|s)
≤ l |x− y| (1 + |x|s) + 2sl |x− y| .
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On the other hand, if |y| > 2 |x− y|, then

|y| ≤ |y − x|+ |x| ≤ 1

2
|y|+ |x| ,

which implies that |y| ≤ 2 |x|, and

|f (x)− f (y)| ≤ l |x− y| (1 + |x|s + 2s |x|s)
≤ l(1 + 2s) |x− y| (1 + |x|s) .

To conclude the proof, define l2 = l (1 + 2s) .

2.2 Functional analysis

When X is a complete normed vector space, then we say that X is a Banach
space.

Example 1. For any real sequence y = {yi}i∈N , y ∈ R∞, and any p ≥ 1 is `p norm
defined by

|y|p =

(
∞∑
i=1

|yi|p
)1/p

,

and space

`p =
{
y ∈ R∞ : |y|p <∞

}
obtained with the appropriate `p norm is Banach for any p ≥ 1.

Example 2. The quotient space Lp (R,R) defined by (2.2) with the norm

|f |p =

(∫
R
|f |p dλ

)1/p

is Banach when p ≥ 1.

2.2.1 Inner product and Hilbert space

Given a vector space H defined over a scalar field K, where again K stands for
either C or R, an inner product is a mapping from H × H into the scalar field
K which associates a scalar 〈x, y〉 ∈ K to every pair of x, y ∈ H and fulfills four
conditions:

1. ∀x, y, z ∈ H : 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 ,

2. ∀x, y ∈ H,∀a ∈ K : 〈ax, y〉 = a 〈x, y〉 ,

3. ∀x, y ∈ H : 〈x, y〉 = 〈y, x〉 ,

4. ∀x ∈ H : 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

11



If K = R, then the third condition changes to

∀x, y ∈ H : 〈x, y〉 = 〈y, x〉 ,

and this condition also implies that 〈x, x〉 ∈ R even if K = C. Therefore, it can
easily be verified that a mapping

x ∈ H →
√
〈x, x〉 ∈ R

defines norm on the space H. For every x ∈ H we denote its norm generated by
the inner product

|x|H =
√
〈x, x〉

or simply |x| , unless this notation leads to confusion.
A pair (H, 〈., .〉), whereH is a complete space with respect to the norm induced

by the inner product, is called a Hilbert space. It obvious that every Hilbert space
is also Banach. We say that H is separable if it contains countable dense subset.

Example 3. The space (`2, |.|2), defined in Example 1, is a separable Hilbert space
with a inner product defined by

〈x, y〉 =
∞∑
i=1

(xiyi)

for any x, y ∈ `2. This space is separable as well, because the set

{x ∈ Q∞ : |x|2 <∞}

is both dense and countable.

Example 4. The space L2 (R,R), defined in Example 2, is Hilbert with the norm
generated by the inner product

〈f, g〉 =

∫
R
fgdλ.

We say that two elements x, y of a Hilbert space H are orthogonal if their
inner product is zero, 〈x, y〉 = 0. Additionally, if their norms equal to one,

|x| = |y| = 1,

we say that x and y are orthonormal. A set M ⊂ H is called orthogonal if all
elements of M are pairwise orthogonal, i.e.,

∀x, y ∈M,x 6= y : 〈x, y〉 = 0.

If, additionally, all elements of M have norm one, then we call the set M or-
thonormal.

A set M ⊂ H is called a total orthonormal set if it is orthonormal and its
span is dense in H. Every nonempty Hilbert space contains a total orthonormal
set, e.g., [Kreyszig, 1989, p. 168]. If M1 and M2 are two total orthonormal sets
in H, both M1 and M2 have the same cardinality.

Let S be a proper subspace of H. The subspace

S⊥ = {x ∈ H : 〈x, y〉 = 0 ∀y ∈ S}

is called a orthogonal complement of S in H. For each h ∈ H there is exactly
one xh ∈ S and exactly one yh ∈ S⊥ such that

h = xh + yh.
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2.2.2 Linear operators

WhenH and G are two Hilbert spaces, we denote [H,G] the space of all continuous
linear operators from H to G. This space is equipped with the operator norm

|T|[H,G] = sup
x∈H,x 6=0

|Tx|G
|x|H

for all T ∈ [H,G] . This norm could be equivalently defined by

|T|[H,G] = sup
x∈H,|x|H≤1

|Tx|G
|x|H

= sup
x∈H,|x|H=1

|Tx|G
|x|H

,

and [H,G] equipped with the operator norm is a Banach space. The operator
norm in not induced by an inner product, and we use convention

[H] = [H,H] .

We define
H# = {f : H → R; f linear} ,

the space of all linear functionals on H, and call it an algebraic dual of H. The
space of all bounded linear functionals on H is called a dual space of H, and we
denote it as H∗, i.e.,

H∗ = [H,R] .

Now we recall one of the most important theorems in functional analysis.

Theorem 4 (Riesz’s representation theorem). Let H be a Hilbert space. For
every f ∈ H∗ there exist exactly one z ∈ H such that f (x) = 〈x, z〉 for all x ∈ H.
The norm of z and the operator norm of f are equal,

|f |H∗ = |z|H .

The Riesz’s representation theorem is crucial, and has many useful conse-
quences. We introduce only a few of them, and the first one is the existence of
an adjoint operator. For any operator T ∈ [H,G] we define the adjoint operator
T∗ by equation

〈y,Tx〉G = 〈T∗y, x〉H ∀y ∈ G,∀x ∈ H.

An operator T ∈ [H] is selfadjoint if T = T∗, and T is positive definite if

〈x,Tx〉 > m |x|

for all x ∈ H and some positive constant m. The operator T is positive semidef-
inite if

〈x,Tx〉 ≥ 0

for all x ∈ H.
We formulate the second consequence of the Riesz’s theorem as an independent

corollary.
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Corollary 1. Assume that H is a Hilbert space and α is a bilinear form defined
on H×H such that

|α (x, y)| ≤ a |x| |y|

for all x, y ∈ H and some a ∈ R. There exists a unique linear operator A ∈ [H]
such that

〈x,Ay〉 = α (x, y)

for all x, y ∈ H, and |A| ≤ a.

Let x and y be two elements of H. A tensor product of x and y is a mapping
from H to H defined by

x⊗ y : v ∈ H → x 〈y, v〉 ∈ H.

Example 5. When H = Rn, the tensor product of two vectors x and y is a rank
one matrix xy∗ since for every u ∈ Rn

(x⊗ y)u = x 〈y, u〉 = x (y∗u) .

Given the fact that inner product is bilinear we see that the tensor product
is a linear operator,

(x⊗ y) (u+v) = x 〈y, (u+v)〉 = x 〈y, u〉+ x 〈y, v〉 = (x⊗ y) (u) + (x⊗ y) (v) .

If v 6= 0, then

|(x⊗ y) v|
|v|

=
|x 〈y, v〉|
|v|

=
|x| 〈y, v〉
|v|

≤ |x| |y| |v|
|v|

= |x| |y| (2.7)

with equality if and only if y = v. Therefore,

|x⊗ y| = |x| |y| .

Again, using Riesz’s representation theorem, the tensor product x ⊗ y can be
equivalently written as a unique element of [H] such that

〈u, (x⊗ y) v〉 = 〈x, y〉 〈u, v〉 ∀u, v ∈ H,

and it is obvious that the tensor product is a selfadjoint operator.
Let M = {e1, . . . , em} be an orthonormal set and denote G = span (M) . The

operator

Π : x ∈ H →
m∑
i=1

(ei ⊗ ei)x ∈ G

is called a projection of H onto G. It is obvious that for every x ∈ G

Π(x) =
m∑
i=1

ei 〈ei, x〉 = x,

so Π2 = Π ◦ Π = Π. In fact, Πn = Π for any n ∈ N. Since the projection is the
sum of selfadjoint operators, it is also selfadjoint.
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2.2.3 Spectrum of bounded linear operators

Given an operator T ∈ [H] a resolvent set ρ (T) is a set of all λ ∈ C such that
the operator

Rλ = (T− λI)−1

satisfies 3 conditions:

1. Rλ exists,

2. Rλ is bounded, and

3. domain of Rλ is dense in H.

The resolvent set is open in C, and its complement

σ (T) = C \ ρ (T)

is called the spectrum of T. Clearly, if u ∈ H is such that

u 6= 0 and (T− λI)u = 0 (2.8)

for some λ ∈ C, then λ ∈ σ (T), and we say that λ is the eigenvalue of T and u
is the corresponding eigenvector. The set of all eigenvalues σp (T) is called the
point spectrum of T.

Example 6. When H = Rn, then [H] = Rn×n, and a spectrum of a matrix
M ∈ Rn×n is a set of complex numbers λ such that the matrix M − λI is not
invertible, i.e., the spectrum only consist of the eigenvalues.

On the other hand, when H = `2, defined in Example 1, the operator

L : (x1, x2, . . .) ∈ `2 → (0, x1, x2, . . .) ∈ `2

is obviously linear and bounded, and the operator

R : (0, x1, x2, . . .) ∈ `2 → (x1, x2, . . .) ∈ `2

is obviously the inverse of L− 0. I. But the operator R is defined only on{
(x1, x2, . . .) ∈ `2 : x1 = 0

}
,

and this set is not dense in `2. Therefore, 0 belongs to the spectrum of L, but it
is not an eigenvalue of L.

The previous example shows that the spectrum of a bounded linear operator
may also contain other values then eigenvalues. Additionally, it is possible to
construct a linear operator with no eigenvalue, even though the spectrum is always
nonempty. The spectral radius rσ (T) of T is defined by

rσ (T) = sup
λ∈σ(T)

|λ| , (2.9)

and it can be shown that
rσ (T) ≤ |T| .
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2.2.4 Compact linear operators

An operator T ∈ [H,G], where H and G are Hilbert spaces, is compact if for
every bounded sequence {xn}n∈N ⊂ H the sequence {Txn}n∈N ⊂ G contains a
convergent subsequence.

If T ∈ [H] is compact and dim (H) =∞, then

σ (T) = σp (T) ∪ {0} ,

and zero can be the only accumulation point of the spectrum. Additionally, if T
is selfadjoint, then there is a total orthonormal set {ei}i∈N ⊂ H such that

Tei = λiei ∀i ∈ N,

with all λi, i ∈ N, being real, and

T =
∞∑
i=1

λi (ei ⊗ ei) , (2.10)

which is a spectral decomposition of T. The spectral decomposition (2.10) allows
us to define

f (T) =
∞∑
i=1

f (λi) (ei ⊗ ei)

for any continuous f : R→ R.
If T ∈ [H] is a compact operator, then T∗T is a positive semidefinite operator,

so

T∗T =
∞∑
i=1

σ2
i (ei ⊗ ei) ,

where {ei}i∈N is a total orthonormal set and σ2
i ≥ 0 for all i ∈ N. The values σi

are called singular values of the operator T, and it is obvious that for symmetric
positive semidefinite operators the singular values and the eigenvalues coincide.

Finally, if T ∈ [H] is compact, then, similarly as in a finite dimension,

|T| = sup
i∈N

σi,

where σi are singular values of T. And for every T ∈ [H],

|T| = rσ (T∗T) ,

where rσ (T∗T) is defined by Equation (2.9).
We say that T ∈ [H] is a trace class operator if there is an orthonormal set

{ei}i∈N ⊂ H such that

Tr
(

(T∗T)
1/2
)

=
∞∑
i=1

〈
(T∗T)

1/2 ei, ei

〉
<∞,

and the value Tr
(

(T∗T)
1/2
)

is called the trace of the operator T. It can be shown

that the trace of T does not depend on the choice of the orthonormal set {ei}i∈N,
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and the set of all trace class operators onH is a Banach space with a norm defined
by

|T|Tr = Tr
(

(T∗T)
1/2
)
.

Additionally, every trace class operator is compact, and

|T|Tr =
∞∑
i=1

|σi| ,

where σi are singular values of T.
We say that T ∈ [H] is a Hilbert-Schmidt operator if there is an orthonormal

set {ei}i∈N ⊂ H such that

∞∑
i=1

〈T∗Tei, ei〉 <∞.

The set of all Hilbert-Schmidt operators on H is a Hilbert space with an inner
product

〈T, S〉HS =
∞∑
i=1

〈Tei, Sei〉 (2.11)

for any Hilbert-Schmidt operators T and S, and the value of this inner product
does not depend on the choice of the set {ei}i∈N. Obviously, for a Hilbert-Schmidt
operator T we define a Hilbert-Schmidt norm

|T|HS = 〈T,T〉1/2HS =

(
∞∑
i=1

|Tei|2
)1/2

, (2.12)

and, equivalently,

|T|HS =

(
∞∑
i=1

|σi|2
)1/2

.

Lemma 5. For any x ∈ H is

|x⊗ x|HS = |x|2 .

Proof. Let {ei}i∈N be a total orthonormal set. Using the definition of a tensor
product and properties of an inner product,

|x⊗ x|2HS =
∞∑
i=1

|(x⊗ x) ei|2 =
∞∑
i=1

|x 〈x, ei〉|2

= |x|2
∞∑
i=1

|〈x, ei〉|2 = |x|2 |x|2 .

Generally, for T ∈ [H] compact and any p ≥ 1 the Schatten norm of T is

|T|p =

(
∞∑
i=1

|σi|p
)1/p

(2.13)
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where σi, i ∈ N, are singular values of T. The space of all compact T ∈ [H] such
that |T|p <∞ is Banach for all p ≥ 1, and we can immediately see that

|T|1 = |T|Tr and |T|2 = |T|HS .

Additionally, for any p ≤ q is{
T ∈ [H] : |T|p <∞

}
⊂
{

T ∈ [H] : |T|q <∞
}
,

and for every T ∈ Lq (H) immediately yields

|T| ≤ |T|q ≤ |T|p (2.14)

for any 1 ≤ p ≤ q. The following lemma is a special case of Theorem 7.8 in
Weidmann [1980].

Lemma 6. Let p, q, r ≥ 1 be such that 1/p + 1/q = 1/r. If T, S ∈ [H] are such that

|T|p <∞ and |S|q <∞,

then
|TS|r ≤ 2

1/r |T|p |S|q .
From the previous lemma follows an important corollary. If T and S are

Hilbert-Schmidt operators, then TS is a trace class operator, and

|TS|Tr ≤ 2 |T|HS |S|HS .

We say that positive definite operator

R =
∞∑
i=1

ri (ei ⊗ ei) ,

where {ei} is a total orthonormal set is bounded from bellow if

r = inf
i∈N

ri > 0.

If R is bounded from bellow, then |R−1| <∞. We conclude this subsection by an
estimate which can be originally found in Kwiatkowski and Mandel [2015].

Lemma 7. Let P,Q ∈ [H] be positive semidefinite operators, and R ∈ [H] be
bounded from bellow. Then,∣∣(P + R)−1 − (Q + R)−1

∣∣ ≤ |P−Q|
∣∣R−1

∣∣2 .
Proof. The expression

(P + R)−1 − (Q + R)−1 = (P + R)−1 (Q− P) (Q + R)−1 (2.15)

can be verified by application of (P + R) from the left side and (Q + R) from the
right side. The operator R is bounded from bellow, so |R−1| <∞, and since both
operators P and Q are positive semi-definite,∣∣(P + R)−1

∣∣ ≤ ∣∣R−1
∣∣ and

∣∣(Q + R)−1
∣∣ ≤ ∣∣R−1

∣∣ . (2.16)

The identity (2.15) together with (2.16) now gives the result∣∣(P + R)−1 − (Q + R)−1
∣∣ ≤ ∣∣(P + R)−1

∣∣ (Q− P)
∣∣(Q + R)−1

∣∣
≤ |Q− P|

∣∣R−1
∣∣2 .
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2.2.5 Commuting operators

We say that two operators P and Q from [H] commute if the operator

PQ−QP = 0.

Lemma 8. Suppose that P and Q are two symmetric operators belonging to [H],
P and Q commute, and P is compact. Then there exist a total orthonormal set
{ei}i∈N ⊂ H such that Pei = piei and Qei = qiei where pi, qi ∈ R, i ∈ N, are
eigenvalues of P and Q respectively.

Proof. The operator P is compact and symmetric, so it has real eigenvalues pi, i ∈
N, with eigenvectors ui ∈ H, i ∈ N, where {ui}i∈N is a total orthonormal set, and
the multiplicity of each eigenvalue is finite.

Assume that pj is unique, i.e., pj 6= pi unless j = i, i ∈ N. Then

PQuj = QPuj = pjQuj,

so Quj is also an eigenvector of P with an eigenvalue pj. Because pj is distinct
from all other eigenvalues, there exist qj ∈ R such that

Quj = qjuj,

and uj is an eigenvector of Q.
Now, assume that

p = p1 = p2 = . . . = pm

for some m ∈ N, and define

U = span {u1, . . . , um} .

Since P and Q commute,

PQui = QPui = pQui

for all i = 1, . . . ,m, so vi = Qui ∈ U because vi is an eigenvector of P corre-
sponding to p. Therefore, U is an invariant subspace of both operators P and
Q. Denote by PU and QU restrictions of the operators P and Q respectively to
the subspace U . The operators PU and QU are symmetric, defined on a finite di-
mensional vector space, and commute. Therefore, they are both diagonalizable,
e.g., [Hoffman and Kunze, 1971, Chapter 8, Theorem 18], and they both have
a common complete orthonormal set of eigenvectors, e.g., [Hoffman and Kunze,
1971, Chapter 6, Theorem 8], which spans U .

Hence, both operators P and Q have a common total orthonormal set of
eigenvectors.

In fact, if two symmetric linear operators commute, and one of them has a
total orthonormal set of eigenvectors, then they have a common set of orthogonal
eigenvectors, e.g., Levin [2002].
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2.2.6 Lebesgue measure on Hilbert space

Theorem 9. Let H be an infinitely dimensional separable Hilbert space. If µ is
a translation invariant measure on B (H), then either

µ (B) = 0 ∀B ∈ B (H)

or
µ (B) =∞ ∀B ∈ B (H) .

Proof. For any x ∈ H and ε > 0 we define open neighborhood Bx,ε,

Bx,ε = {y ∈ H : |x− y| < ε} .

Clearly, these sets generate Borel σ-algebra B (H). The space H is separable, so
there is an orthonormal set {ei}∞i=1 and

Bei,1/4 ∩Bej ,1/4 = ∅ ⇔ i 6= j.

If
0 < µ

(
Bei,1/4

)
<∞, (2.17)

then

λ (B0,2) ≥
∞∑
i=1

λ
(
Bei,1/4

)
=∞

because

B0,2 ⊃
∞⋃
i=1

Bei,1/4,

but
B0,2 =

{
8x : x ∈ B0,1/4

}
.

Therefore, the measure of the set Bei,1/4 is either 0 or∞, but this is a contradiction
with (2.17).

Corollary 2. There is no Lebesgue, i.e., translation invariant and locally finite,
measure on an infinite dimensional Hilbert space.

2.3 Cylindrical sets

2.3.1 Definition

For any finite subset H = {h1, . . . , hn} of a Hilbert space H we define a mapping

πH : x ∈ H → (〈x, h1〉 , . . . , 〈x, hn〉) ∈ Rn.

Definition 1. A set C ⊂ H is a cylindrical set if there is a finite set H =
{h1, . . . , hn} ⊂ H and a Borel set B ∈ Rn such that

C = π−1
H (B) = {x ∈ H : πH (x) ∈ B} .
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Using the notation from the previous definition, denote ΠH the projection
operator from H to span (H). Using the properties of the projection, every x ∈ H
can be written in the form x = ΠHx+ (I− ΠH)x, and thus for all i = 1, . . . , n

〈x, hi〉 = 〈ΠHx, hi〉+ 〈(I− ΠH)x, hi〉 = 〈ΠHx, hi〉 .

Therefore, x∈ C if and only if ΠHx ∈ C. This observation shows that any cylin-
drical set C can be written as a direct sum

C = B ⊕ S⊥

where S is a finitely dimensional subspace of H and B ∈ B (S).
Let C1 = B1 ⊕ S⊥1 and C2 = B2 ⊕ S⊥2 be two cylindrical sets, and denote

S̃ = S1 ∩ S2.

Additionally, denote B̃1 = B1 ∩ S̃ and B̃2 = B2 ∩ S̃. Then, both cylindrical sets
can be decomposed

C1 = B̃1⊕
(
B1 \ B̃1

)
⊕ S⊥1 ,

C2 = B̃2⊕
(
B2 \ B̃2

)
⊕ S⊥2 ,

and the union and the intersection of these sets are

C1 ∩ C2 =
(
B̃1 ∩ B̃2

)
⊕
(
B1 ∩ S⊥2

)
⊕
(
B2 ∩ S⊥1

)
⊕ (S1 ∪ S2)⊥ ,

C1 ∪ C2 =
(
B̃1 ∪ B̃2

)
⊕
(
S⊥1 ∩ S2

)
⊕
(
S1 ∩ S⊥2

)
⊕ (S1 ∪ S2)⊥ .

We may immediately observe that both union and intersection of finitely many
cylindrical sets are again cylindrical sets. Hence, all cylindrical sets constitute
algebra. To see that the set of all cylindrical sets is not a σ algebra, consider sets

Sn =

x ∈ H :

(
n∑
i=1

|〈x, hi〉|2
)1/2

< 1

 .

Obviously for each n ∈ N Sn is a cylindrical set, but

∞⋂
n=1

Sn = {x ∈ H : |x| < 1}

is not a cylindrical set. In fact the σ-algebra generated by cylindrical sets coincides
with Borel σ-algebra [Balakrishnan, 1976, Lemma 6.1.1].

2.3.2 Cylindrical measure

Let I be an abstract index set such that

{(Hi, νi)}i∈I (2.18)
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is a collection of all finitely dimensional subspacesHi ⊂ H and countable additive
measures νi defined on B (Hi) . When the collection (2.18) is such that for any
two Hi ⊂ Hj, i, j ∈ I, and any cylindrical set

C = B ⊕H⊥i , B ∈ B (Hi) ,

is
νi (B) = νj (B ⊕ (Hj \ Hi)) , (2.19)

then for any cylindrical set C = B ⊕ H⊥i , B ∈ B (Hi) , i ∈ I, we define a
cylindrical measure

µ (C) = νi (B) .

The condition (2.19) guarantees that µ (C) is the same regardless of the subspace
in which a cylindrical set is measured.

We have already mentioned that set of all cylindrical measures is an algebra
which is not countably additive, but it is easy to check that for any pairwise
disjoint cylindrical sets C1, . . . , Cn and a cylindrical measure µ is

µ

(
n⋃
i=1

Ci

)
=

n∑
i=1

µ (Ci) .

The following example shows one possible construction of a cylindrical measure.

Example 7. Let {ei}i∈N be a total orthonormal set in a separable Hilbert space H,
and let R ∈ [H] be selfadjoint and positive definite. By definition C is a cylindrical
set if there exist B ∈ B (Rn) and {i1, . . . , in} ⊂ N such that C = π−1

i1,...,in
(B) where

πi1,...,in : x ∈ H →
{〈
x, eij

〉}n
j=1
∈ Rn.

The Gaussian cylindrical measure of the set C = π−1
i1,...,in

(B) is

µR (C) =
1

(2π)
n/2 (det (Σ))

1/2

∫
B

exp

(
−1

2
|y|2Σ−1

)
dy

where Σ ∈ Rn×n,
(Σ)i,j = 〈Rei, ej〉 i, j = 1, . . . , n.

An important question is whether a cylindrical measure on a separable Hilbert
space can be extended to be countably additive. Unfortunately, if the space is
infinite dimensional, such extension is, in general, not possible.

Example 8. Denote µGaussian cylindrical measure with R = I defined in Example
7. If e1, . . . , en is an orthonormal set, then

〈Rei, ej〉 = δi,j, i, j = 1, . . . , n.

Denote µn Gaussian measure N (0, I) on Rn,

µn (B) =
1

(2π)
n/2

∫
B

exp

(
−1

2
|y|2
)
dy ∀B ∈ B (Rn) .
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For r > 0 and n ∈ N define cylindrical set

Dn,r =
n⋂
i=1

{
x ∈ H : |〈x, ei〉|2 ≤ r2

}
,

and it follows that

µn (Dn,r) =µn

(
π1,...,n

(⋂
i≤q

{
x ∈ H : (〈x, ei〉)2 ≤ r2

}))

=µn

(
π1,...,n

({
x ∈ H : max

i≤n
(〈x, ei〉)2 ≤ r2

}))
=µn

({
(a1, . . . , aq)

∗ ∈ Rq : max
i≤n

ai ≤ r

})
= (Φ (r)− Φ (−r))n ,

where Φ(.) is the probability distribution function of a real standard Gaussian
random variable. Therefore, µ (Dn)→ 0 as n goes to∞ for any fixed r ∈ (0,∞).

If Sr is a sphere with centre in 0 and diameter r,

Sr =

{
x ∈ H :

∞∑
i=1

(〈x, ei〉)2 < r2

}
,

then this sphere is a subset of each Dn,r, so

µ (Sr) ≤ lim
n→∞

µ (Dn,r) = 0

for any r > 0. On the other hand,

Dn,r ⊂ H ⊂
∞⋃
r=1

Sr,

so the set Sr cannot be measurable. Hence, the measure µ cannot be extended
to be a countable additive measure.

Fortunately, for a Gaussian cylindrical measure there exist a simple criteria
how to determine whether the cylindrical measure can be extended to be count-
ably additive, and the proof may be found in, e.g., Balakrishnan [1976].

Theorem 10. Let H be an infinite dimensional Hilbert space, and let R ∈ [H] be
self adjoin and positive semidefinite. The Gaussian cylindrical measure µR can
be extended to be countably additive on B (H) if and only if R is a trace class
operator.

2.4 Additional notes and references

All statements, definitions and other examples may be found in any good textbook
covering these topics.

The section covering measurable spaces follows mainly Bogachev [2007] and
Halmos [1950]. The different types of integral are well explained in Aliprantis
and Border [1999].
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Hilbert spaces, their properties and the properties of linear operators are
covered by Ciarlet [2013] and Kreyszig [1989]. The extensive study of Schatten
norm is provided by Reed and Simon [1980].

The construction of a cylindrical set introduced in this chapter follows Balakr-
ishnan [1976], and additional useful informations about this topic may be found
in Bogachev [1998] and Vakhania et al. [1987].
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3. Probability on Hilbert spaces

This section briefly reviews the basics of the probability on an infinite dimensional
Hilbert space because this topic is usually not covered by standard textbooks
about probability. Similar to the previous chapter, this chapter does not cover
the whole topic, and many statements are presented without proof.

The chapter is organized as follows. Section 3.1 recalls basic definitions, and
shows that many useful properties, known from the theory of random vectors, hold
even if random variables are defined on an infinite dimensional space. Section 3.2
introduces weak random variables, and shows their connection to classical random
variables. Section 3.3 deals with Gaussian distributions, and briefly mentions the
Feldman-Hayek theorem as well. Section 3.4 recalls the Markinciewicz-Zygmund
inequality, which allows us to prove the law of large numbers. Section 3.5 sum-
marizes the Bayes theorem, and, finally, Section 3.6 contains references covering
the topics introduced in this chapter with greater detail.

Unless otherwise explicitly noted, through the whole section we assume that
H is an infinite dimensional separable Hilbert space over R.

3.1 Random variables

Let (Ω,A, P ) be a probability space, and let H be a separable Hilbert space. The
random variable X is a measurable mapping

X : (Ω,A, P )→ (H,B (H)) ,

and the random variable X induces a measure

µX (B) = P
(
X−1 (B)

)
= P ({ω ∈ Ω : X (ω) ∈ B}) , B ∈ B (H) .

The space of all random variables on H is denoted as L (H), i.e.,

L (H) = {X : (Ω,A, P )→ (H,B (H)) , X measurable} .

When X ∈ L (R) we say that X is a real valued random variable, and when
X ∈ L (Rn) we say that X is a random vector.

Random variables X and Y are equal almost surely if

P (X = Y ) = P ({ω ∈ Ω : X (ω) = Y (ω)}) = 1.

We do not distinguish between random variables that are equal almost surely,
and thus we often interchange random variable X and its induced measure µX .
Therefore, we use both X ∈ L (H) and µX ∈ L (H) to denote the fact that X is
a random variable on H. If µX ∈ L (H) , we use notation X1, . . . , XN ∼ µX to
say that all has the same distribution µX .

Let X ∈ L (H) and Y ∈ L (G), where both H and G are separable Hilbert
spaces, then a measure µX,Y is called a joint distribution of X and Y if it is
induced by the measurable mapping

(X, Y ) : ω ∈ (Ω,A, P )→ (X (ω) , Y (ω)) ∈ (H× G,B (H× G)) .
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Random variables X and Y are independent if

µX,Y (H ×G) = µX (H)µY (G)

for all H ∈ B (H) and all G ∈ B (G). If random variables X and Y are in-
dependent, random vectors HX and GY where H ∈ [H,Rn] and G ∈ [G,Rm]
are independent as well. Conversely, if HX and GY are independent for all
H ∈ [H,Rn] , G ∈ [G,Rm] and all n,m ∈ N, then X and Y are independent.

We say that random variables X1, . . . , XN ∈ L (H) are exchangeable if for any
measurable sets A1, . . . , AN in H and any permutation

σ : {1, . . . , N} → {1, . . . , N}

is
µX1,...,XN (A1 × · · · × AN) = µXσ(1),...,Xσ(N)

(A1 × · · · × AN) ,

or, in other words, if the joint distribution ofX1, . . . , XN is invariant under permu-
tation of the order of the variables. It follows that if random variables X1, . . . , XN

are exchangeable, then marginal distributions of Xi and Xj, i, j = 1, . . . , N, are
identical (Mandel et al. [2011]).

3.1.1 Stochastic norm

Because a continuous function of a measurable mapping is measurable, both
functions

|X| : ω ∈ Ω→ |X (ω)| ∈ R,
〈h,X〉 : ω ∈ Ω→ 〈u,X (ω)〉 ∈ R

are measurable for any X ∈ L (H) and any u ∈ H, so both |X| and 〈h,X〉 are
real valued random variables. For any p ≥ 1 we define a stochastic norm

‖X‖p =

(∫
Ω

|X (ω)|p dP (ω)

)1/p

=

(∫
H
|x|p dµX (x)

)1/p

= (E |X|p)1/p
.

Once again, we emphasize that we reserve double vertical bars for the stochastic
norm through the whole thesis, and single bars for a deterministic norm. For any
p ≥ 1 we define a space

Lp (H) =
{
X ∈ L (H) : ‖X‖p <∞

}
,

and the space Lp (H) is a Banach space for any p ∈ [1,∞] with

‖X‖∞ = inf
A⊂Ω,P (A)=0

{
sup
ω∈Ω\A

|X (ω)|

}
.

The space L2 (H) is a Hilbert space with an inner product

〈X, Y 〉 =

∫
Ω

〈X (ω) , Y (ω)〉 dP (ω) = E 〈X, Y 〉

26



for any X, Y ∈ L2 (H) .
If X ∈ Lp (H) and Y ∈ Lq (H) where p, q ≥ 1 are such that 1/p+ 1/q = 1, then

from (2.3) immediately follows Hölder’s inequality for random variables

‖XY ‖1 ≤ ‖X‖p ‖Y ‖q . (3.1)

When p = q = 2, the inequality

‖XY ‖1 ≤ ‖X‖2 ‖Y ‖2 (3.2)

is also known also as the Cauchy-Schwarz inequality since it can be written in
the form

|〈X, Y 〉| ≤ ‖X‖2 ‖Y ‖2 .

Lemma 11. If X ∈ Lps (H) for some p, s ∈ [1,∞], then real valued random
variable |X|s belongs to Lp (R) .

Proof. From the definition of stochastic norm

‖|X|s‖p = (E |X|ps)1/p
= ‖X‖sps <∞.

3.1.2 Mean and covariance operator

If X ∈ L1 (H), then the functional

m : u ∈ H → E 〈u,X〉

is linear and bounded because

E |〈u,X〉| ≤ E (|u| |X|) ≤ |u|E |X|

by the Cauchy-Schwarz inequality. Therefore, using the Riesz’s representation
theorem, Theorem 4, there is the unique m ∈ H such that

〈u,m〉 = E 〈u,X〉

for all u ∈ H, and we define a mean value of X

EX = m.

It immediately follows
〈u,EX〉 = E 〈u,X〉

which is a weak definition of a mean value, and

EX =

∫
Ω

X (ω) dP (ω)

is the Gelfand-Pettis integral of the random variable X (Aliprantis and Border
[1999], Pettis [1938]). We also use notation

EX =

∫
H
xdµX (x) =

∫
H
xdµX .
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When X ∈ L1 (H)

E 〈u, (x⊗X) v〉 =E 〈u, x 〈X, v〉〉 = 〈u, x〉E 〈X, v〉
= 〈u, x〉 〈EX, v〉 = 〈u, x 〈EX, v〉〉 = 〈u, (x⊗ EX) v〉

for any x, u, v ∈ H, and, similarly,

E 〈u, (X ⊗ x) v〉 =E 〈u,X 〈x, v〉〉 = 〈x, v〉E 〈u,X〉
= 〈x, v〉 〈u,EX〉 = 〈u,EX 〈x, v〉〉 = 〈u, (EX ⊗ x) v〉 .

Hence, we immediately obtain identities

E (x⊗X) =x⊗ EX, (3.3)

E (X ⊗ x) =EX ⊗ x (3.4)

for any X ∈ L1 (H) and any x ∈ H.
If X, Y ∈ L2 (H), we define a bilinear form

B : (u, v) ∈ H ×H →E (〈u,X − EX〉 〈v, Y − EY 〉) ∈ R.

This bilinear form is continuous because

|B (u, v)| ≤E |〈u,X − EX〉 〈v,X − EX〉|
≤ |u| |v|E (|X − EX| |Y − EY |)

for any u, v ∈ H using Jensen’s inequality and the Cauchy-Schwarz inequality.
Again, by the Riesz’s representation theorem, notably, by Corollary 1, there exists
a unique bounded linear operator C ∈ [H] such that

〈u,Cv〉 = E (〈u,X − EX〉 〈v, Y − EY 〉) (3.5)

for all u, v ∈ H, and we call C the covariance between X and Y . We denote the
covariance between X and Y cov (X, Y ), and define cov (X) = cov (X,X) .

We show that the usual formulas for covariances hold, and also some of its
basic properties.

Theorem 12. If X, Y ∈ L2 (H), then

cov (X, Y ) =E ((X − EX)⊗ (Y − EY )) (3.6)

=E (X ⊗ Y )− (EX)⊗ (EY ) (3.7)

Proof. Using (3.5) and the definition of a tensor product,

〈u, cov (X, Y ) v〉 =E (〈u,X − EX〉 〈v, Y − EY 〉)
=E 〈u, (X − EX) 〈v, Y − EY 〉〉
=E 〈u, ((X − EX)⊗ (Y − EY )) v〉
= 〈u,E ((X − EX)⊗ (Y − EY )) v〉

for any u, v ∈ H, which proves (3.6). Using (3.3), (3.4), linearity of a mean value
operator and the fact that a tensor product is bilinear,

E ((X − EX)⊗ (Y − EY )) =E (X ⊗ Y )− E (EX ⊗ Y )

− E (X ⊗ EY ) + EX ⊗ EY

=E (X ⊗ Y )− EX ⊗ EY,

and the last identity proves (3.7).
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Theorem 13. If X ∈ L2 (H) , then the covariance operator cov (X) is selfadjoint,
positive semidefinite and trace class.

Proof. A symmetry of cov (X) follows immediately from (3.5).
Because for any u ∈ H

〈u, cov (X)u〉 = E |〈u,X − EX〉|2 ≥ 0,

it follows that the covariance is a positive semidefinite operator.
Denote {ei}∞i=1 a total orthonormal set of H. Using the monotone convergence

theorem [Aliprantis and Border, 1999, Theorem 11.18] and the Parseval’s identity
[Bogachev, 2007, Theorem 4.3.6] we obtain

Tr (cov (X)) =
∞∑
i=1

E |〈ei, X − EX〉|2 = E |X − EX|2 <∞,

where the last inequality holds since X ∈ L2 (H) .

If X ∈ L2 (H) and a kernel of cov (X),

ker (cov (X)) = {u ∈ H : 〈u, cov (X)u〉 = 0} ,

contains only zero element, then we say that the random variable X is non-
degenerate. If ker (cov (X)) contains also non zero elements, then we say that X
is a degenerate random variable.

The kernel of a linear operator is always a subspace. Therefore, ifX is degener-
ate, we can work with its projection onto the orthogonal complement of the kernel
of cov (X) , which is obviously a non-degenerate random variable. Hence, unless
explicitly noted, we always assume that a random variable is non-degenerate.

3.1.3 Characteristic function

For X ∈ L (H)

ψX : h ∈ H → E
(
ei〈h,X〉

)
=

∫
H
ei〈h,x〉dµX (x) ∈ C

is the characteristic function of X, and the function ψX is also called the Fourier
transform of X or the Fourier transform of µX .

Theorem 14. Assume that X, Y ∈ L (H) have characteristic functions ψX and
ψY respectively. If ψX = ψY , then X = Y almost surely.

3.1.4 Sample statistics

For a finite collection of random variables X1, . . . , XN ∈ L (H) we define a sample
mean

XN =
1

N

N∑
i=1

Xi, (3.8)
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a sample covariance

ĈN =
1

N − 1

N∑
i=1

((
Xi −XN

)
⊗
(
Xi −XN

))
, (3.9)

and for any p ≥ 1 pth empirical moment, or empirical moment of order p,

X̂N,p =

(
1

N

N∑
i=1

|Xi|p
)1/p

.

By putting (3.8) into (3.9) we immediately get identity

ĈN =
1

N

N∑
i=1

(Xi ⊗Xi)−
(
XN ⊗XN

)
, (3.10)

and by the Hölder inequality for any p < q we obtain

X̂N,p =

(
1

N

N∑
i=1

||Xi|p 1|

)1/p

≤ X̂N,q. (3.11)

Lemma 15. Assume that X1, . . . , XN and Y1, . . . , YN are two collections of ran-
dom variables on H. Then,∣∣XN

∣∣ ≤ X̂N,1,
∣∣Y N

∣∣ ≤ ŶN,1,

and ∣∣∣∣∣ 1

N

N∑
i=1

(Xi ⊗ Yi)−
(
XN ⊗ Y N

)∣∣∣∣∣ ≤ 2X̂N,2ŶN,2.

Proof. Using the triangle inequality,

∣∣XN

∣∣ ≤ 1

N

N∑
i=1

|Xi| = X̂N,1,

and the first and second inequality in the lemma is proved.
Similarly,∣∣∣∣∣ 1

N

N∑
i=1

(Xi ⊗ Yi)−
(
XN ⊗ Y N

)∣∣∣∣∣ ≤ 1

N

N∑
i=1

|Xi ⊗ Yi| −
∣∣XN ⊗ Y N

∣∣ , (3.12)

and using (2.7), ∣∣XN ⊗ Y N

∣∣ =
∣∣XN

∣∣ ∣∣Y N

∣∣ ≤ X̂N,1ŶN,1. (3.13)

Using the same approach together with the Cauchy-Schwarz inequality gives

1

N

N∑
i=1

|Xi ⊗ Yi| =
1

N

N∑
i=1

(|Xi| |Yi|)

≤

(
1

N

N∑
i=1

|Xi|2
)1/2(

1

N

N∑
i=1

|Yi|2
)1/2

= X̂N,2ŶN,2. (3.14)
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Finally, using (3.12) together with (3.13) and (3.14) yields∣∣∣∣∣ 1

N

N∑
i=1

(Xi ⊗ Yi)−
(
XN ⊗ Y N

)∣∣∣∣∣ ≤ X̂N,1ŶN,1 + X̂N,2ŶN,2 ≤ 2X̂N,2ŶN,2.

Lemma 16. Assume that X1, . . . , XN and Y1, . . . , YN are two sets of samples
from distributions µX and µY respectively. Denote ĈN a sample covariance of
the first set, Q̂N a sample covariance of the the second set and

Zi = Xi − Yi
for i = 1, . . . , N . Then∣∣∣ĈN − Q̂N

∣∣∣ ≤ 2
(
ẐN,2

)2

+ 4ẐN,2ŶN,2.

Proof. From (3.10) and the bilinearity of the tensor product follows

ĈN − Q̂N =
1

N

N∑
i=1

(Xi ⊗Xi)−
(
XN ⊗XN

)
− 1

N

N∑
i=1

(Yi ⊗ Yi) +
(
Y N ⊗ Y N

)
=

1

N

N∑
i=1

((Xi ⊗Xi)− (Xi ⊗ Yi))−
(
XN ⊗XN

)
+
(
XN ⊗ Y N

)
+

1

N

N∑
i=1

((Xi ⊗ Yi)− (Yi ⊗ Yi))−
(
XN ⊗ Y N

)
+
(
Y N ⊗ Y N

)
=

1

N

N∑
i=1

(Xi ⊗ Zi)−
(
XN ⊗ ZN

)
+

1

N

N∑
i=1

(Zi ⊗ Yi)−
(
ZN ⊗ Y N

)
, (3.15)

and using the previous Lemma 15 gives∣∣∣∣∣ 1

N

N∑
i=1

(Xi ⊗ Zi)−
(
XN ⊗ ZN

)∣∣∣∣∣ ≤2X̂N,2ẐN,2, (3.16)∣∣∣∣∣ 1

N

N∑
i=1

(Zi ⊗ Yi)−
(
ZN ⊗ Y N

)∣∣∣∣∣ ≤2ẐN,2ŶN,2. (3.17)

By the triangle inequality

X̂N,2 =

(
1

N

N∑
i=1

|Zi + Yi|2
)1/2

≤ ẐN,2 + ŶN,2, (3.18)

and using (3.15), (3.16), (3.17), (3.18), and the triangle inequality again concludes
the proof since ∣∣∣ĈN − Q̂N

∣∣∣ ≤2
(
ẐN,2 + ŶN,2

)
ẐN,2 + 2ẐN,2ŶN,2

≤2
(
ẐN,2

)2

+ 4ẐN,2ŶN,2.
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Lemma 17. Let X1, . . . , XN ∼ µX ∈ Lmax{p,q} (H) with p, q ≥ 1, then∥∥∥∥∥∥
(

1

N

N∑
i=1

|Xi|p
)1/p

∥∥∥∥∥∥
q

≤ ‖X1‖max{p,q} ,

and the inequality change to equality if p = q.

Proof. If p = q, then

E

∣∣∣∣∣∣
(

1

N

N∑
i=1

|Xi|p
)1/p

∣∣∣∣∣∣
p

=
1

N

N∑
i=1

E |Xi|p = ‖X1‖pp

because X1, . . . , XN are identically distributed.
If p > q, then the function

ϕ : x ∈ R→ x
q/p

is concave, so the function −ϕ is convex, and

E

( 1

N

N∑
i=1

|Xi|p
)q/p

 ≤ (E

(
1

N

N∑
i=1

|Xi|p
))q/p

using Jensen’s inequality for real valued random variables. Therefore,∥∥∥∥∥∥
(

1

N

N∑
i=1

|Xi|p
)1/p

∥∥∥∥∥∥
q

=

E

( 1

N

N∑
i=1

|Xi|p
)q/p

1/q

≤

(
E

(
1

N

N∑
i=1

|Xi|p
))q/pq

and using the linearity of the mean value operator,(
E

(
1

N

N∑
i=1

|Xi|p
))1/p

= ‖X1‖p .

If p < q, then the function

ϕ : x ∈ R→ x
q/p

is convex, so using the classical form of Jensen’s inequality,(
1

N

N∑
i=1

|Xi|p
)q/p

≤ 1

N

N∑
i=1

(|Xi|p)
q/p

=
1

N

N∑
i=1

|Xi|q .

To conclude, we use the linearity of the mean value operator,∥∥∥∥∥∥
(

1

N

N∑
i=1

|Xi|p
)1/p

∥∥∥∥∥∥
q

q

≤ E

(
1

N

N∑
i=1

(|Xi|p)
q/p

)
= E |X1|q .
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3.2 Weak random variables

Recall that we have defined cylindrical sets in Section 2.3, and shown that these
sets establish an algebra on H.

Definition 2. Let Ω be a nonempty abstract space, Â ⊂ 2Ω be an algebra con-
taining all cylindrical sets on Ω, and P̂ be a cylindrical measure on Ω such that
P̂ (Ω) = 1. Additionally, let H be a separable Hilbert space, and T ⊂ 2H be an
algebra which contains all cylindrical sets on H. A mapping

W :
(

Ω, Â, P̂
)
→ (H, T )

is a weak random variable if satisfies two conditions:

1. for any S ∈ T is W−1 (S) ∈ Â, and

2. for any n ∈ N and any u1, . . . , un ∈ H

V : ω ∈ Ω→ (〈u1,W (ω)〉 , . . . , 〈un,W (ω)〉)∗ ∈ Rn

is n dimensional random vector.

We denote Lw (H) the space of all weak random variables on H.

Example 9. Denote µ the cylindrical Gaussian measure introduced in Example
8, and denote T the smallest algebra containing all cylindrical sets in H. An
identity mapping

W : u ∈ H → u ∈ H
is clearly a weak random variable since

∀S ∈ T : W−1 (S) = S ∈ T ,

and for any u1, . . . un is

(〈u1,W (u)〉 , . . . , 〈un,W (u)〉)∗

a Gaussian random vector by the construction of the cylindrical measure µ.

The previous example shows the simplest way to create a weak random vari-
able. However, in our further applications we assume that(

Ω, Â, P̂
)

= (Ω,A, P ) ,

and we are mainly interested in conditions when the cylindrical measure induced
by a weak random variable can be extended to be σ-additive on B (H) .

If W is a weak random variable, then 〈u,W 〉 is a real-valued random variable
for any u ∈ H, and we denote µW,u the distribution on R of the random vari-
able 〈u,W 〉. Hence, similarly to a measurable random variable, we can define a
characteristic function of a weak random variable W by

ψW : u ∈ H → E
(
ei〈u,W 〉

)
=

∫
R
eixdµW,u (x) ∈ C.

The next lemma shows that weak random variables are interesting only on
infinite dimensional spaces.
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Lemma 18. If X ∈ L (H), then X ∈ Lw (H) . Conversely, if X ∈ Lw (H) and
dim (H) <∞, then X ∈ L (H) .

Proof. If X ∈ L (H), it is obvious that X satisfies Definition 2 because all cylin-
drical sets are contained in B (H) .

On the other hand, if dim (H) <∞, there is a total orthonormal set

{e1, . . . , en} ⊂ H.

Using the definition, (〈e1,W 〉 , . . . , 〈en,W 〉)∗ is a random vector, so

W =
n∑
i=1

ei 〈ei,W 〉

is measurable as well.

Additionally, it can be shown [Vakhania et al., 1987, Theorem 2.1] that

Lw (H) = L (H)⇔ dim (H) <∞.

We use term random elements to denote both measurable random variables
and weak random variables.

3.2.1 Weak stochastic norm

If W is a weak random variable on H, then for any p ≥ 1,

‖W‖p,w = sup
u∈H,|u|≤1

(E |〈u,W 〉|p)1/p
= sup

u∈H,|u|≤1

‖〈u,W 〉‖p (3.19)

defines a norm, and

Lpw (H) =
{
W ∈ Lw (H) : ‖W‖p,w <∞

}
is a linear space. The norm (3.19) is called the weak stochastic norm, e.g.,
Vakhania et al. [1987].

It it straightforward to check that Equation (3.19) defines a norm:
Firstly, if ‖W‖p,w = 0, then 〈u,W 〉 = 0 almost surely for all u ∈ H, so W = 0

almost surely.
Secondly,

‖αW‖p,w = sup
u∈H,|u|≤1

‖〈u, αW 〉‖p = |α| sup
u∈H,|u|≤1

‖〈u,W 〉‖p = |α| ‖〈u,W 〉‖p,w

for all α ∈ R.
Finally,

‖〈u,W + V 〉‖p = ‖〈u,W 〉+ 〈u, V 〉‖p ≤ ‖〈u,W 〉‖p + ‖〈u, V 〉‖p , (3.20)

and the triangle inequality for weak stochastic norm yields from taking supremum
of each side of (3.20).

We already know, from Lemma 18, that L (H) ⊂ Lw (H) , and the next lemma
shows that the weak norm of a random variable is always bounded by its stochastic
norm.
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Lemma 19. If X ∈ Lp (H) , then

‖X‖pp,w ≤ ‖X‖
p
p .

Proof. The lemma can be proved simply by using the definition of the weak Lp
norm together with with Cauchy-Schwarz inequality:

‖X‖pp,w = sup
u∈H,|u|≤1

{∫
H
|〈u, x〉|p dµX (x)

}
≤
∫
H

sup
u∈H,|u|≤1

{|〈u, x〉|p} dµX (x)

≤
∫
H

sup
u∈H,|u|≤1

{∣∣∣〈u, u〉1/2 〈x, x〉1/2∣∣∣p} dµX (x)

≤
∫
H
|x|p dµX (x) = ‖X‖pp .

A very important property is that an inner product of a measurable random
variable with a finite first moment and weak random variable is measurable.

Lemma 20. Suppose that X ∈ L1 (H) and W ∈ Lw (H) . Then, 〈X,W 〉 is a
real-valued random variable.

Proof. Since X ∈ L1 (H) , there exists a sequence of step functions

Xn : (Ω,A, P )→ (H,B (H))

such thatXn → X in L1 (H), e.g., [Lang, 1993, page 211], and, therefore, Xn → X
in H a.s. For each n, the step function Xn is of the form

Xn : ω 7→
Jn∑
j=1

xj,n1Aj,n (ω) ,

where xj,n ∈ H,

1Aj,n (ω) =

{
1 if ω ∈ Aj,n,
0 otherwise,

the sets Aj,n are measurable, pairwise disjoint, and

Jn⋃
j=1

Aj,n = Ω.

Consequently, the function

ω → 〈Xn (ω) ,W (ω)〉

is measurable, since

〈Xn,W 〉 : ω →
Jn∑
j=1

(
〈xj,n,W (ω)〉1Aj,n (ω)

)
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where ω → 〈xj,n,W (ω)〉 is measurable by the definition of a weak random vari-
able, the indicator function 1Aj,n (ω) of a measurable set is measurable, and the
product and sum of measurable functions is measurable as well .

Now fix ω ∈ Ω such that Xn (ω)→ X (ω) in H. Then,

〈Xn (ω) ,W (ω)〉 → 〈X (ω) ,W (ω)〉
in R. Consequently, 〈Xn,W 〉 → 〈X,W 〉 almost surely, and since a.s. limit of
measurable functions is measurable, 〈X,W 〉 is measurable.

We say that two weak random variables W1,W2 ∈ Lw (H) are independent if
for any n ∈ N and any projection operator

Π : H → Rn,

the random vectors ΠW1 and ΠW2 are independent.
The following lemma gives us an estimate of the stochastic norm of an inner

product of a measurable and a week random variable.

Lemma 21. Assume that X ∈ Lp (H) , W ∈ Lpw (H) , p ≥ 1, and X and W are
independent. Then 〈X,W 〉 ∈ Lp (R) and

‖〈X,W 〉‖p ≤ ‖X‖p ‖W‖p,w .

Proof. Using Lemma 20, the function

〈X,W 〉 : (ω1, ω2) ∈ Ω× Ω→ 〈X (ω1) ,W (ω2)〉

is measurable. Using the independence of X and W,

‖〈X,W 〉‖pp =

∫
H

∫
H
|〈X (ω1) ,W (ω2)〉|p dP (ω2) dP (ω1)

=

∫
H

∫
H

∣∣∣∣〈 X (ω1)

|X (ω1)|
,W (ω2)

〉∣∣∣∣p |X (ω1)|p dP (ω2) dP (ω1) ,

where we take X(ω1)
|X(ω1)| a fixed vector of unit length if X (ω1) = 0, and the use of

Fubini’s theorem gives

‖〈X,W 〉‖pp =

∫
H

∫
H

∣∣∣∣〈 X (ω1)

|X (ω1)|
,W (ω2)

〉∣∣∣∣p dP (ω2) |X (ω1)|p dP (ω1) .

Note that ∣∣∣∣ X (ω1)

|X (ω1)|

∣∣∣∣ ≤ 1,

so

‖〈X,W 〉‖pp ≤
∫
H

sup
h∈H,|h|≤1

∫
H
|〈h,W (ω2)〉|p dP (ω2) |X (ω1)|p dP (ω1)

=

∫
H
‖W‖pp,w |X (ω1)|p dP (ω1)

= ‖Wi‖pp,w
∫
H
|X (ω1)|p dP (ω1) = ‖W‖pp,w ‖X‖

p
p .
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3.3 Gaussian distributions

Definition 3 (Gaussian random vector). Assume that m ∈ Rn, and C ∈ Rn×n

is a symmetric positive semidefinite matrix. Then a random variable X ∈ L (Rn)
has Gaussian distribution with the mean m and the covariance C, X ∼ N (m,C) ,
if its characteristic function is

ψX (t) = exp

(
im∗t− 1

2
t∗Ct

)
, t ∈ R.

Additionally, if the covariance matrix C is positive definite, then X has a density

fX (x) =
1

(2π)
n/2 (det (C))

1/2
exp

(
−1

2
|x−m|C−1

)
where

|x|C−1 = xC−1x∗ =
〈
C
−1/2x,C

−1/2x
〉
.

Definition 4 (Gaussian random variable). Assume that m ∈ H, and an operator
C ∈ [H] is symmetric, positive semidefinite and trace class, then a random vari-
able X ∈ L (H) has Gaussian distribution with the mean m and the covariance
C if for all n ∈ N and all T ∈ [H,Rn] ,

TX ∼ N (Tm,TCT∗) .

Equivalently, X ∼ N (m,C) if its characteristic function is

ψX (u) = exp (i 〈m,u〉+ 〈u,Cu〉) , u ∈ H.

Obviously, if X ∼ N (m,C) , then EX = m and cov (X) = C.

Definition 5 (Gaussian weak random variable). Assume that m ∈ H, and an
operator C ∈ [H] is symmetric and positive semidefinite, then a weak random
variable X ∈ Lw (H) has weak Gaussian distribution Nw (m,C), if for all n ∈ N
and all T ∈ [H,Rn]

TX ∼ N (Tm,TCT∗) ,

or, equivalently, X ∼ Nw (m,C) if

ψX (u) = exp (i 〈m,u〉+ 〈u,Cu〉) , u ∈ H,

is the characteristic function of the weak random variable X.

The only difference between the definition of a Gaussian random variable and
a weak Gaussian random variable is that the first one assumes that C is trace
class. It can be shown that, this is a necessary and sufficient condition for a
Gaussian weak random variable to be measurable.

Theorem 22 ([Balakrishnan, 1976, Theorem 6.2.2]). Assume that m ∈ H, and
C ∈ [H] is a symmetric positive semidefinite operator. A cylindrical measure
induced by a weak random variable X ∼ Nw (m,C) can be extended to be σ-
additive on H, i.e., X ∼ N (m,C) , if and only if the operator C is trace class.
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The next example shows an example of a Gaussian weak random variable that
is not measurable.

Example 10. Assume that X ∼ Nw (0, I). The weak random variable induces a
cylindrical measure µX on H, and we have already shown in Example 8 that this
measure cannot be extended on all Borel sets in H.

Through the thesis, we strictly use the convention that by writing

X ∼ N (m,C) or X ∼ Nw (m,C)

we silently assume that the operator C has the appropriate properties given by
Definition 4 or Definition 5 respectively. Also, unless explicitly noted, we assume
that the random elements are non-degenerate, i.e., that 0 is the only element of
the kernel of the operator C.

3.3.1 Basic properties

Theorem 23. If X ∼ Nw (m,C) and K ∈ [H] , then random element KX ∼
Nw (Km,KCK∗) .

Proof. The statement immediately follows from the properties of characteristic
functions.

Theorem 24. Let X ∼ Nw (m,C). If K ∈ [H] is a Hilbert-Schmidt operator, then
KW is a Gaussian measurable random variable, and KW ∼ N (Km,KCK∗) .

Proof. Using Theorem VI.19 from Reed and Simon [1980], the operator KCK∗

is trace class, and the statement now immediately yields from Theorem 22 and
Theorem 23.

If X ∼ N (m,C), we define function MX : R→ R ∪ {∞},

MX (ε) =

∫
H

exp
(ε

2
|x|2
)
dµX (x) , (3.21)

and it can be shown [Da Prato, 2006, Proposition 1.13] that

MX (ε) =

{
(
∏∞

i=1 (1− εci))−
1/2

exp
(
− ε

2

〈
(I− εC)−1m,m

〉)
for ε < 1

cmax

∞ otherwise,

(3.22)
where ci, i ∈ N, are the eigenvalues of the operator C, and

cmax = max
i∈N

ci.

The function MX is useful for a computation of even moments of the random
variable X because using the identities

M ′
X (ε) =

1

2

∫
H
|x|2 exp

(ε
2
|x|2
)
dµX (x) ,

and

M
(p)
X (ε) =

1

2p

∫
H
|x|2p exp

(ε
2
|x|2
)
dµX (x)
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for any p ∈ N yields

M
(p)
X (0) =

1

2p

∫
H
|x|2p dµX (x) =

1

2p
‖X‖2p

2p . (3.23)

Obviously,
MX (0) = 1, (3.24)

and Equation (3.23) allows us to compute moments of a centered Gaussian ran-
dom variable easily if we are able to evaluate the derivatives of MX . The following
lemma becomes very useful for this purpose.

Lemma 25. Let {ci}∞i=1 be a sequence of positive numbers such that
∑∞

i=1 ci <∞,
and define function

M : ε ∈ (−1/c, 1/c)→

(
∞∏
i=1

(1− εci)

)−1/2

,

where c = maxi∈N ci. Then for any p ∈ N

M (p) (ε) =
1

2

p−1∑
j=0

(p− 1)!

j!
M (j) (ε)Sp−j (ε) (3.25)

where

Sk (ε) =
∞∑
i=1

(
ci

1− εci

)k
. (3.26)

Proof. Firstly,

log

(
∞∏
i=1

(1− εci)

)
=
∞∑
i=1

log (1− εci) ,

and, using the limit comparison criteria,

0 <
∞∏
i=1

(1− εci) ⇔
∞∑
i=1

ci <∞,

so the function M is well defined.
Secondly, for any j ∈ N

S ′j (ε) =

(
∞∑
i=1

cji
(1− εci)j

)′
=
∞∑
i=1

(
cji

(1− εci)j

)′

=j
∞∑
i=1

(
ci

1− εci

)j+1

= jSj+1 (ε) .

Now, we use an induction to prove (3.25). If p = 1,

(M (ε))′ =
1

2

(
∞∏
i=1

(1− εci)

)−3/2 ∞∑
i=1

(
ci

1− εci

∞∏
j=1

(1− εcj)

)

=
1

2

(
∞∏
i=1

(1− εci)

)−1/2 ∞∑
i=1

ci
1− εci

=
1

2
M (ε)S1 (ε) .
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When (3.25) holds for some p ∈ N, then

M (p+1) =
1

2

p−1∑
j=0

(
(p− 1)!

j!
M (j)Sp−j

)′

=
1

2

p−1∑
j=0

(
(p− 1)!

j!
M (j+1)Sp−j +

(p− 1)!

j!
(p− j)M (j)Sp−j+1

)
,

and we conclude the proof by rearranging terms in the last sum,

M (p+1) =
1

2

(
M (p)S1 + p!M (0)Sp+1

)
+

1

2

p−1∑
j=1

(
(p− 1)!

(j − 1)!
M (j)Sp−j+1 +

(p− 1)!

j!
(p− j)M (j)Sp−j+1

)

=
1

2

(
M (p)S1 + p!M (0)Sp+1 +

p−1∑
j=1

p!

j!
M (j)Sp+1−j

)

=
1

2

p∑
j=0

p!

j!
M (j)Sp+1−j.

The functions Sp (ε) defined by (3.26) have one very important property: for
a given X ∼ N (0,C) and any p ∈ N is

Sp (0) =
∞∑
i=1

(ci)
p = |C|pp (3.27)

where |C|p stands for the Schatten norm of C, Equation (2.13). This identity
allows us to prove the following, very important, estimate.

Lemma 26. Let X be N (0,C) random variable. Then there are positive con-
stants kp, p ∈ N, such that

‖X‖2p ≤ kp (Trace (C))
1/2 = kp |C|

1/2
1 ,

and these constants only depend on p.

Proof. We use the same notation as in Lemma 25, and, similarly as in the already
mentioned lemma, we use induction to show the existence of constants k̃p such
that

M
(p)
X (0) ≤k̃p|C|p1 (3.28)

for any p ∈ N.
When p = 1,

M
(1)
X (0) =

1

2
MX (0)S1 (0) =

1

2
|C|1

using equations (3.24), (3.23), (3.27), and Lemma 25, so k̃1 = 1/2.
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If the inequality (3.28) holds for all j ∈ {1, . . . , p} with constants k̃1, . . . , k̃p,
then

M
(p+1)
X (0) =

1

2

p∑
j=0

p!

j!
M (j)Sp+1−j

≤1

2

p∑
j=0

p!

j!
k̃j |C|j1 |C|

p+1−j
p+1−j

where we define k̃0 = 1. Using (2.14) and the properties of Schatten norm,

M
(p+1)
X (0) ≤1

2

p∑
j=0

p!

j!
k̃j |C|j1 |C|

p+1−j
1 =

1

2

p∑
j=0

p!

j!
k̃j |C|p+1

1 ,

and inequality (3.28) is proved by defining

k̃p+1 =
1

2

p∑
j=0

p!

j!
k̃j.

Using Equation (3.23) yields

‖X‖2p
2p = 2pM

(p)
X (0) ≤ 2pk̃p+1 |C|p1 ,

so defining kp =
√

2
(
k̃p

) 1
2p
, p ∈ N, proves the statement.

3.3.2 Cameron-Martin space

A Cameron-Martin space of random variable X ∼ N (0,C) is

C
1/2 (H) =

{
u ∈ H : u = C

1/2v, v ∈ H
}
.

The Cameron-Martin space of a Gaussian random variable X can be equivalently
defined as an intersection of all linear subspaces G ⊂ H such that

µX (G) = 1,

e.g., [Bogachev, 1998, Theorem 2.4.7]. Hence, it may be a surprise that a measure
of a Cameron-Martin space is positive only when H is finite dimensional.

Theorem 27. Assume that X ∼ N (0,C) on a separable Hilbert space H.
If dim (H) <∞, then µX

(
C1/2 (H)

)
= 1.

If dim (H) =∞, then µX
(
C1/2 (H)

)
= 0.

Proof. See Da Prato [2006], Proposition 1.27.

Theorem 28 (Camerom-Martin theorem). Assume that X ∼ N (mX ,C) and
Y ∼ N (mY ,C), then measures µX and µY are equivalent if and only if

mX −mY ∈ C
1/2 (H) .

If (mX −mY ) /∈C1/2 (H) , then measures µX and µY are singular.
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Proof. See Da Prato and Zabczyk [2002], Theorem 1.3.6.

The following system example illustrates the use of the previous theorem when
H = R2.

Example 11. Define matrix

C =

[
1 0
0 0

]
,

and assume that X ∼ N (0,C) and Y ∼ N ((1, 1)∗ ,C) . The Cameron-Martin
space of X is

C
1/2
(
R2
)

= span {(1, 0)∗} ,

so the measures µX and µY are singular by the Cameron-Martin theorem.
We can check that µX and µY are singular using the definition. Obviously,

µX (span {(1, 0)∗}) = 1

and
µY (span {(1, 1)∗} \ {(0, 0)∗}) = 1,

so µX and µY are singular because

span {(1, 0)∗} ∩ (span {(1, 1)∗} \ {(0, 0)∗}) = ∅.

3.3.3 Feldman-Hájek theorem

The Feldman-Hájek theorem reveals an interesting fact that any two centered
Gaussian measures are either equivalent or singular.

Theorem 29 (Feldman-Hájek theorem). Assume that

µC ∼ N (0,C) and µR ∼ N (0,R) .

If the measures µC and µR are not singular, there exists a selfadjoint Hilbert-
Schmidt operator S ∈ [H] such that

C = R
1/2 (I− S) R

1/2.

If such operator S exists, the measures µC and µR are equivalent.

Proof. The first implication is Theorem 1.3.9 in Da Prato and Zabczyk [2002],
and the second one is Theorem 1.3.10 in the same book.

The last theorem may be easily illustrated when the measures are defined on
a finite dimensional space.

Example 12. Assume that matrices P, Q and R belongs to Rn×n. If

rank (P) = rank (Q) = n,

then measures µP ∼ N (0,P) and µQ ∼ N (0,Q) are equivalent. If

rank (R) = m < n,
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then the dimension of the Cameron-Martin space R1/2 (Rn) is m, and we already
know that

µR

(
R

1/2 (Rn)
)

= 1,

where µR ∼ N (0,R). On the other side,

µP

(
Rn \ R

1/2 (Rn)
)

= 1,

so µP and µR are singular.

Additionally, it can be shown [Da Prato, 2006, Theorem 2.9] that if C and R
commute, then the Feldman-Hájek theorem implies that C and R are equivalent
if and only if

∞∑
i=1

(ci − ri)2

(ci + ri)
2 <∞ (3.29)

where {ci} and {ri} are eigenvalues of C and R respectively. This consequence of
the the Feldman-Hájek theorem has a very interesting corollary.

Corollary 3. Assume that α ∈ R. The measures N (0,C) and N (0, αC) defined
on an infinite dimensional Hilbert space are equivalent if and only if α = 1. If
α 6= 1, the measures are singular.

Proof. Operators C and αC commute, so the measures commute if and only if
∞∑
i=1

(αci − ci)2

(αci + ci)
2 <∞

where ci, i ∈ N, are eigenvalues of C. Obviously,
∞∑
i=1

(αci − ci)2

(αci + ci)
2 =

∞∑
i=1

(α− 1)2

(α + 1)2 <∞ ⇔ α = 1,

and the corollary follows immediately from the Feldman-Hájek theorem.
Obviously, Camerom-Martin theorem and Feldman-Hájek theorem give im-

portant corollary that two Gaussian measures defined on a Hilbert space are
either equivalent or singular.

3.4 Markinciewicz-Zygmund inequality

There are four types of convergence that are usually of primary interest in the
area of probability theory: the convergence almost surely, the convergence in
probability, the convergence in distribution and the convergence in Lp. All of
them are well defined on an infinite dimensional space. Additionally, the infinite
dimension brings many more interesting types of convergence. However, we are
interested only in the convergence in Lp. Random variables Xn ∈ L (H), n ∈ N,
converge to X ∈ Lp (H) in Lp if

lim
n→∞

‖Xn −X‖p = 0.

The next theory is very important, because it allows us to prove the weak law
of large numbers for infinite dimensional random variables. This formulation can
be found as Lemma 5.1 in Kwiatkowski and Mandel [2015], and its proof may be
found in Chow and Teicher [1997] and Woyczyński [1980].
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Theorem 30 (Marcinkiewicz-Zygmund inequality). Let µX ∈ Lp (H) where H
is a separable Hilbert space and p ≥ 1, and let X1, . . . , XN ∼ µX be independent,
then

E

∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣
p

≤ bpE

(
N∑
i=1

|Xi|2
)p/2

where bp is positive real constant which depends on p only.

The previous theorem is only a special case of the Markinciewicz-Zygmund
inequality, which holds on each separable Banach space B such that for any finite
set {y1, . . . , yN} ⊂ B

E

∣∣∣∣∣
N∑
i=1

Uiyi

∣∣∣∣∣ ≤ b

(
N∑
i=1

|yi|2
)

where U1, . . . , UN are i.i.d. random variables,

P

(
U1 =

1

2

)
= P

(
U1 = −1

2

)
=

1

2
,

and constant b ∈ R depends neither on {y1, . . . , yN} nor on N. Such Banach space
is called Rademacher type 2.

3.4.1 Law of Large numbers

Theorem 31. Assume that µX ∈ Lp (H) , p ≥ 2, and X1, . . . , XN ∼ µX are i.i.d.
random variables. Then ∥∥XN − EX1

∥∥
p
≤ cp√

N
‖X1‖p ,

where real constant cp only depends on p.

Proof. First, assume that EX1 = 0. If p = 2, then from the Cauchy-Schwarz
inequality∥∥∥∥∥ 1

N

N∑
i=1

Xi

∥∥∥∥∥
2

=

E

∣∣∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣∣∣
2
1/2

=

(
1

N2

N∑
i,j=1

E 〈Xi,Xj〉

)1/2

=

(
1

N2

N∑
i=1

E |Xi|2
)1/2

=
1√
N
‖X1‖2 . (3.30)

If p > 2, then, using the Hölder inequality,

N∑
i=1

|1| |Xi|2 ≤

(
N∑
i=1

|1|p/(p−2)

)(p−2)/p( N∑
i=1

(
|Xi|2

)p/2)2/p

=N
(p−2)/p

(
N∑
i=1

|Xi|p
)2/p

,
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and, using the Markinciewicz-Zygmund inequality,∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
p

p

≤bpE

(
N∑
i=1

|Xi|2
)p/2

≤bpE

N (p−2)/p

(
N∑
i=1

|Xi|p
)2/p

p/2

=bpN
p/2−1

N∑
i=1

E |Xi|p = bpN
p/2 ‖X1‖pp .

Therefore, ∥∥∥∥∥ 1

N

N∑
i=1

Xi

∥∥∥∥∥
p

≤ bp√
N
‖X1‖p . (3.31)

Now, if EX1 6= 0, then Xi − EX1, i = 1, . . . , N , are i.i.d. centered random
variables, and we can apply (3.30) amd (3.31) to obtain

∥∥XN − EX1

∥∥
p

=

∥∥∥∥∥ 1

N

N∑
i=1

(Xi − EX1)

∥∥∥∥∥
p

≤ bp√
N
‖X1−EX1‖p

≤ bp√
N

(
‖X1‖p + ‖X1‖1

)
≤ 2bp√

N
‖X1‖p ,

where we used the identity

‖EX1‖p = EX1 = ‖X1‖1 .

Theorem 32. Assume that µX ∈ L2p (H) , p ≥ 2, and X1, . . . , XN ∼ µX are

i.i.d. random variables. If ĈN denotes the sample covariance, i.e.,

ĈN =
1

N − 1

N∑
i=1

((
Xi −XN

)
⊗
(
Xi −XN

))
,

Then ∥∥∥ĈN − cov (X1)
∥∥∥
p
≤
(

cp√
N

+
c2

2p

N

)
‖X1‖2

2p ,

where real constants cp and c2p depend on p only.

Proof. By Theorem 13 a covariance of a random variable is a trace class operator,
so it is also a Hilber-Schmidt operator. A sample covariance is a finite sum of
tensor products, which are trace class operators, so the sample covariance is also
trace class. Therefore, to prove the theorem we use the fact that

{T ∈ [H] : |T|HS <∞}

is a Hilbert space, and we can use the Markinciewicz-Zygmund inequality.
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Covariance operators of random variables Xi and Xi − EX1 are identical,
so, without loss of generality, we can assume that EX1 = 0. By the triangle
inequality∥∥∥ĈN − cov (X1)

∥∥∥
p
≤

∥∥∥∥∥ 1

N

N∑
i=1

(Xi ⊗Xi)− cov (X1)

∥∥∥∥∥
p

+
∥∥XN ⊗XN

∥∥
p
. (3.32)

Random variables Xi ⊗ Xi, i = 1, . . . , N, are i.i.d., and we can use Theorem 31
to obtain(

E

∣∣∣∣∣ 1

N

N∑
i=1

(Xi ⊗Xi)− E (X1 ⊗X1)

∣∣∣∣∣
p

HS

)1/p

≤ cp√
N

(E |X1 ⊗X1|pHS)
1/p

(3.33)

for some cp > 0. Using Lemma 5,

(E |X1 ⊗X1|pHS)
1/p

=
(
E |X1|2p

)1/p
= ‖X1‖2

2p , (3.34)

and using (2.14), (3.33) and (3.34) gives∥∥∥∥∥ 1

N

N∑
i=1

(Xi ⊗Xi)− cov (X1)

∥∥∥∥∥
p

≤ cp√
N
‖X1‖2

2p . (3.35)

For any x ∈ H
|x⊗ x| = |x| |x| ,

so the second term on the right side of (3.32) is bounded,∥∥XN ⊗XN

∥∥
p

=
(
E
∣∣XN

∣∣p ∣∣XN

∣∣p)1/p
≤
∥∥XN

∥∥
2p

∥∥XN

∥∥
2p
, (3.36)

and again Theorem 31 gives an existence of a constant c2p > 0 such that∥∥XN

∥∥
2p
≤ c2p√

N
(3.37)

since EX1 = 0. To finish the proof, we just put together (3.32), (3.35), (3.36)
and (3.37), so ∥∥∥ĈN − cov (X1)

∥∥∥
p
≤
(

cp√
N

+
c2

2p

N

)
‖X1‖2

2p .

Obviously, if a, b are two positive numbers, then

a√
N

+
b

N
≤ 2 max {a, b}√

N

for any N ∈ N, and this simple observation gives us an important corollary of
the previous theorem.

Corollary 4. Using the assumptions and notation of Theorem 32, there is a real
constants cp such that ∥∥∥ĈN − cov (X1)

∥∥∥
p
≤ cp√

N
‖X1‖2

2p .
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3.5 Bayes theorem

Assume that X ∈ L (Rn) and Y ∈ L (Rm) are random vectors with densities fX
and fY respectively. If

fY |x : Rm × Rn → R+ (3.38)

is a conditional density of Y given a condition X = x, then the Bayes theorem
states that

fX|y (x|y) =
1

c (y)
fY |x (y|x) fX (x) if c (y) > 0, (3.39)

where

c (y) =

∫
Rn
fY |x (y|x) fX (x) dλn (x) ,

is a conditional density of X given Y = y. The distribution of X is called a prior
distribution, and the conditional distribution of X given Y = y is called a pos-
terior distribution. Note that the posterior distribution is absolutely continuous
with respect to the prior distribution, and the function (3.38) is Radon-Nikodym
derivative, i.e.,

dµX|y
dµX

= fY |x.

Usually, the derivative is called a data likelihood.
When X, Y ∈ L (H) and dim (H) = ∞, the formula (3.39) is inapplicable

because the Lebesgue measure on H does not exist, Theorem 9. However, Bayes
theorem still holds, and we can define the posterior measure

µX|y (A) = P (X ∈ A|Y = y) =
1

c (y)

∫
A

d (y|x) dµX (x) ∀A ∈ B(H)

if

c (y) =

∫
H
d (y|x) dµX (x) > 0.

The function

d : H×H → R+, d =
dµX|y
dµX

,

is also called data likelihood.

3.6 Additional notes and references

The presentation in this chapter is partially based on Mandel [2016]. The majority
of definitions and statements introduced in this section also holds when H is
a separable Banach space, but we do not need such a general approach, which
brings additional problems with measurability. The probability on Banach spaces
is excellently covered by, for example, Ledoux and Talagrand [1991]. Bogachev
[1998] and Vakhania et al. [1987] cover the theory of weak random variables, and
the latter discusses weak stochastic norms in much greater detail.

There are many great books that deal with Gaussian measure on Banach or
Hilbert spaces such as Bogachev [1998] or Da Prato [2006]. This topic is closely
related to stochastic differential equations, so many useful details may be found
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in Da Prato and Zabczyk [1992]. A more statistical approach to an infinite
dimensional random variable is presented by Ramsay and Silverman [2002, 2005].

The existence of the Cameron-Martin space was identified in R. H. Cameron
[1944], and the Feldman-Hájek theorem was firstly proved in Feldman [1958].
More recently, both these theorems are covered by Bogachev [1998], Da Prato
and Zabczyk [1992] and Da Prato [2006].

The Rademacher spaces, mentioned at the end of Section 3.4, are studied
in Hoffmann-Jørgensen [1974] and Ledoux and Talagrand [1991]. More details
about the Markinciewicz-Zygmund inequality can be found in Chow and Teicher
[1997] or Woyczyński [1980].

Finally, the Bayes theorem may be found in nearly any statistical or probabil-
ity textbook. The definition of the Bayes theorem on infinite dimensional spaces
may be found in Stuart [2010], and will be later discussed in Section 6.3.
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4. State space model and data
assimilation

This chapter introduces a state space model and a data assimilation, and contains
multiple examples of state space models. Readers familiar with these topics may
skip this entire section.

The chapter is organized as follows. Section 4.1 defines a state space model,
and Definition 7 introduces the notation used in all subsequent chapters of the
thesis. Section 4.2 defines a data assimilation and its relations to filtering, and
Section 4.3 contains important references.

4.1 State space model

A state space model usually represents an evolution of a physical phenomena in
nature. It consist of two parts: a dynamical system and noisy observations. While
the dynamical system fully describes the modeled phenomena, the observations
represent the part of the system that can be detected by available measuring
devices. A typical example is the atmosphere of the Earth, where the underlying
dynamical system represent the evolution of the atmosphere over the the whole
globe, and the observations may represent satellite images of clouds, radiosonde
measurements at different locations, etc.

4.1.1 Dynamical system

In general, a dynamical system is a random process defined on a Banach space
whose evolution is governed by a known mapping, and this mapping is usually
a solution to a differential equation. Such general definition may bring problems
with a measurability of individual states of the system. To avoid these problems,
we limit ourselves to systems defined on a separable Hilbert space with a Gaussian
initial condition and Gaussian errors.

Definition 6. Assume that the following premises hold.

1. H is a separable Hilbert space.

2. A mapping Ψ : H → H is measurable.

3. A random variable X(0) ∼ N
(
m(0),P(0)

)
, and P(0) is positive semidefinite.

4. Random variables V (t), t ∈ N, defined on H are mutually independent ran-
dom variables on H, and each V (t) ∼ N

(
0,Q(t)

)
with Q(t) being positive

semidefinite.

Then, a random process
{
X(t)

}
t∈N defined by

X(t) = Ψ
(
X(t−1)

)
+ V (t) ∀t ∈ N

is called a discrete time dynamical system.
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The mapping Ψ is called an iterated map; X(t) are called states of the dy-
namical system; V (t) are called model errors; X(0) is an initial condition of the
dynamical system, and the space H is called a state space.

The definition admits that all Q(t) are null operators, i.e.,

V (t) = 0 a.s. ∀t ∈ N. (4.1)

Hence, we can the divide dynamical systems into two categories. If
{
X{t}

}
is

a dynamical system such that condition (4.1) is satisfied, then we say that the
system is governed by deterministic dynamics. Conversely, if Q(t) are nonzero
operators, then we say that the system is governed by stochastic dynamics.

To summarize, a dynamical system
{
X{t}

}
is completely determined by the

distribution of its initial condition, a set of covariance operators
{

Q(t)
}

, and
the iterated map Ψ. Before showing multiple examples of different dynamical
systems we formulate an obvious lemma that shows an important property of
any dynamical system.

Lemma 33. Let
{
X(t)

}
be the dynamical system from Definition 6, then the

random process
{
X(t)

}
is Markov, i.e.,

P
(
X(t) ∈ B

∣∣X(t−1), . . . , X(0)
)

=P
(
X(t) ∈ B

∣∣X(t−1)
)

for any B ∈ B (H) and all t ∈ N.

Proof. The statement follows directly from the definition because

P
(
X(t) ∈ B

∣∣X(t−1), . . . , X(0)
)

=P
(
V (t) ∈ A

∣∣X(t−1)
)

where
A =

{
x ∈ H :

(
Ψ
(
X(t−1)

)
+ x
)
∈ B

}
.

Example 13. Let Ψ be a real function,

Ψ : x ∈ R→ λx ∈ R

for a given λ ∈ R, and define

X(0) = k a.s.

for some k ∈ R. Obviously, all states of dynamical system
{
X(t)

}
,

X(t) = Ψ
(
X(t−1)

)
,

are deterministic,
X(t) = λtk a.s.,

and
{
X(t)

}
is just a sequence of real numbers.
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Example 14. Using the function Ψ from the previous example with initial condi-
tion

X(0) ∼ N
(
m,σ2

)
, m ∈ R, σ ≥ 0,

we get another dynamical system
{
X(t)

}
. In this case

X(t) ∼ N
(
λtm,λ2tσ2

)
for each t ∈ N, and, clearly, this system coincides with the system in Example 13
if σ = 0 and m = k.

In the previous examples it was straightforward to determine the distribution
of the state at any given time using the linearity of the mapping Ψ. However, that
may not be the case in many useful applications as shown in the next example.

Example 15. Given a continuous functions

f : R→ R

and a first order differential equation

∂v

∂τ
= f (v) (4.2)

with an assumption that
v : [0, 1]→ R

is continuous we define the function

Ψ : R→ R

by
Ψ (x) = v̂x (1)

where v̂x is a solution of Equation (4.2) given an initial condition v (0) = x. The
distribution of the states of the dynamical system

X(0) ∼N
(
0, σ2

)
, σ ≥ 0,

X(t) =Ψ
(
X(t)

)
, t ∈ N,

is generally unknown unless σ = 0, when the system is fully degenerate.

All three examples above contain systems with deterministic dynamics, so
all states of these systems are completely determined by its initial condition.
Examples of systems with stochastic dynamics follow.

Example 16. Similarly as in Example 14, let Ψ be a real function,

Ψ : x ∈ R→ λx ∈ R

for a given λ ∈ R, and V (t) ∼ N (0, 1), t ∈ N, be i.i.d. random variables. Then,
equations

X(0) ∼N
(
m,σ2

)
, m ∈ R, σ > 0,

X(t) =λX(t−1) + V (t), t ∈ N,
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define a system with a stochastic dynamics. Clearly, using the properties of
Gaussian distribution,

X(1) ∼ N
(
λm, λ2σ2 + 1

)
, X(2) ∼ N

(
λ2m,λ4σ2 + λ2 + 1

)
,

and, using induction,

X(t) ∼ N

(
λtm,λ2tσ2 +

t−1∑
i=0

λ2i

)
for each t ∈ N.

Of course, in real world application the dimension of the state space is much
higher. The next example shows a dynamical system defined on an infinite di-
mensional Hilbert space.

Example 17. The heat equation

∂v

∂τ
=
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
,

where v is a four dimensional real function, describe the distribution of heat in a
three dimensional area. Let

uf : [0,∞)× [0, 1]3 → R

be a solution of the heat equation satisfying an initial condition

uf (0, x, y, z) = f (x, y, z)

for a continuous function f : [0, 1]3 → R. For a given ∆ > 0 define mapping

Ψ : L2
(
[0, 1]3 ,R

)
→ L2

(
[0, 1]3 ,R

)
(4.3)

by
Ψ (f) (x, y, z) = uf (∆, x, y, z) (4.4)

for all x, y, z ∈ [0, 1]. Now, we may define a dynamical by

X(0) ∼N
(
m(0),P(0)

)
,

X(t) =Ψ
(
X(t−1)

)
+ V (t), t ∈ N

with P(0) being a non degenerate covariance operator on

H = L2
(
[0, 1]3 ,R

)
,

m(0) ∈ H, and V (t) ∼ N (0,Q) , t ∈ N, being i.i.d. random variables.
Clearly, it is not clear whether the solution (4.4) exists for any continuous f .

However, since the discussion about existence of the solution exceeds the scope
of this thesis, we silently assume that the solution exists at least in some weak
sense, and that the function Ψ is measurable.

The resulting dynamical system
{
X(t)

}
represents the distribution of heat in

a three dimensional unit cube in discrete time steps ∆. The random variables
V (t) may represent, for example, an unknown heat flow between the cube and a
surrounding area.
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A discretization of the dynamical system from the previous example shows us
another potential source of the model error.

Example 18. Let {x1, . . . , xn} be a discretization of a three dimensional unit cube,
and define a linear operator Π by

Π : f ∈ L2
(
[0, 1]3 ,R

)
→

 f (x1)
...

f (xn)

 ∈ Rn.

Using the system
{
X(t)

}
introduced in Example 17 we can define the new dy-

namical system
{
X̃(t)

}
,

X̃(t) = ΠX(t), t = 0, 1, 2, . . .

Obviously, the initial condition of the new system is

X̃(0) ∼ N
(
Πm(0),ΠP(0)Π∗

)
,

and the evolution of the system may be described by

X̃(t) = Ψ̃
(
X̃(t−1)

)
+ Ṽ {t}

with Ψ̃ being an approximation of Ψ and

Ṽ (t) = ΠV (t) + V̂ (t)

where V̂ (t) represents the error of approximation Ψ using Ψ̃. When the mesh
{x1, . . . , xn} is well designed, we can assume that the error V̂ (t) is centered, and

it has a Gaussian distribution with a known covariance Q̂(t). Hence, the random
variable Ṽ (t) has the centered Gaussian distribution with covariance operator

Q̃(t) = ΨQ(t)Ψ∗ + Q̂(t).

Examples 17 and 18 show two usual reasons for stochastic dynamics of a
dynamical system. The first one is an imperfect model, which, for example, do
not capture all interactions of the system with a surrounding environment. The
second reason is an error of a necessary approximation of an iterated map, e.g.,
when the iterated map is a solution of a differential equation, this equation may
be solvable only using numerical methods.

4.1.2 Observations

Assume that
{
X(t)

}
is a dynamical system defined on a separable Hilbert space

H, and G is another separable Hilbert space. If

h : H → G

is a measurable mapping, and W (t), t ∈ N, are pairwise independent weak random
variables, each W (t) ∼ Nw

(
0,R(t)

)
, then weak random variables

Y (t) = h
(
X(t)

)
+W (t),
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are called observations of the dynamical system. The mapping h is called an
observation operator, and the space G is called an observation space. If the
dimension of the observational space is finite, Y (t) is also called an observational
vector.

The next example shows that a set of all measurable mappings from the state
space to the observation space is an unnecessarily big class of operators, and we
can limit ourselves to only linear observation operators.

Example 19. Assume that
{
X(t)

}
is the dynamical system from Definition 6, and

h : H → G

is an observational operator with G being a separable Hilbert space. Let

Y (t) = h
(
X(t)

)
+W (t)

be observations with W (t) ∼ Nw
(
0,R(t)

)
, t ∈ N, being pairwise independent.

The space H̃ = H⊕ G is also Hilbert, and a function

Ψ̃ : H̃ → H̃

defined for all
x = (xH, xG) ∈ H̃, xH ∈ H, xG ∈ G,

by
Ψ̃ (x) = (Ψ (xH) , h (Ψ (xH)))

is measurable. Hence, we can define the new dynamical system
{
X̃(t)

}
with the

initial condition

X̃(0) =
(
X(0), 0

)
and the iterated map Ψ̃. If we define

H : (xH, xG) ∈ H̃ → xG ∈ G,

then for each t ∈ N
Y (t) = HX̃(t) +W (t).

Now, instead of working with the original dynamical system
{
X(t)

}
with the

measurable observation operator h, we can work with the augmented dynamical

system
{
X̃(t)

}
with the linear observation operator H.

The previous example allow us, without loss of generality, to assume that an
observation operator is always linear.

We show a typical example of observations using the dynamical system from
Example 17.

Example 20. Recall that the dynamical system
{
X(t)

}
introduced in Example 17

describes the evolution of the temperature of a three dimensional homogeneous
unit cube. If B ∈ B

(
[0, 1]3

)
, then mapping

H : f ∈ L2
(
[0, 1]3 ,R

)
→
∫
B
f (x) dλ3 (x)

λ3 (B)
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is a linear observational operator from the state space to the observational space
R, and observations

Y (t) = HX(t) +W (t), W (t) ∼ N
(
0, σ2

)
, σ > 0,

represent the mean temperature of the area described by B with W (t) standing
for a measurement device error.

4.1.3 Summary

To summarize, a state space model is a couple consisting of a dynamical system
and a set of noisy observations. Since the definition of a state space model is a
crucial part of the thesis, we summarize it in the next definition. The notation
introduced in this definition is used in all subsequent chapters.

To avoid unnecessary obstacles with a kernel of a random variable we assume,
without loss of generality, that all random variables in the next definition are
non-degenerate.

Definition 7 (State space model). Assume that H and G are separable Hilbert
spaces, and the following statements hold.

1. A random variable X(0)∼ N
(
m(0),P(0)

)
with m(0) ∈ H, and the operator

P(0) ∈ H is positive definite, symmetric and trace class.

2. A dynamical system
{
X(t)

}
t∈N0

defined on H is governed by an iterated map

Ψ : H → H

with independent model errors V (t) ∼ N
(
0,Q(t)

)
, Q(t) positive definite,

t ∈ N, i.e.,
X(t) = Ψ

(
X(t−1)

)
+ V (t), t ∈ N.

3. An observation operator H ∈ [H,G] .

4. For each t ∈ N
Y (t) = HX(t) +W (t),

where W (t) ∼ Nw
(
0,R(t)

)
, t ∈ N, are mutually independent week Gaussian

random variables on G.

We say that the dynamical system
{
X(t)

}
and the observations

{
Y (t)

}
estab-

lish the state space model.

We always write that there is a state space model with an underlying dynam-
ical system

{
X(t)

}
and a set of noisy observations

{
Y (t)

}
, and by saying this

we assume that everything that determines the model, i.e., the initial condition,
the iterated map, the observation operator and the distribution of the model and
observational error, is known. Unless explicitly noted, we always use the same
notation as in the last definition.

By saying that a state space model is infinite dimensional we always mean
that dim (H) =∞. Additionally, if dim (G) =∞ as well, then we usually assume
that H = G, since any two separable Hilbert spaces are isometric.
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4.2 Data assimilation

Given the state space model from Definition 7, a data assimilation is a sequential
process of estimating the state X(t) of the underlying dynamical system using the
observations

Y (t), Y (t−1), . . . , Y (1)

and a prior estimate of the state X(t), which is based on the observations up to
time t − 1. Hence, the data assimilation is a filtering problem, and its goal is to
produce the best estimate of the true states of the system as observations become
available. The step by step definition of data assimilation procedure follows.

Definition 8. Using the notation from Definition 7, a data assimilation algorithm
consists of the following steps.

1. An initialization, when the initial estimate is generated from the true dis-
tribution of X(0). We denote this estimate X(0),a, and call it a first guess.

2. Recursively repeated data assimilation cycles. One data assimilation cycle
for a given t consists of two steps:

(a) forecast step,
X(t),f = Ψ

(
X(t−1),a

)
+ V (t),f (4.5)

with V (t),f being sampled independently from N
(
0,Q(t)

)
distribution,

and

(b) analysis step, when the prior estimate X(t),f is combined with the ob-
servation Y (t) to produce new estimate X(t),a.

The prior estimate X(t),f is called a forecast, and the estimate X(t),a is called an
analysis.

Obviously, the distribution of the forecast X(t),f , for a given t ∈ N, depends
on the particular value of the observations up to time t− 1, so using the previous
definition

P
(
X(t),f ∈ B

)
= P

(
X(t) ∈ B

∣∣Y (t−1) = y(t−1), . . . , Y (1) = y(1)
)
,

for any B ∈ B(H), where y(t−1), . . . , y(1) are the already assimilated observations.
Similarly,

P
(
X(t),a ∈ B

)
= P

(
X(t) ∈ B

∣∣Y (t) = y(t), . . . , Y (1) = y(1)
)

for any B ∈ B(H).
It is important to emphasize that both forecast and analysis distributions are

conditional, and they are conditioned on the values of the observations. Hence,
when we say that X(t),f and another random variable Z are independent, it always
means that they are conditionally independent given observations up to time t−1.
The same applies on the analysis X(t),a.

We conclude the section with an obvious, yet very important, lemma.

56



Lemma 34. For a given t, the forecast state X(t),f and observations Y (t) are
conditionally independent given X(t−1).

Proof. Let B1, B2 ∈ B (H) and D ∈ B (G) . Using the chain rule for conditional
probabilities,

P
(
X(t),f ∈ B1, Y

(t) ∈ D
∣∣X(t−1) ∈ B2

)
=P

(
X(t),f ∈ B1

∣∣Y (t) ∈ D,X(t−1) ∈ B2

)
· P
(
Y (t) ∈ D

∣∣X(t−1) ∈ B2

)
,

and the statement of the lemma follows because

P
(
X(t),f ∈ B1

∣∣Y (t) ∈ D,X(t−1) ∈ B2

)
= P

(
X(t),f ∈ B1

∣∣X(t−1) ∈ B2

)
.

4.3 Additional notes and references

Clearly, assumptions that both types of errors in a state space model are Gaussian
may be omitted, and one can work with more general state space models. Such
models may be found in Cressie [1993], Durbin and Koopman [2012], etc. How-
ever, we limit our scope to the model introduced in Definition 7 because this is
the standard model used in atmospheric sciences. A physical motivation for this
type of model and multiple examples of dynamical systems in the atmosphere
may be found in Jacobson [2005], Kalnay [2003], etc. Examples of dynamical
processes in oceans may be found in Bennett [1992, 2002].

One data assimilation cycle may also be understand as an inverse problem,
and multiple books studying this approach have been published recently, e.g.,
Nakamura and Potthast [2015], and van Leeuwen et al. [2015]. Extensive mathe-
matical backgrounds of the data assimilation are discussed in, for example, Banks
et al. [2014] or Law et al. [2015], and both books also contain an extension of a
state space model to a case when the time is a continuous variable. As already
mentioned, the data assimilation is a filtering problem, and extensive study of
filtering techniques is provided by Anderson and Moore [1979], Jazwinski [1970],
etc.

Obviously, one may think of assimilating multiple observations at once, i.e.,
the data assimilation procedure may be adjusted, so that the assimilation is
provided only every L time steps. In this situation, the assimilation step consists
of combining forecasts X(t),f , . . . , X(t+L),f , where now

X(t),f = X(t)
∣∣Y (t−1) = y(t−1), . . . , Y (1) = y(1),

X(t+L),f = X(t+L)
∣∣Y (t−1) = y(t−1), . . . , Y (1) = y(1),

and observations
Y (t) = y(t), . . . , Y (t+L) = y(t+L)

to produce analysis X(t),a, . . . , X(t+L),a, where

X(t),a = X(t)
∣∣Y (t+L) = y(t+L), . . . , Y (1) = y(1),

X(t+L),a = X(t+L)
∣∣Y (t+L) = y(t+L), . . . , Y (1) = y(1).

57



Hence, the analysis state X(t),a is conditioned by the values of future observations
y(t+1), . . . , y(t+L) unless L = 1. The number L is called a length of a assimilation
window, and assimilation method with L > 1 are called smoothing methods.
Conversely, methods with length of assimilation windows equal to one are called
filtering methods.
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5. Data assimilation in finite
dimension

This section introduces four well known data assimilation methods available when
a state space model is finite dimensional. The methods are:

• the 3DVAR in Section 5.1,

• the Kalman filter (KF) in Section 5.2,

• the ensemble Kalman filter (EnKF) in Section 5.3 and

• the Bayesian filtering (BF) in Section 5.4.

Through the whole section we use the state space model from Definition 7 with
two additional assumptions:

1. we denote n the dimension of the state space H, so, without loss of gener-
ality, H = Rn, and

2. we denote m the dimension of the observation space G, so G = Rm.

5.1 3DVAR

The 3DVAR is a variational method, and it produces point estimates of the states
of the underlying dynamical system. In general, variational methods are based
on a minimization of a defined cost function.

For a given t ∈ N, forecast X(t),f = x(t),f , and observation vector Y (t) = y(t)

the 3DVAR cost function is

J3DVAR (x) =
∣∣x− x(t),f

∣∣2
B−1 +

∣∣y(t) − Hx
∣∣2
(R(t))

−1 , (5.1)

where B ∈ Rn×n is a prescribed covariance matrix, called the background covari-
ance, and for any x ∈ Rn

|x|2B−1 =
〈
x,B−1x

〉
=
〈
B−

1/2x,B−
1/2x
〉

= x∗B−1x.

Similarly, for any x ∈ Rm

|x|2
(R(t))

−1 =
〈
x,
(
R(t)
)−1

x
〉

=
〈(

R(t)
)−1/2

x,
(
R(t)
)−1/2

x
〉

= x∗
(
R(t)
)−1

x.

Using the fact that both matrices B and R(t) are positive definite it is easy to
check that both functionals

x ∈ Rn → |x|B−1

and
x ∈ Rm → |x|

(R(t))
−1

define norms on Rn and Rm respectively. The analysis is obtained by minimizing
the cost function over the whole state space. The whole algorithm is summarized
in the following definition.
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Definition 9 (3DVAR ). Using the state space model from Definition 7, the
3DVAR assimilation algorithm consists of the following steps.

1. Generate a first guess X(0),a from the distribution of the initial condition
X(0), or obtain the first guess using expert knowledge.

2. For t ∈ N recursively repeat the following steps.

(a) Advance the analysis from the previous cycle,

X(t),f = Ψ
(
X(t−1),a

)
+ V (t)

using V (t) independently generated from N
(
0,Q(t)

)
.

(b) Given the forecast X(t),f = x(t),f and the observation vector Y (t) = y(t)

update the analysis by minimizing the 3DVAR cost function:

X(t),a = arg min
x∈Rn

J3DVAR (x) . (5.2)

The background covariance matrix B in (5.1) does not change or evolve in
time, so the choice of this matrix is crucial. We briefly discuss this topic in the
last section of this chapter.

5.2 Kalman filter

The Kalman filter updates not only the forecast state of the system, but also
its mean and covariance. Recall that mean and covariance form together a suffi-
cient statistic of a Gaussian distributed random variable. We introduce the KF
algorithm in the next definition.

Definition 10 (Kalman filter ). Using the state space model and the notation
from Definition 7, assume that the iterated map Ψ is linear, so there exist a
matrix A ∈ Rn×n and a vector b ∈ Rn such that

Ψ (x) = Ax+ b. (5.3)

Then, the Kalman filter assimilation algorithm consists of the following steps.

1. Generate the first guess X(0),a from the distribution of the initial condition
X(0), and define

P(0),a = cov
(
X(0)

)
= P(0).

2. For t ∈ N recursively repeat the following steps.

(a) Advance the analysis from the previous cycle,

X(t),f = Ψ
(
X(t−1),a

)
+ V (t)

using V (t) independently generated form N
(
0,Q(t)

)
.
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(b) Propagate the analysis covariance in time,

P(t),f = AP(t−1),aA∗ + Q(t). (5.4)

(c) Evaluate the Kalman gain matrix,

K(t) = P(t),fH∗
(
HP(t),fH∗ + R(t)

)−1
. (5.5)

(d) Using the observation Y (t) = y(t), update the forecast,

X(t),a = X(t),f + K(t)
(
y(t) − HX(t),f

)
.

(e) Update the forecast covariance,

P(t),a =
(
I−K(t)H

)
P(t),f . (5.6)

Additionally, if we denote the forecast and analysis mean by

m(t),f =EX(t),f ,

m(t),a =EX(t),a,

then from the definition of the KF immediately follows the recursive relations

m(t),f =Am(t−1),a + b,

m(t),a =m(t),f + K(t)
(
y(t) − Hm(t),f

)
for all t ∈ N with K(t) defined in (5.5). Similarly, one can directly show that

cov
(
X(t),f

)
= P(t),f

and also
cov

(
X(t),a

)
= P(t),a

for all t ∈ N.
For a given t ∈ N the KF may be derived as the best linear unbiased estimate

of the state X(t) given the observations Y (t) = y(t) [Durbin and Koopman, 2012,
Chapter 4]. When the distribution of X(t),f is Gaussian, the analysis obtained
by the KF is also the estimate with the minimal mean square error and maximal
likelihood estimate of X(t).

There are two big obstacles with application of the KF, especially in the area
of atmospheric physics.

1. The KF equations assume that the dynamics of the underlying system is
linear. When the iterated map Ψ is not linear, one needs to replace ma-
trix A in Equation (5.4) with some linearization of Ψ. This may be done,
for example, using adjoint and tangent operators of Ψ, which leads to the
extended Kalman filter. However, the computation of these operators is
usually very difficult.

2. The dimension of a modeled system may be huge, even a few billion, so
working with the state covariance may easily become impractical, as ma-
nipulation with the matrix of size 109 × 109 is impossible even when one
can use a supercomputer.
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5.3 Ensemble Kalman filter

The ensemble Kalman filter resolves both obstacles of the KF mentioned at the
end of the previous section. The basic idea is to represent the distribution of the
underlying system using multiple samples, which may be interpreted as possible
scenarios of an evolution of a modeled system, and use a sample covariance in
place of the forecast covariance in the KF update equations.

The method was first published in Evensen [1994], and later improved in
Burgers et al. [1998]. The next definition presents the version from the second
cited paper.

Definition 11 (Ensemble Kalman filter ). The ensemble Kalman filter consists
of the following steps.

1. For a given N ∈ N generate i.i.d. random variables

X
(0),a
1 , . . . , X

(0),a
N

from the distribution of X(0).

2. For t ∈ N recursively repeat the following steps.

(a) Advance each ensemble member in time,

X
(t),f
i = Ψ

(
X

(t−1),a
i

)
+ V

(t)
i , i = 1, . . . , N,

using independently generated random variables

V
(t)

1 , . . . , V
(t)
N ∼ N

(
0,Q(t)

)
.

(b) Compute the forecast sample mean

X
(t),f

N =
1

N

N∑
i=1

X
(t),f
i ,

and the forecast sample covariance

P̂
(t),f
N =

1

N − 1

N∑
i=1

(
X

(t),f
i −X(t),f

N

)
⊗
(
X

(t),f
i −X(t),f

N

)
=

1

N − 1

N∑
i=1

(
X

(t),f
i −X(t),f

N

)(
X

(t),f
i −X(t),f

N

)∗
.

(c) Compute the sample Kalman gain

K̂
(t)
N = P̂

(t),f
N H∗

(
HP̂

(t),f
N H∗ + R(t)

)−1

. (5.7)

(d) Add additional perturbation to the observational vector Y (t) = y(t),

Y
(t)
i = y(t) +W

(t)
i , i = 1, . . . N, (5.8)

using independently generated random variables

W
(t)
1 , . . . ,W

(t)
N ∼ N

(
0,R(t)

)
.
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(e) Update each forecast ensemble member

X
(t),a
i = X

(t),f
i + K̂

(t)
N

(
Y

(t)
i − HX

(t),f
i

)
, i = 1, . . . , N. (5.9)

We call the collection of random variables

X
(t),f
1 , . . . , X

(t),f
N (5.10)

the forecast ensemble, and, similarly,

X
(t),a
1 , . . . , X

(t),a
N (5.11)

the analysis ensemble. We avoid saying that random variables (5.11) are samples
because it may evoke that they are independent, and that is not true as shown
in the next example.

Example 21. For a given t define

Zj = X
(t),f
j −X(t),f

N , j = 1, . . . , N,

and for each combination of i, j ∈ {1, . . . , N} define real coefficients

wj,i =
1

N − 1
Z∗jH∗

(
HP̂

(t),f
N H∗ + R(t)

)−1 (
Y

(t)
i − HX

(t),f
i

)
.

Using this notation, the analysis update for the ith ensemble member, Equation
(5.9), may be written in the form

X
(t),a
i =X

(t),f
i +

N∑
j=1

(
X

(t),f
j −X(t),f

N

)
wj,i

=X
(t),f

N +
N∑
j=1

((
X

(t),f
j −X(t),f

N

)
(δij + wj,i)

)
,

where δij is the Kronecker delta.
Hence, each analysis ensemble member can be written as a linear combination

of all forecast ensemble members. Therefore, all analysis ensemble members are
dependent. It also follows that

span
({
X

(t),f
1 , . . . , X

(t),f
N

})
= span

({
X

(t),a
1 , . . . , X

(t),a
N

})
(5.12)

for all t ∈ N.
Burgers et al. [1998] shows that without the data perturbation, Equation (5.8),

the covariance of the ensemble would go to zero matrix as t goes to infinity. The
data perturbation also guarantees that the relation between the forecast sample
covariance

P̂
(t),f
N =

1

N − 1

N∑
i=1

(
X

(t),f
i −X(t),f

N

)(
X

(t),f
i −X(t),f

N

)∗
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and the analysis sample covariance

P̂
(t),a
N =

1

N − 1

N∑
i=1

(
X

(t),a
i −X(t),a

N

)(
X

(t),a
i −X(t),a

N

)∗
is analogous to the relation between the forecast and analysis covariances in the
KF, Equation (5.6), i.e.,

P̂
(t),a
N =

(
I− K̂

(t)
N H
)

P̂
(t),f
N . (5.13)

One of the biggest advantages of the EnKF is that there is no need to store
the full forecast sample covariance in the computer memory, when one wants to
evaluate sample Kalman gain matrix K̂

(t)
N , and different implementations may be

found in Evensen [2009]. On the other hand, the method has two main obstacles.

1. In usual application the size of the ensemble N is much lower low than the
dimension of the system. The true forecast covariance is regular, so its rank
is n, but the rank of the sample covariance is N − 1 at most. Hence, the
EnKF uses a very low rank approximation of the forecast covariance, and
this low rank approximation often leads to spurious correlations. Also, each
analysis ensemble member lies in the subspace generated by the forecast
ensemble, Equation (5.12), and the dimension of this subspace is usually
incomparably smaller than the dimension of the original space.

2. The additional data perturbation, Equation (5.8), brings additional noise,
and many authors consider this to be unwilling.

We discuss the first obstacle with a possible solution in Chapter 8, and the second
obstacle in the last section of this chapter. The distribution and other statistical
properties of the EnKF are discussed in Chapter 7.

5.4 Bayesian filtering

Undoubtedly, the forecast distribution of X(t),f may be understood as a prior
distribution of the state X(t), and the analysis distribution corresponds to a
posterior distribution of X(t). These observations immediately evoke the use
of the Bayes theorem, and we discuss this approach in this section.

Similar to Section 5.2, we fully formulate the BF algorithm only in the case
that the underlying dynamics is linear. The BF estimate the whole distribution
of forecast and analysis states, and for each t ∈ N we denote φ(t),f the density of
X(t),f and φ(t),a the density of X(t),a.

Definition 12 (Bayesian filtering ). Using the state space model and the notation
from Definition 7, assume that the iterated map Ψ is linear, so there exists a
matrix A ∈ Rn×n and a vector b ∈ Rn such that

Ψ (x) = Ax+ b.

The Bayesian filtering consists of the following steps.
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1. Define φ(0),a to be a density of the X(0), i.e., a density of a N
(
m(0),P(0)

)
distributed random variable.

2. For t ∈ N recursively repeat the following steps.

(a) Define φ(t),f to be a density of a N
(
m(t),f ,P(t),t

)
distributed random

variable with

m(t),f =Ψ
(
m(t−1),a

)
,

P(t),f =AP(t−1),aA∗ + Q(t),

where m(t−1),a and P(t−1),a are mean and covariance of the analysis
from the previous cycle.

(b) Update the forecast density using the observation Y (t) = y(t). For all
x ∈ Rn define

φ(t),a (x) =
1

c (y(t))
d
(
y(t)
∣∣x)φ(t),f (x)

with the data likelihood

d
(
y(t)
∣∣x) ∝ exp

(
−1

2

∣∣y(t) − Hx
∣∣2
(R(t))

−1

)
,

and the normalization constant

c
(
y(t)
)

=

∫
Rn
d
(
y(t)
∣∣x)φ(t),f (x) dλn (x) .

Under the assumptions of the previous definition, the analysis distributions
remain Gaussian and their means and covariances are

m(t),a =m(t),f + P(t),fH∗
(
HP(t),fH∗ + R(t)

)−1 (
y(t) − Hm(t),f

)
,

P(t),a =
(

I− P(t),fH∗
(
HP(t),fH∗ + R(t)

)−1
H
)

P(t),f .

Yet, we see that when the iterated map is linear, the analysis distributions ob-
tained by the KF and by the BF are identical.

When the iterated map Ψ is not linear, the forecast density has to be evaluated
using the theorem about transformations of random variables, which requires
the integration of the gradient of the iterated map Ψ, and this integration may
easily become impossible. Additionally, when the iterated map is not linear, the
forecast distribution is usually not Gaussian anymore, and one has to make sure
that the normalization constant c

(
y(t)
)

is positive for all possible values of data.
Otherwise, the Bayesian filtering algorithm would not be well defined.

5.5 Additional notes and references

Four assimilation methods presented in this chapter form only a small subset off
all assimilation techniques. Kalnay [2003] contains an extensive list of known
assimilation methods, and also describes the historical development in this area.
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Lahoz et al. [2010] uses a more mathematical approach to describe data assim-
ilation algorithms, and also discuss the relations between analysis obtained by
different assimilation methods. The relations between all presented assimilation
methods are also studied in Law et al. [2015], Nakamura and Potthast [2015], van
Leeuwen et al. [2015], etc.

The 3DVAR, introduced in Section 5.1, was developed in the second half of
the twentieth century (Courtier and Talagrand [1987], Talagrand and Courtier
[1987]), and it is well known that when the prescribed background covariance
corresponds to the forecast covariance and the forecast distribution is Gaussian,
the analysis obtained by the 3DVAR is a maximal a posteriori estimate of the
hidden state and also it is equal to the analysis obtained by the Kalman filter
(Lorenc [1986], Law et al. [2015]).

As it was already mentioned, the choice of the background covariance B in
the 3DVAR update equation is crucial. Since the usual dimension of a modeled
state in the area of atmospheric physics is a few billion, and it is never possible
to observe the whole state, well known statistical methods for an estimation of a
covariance are commonly inapplicable. Hence, Parrish and Derber [1992] proposes
an NMC method that estimates the background covariance from the differences
of multiple forecasts for the same time using different initial conditions. The
background covariance does not develop in time, i.e., it is stationary in time, and
this is usually considered to be the biggest obstacle of the 3DVAR. Thus, Hamill
and Snyder [2000] proposed to combined the background covariance B with an
sample covariance of an ensemble, and this paper boosted a whole new group of
hybrid methods which combine both variational and ensemble approaches, e.g.,
Desroziers et al. [2014], Liu et al. [2008], or Lorenc et al. [2014].

The Kalman filter was first described in Kalman [1960], and Kalman and
Bucy [1961]. One of its first uses was a trajectory estimation for the Apollo
space program. The Kalman filter is often used for a time series analysis, so its
properties and derivation may also be found in books covering this topic such
as Durbin and Koopman [2012]. The need for adjoint and tangent operators for
covariance matrix propagations when an iterated map is not linear leads to the
extended Kalman filter (Jazwinski [1970]) and unscented Kalman filter (Julier
and Uhlmann [1997, 2004]).

Whitaker and Hamill [2002] show that under some conditions the perturbation
of data can cause systematic errors in estimation of the analysis covariance. The
square-root ensemble Kalman filter (SREnKF) (Tippett et al. [2003]) updates the
ensemble mean and ensemble deviations from the mean separately without the
additional data perturbation. The general idea of the SREnKF is as follows.

Using the notation from Definition 11, denote for a given t an ensemble of
deviations

Zf
i = X

(t),f
i −X(t),f

N , Za
i = X

(t),a
i −X(t),a

N , i = 1, . . . , N,

and denote Zf and Za the matrices with the deviations in columns, i.e.,

Zf =
(
Zf

1 · · · Zf
N

)
, Za =

(
Za

1 · · · Za
N

)
.

Obviously,

P̂
(t),f
N =

1

N − 1
Z(t),f

(
Z(t),f

)∗
, P̂

(t),a
N =

1

N − 1
Z(t),a

(
Z(t),a

)∗
, (5.14)
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and the EnKF covariance update, Equation (5.13), may be written in the form

P(t),a = P(t),f − P(t),fH∗
(
HP(t),fH∗ + R(t)

)−1
HP(t),f . (5.15)

Putting (5.14) into (5.15) gives

Za (Za)∗ = Zf
(

I− 1

N − 1

(
Zf
)∗

H∗
(
HP(t),fH∗ + R(t)

)−1
HZf

)(
Zf
)∗
,

and it immediately follows that

Za (Za)∗ = ZfAA∗
(
Zf
)∗

where A is n×N matrix such that

AA∗ =

(
I− 1

N − 1

(
Zf
)∗

H∗
(
HP(t),fH∗ + R(t)

)−1
HZf

)
. (5.16)

The SREnKF update consists of two steps.

1. Using the unperturbed observations and the Kalman gain from the EnKF,
Equation (5.7), update the ensemble mean,

X
(t),a

N = X
(t),f

N + K̂
(t)
N

(
y(t) − HX

(t),f

N

)
.

2. Find matrix A as a solution of Equation (5.16), and update the differences

Za = ZfA.

The SREnKF does not, in general, produce an unbiased estimate of the true
state, and necessary conditions when the SREnKF is unbiased are discussed in,
for example, Livings et al. [2008], and Sakov and Oke [2008]. The convergence
of the SREnKF to the Kalman filter when an iterated map of an underlying
dynamical system is linear is proved in Kwiatkowski and Mandel [2015]. The
class of SREnKF filters covers many filters used in real world applications such
as the ensemble transform Kalman filter (Bishop et al. [2001]), the local ensemble
transform Kalman filter (Hunt et al. [2007]), the ensemble adjusment Kalman
filter (Anderson [2001]), and the filter proposed in Whitaker and Hamill [2002].

The particle filter (Doucet et al. [2001], Mandel and Beezley [2009]) use also
an ensemble to develop the forecast distribution, but instead of updating the
ensemble members directly, it updates its weight using the Bayes theorem. This
filter precisely reconstructs the analysis distribution regardless of the forecast
distribution, but its computation is usually unfeasible.
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6. Data assimilation in infinite
dimension

In the previous chapter we introduced four assimilation methods that can be used
when a state space is finite dimensional, and there is a natural question whether
these methods may be used when the state is infinite dimensional. In this section
we look for sufficient conditions when these methods are well defined and well
posed.

Hadamard [1902] stated that a mathematical problem based on a differential
equation is well posed if three conditions are fulfilled:

1. it has a solution,

2. its solution is unique,

3. the solution changes smoothly when the initial condition changes.

In the chapter we are mainly interested whether assimilation methods satisfy the
first two conditions.

Through the whole chapter we use the state space model from Definition 7
with assumption that both H and G are infinite dimensional separable Hilbert
spaces. Hence, without loss of generality, we assume that

H = G.

6.1 3DVAR

The 3DVAR algorithm, introduced in Section 5.1, is based on a minimization of
the cost function

J3DVAR (x) =
∣∣x− x(t),f

∣∣2
B−1 +

∣∣y(t) − Hx
∣∣2
(R(t))

−1 (6.1)

for a given t ∈ N with B being a known background covariance operator. When
B is trace class, i.e., it is a covariance of a measurable random variable, the norm
|x|B−1 is defined only on a proper dense subset of the state space, so the definition
of |x|2B−1 must be extended

|x|2B−1 =

{〈
B−1/2x,B−1/2x

〉
if x ∈ B1/2 (H) ,

∞ if x /∈ B1/2 (H) ,
(6.2)

and similarly,

|x|2
(R(t))

−1 =


〈(

R(t)
)−1/2

x,
(
R(t)
)−1/2

x
〉

if x ∈
(
R(t)
)1/2

(H) ,

∞ if x /∈
(
R(t)

)1/2
(H) .

(6.3)

Hence, both functionals

x ∈ H →|x|B−1 ,

x ∈ H →|x|
(R(t))

−1
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are unbounded. Equation (6.2) and Equation (6.2) allow us to formulate the
following obvious, yet very important, corollary.

Corollary 5. When a state space model is such that the state and data spaces
are both infinite dimensional, then the 3DVAR cost function

J3DVAR (x) : x ∈ H → [0,∞]

is defined for all x ∈ H and any possible values of X(t),f and Y (t) from H.
Even though the last corollary shows that the 3DVAR cost function is defined

for all x ∈ H, to state that its minimization is well posed, it is necessary that for
all possible values of X(t),f and Y (t) there is at least one x ∈ H such that

J3DVAR (x) <∞. (6.4)

In the next example we show that, in general, the 3DVAR cost function does not
satisfy this condition.

Example 22. Assume that the observation operator H = I and that

R(t) = B.

Recall that if B is trace class, then B1/2 (H) is the Cameron-Martin space of a
N (0,B)-distributed random variable, and this space is an intersection of all linear
subspaces of the full measure (Section 3.3.2).

Suppose that X(t),f = x(t),f and Y (t) = y(t), i.e., x(t),f and y(t) are realizations
of X(t),f and Y (t) respectively, and

x(t),f ∈B
1/2 (H) , (6.5)

y(t) /∈B
1/2 (H) . (6.6)

Now, pick x ∈ H arbitrary. If x /∈ B1/2 (H) , then(
x− x(t),f

)
/∈ B

1/2 (H)

because B1/2 (H) is an linear subspace of H and (6.5), so∣∣x− x(t),f
∣∣2
B−1 =∞,

and J3DVAR (x) =∞. Conversely, if x ∈ B1/2 (H), then(
y(t),f − x

)
/∈ B

1/2 (H)

using (6.6), so ∣∣y(t) − x
∣∣2
(R(t))

−1 =∞,

and, again, J3DVAR (x) =∞. Since we picked x arbitrary,

J3DVAR (x) =∞

for all x ∈ H.
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Theorem 35. Suppose that a state space model is such that both state and ob-
servation spaces are infinite dimensional.

1. The minimization of the 3DVAR cost function may not have a unique so-
lution for certain realizations of X(t),f and Y (t) if both operators B and R(t)

are trace class.

2. The minimization of the 3DVAR cost function has a unique solution for
all possible realization of X(t),f and Y (t) if at least one operator is bounded
from bellow.

Proof. The proof of the first statement follows immediately from the previous
example.

To prove the second part, assume, without loss of generality, that R(t) is
bounded from bellow. Therefore, for all x ∈ H〈(

R(t)
)−1/2

x,
(
R(t)
)−1/2

x
〉
<∞,

so if the forecast X(t),f = x(t),f is given, then

J3DVAR (x) <∞

for all x ∈ H such that
(
x− x(t),f

)
∈ B1/2 (H) .

6.2 Ensemble Kalman filter

Recall the ensemble Kalman filter update equation

X
(t),a
i = X

(t),f
i + K̂N

(
Y

(t)
i − HX

(t),f
i

)
with

K̂N =P̂
(t),f
N H∗

(
HP̂

(t),f
N H∗ + R(t)

)−1

,

P̂
(t),f
N =

1

N − 1

N∑
i=1

[(
X

(t),f
i −X(t),f

N

)
⊗
(
X

(t),f
i −X(t),f

N

)]
,

X
(t),f

N =
1

N

N∑
i=1

X
(t),f
N,i .

Obviously, if the dimension of the state and observations are infinite, then the en-
semble Kalman filter equation make sense if and only if the Kalman gain operator
K̂N ,

K̂N : H → H,

is well defined for all x ∈ H. We formulate a sufficient condition when K̂N is
defined on the whole space, and postpone further exploration of the operator to
the next chapter.

Theorem 36. Suppose that a state space model is such that both state and ob-
servation spaces are infinite dimensional.
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1. If R(t) is a trace class operator, i.e., it is a covariance of a measurable
random variable, the ensemble Kalman filter equation is not defined for
some realization of X(t),f and Y (t).

2. If R(t) is bounded from below, the ensemble Kalman filter equation is defined
for all possible realization of X(t),f and Y (t).

Proof. When R(t) is a covariance of a measurable random variable, it is trace
class, Theorem 13. The sample covariance P̂

(t),f
N is a finite rank operator, and so

it is HP̂
(t),f
N H∗. Therefore, also (

HP̂
(t),f
N H∗ + R(t)

)
is trace class, so its inverse is only densely defined. Hence the Kalman gain
operator is also only densely defined.

If R(t) is bounded from below, then also(
HP̂

(t),f
N H∗ + R(t)

)
is bounded from bellow because P̂

(t),f
N is positive semidefinite. The second state-

ment of the theorem now yields from the fact that inverse of an operator bounded
from below is defined on the whole space.

6.3 Bayesian filtering

We already know that the Lebesgue measure on an infinite dimensional Hilbert
space H does not exist, so the algorithm from Definition 12 is inapplicable. How-
ever, the Bayes theorem holds even on H, as we noticed in Section 3.5, so we may
formulate an infinite dimensional version of the Bayesian filtering.

For a given t ∈ N we denote µ(t),f the measure induced by the forecast X(t),f ,
and µ(t),a the measure induced by the analysis X(t),a. From the definition of the
state space model it follows that the data likelihood is

d (y |x) ∝ exp

(
−1

2
|y − x|2

(R(t))
−1

)
(6.7)

(Stuart [2010]) with, similarly to Section 6.1, the norm defined by

|x|2
(R(t))

−1 =


〈(

R(t)
)−1/2

x,
(
R(t)
)−1/2

x
〉

if x ∈
(
R(t)
)1/2

(H) ,

∞ if x /∈
(
R(t)

)1/2
(H) ,

and a natural convention that

exp (−∞) = 0.

Now, if the condition

c
(
y(t)
)

=

∫
H
d
(
y(t) |x

)
dµ(t),f (x) > 0 (6.8)
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is fulfilled for a given t ∈ N and the observation Y (t) = y(t), then from the Bayes
theorem

µ(t),a (B) =
1

c (y(t))

∫
B

d
(
y(t) |x

)
dµ(t),f (x) (6.9)

for every B ∈ B (H) .

Remark 1. From a purely mathematical perspective, Equation 6.9 is not a proper
definition, because it is not clear what the analysis distribution is if condition (6.8)
is not satisfied. Stuart [2010] proposes using another data likelihood

d̃
(
y(t) |x

)
=

{
d
(
y(t) |x

)
if c
(
y(t)
)
> 0,

1 otherwise,

which leads to the analysis distribution

µ̃(t),a (B) =

{
1

c(y(t))

∫
B
d
(
y(t) |x

)
dµ(t),f (x) if c

(
y(t)
)
> 0,

µ(t),f (B) if c (y (t)) = 0
(6.10)

for all B ∈ B (H) . Although µ̃(t),a is mathematically well defined, it is not very
useful because when condition (6.8) is not fulfilled, the filter just completely
ignores the observed data Y (t) = y(t).

The previous remark shows that, for a given t ∈ N, the set

A(t) =

{
y ∈ H :

∫
H
d (y |x) dµ(t),f (x) = 0

}
(6.11)

should be of our primary interest, and, ideally, we would like to show that this
set is empty. Unfortunately, when R(t) is trace class, i.e., the data noise W (t) is
measurable, this set is not empty, as shown in the next example.

Example 23. Recall that we denote by m(t),f the mean and by P(t),f the covariance
of X(t),f , and assume that m(t),f belongs to the Cameron-Martin space of X(t),f .
Additionally, assume that measures µR ∼ N

(
0,R(t)

)
and µ(t),f are equivalent.

The set R1/2 (H) is the Cameron-Martin space of µR and

µR

(
R

1/2 (H)
)

= 0,

so ∫
H
d (0 |x) dµR (x) =

∫
R1/2(H)

exp

(
−1

2
|x|2

(R(t))
−1

)
dµR (x)

+

∫
H\R1/2(H)

exp (−∞) dµR (x) = 0

Therefore, the data value y = 0 belongs to the set A(t).
The sufficient condition when the set A(t) is empty is similar to conditions

when the previously mentioned assimilation techniques 3DVAR (Section 6.1) and
EnKF (Section 6.2) are well defined.

Theorem 37. When a state space model is such that both spaces state and ob-
servation are infinite dimensional, then the set A(t), defined by Equation (6.11),
is empty if the operator R(t) is bounded from below.
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Proof. The operator R is bounded from below, so the data likelihood function

d (y |x) ∝ exp

(
−1

2
|y − x|2

(R(t))
−1

)
is positive for any x, y ∈ H, and it follows that∫

H
d (y |x) dµ(t),f (x) > 0

for all y ∈ H.

In the special case when both forecast and data covariances commute, we can
show that this condition is also necessary. Recall that operators P(t),f and R(t)

commute when
P(t),fR(t) − R(t)P(t),f = 0.

Lemma 38. Assume that µ(t),f ∼ N
(
m(t),f ,P(t),f

)
, and operators P(t),f and R(t)

commute. Then, ∫
H

exp

(
−1

2
|y − x|2

(R(t))
−1

)
dµ(t),f (x) > 0

for all y ∈ H if and only if the operator R(t) is bounded from below.

Proof. Without loss of generality assume that m(t),f = 0. The operators P(t),f is
compact, and commutes with the operator R(t), so, using Lemma 8, they both

have countable sets of eigenvalues
{
pfi

}
and {ri} respectively, and there exist an

orthonormal set {ei}∞i=1, ei ∈ H, such that

P(t),fei = pfi ei and R(t)ei = riei.

Recall that, through the whole thesis, we assume that the kernels of P(t),f and

R(t) contain only the zero element, so all eigenvalues
{
pfi

}
and {ri} are strictly

positive.
For any z ∈ H we denote {zi} its coefficient with respect to the set {ei},

zi = 〈z, ei〉 , i ∈ N.

Using this notation,

d (y|x) = exp

(
−1

2
|y − x|2

(R(t))
−1

)
= exp

(
−
∞∑
i=1

(yi − xi)2

2ri

)
=
∞∏
i=1

exp

(
−(yi − xi)2

2ri

)
,

and∫
H
d (y|x) dµ(t),f (x) =

∫
H

lim
n→∞

(
n∏
i=1

exp

(
−(yi − xi)2

2ri

))
dµ(t),f (x) . (6.12)
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The function
z ∈ R→ exp

(
−z2

)
is bounded since

0 ≤ exp
(
−z2

)
≤ 1

for all z ∈ R, so

fn (x1, . . . , xn) =
n∏
i=1

exp

(
−(yi − xi)2

2ri

)
, n ∈ N,

is a monotone sequence of measurable functions, and we can use the monotone
convergence theorem to swap the limit and the integral sign in Equation (6.12),∫

H
d (y|x) dµ(t),f (x) = lim

n→∞

(∫
H

n∏
i=1

exp

(
−(yi − xi)2

2ri

)
dµ(t),f (x)

)
. (6.13)

Using the properties of the Gaussian distribution,〈
Xf , ei

〉
∼ N

(
0, pfi

)
for each i ∈ N, and

E
(〈
Xf , ei

〉 〈
Xf , ej

〉)
= δij, i, j ∈ N,

i.e., random variables
〈
Xf , ei

〉
and

〈
Xf , ej

〉
are independent unless i = j. There-

fore, if we denote by µfi the measure induced by
〈
Xf , ei

〉
, then∫

H
fn (x1, . . . , xn) dµ(t),f (x) =

∫
H
fn (x1, . . . , xn) dµf1 (x1)× · · · × dµfn (xn)

for all n ∈ N, and using Fubini’s theorem we obtain∫
H
fn (x1, . . . , xn) dµ(t),f (x) =

∫
R
· · ·
∫
R
fn (x1, . . . , xn) dµf1 (x1) · · · dµfn (xn) .

Putting the last equation into (6.13) yields∫
H
d (y|x) dµf (x) = lim

n→∞

n∏
i=1

∫
R

exp

(
−(yi − xi)2

2ri

)
dµfi (xi) ,

and, using the fact that µfi is absolutely continuous with respect to the Lebesgue
measure,∫

H
d (y|x) dµf (x) =

∞∏
i=1

∫ ∞
−∞

exp

(
−(yi − xi)2

2ri

)
ψ (xi) dλ

1 (xi) (6.14)

where

ψi (x) =
1√
2πpfi

exp

(
− x2

i

2pfi

)
,
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i.e., ψi is the density of a N
(

0, pfi

)
-distributed random variable.

Now, we use identities

(yi − xi)2

ri
+
x2
i

pfi
=

(
1

pfi
+

1

ri

)
x2
i − 2

xiyi
ri

+
y2
i

ri

=
(xi −ma

i )
2

pai
+

y2
i

ri + pfi
,

with

ma
i =

pfi
ri + pfi

yi and pai =

(
1

pfi
+

1

ri

)−1

to write Equation (6.14) in the form

∫
H
d (y|x) dµf (x) =

∞∏
i=1

1√
2πpfi

∫ ∞
−∞

exp

−(xi −ma
i )

2

2pai
− y2

i

2
(
ri + pfi

)
 dλ (xi) ,

and because ∫ ∞
−∞

exp

(
−(xi −ma

i )
2

2pai

)
dxi =

√
2πpai

for each i ∈ N, it follows that

∫
H
d (y|x) dµf (x) =

∞∏
i=1

(
pai

pfi

)1/2

exp

− y2
i

2
(
ri + pfi

)


=
∞∏
i=1

(
1 +

pfi
ri

)−1/2

exp

− y2
i

2
(
ri + pfi

)
 , (6.15)

where we used that
pai

pfi
=

1

pfi

(
1

pfi
+ 1

ri

) =
1

1 +
pfi
ri

in the second step. The infinite product on the right side of (6.15) is nonzero if
and only if the sum

∞∑
i=1

log

(1 +
pfi
ri

)−1/2

exp

− y2
i

2
(
ri + pfi

)


converges, and this sum can be written in the form

− 1

2

(
∞∑
i=1

log

(
1 +

pfi
ri

))
−

(
∞∑
i=1

y2
i

ri + pfi

)
. (6.16)

To finish the proof we only need to show that (6.16) is finite if and only if

r = inf
i∈N
{ri} > 0, (6.17)
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and we examine the convergence of each summand in (6.16) individually.
First, the equivalence

∞∑
i=1

ln

(
1 +

pfi
ri

)
<∞ ⇔

∞∑
i=1

pfi
ri
<∞ (6.18)

follows from the limit comparison test since

lim
i→∞

ln
(

1 +
pfi
ri

)
pfi
ri

= 1

when

lim
i→∞

pfi
ri

= 0. (6.19)

If condition (6.19) is not satisfied, than both sums in (6.18) obviously diverge.
Conversely, if r > 0, then

∞∑
i=1

pfi
ri
≤

∞∑
i=1

pfi
r
≤ r−1

∞∑
i=1

pfi <∞

because P(t),f is trace class.
Further, if r > 0, then

∞∑
i=1

y2
i

ri + pfi
≤

∞∑
i=1

y2
i

r
≤ r−1

∞∑
i=1

y2
i = r−1 |y|2 <∞

since {yi} are Fourier coefficients of y. Conversely, if r = 0, we will construct
ỹ ∈ H such that |ỹ| ≤ 1 and

∞∑
i=1

ỹ2
i

ri + pfi
=∞.

Since r = 0, there exists a subsequence {rik}
∞
k=1 such that

rik ≤
1

2k
, k ∈ N,

and we define

ỹ =
∞∑
i=1

ỹiei

with

ỹi =

{
r
1/2
i if i ∈ {ik}k∈N ,

0 if i /∈ {ik}k∈N.
The element ỹ lies in the unit circle because

|ỹ|2 =
∞∑
i=1

ỹ2
i =

∞∑
k=1

rik ≤
∞∑
k=1

1

2k
= 1,
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while
∞∑
i=1

ỹ2
i

ri + pfi
=
∞∑
k=1

rik
rik + pfik

=
∞∑
k=1

1

1 +
pfik
rik

=∞

where the last equality follows immediately from condition (6.19).
Therefore, the sum (6.16) is finite for all y ∈ H if and only if r > 0.

The construction of the element ỹ at the end of the previous proof may be
generalized, and it implies the following interesting result.

Lemma 39. Under the same assumptions as in Lemma 38, if

r = inf
i∈N
{ri} = 0,

then the set

A(t) =

{
y ∈ H :

∫
H

exp

(
−1

2
|y − x|2

(R(t))
−1

)
dµ(t),f (x) = 0

}
is dense in H.

Proof. To show that A is dense it is sufficient to show that for each z ∈ H and
any δ > 0

A(t) ∩ {u ∈ H : |z − u| < δ} 6= ∅.

Let z ∈ H and δ > 0. Similarly as in the previous proof, denote by {ei} the
common eigenvector basis of operators R(t) and P(t),f . Because r = 0, there
exists a subsequence {rik}

∞
k=1 such that

rik ≤
δ2

2k

for all k ∈ N. Define z̃ =
∑∞

i=1 z̃iei where

z̃i =

{
〈z, ei〉+ r

1/2
i if i ∈ {ik}k∈N ,

〈z, ei〉 if i /∈ {ik}k∈N,

and obviously

|z − z̃| =

(
∞∑
i=1

|〈z − z̃, ei〉|2
)1/2

=

(
∞∑
k=1

rik

)1/2

≤ δ.

From proof of the previous Lemma we know that∫
H

exp

(
−1

2
|z̃ − x|2

(R(t))
−1

)
dµf (x) > 0

if and only if (
∞∑
i=1

ln

(
1 +

pfi
ri

))
+

(
∞∑
i=1

z̃2
i

ri + pfi

)
<∞, (6.20)
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but
∞∑
i=1

z̃2
i

ri + pfi
≥

∞∑
k=1

z̃2
ik

rik + pfik
≥

∞∑
k=1

rik

rik

(
1 +

pfik
rik

) =∞

when

lim
i→∞

pfi
ri

= 0,

and, again from the previous proof, if this condition is not satisfied, then

∞∑
i=1

ln

(
1 +

pfi
ri

)
=∞.

Therefore, the sum at the left side of Equation (6.20) diverges, and z̃ ∈ A(t).

The last two lemmas may be summarized in the following theorem.

Theorem 40. Assume that X(t),f has the N
(
m(t),f ,P(t),f

)
distribution and op-

erators HP(t),fH∗ and R(t) commute. Then, the set

A(t) =

{
y ∈ H :

∫
H

exp

(
−1

2
|y − Hx|2

(R(t))
−1

)
dµf (x) = 0

}
is empty if and only if R(t) is bounded away from zero.

Additionally, if the eigenvalues of R(t) converge to zero, then A(t) is dense in
H.

6.4 Summary

We have reviewed the definitions of three assimilation methods in a situation when
both state and observation space are infinite dimensional. All three methods are
either not well posed or even not well defined if a data noise is a measurable
random variable. On the other hand, all methods are well posed when the data
noise covariance operator is bounded from below.

At first sight, these observations may look surprising, but, from another point
of view, it is quite a natural consequence of a “size” of an infinite dimensional
space. When one defines an assimilation method, a natural requirement should
be that an analysis distribution is absolutely continuous with respect to a forecast
distribution. However, Example 3 shows that even in the simplest case when X
and Y are identically Gaussian distributed random variables on H, the measures
induced by X and by X + Y are singular. Therefore any assimilation method
that is based on a linear combination of forecast states and observations must be
expected to fail when observations are measurable random variables.

A typical example of a weak random variable is the white noise, i.e., weak
random variable with the Nw (0, I) distribution. Some people may argue that
expecting data to contain continuous white noise is unrealistic. However, when
one thinks about a high resolution picture with every pixel created by a sepa-
rate sensor, then the noise contained in this picture is uncorrelated, and as the
resolution of the picture increases, the noise converges to the continuous white
noise. Hence, at least in some applications, the assumptions that data noise is
only weakly measurable is reasonable.
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6.5 Additional notes and references

The problem with the posedness of assimilation algorithms on an infinite dimen-
sional space is not new, and many authors have recently studied the coincidental
inverse problem on such spaces.

Lasanen [2007] observes that the Bayesian filtering is well defined only for
some values of observations when the observation space is infinite dimensional,
and formulates a necessary and sufficient condition on the observation so that the
posterior distribution is well defined. He also observes that the Bayes solution
minimize the 3DVAR cost function if the forecast distribution is Gaussian.

Cotter et al. [2009] describes mathematical framework for an inverse problem
on functional spaces, and formulates the Bayes theorem on an infinite dimensional
space. The paper also contains sufficient conditions for a data likelihood function
so that the posterior distribution is well defined, and a proof of existence of
an MAP estimate. Additionally, Dashti et al. [2013] shows consistency of this
estimate, and Dashti et al. [2012] studies possibilities of using more general prior
distribution.

Finally, Stuart [2010, 2013] provides an overview of the Bayesian approach to
an inverse problem on a separable Hilbert space.
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7. Convergence of ensemble
Kalman filter in Hilbert space

In this chapter, we study statistical properties of the EnKF in the large ensemble
limit. The chapter extends the work done in Le Gland et al. [2011] and Mandel
et al. [2011], where the convergence of the EnKF is proved if the state space
model is finite dimensional.

The chapter is organized as follows. Section 7.1 introduces notations and
assumptions used through out the whole chapter. Section 7.2 shows the continuity
of the Kalman gain operator. Section 7.3 shows some statistical properties on
the ensemble. Section 7.4 contains auxiliary estimates and lemmas, and Section
7.5 contains the proof of convergence.

7.1 Assumptions and definitions

As usual, we assume that H is a separable Hilbert space, and
{
X(t)

}
is a system

with a stochastic dynamics defined on H, i.e.,

X(0) ∼N
(
m(t),P(0)

)
,

X(t) =Ψ
(
X(t−1)

)
+ V (t), t ∈ N,

with the measurable iterated map

Ψ : H → H

and V (t) ∼ N
(
0,Q(t)

)
.

Assumption 1. Through the whole chapter, we assume that the following state-
ments hold.

1. An observation operator H ∈ [H] .

2. The iterated map Ψ : H → H is locally Lipschitz continuous with at most
polynomial growth in infinity, i.e., there exist positive constants s, l such
that

|Ψ (x)−Ψ (y)| ≤ l |x− y| (1 + |x|s + |y|s)
for all x, y ∈ H.

3. Observations of the system y(t), t ∈ N, are deterministic.

4. Random variables X
(0),(a)
i ∼ N

(
m(0),P(0)

)
, i ∈ N, are i.i.d., i.e., they are

independently generated from the distribution of the initial condition of the
underlying dynamical system.

5. Random variables V
(t)
i , i ∈ N, t ∈ N, are i.i.d. samples from N

(
0,Q(t)

)
distribution.

6. Weak random variables W
(t)
i ∼ Nw

(
0,R(t)

)
, i ∈ N, t ∈ N, are independent,

and all operators R(t), t ∈ N, are bounded from below.
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Additionally for each t ∈ N we define the Kalman gain operator

K(t) : Q→ QH∗
(
HQH∗ + R(t)

)−1
(7.1)

for any Q ∈ [H].

Using the previous list of assumptions and the introduced notation, we can
summarize the EnKF and mean field EnKF algorithms. The latter one evolves
the ensemble in time according to the original Kalman filter equations, and is a
candidate to represent the limit distribution of the EnKF.

Definition 13 (Ensemble Kalman filter). Given N ∈ N, N ≥ 2, the EnKF
algorithm consists of these consecutive steps.

1. Initialize the first guess:

∀i = 1, . . . , N : X
(0),a
N,i = X

(0),a
i . (7.2)

2. For t = 1, 2, . . . repeat the following steps.

(a) Advance the analysis ensemble from the previous cycle:

∀i = 1, . . . , N : X
(t),f
N,i = Ψ

(
X

(t−1),a
N,i

)
+ V

(t)
i . (7.3)

(b) Evaluate the sample mean and the sample covariance:

X
(t),f

N =
1

N

N∑
i=1

X
(t),f
N,i ,

P̂
(t),f
N =

1

N − 1

N∑
i=1

[(
X

(t),f
N,i −X

(t),f

N

)
⊗
(
X

(t),f
N,i −X

(t),f

N

)]
.

(c) Evaluate the sample Kalman gain operator:

K̂
(t),X
N = K(t)

(
P̂

(t),f
N

)
.

(d) Update the forecast ensemble:

∀i = 1, . . . , N : X
(t),a
N,i = X

(t),f
N,i + K̂

(t),X
N

(
y(t) − HX

(t),f
N,i −W

(t)
i

)
.

(7.4)

Definition 14 (Mean field EnKF ). Given N ∈ N, N ≥ 2, the mean field EnKF
algorithm consists of these consecutive steps.

1. Initialize the first guess:

∀i = 1, . . . , N : U
(0),a
N,i = X

(0),a
i . (7.5)

2. For t = 1, 2, . . . recursively repeat the following steps.

81



(a) Advance the analysis ensemble from the previous cycle:

∀i = 1, . . . , N : U
(t),f
N,i = Ψ(t)

(
U

(t−1),a
N,i

)
+ V

(t)
i . (7.6)

(b) Evaluate the forecast covariance:

C(t),f =E
((
U

(t),f
N,1 − EU

(t),f
N,1

)
⊗
(
U

(t),f
N,1 − EU

(t),f
N,1

))
.

(c) Evaluate the Kalman gain operator:

K(t),U = K(t)
(
C(t),f

)
.

(d) Update the forecast ensemble:

∀i = 1, . . . , N : U
(t),a
N,i = U

(t),f
N,i + K(t),U

(
y(t) − HU

(t),f
N,i −W

(t)
i

)
.

(7.7)

For future reference we define the sample mean

U
(t),f

N =
1

N

N∑
i=1

U
(t),f
i ,

and the sample covariance

Ĉ
(t),f
N =

1

N − 1

N∑
i=1

[(
U

(t),f
i − U (t),f

N

)
⊗
(
U

(t),f
i − U (t),f

N

)]
,

of the mean field ensemble, and, to simplify the proofs, we define forecast and
analysis ensembles of differences

Z
(t),f
N,i =X

(t),f
N,i − U

(t),f
i ,

Z
(t),a
N,i =X

(t),a
N,i − U

(t),a
i

for any possible values of t, N and i. We also recall that we have defined the
empirical moments in Section 3.1.4, and for all six ensembles and for any p ≥ 1
we define the real valued random variables

X̂
(t),f
N,p =

(
1

N

N∑
i=1

∣∣∣X(t),f
N,i

∣∣∣p)1/p

, X̂
(t),a
N,p =

(
1

N

N∑
i=1

∣∣∣X(t),a
N,i

∣∣∣p)1/p

,

Û
(t),f
N,p =

(
1

N

N∑
i=1

∣∣∣U (t),f
N,i

∣∣∣p)1/p

, Û
(t),a
N,p =

(
1

N

N∑
i=1

∣∣∣U (t),a
N,i

∣∣∣p)1/p

,

Ẑ
(t),f
N,p =

(
1

N

N∑
i=1

∣∣∣Z(t),f
N,i

∣∣∣p)1/p

, Ẑ
(t),a
N,p =

(
1

N

N∑
i=1

∣∣∣Z(t),a
N,i

∣∣∣p)1/p

.

Finally, in many cases, the same statements hold for both forecast and analysis
ensemble, and we use upper index • instead of f or a if we do not distinguish
between forecast and analysis ensemble. Hence, by writing X

(t),•
N,i for any i =

1, . . . , N we mean both X
(t),f
N,i and X

(t),a
N,i , and we use the same convention with

U
(t),•
N,i and Z

(t),•
N,i .
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7.2 Continuity of Kalman gain operator

This section contains an important proof of the fact that the Kalman gain op-
erator is continuous and even locally Lipschitz continuous, which was originally
published as Lemma 4.1 in Kwiatkowski and Mandel [2015]. We include the proof
from the cited article for completeness.

Theorem 41 ([Kwiatkowski and Mandel, 2015, Lemma 4.1]). Assume that oper-
ators P,Q ∈ [H] are semidefinite and selfadjoint, and K(t) is, for a given t ∈ N,
the Kalman gain operator defined by Equation (7.1). Then∣∣K(t) (P)−K(t) (Q)

∣∣ ≤ c |P−Q| (1 + min {|P| , |Q|})

where real positive constant c depends on operators R(t) and H only.

Proof. We denote R = R(t) and K = K(t), i.e., we drop the time index. Using
Lemma 7 ∣∣(HPH∗ + R)−1 − (HQH∗ + R)−1

∣∣ ≤ |HQH∗ − HPH∗|
∣∣R−1

∣∣2
≤
∣∣R−1

∣∣2 |H|2 |Q− P| ,

and by the triangle inequality

|K (P)−K (Q)| =
∣∣PH∗ (HPH∗ + R)−1 −QH∗ (HPH∗ + R)−1

∣∣
≤
∣∣QH∗ (HQH∗ + R)−1 − PH∗ (HQH∗ + R)−1

∣∣
+
∣∣PH∗ (HQH∗ + R)−1 − PH∗ (HPH∗ + R)−1

∣∣
≤|Q− P| |H|

∣∣R−1
∣∣+ |P|

∣∣R−1
∣∣2 |H|3 |Q− P| .

≤ |Q− P|
(
|H|
∣∣R−1

∣∣+ |P|
∣∣R−1

∣∣2 |H|3)
Swapping the roles of P and Q yields

|K (P)−K (Q)| ≤ |Q− P|
(
|H|
∣∣R−1

∣∣+ |Q|
∣∣R−1

∣∣2 |H|3) , (7.8)

and hence
|K (P)−K (Q)| ≤ c |P−Q| (1 + min {|P| , |Q|})

where c = max
{
|H| |R−1| , |H|3 |R−1|2

}
.

The previous theorem has an important corollary.

Corollary 6. Under the same assumption as Theorem 41∣∣K(t) (P)
∣∣ ≤ |H| ∣∣∣(R(t)

)−1
∣∣∣ |P| . (7.9)

Proof. Take Q = 0, which is obviously positive semidefinite and selfadjoint. Using
Equation (7.8) from the previous proof,∣∣K(t) (P)

∣∣ ≤ |P|(|H| ∣∣∣(R(t)
)−1
∣∣∣+ |Q|

∣∣∣(R(t)
)−1
∣∣∣2 |H|3) ,

and (7.9) yields from the fact that |Q| = 0.
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7.3 Ensemble properties

We have already shown in Example 21 that ensemble members

X
(t),•
N,1 , . . . , X

(t),•
N,N

are not independent, but the following theorem shows that they are exchangeable,
and also shows statistical properties of other ensembles used in this chapter.

Theorem 42. Given positive integers t, N,M, with M,N ≥ 2, the following
statements hold.

1. Random variables U
(t),•
N,1 , . . . , U

(t),•
N,N are all identically distributed, and are

independent given the observations.

2. The distribution of U
(t),•
N,1 does not depend on the size N of the ensemble,

i.e.,
U

(t),•
N,1 = U

(t),•
M,1

for any combination of M and N.

3. Random variables X
(t),•
N,1 , . . . , X

(t),•
N,N are exchangeable.

4. The distribution of X
(t),•
N,1 depends on N , i.e.,

X
(t),•
N,1 6= X

(t),•
M,1

unless N = M.

5. Random variables Z
(t),•
N,1 , . . . , Z

(t),•
N,N are exchangeable.

6. The distribution of Z
(t),•
N,1 depends on N .

Proof. The first two statements are trivial, and follow immediately using Defini-
tion 14.

The third statement can be proved using induction. For any N ≥ 2 the initial
ensemble

X
(0),a
N,1 , . . . , X

(0),a
N,N

consists of independent random variables by assumption, and hence the members
are exchangeable. Now, if random variables

X
(t−1),a
N,1 , . . . , X

(t−1),a
N,N

are exchangeable, then the members of the forecast ensemble

X
(t),f
N,1 , . . . , X

(t),f
N,N

are also exchangeable, since they are the sum of exchangeable random variables

Ψ
(
X

(t−1),a
N,1

)
, . . . ,Ψ

(
X

(t−1),a
N,N

)
and independent, and hence exchangeable, random variables V

(t)
i , i = 1, . . . , N.

Conversely, if ensemble
X

(t),f
N,1 , . . . , X

(t),f
N,N

84



consists of exchangeable random variables, then random variables

K̂
(t),X
N

(
y(t) − HX

(t),f
N,i −W

(t)
i

)
, i = 1, . . . , N,

are exchangeable as well, and it follows that

X
(t),a
N,1 , . . . , X

(t),a
N,N

are exchangeable.
If N and M are not equal, then the distributions of P̂

(t),f
N and P̂

(t),f
N are dif-

ferent, which prove the fourth statement.
The fifth and sixth statements are immediate consequences of statements num-

ber three and four.

The second statement of the last lemma shows that using a lower index N in
U

(t),•
N,1 is unnecessary, so we write U

(t),•
1 instead of U

(t),•
N,1 from now on.

Theorem 43. For every t ∈ N and any p ≥ 1 are U
(t),f
1 and U

(t),a
1 elements of

Lp (H) , i.e., they have finite moments of order p.

Proof. We use induction to prove the statement of the theorem.
Firstly, random variable U

(0),a
1 ∈ Lp (H) for all p ≥ 1 by definition.

Secondly, assume that

U
(t−1),a
1 ∈ Lp (H) ∀p ≥ 1. (7.10)

Function Ψ is locally Lipschitz continuous with at most polynomial growth in
infinity, so, using the triangle inequality and Lemma 3, there exist s, l > 0 such
that ∣∣∣U (t),f

1

∣∣∣ ≤ ∣∣∣Ψ(U (t−1),a
1

)∣∣∣+
∣∣∣V (t)

1

∣∣∣
≤l
(

1 +
∣∣∣U (t−1),a

1

∣∣∣ s+1
)

+
∣∣∣V (t)

1

∣∣∣ .
Because V

(t)
1 is a Gaussian random variable, it has finite moments of all orders,

and it follows that∥∥∥U (t),f
1

∥∥∥
p
≤l
(

1 +
∥∥∥U (t−1),a

1

∥∥∥s+1

p(s+1)

)
+
∥∥∥V (t)

1

∥∥∥
p
<∞

where the last inequality follows from Lemma 11 and assumption (7.10).
Thirdly, assume that

U
(t),f
1 ∈ Lp (H) ∀p ≥ 1.

Using the triangle inequality,∥∥∥U (t),a
1

∥∥∥
p
≤
∥∥∥U (t),f

1

∥∥∥
p

+
∥∥K(t),Uy(t)

∥∥
p

+
∥∥∥K(t),UHU

(t),f
1

∥∥∥
p

+
∥∥∥K(t),UW

(t)
1

∥∥∥
p
,

and to finish the proof just recall that
∥∥∥U (t),a

1

∥∥∥
p

is finite by assumption; term

K(t),Uy(t) is deterministic;
∥∥∥K(t),UW

(t)
1

∥∥∥
p

is finite because K(t),UW
(t)
1 is a Gaussian

random variable by Lemma 24, and∥∥∥K(t),UHU
(t),f
1

∥∥∥
p
≤ |H|

∣∣∣(R(t)
)−1
∣∣∣ ∣∣C(t),f

∣∣ ∥∥∥U (t),f
1

∥∥∥
p
<∞

by Corollary 6.
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7.4 Auxiliary estimates

This section contains various estimates, which are necessary to prove main theo-
rems of the chapter. We divide the estimates into three categories:

1. empirical moments estimates,

2. covariance distance estimates, and

3. data noise estimates.

Empirical moment estimates

Lemma 44. There are positive constants l, s depending only on the iterated map
Ψ such that

Ẑ
(t),f
N,p ≤ l

(
Ẑ

(t−1),a
N,p + Ẑ

(t−1),a
N,2p

(
Û

(t−1),a
N,2ps

)s
+
(
Ẑ

(t−1),a
N,p(s+1)

)s+1
)

for every t ∈ N and any p ≥ 1.

Proof. For given t, N and any i = 1, . . . , N we define

Xa
i = X

(t−1),a
N,i , Ua

i = U
(t−1),a
i and Za

i = Z
(t−1),a
N,i .

The iterated map Ψ is locally Lipschitz continuous with at most polynomial
growth in infinity by Assumption 1. Therefore, using Lemma 3, there exist posi-
tive constants s and l such that

|Ψ (Xa
i )−Ψ (Ua

i )| ≤l
(
|Xa

i − Ua
i |+ |Xa

i − Ua
i | |Ua

i |
s + |Xa

i − Ua
i |
s+1)

=l
(
|Za

i |+ |Za
i | |Ua

i |
s + |Za

i |
s+1) (7.11)

for any i = 1, . . . , N , and these constants depend only on Ψ. Using (7.11) and
the triangle inequality,

Ẑ
(t),f
N,p =

(
1

N

N∑
i=1

|Ψ (Xa
i )−Ψ (Ua

i )|p
)1/p

≤l

(
1

N

N∑
i=1

|Za
i |
p

)1/p

+ l

(
1

N

N∑
i=1

(|Za
i | |Ua

i |
s)
p

)1/p

+ l

(
1

N

N∑
i=1

|Za
i |
p(s+1)

)1/p

=l

Ẑ(t−1),a
N,p +

(
1

N

N∑
i=1

(|Za
i | |Ua

i |
s)
p

)1/p

+
(
Ẑ

(t−1),a
N,p(s+1)

)s+1

 .

To finish the proof, we just use Cauchy-Schwarz inequality to obtain

1

N

N∑
i=1

(|Za
i |
p |Ua

i |
ps) ≤

(
1

N

N∑
i=1

|Za
i |

2p

)1/2(
1

N

N∑
i=1

|Ua
i |

2ps

)1/2

=
(
Ẑ

(t−1),a
N,2p

)p (
Û

(t−1),a
N,2ps

)ps
and the inequality in the statement of the lemma follows.
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Lemma 45. There exist real positive constants c(t), t ∈ N, such that

Ẑ
(t),a
N,p ≤c

(t)
(
Ẑ

(t),f
N,p +

∣∣∣P̂(t),f
N − C(t),f

∣∣∣ Ẑ(t),f
N,p

)
+ c(t)

∣∣∣P̂(t),f
N − C(t),f

∣∣∣( 1

N

N∑
i=1

∣∣∣y(t) − HU
(t),f
i

∣∣∣p)1/p

+

(
1

N

N∑
i=1

∣∣∣K̂(t),X
N W

(t)
i −K(t),UW

(t)
i

∣∣∣p)1/p

any p ≥ 1. These constants depend on t only.

Proof. Similar to the proof of the previous lemma we do note use unnecessary
indexes, and for given t and N we define

X•i =X
(t),•
N,i , U•i =U

(t),•
i , Z•i =Z

(t),•
N,i , K̂X

N =K̂
(t),X
N , KU =K(t),U ,

y =y(t) Wi =W
(t)
i , P̂f

N =P̂
(t),f
N , Cf =C(t),f , R =R(t),

where • stands for either f or a.
For each i = 1, . . . , N,

Za
i =Xa

i − Ua
i

=Xf
i + K̂X

N

(
y − HXf

i −Wi

)
− U f

i −KU
(
y − HU f

i −Wi

)
=
(
I−KUH

)
Zf
i −

(
K̂X
N −KU

)
HZf

i +
(

K̂X
N −KU

)(
y − HU f

i

)
− K̂X

NWi + KUWi, (7.12)

and we need to estimate the norm of each term on the right side of the last
equation. Using the triangle inequality and (7.9),∣∣∣(I−KUH

)
Zf
i

∣∣∣ ≤ ∣∣I−KUH
∣∣ ∣∣∣Zf

i

∣∣∣
≤
(
1 +

∣∣Cf
∣∣ |H|2 ∣∣R−1

∣∣) ∣∣∣Zf
i

∣∣∣ , (7.13)

and from Theorem 41 there is k1 > 0 such that∣∣∣(K̂X
N −KU

)
HZf

i

∣∣∣ ≤ ∣∣∣K̂X
N −KU

∣∣∣ |H| ∣∣∣Zf
i

∣∣∣
≤k1

(
1 +

∣∣Cf
∣∣) ∣∣∣P̂f

N − Cf
∣∣∣ |H| ∣∣∣Zf

i

∣∣∣ . (7.14)

Using the same theorem again gives∣∣∣(K̂X
N −KU

)(
y − HU f

i

)∣∣∣ ≤ ∣∣∣K̂X
N −KU

∣∣∣ ∣∣∣y − HU f
i

∣∣∣
≤ k1

(
1 +

∣∣Cf
∣∣) ∣∣∣P̂f

N − Cf
∣∣∣ ∣∣∣y − HU f

i

∣∣∣ . (7.15)

Putting (7.13), (7.14) and (7.15) into (7.12) yields

|Za
i | ≤c

(∣∣∣Zf
i

∣∣∣+
∣∣∣P̂f

N − Cf
∣∣∣ ∣∣∣Zf

i

∣∣∣+
∣∣∣Ĉf

N − Cf
∣∣∣ ∣∣∣y − HU f

i

∣∣∣)
+
∣∣∣K̂X

NWi + KUWi

∣∣∣ (7.16)
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where we define

c = max
{
k1 (|H|+ 1)

(
1 +

∣∣Cf
∣∣) , 1 +

∣∣Cf
∣∣ |H| ∣∣R−1

∣∣} .
We finish the proof by bounding each term of the sum(

1

N

N∑
i=1

|Za
i |
p

)1/p

by (7.16) and using the triangle inequality.

Covariance distance estimates

Now, we derive a bound on the distance of the forecast sample covariance P̂
(t),f
N

and the covariance C(t),f , where both operators are defined in Definition 13 and
Definition 14 respectively.

Lemma 46. Assume that for a fixed t ∈ N and every p ≥ 1 there is a positive
constants kp such that ∥∥∥Z(t),f

N,1

∥∥∥
p
≤ kp√

N
(7.17)

for all N ∈ N. Then, for every p ≥ 1 there is a positive constant cp such that∥∥∥P̂
(t),f
N − C(t),f

∥∥∥
p
≤ cp√

N
.

Proof. First, notice that from assumption (7.17) follows that Z
(t),f
N,1 ∈ Lp (H) for

all p ≥ 1. Let p ≥ 2. By the triangle inequality∥∥∥P̂
(t),f
N − C(t),f

∥∥∥
p
≤
∥∥∥P̂

(t),f
N − Ĉ

(t),f
N

∥∥∥
p

+
∥∥∥Ĉ

(t),f
N − C(t),f

∥∥∥
p
. (7.18)

The first term on the right side of (7.18) can be bounded using Lemma 16 and
Cauchy-Schwarz inequality,∥∥∥P̂

(t),f
N − Ĉ

(t),f
N

∥∥∥
p
≤2

∥∥∥∥(Ẑ(t),f
N,2

)2
∥∥∥∥
p

+ 4
∥∥∥Ẑ(t),f

N,2 Û
(t),f
N,2

∥∥∥
p

≤2
∥∥∥Ẑ(t),f

N,2

∥∥∥2

2p
+ 4

∥∥∥Ẑ(t),f
N,2

∥∥∥
2p

∥∥∥Û (t),f
N,2

∥∥∥
2p
,

and the second term on the right side of (7.18)∥∥∥Ĉ
(t),f
N − C(t),f

∥∥∥
p
≤ k̃p√

N

∥∥∥U (t),f
1

∥∥∥
2p

where the existence of such k̃p ∈ R follows from Corollary 4. These bounds
together with Lemma 17 give∥∥∥P̂

(t),f
N − C(t),f

∥∥∥
p
≤2
∥∥∥Ẑ(t),f

N,2

∥∥∥2

2p
+ 4

∥∥∥Ẑ(t),f
N,2

∥∥∥
2p

∥∥∥Û (t),f
N,2

∥∥∥
2p

+
k̃p√
N

∥∥∥U (t),f
1

∥∥∥
2p

≤2
∥∥∥Z(t),f

1

∥∥∥2

2p
+ 4

∥∥∥Z(t),f
1

∥∥∥
2p

∥∥∥U (t),f
1

∥∥∥
2p

+
k̃p√
N

∥∥∥U (t),f
1

∥∥∥
2p

≤
max

{
k2

2p, k̃p

}
√
N

(
2 + 4

∥∥∥U (t),f
1

∥∥∥
2p

+
∥∥∥U (t),f

1

∥∥∥
2p

)
,
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and to finish the proof we define

cp =

{
2 max

{
k2
p, k̃p

}(
1 + 5

∥∥∥U (t),f
1

∥∥∥) for p ≥ 2,

c2 for p < 2.

Data noise estimates

The last group of estimates bound the expression∥∥∥K̂
(t),X
N W

(t)
1 −K(t),UW

(t)
1

∥∥∥
p
. (7.19)

If the data noise W
(t)
1 is a finite dimensional random variable, then (7.19) can be

estimated using the Hölder inequality,∥∥∥K̂
(t),X
N W

(t)
1 −K(t),UW

(t)
1

∥∥∥
p
≤
∥∥∥K̂

(t),X
N −K(t),U

∥∥∥
2p

∥∥∥W (t)
1

∥∥∥
2p

(7.20)

similarly as in Proposition 22.1 in Le Gland et al. [2011]. When W
(t)
1 is only a

weak random variable, the norm ∥∥∥W (t)
1

∥∥∥
p

is not defined, so the right-hand side of (7.20) is undefined. On the other hand,

we can use the fact that W
(t)
1 is a Gaussian weak random variable, and find a

reasonable upper bound.
We divide the process of finding the upper bound to (7.19) in four lemmas, and

we formulate these lemmas for a fixed t ∈ N. Therefore, just for this subsection,
we simplify the notation from Definition 13 and Definition 14, and we drop the
time index, e.g.,

Xf
N,i = X

(t),f
N,i ,

Using this convention, we define additional operators

ÂX
N =H∗

(
HP̂f

NH∗ + R
)−1

,

AU =H∗
(
HCfH∗ + R

)−1
.

Obviously,

K̂X
N =P̂f

N ÂX
N ,

KU =CfAU ,

and the norms of both operators are bounded by the value |H| |R−1|, i.e.,∣∣∣ÂX
N

∣∣∣ ≤ |H| ∣∣R−1
∣∣ and

∣∣AU
∣∣ ≤ |H| ∣∣R−1

∣∣ . (7.21)

The next four lemmas have the following assumptions in common.
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Assumption 2. Assume that for any p ≥ 1, there is a positive constant kp such
that

∥∥∥Zf
N,1

∥∥∥
p
≤ kp√

N

for all N ∈ N.

Lemma 47. If Assumption 2 holds, then for any p ≥ 1, there is a positive
constant cp such that ∥∥∥P̂f

N ÂX
NW1 − Ĉf

N ÂX
NW1

∥∥∥
p
≤ cp√

N

for all N ∈ N, N > 1.

Proof. The identities

Xf
N,i ⊗X

f
N,i − U

f
i ⊗ U

f
i =Zf

N,i ⊗X
f
N,i − U

f
i ⊗ Z

f
N,i, i = 1, . . . , N,

and

X
f

N ⊗X
f

N − U
f

N ⊗ U
f

N =Z
f

N ⊗X
f

N − U
f

N ⊗ Z
f

N

together with the triangle inequality give∥∥∥P̂f
N ÂX

NW1 − Ĉf
N ÂX

NW1

∥∥∥
p
≤

∥∥∥∥∥ 1

N

N∑
i=1

(
Zf
N,i ⊗X

f
N,i

)
ÂX
NW1

∥∥∥∥∥
p

+

∥∥∥∥∥ 1

N

N∑
i=1

(
U f
i ⊗ Z

f
N,i

)
ÂX
NW1

∥∥∥∥∥
p

(7.22)

+
∥∥∥(Zf

N ⊗X
f

N

)
ÂX
NW1

∥∥∥
p

+
∥∥∥(U f

N ⊗ Z
f

N

)
ÂX
NW1

∥∥∥
p
.

The first term on the right side of (7.22) can be bounded again by the triangle
inequality,∥∥∥∥∥ 1

N

N∑
i=1

(
Zf
N,i ⊗X

f
N,i

)
ÂX
NW1

∥∥∥∥∥
p

≤ 1

N

N∑
i=1

∥∥∥(Zf
N,i ⊗X

f
N,i

)
ÂX
NW1

∥∥∥
p

=
∥∥∥Zf

1

〈
Xf
N,1, Â

X
NW1

〉∥∥∥
p
,

and, using Cauchy-Schwarz inequality and Lemma 21,∥∥∥Zf
N,1

〈
Xf
N,1, Â

X
NW1

〉∥∥∥
p

=
∥∥∥Zf

N,1

〈(
ÂX
N

)∗
Xf
N,1,W1

〉∥∥∥
p

≤
∥∥∥Zf

N,1

∥∥∥
2p

∥∥∥〈(ÂX
N

)∗
Xf
N,1,W1

〉∥∥∥
2p

≤
∥∥∥Zf

N,1

∥∥∥
2p

∥∥∥(ÂX
N

)∗
Xf
N,1

∥∥∥
2p
‖W1‖2p,w

≤ |R| |H|
∥∥∥Zf

N,1

∥∥∥
2p

∥∥∥Xf
N,1

∥∥∥
2p
‖W1‖2p,w , (7.23)
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where the last inequality follows from (7.21). By the same approach it is possible
to show that∥∥∥∥∥ 1

N

N∑
i=1

(
U f
i ⊗ Z

f
N,i

)
ÂX
NW1

∥∥∥∥∥
p

≤ |R| |H|
∥∥∥Zf

N,1

∥∥∥
2p

∥∥∥U f
1

∥∥∥
2p
‖W1‖2p,w . (7.24)

Similarly,∥∥∥(Zf

N ⊗X
f

N

)
ÂX
NW1

∥∥∥
p

=
∥∥∥Zf

N

〈(
ÂX
N

)∗
X
f

N ,W1

〉∥∥∥
p

≤ |R| |H|
∥∥∥Zf

N

∥∥∥
2p

∥∥∥Xf

N

∥∥∥
2p
‖W1‖2p,w

≤ |R| |H|
∥∥∥Zf

N,1

∥∥∥
2p

∥∥∥Xf
N,1

∥∥∥
2p
‖W1‖2p,w , (7.25)

where the last inequality follows from the triangle inequality applied on terms∥∥∥Zf

N

∥∥∥
2p

and
∥∥∥Xf

N

∥∥∥
2p

, and∥∥∥(U f

N ⊗ Z
f

N

)
ÂX
NW1

∥∥∥
p
≤ |R| |H|

∥∥∥Zf
N,1

∥∥∥
2p

∥∥∥U f
1

∥∥∥
2p
‖W1‖2p,w . (7.26)

Now, putting (7.23), (7.24), (7.25) and (7.26) into (7.22) gives∥∥∥P̂f
N ÂX

NW1 − Ĉf
N ÂX

NW1

∥∥∥
p
≤2 |R| |H|

∥∥∥Zf
N,1

∥∥∥
2p
‖W1‖2p,w

(∥∥∥Xf
N,1

∥∥∥
2p

+
∥∥∥U f

N,1

∥∥∥
2p

)

≤2 |R| |H|
∥∥∥Zf

N,1

∥∥∥2

2p
‖W1‖2p,w

1 + 2

∥∥∥U f
N,1

∥∥∥
2p∥∥∥Zf

N,1

∥∥∥
2p

 ,

where the last inequality is obtained by applying the triangle inequality, and we
define

cp = 2k2
2p |R| |H| ‖W1‖2p,w

(
1 + 2

∥∥∥U f
N,1

∥∥∥
2p
k−1

2p

)
to conclude the proof.

Lemma 48. If Assumption 2 holds, then for any p ≥ 1, there exists positive
constant cp such that ∥∥∥Ĉf

N ÂX
NW1 − Ĉf

NAUW1

∥∥∥
p
≤ cp√

N

for all N ∈ N, N > 1.

Proof. Pick p ≥ 1 arbitrary. Define operator

GN =ÂX
N − AU ,

and, using (7.21), this operator is bounded.
Using Lemma 7,

‖GN‖p =

∥∥∥∥H∗
((

HP̂f
NH∗ + R

)−1

−
(
HCfH∗ + R

)−1
)∥∥∥∥

p

≤
∥∥∥|H| ∣∣∣HP̂f

NH∗ − HCfH∗
∣∣∣ ∣∣R−1

∣∣2∥∥∥
p

≤
∣∣R−1

∣∣2 |H|3 ∥∥∥P̂f
N − Cf

∥∥∥
p
,

91



and, using Lemma 46,

‖GN‖p ≤
k̃p√
N

∣∣R−1
∣∣2 |H|3 (7.27)

for some positive constant k̃p.
Using the definition of a sample covariance and the triangle inequality,

∥∥∥Ĉf
NGNW1

∥∥∥
p
≤ 1

N − 1

N∑
i=1

∥∥∥(U f
i − U

f

N ⊗ U
f
i − U

f

N

)
GNW1

∥∥∥
p

≤ N

N − 1

∥∥∥(U f
1 − U

f

N

)〈
U f

1 − U
f

N ,GNW1

〉∥∥∥
p
,

and using the Cauchy-Schwarz inequality on the right side of the last inequality
gives∥∥∥(U f

1 − U
f

N

)〈
U f

1 − U
f

N ,GNW1

〉∥∥∥
p
≤ 2

∥∥∥U f
1

∥∥∥
2p

∥∥∥〈U f
1 − U

f

N ,GNW1

〉∥∥∥
2p

(7.28)

because ∥∥∥U f
1 − U

f

N

∥∥∥
2p
≤ 2

∥∥∥U f
1

∥∥∥
2p
.

By Lemma 21∥∥∥〈G∗N

(
U f

1 − U
f

N

)
,W1

〉∥∥∥
2p
≤
∥∥∥G∗N

(
U f

1 − U
f

N

)∥∥∥
2p
‖W1‖2p,w ,

and again by the Cauchy-Schwarz inequality

E
∣∣∣G∗N (U f

1 − U
f

N

)∣∣∣2p ≤E

(
|GN |2p

∣∣∣(U f
1 − U

f

N

)∣∣∣2p)
≤
(
E |GN |4p

)1/2(
E
∣∣∣(U f

1 − U
f

N

)∣∣∣4p)1/2

.

By putting all equations together we obtain∥∥∥Ĉf
NGNW1

∥∥∥
p
≤ 4

N

N − 1
‖GN‖4p

∥∥∥U f
1

∥∥∥
2p

∥∥∥U f
1

∥∥∥
4p
‖W1‖2p,w

and, using (7.27), ∥∥∥Ĉf
NGNW1

∥∥∥
p
≤ cp√

N

where we define

cp = 4k̃4p

∣∣R−1
∣∣2 |H|3 ∥∥∥U f

1

∥∥∥
2p

∥∥∥U f
1

∥∥∥
4p
‖W1‖2p,w .

Lemma 49. For any p ≥ 1, there is a positive constant cp such that∥∥∥Ĉf
NAUW1 − CfAUW1

∥∥∥
p
≤ cp√

N

for all N ∈ N, N > 1.
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Proof. Firstly, AUW1 is a weak random variable, and

AUW1 ∼ Nw
(
0,AUR

(
AU
)∗)

by Lemma 24.
Pick p ∈ N arbitrary. Then,∥∥∥(Ĉf
N − Cf

)
AUW1

∥∥∥2p

2p
=

∫
Ω

∫
Ω

∣∣∣(Ĉf
N (ω1)− Cf

)
AUW1 (ω2)

∣∣∣2p dP (ω2) dP (ω1) .

(7.29)
From Lemma 24 follows that for any fixed ω1 ∈ Ω,,

Sω1 =
(

Ĉf
N (ω1)− Cf

)
AUW1

is a measurable random variable with N (0,ΣN(ω1)) distribution where

ΣN (ω1) =
(

Ĉf
N (ω1)− Cf

)
AUR

(
AU
)∗ (

Ĉf
N (ω1)− Cf

)∗
,

and from Lemma 26 yields existence of positive constant k̃p such that∫
Ω

∣∣∣(Ĉf
N (ω1)− Cf

)
AW2 (ω2)

∣∣∣2p dP (ω2) ≤k̃p |ΣN (ω1)|pTr . (7.30)

The operator
(

Ĉf
N − Cf

)
is Hilbert-Schmidt and the operator AUR

(
AU
)∗

is

bounded, so the operator (
Ĉf
N − Cf

)
AUR

(
AU
)∗

is Hilbert-Schmidt as well, and, using Lemma 6,

|ΣN (ω1)|Tr ≤2
∣∣∣(Ĉf

N (ω1)− Cf
)

AUR
(
AU
)∗∣∣∣

HS

∣∣∣Ĉf
N (ω1)− Cf

∣∣∣
HS

≤2
∣∣AUR

(
AU
)∗∣∣ ∣∣∣Ĉf

N (ω1)− Cf
∣∣∣2
HS
. (7.31)

Putting (7.30) and (7.31) into (7.29) gives∥∥∥Ĉf
NAW1 − CfAW1

∥∥∥2p

2p
≤
∫

Ω

k̃p |ΣN (ω1)|pTr dP (ω1)

≤k̃p2
∣∣AUR

(
AU
)∗∣∣2p E

∣∣∣Ĉf
N − Cf

∣∣∣2p
HS
,

and, similarly as in the proof of Theorem 32, the Marcinkiewicz-Zygmund in-
equality, Theorem 30, gives existence of positive constant b2p such that(

E
∣∣∣Ĉf

N − Cf
∣∣∣2p
HS

)1/(2p)

≤ b2p√
N
.

To conclude the proof we define

cp =

{
k̃

1/(2p)
p/2

∣∣AUR
(
AU
)∗∣∣ b2p for p = 2r, r ∈ N

c2r for p ∈ (2r − 2, 2r) , r ∈ N.
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Lemma 50. If Assumption 2 holds, then for any p ≥ 1, there exists positive
constant cp such that ∥∥∥K̂

(t),X
N W

(t)
1 −K(t),UW

(t)
1

∥∥∥
p
≤ cp√

N

for all N ∈ N, N > 1.

Proof. Using the triangle inequality,∥∥∥K̂X
NW1 −KUW1

∥∥∥
p
≤
∥∥∥P̂f

N ÂX
NW1 − Cf ÂX

NW1

∥∥∥
p

+
∥∥∥Ĉf

N ÂX
NW1 − Ĉf

NAUW1

∥∥∥
p

+
∥∥∥Ĉf

NAUW1 − CfAUW1

∥∥∥
p

≤
k1
p + k2

p + k3
p√

N

where the existence of positive constants k1
p, k

2
p and k3

p follows from Lemma 47,
Lemma 48 and Lemma 49.

7.5 Convergence of ensembles

The next three theorems form the main result of this chapter, they show that
X

(t),f
N,1 converges to U

(t),f
1 in Lp as the size of the ensemble goes to infinity.

Recall that, in all statements, we are using the notation introduced in Section
7.1.

We estimate the difference of forecast members using the properties of the
iterated map Ψ and a prior estimate of a difference of analysis members from the
previous time step.

Lemma 51. Assume that for a fixed t ∈ N and any p ≥ 1, there is a positive
constant k

(t−1),a
p such that ∥∥∥Z(t−1),a

N,1

∥∥∥
p
≤k

(t−1),a
p√
N

.

Then, for any p ≥ 1, there is a positive constant k
(t),f
p such that∥∥∥Z(t),f

N,1

∥∥∥
p
≤ k

(t),f
p√
N
.

Proof. First, using Theorem 43,∥∥∥U (t−1),a
1

∥∥∥
p
<∞

for any p > 1.
Let p ≥ 1. Using Lemma 17, Lemma 44, and the triangle inequality,∥∥∥Z(t),f
N,1

∥∥∥
p

=

∥∥∥∥∥∥
(

1

N

N∑
i=1

∣∣∣Z(t),f
N,i

∣∣∣p)1/p
∥∥∥∥∥∥
p

=
∥∥∥Ẑ(t),f

N,p

∥∥∥
p

≤ l
∥∥∥Ẑ(t−1),a

N,p

∥∥∥
p

+ l
∥∥∥Ẑ(t−1),a

N,2p

(
Û

(t−1),a
N,2ps

)s∥∥∥
p

+ l

∥∥∥∥(Ẑ(t−1),a
N,p(s+1)

)s+1
∥∥∥∥
p

, (7.32)
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where s and l are some positive constants that depend on Ψ only, and using the
Cauchy-Schwarz inequality,∥∥∥Ẑ(t−1),a

N,2p

(
Û

(t−1),a
N,2ps

)s∥∥∥p
p

=
∥∥∥(Ẑ(t−1),a

N,2p

)p (
Û

(t−1),a
N,2ps

)ps∥∥∥
1

≤
∥∥∥(Ẑ(t−1),a

N,2p

)p∥∥∥
2

∥∥∥(Û (t−1),a
N,2ps

)ps∥∥∥
2

=
∥∥∥Ẑ(t−1),a

N,2p

∥∥∥p
2p

∥∥∥Û (t−1),a
N,2ps

∥∥∥ps
2ps

=
∥∥∥Z(t−1),a

1

∥∥∥p
2p

∥∥∥U (t−1),a
1

∥∥∥ps
2ps

(7.33)

where the last equality follows again from Lemma 17. This lemma also yields∥∥∥∥(Ẑ(t−1),a
N,p(s+1)

)s+1
∥∥∥∥
p

=
∥∥∥Ẑ(t−1),a

N,p(s+1)

∥∥∥s+1

p(s+1)
=
∥∥Z(t−1),a

∥∥s+1

p(s+1)
. (7.34)

To conclude the proof just put (7.33) and (7.34) into (7.32) to obtain

∥∥∥Z(t),f
N,1

∥∥∥
p
≤l

k(t−1),a
p√
N

+
k

(t−1),a
2p√
N

∥∥∥U (t−1),a
1

∥∥∥s
2ps

+

(
k

(t−1),a
p(s+1)√
N

)s+1


≤k
(t),f
p√
N
,

where

k(t),f
p = l

(
k(t−1),a
p + k

(t−1),a
2p

∥∥∥U (t−1),a
1

∥∥∥s
2ps

+
(
k

(t−1),a
p(s+1)

)s+1
)
.

Next, we bound the difference of forecast members.

Lemma 52. Assume that for a fixed t ∈ N and any p ≥ 1, there is a positive
constant k

(t),f
p such that ∥∥∥Z(t),f

N,1

∥∥∥
p
≤k

(t),f
p√
N
. (7.35)

Then, for any p ≥ 1, there is a positive constant k
(t),a
p such that∥∥∥Z(t),a

N,1

∥∥∥
p
≤ k

(t),a
p√
N
.

Proof. Again, using Theorem 43,∥∥∥U (t),f
1

∥∥∥
p
<∞

for any p > 1.
Let p ≥ 1. Lemma 17 gives the identity∥∥∥Z(t),a

N,1

∥∥∥
p

=
∥∥∥Ẑ(t),a

N,p

∥∥∥
p
,
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and from this identity, Lemma 45 and the triangle inequality yield the existence
of k ∈ R such that∥∥∥Z(t),a

N,1

∥∥∥
p
≤k
∥∥∥Ẑ(t),f

N,p

∥∥∥
p

+ k
∥∥∥∣∣∣P̂(t),f

N − C(t),f
∣∣∣ Ẑ(t),f

N,p

∥∥∥
p

+ k

∥∥∥∥∥∥
∣∣∣P̂(t),f

N − C(t),f
∣∣∣( 1

N

N∑
i=1

∣∣∣y(t) − H(t)U
(t),f
i

∣∣∣p)1/p
∥∥∥∥∥∥
p

+
∥∥∥K̂

(t),X
N W

(t)
1 −K(t),UW

(t)
1

∥∥∥
p
. (7.36)

Using the Cauchy-Schwarz inequality, we have∥∥∥∣∣∣P̂(t),f
N − C(t),f

∣∣∣ Ẑ(t),f
N,p

∥∥∥
p
≤
∥∥∥P̂

(t),f
N − C(t),f

∥∥∥
2p

∥∥∥Ẑ(t),f
N,p

∥∥∥
2p
,

and Lemma 46 gives existence of constant c1 ∈ R such that∥∥∥∣∣∣P̂(t),f
N − C(t),f

∣∣∣ Ẑ(t),f
N,p

∥∥∥
p
≤ c1√

N

∥∥∥Z(t),f
N,1

∥∥∥
p
≤ c1√

N

k
(t),f
p√
N
. (7.37)

If we denote

D̂
(t)
N,p =

(
1

N

N∑
i=1

∣∣∣y(t) − H(t)U
(t),f
i

∣∣∣p)1/p

,

then, using the Cauchy-Schwarz inequality,∥∥∥∣∣∣P̂(t),f
N − C(t),f

∣∣∣ D̂(t)
N,p

∥∥∥
p
≤
∥∥∥P̂

(t),f
N − C(t),f

∥∥∥
2p

∥∥∥D̂(t)
N,p

∥∥∥
2p
,

and Lemma 46 together with Lemma 17 yield∥∥∥∣∣∣P̂(t),f
N − C(t),f

∣∣∣ D̂(t)
N,p

∥∥∥
p
≤ c1√

N

∥∥∥y(t) − H(t)U
(t),f
1

∥∥∥
2p
. (7.38)

Lemma 50 states that there exists c2 ∈ R such that∥∥∥K̂
(t),X
N W

(t)
1 −K(t),UW

(t)
1

∥∥∥
p
≤ c2√

N
, (7.39)

and, to finalize the proof, put inequalities (7.35), (7.37), (7.38) and (7.39) into
(7.36) to obtain

∥∥∥Z(t),a
N,1

∥∥∥
p
≤ m

(
k

(t),f
p√
N

+
c1k

(t),f
p

N
+

c1√
N

∥∥∥y(t) − H(t)U
(t),f
i

∥∥∥
2p

)
+

c2√
N
≤ k

(t),a
p√
N

where the choice of k
(t),a
p is obvious,

k(t),a
p = k

(
k(t),f
p + c1k

(t),f
p + c1

∥∥∥y(t) − H(t)U
(t),f
i

∥∥∥
2p

)
+ c2.

The last two lemmas give the main theorem of this chapter.
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Theorem 53. If Assumption 1 holds, then, using notation from Definition 13
and Definition 14, for each t ∈ N,∥∥∥X(t),f

N,1 − U
(t),f
1

∥∥∥
p
→0,∥∥∥X(t),a

N,1 − U
(t),a
1

∥∥∥
p
→0

for all p ≥ 1 as N goes to infinity. Additionally,∥∥∥X(t),f
N,1 − U

(t),f
1

∥∥∥
p

=O
(
N−

1/2
)
, (7.40)∥∥∥X(t),a

N,1 − U
(t),a
1

∥∥∥
p

=O
(
N−

1/2
)
. (7.41)

Proof. We use an induction to prove the theorem.
Firstly, for t = 0, the ensemble members X

(0),a
N,1 and U

(0),a
N,1 identical, so∥∥∥X(0),a

N,1 − U
(0),a
1

∥∥∥
p

= 0

for all p ≥ 1.
Secondly, if equations (7.40) and (7.41) hold for a given t ∈ N, Lemma 51 and

Lemma 52 immediately prove that these equations hold also for t+ 1.

7.6 Additional notes and references

Although the ensemble Kalman filter was first published in the early nineties,
there was a lack of rigorous probabilistic studies on the convergence of the EnKF
until both Mandel et al. [2011] and Le Gland et al. [2011] independently showed
that the EnKF converges to the solution obtained using the Kalman filter. Both
cited papers show the convergence in Lp norm for the case when a state space
model is finitely dimensional. Almost sure convergence is proved in Le Gland
et al. [2011], but no convergence rate is available.

The same results are obtained for a dynamical system with a continuous time
in Law et al. [2016]. The paper also provides multiple numerical experiments of
different versions of mean field filters, but the paper still assumes that a state
space is finitely dimensional.

The convergence of a square root filter, briefly mentioned in Section 5.5, may
be found in Kwiatkowski and Mandel [2015], and this paper also provides a proof
that the Kalman gain operator is continuous, which is also proved in Section 7.2
for completeness.
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8. Spectral diagonal ensemble
Kalman filter

As mentioned at the end of Section 5.3, one of the biggest disadvantages of the
ensemble Kalman filter is a low rank approximation of a forecast covariance.
This obstacle is often suppressed by a localization technique. In this section we
presented a modified version of the EnKF that allows a natural localization.

This chapter contains work that has been published in Kasanický et al. [2015],
but has more detailed proofs.

The chapter is organized as follows. Section 8.1 proposes another estimate
of a covariance and shows that this estimate is better than the sample covari-
ance when samples are taken from a Gaussian distribution. In Section 8.2 this
estimate is used to define a new assimilation method called spectral diagonal en-
semble Kalman filter (SDEnKF). Section 8.3 shows efficient implementation of the
proposed method. Finally, Section 8.4 shows results from multiple experiments
using different state space models.

8.1 Spectral diagonal sample covariance

When X ∼ N (0,P), P ∈ Cn×n, n ∈ N, then the Karhunen-Loève expansion,
Theorem 1.4.1 in Ash and Gardner [1975], guarantees that there are orthonormal
vectors u1, . . . , un ∈ Cn and positive numbers λ1, . . . , λn such that

X =
n∑
i=1

λ
1/2
i θiui (8.1)

where θ1, . . . , θn ∼ N (0, 1) are i.i.d. random variables. If we denote

F∗ =
(
u1 · · · un

)
, (8.2)

i.e., matrix F contains vectors u∗1, . . . , u
∗
n as rows, then

U = FX =
n∑
i=1

λ
1/2
i θiFui =

n∑
i=1

λ
1/2
i θiei

where e1, . . . , en are unit vectors such that (ei)j = δi,j, i = 1, . . . , n. Using Theo-
rem 23, the vector U has N (0,D) distribution with

D = FPF∗ =

 λ1 0
. . .

0 λn

 .

Since ui, i = 1, . . . , n, are orthonormal,

FF∗ =F∗F = I.
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Now, assume that X1, . . . , XN are i.i.d. samples from N (0,P) distribution.
Each sample may be written in the form

Xj =
n∑
i=1

λ
1/2
i θi,jui,

where θi,j ∼ N (0, 1) , i = 1, . . . , n, j = 1, . . . , N, are i.i.d. We denote by
U1, . . . , UN samples such that

Ui = FXi, i = 1, . . . N,

where matrix F is defined by (8.2), and we denote P̂N and D̂N the sample covari-
ances of both sets respectively,

P̂N =
1

N − 1

N∑
i=1

(
Xi −X

) (
Xi −X

)∗
, XN =

1

N

N∑
i=1

Xi, (8.3)

D̂N =
1

N − 1

N∑
i=1

(
Ui − U

) (
Ui − U

)∗
, UN =

1

N

N∑
i=1

Ui. (8.4)

It is obvious that

UN =
1

N

N∑
i=1

Ui =
1

N

N∑
i=1

FXi =
1

N
F

N∑
i=1

Xi = FXN

and

D̂N =
1

N − 1

N∑
i=1

F
(
Xi −X

) (
F
(
Xi −X

))∗
= FP̂NC∗.

Using the knowledge of the Karhunen-Loève expansion of the random variable
X, we can work with an estimate of the form

D̃N =
(

D̂N ◦ I
)

=

 λ̂1 0
. . .

0 λ̂n

 , (8.5)

and we show that this intuitive estimate has a smaller expected error than the
sample covariance. Additionally, we define estimate

P̃N = F∗D̃NF. (8.6)

8.1.1 Variance of sample covariance

Using the properties of sample covariance and the Karhunen-Loève expansion,
we can evaluate the element of D̂N in the ith row and jth column,(

D̂N

)
i,j

=
1

N − 1

N∑
k=1

(
Uk − UN

)
i

(
Uk − UN

)∗
j

=
1

N − 1

N∑
k=1

(
λ

1/2
i θi,k −

1

N

N∑
l=1

λ
1/2
i θi,l

)(
λ

1/2
j θj,k −

1

N

N∑
l=1

λ
1/2
j θj,l

)

=
(λiλj)

1/2

N − 1

(
N∑
k=1

θi,kθj,k −
1

N

N∑
k=1

N∑
l=1

θi,kθj,l

)
, (8.7)
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and this expression allows us to formulate the following lemma.

Lemma 54. The variance the element in the ith row and the jth column of the
matrix D̂N , defined by (8.4), is

var

((
D̂N

)
i,j

)
=

{
2λi
N−1

if i = j,
λiλj
N−1

if i 6= j.

Proof. The sample covariance is an unbiased estimate of a true covariance. Using
(8.7), the variance of the diagonal terms of the sample covariance is

var

((
D̂N

)
i,i

)
=E

(
λi

N − 1

(
N∑
k=1

θ2
i,k −

1

N

N∑
k,l=1

θi,kθi,l

)
− λi

)2

=
λ2
i

(N − 1)2 E

(
N∑
k=1

θ2
i,k

)2

− 2λ2
i

N (N − 1)2 E

(
N∑

k,l,m=1

θ2
i,kθi,lθi,m

)

+
λ2
i

N2 (N − 1)2 E

(
N∑

k,l=1

θi,kθi,l

)2

− 2λ2
i

(N − 1)
E

(
N∑
k=1

θ2
i,k

)

+
2λ2

i

N (N − 1)
E

(
N∑

k,l=1

θi,kθi,l

)
+ λ2

i . (8.8)

Because θk,l are N (0, 1) i.i.d. random variables

E (θi,kθi,lθi,mθi,n) =



3 if k = l = m = n,

1 if k = l,m = n, k 6= m,

1 if k = m, l = n, k 6= l,

1 if k = n, l = m, k 6= l,

0 otherwise.

(8.9)

Hence, we can evaluate all terms on the right side of Equation (8.8):

E

(
N∑
k=1

θ2
i,k

)2

=
N∑
k=1

Eθ4
i,k +

N∑
k,l=1,l 6=k

E
(
θ2
i,kθ

2
i,l

)
=3N +N (N − 1) = N (N + 2) ,

E

(
N∑

k,l,m=1

θ2
i,kθi,lθi,m

)
=

N∑
k=1

Eθ4
i,k +

N∑
k,l=1,l 6=k

E
(
θ2
i,kθ

2
i,l

)
=N (N + 2) ,

E

(
N∑

k,l=1

θi,kθi,l

)2

=
N∑

k,l,m,n=1

E (θi,kθi,lθi,mθi,n)

=
N∑
k=1

Eθ4
i,k + 3

N∑
k,l=1,l 6=k

E
(
θ2
i,kθ

2
i,l

)
= 3N2,

E

(
N∑
k=1

θ2
i,k

)
=

N∑
k=1

Eθ2
i,k = N,
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and

E

(
N∑

k,l=1

θi,kθi,l

)
=

N∑
k,l=1

E (θi,kθi,l) = N.

Therefore, for any i = 1, . . . , n,

var

((
D̂N

)
i,i

)
=

λ2
i

(N − 1)

(
N (N + 2)

(N − 1)
− 2 (N + 2)

(N − 1)
+ 3− 2N + 2 + 1

)
=

2λ2
i

(N − 1)
.

The variance of the off diagonal element is

var

((
D̂N

)
i.j

)
=E

(
(λiλj)

1/2

N − 1

(
N∑
k=1

θi,kθj,k −
1

N

N∑
k,l=1

θi,kθj,l

))2

=
λiλj

(N − 1)2 E

(
N∑
k=1

θi,kθj,k

)2

− 2λiλj

N (N − 1)2 E

(
N∑

k,l,m=1

θi,kθj,kθi,lθj,m

)

+
λiλj

N2 (N − 1)2 E

(
N∑
k=1

θi,kθj,k

)2

,

and, using (8.9), we can evaluate each summand on the right side of the last
equation:

E

(
N∑
k=1

θi,kθj,k

)2

=
N∑

k,l=1

E (θi,kθj,kθi,lθj,l) =

=
N∑

k,l=1

E (θi,kθi,l) E (θj,kθj,l) = N,

E

(
N∑

k,l,m=1

θi,kθj,kθi,lθj,m

)
=

N∑
k,l,m=1

E (θi,kθi,l) E (θj,kθj,m)

=
N∑
k=1

E
(
θ2
i,k

)
E
(
θ2
i,k

)
= N,

E

(
N∑
k=1

θi,kθj,k

)2

=E

(
N∑
k=1

θi,k

N∑
k=1

θj,k

)2

=E

(
N∑
k=1

θi,k

)2

E

(
N∑
k=1

θj,k

)2

= N2.

Hence, for any i, j = 1, . . . , n such that i 6= j,

var

((
D̂N

)
i,j

)
=

λiλj

(N − 1)2 (N − 1 + 1) =
λiλj
N − 1

.

101



8.1.2 Error estimates

The error of a covariance estimate is measured using the Hilbert-Schmidt norm
of its difference from the covariance. Recall that the Hilbert-Schmidt norm of
an bounded linear operator from Cn to Cn, i.e., a n× n complex matrix, is also
called a Frobenius norm, and it can be shown that

|A|HS =

√√√√ n∑
i,j=1

∣∣∣(A)i,j

∣∣∣2. (8.10)

The following lemma shows that this norm is invariant under unitary transfor-
mations.

Lemma 55. Assume that A ∈ Cn×n, and F ∈ Cn×n is unitary, i.e.,

FF∗ = F∗F = I.

Then,
|A|HS = |FAF∗|HS .

Proof. Denote aj the the jth column of the matrix A. Then,

|A|2HS =
n∑
j=1

|aj|2 ,

where |aj| denotes the standard Euclidean norm of the vector aj, and

|FA|2HS =
n∑
j=1

|Faj|2 = |FA|2HS .

Obviously, using (8.10),
|A|HS = |A∗|HS ,

and this simple observation concludes the proof because

|A|HS = |FA|HS = |F(FA)∗|HS = |FAF∗|HS .

The previous lemma has an important corollary.

Corollary 7. The following identities hold:

E
∣∣∣P− P̃N

∣∣∣2
HS

=E
∣∣∣D− D̃N

∣∣∣2
HS
,

E
∣∣∣P− P̂N

∣∣∣2
HS

=E
∣∣∣D− D̂N

∣∣∣2
HS
.

Proof. Both identities follows directly from Lemma 55 because

P− P̃N = F∗
(

D− D̃N

)
F

and
P− P̂N = F∗

(
D− D̂N

)
F.
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Now, we may establish the main statistical results of the chapter.

Theorem 56. Assume that X1, . . . , XN are i.i.d. samples from distribution
N (0,P), and matrices P̂N and P̃N are defined by (8.3) and (8.6) respectively.
Then,

E
∣∣∣P− P̃N

∣∣∣2
HS

=
2

N − 1
|P|2HS =

2

N − 1

n∑
i=1

λ2
i

and

E
∣∣∣P− P̂N

∣∣∣2
HS

=
1

N − 1

(
n∑
i=1

λ2
i +

n∑
i,j=1

λiλj

)
where λ1, . . . , λn are eigenvalues of the matrix P.

Proof. Using Corollary 7, we immediately obtain identities

E
∣∣∣P− P̃N

∣∣∣2
HS

= E
∣∣∣D− D̃N

∣∣∣2
HS

(8.11)

and

E
∣∣∣P− P̂N

∣∣∣2
HS

= E
∣∣∣D− D̂N

∣∣∣2
HS

(8.12)

where matrices D̂N and D̃N are defined by (8.4) and (8.5) respectively.

Both D and D̃N are diagonal matrices, so

E
∣∣∣D− D̃N

∣∣∣2
HS

=E
n∑
i=1

∣∣∣∣(D)i,i −
(

D̃N

)
i,i

∣∣∣∣2 ,
and because

E
(

D̃N

)
i,j

= (D)i,j

for all i, j = 1, . . . , n,

E
∣∣∣D− D̃N

∣∣∣2
HS

=
n∑
i=1

var

((
D̃N

)
i,i

)
.

Now, using Lemma 54 together with (8.11) finish the proof of the first statement
in the theorem.

Because D̂N is also an unbiased estimate of D we can similarly show that

E
∣∣∣D− D̂N

∣∣∣2
HS

=
n∑

i,j=1

var
(

D̂N

)
i,j
,

and, using Lemma 54,

E
∣∣∣D− D̂N

∣∣∣2
HS

=
2

N − 1

n∑
i=1

λ2
i +

1

N − 1

n∑
i,j=1,i 6=j

λiλj.

The last identity together with (8.12) concludes the proof.
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Theorem 57. Using the same assumptions and notation as in the previous the-
orem,

E
∣∣∣P− P̃N

∣∣∣2
HS
< E

∣∣∣P− P̂N

∣∣∣2
HS
.

Proof. Using the previous theorem and 8.10,∣∣∣P− P̂N

∣∣∣2
HS

=
2

N − 1

n∑
i=1

λ2
i +

1

N − 1

n∑
i,j=1,i 6=j

λiλj

=
2

N − 1
|P|2HS +

1

N − 1

n∑
i,j=1,i 6=j

λiλj,

and the second term is always positive because λ1, . . . , λn are eigenvalues of the
symmetric positive definite operator C, i.e., they are all larger than zero.

We illustrate the previous theorem in the next example.

Example 24. Assume that X ∈ L2 (R64) is a random vector with covariance

P = cov (X) = F∗DF

where D is a diagonal matrix with elements λ1, . . . , λ64 on the main diagonal, and
F is a real matrix which correspond to the discrete sine transformation (DST). The
DST is equivalent to the imaginary part of the discrete Fourier transformation
(Martucci [1994]), and for n = 64, the matrix F consists of elements

(F)k,l =
2

64 + 1
sin

(
π

kl

64 + 1

)
, k, l = 1, . . . , 64.

We define
λk = exp (−k) , k = 1, . . . , 64

and the covariance P is illustrated in Figure 8.1. Now, if we generate four samples
X1, . . . , X4 from the distribution of the random vector X, then a sample covari-
ance P̂4 should have a larger error than the spectral diagonal sample covariance

P̃4 = F∗
(

FP̂4F∗ ◦ I
)

F.

Figure 8.2 shows that the sample covariance using only four samples is a very
poor estimate of the true covariance P. In fact, the sample covariance does not
even catch even the basic shape of P, and, additionally, the maximal values in
the upper left corner are 1.5 higher than the true values. On the other hand, the
matrix P̃4 looks really similar to the true covariance P, and we see that even such
small sample can capture the basic shape of covariance.

8.1.3 Spectral transformations

The main results in the previous subsection state that spectral diagonal sample
covariance always has a smaller error than a sample covariance. However, when
one wants to use this estimate, one needs to know how to pick the transformation
matrix, and this choice is strongly related to the properties of the true covariance
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Figure 8.1: True covariance of the random vector X from Example 24; size of
random vector is 64.

Figure 8.2: Sample covariance using four samples from Example 24; size of ran-
dom vector is 64.
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Figure 8.3: Spectral diagonal sample covariance using four samples and DST from
Example 24; size of random vector is 64.

of X. In the real world applications, the random vector X ∈ L (Cn) , which
represent one state of a used state space model, is usually a discretization of a
continuous d dimensional random field defined on a discrete mesh with n grid
points. In the next example we show how the Karhunen-Loève decomposition of
X is related to the shape of the covariance of X. The following two examples
are motivated by Pannekoucke et al. [2007], but they are presented with greater
details.

Example 25. Assume that X ∈ L (Cn) is a discretization of a real random function
defined on a unite circle, and a mesh, on which the function is discretized, is
equidistant. For each k = 1, . . . , n, we define a local covariance function

Γk (l) = cov
(
(X)k , (X)k+l

)
= (cov (X))k,k+l , l = −n, . . . , n, (8.13)

where we periodically extend the vector X, i.e., we set

(X)−k = (X)n−k+1 , k = 1, . . . n,

(X)n+k = (X)k , k = 1, . . . n.

We already know that, using the Karhunen-Loève decomposition, the vector X
may be written in the form

X =
n∑
i=1

λ
1/2
i θiui =

n∑
i=1

〈X, ui〉ui.

106



Using this expansion,

P =cov (X) = cov

(
n∑
i=1

(〈X, ui〉ui)

)

=E

((
n∑
i=1

〈X, ui〉ui

)(
n∑
i=1

〈X, ui〉ui

)∗)

=
n∑

i,j=1

E
(
〈X, ui〉 〈X, uj〉

)
uiu
∗
j =

n∑
i,j=1

(D)i,j uiu
∗
j

where D is the covariance of

U = FX =

 u∗1X
...

u∗nX

 =

 〈X, u1〉
...

〈X, un〉

 ,

and we know that the matrix D is diagonal,

D =cov (U) = E (UU∗) = FPF∗.

Therefore,

P =
n∑
i=1

(
(D)i,i uiu

∗
i

)
, (8.14)

and for its element in the kth row and the lth row follows

(P)k,l =
n∑
i=1

(
E |〈X, ui〉|2 (ui)k (ui)l

)
. (8.15)

Using the definition of the inner product in Cn,

E |〈X, ui〉|2 =E
(
〈X, ui〉 〈X, ui〉

)
=E

( n∑
k=1

(X)k (ui)k

)(
n∑
q=1

(X)q (ui)q

)
=

n∑
k=1

n∑
q=1

E
(

(X)k (X)q

)
(ui)k (ui)q

=
n∑
k=1

n−k∑
l=−k+1

E
(

(X)k (X)k+l

)
(ui)k (ui)k+l . (8.16)

Applying (8.14), (8.15) and (8.16) into the definition of the local covariance we
obtain

Γk (l) =
n∑
i=1

n∑
k̃=1

n−k̃∑
l̃=−k̃+1

E
(

(X)k̃ (X)k̃+l̃

)
(ui)k̃ (ui)k̃+l̃ (ui)k (ui)k+l

=
n∑
k̃=1

n−k̃∑
l̃=−k̃+1

Γk̃
(
l̃
)

Φk,l
(
k̃, l̃
)

(8.17)

107



where we define

Φk,l
(
k̃, l̃
)

=
n∑
i=1

(ui)k̃ (ui)k̃+l̃ (ui)k (ui)k+l.

The previous example shows that a covariance between any two elements of
random vector X is a weighted sum of covariance between any two elements with
the same relative positions. The next example uses Fourier vectors in place of
u1, . . . , un.

Example 26. Using the notation from Example 25, assume that

uk =


1√
n

exp
(−ik2π0

n

)
...

1√
n

exp
(
−ik2π(n−1)

n

)
 , k = 1, . . . , n,

i.e., u1, . . . , un are discrete Fourier basis vectors. Using (8.17),

Γk (l) =
n∑
k̃=1

n−k̃∑
l̃=−k̃+1

Γk̃
(
l̃
)

Φk,l
(
k̃, l̃
)

with

Φk,l
(
k̃, l̃
)

=
n∑
i=1

(ui)k̃ (ui)k̃+l̃ (ui)k (ui)k+l.

=
1

n2

n∑
k=1

exp

ik2π
k̃ −

(
k̃ + l̃

)
− k + k + l

n

 .

The function
y ∈ R→ exp (iy)

is periodic, so

Φk,l
(
k̃, l̃
)

=
1

n
δk,k̃.

Therefore,

(P)k,k+l =Γk (l) =
1

N

n∑
k̃=1

n−k̃∑
l̃=−k̃+1

Γk̃
(
l̃
)
δl,l̃

=
1

N

n∑
k̃=1

Γk̃ (l) .

and we see that the covariance of X is a function of relative positions between
the nodes of the mesh.

Last two examples may be extended to a case when X is a discretization of a
multidimensional random field, and the similar results hold [Pannekoucke et al.,
2007, Appendix A]. It may even be shown that the matrix F contains discrete
Fourier basis vectors if and only if X is second order stationary random field, i.e.,
the covariance between values of the field in two different locations is a function
of their relative positions.

108



8.2 Spectral diagonal EnKF

A natural idea is to use the estimate introduced in the previous section in place
of a sample covariance in the EnKF update equation. This is the main idea of
the spectral diagonal ensemble Kalman filter.

In this section we use the state space model and the notation from Definition 7
with additional assumptions that the spate space is Rn, and the observation space
is Rm. Additionally, we assume that there is a matrix F ∈ Rn×n with orthonormal
columns, i.e., FF∗ = I and F∗F = I, such that

cov
(
FX(t)

)
= D(t), t ∈ N0, (8.18)

where D(t), t ∈ N, are diagonal matrices.

Definition 15 (Spectral diagonal EnKF). Given N ≥ 2 the spectral diagonal
EnKF consists of the following steps.

1. Initialization. Generate N independent samples from the distribution of the
initial condition:

X
(0),a
1 , . . . , X

(0),a
N ∼ N

(
m(0),P(0)

)
.

2. For t = 1, 2, . . ., repeat the following steps.

(a) Forecast step. Advance the analysis ensemble from the previous cycle:

X
(t),f
i = Ψ

(
X

(t−1),a
i

)
+ V

(t)
i , i = 1, . . . , N

where
V

(t)
1 , . . . , V

(t)
N ∼ N

(
0,Q(t)

)
are independently generated random variables.

(b) Transform the ensemble into the spectral space:

U
(t),f
i = FX

(t),f
i , i = 1, . . . , N.

(c) Evaluate the sample statistics of the spectral ensemble:

U
(t),f

N =
1

N

N∑
i=1

U
(t),f
i ,

D̂
(t),f
N =

1

N − 1

N∑
i=1

(
U

(t),f
N,i − U

(t),f

N

)(
U

(t),f
N,i − U

(t),f

N

)∗
.

(d) Delete all off diagonal elements of spectral the sample covariance:

D̃
(t),f
N = D̂

(t),f
N ◦ I. (8.19)

(e) Transform this new estimate back to the original space:

P̃
(t),f
N = F∗D̃

(t),f
N F. (8.20)
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(f) Use this estimate instead of the sample covariance in the update equa-
tion:

X
(t),a
i = X

(t),f
i + P̃

(t),f
N H∗

(
HP̃

(t),f
N H∗ + R(t)

)−1 (
Y

(t)
i − HX

(t),f
i

)
,

(8.21)
i = 1, . . . , N where

Y
(t)
i = Y (t) +W

(t)
i

and
W

(t)
1 , . . . ,W

(t)
N ∼ N

(
0,R(t)

)
are independently generated random variables.

Using the results from the previous section, one should use the proposed
method every time when the matrix F exists. However, even when the matrix is
not known one may use some of the well known spectral transformations such as
Fourier or wavelet transformation (Daubechies [1992], Strang and Nguyen [1996]).

8.3 Efficient implementation

One of the biggest advantages of the SDEnKF is that it can be implemented very
efficiently in many cases even if a dynamical system has a huge dimension, and
we show some implementations in this section. Through this section we use the
same notation as in Definition 15, but since this section is devoted to efficient
implementation of one update, we do not use the time index t.

8.3.1 One variable, completely observed

When the state of the system only consists of one variable that is completely
observed, i.e., the observation operator is identity, and the observation error is

R = cI, c ∈ C, (8.22)

then the update equation, (8.21) simplifies to

Xa
i = X

(t),f
i + P̃f

N

(
P̃f
N + R

)−1 (
Yi −Xf

i

)
, i = 1, . . . N.

Recall that by the definition, Equation (8.20),

P̃f
N = F∗D̃f

NF,

and, using (8.22), (
P̃f
N + R

)−1

=
(

F∗D̃f
NF + cF∗IF

)−1

=F∗
(

D̃f
N + cI

)−1

F

=F∗
(

D̃f
N + R

)−1

F.
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Applying the last identity into the update equation gives for each i = 1, . . . n,

Xa
i =Xf

i + F∗D̃f
NFF∗

(
D̃f
N + R

)−1

F
(
Yi −Xf

i

)
=X

(t),f
i + F∗D̃

(t),f
N

(
D̃f
N + R

)−1

F
(
Yi −Xf

i

)
.

The matrices D̃
(t),f
N , R(t) and

(
D̃

(t),f
N + R(t)

)
are diagonal, so any operation, e.g.,

multiplication or inversion, is extremely fast. Additionally, multiplication by the
transformation matrix F can be usually efficiently done using algorithms such
as a fast Fourier transform or a discrete wavelet transform (Strang and Nguyen
[1996]).

8.3.2 Multiple variables, one completely observed

Another example is when the state consists of m variables measured on the same
mesh,

X =

 X1

...
Xm


where Xk ∈ L

(
Cd
)
, k = 1, . . . ,m, d ∈ N. In this case we apply the spectral

transformation separately on each variable, so the transformation matrix has
block structure,

F =

 F̃ 0
. . .

0 F̃


m times,

where F̃ ∈ Cd×d, and we replace the sample covariance in the EnKF update
equation by the block diagonal matrix

D̃f
N =

 D̃1,1
N · · · D̃1,N

N
...

. . .
...

D̃N,1
N · · · D̃N,N

N


where for each i, j ∈ {1, . . . ,m} ,

D̃i,j
N = D̂i,j

N ◦ I,

and D̂i,j
N is the sample covariance between the ith and jth variable in the spectral

space. Now, if we assume that we observe the first variable completely, then the
observation matrix H ∈ Rd×n has also special form

H =
(

I 0 · · · 0
)

where I is d× d identity matrix. Obviously,

HF∗ =
(

F̃∗ 0 · · · 0
)
,

and thus
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HF∗D̃f
NFH∗ = F̃∗D̃1,1

N F̃.

Therefore , similar to the previous case, if

R = cI, c ∈ C,

then the update equation can be written in the form

Xa
i =Xf

i + F∗D̃f
NFH∗

(
F̃∗D̃1,1

N F̃ + R
)−1 (

Yi − HXf
i

)
=Xf

i + F∗

 D̃1,1
N F̃F̃∗

...

D̃N,1
N F̃F̃∗

(D̃1,1
N + R

)−1

F̃
(
Yi − HXf

i

)
,

and hence

Xa
i = Xf

i + F∗

 D̃1,1
N
...

D̃N,1
N

(D̃1,1
N + R

)−1

F̃
(
Yi − HXf

i

)
.

for i = 1, . . . , N. Again, all matrices in the final update equation are diagonal, so
any operations are very efficient.

Even if this case looks trivial, it is quite common in real applications. For
example, when modeling the state of the atmosphere and satellite images of the
whole domain are available.

8.3.3 Small size of observations

One often finds out that the size of the observation space, i.e. the number of
observations assimilated in one cycle, is not so huge, and directly the SDEnKF
may be used. The inversion needed to evaluate the Kalman gain may be computed
using some software library for a matrix computation on parallel distributed
memory machines such as ScaLAPACK (Blackford et al. [1997]).

8.4 Computational experiments

Theorem 8.1.3 states that a sample spectral diagonal covariance is a better es-
timate than a classical sample covariance. However, in real world applications,
a better approximation of a forecast covariance does not always provide a bet-
ter analysis. Therefore, we test the SDEnKF algorithm using multiple chaotic
models.

We perform a usual twin model experiment with two toy models: Lorenz
96 and shallow water equation. We use one trajectory of the model as a truth{
X(t)

}
, and assimilate observations derived from this trajectory to an indepen-

dently initialized ensemble. Hence, we have full control over the experiment, and
can evaluate whether an assimilation method pushes the ensemble towards the
truth states, i.e, where the method decrease the error of the forecast. We use a
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root mean square error (RMSE) of an ensemble mean to measure the error of an
ensemble. For a given t ∈ N and a given value of a state X(t) = x(t) ∈ Rn,

RMSE =
1

n

n∑
i=1

∣∣∣(x(t)
)
i
−
(
x

(t),•
N

)
i

∣∣∣2 ,
where X

(t),•
N = x

(t),•
N is the value of the ensemble mean

X
(t),•
N =

N∑
i=1

X
(t),•
i ,

and • stands either for forecast or analysis.
We use 3 different spectral transformations:

1. the discrete sine transform (DST), which can be derived taking an imaginary
part of the discrete Fourier transform,

2. the discrete cosine transform (DCT), which can be derived taking a real
part of the discrete Fourier transform, and

3. the discrete wavelet transform (DWT) with Coiflet (2,4) wavelet basis func-
tions (Daubechies [1992]).

We compare these methods with an analysis obtained by the standard EnKF,
and with an error of an ensemble without no assimilation, marked as free run.

8.4.1 Lorenz 96

The Lorenz 96 model (Lorenz [2006]) is a very popular toy model in a data
assimilation area, as the dynamical system produced by this model is very chaotic
and still easy to compute. A state of the model evolves in time, and its evolution
during 0.05 time units roughly corresponds to the evolution of a real climatological
model during 6 hours.

The state of the model is the vector

x =

 x1
...
xK

 ∈ RK

and its evolution is governed by the differential equation

dxj
dt

= xj−1xj+1 − xj−1xj−2 − xj + F, j = 1, . . . , K, (8.23)

where by definition

xj−K = xj+K = xj, j = 1, . . . , K,

and the parameter F ∈ R controls the chaotic behavior of the model. It can be
shown that when F = 8, the model is strongly chaotic.
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Our experiments’ setup follows the one used by Lorenz and Emanuel [1998].
We set F = 8, and sample initial conditions from N

(
m(0),P(0)

)
distribution with

m(0) =

 F/4

...
F/4

 and P(0) =

 F 2/4 0
. . .

0 F 2/4

 .

After the initialization, an additional spinup for 18 time units, equivalent of 90
days, is performed. The goal of the spinup is to relax the state, and to develop the
covariances between the elements of the stare vector. The initialization and the
spinup are performed independently for a truth state X(18) and for a first guess
X(18),a, and an initial ensemble is created by adding N (0, 0.0001 · I) distributed
noise to the first guess. We assume that an observation operator is identity,
H = I, and R = I. To add an additional source of model error to the experiment,
we advance the ensemble in time using the value 0.95F in Equation (8.23).

Firstly, we test the dependence of the selected method on the ensemble size
with the state dimension K = 64. For the given size of the ensemble, we initialize
the experiment and perform the first assimilation for 10 times. The RMSE of the
first analysis is shown on Figure 8.4. The figure shows that the proposed method
decreases the RMSE even when the ensemble size N = 2 and the errors decrease
as the size of the ensemble increases with a typical rate N−1/2.

On the other hand, the error of the analysis obtained by the EnKF is compa-
rable to the error of the free run unless the size of the ensemble is higher than K.
When the size of the ensemble is larger than the dimension of the state space,
the error of the EnKF decreases. However, even when N = 130, i.e., the size of
the ensemble is two times larger than the size of the state space, the error of the
EnKF is significantly higher than the error of any SDEnKF.

In the second experiment we perform 20 assimilation cycles using the Lorenz
96 model with the dimension of the state space K = 64 and the ensemble size
N = 4. We assume that the whole state is observed, and we perform the as-
similation every 0.05 time units with the first assimilation at 18.05. The results
(Figure 8.5) shows that the proposed methods decrease the RMSE immediately
after the first assimilation. Conversely, the EnKF even increase the error as mul-
tiple assimilations are performed. This observation is not completely surprising,
because Kelly et al. [2014] shows that, for a class of dynamical systems, the EnKF
remains within a bounded distance of truth unless sufficiently large covariance
inflation is used.

8.4.2 Shallow water equations

The shallow water equations is another popular toy model, and it can serve as a
simplified model of atmospheric flow. The state

x =

 h
u
v


consist of three vectors: a water level height h, and velocities in x and y directions
u and v respectively. The evolution of the state is governed by the differential
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Figure 8.4: Mean RMSE from 10 realization of the Lorenz 96 problem with the
whole state observed and the size of the state K = 64. The RMSE is measured
after the first data assimilation cycle, and DCT, DST and DWT stand for dif-
ferent spectral transformations. Free run stands for the ensemble without any
assimilation.

Figure 8.5: Mean RMSE form 10 realization of the Lorenz 96 problem with the
whole state observed. The size of the state K = 64, and the size of the ensemble
N = 4. The first assimilation is performed at 18.05, and then the assimilation is
performed every 0.05 time units. DCT, DST and DWT stand for different spectral
transformations, and Free run stands for the ensemble without any assimilation.
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equations of conservation of mass and momentum,

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0,

∂(hu)

∂t
+

∂

∂x

(
hu2 +

1

2
gh2

)
+
∂(huv)

∂y
= 0,

∂(hv)

∂t
+
∂(huv)

∂x
+

∂

∂y

(
hv2 +

1

2
gh2

)
= 0,

where g is gravity acceleration, with reflective boundary conditions, and without
Coriolis force or viscosity. For computations, the equations are discretized on a
rectangular grid size 64× 64 with horizontal distance between grid points 150 km
and advanced by the Lax–Wendroff method with the time step 1 s [Moler, 2011,
Chapter 18]. Hence, the dimension of the state is

64× 64× 3 = 12 288.

The initial values are set as follows. Water level h = 10 km with an additional
Gaussian shaped water rise of a height of 1 km and a width of 32 nodes, located
in the center of the domain, and u = v = 0. These initial values are moved for a
3 hour spinup. An ensemble is created by adding random noise with a prescribed
background covariance, described in the next paragraph.

The background covariance

B = Ĉ ◦ T,

where Ĉ is a sample covariance from samples taken every second from time tstart =
3 h to time tend = 6 h, and T is a tapering matrix with a block structure

T =

A 0 0
0 A 0
0 0 A

+ 0.9

0 A A
A 0 A
A A 0


with A ∈ R642×642 such that

(A)k,l = exp(−|xk − xl|) exp(−|yk − yl|),

where (xk, yk) and (xj, yj) are coordinates of grid points corresponding the kth

row and the jth column of the matrix A respectively. Equivalently, the matrix T
can be written in the form

T = K⊗M⊗M

with

K =

 1 0.9 0.9
0.9 1 0.9
0.9 0.9 1


and M ∈ R64×64 such that

(M)i,j = exp(−|i− j|), i, j = 1, . . . , 64.

The tapering is performed due to the fact that the number of samples is lower
than the dimension of the state, and the sample covariance is therefore singular.
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We use 2-D tensor product DST, DCT and DWT in place of a spectral trans-
formation in the SDEnKF. The observation error is assumed to be zero mean
with variance 1000 m in h and 1000 kg m s−1 in u and v.

After the ensemble perturbation, an additional 3 hour spinup is performed to
relax the members. The spinup also guarantees that the first forecast is physically
reasonable. We use 20 ensemble members in both experiments, and we assume
that the first observation is available 6 h after the initial drop.

The first experiment assumes that the full state is observed, and observations
are available every hour from 6 h till 10 h, i.e., there is a total number of 5 ob-
servations. The results (Figure 8.6) show that the spectral methods significantly
decrease RMSE immediately after the first assimilation, but the RMSE of the
analysis obtained by the EnKF is nearly indistinguishable from the RMSE of the
free run.

The second experiment assumes that only the water level height is observed,
so the implementation described in Section 8.3.2 is used. We perform three
assimilation cycles with the first one at 6 h. The SDEnKF decreases not only
the RMSE of the water level height, but also the RMSE of velocities in both
directions, although they are not observed, Figure 8.7.

The previous experiment confirms that, at least for the shallow water equation
model, the method proposed in Section 8.3.2 gives reasonable analysis, which
update the forecast, i.e., decrease the error of the forecast, and

8.4.3 WRF model

The last experiment is the , so called, pseudo observation test (PSOT) using the
Weather and Research and Forecast (WRF) model.

The PSOT test the response of a selected assimilation method to a single
pseudo observation. Hence, outcomes of the test are pictures of an innovation,
which is a difference between the forecast and the analysis. Therefore, the test
results are interesting mainly for experts in a modeled area as they can evaluate
whether the results are reasonable.

The WRF model is a numerical weather prediction system, which can be used
for both atmospheric research and operating weather forecasting. It can be used
in many meteorological applications across scales from hundreds of meters to
hundreds of kilometers. The details about the model may be found in Skamarock
et al. [2008]. The state of the model consists of seven variables: potential tem-
perature, wind in x and y directions, perturbation geopotential, perturbation dry
air mass in column and water vapor mixing ratio. These variables are discretized
on a three dimensional mesh.

In our experiment we use a mesh with a 27 km horizontal resolution and 39
vertical levels covering Central Europe. Although this domain is, in comparison
with real applications of the WRF model, very small, the size of the state is
nearly 1.2 million.

We initial a forecast ensemble using the analysis provided by the GFS model
for May 30th, 2013 00:00 AM, and then perform 4 hour spinnup. The ensemble
is created adding noise with a covariance obtained by the NCM method (Parrish
and Derber [1992]). We assume that we observe a potential temperature in one
point located in the middle of the domain in the third vertical level, and the
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Figure 8.6: RMSE from one realization of five assimilation cycles using shallow
water equations. The size of the ensemble is 20, and the observations are available
every hour from 6 h until 10 h. The full state is observed.
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Figure 8.7: RMSE from one realization of three assimilation cycles using shallow
water equations. The size of the ensemble is 20, and the observations are available
every hour from 6 h until 8 h. Only the water level height is observed.
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Figure 8.8: Difference of the potential temperature in the third vertical level
between the analysis ensemble mean obtained using the EnKF and the forecast
ensemble mean. The pseudo observation is located in the middle of the domain,
and its value is 2 K higher than the forecast ensemble mean at the same point.

observed value is 2 degrees higher than the forecast ensemble mean. We assimilate
this observation using the EnKF and the SDEnKF with discrete sine transform
(DST). We use an ensemble of 20 members, and set the observation error variance
to 0.5 K.

Innovation using the EnKF, Figure 8.8, shows spurious correlations caused
by the small size of the ensemble. There are significant changes in grid points
located far away from the location of the pseudo observation, which are clearly
not realistic. On the other hand, the innovation using SDEnKF, Figure 8.9, is
smooth, and centered around the location of the pseudo observation.

8.5 Summary

We have proposed an evolution of a standard ensemble Kalman filter, which uses
a different estimate of a covariance in place of a forecast covariance the EnKF
update equation. We have shown that, under reasonable conditions, the proposed
estimate always has a smaller error than a classical sample covariance.

We have tested the proposed method with three different models, and we can
summarize our observations in the following points.

1. Analysis states obtained using SDEnKF has always been better than anal-
ysis states obtained using the EnKF.

2. When an ensemble is really small, the analysis obtained using EnKF may
be even worse than a forecast without assimilation. On the other hand,
SDEnKF has decreased the error of the forecast even in this situation.
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Figure 8.9: Difference of the potential temperature in the third vertical level
between the analysis ensemble mean obtained using the SDEnKF with DST and
the forecast ensemble mean. The pseudo observation is located in the middle of
the domain, and its value is 2 K higher than the forecast ensemble mean at the
same point.

3. The analysis obtained by SDEnKF has always been physically reasonable,
i.e., the model has been able to be restarted from analysis states.

8.6 Additional notes and references

Then need of huge ensembles to avoid spurious correlations has been known for
some time, and the extensive discussion of this topic may be found in Evensen
[2009]. Therefore, many papers, e.g., Anderson [2001], Furrer and Bengtsson
[2007], Hunt et al. [2007], Sakov and Bertino [2011], propose different types of
covariance localizations, which should suppress these correlations.

Using FFT in the EnKF is proposed in Mandel et al. [2010a,b] as an alternative
approach to a localization. This approach is motivated by the fact that Fourier
basis vectors are eigenvectors of a covariance of a second order stationary random
field (Pannekoucke et al. [2007]). On a sphere, an isotropic random field has
diagonal covariance in the basis of spherical harmonics, as shown in Boer [1983],
so similar algorithms can be developed there as well. On the other hand, the
stationary assumption does not allow the covariance to vary spatially. Therefore,
using wavelets instead of FFT is proposed in Beezley et al. [2011].

Sparse approximation of a covariance in data assimilation have been studied
for some time. Parrish and Derber [1992] proposes to model the background
covariance using diagonal approximation in spherical harmonics. The ECMWF
3DVAR system also uses diagonal covariance in spherical harmonics (Courtier
et al. [1998]). Diagonal approximation in the Fourier space for homogeneous 2D
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error fields is proposed in Berre [2000], Pannekoucke et al. [2007], and Buehner
and Charron [2007] combines spatial and spectral localization. The error of a
different covariance estimates used in data assimilation is studied also in Furrer
and Bengtsson [2007].
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9. Summary

We have obtained three main scientific results in this thesis.
Firstly, the assumption that the data noise is only weakly measurable with the

covariance bounded from below is crucial, and when this assumption is fulfilled,
then all three studied assimilation method, i.e., the 3DVAR, the ensemble Kalman
filter and the Bayesian filtering, are well defined and well posed. In fact, we have
shown that when the data covariance and a forecast covariance commute, the
Bayes formula is well posed if and only if the data covariance is bounded from
below. From these statements follows that if the data are contaminated by a
white noise, then all three methods are well posed.

Secondly, the ensemble Kalman filter on an infinite dimensional space has
the same properties as the EnKF on a finite dimensional space. We have shown
that, regardless of the dimension, the ensemble converge in Lp to the mean field
ensemble, whose evolution is governed by the original Kalman filter equations. We
have also shown that this convergence has a usual rate O

(
N−1/2

)
. This result is

an extension of the already known fact that EnKF converges to the solution of the
Kalman filter in large ensemble limit when the state space is finitely dimensional.

Thirdly, the idea of the spectral diagonal ensemble Kalman filter is not com-
pletely new, but we have computed the expected error of both covariance es-
timates, and shown that the spectral diagonal sample covariance has a smaller
expected error than the sample covariance. We have also tested this algorithm
using multiple toy models. The results have shown that this algorithm produces
a better analysis than the classical EnKF especially when only a small ensemble
is available.
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List of Abbreviations

BF Bayes’ filter
DCT discrete cosine transfom
DST discrete sine transfom
DWT discrete wavelet transfom
EnKF ensemble Kalman filter
FFT fast Fourier transform
KF Kalman filter
SDEnKF spectral diagonal ensemble Kalman filter

134


	Introduction
	Motivation and main goals
	Thesis outline 
	Notation 

	Mathematical background
	Measurable spaces
	Radon-Nikodym theorem
	Lipschitz continuity

	Functional analysis 
	Inner product and Hilbert space 
	Linear operators
	Spectrum of bounded linear operators 
	Compact linear operators
	Commuting operators 
	Lebesgue measure on Hilbert space 

	Cylindrical sets
	Definition 
	Cylindrical measure

	Additional notes and references 

	Probability on Hilbert spaces
	Random variables
	Stochastic norm
	Mean and covariance operator
	Characteristic function 
	Sample statistics

	Weak random variables 
	Weak stochastic norm

	Gaussian distributions
	Basic properties 
	Cameron-Martin space
	Feldman-Hájek theorem

	Markinciewicz-Zygmund inequality
	Law of Large numbers

	Bayes theorem
	Additional notes and references 

	State space model and data assimilation 
	State space model
	Dynamical system
	Observations
	Summary

	Data assimilation 
	Additional notes and references 

	Data assimilation in finite dimension
	3DVAR 
	Kalman filter 
	Ensemble Kalman filter
	Bayesian filtering
	Additional notes and references 

	Data assimilation in infinite dimension
	3DVAR
	Ensemble Kalman filter
	Bayesian filtering 
	Summary
	Additional notes and references 

	Convergence of ensemble Kalman filter in Hilbert space
	Assumptions and definitions
	Continuity of Kalman gain operator 
	Ensemble properties
	Auxiliary estimates 
	Convergence of ensembles 
	Additional notes and references

	Spectral diagonal ensemble Kalman filter 
	Spectral diagonal sample covariance
	Variance of sample covariance 
	Error estimates 
	Spectral transformations 

	Spectral diagonal EnKF 
	Efficient implementation
	One variable, completely observed
	Multiple variables, one completely observed 
	Small size of observations

	Computational experiments
	Lorenz 96
	Shallow water equations
	WRF model 

	Summary
	Additional notes and references 

	Summary 
	Bibliography
	List of Figures
	List of Abbreviations

