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This diploma work focuses on the the relationship of real odds with betting odds. The
author limits his data analysis to an extensive set of tennis data. The topic itself is original
and the results are interesting. It can pass as a bachelor thesis.

Some of the points made in the thesis are worth a deeper discussion. The main point
is that the author uses the approach that the same margin is applied to all the existing
market selections and proves some results justifying this approach (like Theorem 1.3). In
other words, if we denote by B1 and B2 the odds on the two selections and by m the
margin, we have

1

B1
+

1

B2
= 1 +m

and the relationship to the true probabilities p1 and p2 should follow

pi =
1

Bi(1 +m)
,

or
Bi =

1

pi(1 +m)
.

This approach means that the odds are just linearly rescaled inverse probabilities. How-
ever, linear scaling of probabilities is not a desirable approach as the odds can get under
1 (for some large selections of pi and m like pi = 0.95 and m = 0.07) and need to be
artificially rounded back to 1 (meaning that the selection is not quoted).

My approach to the margin treatment would be somewhat different. Computation of
probabilities in regression models is done with logit (or probit) regression. The basic idea
is that the estimation is done on the entire real line R, and this estimated number is in
turn transformed to an interval [0, 1]. So it uses a mapping

R→ [0, 1].

One possible choice of this mapping is a logistic function

Logit(x) =
1

1 + e−x

that is used in the logit regression. As described earlier, the estimation of probability
is first done on a linear scale, giving some yest and the estimated probability is then
pest = Logit(yest). A possible error ε of the estimate is treated on the linear scale, giving
the true value y = yest + ε and the true probability p = Logit(yest + ε). Obviously, we do
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not see the true values of ε and the resulting y and p, we only statistically estimate them.

Using the principle that the linear estimator is transformed to [0, 1] via a logit transfor-
mation, we may adapt this idea for computation of the quotes with the prescribed margin
m. As a byproduct, this will also address the question that we may observe the prob-
abilities with some error and the logit transform treats this error proportionally to the
probability p. The basic idea is that we find some constant K to both B1 and B2 in the
following way:

B1 =
1

Logit(InvLogit(p1) +K)

and
B2 =

1

Logit(InvLogit(p2) +K)

such that the sum of the inverse odds give the required margin. The function InvLogit(p)
defined as

InvLogit(p) = log

(
p

1− p

)
is the inverse of the Logit function.

As a byproduct of this approach, one can find the function that finds pi from B1 and
B2. The formula for the corresponding probability (on the selection corresponding to the
quote B1) is given by

p(B1, B2) =

{
1−B2+

√
(B1−1)(B2−1)

B1−B2
B1 6= B2,

1
2 , B1 = B2.

Note that p(B1, B2) + p(B2, B1) = 1, which gives two alternative computations for proba-
bility implied on the second selection (i.e., either directly from p(B2, B1), or by computing
1 − p(B1, B2). In contrast, the suggested transformation of odds to probabilities is given
by a formula

n(B1, B2) =
1
B1

1
B1

+ 1
B2

=
B2

B1 +B2
.

Example: Imbalanced odds combined with a large margin lead to serious estimation dis-
crepancies of the two approaches. For instance, the tennis game Pella vs Polmans quoted
B1 = 1.04 and B2 = 11.5. Applying the formula gives p(1.04, 11.5) = 0.941867. Prob-
ability on the second selection easily follows to be p(11.5, 1.04) = 0.0581333. The other
inversion gives n(1.04, 11.5) = 0.917065 and n(11.5, 1.04) = 0.0829346, which is substan-
tially off from the suggested approach.

My guess is that the betting market follows more the logit type margin than the lin-
ear type margin and thus we may see some evidence that supports it. I think that the
non-identity behavior in graphs on page 25 in the regions around p = 0 and p = 1 is a
consequence of that.

My other points for discussion are:

• The quality of data is somewhat questionable given the unusual distribution of the
odds.
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• It is impossible to make conclusions about the probabilities implied by betting with-
out seeing the actual profit and loss distribution. The author uses central limit
theorem which assumes that we observe identically and independently distributed
random variables. However, each game is unique and the assumption that we may
apply statistical analysis of a large sample on them may be a bit far fetched. For
instance, if we see 100 games with win probability 0.5 and we see that the actual
outcomes are indeed statistically in line, it does not mean that each game from this
sample was estimated correctly. The knowledge of bettors may in fact exhibit in a
limited number of games that is incorrectly estimated.

• I am not sure if the linear regression in part 2.2 is appropriate in contrast to logit or
probit regression.
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