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Abstract 

This thesis deals with the ontogeny of trilobites and agnostids from the Cambrian of the 

Skryje-Týřovice and Příbram-Jince basins (Barrandian area, Bohemian Massif). Thesis is 

presented as a compilation of four papers that were published in scientific peer-reviewed 

journals. The introduction of the thesis serves as a general overview of the trilobite post-

embryonic development and connects all published papers together. 

All four papers presented here are focussed on modern description of the post-embryonic 

development of Sao hirsuta, Ptychopariida sp. A, Ptychopariida sp. B, Ptychopariida sp. C, 

Ellipsocephalus hoffi, Ellipsocephalus polytomus, Hydrocephalus carens and Ecca-

paradoxides pusillus. In addition, a discussion about the life-history strategies of early 

developmental trilobite stages is presented. It has been suggested that Sao hirsuta and 

Ptychopariida sp. A had benthic protaspides and that the early ontogenetic stages of 

Ptychopariida sp. B, Eccaparadoxides pusillus and Hydrocephalus carens were likely 

lecithortophic. Consequently, it has been documented that species with benthic protaspides 

show a strongly restricted geographic distribution and that lecithotrophic taxa seem to be 

associated with higher latitude areas. The developmental patterns of Ellipsocephalus hoffi and 

Ellipsocephalus polytomus were used for inferring a close phylogenetic relationship between 

Ellipsocephalidae and Redlichiida. 
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Abstrakt 

Předkládaná práce se zabývá ontogenezí trilobitů a agnostidů, pocházejících ze skryjsko-

týřovické a příbramsko-jinecké pánve (Kambrium, Barrandien, Český masiv). Práce je 

prezentována jako soubor čtyř samostatných článků, které byly publikovány v recenzovaných 

odborných časopisech. Úvodní část práce slouží jako obecný přehled postembryonálního 

vývoje trilobitů a propojuje prezentované publikace dohromady. 

Publikované studie jsou zaměřeny na moderní popis postembryonálního vývoje druhů Sao 

hirsuta, Ptychopariida sp. A, Ptychopariida sp. B, Ptychopariida sp. C, Ellipsocephalus hoffi, 

Ellipsocephalus polytomus, Hydrocephalus carens a Eccaparadoxides pusillus. Kromě toho je 

zde diskutována životní-historie raných vývojových stádií vybraných trilobitů. U druhů Sao 

hirsuta a Ptychopariida sp. A je předpokládáno, že měly bentická protaspidní stádia. Druhy 

Ptychopariida sp. B, Eccaparadoxides pusillus a Hydrocephalus carens byly pravděpodobně 

lecitotrofní. Bylo rovněž prokázáno, že druhy s bentickými protaspidními stádii měly silně 

omezené zeměpisné rozšíření a že lecitotrofní druhy se vyskytovaly převážně ve vyšších 

zeměpisných šířkách. Vývoj druhů Ellipsocephalus hoffi a Ellipsocephalus polytomus ukazuje 

na blízké fylogenetické vztahy mezi čeledí Ellipsocephalidae a řádem Redlichiida. 
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Introduction 

The first detailed description of the post-embryonic development of trilobites was published 

more than 160 years ago by Barrande (1852). Material for his ontogenetic studies comes from 

the Central Bohemia called the Barrandian area. This material was subsequently studied by 

several workers, most comprehensively by Šnajdr (1958). Since that time, no modern revision 

of the Cambrian trilobite development from the Barrandian area has been published, despite 

the increasing knowledge in this field worldwide. Fortey (2001) stressed the importance of 

Cambrian trilobite ontogenies for better understanding of the phylogenetic relationships 

within Trilobita.  

This thesis deals with the post-embryonic development of trilobites and agnostids from the 

traditional mid-Cambrian (Cambrian Series 3) strata of the Barrandian area. The exceptional 

preservation of this material and its amount enable to study Cambrian trilobite development in 

astonishing detail. Species from this area also comprise members of the trilobite groups (e.g. 

Ptychopariida, Redlichiida) that are crucial for understanding the early evolution and 

diversification of the group itself. They also provide sufficient data for resolving the origin of 

certain life-history strategies that appear already in the Cambrian period. 

List of papers 

This thesis is based on the four following papers, referred to in the text by Roman numerals: 

I. Laibl, L., Fatka O., Crônier C., Budil P. 2014. Early ontogeny of the Cambrian 

trilobite Sao hirsuta from the Skryje-Týřovice Basin, Barrandian area, Czech 

Republic. Bulletin of Geosciences 89, 293–309. 

II. Laibl, L., Fatka, O., Budil, P. 2015. Unusual Cambrian trilobite larva from the 

Skryje–Týřovice Basin, Czech Republic. Palaeoworld 24, 71–74. 

III. Laibl, L., Fatka, O., Budil, P., Ahlberg, P., Szabad, M., Vokáč, V., Kozák, V. 2015. 

The ontogeny of Ellipsocephalus (Trilobita) and systematic position of 

Ellipsocephalidae. Alcheringa 39, 477–487. 

IV. Laibl, L., Esteve, J., Fatka, O. 2017. Giant postembryonic stages of Hydrocephalus 

and Eccaparadoxides and the origin of lecithotrophy in Cambrian trilobites. 

Palaeogeography, Palaeoclimatology, Palaeoecology 470, 109–115. 
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Aim of the thesis 

This thesis is focused on the post-embryonic development of selected trilobites and agnostids 

from the middle Cambrian of the Skryje-Týřovice and Příbram-Jince basins and its 

implications for trilobite biogeographic distribution and phylogeny. Specifically, the main 

objectives of the thesis are the following: 

a) A modern description of developmental sequences or individual stages, using 

appropriate imaging techniques (high resolution optical microscopy, scanning electron 

microscopy), detailed biometrics and statistical analysis. Papers I-IV tackle these 

themes and methods. 

b) A discussion about life-history strategies, in particular about mode of life of the 

earliest trilobite stages (protaspides), based on functional morphology and 

developmental patterns. This is the main topic of the paper I (benthic protaspides) and 

paper IV (lecithotrophy). 

c) An investigation of how life-history strategies can influence the biogeographical 

distribution of particular species. More specifically, whether trilobites with benthic 

protaspides tend to have more restricted palaeogeographical distributions (discussed in 

paper I), and the validity of “Thorson’s rule” (that the percentage of direct developers 

or lecithotrophic species increases with higher latitudes; discussed in paper IV).  

d) The utility of developmental data for resolving phylogenetic relationships at various 

taxonomical levels. Developmental patterns were suggested as evidence of 

phylogenetic closeness in paper III. The developmental modification probably caused 

by differing selective pressures, and the differing morphologies this produced in 

closely-related taxa, were discussed in paper IV. 

Note: The ontogenetic development of agnostids, in particular of the species Condylopyge 

rex, was preliminarily also studied during the course of this Ph.D. However, the amount of 

material and the necessity to compare it with additional material found worldwide means 

additional work is required before manuscript preparation. Therefore, the paper is not 

included in this thesis, although the material has been statistically evaluated and the 

manuscript is in preparation. 
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Material and methods 

Material 

The majority of the studied material in this thesis and papers I–IV comes from the Drumian 

strata from either the Skryje-Týřovice Basin or the Příbram-Jince Basin (Barrandian area, 

Bohemian Massif, Czech Republic). Additional material used in paper III was collected from 

the Cambrian Stage 5 limestones of the Jämtland area (Sweden). The material from both 

Bohemian basins is preserved as internal and/or external moulds in fine lithic arenites to 

shales. The surface of both internal and external moulds from the Skryje-Týřovice Basin is 

usually covered by iron hydroxides. 

All published material is deposited in the collections of the National Museum, Prague (prefix 

NM), the Czech Geological Survey, Prague (prefix CGS), and in the Museum of Dr. Bohuslav 

Horák at Rokycany (prefix MBHR). Further study material is deposited in the Museum of 

Comparative Zoology – Harvard University, Cambridge (Massachusetts, USA) and in the 

Natural History Museum, London (UK). 

Methods 

All studied material was photographed using a scanning electron microscope in low vacuum 

mode (JEOL-6380 LV, Hitachi S-3700N, material for the paper I), under an optical 

microscope (Keyence VHX-2000, Nikon SMZ 1500, Olympus SZX 12, material for papers 

I-IV) or using a digital camera (Canon EOS 6D, material for the paper III). Samples imaged 

using both the optical microscope and digital camera were coated with ammonium chloride 

prior to photography. When necessary, line drawings were produced from photographs in 

Adobe Illustrator CS2. 

The material was subsequently measured using the optical image analyser TpsDig2 (Rohlf 

2006). Measured specimens were plotted on width vs. length scatterplots in order to recognise 

individual instars (papers I, IV), plotted on size frequency histograms to illustrate the size 

distributions (papers I, IV), or on boxplots to compare selected groups with other parameters 

(paper IV). The measured parameters were also used to calculate growth patterns. In paper 

IV one-way ANOVA and post-hoc Tukey (HSD) tests were used to investigate the 

differences between selected groups. All statistical analyses were performed in R 3.0.3 (R 
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Core Team 2014, in the paper IV) or using the PAST package (Hammer et al. 2001, in paper 

I). 

 

Ontogeny of trilobites 

Outline of the trilobite post-embryonic development 

Trilobite post-embryonic development is traditionally divided into three successive periods – 

the protaspid, meraspid and holaspid periods (introduced and defined by Beecher 1895 and 

Raw 1925, for a summary see Chatterton and Speyer 1997, see Fig. 1). This basic division is 

usually used for description of trilobite life-cycles in the scientific literature. These periods, 

however, are defined purely on the articulation of the dorsal exoskeleton, and therefore 

probably do not represent corresponding life phases in different trilobites (Chatterton and 

Speyer 1997, Hughes et al. 2006). Therefore, the boundaries between the protaspid-meraspid 

periods and meraspid-holaspid periods often do not co-occur with the timing of 

metamorphosis, onset of the epimorphic growth mode, or onset of the adult cranidial 

morphology (e.g. Hughes and Chapman 1995, Chatterton and Speyer 1997, Hughes et al. 

2006). 

The protaspid period comprises the earliest, widely accepted, mineralised postembryonic 

stages (Beecher 1895, but see Fortey and Morris 1978). The size of protaspid instars usually 

varies between 0.2 and 1.0 mm in length (Whittington 1957a, paper IV) but it can reach up to 

2.5 mm in some species (paper IV). By definition, the protaspid period is characterised by 

the cephalon and trunk being conjoined as one shield (Raw 1925, Edgecombe et al. 1988), 

and having functional facial sutures (Hughes et al. 2006). The latter character is, however, not 

recognisable in all supposed protaspides (e.g. Eodiscina, cf. Zhang and Clarkson 2012). 

Protaspides are known virtually from all trilobite groups with the exception of Agnostina and 

Olenellina. The protaspid period can be subdivided into individual protaspid stages (stage 1, 

stage 2, etc.), usually recognisable by their differing morphology and dimensions (Fig. 2). 

Beecher’s (1895) subdivision of the protaspid period into anaprotaspides, metaprotaspides and 

paraprotaspides is currently little used, mainly due to inconsistency in their definition and 

problems with homology of these stages in all trilobites (Edgecombe et al. 1988). The 

morphology of protaspid stages is diverse and is generally related to taxonomy, mode of life 
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and to particular protaspid stage (see chapter “Life-history strategies” and Fig. 2 for basic 

terminology and morphological descriptions). 

The onset of the meraspid period begins when the first articulation structure between cephalon 

and trunk is developed (Raw 1925, Whittington 1957a, Chatterton and Speyer 1997, see Fig. 

1). In some taxa, like Sao hirsuta, the meraspid period apparently starts with the development 

of two articulations (paper I). During the meraspid period new segments were progressively 

released from the anterior margin of the pygidium into the thorax (Stubblefield 1926, 

Chatterton and Speyer 1997). The meraspid period is subdivided into meraspid degrees based 

on the number of thoracic segments (degree 1 = one thoracic segment developed, degree 2 = 

two thoracic segments developed, etc.). The number of meraspid degrees, however, does not 

always directly correspond to the number of instars during the meraspid period (Chatterton 

and Speyer 1997). In most of the trilobites, one segment was released from the pygidium with 

each moult, but there are some exceptions when two segments could be released as in 

Dentaloscutellum campbelli (see Chatterton 1971), or no segments released as in Sao hirsuta 

and Shumardia (Conophrys) salopiensis (paper I, Fortey and Owens 1991, respectively). 

With the exception of radical metamorphoses, most of major morphological changes occurred 

during the meraspid period. 

Figure 1 – Postembryonic development of Shumardia (Conophrys) salopiensis; modified according Stubblefield (1926) and 
Waisfeld et al. (2001). Abbreviations: holaspid p., holaspid period; meraspid p., meraspid period; pr. p., protaspid period. 
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A trilobite is considered to be in the holaspid period when all the thoracic segments, that are 

characteristic for the given species, are separated (Raw 1925, but see Stubbelfield 1926). This 

definition is, however, inapplicable for some species because they show variation in the 

number of thoracic segments, such as Aulacopleura konincki (see Hughes and Chapman 1995, 

Fusco et al. 2004), Monkaspis daulis (see Yuan et al. 2014), Paradoxides davidis (see 

Bergström and Levi-Seti 1978), Elrathia kingii (see Bright 1959) and numerous other 

examples in Hughes et al. (1999). Some trilobites also continued to add segments into the 

holaspid pygidium (see protarthric development in the chapter “Segmentation”). 

Growth 

Trilobites, like other ecdysozoans, grew discontinuously by a series of moulting events. Two 

basic traits are used to describe growth in trilobites – the growth increment and the growth 

Figure 2 – A typical morphology of the adult-like (benthic) and nonadult-like (planktonic) protaspid stage from the dorsal and 
ventral view; modified according Speyer and Chatterton (1989) and paper I. Abbreviations: afs, anterior fixigenal spine; db, 
doublure; gl, glabella; hs, hypostomal spine; hy, hypostome; lb, librigena; ms, median suture; or, occipital ring; pbf, posterior 
border furrow; pcr, protocranidium; pl, palpebral lobe; pmf, posterior marginal furrow; ps, trunk spines; rp, rostral plate; sms, 
submarginal spines; st. 1-3, stage 1-3; tln, terrace lines, tr, trunk; vo, ventral opening. 
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rate. The growth increment (GI) is the absolute linear increase of the body size and can be 

defined as 

             

where a is a linear dimension of the nth instar. Alternatively, the average growth increment 

(AGI) can be calculated for all instars in the ontogeny of a particular species, and is defined as 

    
     

   
 

where a is a linear dimension of the nth or the 1st instar and n is the number of instars. The 

growth rate (GR) is a pre-moult/post-moult size ratio, and can be defined as 

    
  

    
 

where a is a linear dimension of the nth instar. The average growth rate in trilobites falls 

within standard values that are known for other arthropods (Fusco et al. 2011). Although 

some workers suggested higher growth rates earlier in ontogeny (e.g. Chatterton et al. 1990), 

modern data suggest that the growth rate was relatively consistent during the whole of 

development (Fusco et al. 2011). Only the growth increment during radical metamorphosis of 

certain species (see below) seems to be slightly higher than during the rest of the development 

(Lerosey-Aubril and Feist 2005, Chatterton 1980, but see Chatterton et al. 1990). On the other 

hand, in some, possibly lecithotrophic species (paper IV), the growth increment between 

protaspid stages is rather lower (see chapter “Life-history strategies”). 

Dyar’s rule argues that the linear dimensions of successive instars of a particular arthropod 

species increase at a constant rate (Dyar 1890, see also Palmer 1962). Generally, Dyar’s rule 

is considered the null hypothesis for arthropod growth (e.g. Klingenberg and Zimmermann 

1992). The level of consistency of the constant ratio during development can be quantifying 

by the index of conformity with the Dyar’s rule (IDC, see Fusco et al. 2011), and is defined as 

      
       

        
 

where a is a measured linear dimension of the nth instar, b is a linear dimension of the 

expected nth instar under the constant growth, AGI is average growth increment and n is the 
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number of instars. This index can reach values from zero (maximal divergence from Dyar’s 

rule) to one (perfectly constant size ratio). The majority of trilobites (~80% with sufficient 

developmental data) apparently grew at a relatively constant rate during their life cycle (i.e. 

generally following Dyar’s rule), since their index of conformity with Dyar’s rule is larger 

than 0.8 (Fusco et al. 2011, paper I). 

Segmentation 

Trilobite development can be considered as hemianamorphic, i.e. the generation of new 

segments (anamorphic phase) during the early ontogeny is subsequently followed by a stable 

number of segments (epimorphic phase) later in development (Minelli et al. 2003, Fusco et al. 

2004, Hughes et al. 2006, see Fig. 3). 

Beside growth and morphological changes, two main processes took place during the 

postembryonic development of trilobites – segment generation and segment articulation. 

Generally, all segments that form the trilobite cephalon were already developed in the earliest 

protaspides (Hughes et al. 2006, but see Lee and Chatterton 1996). New segments of the trunk 

were generated at the anterior part of the terminal segment (i.e. subterminally, see Fig. 1), as 

can be observed in some trilobites bearing a macropleural segment, such as Shumardia 

(Conophrys) salopiensis (cf. Stubblefield 1926, Fortey and Owens 1991). Although the usual 

pattern of segment addition during the early ontogeny of trilobites was one segment per 

moult, cases where none, two, three, or more segments being added between successive 

moults are also known (cf. Hughes et al. 2006, Crônier 2010, Hou et al. 2015, Dai et al. 2014, 

2015, paper IV).  

Both segment generation and segment articulation were likely independent processes, 

decoupled from one another. Such decoupling would mean that segment generation was 

faster, similar to, or slower than segment articulation. This enables us to recognise three 

phases – the accumulation, equilibrium and depletion phases (Kopaska-Merkel 1987, 

Simpson 2005). During accumulation phase the rate of segment generation was faster than 

segment articulation, and consequently the number of segment in the pygidium increased. In 

equilibrium phase, the rates of segment generation and articulation were equal and the number 

of pygidial segments therefore remained constant. Finally, in the depletion phase the segments 

were released into the thorax faster than they were generated and so segment number in the 
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pygidium decreased. The depletion phase was operational usually during the terminal part of 

the meraspid period of some trilobites (Hughes et al. 2006). 

Based on the comparative timing of the last articulation and onset of the epimorphic phase of 

segmentation, Hughes et al. (2006) defined several modes of trilobite development – 

protomeric, synarthromeric and protarthrous (Fig. 3). Protomeric development occurs when 

the epimorphic phase of the development precedes the onset of the holaspid period. This is 

probably the most common mode of development in trilobites, known in species such as 

Aphelaspis brachyphasis, Scutellum calvum, Dimeropyge speyeri, Hintzeia plicamarginis, 

Sao hirsuta, etc. (see Simpson et al. 2005, Hughes et al. 2006, paper I). In synarthromeric 

development, the onset of the holaspid period and the epimorphic phase are synchronous. This 

is typical for Triarthrus eatoni, Aulacopleura konincki, Trimerocephalus lelievrei, etc. 

(Hughes et al. 2006, Crônier 2010). Finally, protharthrous development is characterised by an 

earlier onset of holaspid period than the onset of epimorphic phase. This mode of 

development is known in Ctenopyge ceciliae, Cryptolithus tesselatus, Cryphops ensae, 

Eoredlichia intermediata, Zhangshania typica, etc. (Hughes et al. 2006, Crônier 2010, Dai 

and Zhang 2013, Hou et al. 2017). 

Figure 3 – Types of the trilobite development that are based on the comparative timing of the last articulation and onset of the 
epimorphic phase of segmentation; modified according Hughes et al. (2006). Abbreviations: a, anamorphic phase; e, epimorphic 
phase; h, holaspid period; m, meraspid period. 



Ontogeny of middle Cambrian trilobites and agnostoids of the Barrandian area 

Lukáš Laibl 

 

15 
 

Life-history strategies 

With few exceptions (e.g. Fortey 1974, McCormick and Fortey 1998, Shino et al. 2014), adult 

trilobites were generally mobile benthic scavengers or particle feeders (Fortey and Owens 

1999). Comparable life-styles can be suggested for the late meraspid trilobites in which the 

overall morphology was similar to the adult. A different life-style and ecology can be 

determined for the protaspides and earliest meraspides. 

Since the first description of trilobite ontogeny, and in particular the protaspid period, trilobite 

workers have generally considered all early stages of trilobites (protaspides, earliest 

meraspides) to be planktonic (e.g. Beecher 1895, Whittington 1957a, Cisne 1973). Although 

this was certainly true for some trilobites, there were also trilobites likely with benthic early 

developmental stages. Speyer and Chatterton (1989) established two general morphological 

types of trilobite protaspides that are based on the overall similarity to the later developmental 

stages – the adult-like and nonadult-like protaspides (Fig. 2). Adult-like protaspides resemble 

adult (holaspid) trilobites in overall appearance; they are dorso-ventrally flattened, with a 

planar ventral surface, and have a sharply inturned doublure, often with terrace ridges. The 

ventral opening is large and the hypostome comparatively small. These protaspides can bear 

marginal spines that are oriented generally in the horizontal plane. Nonadult-like protaspides 

are usually bulbous or globular, with an incurved doublure. The ventral opening is small and 

is mostly covered by a comparatively large hypostome with obliquely directed needle-like 

spines. The subdivision of the dorsal shield into a protocranidium and trunk is usually 

indistinct in nonadult-like protaspides. Unlike adult-like forms, spines of the nonadult-like 

protaspides can be projected in all three dimensions. The prosopon (surface texture) of non-

adult like protaspides may have pits, polygonal ridges or fingerprint patterns. 

Based on this functional morphology (e.g. flattened vs. bulbous exoskeleton, size of the 

ventral opening, size and orientation of the spines, presence vs. absence of terrace ridges), 

Chatterton (1980) and Speyer and Chatterton (1989) inferred that nonadult-like protaspides 

were likely planktonic, while adult-like ones were benthic. This presumption is also supported 

by a radical metamorphosis during the life-cycle of trilobites with nonadult-like protaspides 

(Speyer and Chatterton 1989), which may correspond with a change in mode of life as in 

extant crustaceans. The timing of such metamorphosis, and supposed switch from a planktic 

to benthic mode of life, varies taxonomically. In some species this metamorphosis occurs 
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within the protaspid period, usually after one or two moults (e.g. Flexicalymene senaria, 

Osmolskabole prima and Tsinania canens, cf. Chatterton et al. 1990, Lerosey-Aubril and Feist 

2005 and Park and Choi 2009, respectively). In others, such as Isotelus parvirugosus (see 

Chatterton 1980) and Cryptholithus tesselatus (see Chatterton et al. 1994), the metamorphosis 

co-occurs with the protaspid–meraspid boundary. In rare cases, the metamorphosis took place 

during the earliest meraspid period (e.g. Remopleurides caphyroides, cf. Whittington 1959). 

The adult-like protaspides did not pass through any radical metamorphosis and they are 

believed to have had relatively direct development. 

The majority of Cambrian trilobites had adult-like protaspides (e.g. most members of 

Ptychopariida, Redlichiida, Corynexochida, cf. paper I, Dai and Zhang 2012, Hou et al. 2015, 

respectively). However, members of the suborder Eodiscina (cf. Zhang and Clarkson 2012) 

and some Furongian species from the order Corynexochiida (cf. early protaspides of Tsinania 

canens of Park and Choi 2009) are considered to have nonadult-like protaspides. 

Interestingly, the typically nonadult-like protaspides seem to have evolved independently in 

several trilobite lineages (Remopleuridioidea, Trinucleiodea, Asaphida, Calymenina and 

Proetoidea) likely during the Ordovician (cf. Park et al. 2016, Chatterton et al. 1990, 

Edgecombe et al. 1997). Park et al. (2016) suggested that independent evolution of planktonic 

nonadult-like protaspides in Trinucleoidea, Remopleuridioidea and Asaphida during the 

Furongian and Early Ordovician could be associated with increasing ecological pressure near 

the onset of the Global Ordovician Biodiversification Event (GOBE). 

Trilobites with planktonic early stages should have been more widespread than ones with 

purely benthic stages (Chatterton and Speyer 1990). However, this presumption has not been 

properly tested, although the relationship between protaspid ecology and distribution has been 

studied by Chatterton and Speyer (1989). Paper I discusses the relationship between 

protaspid functional morphology and the biogeographic distribution of the solenopleurid 

trilobite Sao hirsuta. It has been shown (paper I), that all protaspid stages of S. hirsuta have 

an adult-like morphology and were most likely benthic. Therefore, they should have quite 

restricted dispersal capabilities and consequently, a restricted palaeogeographic distribution. 

Indeed, this species is known only from three isolated areas along the West Gondwanan 

margin – from the Ossa-Morena Zone (Spain), Skryje-Týřovice Basin (Bohemia) and 

Franconian Forest (Germany). Moreover, subsequent studies of the holaspid morphology have 
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revealed considerable morphological variability in surface sculpture between these three 

populations (Laibl, unpublished data).  

There are several issues with the planktic–benthic division of early developmental stages. 

Firstly, beside stages that are typically adult-like or nonadult-like there are some protaspides 

which are not easily assigned to either group. This is especially evident in Cambrian forms, 

since the basic division by Speyer and Chatterton (1989) was proposed mainly on the basis of 

post-Cambrian trilobites that already show protaspid stages well adapted either for the benthic 

or planktonic mode of life. For example, the Furongian remopleuridioid trilobite Haniwa 

quadrata had slightly bulbous protaspides that seem neither of the typically adult-like 

morphology nor nonadult-like one (Park and Choi 2011). The earliest protaspid stages of 

certain ptychopariid trilobites can be either inverted saucer shaped (see Lee and Chatterton 

2005a, paper I), or more bulbous so that they resemble some nonadult-like protaspides (cf. 

Ptychopariide sp. A of Lee and Chatterton 2005b). Secondly, there are protaspid or even 

meraspid stages that show the adult-like morphology, but have comparatively long spines that 

are directed almost ventrally. Protaspid stage 1 of genus and species indet. 2 of Zhang and 

Pratt (1999), assigned to Estaingia sinensis by Dai and Zhang (2012), shows long postero-

ventrally oriented pleural spines. Early meraspid cranidia of Olenellus gilberti have similarly 

oriented intergenal spines (Webster 2014). Both Zhang and Pratt (1999) and Webster (2014) 

suggest that stages with such spines lived in the water column rather than on the seafloor. 

While the planktic or benthic nature of early developmental stages can therefore be inferred 

from numerous morphological characters, the recognition of feeding (planktotrophic, 

detritotrophic) and non-feeding (lecithotrophic) strategies is difficult. Generally, the feeding 

strategies of early developmental stages of marine benthic invertebrates are based mainly on 

the size of the earliest stage, as this should reflect the egg size (and therefore the amount of 

yolk, e.g. Jablonski and Lutz 1983). 

It can be assumed that most trilobites with comparatively small first stage protaspides (0.20-

0.40) were feeding (either planktotrophic or detritotrophic). Although this is speculative, the 

majority of recent crustaceans have comparatively small feeding larvae (Anger 2001, see also 

the numerous examples in Martin et al. 2014), and it can be inferred that trilobites were 

similar. There are, however, some trilobite protaspides of a size that is considerably exceeding 

that of most other protaspides. These large protaspides may be lecithotrophic, as has been 
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suggested in several papers. Chatterton et al. (1990) inferred large embryos with yolky eggs 

for the Middle Ordovician species Brongniartella. Lerosey-Aubril (2006) suggested that the 

enlargement of proetoid protaspides during the Devonian may have been caused by 

lecithotrophy. In paper I, large protaspides of an undetermined Cambrian ptychopariid 

trilobite are also suggested to be lecithotrophic. However, this is potentially problematic 

because in trilobites, as well as in other arthropods, it is nearly impossible to recognise the 

earliest developmental stage in the fossil record. In each discovered protaspid stage, there may 

be a preceding stage that has not been discovered, was not preserved or was not calcified. 

Therefore, in trilobites, the size of the protaspid stage itself cannot be used as the only 

evidence of feeding strategy. A possible solution to this problem is to compare protaspid sizes 

of closely related taxa, in which we can recognise homologous individual stages. For 

Figure 4 – Ontogenetic stages of selected mid-Cambrian trilobites and agnostids from the Barrandian area (A-G, I, J, L from the 
Skryje-Týřovice Basin; H, K from the Příbram-Jince Basin). A, second protaspid stage of Hydrocephalus carens, CGS; B, early 
meraspid stage of Hydrocephalus carens, NM; C, protaspid stage of Ptychopariida sp. B, NM; D, early meraspid cranidium of 
Ellipsocephalida sp. A, NM; E, third protaspid stage of Sao hirsuta, CGS; F, early meraspid stage of Sao hirsuta, NM; G, late 
meraspid stage of Sao hirsuta, NM; H, early holaspid stage of Ellipsocephalus hoffi, CGS; I, second protaspid stage of 
Eccaparadoxides pusillus, NM; J, middle meraspid cranidium of Eccaparadoxides pusillus, NM; K, late meraspid stage of 
Paradoxides paradoxissimus gracilis, NM; L, meraspid stage of Condylopyge rex, NM. Specimens from the National Museum 
(NM) and the Czech Geological Survey (CGS). Scale bar = 0.5 mm. 
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example, the first known protaspid stages of Eccaparadoxides and Hydrocephalus are 

morphologically quite similar and possess the same number of segments (see paper IV), but 

they are of different sizes. Similarly, the large stage of Ptychopariida sp. B sensu Laibl et al. 

(paper I) is morphologically comparable with the smaller earliest known stages of 

ptychopariids (e.g. Spencella? sp., Sao hirsuta, Aphelaspis brachyphasis, cf. Chatterton and 

Speyer 1997, paper I, Lee and Chatterton 2005a, respectively). 

In addition to the large size of the earliest postembryonic instars, there are other 

developmental characters that could indicate possible lecithotrophic development in trilobites. 

These are: low growth increment, abbreviation or acceleration of the development and 

inflation of the exoskeleton. All of these developmental characters are based on the direct 

comparison with extant crustaceans. 

Lecithotrophy in crustaceans is frequently associated with an abbreviation of development 

(Rabalais and Gore 1985, Anger 2001, Thatje et al. 2003). Rabalais and Gore (1985) defined 

abbreviated development as a developmental sequence that is of shorter duration than that 

normally seen in the majority of related species to a taxon. Consequently, the number of 

instars is lower and/or the duration of ontogeny is shorter. This may involve various 

developmental types such as hatching at an advanced stage or elimination of certain stages 

within the sequence (e.g. accelerated development, for more detail see Rabalais and Gore 

1985). The Ordovician Brongniartella sp. and the Silurian Platycoryphe sinensis apparently 

lacked the planktonic protaspid stages that are typical for other calymenids and likely hatched 

at an advanced benthic stage (Chatterton et al. 1990). They can therefore be considered to 

have an abbreviated type of development. The Cambrian species Eccaparadoxides pusillus 

and Hydrocephalus carens both added more segments (four and six, respectively) between the 

first and second protaspid stage, than is usual in the majority of trilobites (paper IV), and 

showed an acceleration of the early development. 

The growth increment and growth rate in trilobites have recently been intensively studied, 

resulting in a large amount of data on trilobite ontogeny (see Fusco et al. 2011, or chapter 

“Growth”). The median value of average per-moult growth rate for trilobite protaspides is 

1.32 for length (range 1.04–1.77) and 1.25 for width (range 1.00–2.21). At least one trilobite 

in which lecithotrophy is suggested (Hydrocephalus carens) had a lower growth rate between 

the protaspid stages (1.29 for length and 1.02 for width) than the median for Trilobita (paper 
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IV). Recent decapod larvae that are lecithotrophic tend to have similarly lower growth rates 

(1.03–1.08 for length) than the planktotrophic forms (1.11–1.22 for length) (see Taishaku and 

Konishi 2001). Some lecithotrophic nauplii of Acrothoracica even do not increase in size 

during subsequent moults (Kolbasov et al. 2014). Comparisons such as this can be used as an 

additional tool in supporting lecithotrophy, but should be used carefully, since the differences 

are relatively minor and trilobite growth is still not entirely understood (Fusco et al. 2011, 

2014). 

Recent crustaceans whose larvae or juveniles are lecithotrophic, usually store yolk or lipids 

from yolk in the hepatopancreatic region under the carapace (Anger 2001, Taishaku and 

Konishi 2001, Watts et al. 2006, Chan et al. 2014, see also numerous examples in Martin et al. 

2014). In some cases, the amount of yolk caused a prominent inflation of the carapace (Goy 

2014). There exists reasonably good knowledge about the morphology of the digestive tract in 

adult trilobites (Chatterton et al. 1994, Lerosey-Aubril et al. 2011, 2012, Fatka et al. 2013), 

and it can be assumed that a similar morphology was present in the early postembryonic 

stages. The inflated glabella may therefore in some trilobite protaspides (e.g. 

Eccaparadoxides pusillus and Hydrocephalus carens, see paper IV) represent a similar 

adaptation for storing lipids from the yolk. 

 

Ontogeny of Cambrian trilobites and agnostids from the Barrandian 
area 

Ontogenetic stages from the Skryje-Týřovice Basin 

In the Skryje-Týřovice Basin early ontogenetic stages of trilobites occur at several localities 

that are situated in the upper stratigraphical levels of the Buchava Formation (upper levels of 

the Eccaparadoxides pusillus Zone, for geological settings see Fatka 2004, Fatka et al. 2011). 

These localities are situated near Týřovice (localities Týřovice – Pod hruškou, Týřovice – 

Lůmek, cf. Prantl 1947, Fatka 2004, paper I), or Skryje (localities Skryje – Luh, Dlouhá Hora 

Hill, Vosník Hill, cf. Jahn 1898, Jarka 1941, Chlupáč et al. 1998, Fatka 2004). The species in 

which the juveniles are known are listed below. 
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Sao hirsuta Barrande, 1846 – The complete post-embryonic development of S. hirsuta (Figs 

4E–G) is known. The development of this species was described already by Barrande (1852). 

Růžička (1943) provided some new data, including description of early protaspid stages. 

Later, the development was discussed by Whittington (1957b) and revised by Šnajdr (1958). 

The last comprehensive description of the ontogeny of S. hirsuta has been published in paper 

I. Early developmental stages of S. hirsuta are the most common specimens found in the 

aforementioned localities of the Skryje-Týřovice Basin. 

Ptychopariida sp A. – Only protaspid and early meraspid stages are known. These stages were 

originally described as belonging to S. hirsuta (cf. paper I) by Barrande (1852), Růžička 

(1943), Whittington (1957b) and Šnajdr (1958). In paper I, they were described as a separate 

species (based on the dimensions, morphology of the palepbral lobes and trunk) of uncertain 

affinity. 

Ptychopariida sp. B – This taxon is so far known from protaspid stages only (Fig. 4C). It was 

initially described by Růžička (1943) as the so-called “Barrande’s larva” and then re-

described by Šnajdr (1958). New data has been collected and published in paper I. The 

affinity of this taxon is uncertain, but based on the recently discovered specimens it may 

belong to the family Conocoryphidae. 

Ptychopariida sp. C – Only one protaspid individual of Ptychopariida sp. C has been 

described and discussed in paper II. A more specific affinity of this specimen is uncertain. 

Skreiaspis spinosus (Jahn, 1895) – The meraspid and holaspis stages of S. spinosus are 

known. Barrande (1852) described late meraspid and holaspid stages of S. spinosus as 

belonging to Agraulos ceticephalus. Šnajdr (1958) discovered early meraspides of this species 

and comprehensively described its ontogeny. 

Eccaparadoxides pussilus (Barrande, 1846) – The complete post-embryonic development of 

this species (Figs 4I–J) is known. Early ontogenetic stages of E. pusillus were described by 

Barrande (1852) as Hydrocephalus saturnoides. Later on, Ford (1881) for the first time 

suggested these stages may be juveniles of Paradoxides. Subsequently, the development of 

this species has been studied by Pompeckj (1895), Raymond (1914), Raw (1925), Šuf (1926), 

Růžička (1943) and Šnajdr (1958). Šnajdr (1958) provided the first comprehensive 
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description of E. pusillus post-embryonic development. Recently, the protaspid stages of this 

taxon were studied in paper IV. 

Hydrocephalus carens Barrande, 1846 – The complete post-embryonic development of H. 

carens (Figs 4A–B) is known. The protaspid and early meraspid stages was described by 

Barrande (1852). Šuf (1926) discovered early protaspid stage of this species. Development of 

H. carens was studied also by Pompeckj (1895), Raymond (1914), Raw (1925), Růžička 

(1943) and Šnajdr (1958). The protaspid development was investigated in paper IV. 

Ellipsocephalida sp. A – The early meraspid stages (Fig. 4D) were originally described by 

Raymond (1914) as protaspides belonging to Paradoxididae. Růžička (1943) provided 

complementary material and named this taxon “Raymond’s larva”. Růžička (1943) and 

Whittington (1957b) assigned these stages to Paradoxides rugulosus (= Eccaparadoxides 

pusillus). In contrast, Šnajdr (1958) noted that these stages resemble early stages of 

Protolenidae. Valíček and Šarič (2001) published a short comment, in which they assigned 

this taxon to Luhops expectans. Since these stages resemble some juvenile cranidia of 

Ellispcephalidae (see paper III), I assign them to this group. 

Agnostids – The ontogenetic development (meraspid to holaspid stages) from the Skryje-

Týřovice Basin is known for the species Condylopyge rex (Barrande, 1846) (Fig. 4L), 

Pleuroctenium granulatum (Barrande, 1846), Peronopsis cuneifera (Barrande, 1846), 

Phalacroma bibullatum (Barrande, 1846) and Phalagnostus nudus (Beyrich, 1845). The 

development of these agnostid species was described by Barrande (1852) and Šnajdr (1958). 

Currently, the ontogeny and morphological variability of C. rex is studied by the author of this 

thesis. 

Ontogenetic stages from the Příbram-Jince Basin 

In the Příbram-Jince Basin early ontogenetic stages of trilobites are comparatively rare 

presumably due to sampling bias and unfavourable taphonomy. Already described material as 

well as some new findings comes mainly from the Paradoxides paradoxissimus gracilis Zone 

and from the Ellipsocephalus hoffi-Lingulella-Rejkocephalus Zone (for geological settings see 

Fatka and Szabad 2014). Juveniles are known in following species. 

Ellipsocephalus hoffi (Schlotheim, 1823) – Despite adult specimens of E. hoffi (Fig. 4H) are 

extremely common, particularly in the upper levels of the Jince Formation (Ellipsocephalus 
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hoffi-Lingulella-Rejkocephalus Zone), early developmental stages of this taxon are rare. Only 

late ontogenetic stages are known and have been described in paper III. 

Paradoxides paradoxissimus gracilis (Boeck, 1827) – Novák figured two meraspid stages of 

P. paradoxissimus gracilis (Fig. 4K) in his unpublished supplement to the Système silurien du 

centre de la Bohème. Some additional data were published by Šuf (1926). The late meraspid 

and holaspid development of this species was comprehensively described by Šnajdr (1958). 

Recently, new material comprising the early meraspid stages has been discovered in the 

collections of the National Museum, Prague. 

Hydrocephalus minor (Boeck, 1827) – Only the late meraspid stages of this species were 

figured by Šnajdr (1958). They are morphologically alike to H. carens. Additional material is 

available in the collections of the National Museum, Prague. 

Conocoryphe sulzeri (Schlotheim, 1823) – Two late meraspid stages of C. suzeri supposedly 

form the Paradoxides gracilis Zone were figured by Šnajdr (1958, pl. 33, figs 6, 7). Some 

additional material is deposited in the collections of the National Museum, Prague. 

 

Conclusions and future directions of the study 

The main conclusions of this thesis are the following: 

a) The post-embryonic development, its part, or early ontogenetic specimens have been 

describred for Sao hirsuta, Ptychopariida sp. A, Ptychopariida sp. B (paper I), 

Ptychopariida sp. C (paper II), Ellipsocephalus hoffi, Elliposcephalus polytomus 

(paper III), Hydrocephalus carens and Eccaparadoxides pusillus (paper IV). The 

individual instars of the early development were recognised in Sao hirsuta, 

Ptychopariida sp. A (paper I), Hydrocephalus carens and Eccaparadoxides pusillus 

(paper IV). Three different developmental phases during late ontogeny of 

Ellipsocephalus hoffi were recognised (paper III). 

b) Life-history strategies of early developmental stages of Sao hirsuta, Ptychopariida sp. 

A, Ptychopariida sp. B (paper I), Hydrocephalus carens and Eccaparadoxides 

pusillus (paper IV) were discussed. Benthic protaspides were inferred for Sao hirsuta 

and Ptychopariida sp. A (paper I). Lecithotrophic development was suggested for 
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Ptychopariida sp. B (paper I), Eccaparadoxides pusillus and for Hydrocephalus 

carens (paper IV). 

c) The relationship between biogeographical distribution and life-history strategies was 

studied and discussed. Sao hirsuta with entirely benthic protaspides show strongly 

restricted geographic distributions (paper I). The distribution of supposedly 

lecithotrophic trilobite species with large protaspides seems to be associated with 

higher latitudes along the West Gondwanan margin (paper IV). 

d) The development of Ellipsocephalus hoffi, Ellipsocephalus polytomus and other 

members of the Ellipsocephalidae show numerous similarities with the order 

Redlichiida. This may suggest close phylogenetic relationship between these groups 

(paper III). On the other hand, different selective pressures are believed to be 

responsible for modification of the early ontogeny of Hydrocephalus carens and 

Eccaparadoxides pusillus (paper IV). 

Research on the presented topic has numerous future perspectives. Currently, a paper about 

comparative development of Eccaparadoxides pusillus, Eccaparadoxides pradoanus, 

Hydrocephalus carens, Paradoxides gracilis and Acadoparadoxides pinus is under 

preparation. Consequently, a cladistic matrix for phylogenetic analysis of the family 

Paradoxididae is being assembled. 

Future work is necessary to understand fully the developmental patterns of Sao hirsuta. The 

amount of articulated specimens of this taxon in various developmental stages makes it a 

perfect model organism such as Aulacopleura koninckii (see Fusco et al. 2004). S. hirsuta also 

shows geographical variability of the surface sculpture that is worth to study in deatail. 

Another three manuscripts about ontogeny of Ellipsostrenua form Scandinavia, Fritzolenellus 

form Newfoundland and Condylopyge from the Czech Republic are in progress. The author 

would like also perform a comprehensive review of the trilobite life-history strategies. 
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