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Introduction

In this thesis we study the geodesic motion in a metric constructed by Johannsen
and Psaltis in [1]. This metric describes a family of spacetimes characterized
by an infinite number of parameters, i.e. the mass M , the spin a and a series
of deviation parameters εk, where k ∈ N0. However, in this thesis we constrain
ourselves to the lowest order of the unconstrained parameters, which is ε3.

The Johannsen-Psaltis metric was designed to be a perturbation of the Kerr
spacetime, which is of great astrophysical interest. The so-called no-hair theo-
rem [2] states that the class of uncharged black-hole exterior solutions which are
axisymmetric and don’t violate causality (i.e. no closed timelike or null curves)
consists of a discrete set of continuous families, each depending on at least one
and at most two independent parameters. No other externally observable param-
eters are required. Typically the Kerr type is assumed [3] and such black holes
are parametrized by their mass M and their angular momentum a. However,
there is yet to be mathematical proof of this (this is why mathematicians call it
the no-hair conjecture). It would be of great astrophysical interest to test this
conjecture by observing black hole candidates and verifying that the electromag-
netic and gravitational wave signals do not deviate from the ones corresponding
to Kerr spacetimes.

One of the characteristics of the Kerr spacetime background is that geodesic
motion in such a background is integrable [4]. Many of the non-Kerr spacetimes,
by which term we denote perturbations of the Kerr spacetime, do not possess the
symmetry that the Kerr spacetime does, making geodesic motion lose one of its
integrals of motion. This causes geodesic motion in such a spacetime to exhibit
chaotic behavior, which we study in this thesis.

The organization of the thesis is as follows: in the first chapter we describe the
basics of geodesic motion and deterministic chaos in dynamical systems; we will
already discuss some of the properties of the studied spacetime. In the second
chapter we use numerical examples to show that the Johannsen-Psaltis metric
indeed doesn’t possess the final integral of motion.
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1. Theoretical foundations

1.1 Notation and conventions

As this thesis lies in the field of general relativity, we use the standard abstract
index notation. We denote the covariant metric tensor gµν and its contravariant
version gµν . The corresponding matrices are mutually inverse, which is expressed
by the identity ∑

ν

gµνg
νσ = δµ

σ, (1.1)

where δµ
σ denotes the Kronecker delta symbol, which is equal to 1 for µ = σ and

equal to zero in the other cases. We also use the standard summation convention,
so in expressions we omit the symbol for the sum over any index which goes over
all its possible values and appears once as a covariant and once as a contravariant
index in a product. Therefore, the previous equation can be written simply as

gµνg
νσ = δµ

σ. (1.2)

The metric fully describes the local geometry of the corresponding spacetime, its
signature is (-,+,+,+) by convention. We use geometric units, i.e. c = G = 1 (c
is the speed of light, G is the gravitational constant).

For now, we mark the coordinates of the spacetime xµ, where we limit our-
selves to four-dimensional spacetimes, therefore the index µ can have the values
0, 1, 2 and 3. While the primary use of the index 0 is to denote the time variable,
the general theory of relativity is fully covariant and so no coordinate must neces-
sarily play the role of time. Later on, when we work with a specific spacetime, we
will use a different notation. Greek indices will be used to denote tensor compo-
nents. A Latin letter as a superscript will typically be a power; the exception is
an object which is already defined with an index (e.g. W u and W s in Sec. 1.10).

If we take any differentiable function from the spacetime manifold to the real
numbers, we denote the partial derivative

A,µ :=
∂A

∂xµ
. (1.3)

We now denote

Γαµν :=
1

2
(gαµ,ν + gνα,µ − gµν,α) (1.4)

the Christoffel symbols of the first kind and

Γβµν := gαβΓαµν (1.5)

the Christoffel symbols of the second kind.

1.2 The Johannsen-Psaltis spacetime

In this thesis we work with the metric constructed for rapidly spinning black holes
introduced by Johannsen and Psaltis in [1]. In Boyer-Lindquist-like coordinates
it’s given by the line element

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ2 + 2gtφdtdφ. (1.6)
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In order to write the metric components gµν in a fairly simple fashion we use
several metric functions as used in [1]

Σ = r2 + a2 cos2 θ, (1.7a)

h =
∞∑
k=0

(
ε2k + ε2k+1

Mr

Σ

)(
M2

Σ

)k
, (1.7b)

∆ = r2 + a2 − 2Mr, (1.7c)

ω2 = r2 + a2, (1.7d)

Λ = ω4 − a2∆ sin2 θ, (1.7e)

which simplify the task of writing the metric components. In order to also simplify
the task of calculating second partial derivatives of the metric components we
define even more metric functions

B := ∆ + a2h sin2 θ, (1.8a)

C :=
Λ sin2 θ

Σ
, (1.8b)

F := 1 +
2Mr

Σ
, (1.8c)

D :=ha2F sin4 θ, (1.8d)

which will then along with their first and second derivatives appear in the first
and second partial derivatives of the metric components. While we omit the
arguments of the functions for simplicity (e.g. we write Σ instead of Σ(r, θ)), it
is important to keep in mind that they are still generally functions of r and θ.

Now that we have defined these metric functions, we can write the metric
components

gtt = − (1 + h)

(
1− 2Mr

Σ

)
, (1.9a)

gtφ = −2aMr sin2 θ

Σ
(1 + h) , (1.9b)

gφφ = C +D, (1.9c)

grr =
Σ (1 + h)

B
, (1.9d)

gθθ = Σ. (1.9e)

The function h (r, θ) is what causes the deviation from the Kerr metric, as
setting εk = 0 ∀k ∈ N0 gives the Kerr metric. The parameters (εk)

∞
k=0 are,

however, constrained. As explained in detail in [1], in stationary asymptotically
flat spacetimes the deviation from the flat solution must fall off as r−2 or faster,
while non-zero values of εk parameters generate O

(
r−k
)

terms, we therefore set
ε0 = ε1 = 0. The parameter ε2 is constrained by observational constraints on
weak-field deviations from general relativity [1] as |ε2| ≤ 4.6 · 10−4. We set this
one to be zero as well and limit ourselves to the lowest order remaining parameter,
which is ε3, and set all the higher order parameters εk = 0 ∀k ≥ 4. The function
h then takes the form

h = ε3
M3r

Σ2
. (1.10)
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1.3 Lagrangian mechanics

We will keep using Greek indices and the summation convention for consistency.
For a typical mechanical system evolving along the time parameter τ , we can

define generalized coordinates qµ, which characterize the location of the system.
These coordinates can have the meaning of angles, distances, spatial coordinates
and so on. In order to fully characterize the state of the system, we need to
add the generalized velocities q̇µ := dqµ/dτ . For classical conservative mechanical
systems we use the kinetic energy T and the potential energy V and we take a
function on the space of generalized coordinates, generalized velocities and time

L (qµ, q̇µ, τ) = T (qµ, q̇µ, τ)− V (qµ, τ) . (1.11)

The motion of the system is then described using the principle of least action,
which states that for fixed τ1, τ2, qµ (τ1) and qµ (τ2) the trajectory of the system
is a stationary point of the action functional

S =

∫ τ2

τ1

L (qµ, q̇µ, τ) dτ, (1.12)

the equations of motion take on the form of the Euler-Lagrange equations (in this
case also called the Lagrange equations of the second kind)

d

dτ

(
∂L
∂q̇µ

)
− ∂L
∂qµ

= 0. (1.13)

This description can be used for relativistic systems as well. If we take a
trajectory xµ = xµ (τ), where τ parametrizes the corresponding curve on the
spacetime manifold, we will first need an invariant measure of time. A typical
choice is the proper time

(dτ)2 :=−gµνdxµdxν (1.14)

(which will also prove to be an efficient choice). The proper time is the time that
an observer moving along the trajectory would measure on his own watch. If we
take a trajectory of a particle on the spacetime manifold and parametrize it by
the proper time, we will denote the derivative of a differentiable quantity by the
proper time

Ȧ =
dA

dτ
. (1.15)

The definition of the proper time (1.14) causes the following identity to hold

gµν ẋ
µẋν = −1. (1.16)

Now we can write the Lagrangian of a free particle of rest mass m [5]

L (xµ, ẋµ) =
m

2
gµν ẋ

µẋν . (1.17)

The corresponding equations of motion (1.13) indeed give the standard form of
the geodesic equation

ẍµ + Γµκλẋ
κẋλ = 0. (1.18)
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1.4 Hamiltonian mechanics

Once a system has been formulated as a Lagrangian system, it is easy to move
to another formalism, more fitting for the needs of this thesis. This is the Hamil-
tonian formalism. We first define the canonical momenta

pµ :=
∂L
∂q̇µ

, (1.19)

express the generalized velocities as q̇µ (qµ, pµ, τ) functions of the coordinates,
momenta and time. If the condition

det

(
∂pµ
∂q̇ν

)
6= 0 (1.20)

holds, then we write the Hamiltonian function as a Legendre transform of L with
respect to the generalized velocities

H (qµ, pµ, τ) = pν q̇
ν (qµ, pµ, τ)− L (qµ, q̇µ (qµ, pµ, τ) , τ) . (1.21)

The equations of motion then gain the canonical form

q̇µ =
∂H
∂pµ

, (1.22a)

ṗµ = −∂H
∂qµ

. (1.22b)

The 2N -dimensional set of all possible states of the system (qµ, pµ) is then called
the phase space X . If the Hamiltonian is explicitly independent of time (∂H/∂τ =
0), the system is then called autonomous.

If we perform this for the geodesic motion Lagrangian (1.17), we get the
canonical momenta

pµ =
∂L
∂ẋµ

= mgµν ẋ
ν (1.23)

and the Hamiltonian is

H =
1

2m
gµνpµpν . (1.24)

It is easy to verify that Hamilton’s equations of motion (1.22) with the Hamil-
tonian (1.24) again give the geodesic equation (1.18). As we only study geodesic
motion, the rest mass of the test particle doesn’t play any role in the equations
of motion, therefore we can set the rest mass to be equal to 1 for simplicity and
we get

H ((xµ, pµ, τ) =
1

2
gµν (xµ) pµpν . (1.25)

It is important to note that while motion of an uncharged spinless test particle
in a gravitational field in classical mechanics is described by a Hamiltonian system
with 3 degrees of freedom for spatial coordinates, in general theory of relativity
the equations of motion have to be invariant under coordinate transformation
on the spacetime manifold. This is why the corresponding Hamiltonian system
has 4 degrees of freedom - 3 for spatial coordinates and 1 for the coordinate time
parameter and the proper time of the particle is taken as the evolution parameter,
again, to secure the invariance of the equations. This means that the system is
formally autonomous even in non-stationary spacetimes.
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1.5 Integrals of motion

In a Hamiltonian system, for a pair of differentiable functions defined on the
phase space A (qµ, pµ, τ) and B (qµ, pµ, τ), we define the Poisson bracket

{A,B} :=
∂A

∂qµ
∂B

∂pµ
− ∂A

∂pµ

∂B

∂qµ
. (1.26)

We can then see that the derivative of such a quantity along the trajectory of the
system can be written as

Ȧ =
∂A

∂τ
+ {A,H}. (1.27)

It is interesting to note that this allows us to write the equations of motion as

q̇µ ={qµ,H}, (1.28a)

ṗµ ={pµ,H}. (1.28b)

It also causes any quantity A that doesn’t explicitly depend on time and satisfies
{A,H} = 0 to remain constant during the time evolution of the system. We call
such a quantity an integral of motion.

We note that the Poisson bracket is antisymmetric ({A,B} = −{B,A}),
resulting in the identity {A,A} = 0. This means that {H,H} = 0, thus in
autonomous systems from (1.27) follows that the Hamiltonian is an integral of
motion. If we also assume the spacetime metric does not depend on one of the
coordinate parameters xµ, then the corresponding canonical momentum pµ is an
integral of motion. It can be more easily seen from Hamilton’s equations (1.22)
and the Hamiltonian (1.25). This is in correspondence with Noether’s theorem,
which says that symmetries of a system cause integrals of motion to exist, and
can be associated with the existence of a Killing vector field ∂/∂xµ in differential
geometry.

In our spacetime the metric components are independent of the coordinates t
and φ, making pt and pφ integrals of motion. We denote

E :=−pt, (1.29a)

Lz := pφ. (1.29b)

This symmetry allows us to reduce the system from 4 to 2 degrees of freedom.
The dynamics of these two degrees of freedom (t, φ) are fairly trivial, we will
therefore study the dynamics of the other two degrees of freedom (r, θ). It is
easy to see that the reduced Hamiltonian

H =
1

2

(
gφφE

2 + 2gtφELz + gttL
2
z

gttgφφ − g2
tφ

+
p2
r

grr
+
p2
θ

gθθ

)
. (1.30)

gives the same equations of motion for the two non-trivial degrees of freedom as
the full Hamiltonian (1.25). By this procedure, the integrals (1.29) have been
reduced to constant functions in the reduced phase space, making them trivial.
However, H remains a non-trivial function in the reduced phase space. It is
to be noted that generally, if an integral is found, simply entering it into the
Hamiltonian gives a Hamiltonian which does not generate equivalent dynamics.
The case that the canonical momenta themselves are integrals is an exception.

9



1.6 Canonical transformations

Definition 1 (Canonical transformations). Let the phase space X of a Hamil-
tonian system with the Hamiltonian H be parametrized by the time τ , coordi-
nates qµ and the canonical momenta pµ. We call a canonical transformation
any reparametrization of X using new variables q̄µ, p̄µ, in which the equations of
motion retain the canonical form

˙̄qµ =
∂H̄
∂p̄µ

, (1.31a)

˙̄pµ = −∂H̄
∂q̄µ

. (1.31b)

The point of Hamilton-Jacobi theory is to find a canonical transformation to
a set of variables in which the Hamiltonian is H̄ = 0, making the motion trivial,
determined by 2N integration constants identical to q̄µ, p̄µ. It is shown in [6] that
for the action S in Eq. (1.12)

H (qµ, pµ, τ) +
∂S

∂τ
= 0 (1.32)

holds. Replacing the canonical momenta, we get the Hamilton-Jacobi equation

H
(
qµ,

∂S

∂qµ
, τ

)
+
∂S

∂τ
= 0. (1.33)

Like Hamilton’s canonical equations, the Hamilton-Jacobi equation is the basis
of a general method of integrating the equations of motion.

1.7 Integrability, action-angle variables

The Hamilton-Jacobi equation is usually hard to solve, often more complex than
solving the respective equations of motion. In some cases, however, it is separable.
This means that the function S can be separated completely as a sum of one-
variable functions as

S (qµ, τ) =
∑
ν

Sν (qν)−Kτ. (1.34)

In this case, action-angle variables Iµ, θµ can be defined as shown in [7], in which
the Hamiltonian is a function of only the momenta

H = H (Iµ) , (1.35)

making them constants of the motion. θµ then evolve as linear functions of time
and the motion is restricted to an N -torus.

We call a set of N integrals {Iµ} independent if their gradients span an N -
dimensional vector space at each point in phase space. The main result of this is
the following theorem [8]:

Theorem 1 (Liouville-Arnol’d theorem). If there are N independent integrals
in involution ({Iµ, Iν} = 0 ∀µ, ν), then the motion lies on a nested family of

10



N-dimensional tori, and there exist angle coordinates θµ such that the evolution
of the system can be written in the form

θµ (τ) = θµ (0) + τωµ (Iν) , (1.36a)

Iµ (τ) = Iµ (0) . (1.36b)

We call such a system integrable.

In an integrable system, if we know the fundamental frequencies ωµ, we can
calculate their ratios ωµ/ων . In the case that all these ratios are rational numbers,
the motion is periodic, as the system returns to its initial state in a finite time;
such a state is called a resonance. In the case of at least one of them irrational,
we call the orbit quasi-periodic, as it never returns to its initial state, but it does
return arbitrarily close. In the case of two degrees of freedom, there is only one
ratio; in the case of its irrationality the orbit densely covers the torus.

This is the case of geodesic motion in the Kerr metric. The Kerr spacetime
possesses an additional more complex symmetry expressed through a Killing ten-
sor field, allowing an additional integral of motion, the so-called Carter constant
K, to exist [4]. This makes the geodesic motion integrable, the required four in-
tegrals of motion are H, E, Lz,K. It is important to note that the phase space in
that case is not strictly bounded, as trajectories plunging into the central black
hole always exist (we consider plunging into the central black hole an escape),
and for values of energy E ≥ 0 escapes to r → ∞ exist. However, there remain
many non-escaping bounded trajectories and in these non-escaping regions the
Liouville-Arnol’d theorem still holds.

1.8 Symplectic mappings

Definition 2 (Symplectic mapping). We denote the N ×N identity matrix IN ,
the Poisson tensor in respect to qµ, pµ variables

J2N =

(
0 −IN
IN 0

)
(1.37)

and the Jacobi matrix M of the map Ω (also called the monodromy matrix). We
call the map Ω in a simply connected phase space S symplectic, if it fulfills the
symplectic condition

MTJ2NM = J2N . (1.38)

In the case that the phase space S is a cylinder parametrized by (x, y), where x
is the angle coordinate, we call the map Ω : (x, y) 7→ (x′, y′) a twist map, if there
is a K such that

∂x′

∂y

∣∣∣∣
x

≥ K > 0. (1.39)

Even though the point of this thesis is to study a system with continuous
time evolution, it is of great interest to study a discrete mapping as well. In
the 2N -dimensional phase space X of an autonomous Hamiltonian system the
motion lies on the 2N − 1-dimensional surface E of constant H. If we define a
2N − 1-dimensional surface Q which is everywhere transversal to the flow, we
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can define a mapping Ω on S = E
⋂
Q. The transversality of Q causes S to be a

2N − 2-dimensional surface which we call the Poincaré section.

While there has been some effort put into studying Poincaré sections in higher
dimensions [9] (see references therein), the only ones which can be understood
easily and which we use in this thesis are the ones for N = 2 (this corresponds
to the reduced system in Eq. (1.30)); this gives S dimension 2 as well.

Definition 3 (Return mapping). Let S be the Poincaré section in the phase space
of a Hamiltonian system with Hamiltonian H. The return mapping Ω then maps
an initial condition on S to the first point where the flow returns to S.

Such a mapping does not exist everywhere on S, as there are escapes to the
event horizon even for E < 1 (this is the case which we study). However, there are
again many trajectories which do not escape and in this subset of S the mapping
exists.

We can now return to the twist condition in Def. 2. While it requires that
its phase space be a cylinder, which will not be our case, as the mapping we will
later use acts on a subset of R2, we can see from the previous section that in the
integrable case the motion lies on a nested family of tori where the non-degeneracy
condition

det

(
∂ωµ

∂Iν

)
6= 0 (1.40)

holds, and can be parametrized by action-angle coordinates. In the case of a
4-dimensional phase space of the original Hamiltonian system, the intersection
of a torus with a Poincaré section S is a so-called invariant circle. It has the
topology of a circle because of the transversality of the surface of section Q to the
Hamiltonian flow. This allows us to parametrize S using action-angle coordinates.
Such structure remains even in a non-integrable system, giving meaning to the
twist condition.

The return mapping Ω on S is a symplectic twist map. In [10], the symplectic
condition is derived in a way that shows that a return mapping is indeed a
symplectic map. The twist condition is guaranteed by the definition of action-
angle variables [7].

We will now consider the return mapping of a Poincaré section S for a Hamil-
tonian system with 2 degrees of freedom. First, let us consider the integrable case.
As was already mentioned, the motion lies on a nested family of 2-dimensional
tori, so the mapping is represented by a nested family of closed curves called
invariant circles. Again, we can parametrize S by action-angle variables θ and I,
in which the map is of the form

Ω : (θ, I) 7→ (θ′, I ′) , (1.41a)

I ′ = I, (1.41b)

θ′ = θ + ω (I) . (1.41c)

The ω as written here is then called the rotation number. It can be determined
by using the methods of frequency analysis [11] or by the method of dynamical
spectra [12], which we later use in Sec. 1.11.
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1.9 KAM theory

Generally, the structure of phase space is altered by perturbing a dynamical
system. If we wish to study how a trajectory changes, we need some way to
assign a trajectory in the perturbed system to the corresponding trajectory in the
unperturbed system; as the structure changes, it is pointless to assign by initial
conditions. For example, if we were to take an ε-dependent change of variables and
apply it together with the variation, such an assignment of trajectories between
the original and the perturbed phase space would be ambiguous.

Obviously, a much more sensible way to do this is to use the fundamental
frequencies. As can be seen from canonical perturbation theory, if we apply a
small perturbation and attempt to solve the Hamilton-Jacobi equation (1.33)
perturbatively, we arrive at a series with small denominators of the form m1ω

1 +
m2ω

2 summed over (m1,m2) ∈ Z2, which does not converge, as for any irrational
ω = ω1/ω2 we can find an arbitrarily close rational number. However, there are
still ways we can discuss the ”measure of irrationality” of a number, which allow
us to state when a set of frequencies is far enough from resonances.

Definition 4 (Diophantine numbers [10]). Let C > 0 and q ≥ 1, then we denote

Dq (C) = {ω ∈ R \Q : ∀ (m,n) ∈ Z2 \ {(0, 0)} |nω −m| > C

nq
}. (1.42)

We define the set of Diophantine numbers

Dq =
⋃
C>0

Dq (C) . (1.43)

Definition 5 (Function norm). For a j-times differentiable function we define
its j-norm as

|f (x, y)|j = sup
m+n≤j

∣∣∣∣ ∂m+nf

∂xm∂yn

∣∣∣∣ . (1.44)

Using this definition, we can now write the KAM theorem as proven by Moser
for mappings [10].

Theorem 2 (KAM theorem). If Ω is a j-times differentiable twist mapping

dΩ

dI
≥ K > 0, (1.45)

then there is an ε > 0 such that all area-preserving maps

I ′µ = Iµ + fµ (Iν , θ
ν) , (1.46a)

θ′µ = θµ + Ωµ (Iν) + gµ (Iν , θ
ν) . (1.46b)

with ∫ 2π

0

fµ (Iν , θ
ν) dθν = 0, (1.47a)

|f |j + |g|j < εKC2 (1.47b)

have rotational invariant circles for all Diophantine frequencies with

1 < q <
j − 1

2
. (1.48)

These invariant circles are called KAM curves.
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The KAM theorem provides the first insight into the typical structure of near-
integrable systems. In an integrable system, the mapping consists of a nested
family of invariant circles with a fixed point in its center. Upon a small degree
of perturbation, some invariant circles remain and so does the fixed point in the
center. The set bounded by the outermost of the invariant circles is called the
main island of stability.

There is a different way to approach the problem of ”measure of irrationality”
than Diophantine numbers, that is the use of continued fractions. We can express
any irrational number in the form of a continued fraction

[a0, a1, a2, . . .] := a0 +
1

a1 + 1
a2+...

. (1.49)

Irrational numbers are harder to approximate by rationals if their continued-
fraction-expansion elements are small. An interesting subset is the set of noble
numbers, which is the set of irrationals for which a positive integer j exists such
that ai = 1 ∀i ≥ j. The ”noblest” of numbers is the golden mean

γ =
1 +
√

5

2
= [1, 1, 1, . . .] . (1.50)

Invariant circles with noble rotation numbers typically survive the highest degree
of perturbation. Usually, the last invariant circle to be destroyed is the one with
ω = γ − 1 = [0, 1, 1, 1, . . .] as discussed in [12].

1.10 Periodic points, linear stability

An interesting aspect of a symplectic map are periodicity and quasiperiodicity
of its orbits. Generally, we call an orbit of a map n-periodic, if n is the lowest
integer such that for a point (I, θ) of the orbit

Ωn (I, θ) = (I, θ + 2πm) ,m ∈ N. (1.51)

If we take the determinant of the symplectic condition in Eq. (1.38), we find
that detM = ±1. It can be shown [10] that detM = 1 holds, using this, we can
study the properties of fixed points and their vicinity. Since M is a real matrix,
its characteristic polynomial det (M − λI) has real coefficients. This means that
λ is its root if and only if λ∗ (∗ denotes the complex conjugate number) is its root
as well. Also, using the properties of the determinant:

0 = det (J2N) det (M − λI) = det
[(
MT

)−1 − λI
]

det (J2N) = det
(
M−1 − λI

)
,

(1.52)
meaning that λ is a root of the characteristic polynomial if and only if λ−1 is as
well. Therefore for an eigenvalue λ which is neither real nor on the unit circle
λ−1, λ∗ and λ∗−1 are eigenvalues of M as well. This can only occur in four- and
higher-dimensional maps. We limit ourselves to two-dimensional maps, where
eigenvalues exist in pairs. There are three ways this can happen:

1. |λ1| = 1, λ1 /∈ R ⇒ λ1 = exp (iζ) , λ2 = λ−1 = λ∗ = exp (−iζ): This does
not imply the unitarity of M , as the eigenbasis is not necessarily orthogonal
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Figure 1.1: a) A typical elliptic periodic point with the island around, b) a typical
hyperbolic periodic point with the chaotic zone around.

and the condition M †M = MM † is not necessarily met. However, it does
cause the eigenvalues of Mn to retain unit absolute value. This is why such
a fixed point of Mn is called an elliptic fixed point (or a stable fixed point),
as the points in the vicinity of such a point move on an ellipse around the
fixed point in the linearized map.

2. |λ1| 6= 1, λ1 ∈ R⇒ λ2 = λ−1: This causes points in the vicinity of the fixed
point move on a hyperbole in the linearized map except for points in one
of the eigendirections of M , therefore this point is called a hyperbolic point
(or an unstable fixed point).

3. λ1 = λ2 = ±1: Such a point is called indifferently stable.

The KAM theorem gives stability for circles of Diophantine frequencies. It
does not, however, state, what happens to those with rational frequencies. The
Poincaré-Birkhoff theorem gives an insight into the behavior of periodic orbits
after perturbation.

Theorem 3 (Poincaré-Birkhoff theorem [7]). For a curve of rational rotation
number r/s (r, s ∈ N incommensurable) of an unperturbed twist mapping, there
exists k ∈ N such that 2ks periodic points of period s remain after the perturba-
tion. These periodic points are alternately stable and unstable.

Corollary. Typically k = 1.

In an integrable system, a single resonant torus provides an infinite number of
different periodic trajectories; the perturbation reduces them to a finite number,
half of which are stable and the other half unstable. Around the stable periodic
points of the mapping arise smaller islands of stability. As the structure of the
phase space is self-similar, the same applies to the mapping Ωs around these
points, giving rise to higher-order resonances. A wonderful example of this self-
similar structure is shown for the standard map in Fig. 1.2.

In the rest of this section we will denote points in S by x for practical reasons.
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Figure 1.2: Example of the self-similar structure taken from [10], plotted using
the standard map.

Theorem 4 (Stable manifold theorem [13]). Let Ω be a symplectic mapping on
S and xf its fixed point. Then there exists a smooth manifold W s

(
xf
)

called
the stable manifold and a smooth manifold W u

(
xf
)

called the unstable manifold
defined as

W s
(
xf
)

= {x ∈ S : Ωjx
j→∞−→ xf}, (1.53a)

W u
(
xf
)

= {x ∈ S : Ω−jx
j→∞−→ xf}. (1.53b)

Corollary. An important property of these manifolds is their invariance, meaning
that

ΩW s
(
xf
)

= W s
(
xf
)
, (1.54a)

ΩW u
(
xf
)

= W u
(
xf
)
. (1.54b)

Theorem 5 (Hartman-Grobman theorem [14]). The behavior of W s
(
xf
)

and
W u

(
xf
)

around xf is topologically equivalent to the monodromy matrix M .

We can now study the properties of the manifolds W u
(
xf
)

and W s
(
xf
)
. It

can be easily seen that for any two hyperbolic fixed points xf1 6= xf2

W u
(
xf1

)⋂
W u

(
xf2

)
= ∅, (1.55a)

W s
(
xf1

)⋂
W s

(
xf2

)
= ∅. (1.55b)

This is obvious, if there existed a point x that belonged to two different stable
manifolds, the limit of Ωjx as j → ∞ would be both xf1 and xf2 ; the argument
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Figure 1.3: The typical phase space structure, figure taken from [7].

for unstable manifolds is the same with Ω−jx. Also, neither of the manifolds
can cross itself, as this would result in the existence of a periodic point on the

manifold. However, points where W u
(
xf1

)
crosses W s

(
xf2

)
can exist, and then,

in the case that xf1 = xf2 , the point is called homoclinic; if xf1 6= xf2 , the point is
called heteroclinic. If there exists a single homoclinic point (except for xf1 = xf2),
then applying Ωn for any n ∈ Z generates infinitely many homoclinic points, as
both the stable and the unstable manifold are invariant. These points generically
exist and an orbit passing through such a point x then must fulfill Ωjx→ xf1 for
both j →∞ and j → −∞. The topology of such an orbit is different from that
of a KAM curve. This typical structure is shown in Fig. 1.3.

The self-similar structure of a mapping means that if we take a hyperbolic
point, we find higher-order resonances around the neighboring islands, these once
again have their own hyperbolic points with their own unstable and stable man-
ifolds. This typically leads to the existence of heteroclinic points as well; the
existence of one again implies the existence of infinitely many, the argument is
the same as with homoclinic points. This behavior is what gives rise to the ex-
tremely complicated dynamics near hyperbolic points. As can be seen in Fig. 1.1
b), orbits near a hyperbolic point then typically densely fill the area around the
resonance.

1.11 Dynamical spectra

Angular dynamical spectra are a method of analysis of dynamical systems with
discrete time evolution, the method is described in [12].

We consider a two-dimensional symplectic map Ω, in our case the return
mapping of the Poincaré section S. Points in S are defined by two parameters x
and y. Let the initial point of an orbit be (xi, yi) and then the successive points
(xn, yn) := Ωn (xi, yi) for n ∈ N. Also, let (xc, yc) be a fixed point of Ω lying at the
center of the main island of stability. We can then simply define rotation angles

ϑn := ang [(xn+1 − xc, yn+1 − yc) , (xn − xc, yn − yc)] . (1.56)

It is the angle between the vectors from the point (xc, yc) to two successive points
of the orbit. It is a matter of convention to define the interval in which the angles
lie, we take [0, 2π).
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We define the spectrum of rotation angles as the distribution of these angles

S (ϑ) :=
dN (ϑ)

Ndϑ
. (1.57)

This spectrum has an invariant character along the same orbit/within the same
chaotic zone. We can therefore define the first angular moment

νϑ :=
1

2π

∫ 2π

0

S (ϑ) dϑ. (1.58)

The simplest way to calculate the angular moments numerically while evolving
an orbit is to calculate the rotation angles and calculate their average

νϑ = lim
N→∞

1

2πN

N∑
j=1

ϑj. (1.59)

It can be easily seen that the right side does converge to the angular moment and
that it corresponds to the rotation number ω as used in Eqs. (1.41).

A way to analyze the system is to take a set of initial conditions along a curve
in the Poincaré section and to calculate the angular moments for these orbits.
If we then plot the angular moments as a function of a parameter to determine
the initial condition (we call this the rotation curve), we can see some of the
properties of the system. Most importantly, in an integrable system, if the curve
is chosen such that it crosses every invariant circle only once, then the rotation
curve is monotone, namely growing in the direction from the center outwards,
thanks to the twist condition. In the case of a near-integrable system with the
standard behavior such as islands of stability and chaotic zones, the behavior of
the rotation curve changes significantly. The rotation curve has a plateau where
it crosses an island of stability; this behavior differs from that of KAM curves
because of our choice of xc and yc in the center of the main island of stability.
This allows us to detect even small islands by studying the rotation curve. On the
other hand, while crossing a chaotic zone, the rotation curve no longer exhibits
monotone behavior, which allows us to detect even thin chaotic zones. This
behavior is again described in [11], [12].

1.12 Chaos

Definition 6 (Devaney’s definition of chaos). By Devaney’s definition [15] we
call a symplectic map Ω on a compact metric space (S, ρ) chaotic, if:

1. It is topologically transitive:
For any two non-empty open U1, U2 ⊂ S there exists a n ∈ N such that

(ΩnU1) ∩ U2 6= ∅. (1.60)

2. Its periodic points are dense in the phase space.

3. It is sensitive to initial conditions:
There exists a δ > 0 such that for every point x ∈ S and every neighborhood
U (x) there exist y ∈ U (x) and n ∈ N such that ρ (Ωnx,Ωny) > δ.
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Corollary. It has been shown by Banks et al. in [16] that 1. and 2. ⇒ 3., meaning
that we only need topological transitivity and denseness of periodic points for the
system to exhibit sensitivity to initial conditions.

1.13 Deviation vector

Definition 7. We denote T(qµ,pµ)X the tangent space of the phase space X in the
point (qµ, pµ). The tangent bundle

TX :=
⋃

(xµ,pµ)∈X

T(xµ,pµ)X . (1.61)

The deviation vector is a point (ξµ, ψµ) ∈ TX .

Such a deviaton vector can be interpreted as the difference of two nearby
points in the phase space. Such a deviation vector then evolves by the variational
equations, which we obtain by expanding the equations of motion for the system
in the state xµ + γξµ, pµ + γψµ in γ and taking the terms only to first-order in γ.
For the geodesic deviation equation, it is simpler to use the typical form of the
geodesic equation

ẍµ + Γµκλẋ
κẋλ = 0. (1.62)

Taking the equation for the deviating trajectory we get

ẍµ + γξ̈µ + Γµκλ (xµ + γξµ)
(
ẋκ + γξ̇κ

)(
ẋλ + γξ̇λ

)
= 0. (1.63)

By expanding this equation to first order in γ, we gain an equation whose terms
constant in γ are the geodesic equation itself and the ones linear in γ give the
geodesic deviation equation in the form

ξ̈µ +
∂Γµκλ
∂xν

ẋκẋλξν + 2Γµκλẋ
κξ̇λ = 0. (1.64)

We want to discern chaotic from regular behavior by measuring the growth of
deviation vectors. We first need to define a measure of deviation vectors invariant
under coordinate transformation. In [17] the choice

Ξ2 = gµνξ
µξν + gµν

Dξµ

dτ

Dξν

dτ
(1.65)

is suggested as it measures the deviation in the phase space. We will, however,
use the simpler choice [17]

Ξ2 = gµνξ
µξν (1.66)

which only measures the deviation in the configuration space and is simpler to
implement.

For chaotic orbits, the growth of deviation vectors is typically exponential, of
the form (λ > 0)

Ξ (τ) ∼ exp (λτ) . (1.67)

For unstable periodic orbits (corresponding to hyperbolic points of the return
mapping) this is obvious. For non-periodic chaotic orbits a periodic orbit of
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arbitrarily large period can be found arbitrarily close [7]. We therefore study the
convergence of the finite maximal Lyapunov characteristic exponent

FmLCE (τ) :=
1

τ
log

Ξ (τ)

Ξ (0)
. (1.68)

This indicator clearly converges to λ if Eq. (1.67) holds for large values of τ .
For regular orbits the growth of Ξ is typically linear. This can be easily seen

using action-angle variables, as the evolution of the system is then linear as well.
We would like to see how the FmLCE defined in the previous paragraph behaves
in this case. If the measure of the deviation vector is of the form

Ξ (τ) = Ξ (0) (1 + Aτ) , (1.69)

then FmLCE (τ) apparently converges to zero for τ →∞. If plotted in logarith-
mic scale (in both τ and FmLCE), for large enough values of τ

FmLCE (τ) ∼ 1

τ
. (1.70)

Then we see a straight line with slope −1 converging to zero, while for a chaotic
orbit FmLCE (τ) converges to the maximal Lyapunov exponent

mLCE := lim
τ→∞

FmLCE (τ) > 0. (1.71)

This is a way to discern chaotic from regular orbits. Its greatest problem
is that until we see the FmLCE converge to a non-zero value we cannot state
categorically whether the trajectory is regular or chaotic. We call the time it
takes for FmLCE to display the behavior we expect from chaotic trajectories
the Lyapunov time. It is a good rule of thumb that its value is approximately
1/mLCE.
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2. Numerical results

2.1 Effective potential

First of all, we call the subset θ = π/2 of the spacetime manifold the equatorial
plane. It is noteworthy that while we use the word ”plane”, its geometry is
different from that of a plane. It does, however, possess properties which are
interesting both in relation to the spacetime properties (reflection symmetry of the
spacetime) and in relation to the set of Boyer-Lindquist-like coordinates t, r, θ, φ.

It is necessary to discuss the values of the metric parameters we will be study-
ing. To work in dimensionless units, we set the scale of all the parameters with
respect to M , which practically is equivalent to setting M = 1. The value of the
spin a can then be chosen anywhere in the interval [−1, 1]. Setting it equal to
±1 would cause the object to become an extremal black hole. As can be seen in
[1], this would severely limit our ability to vary the parameter ε3, which would be
limited to non-positive numbers in order to avoid pathologies, namely a disjoint
event horizon as described in [3]. We will therefore work with a value lower than
a = 1.

The value a = 0 is an uninteresting case, as this would simplify the metric to

ds2 = gtt (r) dt2 + grr (r) dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.1)

This form of the metric describes a spherically symmetric spacetime. In such a
spacetime for any geodesic trajectory there exists a change of coordinates which
doesn’t affect the metric and moves the trajectory to the equatorial plane, making
such motion fully integrable and possible to investigate using the methods shown
later in this section. Another way to view the integrability issue is that there is
an additional constant of the motion, that is a second component of the angular
momentum (Lx and Ly are in involution with Lz), causing the motion to be
integrable.

Last of all, setting a < 0 would only change the sign of gtφ, meaning that
using the transformation φ 7→ −φ, we would get the same spacetime except for a,
which would again change sign. We can therefore limit our choice to a ∈ (0, 1).

As we know the Hamiltonian (1.30) to be not only an integral of the motion,
but to be the same for every orbit, we can write

(pr)
2 +

grr
gθθ

(pθ)
2 = −grr

(
1 +

gφφE
2 + gttL

2
z + 2gtφELz

gttgφφ − g2
tφ

)
. (2.2)

The functions grr and gθθ are positive everywhere above the event horizon (the
set where grr diverges), which is our area of interest. For a particle with the
energy E and z-component of angular momentum Lz then the right side of this
equation must be non-negative, which determines the region, in which such a
particle moves. We denote the effective potential

Veff := grr

(
1 +

gφφE
2 + gttL

2
z + 2gtφELz

gttgφφ − g2
tφ

)
. (2.3)

21



The first use of the effective potential is to determine the characteristics of an
orbit lying in the equatorial plane. These orbits do exist, because the spacetime
is reflection symmetric, so orbits with initial conditions θ = π/2, pθ = 0 remain in
the equatorial plane. A particle then moves in the region where Veff (r, π/2) ≤ 0.
The usual shape of the effective potential is as shown in Fig. 2.1. In the case
a) the particle’s r coordinate oscillates between the two roots of the effective
potential. In the case b) the particle plunges into the central object. These two
trajectories are plotted in the equatorial plane in Fig. 2.1 c) and d). As the
equatorial plane is parametrized by polar-like coordinates r and φ, the plots are
made using Cartesian-like coordinates r cosφ and r sinφ. The initial conditions
for these trajectories were chosen r = 5, pr > 0. The roots of the effective
potential Veff (r, π/2), i.e. the turning points, are plotted as red circles to illustrate
the properties of trajectories in the equatorial plane. The black hole’s horizon is
plotted green.

Trajectories lying in the equatorial plane are always regular, as the coordinate
θ = π/2 remains constant during the motion and so does pθ = 0, so the motion of
the reduced system now lies in a two-dimensional subset of the phase space with
a non-trivial integral H.

In the case of trajectories which do not lie in the equatorial plane Eq. (2.2)
holds as well, the difference is that pθ is no longer identically zero. We define
the curve of zero velocity (CZV) as Veff (r, θ) = 0; as the left side of Eq. (2.2)
is non-negative above the horizon, the CZV is the boundary of the accessible
zone in the (r, θ) plane. The plane φ = const, for simplicity φ = 0, in the
non-reduced system is called the meridian plane, in which r and θ are again
polar-like coordinates, it is therefore geometrically more accurate to display it
using coordinates (r sin θ, r cos θ). In Fig. 2.2 the CZV is shown with the same
parameters as the effective potential in Fig. 2.1. In a) and b), the bounded
case is shown, in c) and d) the case allowing plunging orbits is shown. Several
trajectories of the system are plotted in Fig. 2.2.

2.2 Surface of section

We study the dynamics of the reduced system of Eq. (1.30) by using a surface
of section. As we have described in Sec. 1.8, we define Q as the set of points in
the reduced system’s phase space for which θ = π/2 and pθ > 0 hold; E as the
set of points for which H = −1/2 holds. In order to study the return mapping,
we need to parametrize the surface S = Q∩ E . This indeed is a two-dimensional
surface. We parametrize it using coordinates r, pr, as is typical, see e.g. [17], [18]

We have to verify that these coordinates uniquely determine the point in phase
space. Using the definition of Q, we see that θ = π/2 is as well uniquely defined.
As for pθ, its absolute value is determined by the definition of E . In the case that
it is positive, the definition of Q determines that the point is the one with pθ > 0.
The points in S are subject to the condition (2.2), therefore

|pr| <
√
−Veff (r, π/2). (2.4)

This condition gives the ranges of values of the parameters r and pr which fully
parametrize S.
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Figure 2.1: a) the effective potential for a quasiperiodic orbit, Lz = 3.20, b)
the effective potential allowing plunging orbits, Lz = 2.85, c) the trajectory
corresponding to (a), d) the trajectory corresponding to (b); parameters taken
M = 1, a = 0.5, ε3 = 0.3, E = 0.95.
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Figure 2.2: Projections of trajectories on the meridian plane bounded by the
CZV (black) and the horizon (green), a) the period-1 orbit (red) for Lz = 3.20;
b) a KAM orbit (red) for Lz = 3.20; c) the period-1 orbit (red), the 5/7 periodic
orbit (blue) for Lz = 2.85; d) a KAM orbit (red) for Lz = 2.85; parameters taken
a = 0.5, ε3 = 0.3, E = 0.95.
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The points in S for which

|pr| =
√
−Veff (r, π/2) (2.5)

holds form a curve in the boundary of S. This curve is the boundary of S in the
(r, pr) plane. It corresponds to points of Q for which pθ = 0, meaning that points
on the boundary curve correspond to orbits in the equatorial plane. However,
they are not, strictly speaking, points in S, as its definition requires that pθ > 0;
any trajectory which in at least one point has θ = π/2 and pθ = 0 necessarily lies
in the equatorial plane because of the spacetime’s reflection symmetry, therefore
extending the definition of Q to pθ ≥ 0 would violate the transversality condition.

The properties of the boundary curve are easily shown using the properties
of the effective potential: the set of values r for which the effective potential
restricted to the equatorial plane Veff (r, π/2) is negative typically has 1 or 2
maximal connected components as seen in Fig. 2.1, the boundary curve then also
divides S into 1 or 2 accessible zones in the (r, pr) plane.

Figure 2.3 shows the phase portrait of the return mapping for both the in-
tegrable case ε3 = 0 and for the perturbed case ε3 = 0.3. For a) and b), the
boundary expressed by (2.5) is plotted as well with a dashed line. No visible
signs of chaos can be seen. However, in c) and d), a close-up of the left tip of
the main island of stability is shown and more significant differences arise. We
can see that in c) there are still only invariant curves, as it is a surface calculated
for the Kerr metric, while d) shows several resonances and chaotic trajectories
outside and inside the island.

In systems with escapes chaos is more prominent than in others because of
the appearance of an unstable point. We, therefore, take the parameters which
allow us to get trajectories which eventually plunge in the central object. We
take a = 0.5, E = 0.95 and Lz = 2.85. The left tips of the surfaces of section for
ε3 from −0.7 to 0.7 with intervals of 0.1 (except for 0, which is integrable) have
been calculated with N = 3000 points per initial condition and are shown in Figs.
2.4-2.17 in the order of ε3: 0.1→ 0.7, then −0.1→ −0.7. Initial conditions were
taken along the pr = 0 line with initial values of r taken in intervals of 0.0002.
They are plotted together with the corresponding rotation curves, which have
been calculated with N = 4096 points per initial condition and whose initial
conditions were taken along the pr = 0 line with initial values of r taken in
intervals of 0.00005.

The surfaces of section shown along with the rotation curves display the typ-
ical behavior of the rotation curve. For example, if we look at Fig. 2.6, we see
the non-monotonic variations where passing through the chaotic sea and the dive
where passing through a hyperbolic fixed point at the 3/4 resonance. The behav-
ior within a resonance is best seen in the case of ε3 < 0, for example Fig. 2.14
shows a large plateu of the 3/4 resonance.

It is interesting to note the behavior of three significant resonances, which are
plotted in colors in the surfaces of section: 3/4 (plotted in red), 19/25 (plotted
in green) and 13/17 (plotted in blue). We see in Figs. 2.6, 2.14 that for positive
values of ε3 the fixed point lying on the horizontal line pr = 0 is hyperbolic for
the resonance 3/4 and elliptic for 19/25, while for negative values of ε3 these two
resonances ”switch roles”. To even further demonstrate the complexity of the
perturbation, we see that the resonance 13/17 does not exhibit this behavior, as
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Figure 2.5: Left tip of the surface of section for ε3 = 0.2 with the corresponding
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Figure 2.6: Left tip of the surface of section for ε3 = 0.3 with the corresponding
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29



-0.006

-0.004

-0.002

0

0.002

0.004

0.006

3.18 3.185 3.19 3.195 3.2

p r

r

ε3 = 0.4

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

3.18 3.185 3.19 3.195 3.2

ν ϑ

r

7
9

45
59 19

25 25
33

31
41 3

4

Figure 2.7: Left tip of the surface of section for ε3 = 0.4 with the corresponding
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E = 0.95, Lz = 2.85.
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Figure 2.9: Left tip of the surface of section for ε3 = 0.6 with the corresponding
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Figure 2.10: Left tip of the surface of section for ε3 = 0.7 with the corresponding
rotation curve and fractions denoting resonances; parameters taken: a = 0.5,
E = 0.95, Lz = 2.85.
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Figure 2.11: Left tip of the surface of section for ε3 = −0.1 with the corresponding
rotation curve and fractions denoting resonances; parameters taken: a = 0.5,
E = 0.95, Lz = 2.85.
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Figure 2.12: Left tip of the surface of section for ε3 = −0.2 with the corresponding
rotation curve and fractions denoting resonances; parameters taken: a = 0.5,
E = 0.95, Lz = 2.85.
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Figure 2.13: Left tip of the surface of section for ε3 = −0.3 with the corresponding
rotation curve and fractions denoting resonances; parameters taken: a = 0.5,
E = 0.95, Lz = 2.85.
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Figure 2.14: Left tip of the surface of section for ε3 = −0.4 with the corresponding
rotation curve and fractions denoting resonances; parameters taken: a = 0.5,
E = 0.95, Lz = 2.85.
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Figure 2.15: Left tip of the surface of section for ε3 = −0.5 with the corresponding
rotation curve and fractions denoting resonances; parameters taken: a = 0.5,
E = 0.95, Lz = 2.85.
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Figure 2.16: Left tip of the surface of section for ε3 = −0.6 with the corresponding
rotation curve and fractions denoting resonances; parameters taken: a = 0.5,
E = 0.95, Lz = 2.85.
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Figure 2.17: Left tip of the surface of section for ε3 = −0.7 with the corresponding
rotation curve and fractions denoting resonances; parameters taken: a = 0.5,
E = 0.95, Lz = 2.85.
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its fixed point lying on the pr = 0 line near the left tip of the main island of
stability is hyperbolic for both negative and positive values of ε3.

Another aspect to note is that for the 3/4 resonance we see for positive values
of ε3 that by taking initial conditions in the leftmost island with pr > 0 we didn’t
get any points in the symmetrical area pr < 0 where there is obviously another
island of the same resonance. This shows that k used in the Poincaré-Birkhoff
theorem Thm. 3 truly doesn’t always take on the value 1, as in this case it is at
least k = 2. We also plot a detail of the 7/9 resonance in the ε3 = 0.3 case in Fig.
2.18, where we can see not only the primary resonance 7/9, but also 2 secondary
resonances 1/2 (another case of k = 2 in Thm. 3) and even tertiary resonances
7/8, showing the self-similar structure of the phase space.

As the perturbation increases, we can see how the destruction of outer in-
variant circles causes resonances which were previously inside the main island of
stability to move outwards into the chaotic sea; this can be best seen by watching
the color-plotted resonances 3/4 and 19/25, which were surrounded by invariant
circles for ε3 = 0.4 in Fig. 2.7, but are no longer within the main island of stability
for ε3 = 0.5 in Fig. 2.8.

We also see that even around invariant circles, the rotation curve has a stair-
like structure. This is explained in the section about dynamical spectra.
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2.3 Dynamical spectra

Spectra of rotation angles have also been plotted in Figs. 2.19-2.22 for several
initial conditions, iterating the orbit N = 20000 times and constructing the spec-
trum as a histogram in 750 equally long intervals in [0 : 2π). We see in Fig. 2.19
that for an invariant circle near the center (rc) of the main island of stability
(initial condition ri = 9, rc = 9.07878724) the spectrum is fairly simple with two
large peaks, first at a value slightly larger than 0, second at a value slightly lower
than π. But as we move away from the center, we see in Fig. 2.19 for initial
ri = 8 that a new peak appears near the first one before again vanishing. As we
approach the left tip of the main island of stability, the angles near 2π become
significant (Figs. 2.20-2.22). All of these spectra were constructed for a = 0.5,
ε3 = 0.3, E = 0.95, Lz = 2.85.

We see in Figs. 2.19-2.21 that, as shown in [12], the spectra are continuous
for KAM curves. Also, we notice in Figs. 2.21, 2.22 that discontinuities appear
for resonances and chaotic orbits.

Seeing that for all the plotted spectra the rotation angles are mostly dis-
tributed near the angles 0, π and 2π, this means that if we take two nearby initial
conditions and evaluate Eq. (1.59) with the same number of iterations, the sum
in the equation will differ by approximately a multiple of π, meaning that we can
expect the inaccuracy of the rotation number calculation to be approximately a
multiple of 1/2N . If we take two values of νϑ for two successive initial conditions
on one of the rotation curves, it appears that usually they indeed follow such a
law, the difference being typically close to zero or to 1/N [19].

2.4 Lyapunov exponents

In this section we demonstrate the calculation of the mLCE. Again, the calcu-
lations were done for a = 0.5, E = 0.95, Lz = 2.85. The convergence of the
Lyapunov characteristic exponents is shown in Fig. 2.23 for 3 cases: a regular
orbit, 2 chaotic orbits near the 3/4 resonance for different degrees of perturba-
tion, and a strongly chaotic orbit whose mLCE converges before diffusing into
the chaotic sea, which is when the FmLCE (τ) again increases, as the trajectories
in the chaotic sea typically have larger LCEs. This is the phenomenon of ”stick-
iness” [20], where trajectories outside the island of stability but close to the last
KAM curve remain close to the island for very long times before diffusing into
the chaotic sea. We notice that in 2.23 the orbits were evaluated for different
times: the time is limited by computational abilities, in the case (b) a long time
was needed for FmLCE to converge, while in the case (d) the evaluation had to
be stopped because the trajectory plunged.

Eventually, we take a specific resonance and watch how the mLCE of the
nearby chaotic trajectories changes when we increase the degree of perturbation.
We choose the resonance 3/4, as it isn’t difficult to locate a hyperbolic fixed
point (it lies on the pr = 0 line and the resonance is significant enough to make
the chaotic zone large as well). The mLCE has been calculated for values ε3 =
0.1, 0.2, 0.3, 0.4, 0.5 with a = 0.5, E = 0.95 and Lz = 2.85 (the cases ε3 =
0.1, 0.3, 0.5 were used in Fig. 2.23). The computed mLCEs are plotted in Fig.
2.24. As we see in 2.23, the FmLCE still oscillates even after the Lyapunov time,
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Figure 2.19: Dynamical spectra of regular orbits with initial a) ri = 9, b) ri = 8,
c) ri = 7
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Figure 2.20: Dynamical spectra of regular orbits with initial a) ri = 6, b) ri = 5,
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Figure 2.22: Dynamical spectra of orbits with initial a) ri = 3.222 (regular, 7/9
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Figure 2.23: Convergence of the Lyapunov exponents for a) a regular trajectory
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the error bars account for this oscillation. We see in Fig. 2.24 that the mLCE is
orders of magnitude lower for ε3 = 0.1 than for higher values, for which it doesn’t
appear to grow significantly anymore. This could be caused by merging of two
nearby resonances.

48



Conclusion

We have summarized the basics of theory of dynamical systems, introduced the
notion of integrability, chaos, symplectic mappings and described their proper-
ties. A program has been written in C to evolve geodesic trajectories in the
Johannsen-Psaltis spacetime, to plot surfaces of section, to evolve geodesic devi-
ation equations and to calculate Lyapunov exponents. Then we have employed
numerical examples by using the above program to show that chaos emerges in
this spacetime when deviating from the Kerr metric by a perturbation parame-
ter. Thus, we have proven that geodesic motion in the Johannsen-Psaltis metric
corresponds to a non-integrable system.

The point of this research is to understand the motion of massive test particles
in a non-integrable spacetime background. Even though a test particle should
be added to the energy-stress tensor and therefore alter the geometry of the
spacetime, geodesic motion is a good approximation of the motion of a compact
object which is much less massive than the central compact object. The results
of such research might have implications in the emission of gravitational wave
signals from extreme mass ratio inspirals, i.e. a stellar mass black hole or a
neutron star inspiraling into a supermassive black hole of mass on the order of
105 − 107 solar masses. If we were to observe the gravitational wave signature
of such an event, we might be able to decode if this signal comes from an orbit
with chaotic behavior, which would indicate the presence of a non-integrable
spacetime background, possibly of a non-Kerr spacetime. Other possible sources
of non-integrability include other matter nearby, e.g. an accretion disk.

Such observation is currently not in our capabilities (so far we have only
measured a few events of gravitational waves, where the progenitor consists of
two black holes with comparable mass); it is, however, possible that in the next
decade the European New Gravitational Wave Observatory (NGO) [18] will be
launched. It will be able to detect EMRIs into supermassive compact objects at
the centers of galaxies. This will allow us to conduct strong-field experiments
and make conclusions on the Kerr hypothesis [3] and, possibly, on the no-hair
theorem [2].
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A. Properties of the
Johannsen-Psaltis spacetime

While the calculation of the inverse metric tensor may get tedious in a gen-
eral four-dimensional spacetime, the symmetries of this metric simplify the task
greatly. As the only non-diagonal elements of the metric tensor are the ones
corresponding to the coordinates t and φ, giving the metric block diagonal form
with three blocks of dimensions 1, 1 and 2. This simplifys the calculation of the
contravariant metric

gtt =
gφφ

gttgφφ − g2
tφ

, (A.1a)

gφφ =
gtt

gttgφφ − g2
tφ

, (A.1b)

gtφ = gφt = − gtφ
gttgφφ − g2

tφ

, (A.1c)

gθθ =
1

gθθ
, (A.1d)

grr =
1

grr
. (A.1e)

In the text we work with the integrals of motion (1.29). Using the contravari-
ant metric components (A.1) we can express

ut = −gφφE + gtφLz
gttgφφ − g2

tφ

, (A.2a)

uφ =
gtφE + gttLz
gttgφφ − g2

tφ

, (A.2b)

which is useful for numerical calculations.

To solve all the equations involved in this thesis we need the Christoffel sym-
bols of the second kind and their derivatives, their calculation includes the cal-
culation of the first and second derivatives of the metric.

Σ,r = 2r, Σ,θ = −2a2 sin θ cos θ (A.3a)

h,r = h

(
1

r
− 2Σ,r

Σ

)
, h,θ = −2

Σ,θ

Σ
· h (A.3b)

∆,r = 2 (r −M) , ∆,θ = 0 (A.3c)(
ω2
)
,r

= 2r,
(
ω2
)
,θ

= 0 (A.3d)

Λ,r = 2ω2
(
ω2
)
,r
− a2∆,r sin2 θ (A.3e)

Λ,θ = −2a2∆ sin θ cos θ (A.3f)
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B,r = ∆,r + a2h,r sin2 θ (A.4a)

B,θ = a2h,θ sin2 θ + 2a2h sin θ cos θ (A.4b)

C,r = C

(
Λ,r

Λ
− Σ,r

Σ

)
(A.4c)

C,θ = C

(
Λ,θ

Λ
− Σ,θ

Σ
+ 2

cos θ

sin θ

)
(A.4d)

F,r = −2Mr

Σ2
Σ,r +

2M

Σ
(A.4e)

F,θ = −2Mr

Σ2
Σ,θ (A.4f)

D,r = D

(
h,r
h

+
F,r
F

)
(A.4g)

D,θ = D

(
h,θ
h

+
F,θ
F

+ 4
cos θ

sin θ

)
(A.4h)

Σ,rr = 2, Σ,θr = Σ,rθ = 0, Σ,θθ = 2a2
(
1− 2 cos2 θ

)
(A.5a)

h,rr =
h2
,r

h
+ h

(
2

Σ2
,r

Σ2
− 2

Σ,rr

Σ
− 1

r2

)
(A.5b)

h,θr = h,rθ =
h,θh,r
h

+ 2
hΣ,θΣ,r

Σ2
(A.5c)

h,θθ =
h2
,θ

h
+ 2h

Σ2
,θ

Σ2
− 2h

Σ,θθ

Σ
(A.5d)

∆,rr = 2, ∆,θr = ∆,rθ = ∆,θθ = 0 (A.5e)(
ω2
)
,rr

= 2,
(
ω2
)
,θr

=
(
ω2
)
,rθ

=
(
ω2
)
,θθ

= 0 (A.5f)

Λ,rr = 2
(
ω2
)2

,r
+ 2ω2

(
ω2
)
,rr
− a2∆,rr sin2 θ (A.5g)

Λ,θr = Λ,rθ = −2a2∆,r sin θ cos θ (A.5h)

Λ,θθ = 2a2∆
(
1− 2 cos2 θ

)
(A.5i)
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B,rr = ∆,rr + a2h,rr sin2 θ (A.6a)

B,θr = B,rθ = a2h,θr sin2 θ + 2a2h,r sin θ cos θ (A.6b)

B,θθ = a2
[
4h,θ sin θ cos θ + 2h

(
1− 2 sin2 θ

)
+ h,θθ sin2 θ

]
(A.6c)

C,rr =
C2
,r

C
+ C

(
ΛΛ,rr − Λ2

,r

Λ2
−

ΣΣ,rr − Σ2
,r

Σ2

)
(A.6d)

C,θr = C,rθ =
C,θC,r
C

+ C

(
Λ,θrΛ− Λ,θΛ,r

Λ2
+

Σ,θΣ,r

Σ2

)
(A.6e)

C,θθ =
C2
,θ

C
+ C

(
ΛΛ,θθ − Λ2

,θ

Λ2
−

ΣΣ,θθ − Σ2
,θ

Σ2
− 2

sin2 θ

)
(A.6f)

F,rr =
4Mr

Σ3
Σ2
,r −

2Mr

Σ2
Σ,rr −

4M

Σ2
Σ,r (A.6g)

F,θr = F,rθ =
4Mr

Σ3
Σ,rΣ,θ −

2M

Σ2
Σ,θ (A.6h)

F,θθ =
4Mr

Σ3
Σ2
,θ −

2Mr

Σ2
Σ,θθ (A.6i)

D,rr =
D2
,r

D
+D

(
hh,rr − h2

,r

h2
+
F,rrF − F 2

,r

F 2

)
(A.6j)

D,θr = D,rθ =
D,θD,r

D
+D

(
hh,θr − h,rh,θ

h2
+
FF,θr − F,θF,r

F 2

)
(A.6k)

D,θθ =
D2
,θ

D
+D

(
hh,θθ − h2

,θ

h2
+
FF,θθ − F 2

,θ

F 2
− 4

sin2 θ

)
(A.6l)

gtt,r = −h,r
(

1− 2Mr

Σ

)
− (1 + h)

(
2Mr

Σ2
Σ,r −

2M

Σ

)
(A.7a)

gtt,θ = −h,θ
(

1− 2Mr

Σ

)
− (1 + h)

2Mr

Σ2
Σ,θ (A.7b)

gtφ,r = gtφ

(
h,r

1 + h
+

1

r
− Σ,r

Σ

)
(A.7c)

gtφ,θ = gtφ

(
h,θ

1 + h
+ 2

cos θ

sin θ
− Σ,θ

Σ

)
(A.7d)

gφφ,r = C,r +D,r (A.7e)

gφφ,θ = C,θ +D,θ (A.7f)

grr,r = grr

(
Σ,r

Σ
+

h,r
1 + h

− B,r

B

)
(A.7g)

grr,θ = grr

(
Σ,θ

Σ
+

h,θ
1 + h

− B,θ

B

)
(A.7h)

gθθ,r = Σ,r (A.7i)

gθθ,θ = Σ,θ (A.7j)
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gtt,rr =− h,rr
(

1− 2Mr

Σ

)
+ 2Mh,r

Σ− rΣ,r

Σ2
− h,r

(
2Mr

Σ2
Σ,r −

2M

Σ

)
− 2M (1 + h)

(2Σ,r + rΣ,rr) Σ− 2rΣ2
,r

Σ3

gtt,θr =gtt,rθ = −h,θr
(

1− 2Mr

Σ

)
+ 2Mh,θ

Σ− rΣ,r

Σ2
− 2Mr

Σ2
h,rΣ,θ

− 2M (1 + h)
ΣΣ,θ − 2rΣ,θΣ,r

Σ3

gtt,θθ =− h,θθ
(

1− 2Mr

Σ

)
− 4Mrh,θ

Σ,θ

Σ2
− 2Mr (1 + h)

ΣΣ,θθ − 2Σ2
,θ

Σ3

gtφ,rr =
g2
tφ,r

gtφ
+ gtφ

[
h,rr (1 + h)− h2

,r

(1 + h)2 − 1

r2
−

Σ,rrΣ− Σ2
,r

Σ2

]
gtφ,θr =gtφ,rθ =

gtφ,θgtφ,r
gtφ

+ gtφ

[
h,θr (1 + h)− h,rh,θ

(1 + h)2 +
Σ,θΣ,r

Σ2

]
gtφ,θθ =

g2
tφ,θ

gtφ
+ gtφ

(
h,θθ (1 + h)− h2

,θ

(1 + h)2 − 2

sin2 θ
−

Σ,θθΣ− Σ2
,θ

Σ2

)
gφφ,rr =C,rr +D,rr

gφφ,θr =gφφ,rθ = C,θr +D,θr

gφφ,θθ =C,θθ +D,θθ

grr,rr =
g2
rr,r

grr
+ grr

[
Σ,rrΣ− Σ2

,r

Σ2
+
h,rr (1 + h)− h2

,r

(1 + h)2 −
B,rrB −B2

,r

B2

]
grr,θr =grr,rθ =

grr,rgrr,θ
grr

+ grr

[
−Σ,θΣ,r

Σ2
+
h,θr (1 + h)− h,rh,θ

(1 + h)2 − B,θrB −B,θB,r

B2

]
grr,θθ =

g2
rr,θ

grr
+ grr

[
Σ,θθΣ− Σ2

,θ

Σ2
+
h,θθ (1 + h)− h2

,θ

(1 + h)2 −
B,θθB −B2

,θ

B2

]
gθθ,rr =Σ,rr

gθθ,θr =gθθ,rθ = Σ,θr = 0

gθθ,θθ =Σ,θθ
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Generally in stationary axisymmetric spacetimes expressed in terms of four
metric functions gtt, grr, gθθ, gφφ and gtφ the Chistoffel symbols are expressed as
follows.

Γθrθ =
gθθ,r
2gθθ

(A.9a)

Γθtt = − gtt,θ
2gθθ

(A.9b)

Γθφφ = −gφφ,θ
2gθθ

(A.9c)

Γθθθ =
gθθ,θ
2gθθ

(A.9d)

Γθrr = −grr,θ
2gθθ

(A.9e)

Γθtφ = −gtφ,θ
2gθθ

(A.9f)

Γrrr =
grr,r
2grr

(A.10a)

Γrθr =
grr,θ
2grr

(A.10b)

Γrtt = − gtt,r
2grr

(A.10c)

Γrθθ = −gθθ,r
2grr

(A.10d)

Γrφφ = −gφφ,r
2grr

(A.10e)

Γrtφ = −gtφ,r
2grr

(A.10f)

Γφrt =
−gtt,rgtφ + gtφ,rgtt

2
(
gttgφφ − g2

tφ

) (A.11a)

Γφθt =
−gtt,θgtφ + gtφ,θgtt

2
(
gttgφφ − g2

tφ

) (A.11b)

Γφrφ =
−gtφ,rgtφ + gφφ,rgtt

2
(
gttgφφ − g2

tφ

) (A.11c)

Γφθφ =
−gtφ,θgtφ + gφφ,θgtt

2
(
gttgφφ − g2

tφ

) (A.11d)

Γtrt =
gtt,rgφφ − gtφ,rgtφ
2
(
gttgφφ − g2

tφ

) (A.12a)

Γtθt =
gtt,θgφφ − gtφ,θgtφ
2
(
gttgφφ − g2

tφ

) (A.12b)

Γtrφ =
gtφ,rgφφ − gφφ,rgtφ
2
(
gttgφφ − g2

tφ

) (A.12c)

Γtθφ =
gtφ,θgφφ − gφφ,θgtφ
2
(
gttgφφ − g2

tφ

) (A.12d)
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B. Numerical accuracy

For the integration of geodesic orbits a program has been written using the lan-
guage C. Two versions were created, both use the 4th order Runge-Kutta algo-
rithm with an adaptive step size. Although we study the reduced system (1.30),
we integrate the full geodesic equation

ẋµ = uµ (B.1a)

u̇µ = −Γµνλu
νuλ (B.1b)

with the Christoffel symbols and metric and its derivatives in Appendix A.
The step size ∆τ is determined by tracking the evolution of L, which is sup-

posed to be an integral of motion, as it is formally equal to the Hamiltonian H.
The algorithm tracks the relative error of the Lagrangian

∆Lrel =

∣∣∣∣L (τ + ∆τ)− L (τ)

L (τ)

∣∣∣∣ (B.2)

and if ∆Lrel increases above a given maximal value ∆Lmaxrel , the integration step
is halved, if it decreases below a given minimal value ∆Lminrel , the integration step
is doubled. This cannot guarantee the accuracy of the overall calculation, which
we attempt to monitor by tracking the overall error

∆Labs =

∣∣∣∣L (τ)− L (0)

L (0)

∣∣∣∣ . (B.3)

The overall time evolution of the errors ∆Labs and ∆Lrel at the N -th point of the
surface of section is shown in Fig. B.1. The overall error shows slow numerical
drift, which is small compared to the scale of studied phenomena.

The first version is used to study the return mapping of the equatorial plane
as described in detail in Chapter 2, the file with the source code is section.c.
As it integrates the geodesic orbits, it also calculates the rotation angles and the
rotation numbers. Using two constants in the beginning of the code, it can be set
whether to write points of the Poincaré section and whether to write the rotation
angles, which can later be used to calculate the angular dynamical spectra. The
center points of the main islands of stability (needed to determine the rotation
angles) are determined using an iterative scheme by plotting surfaces of section
in small zones around the center up to 9 significant digits. The second version
takes no interest in the points where orbits pass through the equatorial plane, it
instead evolves the geodesic deviation equation and calculates the FmLCE, the
file with the source code is deviation.c.

It is also important to note that because of the exponential growth of the de-
viation vectors their components can reach very large values, which would cause
the calculation to lose its accuracy. We make use of the fact that the geodesic
deviation equation is linear, so we monitor the deviation vector’s length Ξ and
renormalize every time it increases above a given boundary. The renormaliza-
tion procedure consists of simply reducing the vector by a constant factor and
calculating the logarithm of the length as a sum of logarithms of the reduction
factors and of the current length. This ensures that the calculated values remain
as accurate as possible.

63



-11

-10

-9

-8

-7

0 1 2 3 4

lo
g

1
0

∆
L
a
bs

log10N

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

0 1 2 3 4

lo
g

1
0

∆
L
r
el

log10N

Figure B.1: The error a) ∆Labs, b) ∆Lrel evaluated at the N -th point of the
surface of section for a regular orbit ri = 3.226 (black) and a chaotic orbit ri =
3.2294 (red), both initial conditions lie on the surface of section for a = 0.5,
ε3 = 0.3, E = 0.95, Lz = 2.85.
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