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Introduction

Dynamical systems are a broad topic in mathematics. In its most general form,
a discrete-time dynamical system consists of a set X (sometimes referred to as
“phase space”) and a map T : X → X (sometimes called “time-evolution law”).
There are also continuous-time dynamical systems where instead of a single map T
we in fact have a family of maps {T t : t ∈ R+} which forms a semigroup, but we
shall not pursue this direction.

The set X is often assumed to have some additional structure and the map T
to be “compatible” with this structure. For example, in topological dynamics, X
is a topological space and T is a continuous map on X. There are also other
branches, such as ergodic theory, or theory of smooth dynamical systems. In this
thesis, we will deal only with topological dynamics.

Topological entropy is a nonnegative real number measuring the complexity
of a topological dynamical system. It was originally defined by Adler et al. [1965].
Their definition is valid for any compact Hausdorff space, as it defines complexity
in terms of sizes of covers and refinements. In compact metric spaces, a different
definition was introduced by Bowen [1971] and independently by Dinaburg [1970].
This definition uses (n, ε)-separated sets and relies on the metric. However, this
notion depends only on the topology and it turns out that both definitions of
topological entropy are equivalent. We will restrict ourselves only to metric spaces
and use the latter definition for the purpose of this thesis.

There have been several attempts to generalize the notion of topological en-
tropy to noncompact spaces. In our thesis, we will use the definition from Cánovas
and Rodŕıguez [2005].

The structure of this thesis is as follows. Chapter 1 contains an introduction to
basic notions in topological dynamics and presents several examples. Chapter 2
starts with the definition of topological entropy for a compact metric space, lists
some of its properties, and concludes with calculation of topological entropy for
the examples shown in Chapter 1. Chapter 3 shows the definition of topological
entropy for noncompact spaces, and discusses the topological entropy of piecewise
affine maps on the real line.
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1. Topological dynamical systems

1.1 Basic definitions

Here we introduce basic definitions and notions in topological dynamical systems.

Definition 1.1. A topological dynamical system is a pair (X,T ), where X is
a topological space and T : X → X is a continuous map. We denote T 0 = id
and for n ∈ N, the n-th iterate of T is T n = T ◦ T n−1. If T is an invertible
homeomorphism, we also put T−n = (T−1)

n
. If T is not invertible, then T−n(A)

denotes the preimage of the set A ⊂ X under the map T n.

Throughout this thesis, (X,T ) will denote a topological dynamical system, unless
stated otherwise.

Definition 1.2. A point x ∈ X is called a fixed point, if T (x) = x. A point
x ∈ X is called a periodic point, if there exists a P ∈ N such that T P (x) = x,
P is called a period of x and x is said to be P -periodic. The smallest such P is
called the minimal period of x.

Definition 1.3. Let x ∈ X. Then the positive semiorbit (sometimes just called
the orbit) of x is O+

T (x) =
⋃
n∈N0

T n(x). In the invertible case we define the
negative semiorbit of x as O−T (x) =

⋃
n∈N0

T−n(x) and the full orbit OT (x) =
O+
T (x) ∪ O−T (x) =

⋃
n∈Z T

n(x).

Notice that if A ⊂ X and T (A) ⊂ A, then (A, T |A) is a topological dynamical
system. This motivates the next definition.

Definition 1.4. A set A ⊂ X is called forward T -invariant (when clear from the
context, we may just say invariant) if T (A) ⊂ A. If T (A) = A, then A is said to
be strictly invariant.

Definition 1.5. Let (X,T ) and (Y, S) be topological dynamical systems. Then
a continuous map ϕ : X → Y is called a topological semiconjugacy if it is surjective
and S ◦ ϕ = ϕ ◦ T . We may also write ϕ : (X,T ) → (Y, S). If there exists
a topological semiconjugacy ϕ : (X,T )→ (Y, S), we say that (Y, S) is a factor of
(X,T ), or that (X,T ) is an extension of (Y, S).

If a semiconjugacy ϕ is also a homeomorphism, then ϕ is called a topological
conjugacy. If there exists a topological conjugacy ϕ : (X,T ) → (Y, S), we say
that (X,T ) and (Y, S) are conjugate.

Remark. It is easy to see that the conjugacy defines an equivalence relation on
topological dynamical systems. Also, if ϕ : (X,T ) → (Y, S) is a semiconjugacy
and x ∈ X is a periodic point, then ϕ(x) ∈ Y is also periodic. The minimal
period of x is greater or equal to the minimal period of ϕ(x). This inequality
can be strict, consider a point x with minimal period P > 1 and space Y = {y}.
Then ϕ(x) = y has minimal period 1.

Definition 1.6. A continuous map T : X → X is said to be transitive, if for every
two nonempty open sets U, V ⊂ X there exists n ∈ N such that U ∩ T n(V ) 6= ∅.
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1.2 Examples

Now we will present several examples of topological dynamical systems.

Example 1.7. Let A ∈ Rn×n be a matrix. Then (Rn, A) is a linear discrete
topological dynamical system. If A is regular, then the system is invertible. Orbit
of a point x0 ∈ Rn is {xi : i ∈ N0}, where xi+1 = Axi for i ∈ N0, so xi = Aix.

Let us take a look at qualitative behavior of orbits in this example. If x0 is
a vector that has nonzero projection to an eigenspace corresponding to (general-
ized) eigenvalue λ ∈ C with <(λ) 6= 0, then xi either converges to 0 or diverges to
infinity. In either case, this is quite simple dynamical behavior in the sense that
no point “comes back” close to its initial position (except the fixed point 0).

Quite interesting is the behavior in the case when x0 lies in the sum of planes
corresponding to purely imaginary nonzero eigenvalues of A. For simplicity sup-
pose that x0 lies in one of these planes, namely in the plane corresponding to
eigenvalue λ ∈ C, <(λ) = 0. Then A acts as a rotation about angle =(λ) on
this plane (with respect to the basis (v + v, i(v − v)), where v 6= 0 is a complex
eigenvector corresponding to λ). To understand the behavior of these points, we
may look at the next example of rotation on circle, which is our first example of
(nontrivial) recurrence in dynamical systems.

Example 1.8. We will call the factor space S1 = R/Z a circle. Useful way to look
at this is to see S1 as the interval [0, 1) with arithmetic operations modulo 1. To
see that this is indeed a “circle”, notice that the unit circle in the complex plane
C = {z ∈ C : |z| = 1} is isomorphic to S1. The map x 7→ e2πix establishes an
isomorphism between (S1,+) and (C, ·). Then rotation about α > 0 is the map
Rα : S1 7→ S1 defined by Rα(x) = x + α mod 1. (This corresponds to rotation
about angle 2πα in the complex plane.)

Claim 1.9. (a) Let α be rational. Then every point of S1 is periodic.

(b) Let α be irrational. Then the orbit of every point in S1 is dense.

Proof. (a) Write α = p/q, where p ∈ Z, q ∈ N. Then for any x ∈ S1 we have
Rq
α(x) = x+ qα = x+ p mod 1 = x, so x is q-periodic.

(b) Let x ∈ X. All its images are distinct, because otherwise if Rm
α (x) = Rk

α(x)
for m < k, then (k − m)α ∈ Z and α is rational. For n ∈ N consider
the partition of S1 to intervals [0, 1/n), [1/n, 2/n), . . . , [(n − 1)/n, 1).
Then there exist 1 ≤ m < k ≤ n such that Rm

α (x) and Rk
α(x) belong

to the same interval, because there are only finitely many intervals. Thus
d(Rm

α (x), Rk
α(x)) ≤ 1/n and Rk−m

α is a rotation about nonzero angle smaller
(in absolute value) than 1/n. Then O+

Rα
(x) is 1/n-dense, which means that

every point y ∈ S1 has distance from O+
Rα

(x) less than 1/n. Since this is
true for every n, we have that O+

Rα
(x) is dense.

In the irrational case of rotation on the circle we have rather complicated
behavior of each point – a dense orbit. But we still may say that the behavior
is simple in the sense that every point behaves in the same way. It is time to
present an example where this is not the case.
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Example 1.10. For m ∈ N, m > 1, let Am = {0, 1, . . . ,m − 1} and define the
symbolic space Σm = AZ

m to be the space of two–sided sequences of symbols in
Am, and Σ+

m = AN
m to be the space of corresponding one–sided sequences. We

define a map σ : Σm → Σm (or σ : Σ+
m → Σ+

m) by putting σ(x)i = xi+1 for i ∈ Z
(or i ∈ N). This map is called the shift. For two–sided sequences, the shift is
a bijection, whereas for one–sided sequences, σ omits the first symbol and every
sequence has m preimages.

Both spaces are compact in the product topology (because they are products
of compact finite sets). The topology of Σm has a basis consisting of cylinder sets

Cn1,...,nk
j1,...,jk

= {x ∈ Σm : xni = ji, i = 1, . . . , k},

where ni are pairwise distinct indices in Z and ji ∈ Am. The basis for topology of
Σ+
m is defined in the same way except that the indices are from N. This topology

is also generated by the metric

d(x, y) =
1

mmin{|i|:xi 6=yi}
, x, y ∈ Σm (or x, y ∈ Σ+

m).

Then open balls are the cylinders B(x,m−`) = C−`,...,`x−`,...,x`
in Σm and B(x,m−`) =

C1,...,`
x1,...,x`

in Σ+
m. These balls form a subbase of the topology.

Claim 1.11. In the symbolic space defined above

(a) the set of periodic points is dense,

(b) the set of points with dense orbit is dense.

Proof. (a) Let x ∈ Σm be any sequence and let ε > 0. Then we find ` ∈ N
such that m−` < ε and define a periodic point y ∈ Σm by setting yi = xi
for |i| ≤ ` and then repeating the finite sequence x−`, . . . , x` to ensure
periodicity with period 2` + 1. Then d(x, y) < ε, so periodic points form
a dense set. The construction for Σ+

m is analogous.

(b) Let Fm =
⋃∞
k=1Akm be the set of finite sequences with symbols from Am.

Clearly Fm is countable, so we enumerate it by Fm = {Fi : i ∈ N}. Then we
construct a sequence a ∈ Σ+

m by concatenating all finite sequences, that is
a = F1F2F3 . . . . We will show that the orbit of a is dense. Let B(x,m−`) be
any ball. Then x1x2 . . . x` = Fi for some i. Then Fi is contained in a starting
at some position j, so first ` elements of σj(a) are Fi and σj(a) ∈ B(x,m−`),
so the orbit of a intersects every ball. Thus O+

σ is dense in Σ+
m. Moreover,

when enumerating Fn we could choose F1 to be arbitrary, that is, there
exists a point with dense orbit beginning with arbitrary finite sequence.
This means that the set of such points is dense, since it intersects every
ball.

The construction for Σm is analogous, just not discussing the first ` elements
but the elements at indices from −` to ` and defining the left side of the
sequence a by zeroes.

Example 1.12. For m ∈ N, m ≥ 2, define the map Em : S1 → S1 by putting
Em(x) = mx mod 1. Then (S1, Em) is a topological dynamical system and the
map Em is called the times-m map or expanding map on the circle.
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Claim 1.13. There exists a topological semiconjugacy from (Σ+
m, σ) to (S1, Em).

Proof. Define ϕ : Σ+
m → S1 by setting ϕ(x) =

∑∞
i=1

xi
mi

. Then ϕ(x) is the number
whose decimal representation in base m is 0.x. This is a well–defined map since
|xi| < m and the sum converges. Further, ϕ is surjective, since every point in
[0, 1) has a base m expansion. It is not hard to see that ϕ is continuous. Indeed,
for x, y ∈ Σ+

m with d(x, y) = m−` we have

|ϕ(x)−ϕ(y)| ≤
∞∑
i=0

∣∣∣∣xi − yimi

∣∣∣∣ =
∞∑
i=`

∣∣∣∣xi − yimi

∣∣∣∣ ≤ ∞∑
i=`

m− 1

mi
= m−`+1 = m · d(x, y).

The condition for semiconjugacy is also satisfied:

Em ◦ ϕ(x) = m ·
∞∑
i=1

xi
mi

mod 1 =
∞∑
i=1

xi
mi−1 mod 1

=
∞∑
i=2

xi
mi−1 =

∞∑
i=1

xi+1

mi
=
∞∑
i=1

(σ(x))i
mi

= ϕ ◦ σ(x).

Note that map ϕ is injective except at a countable collection of points where
ϕ(w1, . . . , wn,m− 1,m− 1, . . . ) = ϕ(w1, . . . , wn + 1, 0, 0, . . . ).

Corollary 1.14. In (S1, Em), the set of periodic points is dense and also the set
of points with dense orbit is dense.

Proof. This is a consequence of Claim 1.11, using the remark below Definition
1.5.

Following are examples of maps on a closed interval.

Example 1.15. The map S : [0, 1] → [0, 1], defined by S(x) = min{2x, 2 − 2x}
is called the tent map. We can write S as

S(x) =

{
2x if x ∈

[
0, 1

2

]
,

2− 2x if x ∈
(
1
2
, 1
]
.

1

0 1
4

1
2

3
4

1

S

1

0 1
4

1
2

3
4

1

S2

1

0 1
4

1
2

3
4

1

S3

. . .

Figure 1.1: Iterations of the tent map.
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Claim 1.16. The tent map S is topologically transitive.

Proof. By induction we can show that for n ∈ N, Sn is defined on the interval
[0, 2−n+1] by

S(x) =

{
2nx if x ∈

[
0, 1

2n

]
,

2n − 2nx if x ∈
(

1
2n
, 1
2n−1

]
,

and that Sn is 2−n+1-periodic. Thus for any n ∈ N, k ∈ {0, . . . , 2n − 1} we have
S
([

k
2n
, k+1

2n

])
= [0, 1]. Therefore if U, V ⊂ [0, 1] are nonempty open sets, we find

n ∈ N, k ∈ {0, . . . , 2n − 1}, such that
[
k
2n
, k+1

2n

]
⊂ V . Then U ∩ Sn(V ) = U 6= ∅,

showing that S is topologically transitive.

Example 1.17. The family of maps Tλ : [0, 1]→ [0, 1], where as Tλ(x) = λx(1−x)
is called the family of quadratic maps.

Claim 1.18. The tent map S is conjugate to the quadratic map T4.

Proof. The map ϕ : [0, 1] → [0, 1] defined as ϕ(x) = sin2
(
πx
2

)
is a conjugacy of

([0, 1], S) to ([0, 1], T4). Indeed, it is a surjective homeomorphism and

T4 ◦ϕ(x) = 4 sin2
(πx

2

)(
1− sin2

(πx
2

))
=
(

2 sin
(πx

2

)
cos
(πx

2

))2
= sin2 (πx) ,

ϕ ◦ S(x) =

{
sin2 (πx) if x ∈

[
0, 1

2

]
,

sin2
(
π
2
(2− 2x)

)
= sin2(π − πx) = sin2(πx) if x ∈

(
1
2
, 1
]
.

1

0 1
2

11
2

T4

1

0 1
2

1

S

Figure 1.2: The maps T4 and S.
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2. Topological entropy

2.1 Definition of topological entropy

Now our aim is to define topological entropy as a nonnegative real number repre-
senting the asymptotic average exponential growth of the number of distinguish-
able orbit segments.

In this chapter, we will only consider topological dynamical systems (X,T )
such that X is a compact metric space with infinitely many points. The metric
on X will be denoted by d (or dX if needed). The notation used in this chapter
has been adopted from Brin and Stuck [2002].

Definition 2.1. For every n ∈ N we define a map dn : X × X → R by setting
dn(x, y) = max

0≤i<n
d (T i(x), T i(y)) for x, y ∈ X.

Remark. Every dn is a metric on X. We will denote by diamnA the diameter of
the set A under the metric dn, and by Bn(x, r) the ball centered at x with radius
r in this metric.

Theorem 2.2. The metrics dn are pairwise topologically equivalent.

Proof. Let n ∈ N, x ∈ X and δ > 0. Then Bn(x, δ) ⊂ B(x, δ). Now for the
converse. The maps T 1, T 2, . . . , T n−1 are uniformly continuous (because they are
continuous and X is compact). Therefore there are constants δ1, δ2, . . . , δn−1 > 0
such that d(x, y) < δi implies d(T i(x), T i(y)) < δ for all i = 1, 2, . . . , n−1. Then if
we put δmin = min{δ, δ1, δ2, . . . , δn−1}, we have δmin > 0 and B(x, δmin) ⊂ Bn(x, δ).
This shows that the metrics d and dn are topologically equivalent, which finishes
the proof.

Definition 2.3. Let n ∈ N and ε > 0.

(a) A set A ⊂ X is (n, ε)-spanning if for every x ∈ X there is a ∈ A such that
dn(x, a) < ε. Let span (n, ε, T ) = min {#A : A ⊂ X,A is (n, ε)-spanning}.

(b) A set A ⊂ X is (n, ε)-separated if dn(x, y) ≥ ε for all x, y ∈ A. Let
sep (n, ε, T ) = max {#A : A ⊂ X,A is (n, ε)-separated}.

(c) Let cov (n, ε, T ) = min{#A : X =
⋃
A, diamnA < ε for all A ∈ A}.

Remark. Since we assume X to be compact, all numbers in Definition 2.3 are
well–defined and finite.

Theorem 2.4. For all n ∈ N and ε > 0 we have

cov (n, 2ε, T ) ≤ span (n, ε, T ) ≤ sep (n, ε, T ) ≤ cov (n, ε, T ) .

Proof. Let A ⊂ X be an (n, ε)-spanning set such that #A = span (n, ε, T ). Then
the system {Bn(a, ε) : a ∈ A} covers X and its elements have dn-diameter 2ε.
Thus we have proved that cov (n, 2ε, T ) ≤ span (n, ε, T ).

Now let B ⊂ X be an (n, ε)-separated set such that #B = sep (n, ε, T ).
Then it is also (n, ε)-spanning. Otherwise there would be a point y ∈ X with
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dn(y,B) ≥ ε and B∪{y} would be (n, ε)-separated, contradicting the maximality
of #B. Thus span (n, ε, T ) ≤ sep (n, ε, T ).

Finally, let A be a cover of X with diamnA < ε, for every A ∈ A, such
that #A = cov (n, ε, T ). Then if B is (n, ε)-separated, then for each A ∈ A,
the intersection B ∩ A contains at most one element (because diamnA < ε).
Therefore we have #B ≤ #A, giving sep (n, ε, T ) ≤ cov (n, ε, T ).

Now we can define topological entropy.

Definition 2.5. Put hε(T ) = lim supn→∞
1
n

log sep (n, ε, T ). Then the topological
entropy of the map T is defined as htop(T ) = sup

ε>0
hε(T ).

Remark. Because ε 7→ hε(T ) is nondecreasing, we have htop(T ) = limε→0+ hε(t).

We can interpret the definition as follows. Having a fixed ε > 0, assume
that we cannot distinguish between two points if their distance is smaller than ε.
Then for an n ∈ N, the number sep (n, ε, T ) is the maximal number of points
distinguishable by looking at their first n iterates. This can be said because an
(n, ε)-separated set is such a set that any of its two points get at least ε far away
from each other in one of the first n iterations of T . Taking the logarithm and
dividing by n, we obtain the average growth of “ε-distinguishable” orbit segments
in the first n iterations of T . Considering the limit superior as n→∞, we have
the average asymptotic growth. Finally, by taking supremum for ε > 0 we obtain
that topological entropy is the asymptotic average growth of the number of orbit
segments distinguishable with arbitrarily fine (but finite) precision.

Remark. From Theorem 2.4 it follows that it is possible to use any of the expres-
sions cov (n, ε, T ), span (n, ε, T ) or sep (n, ε, T ) in the definition of topological
entropy.

When we use the version of the definition with spanning number span (n, ε, T ),
we can give a different interpretation of topological entropy. Fix an ε > 0. If we
have a (1, ε)-spanning set A ⊂ X, then a position of an arbitrary point x ∈ X
can be described with ε precision by assigning to it a point a ∈ A such that
d(x, a) < ε. Thus, for n ∈ N, the number span (n, ε, T ) is the minimal number of
points such that we can describe a position of the first n iterations of an arbitrary
point x ∈ X with ε precision. If we think of points in a minimal (n, ε)-spanning
set as being labeled by finite words consisting of 0’s and 1’s, and of log as being
the base-2 logarithm, then log span (n, ε, T ) is the length of the word needed to
describe the position of the first n iterates of a point x ∈ X with ε precision.
Dividing by n, we obtain the average increment of word length per iteration.
Therefore, by taking supremum over ε > 0, we may say that topological entropy
is the asymptotic average amount of information per iteration needed to describe
the position of a point with arbitrarily fine but finite precision.

One may ask whether we can use limit instead of limit superior in the definition
of hε. It turns out we can when using the covering number definition, because
in this case the limit always exists. To prove this, the following lemma will be
useful.

Lemma 2.6. Let a sequence of real numbers (an)∞n=1 be subadditive, that is, for
every m,n ∈ N, am+n ≤ am + an. Then the limit limn→∞

an
n

exists.
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Proof. Let n, p ∈ N, p < n. We divide n by p and obtain n = pq+ r, where q > 0
and 0 ≤ r < p are integers. Then, using the subadditivity of (an)∞n=1,

an
n
≤ apq

n
+
ar
n
≤ apq

pq
+
ar
n
≤ q · ap

pq
+
ar
n

=
ap
p

+
ar
n
.

Now applying limit superior as n tends to infinity and then taking the infi-
mum over p ∈ N yields lim supn→∞

an
n
≤ infp∈N

ap
p

. Since clearly infp∈N
ap
p
≤

lim infn→∞
an
n

, we have lim supn→∞
an
n
≤ lim infn→∞

an
n

, and consequently the ex-
istence of the limit in question.

Theorem 2.7. For every ε > 0, the limit limn→∞
1
n

log cov (n, ε, T ) exists.

Proof. We will show that the sequence (log cov (n, ε, T ))∞n=1 is subadditive. Let
m,n ∈ N. Let A, B be covers of X with diammA < ε, diamnB < ε for every
A ∈ A, B ∈ B, and #A = cov (m, ε, T ), #B = cov (n, ε, T ). Put

C = {A ∩ T−m(B) : A ∈ A, B ∈ B}.

Then C is a cover of X with sets of dn+m-diameter less than ε. Therefore

cov (n+m, ε, T ) ≤ #C ≤ #A ·#B = cov (m, ε, T ) · cov (n, ε, T ) .

Taking logarithms we obtain desired subadditivity. Therefore by the preceding
lemma, the limit limn→∞

1
n

log cov (n, ε, T ) exists.

Remark. The limit limn→∞
1
n

log span (n, ε, T ) may not exist (Katok and Hassel-
blatt [1996], p. 109).

2.2 Properties of topological entropy

It may seem odd that topological entropy is defined using a metric but it is called
topological entropy. This is justified by the fact that topological entropy depends
only on the topology in the following sense.

Theorem 2.8. Let d, d′ be two topologically equivalent metrics on X and let
htop(T ), h′top(T ) be the topological entropies of T calculated with respect to d, d′

respectively. Then htop(T ) = h′top(T ).

Proof. Let ε > 0 and put Dε = {(x1, x2) ∈ X × X : d(x1, x2) ≥ ε}. The
set Dε is closed in the compact space X ×X and therefore it is compact. Since d
and d′ induce the same topology on X, we have that d′ is continuous on X ×X.
Consequently, d′ attains a minimum δ(ε) on the set Dε. Necessarily δ(ε) > 0,
since x1 6= x2 for all (x1, x2) ∈ Dε. Thus d′(x1, x2) < δ(ε) implies d(x1, x2) < ε.
This property immediately extends to the pair of metrics dn, d′n for all n ∈ N.
We have thus obtained a mapping ε 7→ δ(ε) which is nondecreasing. Therefore
the limit limε→0+ δ(ε) exists and is equal to inf

{
d′(x, y) : (x, y) ∈

⋃
ε>0Dε

}
=

inf{d′(x, y) : x, y ∈ X, x 6= y}. Since X is compact and infinite, it has a limit
point x ∈ X, so limε→0+ δ(ε) = 0. Therefore every covering of X with sets of
dn-diameter at most ε is a covering of X with sets of d′n-diameter at most δ(ε)
and thus

htop(T ) = lim
ε→0+

hε(T ) ≥ lim
ε→0+

h′δ(ε)(T ) = lim
δ→0+

h′δ(T ) = h′top(T ).

10



Lemma 2.9. Let (X,T ), (Y, S) be conjugate topological dynamical systems such
that the conjugacy ϕ : (X,T )→ (Y, S) is an isometry. Then htop(T ) = htop(S).

Proof. Let x, y ∈ X. Then, using that ϕ is an isometry and a conjugacy, we have

dXn (x, y) = max
0≤i<n

dX(T i(x), T i(y)) = max
0≤i<n

dY (ϕ(T i(x)), ϕ(T i(y)))

= max
0≤i<n

dY (Si(ϕ(x)), Si(ϕ(y))) = dYn (ϕ(x), ϕ(y)).

Therefore A ⊂ X is (n, ε)-separated in X if and only if ϕ(A) is (n, ε)-separated
in Y . Since #A = #ϕ(A), this immediately gives htop(T ) = htop(S).

Theorem 2.10. Topological entropy is a topological invariant. That is, if the
systems (X,T ) and (Y, S) are conjugate, then htop(T ) = htop(S).

Proof. Let ϕ : (X,T ) → (Y, S) be a topological conjugacy. Define a metric d′

on X by putting d′(x, y) = dY (ϕ(x), ϕ(y)) for x, y ∈ X. Then, since ϕ is a home-
omorphism, d′ generates the same topology on X as dX does. We know from
Theorem 2.8 that htop(T ) does not depend on the choice of metric on X. Using
the previous Lemma 2.9 and the fact that ϕ : (X, d′)→ (Y, dy) is an isometry we
get htop(T ) = htop(S).

Corollary 2.11. Let (X,T ), (Y, S) be topological dynamical systems with en-
tropies htop(T ) 6= htop(S). Then the systems are not conjugate.

Theorem 2.12. Let (Y, S) be a factor of (X,T ). Then htop(T ) ≥ htop(S).

Proof. Denote by ϕ : (X,T ) → (Y, S) a semiconjugacy. The map ϕ is uniformly
continuous, because X is compact. So for any ε > 0 there exists δ(ε) > 0 such
that dX(x, y) < δ(ε) implies dY (ϕ(x), ϕ(y)) < ε. Therefore for n ∈ N, if A ⊂ X is
(n, δ(ε))-spanning in X, then ϕ(A) is (n, ε)-spanning in Y . Since #ϕ(A) ≤ #A,
we have

span (n, δ(ε), T ) ≥ span (n, ε, S) ,

which after taking logarithms and limits gives the desired result:

htop(T ) = lim
ε→0+

lim sup
n→∞

span (n, δ(ε), T ) ≥ lim
ε→0+

lim sup
n→∞

span (n, ε, S) = htop(S).

Theorem 2.13. Let (X,T ), (Y, S) be topological dynamical systems. Then the
following properties are satisfied.

(a) For every m ∈ N, htop(Tm) = m · htop(T ).

(b) If T is a homeomorphism, then for every m ∈ Z, htop(Tm) = |m| · htop(T ).

(c) Define T × S : X × Y → X × Y by (T × S)(x, y) = (T (x), S(y)). Then
htop(T × S) = htop(T ) + htop(S).

11



Proof. (a) Let m ∈ N. Then for all x, y ∈ X and n ∈ N we have

max
0≤i<n

d
(
Tmi(x), Tmi(y)

)
≤ max

0≤j<mn
d
(
T j(x), T j(y)

)
,

so sep (n, ε, Tm) ≤ sep (mn, ε, T ). Thus

lim sup
n→∞

1

n
log sep (n, ε, Tm) ≤ m · lim sup

n→∞

1

mn
log sep (mn, ε, T )

≤ m · lim sup
`→∞

1

`
log sep (`, ε, T ) .

Therefore htop(Tm) ≤ m · htop(T ).

Now for the other inequality. We claim that for every ε > 0 there exists
a δ(ε) > 0 such that d(x, y) < δ(ε) implies dn(x, y) < ε. To see this, simply
repeat the construction of δ(ε) as in the proof of Theorem 2.8, using the fact
that d and dn are topologically equivalent metrics by Theorem 2.2. Thus
span (n, δ(ε), Tm) ≥ span (mn, ε, T ), giving

lim sup
n→∞

1

n
log span (n, δ(ε), Tm) ≥ m · lim sup

n→∞

1

mn
log span (mn, ε, T )

≥ m · lim sup
`→∞

1

`
log span (`, ε, T ) .

Therefore we have htop(Tm) ≥ m · htop(T ).

(b) Let n ∈ N and ε > 0. Let A ⊂ X be (n, ε)-separated for T . It means that
for all x, y ∈ A

ε ≤ dn(x, y) = max
i=0,...,n−1

d
(
T i(x), T i(y)

)
= max

j=n−1,...,0
d
(
T−j

(
T n−1(x)

)
, T−j

(
T n−1(y)

))
.

Thus T n−1(A) is (n, ε)-separated for T−1. Also #A = #T n−1(A), since T
is a bijection. Conversely, if B ⊂ X is (n, ε)-separated for T−1, then
T−(n−1)(B) is (n, ε)-separated for T . Therefore sep (n, ε, T ) = sep (n, ε, T−1)
and htop(T ) = htop(T−1). The rest of the claim follows from the fact
htop(T 0) = htop(id) = 0 by Lemma 2.9, and from part (a): for m ∈ N
we have

htop(T−m) = htop((Tm)−1) = htop(Tm) = m · htop(T ).

(c) Define a metric d on X × Y as the maximum metric, that is, for every two
points (x1, y1), (x2, y2) ∈ X × Y , let

d((x1, y1), (x2, y2)) = max
{
dX(x1, x2), d

Y (y1, y2)
}
.

It is well–known that this metric generates the product topology on X×Y .
We also immediately have

dn((x1, y1), (x2, y2)) = max
{
dXn (x1, x2), d

Y
n (y1, y2)

}
12



for every n ∈ N. If U ⊂ X, B ⊂ Y satisfy diamnA < ε, diamnB < ε, then
also A × B satisfies diamn(A × B) < ε. This means that if A ⊂ P (X),
B ⊂ P (Y ) are covers with sets of dXn -diameter (dYn -diameter) at most ε,
then A ⊗ B = {A × B : A ∈ A, B ∈ B} is a cover of X × Y with sets of
dn-diameter at most ε. Thus

cov (n, ε, T × S) ≤ cov (n, ε, T ) · cov (n, ε, S) ,

which after taking logarithms and limits gives

htop(T × S) ≤ htop(T ) + htop(S).

On the other hand, if M ⊂ X, N ⊂ Y are (n, ε)-separated, then M ×N is
(n, ε)-separated in X × Y . Thus

sep (n, ε, T × S) ≥ sep (n, ε, T ) · sep (n, ε, S) ,

after taking logarithms and limits we have htop(T ×S) ≥ htop(T ) +htop(S).

Theorem 2.14. Suppose that X1, . . . , Xk ⊂ X are closed forward invariant sets
such that X =

⋃k
i=1Xi. Then htop(T ) = max

i=1,...,k
htop(T |Xi).

Proof. Every Xi is compact, because X is compact. Since every (n, ε)-separated
set in Xi is (n, ε)-separated in X, we have htop(T |Xi) ≤ htop(T ). On the other

hand, if Bi is (n, ε)-spanning in Xi, then
⋃k
i=1Bi is (n, ε)-spanning in X. Thus

span (n, ε, T ) ≤
∑k

i=1 span (n, ε, T |Xi) ≤ k · max
i=1,...,k

span (n, ε, T |Xi). Therefore

lim sup
n→∞

1

n
log span (n, ε, T ) ≤ lim sup

n→∞

log k

n
+lim sup

n→∞

1

n
log

(
max
i=1,...,k

span (n, ε, T |Xi)
)

= max
i=1,...,k

lim sup
n→∞

1

n
log (span (n, ε, T |Xi)) .

From this we obtain the desired inequality htop(T ) ≤ max
i=1,...,k

htop(T |Xi).

We conclude this section with a statement of a theorem which we are not
going to prove here (see Block and Coppel [1995], page 196).

Theorem 2.15. Let (X,T ) be a topological dynamical system and denote X∞ =⋂∞
n=0 T

n(X). Then htop(T ) = htop(T |X∞).

2.3 Topological entropy for some examples

Theorem 2.16. Let (X,T ) be a topological dynamical system such that T is an
isometry. Then htop(T ) = 0.

Proof. Let n ∈ N and ε > 0. Since for x, y ∈ X, d(x, y) = d (T n(x), T n(y)), it
follows that dn = d. Thus, cov (n, ε, T ) = cov (1, ε, T ). This implies, since the
value log cov (1, ε, T ) ∈ R does not depend on n, that

hε(T ) = lim sup
n→∞

1

n
log cov (n, ε, T ) = lim sup

n→∞

1

n
log cov (1, ε, T ) = 0.

Therefore htop(T ) = 0.
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Corollary 2.17. The topological entropy of the rotation Rα : S1 → S1 from Ex-
ample 1.8 is equal to 0 for any α ∈ R.

Proof. The rotation is an isometry, so by the previous theorem, htop(Rα) = 0.

Claim 2.18. Topological entropy of the shift σ : Σm → Σm from Example 1.10 is
htop(σ) = logm.

Proof. Let l ∈ N and x ∈ Σm. Then

Bn(x,m−l) = {y ∈ Σm : xi = yi for i = −l,−l + 1, . . . , l + n} .

So if for every α = (α−l, . . . , αl+n) ∈ {0, . . . ,m− 1}2l+n+1 we define xα ∈ Σm by

xαi =

{
αi if i ∈ {−l, . . . , l + n},
0 otherwise,

then A =
{
xα : α ∈ A2l+n+1

m

}
is an (n,m−l)-separated set, #A = m2l+n+1. There-

fore sep
(
n,m−l, σ

)
≥ m2l+n+1. Conversely, the set B =

{
Bn(xα,m−l) : xα ∈ A

}
covers Σm and diamnBn(xα,m−l) = m−l−1 for every xα ∈ A. Also #B = m2l+n+1,
therefore cov

(
n,m−l, σ

)
≤ m2l+n+1 . It follows from Theorem 2.4 that in fact

cov
(
n,m−l, σ

)
= sep

(
n,m−l, σ

)
= m2l+n+1. Now we can see that

htop(σ) = lim
l→∞

lim sup
n→∞

1

n
log cov

(
n,m−l, σ

)
= lim

l→∞
lim sup
n→∞

1

n
logm2l+n+1

= lim
l→∞

lim sup
n→∞

2l + n+ 1

n
logm = lim

l→∞
logm = logm.

Corollary 2.19. Topological entropy of the times-m map Em : S1 → S1 from
Example 1.12 is htop(Em) = logm.

Proof. By Theorem 2.12 and Claim 1.13 we have logm = htop(σ) ≥ htop(Em).
On the other hand, for 0 < ε < 1/m and n ∈ N, the ball Bn(x, ε) is an interval

of length 2ε/mn centered at x ∈ S1. Therefore if A ⊂ S1 is (n, ε)-spanning, in
other words if

⋃
{Bn(a, ε) : a ∈ A} = S1, then necessarily #A ≥ mn/(2ε),

because S1 has length 1. So

hε(Em) = lim sup
n→∞

1

n
log span (n, ε, Em) ≥ lim sup

n→∞

− log(2ε)

n
+ logm = logm

and htop(Em) ≥ logm.

Claim 2.20. The topological entropy of the tent map S : [0, 1] → [0, 1] from
Example 1.15 is htop(S) = log 2.

Proof. This is a consequence of a more general Theorem 3.6 and the fact that S
is topologically transitive by Claim 1.16.

Corollary 2.21. The topological entropy of the map T4 : [0, 1] → [0, 1], T4(x) =
4x(x− 1) from Example 1.17 is htop(T4) = log 2.

Proof. This follows from the fact that T4 is conjugate to the tent map S by Claim
1.18.
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3. Topological entropy for
noncompact metric spaces

3.1 Definition and properties

The definition of topological entropy we have used so far relies on the finiteness
of the number sep (n, ε, T ). This is guaranteed in the case of a compact metric
space. Otherwise the number might be infinite even in very simple cases (consider
identity on a space with infinite diameter). An approach that can be taken in
this case is the following. For a noncompact space X, we consider its compact
invariant subset K ⊂ X, and calculate the entropy of the original map restricted
to this set. This will be a lower estimate of the entropy. Taking Theorem 2.15 into
consideration, we can take only strictly invariant K and arrive at the following
definition.

Definition 3.1. Let (X,T ) be a topological dynamical system, where X is a met-
ric space (not necessarily compact). Denote

K (X,T ) = {K ⊂ X : K is compact and strictly invariant} .

Then the topological entropy of T is defined as

ent(T ) = sup{htop(T |K) : K ∈ K (X,T )}.

It is clear that for a compact space X, this definition coincides with the
previous one. Indeed, if K1, K2 ∈ K (X,T ), K1 ⊂ K2, then htop(K1) ≤ htop(K2),
and since X∞ is the largest element of K (X,T ), the supremum is attained at
X∞, so ent(T ) = htop(T |X∞) = htop(T ).

Remark. It is true that all the properties of topological entropy in Theorem 2.13
are also valid for the new definition. More precisely, if (X,T ), (Y, S) are topolog-
ical dynamical systems, then the following properties are satisfied (see Cánovas
and Rodŕıguez [2005] for the proof):

(a) For every m ∈ N, ent(Tm) = m · ent(T ).

(b) If T is a homeomorphism, then for every m ∈ Z, ent(Tm) = |m| · ent(T ).

(c) Define T × S : X × Y → X × Y as (T × S)(x, y) = (T (x), S(y)). Then
ent(T × S) = ent(T ) + ent(S).

Analogue of the property in Theorem 2.14 is also held. We recall the notation
from Theorem 2.15: For A ⊂ X compact invariant, denote A∞ =

⋂∞
n=1 T

n(A).

Theorem 3.2. Suppose that X1, . . . , Xk ⊂ X are closed forward invariant sets
such that X =

⋃k
i=1Xi. Then ent(T ) = maxi=1,...,k ent(T |Xi).

Proof. Since K (Xi, T |Xi) ⊂ K (X,T ), we immediately have ent(T ) ≥ ent(T |Xi).
Conversely, for K ∈ K (X,T ), we have (K ∩Xi)∞ ∈ K (Xi, T |Xi), because K ∩Xi
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is compact forward invariant. Thus from Theorem 2.14 we have that htop(T |K) =
maxi=1,...,k htop(T |K∩Xi). Therefore, using Theorem 2.15 we see

ent(T ) = sup

{
max
i=1,...,k

htop(T |K∩Xi) : K ∈ K (X,T )

}
=

max
i=1,...,k

sup
{
htop(T |(K∩Xi)∞) : K ∈ K (X,T )

}
≤

max
i=1,...,k

sup {htop(T |Ki) : Ki ∈ K (Xi, T |Xi)} = max
i=1,...,k

ent(T |Xi).

Remark. In the previous version of this theorem, that is in Theorem 2.14, the
assumption that Xi be closed was necessary. Otherwise htop(f |Xi) would not be
defined (because Xi would not be compact). In the new definition of entropy,
ent(T |Xi) is defined even when Xi is not closed in X. One thus may ask whether
the previous theorem holds if we do not require Xi to be closed. In general this is
not true, counterexample was given in Cánovas and Rodŕıguez [2005], Theorem
2.1 (b).

However, we can accomplish this at least for the case of uniformly continuous
maps on a complete metric space by using an alternate definition of entropy. For
a uniformly continuous map f on a (not necessarily complete) metric space X

we have the continuous extension f̂ : X̂ → X̂ of f , where X̂ is the completion
of X. Then we define the new entropy of f as ênt(f) = ent(f̂). Now for arbitrary
forward invariant X1, . . . , Xk ⊂ X such that X1∪· · ·∪Xk = X, we have ênt(f) =

maxi=1,...,k ênt(f |Xi) by Theorem 3.2, because X̂i is the closure of Xi in X̂. In

general ênt(X) ≥ ent(X), where the inequality may be strict.

Follows a lemma that will be useful in the next section.

Lemma 3.3. Let K ∈ K (X,T ) and let L ⊂ K be compact and invariant such
that T is identity on K \ L. Then htop(T |K) = htop(T |L)

Proof. Fix an ε > 0. Since K \ L is totally bounded, there exists its finite cover
with balls of radius ε, call Cε the set of the centers of these balls. Then, since T
is identity on K \L, for every (n, ε)-spanning set A in L, the set A∪Cε is (n, ε)-
spanning in K. Therefore span (n, ε, T |K) ≤ span (n, ε, T |L) + #Cε. Because Cε
does not depend on n, we have hε(T |K) ≤ hε(T |L).

The other inequality follows from the fact that if B ⊂ L is (n, ε)-separated
in L, thenB is also (n, ε)-separated inK. Thus span (n, ε, T |K) ≥ span (n, ε, T |L),
and consequently htop(f |K) ≥ htop(f |L).

Remark. The conclusion of the previous lemma also holds when K \ L contains
only 2-periodic points. This can be proven by a simple modification of the proof.

3.2 Piecewise affine maps on the real line

In this section, we take a look at generalizing known results about topological
entropy of piecewise affine maps of an interval.
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Definition 3.4. A map f : [a, b] → [a, b] is called piecewise affine if there exists
a finite sequence x1, . . . , xn ∈ [a, b] such that a = x1 < · · · < xn = b and each of
the maps f |[xi,xi+1], i = 1, . . . , n− 1 is affine.

A map f : R → R is called piecewise affine if there exists a finite sequence
x1, . . . , xn ∈ R such that x1 < · · · < xn and each of the maps f |(−∞,x1], f |[xn,∞),
f |[xi,xi+1], i = 1, . . . , n− 1 is affine.

For a piecewise affine map f and point x distinct from all xi, we will call f ′(x)
the slope of f at x. The map f is said to be a map of a constant slope if the
absolute value of the slope is the same at every point distinct from all xi.

The composition of two piecewise affine maps is piecewise affine. A piecewise
affine map f : R→ R can be described by the numbers x1, . . . , xn, y1, . . . , yn and
s−, s+, where xi are as above, f(xi) = yi for all i = 1, . . . , n, f ′(t) = s− for
t ∈ (−∞, x1) and f ′(t) = s+ for t ∈ (xn,∞). Then the map f is

f(t) =


yi if t = xi, i = 1 . . . , n,

yi +
yi+1 − yi
xi+1 − xi

(t− xi) if t ∈ (xi, xi+1), i = 1, . . . , n− 1,

y1 + s−(t− x1) if t ∈ (−∞, x1),
yn + s+(t− xn) if t ∈ (xn,∞).

Denote ymax = maxi=1,...,n yi, ymin = mini=1,...,n yi. To f we assign the in-
tervals If = [a, b], I−f = (−∞, b], I+f = [a,∞), where a = min{x1, ymin},
b = max{xn, ymax}. Notice that If is the smallest closed interval such that all
(xi, yi) are in If × If .

If

Figure 3.1: A piecewise affine map f and its interval If

Without loss of generality we may assume that If = [a, b] is symmetric
around 0, that is, a = −b. Otherwise we work with the function g, g(t) =
f
(
t+ a+b

2

)
− a+b

2
, which is conjugate to f .

Let K ∈ K (R, f). We will show that K ⊂ Ĩf for some compact interval Ĩf
independent of K. Let us discuss several cases (See Figure 3.2 for illustration).

Case 1: s+ ≥ 0, s− ≥ 0. Here both intervals I+f , I−f are invariant. We will show

that K ⊂ Ĩ−f , where Ĩ−f = (−∞, b̃] for some b̃ ≥ b. We will split this case into
subcases.
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Case 1.1: s+ = 1, f(b) = b. In this special case we have f |(b,∞) = id. By using
Lemma 3.3 we get htop(f |K) = htop(f |K∩I−f ), so without loss of generality we can

assume that K ⊂ I−f .
Case 1.2: s+ ≥ 1, f(b) ≥ b. This is either Case 1.1 or f(t) > t for every t > b.
In particular, K ⊂ I−f , because otherwise maxK < f(maxK) /∈ K and K would
not be invariant.
Case 1.3: 1 ≥ s+ > 0, f(b) ≤ b. This is either Case 1.1 or f(t) < t for every
t > b. In particular, K ⊂ I−f , because otherwise max f(K) = f(maxK) <
maxK /∈ f(K) and K would not be strictly invariant. (The equality max f(K) =
f(maxK) holds because f is increasing on (b,∞).)

Case 1.4: s+ > 1, f(b) < b. The map f has a fixed point b̃ = f(b)−s+b
1−s+ > b and

f(t) > t for any t > b̃. Taking b̃ instead of b, Ĩ−f = (−∞, b̃] instead of I−f , this is
the same as Case 1.2.
Case 1.5: 1 > s+ > 0, f(b) ≥ b. The map f has a fixed point b̃ = f(b)−s+b

1−s+ > b

and f(t) < t for any t > b̃. Taking b̃ instead of b, Ĩ+f = (−∞, b̃] instead of I+f ,
this is the same as Case 1.3.
Case 1.6: s+ = 0. Here f(R) ⊂ I−f , so K ⊂ I−f .

Applying Cases 1.1–1.6 to the function g(t) = −f(−t), we get that K ⊂ Ĩ+f =

[ã,∞) for some ã ≤ a. Therefore K ⊂ Ĩf = Ĩ−f ∩ Ĩ
+
f = [ã, b̃].

Case 2.1: s+ ≥ 0, s− ≤ 0. Here f(R) ⊂ I+f and we can apply one of the cases

1.1–1.6, so we have K ⊂ [a, b̃].
Case 2.2: s+ ≤ 0, s− ≥ 0. This is Case 2.2 for the function g(t) = −f(−t).

Case 3: s+ ≤ 0, s− ≤ 0. Consider the piecewise affine map f 2 = f ◦ f . Now for
any t large enough (so that t /∈ If2 , f(t) /∈ If2) we have (f 2)′(t) = f ′(f(t))f ′(t) =
s+s−. Therefore the slopes of f 2 on both the unbounded intervals are equal to
s+s− ≥ 0. Now we can apply Case 1 (with the exception that in Case 1.1 we
have to use the remark after Lemma 3.3 about 2-periodic points) to f 2 and get
K ⊂ If2 ∪ If = Ĩf .

We have thus proved that

ent(f) = sup
{
htop(f |K) : K ∈ K (R, f) , K ⊂ Ĩf

}
,

which gives ent(f) = htop(f |(Ĩf )∞). So we denote K = (Ĩf )∞.
This will enable us to calculate the entropy of f by calculating the entropy

of “f restricted to Ĩf”. However, we cannot directly say ent(f) = htop(f |Ĩf ),
because Ĩf may not be forward invariant for f . This happens in Case 1.2 when
the inequality f(b̃) ≥ b̃ is strict and so there is c ∈ (ã, b̃) such that f(t) > b̃
for every t ∈ (c, b̃]. We can fix this by redefining f on (c, b̃] to be constantly b̃.
Symmetrically this can also happen at the left end of Ĩf . That is, there is d ∈ (ã, b̃)
such that f(t) < ã for t ∈ [ã, d). Similarly for Case 3. Thus we define f̃ : Ĩf → Ĩf
by

f̃(t) =


f(t) if f(t) ∈ Ĩf ,
b̃ if f(t) > b̃,

ã if f(t) < ã.
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f

Case 1.1

f

Case 1.2

f

Case 1.3

f

Case 1.4

f

Case 1.5

f

Case 1.6

ff

Case 2.1

ff

Case 2.2

f

f

Case 3

Figure 3.2: Cases in Claim 3.5. (Dashed line is the identity.)

Now the inequality htop(f |K) ≤ htop(f̃) is clear because f̃ is an extension
of f |K . Conversely, we have Ĩf = K ∪

⋃∞
n=1 f

−n((c, b̃]) ∪
⋃∞
n=1 f

−n([ã, d)). Then⋃∞
n=1 f̃

n(Ĩf ) = K ∪ {ã, b̃} and since entropy does not change after adding two
points, this proves the converse inequality. We have proved the following result.

Claim 3.5. Let f : R→ R be piecewise affine, let Ĩf and f̃ : Ĩf → Ĩf be as above.
Then ent(f) = htop(f̃).

The following is a result for piecewise monotone interval maps given in Brucks
and Bruin [2004], Theorem 9.5.1. A map f : [a, b]→ [a, b] is piecewise monotone
if there exists a finite sequence x1, . . . , xn ∈ [a, b], a = x1 < · · · < xn = b, such
that each f |[xi,xi+1], i = 1, . . . , n − 1 is monotone. In particular, every piecewise
affine map is piecewise monotone.

Theorem 3.6. Let f : [a, b]→ [a, b] be a continuous piecewise monotone map such
that htop(f) > 0. Then there exists a semiconjugacy to a piecewise affine map
g : [a, b]→ [a, b] with a constant slope, where the slope of g is ehtop(f). Moreover,
if f is topologically transitive, then the semicojugacy is a conjugacy.
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Similar result cannot be true for piecewise monotone maps on the real line,
as the next example shows.

Example 3.7. Define a piecewise affine map f : R → R by setting x1 = 0,
x2 = 1/3, x3 = 2/3, x4 = 1, y1 = 0, y2 = 1, y3 = 0, y4 = 1, s+ = s− = 1. Then
If = [0, 1] and f is identity outside If . We know that ent(f) = htop(f |[0,1]), which
by Theorem 3.6 is equal to the logarithm of its slope, htop(f |[0,1]) = log 3.

Suppose that there exists a semiconjugacy ϕ : R → R of f to a piecewise
affine map g : R → R. Since ϕ is continuous, the sets ϕ((−∞, 0)), ϕ((1,∞))
are connected and ϕ([0, 1]) is compact and in particular, it is bounded. Since
R \ {f(0), f(1)} has two unbounded components, it follows that ϕ((−∞, 0)),
ϕ((1,∞)) are the two unbounded intervals. In particular g has to be identity on
these intervals, so g has slope 1 there. If g has a constant slope, then necessarily g
is identity on the entire line and g has constant slope 1 6= eent(f).

1

1

0 If

f

Figure 3.3: Counterexample for semiconjugacy to a map of a constant slope on
the real line.

There remains the question whether for every piecewise affine map f : R→ R
there exists a semiconjugacy to some piecewise affine map g on a closed interval
such that the slope of g is equal to eent(f).

The answer is positive in the case when s+, s− > 0. In this case the semicon-
jugacy to f̃ : Ĩf → Ĩf can be chosen as ϕ : R→ Ĩf , where

ϕ(x) =


ã if x < ã,

f̃(x) if x ∈ Ĩf ,
b̃ if x > b̃.

The map ϕ is a semiconjugacy and it preserves entropy by Claim 3.5.
For other cases, the question remains unanswered.
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Conclusion

Our discussion started by defining topological dynamical systems. We defined the
notion of conjugacy, which says when two systems are the same from dynamical
point of view. Then some examples of topological dynamical systems were given,
with emphasis to those properties which are interesting in relation to topological
entropy. In particular, we studied rotations and expanding maps on the circle,
shifts on symbolic spaces, tent and quadratic maps. We have seen that some of
these maps are conjugate.

We continued by defining topological entropy for compact metric spaces. This
was done by defining metrics measuring the distance of the first n iterations of
two points. We showed that the definition of topological entropy is independent of
the particular choice of metric, given that the metric generates the same topology.
An important result was that topological entropy is invariant under conjugacy.
Then we calculated topological entropy for the examples shown in the beginning.

Next, we extended the previous definition to the realm of noncompact met-
ric spaces. This was done by looking at entropies of strictly invariant compact
subsets. In more detail we looked at piecewise affine maps and showed that en-
tropy of piecewise affine map on the real line can be calculated by restricting
it to a bounded interval. We concluded by remarking the known result about
semiconjugacies to a map of a constant slope on the interval and discussed its
version on the entire real line.
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