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Abstract: The focus of this thesis is the real-time rendering of participating
media, such as fog. This is an important problem, because such media signif-
icantly influence the appearance of the rendered scene. It is also a challenging
one, because its physically correct solution involves a costly simulation of a very
large number of light-particle interactions, especially when considering multiple
scattering. The existing real-time approaches are mostly based on empirical or
single-scattering approximations, or only consider homogeneous media. This work
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resulting highly-parallel method achieves good visual fidelity and has a stable
computation time of only a few milliseconds per frame.
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Introduction
In computer graphics, one of our major topics is generating physically plausible
images. We usually refer to this process as photorealistic rendering. It can be
used in architectural or design visualizations, simulators, video games, or movies.
We often strive to create imagery that resembles reality as we perceive it.

To achieve photorealistic results, we want to understand and simulate how
light interacts with the matter around us. When rendering simple scenes, we
can sometimes simplify the physical processes by assuming that light travels in
a vacuum. But once we want to render more advanced optical phenomena, such
as light scattering, we can no longer rely on these simplifications.

Light scattering is a process where the otherwise straight trajectory of the
light can be deviated, which happens when light travels through air, water, milk,
and other non-metallic participating media [Elek et al., 2013]. Numerous optical
phenomena, such as the blurring of objects and lights in a foggy weather, can be
explained by the scattering.

This thesis aims at rendering scenes where light has to travel through a par-
ticipating medium, because the scene, including the camera, is surrounded by
the medium. We propose and implement a method that is viable for real-time
rendering of the participating effects. That means that our algorithm should be
able to run at very high frequencies.

Video games typically aim at hundreds of rendered frames per second (FPS),
but thorough this thesis, our formal requirement is at least 25 Hz [Akenine-Möller
et al., 2008], i.e., rendering of one frame should take at most 40 ms. As we will
see in Chapter 5, our implementation reaches even higher frequencies and proves
that our method can indeed be used in real-time and interactive software.

As we are limited to real-time rendering, our ambition is not to simulate all
optical phenomena in all existing media. In this thesis, we only assume multiple
scattering and absorption effects in scenes with a single analytically integrable
medium. Despite the proposed limitation, there remains a non-trivial motivation.

Motivation
Light scattering can be observed in various real life situations: during foggy
weather, sandstorms, when looking at a mist above a lake, or even when swim-
ming in the lake itself. When light scattering occurs, we may notice that objects
and light sources around us are blurred and our vision gets highly limited. Some-
times, color shifts can also occur because of medium absorption. Water, for
example, absorbs blue light less than other colors [Braun and Smirnov, 1993],
which explains why objects submerged in water appear bluish.

Whenever we need to visualize an environment with a participating medium—
such as the foggy streets in Figure 1—we need an algorithm to simulate the light
transport. In case of non-real-time rendering, such as in movies, there exist
precise but usually slow methods. Efficient Monte Carlo methods are described,
for example, by Jarosz [2008], but the rendering may take several minutes, hours,
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or even days. Furthermore, even a slight adjustment of the medium parameters
can significantly change the rendering time.

In case we want our visualization to run in real time, such as in video games
or simulations, we need very efficient approximations. Current real-time software
typically uses empirical or single-scattering approximations (Chapter 2) [Mitchell,
2007, Persson, 2012, Wronski, 2014] that cannot correctly blur the scenes.

Correct blurring of light requires taking multiple scattering into account.
Multiple-scattering solutions (Chapter 3) can handle fast rendering of homoge-
neous media [Elek et al., 2013], but methods for non-homogeneous media may
still take hundreds of milliseconds even for small resolutions Shinya et al. [2016].

This thesis aims at proposing and fully implementing a real-time method for
multiple-scattering effects even in complex scenes with quasi-heterogeneous media
whose density functions can be analytically integrated.

Use cases
Let us present a list of possible use cases of real-time rendering of participating
media. The list is in no way exhaustive but provides several examples of software
applications that could benefit from an efficient approximation of light scattering.

Driving simulators Driving in different weather conditions can be very de-
manding and dangerous. Rain, snow, ice, or fog may affect how a car
behaves on a road and how limited our visibility is when driving. Sim-
ulating these conditions is therefore desired by many driving and racing
simulators. Rendering light scattering in real time is necessary to correctly
visualize what a driver can see during a foggy weather.

Military simulators Military simulation is a very broad term. Depending on
what we need to visualize, we may benefit from real-time participating
media rendering. Simulating underwater environments, for example, can
be useful for navy and submarine simulators. Visualizing heavy fogs, sand-
storms, or blizzards may be used when simulating navigation in battlefields.

Video games Video games often strive for visual attractiveness. A participating
medium can dramatically change how a scene looks like and may alter the
depth perception. Even a simple scene with a few objects and light sources
may look differently and more interesting when a fog is present (consider
Figure 1 that depicts a rather simple scene). Depending on the video game

Figure 1: Foggy streets rendered with our method with different parameters.
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environment, we may want to render fog, smoke, snow blizzards, or even
non-realistic media such as in science-fiction video games.

Goals and structure
This thesis aims to reach the following objectives.

1. Background We briefly examine the physical and mathematical background
necessary for the correct understanding of light transport. The mostly phys-
ical background is presented in Chapter 1. After reading the information, it
should be clear how light behaves in participating media. We also present
an introduction to image filtering as it will be necessary further in the thesis.

2. Related works Before introducing our own method, we briefly review some
of the current approaches for real-time rendering of the phenomenon. For
this purpose, we introduce two chapters. In Chapter 2, we explain the
existing solutions that are either empirical or based on single-scattering
approximations. This mainly enables us to understand how modern video
games handle the rendering of participating media. In Chapter 3, we have
a look at more precise solutions based on multiple scattering.

3. Proposed method Based on our examination of the related work, we choose
one of the methods as our baseline. Then we propose an improved method
with support for quasi-heterogeneous analytically integrable media (such as
a fog with a density exponential with regards to altitude). Our new method
also support scenes with intensely emissive materials, e.g., night scenes with
various light sources such as lanterns and car lamps. After explaining our
approach, we analyze the advantages and limitations of our method, also in
the context of the competing approaches. Chapter 4 is completely devoted
to our proposed method.

4. Implementation We prepare a 3D scene containing the mentioned condi-
tions and then fully implement our method in a 3D demo application. The
application allows free navigation around the 3D scene and a sufficient free-
dom in modifying the parameters of the participating medium. We verify
that our method is indeed capable of being executed in real time. The expla-
nation of our implementation and analysis of its performance are presented
in Chapter 5.

Expectations from the reader
In this thesis, we expect the reader to be already familiar with at least the basic
concepts of programming and hardware accelerated real-time rendering. A suf-
ficient introduction into the GPU computing pipelines and available APIs, such
as OpenGL or DirectX, would be beyond the scope of the thesis.

We also expect the reader to understand the standard mathematical oper-
ations, especially in linear algebra and calculus. On the other hand, detailed
knowledge of the mathematics and physics behind light transport and image fil-
tering is not required because the relevant bits will be reviewed in Chapter 1.
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1. Physical and mathematical
background
When rendering virtual scenes, it is important to understand the physics and
mathematics behind the process. Rendering is based on generating an image
that should represent what a virtual camera would see when placed in the scene.

The camera is basically a light sensor, so we need to calculate the power of
the light that reaches the camera from certain directions. We assume that light
is emitted from light sources, then it interacts with elements in the scene, and
finally it reaches the camera. Based on this idea, we can construct the rendering
equation, which mathematically describes the light transport.

In Section 1.1, we very briefly derive how the rendering equation looks like
for light transport in a vacuum. It was originally presented by Kajiya [1986] and
more interesting information can be found in his article.

Then, we show how the light transport changes when assuming that light in-
teractions occur not only at surfaces but also in the surrounding medium. We
briefly explain how light can interact with the participating media (Section 1.2).
Based on this knowledge, we derive the volume rendering equation (VRE, Sec-
tion 1.3) as described, among others, by Elek [2016].

After explaining the light transport, a brief introduction to image filtering
is presented in Section 1.4. The basics of image manipulation, especially with
regards to distribution functions, will be required further in the thesis, primarily
in Chapters 3 and 4.

At this point, I would like to clarify the mathematical notation that is used
in the remainder of the thesis. The slanted font denotes scalar quantities (e.g.,
irradiance E), bold font denotes vectors (e.g., position x, direction ω), and sans
font denotes discretized functions (e.g., image L). Units of quantities are enclosed
in brackets (e.g., [W ·m−2]). The exponential function is always denoted by
exp (x) instead of ex, because we work with very big exponents and their font
would be too small. All other symbols are always explained in the relevant parts
of the thesis.

1.1 Light transport in vacuum
Before taking participating media into account, let us explain the light transport
in a vacuum. In this section, we derive the rendering equation while assuming
that all light interactions happen only when light hits surfaces of objects.

1.1.1 Assumptions
As described by Jarosz [2008] and Elek [2016], computer graphics typically rely
on geometric optics (also called ray optics). Even though there also exist wave
optics, electromagnetic optics, and quantum optics, they typically provide too
low-level descriptions of optical phenomena. In geometric optics, we assume that
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light travels in straight lines at an infinite speed and that light can only be
emitted, reflected, and transmitted.

Because of these simplifications, it is not possible to correctly explain certain
effects, such as diffraction and interference [Elek, 2016]. Fortunately, as we will see
in the following sections, light transport in participating media can be simulated
by geometric optics to the necessary degree.

1.1.2 Radiometric quantities
The rendering equation is based on radiometric quantities. They enable us to
objectively describe electromagnetic radiation, including light. Before introducing
the full rendering equation, we should first understand the following quantities:
flux, irradiance, and radiance. Figure 1.1 illustrates their intuitive meanings.

Flux Φ

n

Irradiance E(x)

n

x

Radiance L(x;!)

n

x

!

Figure 1.1: Illustration of the intuitive meanings of the radiometric quantities.
The blue arrows symbolize the arriving light and the vector n is the normal of
the surface.

Radiant flux (also called radiant power) expresses the amount of flowing
energy [J] over time [s]. Therefore, the unit of flux is [J · s−1] = [W]. In practice,
it can be used to express power of light sources. We denote flux by Φ.

To express the amount of radiant power [W] over a certain surface [m2], we
use irradiance. Its unit is [W ·m−2], and we denote it by E. The irradiance at
the surface position x is denoted by E(x).

The radiometric quantity that we use in the rendering equation is called ra-
diance. It expresses the amount of radiant power [W] that a sensor receives
from a surface [m2] from a certain direction [sr]. Radiance therefore has the unit
[W · sr−1 ·m−2]. For the position x and angle ω, we denote it by L(x, ω).

Relations

We have defined the quantities individually, but they are related to each other
as can be understood from Figure 1.1. Irradiance, for example, can be expressed
by integrating radiance. The integral needs to be over all directions in the upper
hemisphere Ω+ in respect to the normal vector n of the surface. Flux can also be
expressed by integrating radiance. We need to integrate over the whole surface
area A and over all directions. We can therefore write [Elek, 2016]:

E(x) =
∫

Ω+
L(x, ω) dω,

Φ =
∫

A

∫
Ω+

L(x, ω) dω dx.

6



Please note that the radiance L is used for light in both directions. The
incident radiance refers to the incoming light and the exitant radiance refers to
the outgoing light. For the sake of simplicity, we will not use any special notation
to differ between the two situations. It should always be clear from the context
and from the orientations of the vectors. If ω points towards a surface, it indicates
the incoming direction, and vice versa.

1.1.3 Bi-directional reflectance distribution function
When light travels through a vacuum, it does not interact with anything until
it hits a surface. Therefore, the radiance remains constant along straight lines
between light sources, surfaces, and cameras. An interaction with a surface can
result in light being reflected, refracted, or absorbed. When the light is reflected
from an opaque surface, we can describe the reflection by the bi-directional re-
flectance distribution function (BRDF) of the surface material.

Let r denote a certain BRDF. For the surface position x with incoming light
from the direction ω′, the function r(x, ω′, ω) gives us the ratio of the reflected
radiance along direction ω. We can define the BRDF as [Jarosz, 2008]:

r(x, ω′, ω) = dL(x, ω)
L(x, ω′)⟨n,−ω′⟩ dω′ , (1.1)

where ⟨n,−ω′⟩ denotes the inner product of the normal vector and the direction
towards the light source (Figure 1.2).

We can now use r to describe the total radiance reflected by the surface from
all directions. We need to multiply both sides of Equation 1.1 by the denominator
and integrate over all incoming directions ω′ from the upper hemisphere. The
total reflected radiance Lr can therefore be computed as:

Lr(x, ω)  
reflected

=
∫

Ω+
r(x, ω′, ω)  

BRDF

L(x, ω′)⟨n,−ω′⟩  
incoming

dω′. (1.2)

As we can see, the BRDF is an important function defining how light interacts
with a given surface. There are many different reflectance models for different
types of materials. For an overview of common BRDF, refer to the work by
Montes and Ureña [2012]. It should be noted that the models can be generally
classified into three categories: physical-based, empirical, and experimental.

n

x

!
0

! !
00

Figure 1.2: The BRDF tells us how light is reflected from an opaque surface.

7



A very simple empirical reflectance model—still very popular in real-time
graphics for its simplicity—is the BRDF by Phong. It can be expressed as:

rPhong(x, ω′, ω) = kd

π
+ ks

⟨ω, ω′
r⟩n

4π⟨n,−ω′⟩
, (1.3)

where ω′
r denotes Phong’s reflection vector, and kd, ks, n are material parameters.

For its simplicity, we use this model in our prototype application (Chapter 5).

1.1.4 Rendering equation in vacuum
Now that we understand the basic concepts, we can present the rendering equation
of Kajiya [1986]. It generalizes rendering algorithms by describing the balance
in the energy flow between surfaces. The main idea is to express the outgoing
radiance Ls from a surface at the position x in the direction ω as a sum of the
emitted radiance Le and the reflected radiance Lr:

Ls(x, ω) = Le(x, ω) + Lr(x, ω). (1.4)

By substituting Equation 1.2 into Equation 1.4, we get the hemispherical form
of Kajiya’s rendering equation:

Ls(x, ω)  
outgoing

= Le(x, ω)  
emitted

+
∫

Ω+
r(x, ω′, ω)  

BRDF

L(x, ω′)⟨n,−ω′⟩  
incoming

dω′

  
total reflected

. (1.5)

The rendering equation then has to be solved by a rendering algorithm. Be-
cause of the complexity of the equation, we need a sophisticated numerical inte-
gration method. An explanation of some of these would be far beyond the scope
of this thesis. Solutions such as finite element methods, Monte Carlo ray tracing
methods, and irradiance caching are described in the dissertation of Jarosz [2008].

1.1.5 Real-time applications
When solving the rendering equation in real-time, we are limited by the execution
time and cannot rely on precise but slow methods. The equation has to be
simplified. One of the possible solutions is based on approximating the indirect
light in our scene. We can replace all indirect light by a single constant ambient
term La. It enables us to replace the integral in Equation 1.5 by the finite sum
of all light sources in our scene:

Ls(x, ω) = La + Le(x, ω) +
∑

(Li,ω
′
i)

light sources

r(x, ω′
i, ω)Li(x, ω′

i)⟨n,−ω′
i⟩. (1.6)

The simplified Equation 1.6 can now be solved in real-time on a GPU. Tech-
nically, the light transport can be solved for each pixel individually by simply
iterating through all light sources. This is usually done on the GPU in a frag-
ment shader (pixel shader) that is executed for each pixel. Later in Chapter 5,
we implement a lighting shader based exactly on this simplification.

8



1.2 Interactions in participating media
So far, we have assumed that light is emitted from light sources, then interacts
with surfaces in the scene, and finally reaches the camera. It enabled us to derive
the rendering equation for light transport in a vacuum. The goal of this thesis,
however, is to simulate participating media.

Before introducing the volumetric rendering equation in Section 1.3, let us
first have a look at how light interacts with the media. This section is a brief
summary and more information can be found in the dissertations by Jarosz [2008,
Chapter 4] and Elek [2016, Chapter 2].

1.2.1 Assumptions
When rendering the participating media, we have to make certain assumptions
about their properties. We will model a medium as a collection of identical,
randomly positioned, and small particles, such as water droplets or dust. The
light interactions will be described for individual particles and then extended to
the whole medium.

For the position x in a certain medium, let ϱ(x) [m−3] denote the density of
the particles at that location. Each particle is characterized by three properties:
absorption cross-section Ca [m2], scattering cross-section Cs [m2], and a phase
function fp. Both Ca and Cs are wavelength-dependent1 , which will be implicit
throughout the rest of the thesis.

1.2.2 Types of interactions
When describing the interactions between the light and the particles, we under-
stand light as a stream of photons. The photons can arrive to the medium directly
from light sources or after being reflected by surfaces in the scene. Furthermore,
the medium itself can emit a new photon by converting other forms of energy.

When a photon travelling through the medium hits a particle, the photon
itself can be completely absorbed or scattered in a new direction. Therefore, when
simulating the media, we consider three interactions: absorption, scattering, and
emission (Figure 1.3).

Absorption

When an interaction happens, the photon may be absorbed by the particle it
hit. Because energy can never be lost, what actually happens is that the photon
energy is transformed into another form. It may cause, for example, a raise of
the temperature of the medium.

We are, however, only interested in light transport, hence we consider the
energy to be “lost”. Macroscopically, the “lost energy” can be observed as the
overall intensity of the light decreases.

1 Wavelength-dependent properties may have different values for different wavelengths of
the light. In computer graphics, we typically model the properties for the red, green, and blue
channels. To avoid cluttered notation, we will not make any difference between these properties
and regular properties.
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participating medium

absorption

(multiple) scattering

(single) scattering emission

Figure 1.3: Light interactions in a participating medium.

How much the medium absorbs light is determined by the absorption coef-
ficient σa [m−1]. This property depends on the absorption cross-section of the
particles and the density of these particles:

σa(x) = Ca · ϱ(x).

Imagine a light beam passing through a medium. Let x denote a location
in the beam and let ∆t be a small step in the direction ω of the beam. Then
σa(x + tω)∆t is the number of photons absorbed by the medium.

Analogically, we can compute how long, on the average, a single photon travels
until it is absorbed by the medium. The value equals 1/σa [m].

Scattering

If a photon is not absorbed when it hits a particle, its energy is scattered into a
new direction. The direction depends on the phase function of the medium.

For a beam of light passing through a medium (Figure 1.4), we can divide
the scattering into two opposite but complementing processes. Out-scattering
is when photons of the beam are scattered out of the path of the beam, reducing
its radiance. In-scattering describes the opposite effect: when other photons
are scattered and converge into the path of the beam, increasing its radiance.

sensor

in-scattering

absorption

out-scattering

detected radiance

emission
original radiance

Figure 1.4: Light interactions in the perspective of a light beam.

Furthermore, we can distinguish between single scattering, when we assume
that light can only scatter once, and multiple scattering, when light can scatter
multiple times. In real media, multiple scattering occurs, which may cause sig-
nificant spatial and angular spreading (Figure 1.5) [Premože et al., 2004]. This is
the reason why objects in fog appear blurred: the light that was reflected from
them is smoothly spread around and colors blend together.
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sensor

spatial spread

angular spread

Figure 1.5: Beam spreading caused by multiple scattering.

How much the scattering happens is described by the scattering coefficient
σs [m−1]. It depends on the scattering cross-section of the particles and the density
of these particles:

σs(x) = Cs · ϱ(x).

Analogically to the absorption, how long a photon travels, on the average,
until it is scattered in the medium, equals 1/σs [m].

Emission

When particles in the medium convert other forms of energy into light, a new
photon is emitted from inside the medium. Let us denote the emitted radiance
the same way we did in the rendering equation: Le(x, ω).

1.2.3 Extinction coefficient and optical thickness
Extinction describes the event when a photon is either absorbed or scattered. It is
described analogically to the absorption and scattering. We define the extinction
coefficient as σt [m−1] = σa + σs.

How long a photon can travel, on the average, until it is absorbed or scattered
in the medium, equals 1/σt [m]. This value is called the mean free path of a
photon in a medium. As we can see, σt is the inverse to the mean free path.

The extinction defines both absorption and scattering together, but we may
be interested in the probability of a photon being scattered instead of absorbed.
This probability is called the scattering albedo. We denote it by α and it is defined
as:

α = σs

σa + σs
= σs

σt
.

By integrating the extinction along a line segment l, we get the variable called
optical thickness or optical depth, denoted by τ :

τ(l) =
∫

l
σt(x) dx. (1.7)

1.2.4 Beer–Lambert–Bouguer law
In Section 1.1.2, we defined a radiometric quantity called radiance that was later
used in the rendering equation for a vacuum (Equation 1.5). We now explain how
radiance relates to light interactions in participating media.
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As we have already explained, when photons in a light beam travel through
a medium, the radiance along the beam may decrease because of the extinc-
tion. How exactly the radiance changes is described by the (beam) transmittance,
denoted by T .

Let l denote the straight optical path between locations x0 and x1. We can use
the transmittance T (x0, x1) = T (l) to express the radiance after being reduced
by interacting with the medium (Figure 1.6):

L(x1, ω) = T (l) · L(x0, ω).

!

x0x1

!

T (l)

Figure 1.6: Radiance may significantly decrease after passing through a medium.

We can see that for a constant transmittance T = 1, we get an equation
describing how radiance behaves between surfaces in a vacuum.

It only remains to describe how the transmittance T is related to the parame-
ters we have introduced in the previous subsections. The Beer–Lambert–Bouguer
law explains exactly what we need by stating how to compute the transmittance
with regards to the optical thickness τ :

T (l) = exp (−τ(l)) . (1.8)

1.2.5 Phase function
When light scatters after interacting with particles, the light is distributed in
other directions. The phase function of the medium describes the angular distri-
bution of the scattering. It can be understood similarly to BRDF (Equation 1.1),
but instead of describing how light is reflected from a surface, it tells us how it is
scattered from a particle.

We will denote the phase function by fp and define its parameters analogically
to our BRDF. For the position x, incoming direction ω′, and outgoing direction
ω, the phase function is fp(x, ω′, ω). Because this thesis assumes that all particles
in a medium have the same properties, we can only write fp(ω′, ω).

How exactly we model the phase function and what the requirements for such
function are can be found in the work by Elek [2016, Section 2.3.2]. In our real-
time rendering method, we do not need to understand the details. It may be
interesting to note, though, that every phase function is also a proper spherical
probability density function.

Scattering asymmetry

We will further assume that all particles in the simulated medium have random,
uncorrelated orientations. As described by Elek [2016], we can then express the
phase function only as fp(θ), where θ is a scattering angle.
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As the function only depends on a single angle, it would be useful if we could
define a single quantity describing the shape of the function. For this purpose,
we define the scattering asymmetry factor, denoted by g. We can express it as
the average cosine on the scattering angle θ:

g =
∫

Ω4π

fp(θ) cos θ dω′, (1.9)

where Ω4π is the whole sphere of directions.
Because g is an average cosine, its values are ∈ [−1, 1]. For g > 0, scattering

in forward directions is favored. For negative values, backscattering is favored.

1.3 Volume rendering equation
Our goal in this section is to derive the equation for radiance in participating
media. For this purpose, we use the already derived rendering equation for a vac-
uum (Equation 1.5) and extend it by assuming the light interactions we described
in the previous section (Section 1.2).

1.3.1 Radiative transport equation
As we have already explained, for a fixed light ray passing through a participating
medium, there are four types of interactions that can change its radiance. Two of
these interactions can increase the radiance, they are emission and in-scattering.
The other two can decrease the radiance, they are absorption and out-scattering.

Let x denote a location and ω the direction of a light ray. We can define the
differential change of radiance along ω at x as:

(ω · ∇)L(x, ω) = Le(x, ω)  
emission

+ σs(x)Li(x, ω)  
in-scattering

(volume contribution)

− σa(x)L(x, ω)  
absorption

−σs(x)L(x, ω)  
out-scattering

(extinction). (1.10)

Equation 1.10 is called the radiative transport equation (RTE) and was de-
scribed by Chandrasekhar [1960]. It explains how exactly the radiance is affected
by the four types of interactions. Before proceeding, we have to further explain
the terms of the equation, especially because we still have not defined what Li
stands for.

First of all, we can notice that the absorption and out-scattering together can
be expressed as a single term. We have already defined the extinction coefficient
(Section 1.2.3) that enables us to write:

σa(x)L(x, ω) + σs(x)L(x, ω) = σt(x)L(x, ω). (1.11)

The emission and in-scattering together can be expressed by a single term as
well. We define the volume contribution Lv as the sum of the emission and the
in-scattering. We can now write:

Le(x, ω) + σs(x)Li(x, ω) = Lv(x, ω). (1.12)
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Now we have to explain the radiance Li. We want to express the radiance
that is scattered into the light ray from all other directions. By integrating over
the directions while using the phase function fp (Section 1.2.5), we get:

Li(x, ω) =
∫

Ω4π

fp(x, ω′, ω)L(x, ω′) dω′. (1.13)

Notice how similar Equation 1.13 is to Equation 1.2 with the BRDF. Now, by
substituing Equations 1.11 and 1.12 to Equation 1.10, we can express the RTE
in a much shorter form:

(ω · ∇)L(x, ω) = Lv(x, ω)− σt(x)L(x, ω). (1.14)

1.3.2 Rendering equation for participating media
The final goal of this section is to derive the rendering equation for participating
media. The original rendering equation for a vacuum (Equation 1.5) defines
the surface contribution Ls. This contribution has to be reduced (attenuated)
according to the transmittance T . On the other hand, the contribution also has
to be increased by the volume contribution Lv.

The final form of the volume rendering equation (VRE) can be obtained by
integrating both sides of Equation 1.14 over the optical path between the positions
x0 and xs (Figure 1.7) [Elek, 2016]:

L(x0, ω) =
∫ s

0
T (x0, xt)Lv(xt, ω) dt  

total volume contribution

+ T (x0, xs)Ls(xs, ω)  
surface contribution

. (1.15)

T (x0;xt)

xsx0

!

xt

Ls(xs;!)Lv(xt;!)

L(x0;!)

Figure 1.7: Illustration of the intuitive understanding of the VRE.

It now remains to explain how it is possible to solve the equation in real-time
applications. We dedicate the rest of this thesis to analyze and implement a
solution to this problem. For more details about the methods for non-real-time
applications, I will, again, refer you to the work by Jarosz [2008].

1.4 Image filtering
Before introducing a new chapter, let us have a brief look at the basics of image
filtering. The filtering is used later in Chapters 3, 4, and 5, but the basic notation
we introduce here is also useful for Chapter 2.
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1.4.1 Screen-space approaches
Most of the methods described in the following chapters, including our proposed
method, are based on screen-space approaches. We assume that we can already
render our scene in a vacuum using a common rendering approach. Then we
modify the original image by adding the effects caused by the participating media.

Because we work with the information that are “on the screen”, we call these
methods “screen-space”. They are very popular in real-time rendering on the
GPUs [Elek et al., 2013] as they can often be executed for each output pixel
individually in parallel. Typically, these approaches tend to be limited as they
cannot work with any information that are currently not on the screen, e.g., the
objects behind the camera. Fortunately, as we will see later, this limitation is not
very critical in certain conditions.

For our purposes, an image is a discrete two-dimensional function L : N2 →
R3. For each pixel position x ∈ N2, the function gives us the color of the pixel
L(x) ∈ R3 composed of non-negative real red, green, and blue components. By
high dynamic range (HDR) images, we understand the images where the ratio
between the darkest and the lightest pixel’s color can be very high. Therefore,
we generally assume that each color channel can have values in [0, +∞).

1.4.2 Convolution
Many of the techniques for modifying images apply a certain filter on the original
image. Typically, they are neighborhood-based, which means that the new colors
of the pixels are calculated from the initial colors of the neighboring pixels.

Based on this idea, we can use the mathematical operation called convolution
[Fialka and Čad́ık, 2006]. The operation is usually denoted by ∗. Let L denote
the original image and K the so-called filter kernel. For 2D discrete functions, the
convolution can be defined for example as:

(L ∗ K)(x) =
∑
x′

L(x′)K(x′ − x),

where the sum iterates over all pixel positions or only the pixels from the neigh-
borhood of x. The filter takes the offsets between the pixels and returns the
values describing how important that neighboring pixel’s color is for the result.

A simple example is a convolution with a Gaussian kernel, i.e., the discrete
kernel based on the continuous Gaussian distribution. It can be used for blurring
images and we will come back to it later, especially in Section 3.2.

1.4.3 Point spread function
In computer graphics and physics, we sometimes use the convolution with a spe-
cial filter called the point spread function (PSF) fPSF : R2 → R [Elek, 2016]. This
function describes the spreading of a point signal caused, for example, by an opti-
cal system. In our case, we can understand the pixels of an image as point signals,
which means that we can convolve an image with a PSF: L ∗ fPSF (Figure 1.8).
In practice, we can also convolve images with the inverse of a certain PSF, which
can be used to fix imperfections of optical systems.
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∗ =

Figure 1.8: Blurring an 8× 8 image with a 3× 3 point spread function.

1.4.4 Normalization problem
The discrete convolution may suffer from incorrect normalization of the filter.
Usually, we want image filtering to conserve energy, i.e., the sum of all colors
in the final image should match the sum in the initial image. Especially, we do
not want our filter to generate any new energy in the image. Mathematically, we
want the sum over all pixel positions in the kernel to equal 1:∑

x
K(x) = 1.

Unfortunately, if our filtering kernel is based on an originally continuous func-
tion, such as the Gaussian distribution, then even though the initial distribution
was normalized, sampling the function at discrete values will typically not be nor-
malized anymore. Therefore, we cannot simply take any function and use it in
the discrete convolution without having to worry about the energy conservation.
One of the easiest solutions is to sum the values of the kernel and multiply the
whole kernel by the reciprocal value.

1.4.5 Spatially varying kernels
The methods we describe in Chapter 3 are based on image filtering with spatially
varying kernels. The definition of convolution assumes that the kernel is the
same for all pixels, but we may want each pixel to be distributed differently. For
a simple example, imagine that every pixel in the original image has a different
PSF (Figure 1.9). The operation for filtering the image would by definition not
be a convolution anymore.

We can define new weighting functions wx′(x′−x) that would tell us how much
x′ contributes to the filtered value of x. We could now rewrite the convolution
so that we would get the filtered image L′ as:

L′(x) =
∑
x′

wx′(x′ − x)L(x′). (1.16)

Figure 1.9: Blurring an image with a spatially varying PSF.
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1.4.6 Algorithms
For the image size n × n and kernel size m × m, the time complexity of the
convolution algorithms is generally O(n2m2) [Fialka and Čad́ık, 2006]. Even
though it is possible to get lower complexity for separable kernels or using the
fast Fourier transform, the ideas are not really important for this thesis. As we
have already stated, filtering with spatially varying kernels is not possible with a
convolution. Therefore, we need to use alternative algorithms.

Let us now assume that we want to filter an image with spatially varying
functions wx′ . Furthermore, we assume that these functions are not normalized.
Rather, we need to normalize them ourselves during the run of the algorithm.
These are the exact conditions that we will be working with later in Chapters 3,
4 and 5, so it makes sense to introduce the algorithms now.

Generally, when assuming these conditions, there are two possible approaches:
splatting (distributing) and gathering [Elek et al., 2013, Shinya et al., 2016]. The
splatting approach iterates over all pixel positions x′ and adds their distribution
to the neighboring pixels. The gathering approach works the other way around:
it iterates over all pixel positions x and adds the distribution of the neighboring
pixels to itself. Both approaches are illustrated in Figure 1.10.

splatting

x
0

gathering

x

Figure 1.10: Illustration of the splatting and gathering approaches.

Splatting

By splatting, we mean that we take every pixel and we add its contribution to
all other pixels, i.e., we “splat” the distributed pixel to the result. This approach
is depicted in Algorithm 1.

The time complexity of the algorithm is O(n2m2). The complexity can be
theoretically lowered by assuming small neighborhoods, e.g.,

√
n×
√

n or log n×
log n, but it is not generally possible for filters with large support.

Not only is the time complexity high for real-time purposes, the idea of splat-
ting is not very ideal for modern GPUs. Fragment shaders typically allow us to
run our algorithms in parallel for each output pixel. It means that we want an
algorithm that only writes to a single pixel in each iteration. Obviously, the idea
of splatting completely contradicts this requirement.

Gathering

The solution that fits GPUs much better is based on gathering [Elek et al., 2013].
For each pixel, we “gather” the contributions from the neighboring pixels. The
idea corresponds to Equation 1.16 and is depicted in Algorithm 2. As we can see,
the algorithm only writes to a single pixel in every iteration of the outer loop, so
the iterations can run in parallel on the GPU.
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Unfortunately, for correct normalization, we need to calculate the totalWeight
in an additional inner loop inside the inner loop. The time complexity has in-
creased to O(n2m4).

Faster gathering

Because the time complexity of the gathering algorithm is too high, we want to
get around the normalization problem. We can remove the inner loop at lines
8–11 and instead compute the weights from pixel locations x′ (Algorithm 3). This
way, we get the time complexity O(n2m2).

Unfortunately, this normalization is generally incorrect because we only use
one totalWeight for all pixel positions x′. But the weighting functions are spa-
tially varying, which means that their totalWeights may be different.

As explained by Shinya et al. [2016], we can use this approximation to a
certain degree by assuming small neighborhoods and similarity of local pixels.
Later in Chapter 5, we implement a naive filtering algorithm based on this in-
correct normalization. Certain artifacts of our implementation are explained in
Section 5.3.7.

Algorithm 1 Splatting in O(n2m2)
1: procedure Splat(L)
2: L′ ← empty image
3: for all pixel positions x′ do
4: totalWeight← 0
5: wx′ ← weighting function of x′

6: // accumulate the weights at the discrete samples:
7: for all pixel positions x in the neighborhood of x′ do
8: totalWeight← totalWeight + wx′(x′ − x)
9: end for

10: // distribute according to the normalized weight:
11: for all pixel positions x in the neighborhood of x′ do
12: weight← wx′(x′ − x)/totalWeight // normalization
13: L′(x)← L′(x) + weight · L(x′)
14: end for
15: end for
16: return L′

17: end procedure
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Algorithm 2 Correctly normalized gathering in O(n2m4)
1: procedure NormalizedGather(L)
2: L′ ← empty image
3: for all pixel positions x do
4: for all pixel positions x′ in the neighborhood of x do
5: totalWeight← 0
6: wx′ ← weighting function of x′

7: // accumulate the weights at the discrete samples:
8: for all pixel positions x′′ in the neighborhood of x′ do
9: totalWeight← totalWeight + wx′(x′ − x′′)

10: end for
11: // distribute according to the normalized weight:
12: weight← wx′(x′ − x)/totalWeight // normalization
13: L′(x)← L′(x) + weight · L(x′)
14: end for
15: end for
16: return L′

17: end procedure

Algorithm 3 Incorrectly normalized gathering in O(n2m2)
1: procedure FastGather(L)
2: L′ ← empty image
3: for all pixel positions x do
4: color ← 0
5: totalWeight← 0
6: for all pixel positions x′ in the neighborhood of x do
7: wx′ ← weighting function of x′

8: weight← wx′(x′ − x)
9: color ← color + weight · L(x′)

10: totalWeight← totalWeight + weight
11: end for
12: // distribute according to the incorrectly normalized weights:
13: L′(x)← color/totalWeight
14: end for
15: return L′

16: end procedure
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2. Empirical and
single-scattering methods
After explaining the necessary mathematical and physical background, let us now
have a look at several existing real-time solutions to the light transport problem.
This step enables us to later present our proposed method (Chapter 4) in the
context of the existing approaches.

In this chapter, we describe four existing methods and try to briefly analyze
how they work and what their benefits and disadvantages are. As obvious from
the name of the chapter, each of the methods is either completely empirical,
i.e., not really physically based, or it assumes that light can only scatter once.
Furthermore, none of these methods is able to blur all objects in the scene because
they only calculate the contribution from designated light sources in the scene.
Later in Chapter 3, we introduce screen-space multiple-scattering methods that
can blur all pixels.

Despite the limitations of the empirical and single-scattering approximations,
I think it is important to include these methods in the thesis because they are
very common in real-time applications such as video games. They are very fast
and can often be configured by experienced artists to give good visual results.

2.1 Color blending
Color blending is a very old method based on a very simple approximation of the
volume rendering equation. As we will see, this method is so useful that it has
even been included in OpenGL at least since 1994 [Segal and Akeley, 1994].

2.1.1 Motivation
In real-time 3D computer graphics, the performance of rendering on the GPU
heavily depends on geometry complexity and texture resolutions. If our scene
contains a lot of detailed objects (meshes) with high-resolution textures, the ren-
dering time can be too high. As mentioned in the introduction, fast rendering is
essential for real-time applications.

Because we cannot render too many detailed objects, we have to accomodate
techniques such as level of detail (LOD). It means that objects that are far from
the camera are rendered with lower quality, i.e., lower geometry detail or lower
texture resolution. Typically, we also decide not to render meshes that are too far.
For this purpose, we can define a far clipping plane behind which no geometry is
rendered.1

It is obvious, though, that once we decide to use LOD or clipping of geom-
etry, the user of our application can notice that some objects are low quality or
completely missing. Therefore, we need a way to mask this problem.

1 It should be noted that clipping planes have other purposes as well, such as suppressing
precision problems of floating point numbers in a z-buffer.
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Figure 2.1: Linear color blending fog. As can be seen, the transition is very sharp
and the fog has a uniform color independent on the light sources around it.

2.1.2 Idea
One of the very old solutions, which is still used in modern applications, is to
smoothly hide distant objects in a fog. Because complex rendering of a fog as
a participating medium would be very slow, we instead approximate the fog by
simple color blending. This idea was documented, for example, by Segal and
Akeley [1994] in the specification of the first version of OpenGL.

The algorithm is based on blending (mixing) the color of a pixel with the color
of the fog depending on the distance of the pixel from the camera (Figure 2.1). By
“distance of the pixel from the camera”, we mean how far the rendered geometry
on that pixel is from the camera (Figure 2.2 shows how the 2D pixel position is
related to its 3D position). Sometimes, we refer to this distance as the depth of
the pixel as the information is usually stored in a depth buffer, also called z-buffer.

It is important to note that this algorithm does not rely on any advanced
equations and is purely empirical. Its computation is therefore very fast and
independent on the number of light sources and the complexity of the rendered
geometry.

Color equation

The idea of color blending stems from the observation that in the presence of a
fog, distant objects often disappear in a white “cloud”. In case of a homogeneous
fog, the intensity depends on how far the objects are. We therefore assume that
the fog itself has a white or grey color and we blend the color of the pixel with
this color [Klawonn, 2008].

Let L : N2 → R3 represent a two-dimensional image of a certain scene. We
assume that there is no participating medium in the image, e.g., the image can
be the output of a standard rendering algorithm for a vacuum. We will denote
C ∈ R3 the color of the fog. Let D : N2 → R+

0 denote the depth buffer, i.e., a
non-negative function of the depths of the pixels of L.
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The new image L′ : N2 → R3 can be computed as:

L′ = b(D) ·C + (1− b(D)) · L, (2.1)

where b is the blending function defined in the following section.
As we can see, the new color is the result of the linear combination of the old

color and the fog color. It may not be immediately obvious, but Equation 2.1 is
just a very simple approximation of the VRE (Equation 1.15). The total volume
contribution is approximated by b(D) · C, the attenuated surface contribution
corresponds to (1− b(D)) · L.

Blending functions

The blending function b : R+
0 → [0, 1] is an increasing function that tells us how

much should a pixel in a certain distance be colored by C.
We typically want objects near the camera to retain their original color, there-

fore we want b(0) = 0. Additionally, objects that are very far away—and therefore
could be clipped and not rendered at all—should be completely “hidden” in the
fog. Hence, for d→∞, we want b(d)→ 1.

Linear fog

Segal and Akeley [1994] and Klawonn [2008] describe a very simple linear blending
function. For distances lower than a certain threshold d0, the pixels keep their
original color. On the other hand, all pixels that are further than d1 are completely
colored by the fog. Between d0 and d1, we mix the colors linearly.

The linear blending function for distance d is defined as:

b(d) =

⎧⎪⎪⎨⎪⎪⎩
0 if d ≤ d0,
d−d0
d1−d0

if d0 < d < d1,

1 if d ≥ d1.

(2.2)

Exponential fog

The problem with the linear fog is that the blending may look very sharp. If we
replace Equation 2.2 with an exponential function, we can achieve much smoother
results. The specification of OpenGL [Segal and Akeley, 1994] also suggests that
a squared exponential can be used. For a custom parameter c > 0, we can define
the following two functions:

b(d) = 1− exp (−c · d) , b(d) = 1− exp
(
− (c · d)2

)
.

Notice the similarity to the Beer–Lambert law (Equation 1.8). For a homo-
geneous medium, the transmittance exponentially decreases with the distance.
Here, b increases, because we use it to blend with the fog color.

Please note that although we use the name “exponential fog”, its density does
not depend on altitude. The only parameter of the blending function is the depth
of the pixel. Later in Chapter 4, we explain a density function that is exponential
with regards to altitude. These two ideas should not be confused.
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2.1.3 Density based blending
The previous solutions are primarily based on the idea that we need to mask
the effects of LOD and clipping. The blending functions are designed to not be
visually disruptive and to be easily computed during the rendering.

Qúılez [2010, 2015] proposes an improvement to this approach. Instead of
defining an empirical blending function, he suggests blending the colors according
to the physical density of the medium.

Even though the idea of “blending the fog color” is still a huge simplification,
let us now assume that we have a participating medium with the density function
ϱ : R3 → R+

0 (Section 1.2). We can now define a new blending function b′ based
on ϱ.

For each pixel of L, there exists a ray from the camera towards the object on
that pixel. The new blending function is based on the total density integrated
along the ray from the camera. For each pixel position x2D ∈ N2, let x ∈ R3 be
its corresponding location in the 3D space based on the depth of the pixel. We
can now define b′ : N2 → R+

0 as (Figure 2.2):

b′(x2D) =
∫ pixel x

camera
ϱ(x′) dx′.

x2D

screen projection %

x

R
pixel

x
cam

era %(x 0

) d
x 0

Figure 2.2: Integrating the “density of a pixel”.

Note that we cannot use b′ directly in Equation 2.1 because the values are not
in [0, 1], but the equation can be normalized by a certain maximum density.

The idea of calculating the medium densities along camera rays is also used in
our proposed method (Chapter 4). Later in Section 4.3, we show a few examples
of density functions that can be analytically integrated, hence can be used for
real-time approaches.

2.1.4 Conclusion
The color blending approach is based on the assumption that we can approximate
the volume rendering equation by simple color blending. Such solution, unfortu-
nately, does not take any properties of the actual scene into account, apart from
the arbitrary “fog color”. Even for a simple scene with a single light bulb in a
homogeneous participating medium, it is obvious that this approach is not even
able to correctly blur the light in the scene.

The strong benefit of this approach is that it can be computed very easily.
The time complexity of the method depends only on the resolution of the input
image L. It does not depend on the number of light sources in the scene, nor
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on how complex the geometry is. With regards to Section 1.4, it is clear that
this method can be applied by filtering in screen-space for each pixel in parallel.
Furthermore, the presented idea that we can blend the color according to the
integrated density can substantially improve the visual results.

2.2 Billboards and particles
In certain video games, the effects of a participating medium are approximated by
billboards and particles [Wronski, 2014]. By billboards we usually understand two-
dimensional semi-transparent textures that are always facing the camera. They
can be placed in a scene at a static location. Particles are a similar concept, but
there are typically many of them, they move, appear, and disappear according to
rules set for them. The particles can be rendered by using billboards.

Billboards enable us or an artist to paint a texture for a pre-defined location in
our scene. The texture can, for example, display a scattered light beam entering
a dark room from a window. The obvious disadvantage is that the billboards are
artist dependent. They have to be carefully arranged to look plausible from all
angles of the camera. We are not able to use them in dynamic environments,
such as when the lighting can change in time.

Particle effects can be used to simulate local effects, e.g., to simulate smoke.
Because particles are dynamic, the smoke can move in our scene. Persson [2012]
explains how we can calculate the color of the particles depending on the light
sources around. Please note that his solution is only based on the diffuse lighting
and transparency of the billboards that represent the particles. It can be un-
derstood as an empirical approach as it does not really calculate the scattering
effects at all.

We are not going to reference to these empirical methods further in this thesis.
We only presented the idea because it is used in video games and in certain
conditions can be used as an empirical approximation for a participating medium,
such as a smoke.

2.3 Crepuscular rays rendering
Crepuscular rays, also known as sunbeams, light shafts, or God rays, are visible
rays of sunlight divided by columns of shadows. These phenomena occur when
the sunlight is partially occluded by other objects, such as dense clouds, tall
buildings, or trees (Figure 2.3). The occlusion causes the light to be visually
“divided” into rays of varying intensity. This effect is typical for far and intense
light sources, such as the Sun, but it technically occurs for every light in all
participating media, only it may be less visible.

2.3.1 Method overview
Mitchell [2007] proposes how the crepuscular rays can be approximated and ren-
dered in real-time in a screen-space shader. His idea is based on simplifying the
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Figure 2.3: Photo of crepuscular rays caused by the sun light being partially
occluded by trees. (Photo by Becker [2015], dedicated to the Public Domain)

total volume contribution term in the VRE (Equation 1.15) by approximating
how light in-scatters from the sun.

Sun in-scattering

For a camera ray of length s and the angle θ between the sun and the ray, he
proposes to express the volume contribution as:

Lin(s, θ) = (1− exp (−σts)) · σ−1
t · Esun · fp(θ),

where Esun is the energy of the sun, σt is the extinction coefficient, and fp is the
phase function.

As we can see, the previous equation actually takes the physical parameters
of the medium into account. Unfortunately, it only assumes single scattering. It
obviously does not handle any light that is scattered multiple times, e.g., from
the sun towards a point, then from that point towards the camera ray, and then
again along the ray. Also, it ignores all other light sources in the scene as it only
takes the in-scattering from the sun into account.

By substituing the previous equation into the VRE, we can express the total
radiance along a camera ray. We already know that the original surface radiance
L0 gets attenuated according to the Beer–Lambert law (Section 1.2.4). Therefore,
the total radiance along the camera ray can be expressed as (Figure 2.4):

L(s, θ) = Lin(s, θ)  
volume contribution

+ exp (−σts) L0  
surface contribution

. (2.3)

Please note that this equation is clearly a simplification of the original volume
rendering equation (Equation 1.15). We merely replaced the integral of the total
volume contribution by Lin.
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Shadows sampling

The radiance computed in Equation 2.3 does not take any occlusions into account.
If we want to express that certain rays are less intense—i.e., their radiance is
lower—we have to reduce their radiance by a certain factor. Let D(ϕ) denote
the combined opacity of all objects that occlude the sun for the view location ϕ.
Mitchell [2007] proposes that for the total radiance along the view path, we can
write:

L(s, θ, ϕ) = (1−D(ϕ)) · L(s, θ).
In screen-space, in the post-processing step, we cannot exactly calculate the

occlusion. However, we are able to estimate it by sampling along a ray to the
light source in image space (Figure 2.4). For n samples along the ray, we can
write:

L(s, θ, ϕ) =
n∑

i=0

1
n

L(si, θi).

The original method later describes that we have to control the summation
by certain parameters: exposure, weight, and decay. We are not going to explain
these details in the thesis, because they are only necessary when implementing
the method. For more information, please refer to the original article by Mitchell
[2007].

sampling points

occlusion

L0L = Lin + exp(−σts)L0

transmittance: exp (−σts)

Figure 2.4: Single scattering and sampled occlusions of sunbeams.

2.3.2 Conclusion
As we could see, this post-processing method is able to approximate the single
scattering and occlusions of sunlight. We presented the method in this thesis to
show how the original VRE can be simplified for certain conditions and assump-
tions. This method, unfortunately, does not handle multiple-scattering effects
and is originally designed for a single light source only. The time complexity
depends on the image resolution and the number of samples.

2.4 Volumetric fog
The solution we presented in the previous section is based on sampling the in-
scattering in the final two-dimensional image, i.e., in screen space. We are now
going to briefly explain an algorithm that instead uses a three-dimensional (vol-
umetric) texture. While it is still going to be only a single-scattering solution,
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it will support multiple light sources. The method will also take occlusion into
account, which means that it will also be able to render the crepuscular rays.

2.4.1 Method overview
The algorithm was presented by Wronski [2014] and he decided to use “volu-
metric fog” as the name of the solution. The name summarizes the idea quite
well, because we use volumetric textures to store intermediate results of the light
transport calculations.

Basically, we represent the visible scene in front of our camera in a discrete
three-dimensional texture (Figure 2.5). The region of space of the visible ge-
ometry is typically called the view(ing) frustrum or the camera frustrum. The
volumetric fog algorithm works by calculating the light transport in each cell of
the texture individually. The original work suggests that we can use volumes of
size 160× 90× 64, which means that there is almost a million of these cells. The
number of cells is equal to the number of pixels in the HD resolution 1280× 720,
which is what modern GPUs can handle without any problems.

Figure 2.5: The visible scene is represented in a discrete 3D texture. The light
transport is calculated for each cell individually.

There are four major steps. First, we calculate the lighting and shadowing for
every volume cell. We get a 3D texture A. Then, we estimate the density of the
medium, getting a 3D texture B. By combining the information from A and B,
we perform a ray marching step while solving the volumetric rendering equation.
We will explain this step in more details later. In the final phase, we use the ray
marched information to apply the colors to the final 2D texture, which we can
later display on the screen. It is important to note that the first two steps are
independent on each other. We can fully run them in parallel.

Ray marching

The third step is based on ray marching. We take the already computed 3D
textures A and B, and we intersect them by the camera rays of the camera
projection. For each ray, we march through the volume. It means that starting
from the camera, we move along the ray by constant steps while accumulating
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the computed data. We stop once we reach a surface, i.e., we march from 0 to
the pixel depth. The result of this step is the calculated density sum and the
accumulated in-scattering radiance and out-scattering factor.

Result

The data we get from the ray marching step represent numerically integrated
information about the light transport. We can now apply them to the final
image L′. Let L denote the original image rendered in a vacuum. During the
ray marching step, we calculated the transmittance information T and the in-
scattering information S. Both T and S are discrete 2D textures of the same
resolution as L and L′. The final color can be computed as:

L′ = T · L + S.

As we can see, the previous equation is, again, a mere approximation of the
VRE (Equation 1.15). The attenuated surface contribution is represented by T·L,
the volume contribution by S. As in the previous method, this solution also does
not take multiple-scattering effects into account, because S only represents the
single in-scattering from the light sources.

2.4.2 Conclusion
The volumetric fog uses three-dimensional textures to store intermediate results
of pre-calculations. By computing the parameters of a medium in the cells of
a volumetric texture, we can even render heterogeneous media. Wronski [2014]
stated that the method takes only around 1.1 ms to run on Xbox One with a
satisfying resolution. That is a very impressive result.

However, the method does not take multiple-scattering effects and global il-
lumination into account. The in-scattering term is only computed from the light
sources. The time complexity depends not only on the resolution but also on the
amount of the light sources, as we have to calculate the in-scattering for each
of them. Approximations of global illumination are possible and are very briefly
explained in the original article.

In this thesis, we presented this idea because it is a very fast solution and it
produces results that are acceptable for real-time video games. This approach
has been successfully used in the commercial video game Assassin’s Creed IV
developed by Ubisoft Montreal.
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3. Methods related to multiple
scattering
The previously described methods assume that the participating medium has a
constant ambient color (Section 2.1), can be approximated by colored textures
(Section 2.2), or its color contribution can be computed as single scattering from
light sources in the scene (Sections 2.3 and 2.4). These methods cannot blur the
illumination reflected from the objects in the scene.

However, the light scattering in real life situations manifests itself mainly by
blurring of the illumination [Elek et al., 2013] in the scene, obviously including
reflected light. In a real fog, objects around us get visibly blurry, their edges are
smudged, the colors are blended together. That happens because in the VRE
(Equation 1.15), the volume contribution term is calculated by integrating the
radiance from all directions in a sphere.

Screen-space approaches presented in this chapter understand every pixel of
an image as a light source of its own. It enables us to take the whole illumination
into account. Furthermore, we can also approximate multiple scattering of the
illumination of the pixels.

This chapter is devoted to a brief examination of two screen-space methods
that can approximate the multiple-scattering effects to a certain degree. Our
proposed method described later in Chapter 4 is strongly inspired by the ideas
presented in this chapter, especially by Sections 3.1 and 3.2.

3.1 Path integral and spatial spreading
Elek et al. [2013] presented a screen-space multiple-scattering method for homo-
geneous media. It is based on image filtering (Section 1.4) of the input image L
that was rendered in a vacuum. Our goal is to derive the final image L′ by taking
the light transport in a homogeneous participating medium into account.

The key idea is not any different from what we have already worked with.
Each pixel in the input image represents the light that reached the camera from
the object on the pixel. It essentially corresponds to the radiance that the camera
received from the light beam in the direction of the pixel. As we would like to
blur the pixels, we try to derive the blurring point spread function (Section 1.4.3)
that we can apply to the image L to get the blurred image L′.

3.1.1 Path integral
When measuring the radiance along a light beam passing through a participating
medium, we can use the RTE (Equation 1.14) to describe the local behavior,
or the VRE (Equation 1.15) to describe the total radiance. We have already
described several approaches trying to simplify the original equations. Let us
now take a look at a slightly different approach.

As described in several articles, such as by Premože et al. [2004] or Elek et al.
[2013], we can reformulate the equations for a light path by using the Green
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propagator G:

L(x, ω) =
∫ ∫

G(x, x′, ω, ω′)L0(x′, ω′) dx′ dω′,

where L0 represents how the initial radiance is distributed in space. For the
initially emitted light at the point x′ in the direction ω′, the Green propagator
represents the radiance at the point x in the direction ω.

When light travels between x and x′ in a participating medium, the photons
may take different paths, but still arrive at the same point in space. That is
because of the multiple-scattering effects (Section 1.2). We can therefore imag-
ine that the light transport process is a sum of all transfer events occurring at
all possible paths the photons can take. Hence, the Green propagator can be
expressed by a path integral [Premože et al., 2004]:

G ∼
∫

all paths
exp (−τ(path)) ,

where τ(path) denotes the effective attenuation along the path. As we can see,
the function we are integrating corresponds to the transmittance for a light path
defined by the Beer–Lambert law (Equation 1.8).

3.1.2 Spatial spreading
In Section 1.2, we explained that multiple scattered light is spatially spread (see
again Figure 1.5). We would like our real-time method to take spatial spreading
into account as it is essential for the light transport. The idea is to take the
path integral from the previous section and use it to derive a formula that would
express how much the light spreads.

Before deriving such formula, we have to make a very important assumption.
We can think of light scattering as a stochastic process with many realizations.
Because of this observation and according to the central limit theorem, we can
assume that the spatial distribution is Gaussian [Elek et al., 2013] (Figure 3.1).

We will denote the standard deviation of this Gaussian distribution by W ,
as we already use the common symbol σ to describe medium parameters. The
letter W can stand for the word width. For a collimated pencil of light between
two points with the distance s, Premože et al. [2004] derived the formula for the
standard deviation of the Gaussian spatial-spreading distribution:

W (s) =

√1
2

(
2σa

3s
+ 4

s3σs(1− g)

)−1

. (3.1)

sensor

Gaussian

x

s

Figure 3.1: The light beam entering at the point x is spatially spread on the
sensor. The spreading can be approximated by the Gaussian distribution.
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3.1.3 Filtering
We have already stated that the solution of Elek et al. [2013] is a screen-space
method and is based on image filtering. Therefore, we would like to blur each
pixel of the original image according to the Gaussian distribution.

Spatially varying blurring

If the whole image had the same standard deviation W , we could compute the
new image by a simple convolution with a Gaussian kernel. Unfortunately, as
is obvious from Equation 3.1, the blurring width may be different for each pixel
according to the distance from the camera. Our filter will have to be spatially
varying as described in Section 1.4.5.

For the pixel position x′ with the depth s, let Gx′ be its point spread function,
i.e., the two-dimensional Gaussian with the standard deviation W (s). We can
now use these PSF as the weighting functions according to Equation 1.16:

L′(x) =
∑
x′

Gx′(x′ − x)L(x′).

Because the 2D Gaussian distribution is circularly symmetric, we can redefine
our weighting function to only take the distance of the two pixels into account:

L′(x) =
∑
x′

Gx′(∥x′ − x∥)L(x′). (3.2)

We can now decide to apply the filtering with an algorithm from Section 1.4.6.
The time complexity of these algorithms is, however, very high. Elek et al. [2013]
decided to call this solution the screen-space reference. Later in this chapter, in
Section 3.2, we show a very efficient approximation of the Gaussian blurring that
can significantly lower the time complexity.

Preprocessing

If L in Equation 3.2 denoted the original input image, the filtering would not
give us correct results. The Gaussian distribution tells us how a pixel scatters
in space, but it does not take the light attenuation into account. Notice that by
filtering with our Gaussian weighting functions, we are not decreasing the total
radiance but only distributing it spatially.

Therefore, we must first preprocess the input image L with pixel depths D as
described by Elek et al. [2013]. We use the Beer–Lambert law (Equation 1.8) to
get the following two images. Let Lat represent the attenuated image, i.e., the
radiance that reaches the camera directly without getting absorbed or scattered.
Let Lsc represent the radiance that is scattered on the way to the camera, but is
not absorbed. We can write:

Lat = exp (−σtD) · L, (3.3)
Lsc = exp (−σaD) · (1− exp (−σsD)) · L. (3.4)

Please note that in general, Lat + Lsc ̸= L, because the absorbed radiance is
in neither of the two images. The radiance that is absorbed does not reach the
camera at all, hence is attenuated and “lost” in the preprocessing step.
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Result

We can now apply the filtering from Equation 3.2 to the image Lsc. The final
multiple-scattered image L′ can be expressed as the sum of the attenuated radi-
ance and the blurred scattered radiance:

L′(x) = Lat(x) +
∑
x′

Gx′(∥x′ − x∥)Lsc(x′)  
blurred scattered radiance

. (3.5)

3.1.4 Conclusion
We have presented the background behind the method of Elek et al. [2013], but
we are still missing the most important part of the work. Because the time
complexity of the standard filtering approaches is too high, it is not really possible
to use it in real-time. Therefore, Elek et al. analyzed and implemented much
more efficient filtering. We describe it in the next section (Section 3.2).

Before proceeding, let us very briefly summarize the idea. We are able to
render the light absorption and light scattering effects by preprocessing and
blurring (filtering) an input image and then compositing the results. The ap-
proach assumes homogeneous media only. Later in Chapter 4, we present our
improved method based on this approach, but we modify it to support even
non-homogeneous analytically integrable media.

3.2 Gaussian filtering with MIP maps
Let us now have a look at efficient Gaussian filtering with the concept of MIP
maps, sometimes spelled mipmaps. They are textures of progressively lower res-
olution, where each subsequent level is a power of two smaller than the previous.

We will denote the original image L = L[0] as level 0, then image of half the
original resolution L[1] will be level 1, and so on. The pixels correspond to the
ones from other levels as seen in Figure 3.2a. Because GPUs support this concept
very well, it can be used for very fast efficient filtering.

3.2.1 Convolution in MIP maps
We now briefly explain how Lee et al. [2009] proposed to Gaussian blur images
with MIP maps. They originally presented a method for real-time rendering of
depth of field (DOF) effects. Real optical systems, including cameras and human
eyes, cannot focus on all objects in a scene at once. The DOF represents the
distance range where objects appear to be in the focus, i.e., they appear sharp.
The objects that are closer or further appear blurred.

Lee et al. [2009] proposed a method for rendering this effect in screen-space,
i.e., applying the blurring to the already rendered image where all objects are in
the focus. They assume that the blurring can be approximated by filtering the
image with a Gaussian kernel, which is exactly what need in Section 3.1.

Let G represent the 2D Gaussian convolution kernel with the standard devia-
tion of 1 and of a small fixed size, e.g., 4×4 as proposed by Elek et al. [2013]. We
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Figure 3.2: In standard MIP maps (left), a single pixel in the level k > 0 rep-
resents 4 pixels from the previous level k − 1. In Gaussian blurred MIP maps
(right), a single pixel represents the corresponding blurred neighborhood from
the previous level. The size of the neighborhood is determined by the size of the
Gaussian kernel (here 4× 4, i.e., 16 pixels).

want to use an even sized kernel instead of the typical odd sized ones, because
we want the output to have half the resolution of the input (Figure 3.2b).

For k > 0, we express the MIP level k as:

L[k] = L[k−1] ∗ G, (3.6)

where the discrete kernel G is assumed to be already normalized, which is not a
problem to achieve as the kernel is constant with a fixed size. Elek et al. [2013]
suggests to use the weights {0.13, 0.37, 0.37, 0.13}, i.e., the 2D kernel matrix can
be obtained by multiplying the weights row-wise and column-wise, so the left-
most value would be 0.13 · 0.13 = 0.0169 and so on.

3.2.2 Standard deviation and MIP levels
It should be obvious from Equation 3.6 that the image is getting more and more
blurred with the increasing level k. It essentially corresponds to blurring the
original input image with an increasing standard deviation. The relation between
the deviation W and the level k can be approximated as [Lee et al., 2009]:

W ≈ c · 2k−1, (3.7)

where c is the scaling constant that depends on the size of G.
The exact value should be found by experimenting and comparing the results

to the correct non-approximated convolution. Elek et al. [2013] mention that for
the size 5 × 5, we can use c = 0.56, and for the size 4 × 4, we can use c = 0.8.
Lee et al. [2009] use c = 1.5 for the filter size 3 × 3. As we can see, the scaling
constant seems to be inversely proportional to the kernel size.
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3.2.3 Fetching the result
Now that we know how the MIP levels correspond to the standard deviation, it
remains to explain how to obtain the final filtered image.

Suppose that we want to filter the input image L and obtain the image L′

that should be Gaussian blurred with the specific standard deviation W . We
can proceed by building the MIP chain L[0...K] (also called the pyramid). Now,
according to Equation 3.7, the standard deviation increases exponentially with
the MIP level, so the MIP level has to increase logarithmically. Elek et al. [2013]
propose to use clamping to approximate the continuous MIP level k:

k(W ) ≈ clamp
(

log2
W

c
, 0, K

)
∈ [0, K], (3.8)

where clamp(x, a, b) returns a for x < a, x for 0 ≤ x ≤ a, and b for x > b.
Because the level k can be decimal, i.e., between two exact MIP levels, we

have to use one-dimensional interpolation when obtaining the level. Furthermore,
because the level may have lower resolution than the input image, we have to use
two-dimensional interpolation to obtain the specific pixel (Figure 3.3).

The specific interpolation method should be chosen according to the quality
we want to achieve. Elek et al. [2013] suggest to use the linear 1D interpolation
combined with the bicubic 2D interpolation. Later in Section 4.5.4, we show the
visual differences between the interpolation types.

L
[k−1]

L
[k]

L
[k+1]

1D interpolation

2D interpolation

Figure 3.3: When obtaining a pixel from a MIP pyramid, we have to perform 1D
interpolation between the levels and 2D interpolation between the pixels.

3.2.4 Spatially varying filtering
If we wanted to filter the whole input image L with a constant standard devia-
tion W , we could obtain the result L′ very simply by using Equation 3.8:

L′ = L[k(W )],

where the equality notation actually expresses the interpolations.
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This is obviously not that simple for a spatially varying standard deviation,
which is the case in the method from Section 3.1. The naive approach would be
to compute the MIP level for each pixel individually.

For each pixel position x, let W (x) be the standard deviation for the pixel.
We could then compose the result as:

L′(x) = L[k(W (x))]. (3.9)

Unfortunately, as explained by Elek et al. [2013] and further in Chapter 4, this
approach is very naive and does not give very good results in most conditions. The
major problem is that we build the MIP pyramid by using convolution as if the
blur was spatially invariant. In high MIP levels, pixels from large neighborhoods
are blurred together and we cannot separate their information anymore.

In Chapter 4, especially in Section 4.4, we show how Elek et al. [2013] proposed
to solve the problem with visual artifacts. Furthermore, we propose additional
enhancements in that section.

3.2.5 Conclusion and time complexity
We have just explained how to use the concept of MIP maps to efficiently apply
the Gaussian blurring. By using the MIP maps, Elek et al. [2013] managed to
significantly improve the performance of their multiple-scattering method. Even
though they used an improved version of the filtering to reduce the artifacts, the
execution time was much lower than for the naive gathering.

They measured the differences in the execution time for a sample image. For
example, the path-tracing reference took 15 hours, the gathering algorithm took
30 seconds, and the enhanced MIP map filtering took 2 milliseconds.

Time complexity

When talking about the improvement of the execution time, we should analyze
the time complexity of the MIP map filtering.

We have already explained that the splatting and gathering solutions based
on neighborhood filtering have the time complexities O(n2m2) or O(n2m4) (Sec-
tion 1.4.6). For HDR images, where a single pixel can be blurred into the whole
image, we must assume that the neighborhood is the whole image, i.e., m = n.
In that case, the time complexities are O(n4) up to O(n6).

Fortunately, the time complexity of the MIP map filtering is much lower. The
algorithm is based on Equation 3.6. For each level k > 0, we have to perform
the convolution with the constant-sized kernel G. That means that for each pixel
in the image, we have to iterate through the constant-sized neighborhood and
accumulate the weighted contributions.

The biggest image L[0] has the resolution n × n, all higher levels have lower
resolutions. The total number of MIP maps is O(log2 n), because the resolutions
decrease exponentially and we cannot work with images of size lower than 1× 1.
Therefore, the total time complexity of the MIP map filtering is O(n2 log2 n).
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3.3 Narrow beam distributions
Before finally explaining our proposed method, I would like to very briefly intro-
duce another solution. It was presented quite recently by Shinya et al. [2016] as
another screen-space based multiple-scattering method. It is also based on filter-
ing images that are originally rendered in a vacuum, but it builds on a slightly
different background than the method by Elek et al. [2013].

It should be noted that Shinya et al. claim that their method gives more
accurate results than the method by Elek et al. Unfortunately, their solution is
not able to run as fast as the efficient MIP map filtering. As we will see in the
conclusion, the rendering times mentioned in the original article are a bit too
high for our real-time requirements. I still think that this method has a place in
this thesis, especially because it can handle even non-homogeneous media.

3.3.1 Beam in a participating medium
Suppose that a narrow light beam with the radiance L0 is entering a participating
medium. The RTE (Section 1.3.1) without emissions can be expressed as:

(ω · ∇)L(x, ω) = −σt(x)L(x, ω) + σs(x)
∫

Ω4π

fp(ω, ω′)L(x, ω′) dω′, (3.10)

where the phase function fp is assumed to be spatially invariant, hence it does not
depend on x. Let us denote the right summand in the equation by Lv (volume
contribution) similarly to Chapter 1.

To avoid the need to integrate the spherical integral in the RTE, we would
like to approximate it with a planar integral that would be easier to solve. As
described in details by Shinya et al. [2016], making the following assumptions
enables us to do it. Further in this method, we assume that:
• the radiance L is concentrated near the original direction of the ray,
• the phase function varies smoothly and is axially symmetric around the

forward direction,
• all medium particles are of the same type, so the medium cross-sections and

phase function are spatially invariant,1
• furthermore, the density of the medium can only vary along the z axis, so

for x = (x, y, z), we can write σt(x) = σt(z) = (Ca + Cs) · ϱ(z).
With the previous assumptions, we can now replace the three-dimensional

location x by a combination of z ≥ 0 and r ∈ R2 (Figure 3.4). The three-
dimensional direction ω can be replaced by s ∈ R2. This enables us to write:

L(x, ω) ≈ L(z, r, s).

3.3.2 Screen-space filtering
We have made a significant approximation. We can now transform the origi-
nal three-dimensional RTE into a two-dimensional problem by substituting the

1 In this thesis, we already assume that the particles of the participating media are identical.
It was mentioned in the assumptions in Section 1.2.
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Figure 3.4: The coordinate system used by Shinya et al. [2016].

spherical integral. Since we are filtering images that are 2D, the idea is that we
can solve the light transport in screen space.

Suppose that we have an image rendered in a vacuum. Let I(r, s) denote
the image function parametrized in our coordinate system. Shinya et al. [2016]
propose that we can understand Lv as the weighting function that tells us the
weight of the volume contribution from other coordinates. It enables us to express
the filtering for the location r by a somewhat abstract integral over all locations
and directions: ∫ ∫

Lv(r− r′, s′)I(r′, s′) dr′ ds′. (3.11)

Notice the similarity to Equation 1.16, which is discrete and two-dimensional.
We would like to further simplify the previous equation so that we can effi-

ciently evaluate it in screen space. Calculating Lv would require us to solve a 5D
integral, hence Equation 3.11 represents a 9D integral, which is still too complex.

3.3.3 Heuristic distribution
Fortunately, by using the Fourier transform, approximating the phase function by
a Gaussian one, and calculating the moments of Lv, Shinya et al. [2016] managed
to derive a heuristic distribution function Ψ(z, r). The function tells us the weight
of the contribution for the depth z at the vector r (Figure 3.4). Because the
distribution only depends on the length of r, we can write Ψ(z, r), where r = ∥r∥.

In order to filter the image, we have to calculate the distribution function Ψx
for every pixel position x. Calculating the distribution function corresponds to
evaluating the moments of Lv. In heterogeneous media, the moments may be
different for each pixel x, so the distributions have to be calculated separately.
Shinya et al. [2016] approximate a heterogeneous medium by only calculating the
moments in several sample planes along the z axis (Figure 3.4).

Without going into much details that are described in the original work, we
can now filter in screen space according to our Equation 1.16. The weighting
function wx′ can be easily derived from Ψx′ . The filtering can be done in shaders
and run on the GPU for each pixel in parallel with the splatting and gathering
algorithms (Section 1.4.6).

3.3.4 Conclusion
The approximation we have just described is able to take multiple scattering
into account. Similarly to the solution by Elek et al. [2013], it is capable of
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blurring objects in the scene as it performs filtering of the whole image. Because
the filtering is based on splatting and gathering, the time complexity obviously
depends on the image resolution as described in Section 1.4.6.

The original article states that their implementation was able to filter a sin-
gle frame in about 100–110 ms for the image size 640 × 480 on a computer with
GeForce GTX 690. It is significantly better than path tracing that took several
days on the same computer. Unfortunately, as we already explained in the in-
troduction, we want real-time methods to take at most 40 ms to render a single
frame with a fairly high resolution. Video games typically want to achieve even
lower rendering times.
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4. Our method
In the previous chapters, we have introduced the volumetric light transport prob-
lem and examined multiple different solutions to it. They were based on empirical,
single-scattering, and multiple-scattering approaches.

As we could see, none of the introduced solutions is capable of sufficiently fast
real-time rendering of multiple-scattering effects in non-homogeneous media. Let
us now introduce our filtering-based method that tries to combine the great ideas
of some of the existing approaches and further improve them.

In Section 4.1, we review what our method can achieve and what are the mo-
tivations, then briefly explain the overall process. In Sections 4.2, 4.3 and 4.4, we
describe in great details how and why the whole process of our method works. The
last section (Section 4.5) is devoted to explaining the advantages and limitations
of our approach, also in the context of the competing solutions.

4.1 Overview
Before describing our approach in great details, let us now have a look at a short
overview of what exactly our method achieves.

4.1.1 Goals and motivations
Some the requirements for our method have already been mentioned in Intro-
duction but without sufficient details. Let us now formalize what our approach
achieves while explaining the motivation behind the achievements.

Real-time GPU rendering

The very important goal of our method is the ability to use it for real-time
rendering. Without fulfilling this goal, it would not be possible to use the method
in the use cases that we defined in Introduction.

Later in Chapter 5, we prove that our method on itself can process a single
frame in only a few milliseconds. Together with the full rendering process in
our prototype application, we reach frequencies higher than 25 FPS in the high
definition (HD) resolution 1280 × 720. It means that our method runs faster
than is necessary by the formal requirement by [Akenine-Möller et al., 2008] in a
resolution that can be algorithmically upscaled if need by [Li et al., 2014].

As our method handles real-time rendering, it is reasonable that the algo-
rithms are designed for being executed on GPUs. We implement our solution in
fragment shaders later in Chapter 5 and test it on a fairly modern GPU GeForce
GTX 760M.

Multiple scattering

From Chapter 2, it is obvious that real-time single-scattering solutions already
exist and are even used in commercial video games, which are one of the possible
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use cases of our method. Our approach, however, simulates much more complex
multiple-scattering effects.

Multiple scattering heavily contributes to the blurring effects caused by the
spatial spreading of light (Section 1.2). Simulation of the correct blurring effect is
essential as it is the main manifestation of the light scattering [Elek et al., 2013].
If we decided to ignore multiple scattering, we would not be able to render the
correct effect.

Screen-space solution

It is also important to be able to process scenes that may contain an unlimited
number of light sources and intensely emissive surfaces, i.e., objects defined to
emit light from arbitrary geometrical shapes, such as neon tubes, lanterns, and
glowing windows. Our method can blur even complex emissive geometry without
increasing the rendering time. This enables us to work with complicated scenes
at the same speed as with simple scenes.

We have achieved these results by using a screen-space approach. Thanks to
this approach, the time complexity depends only on the display resolution. As
described by Elek et al. [2013], we understand every pixel in the input image as
a light source on its own. However, for simplicity, we disregard the fact that the
light can be attenuated or scattered even before reflecting of the surfaces.

Non-homogeneous media

Another important achievement is the ability to render light scattering even in
media that are not homogeneous. That basically means that the particle density
ϱ(x) may change with regards to the position x in space. Certain methods, such
as the one described in Section 3.1, only assume media with constant densities.

This assumption can be quite restrictive with regards to what scenes we are
able to render. According to the barometric formula, the pressure p of an ideal
gas exponentially decreases with the altitude z ≥ 0 [Berberan-Santos et al., 1997]:

p(z) = p(0) · exp
(
−mgz

kT

)
, (4.1)

where p(0) is the pressure at z = 0, m is the molecular mass of the gas, T its
temperature, and g, k > 0 are constants.

We can derive a similar exponential equation for ϱ(z) as well, because the
density is directly related to the pressure. As we can see from the equation,
higher molecular mass results in faster decrease with regards to height, i.e., the
more the gas weighs, the more it is concentrated at the ground level.

Even though we can approximate fog and other media to be homogeneous—
as done by Elek et al. [2013]—we can get visually more interesting results with
heterogeneous media.

Analytically integrable media

In order to render the scattering in a medium, we must be able to handle its
density in real-time. For example, we need to calculate the transmittance (Equa-
tion 1.8), which indirectly depends on the density along a light path. Therefore,
our method has to efficiently integrate the density function between two points.
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The approach we have chosen is to use analytical integrations of the den-
sity functions. Unfortunately, it is not possible for any arbitrary density func-
tion. Fortunately, as already mentioned in Section 2.1.3, the densities of certain
media—in this thesis referred to as quasi-heterogeneous media—can be analyt-
ically integrated. These media include, for example, a medium whose density
is exponential with regards to altitude, which was our main goal because of the
barometric formula. We can also analytically integrate other functions, such as
a sphere. The specific equations are derived later in Section 4.3.

4.1.2 Outline of our approach
Because of our requirements, we decided to approach similarly to Elek et al. [2013]
(Sections 3.1 and 3.2) with certain improvements. Unlike the original method,
we propose a way to handle non-homogeneous media (Sections 4.2.3 and 4.3) and
we introduce a new filtering step that we call the pixel separation (Section 4.4.4).

First of all, we suppose that we are already able to render a scene in a vacuum
using a standard real-time rendering approach. Let L : N2 → R3 denote the input
rendered image. The world-space distances from the pixels to the camera will be
denoted by D : N2 → R. The notation corresponds to the previous chapters.

Preprocessing

Based on the density function ϱ, camera, and distances D, we integrate the den-
sities along the camera rays and store them in P : N2 → R. Based on the input L
and the integrated densities P, we then compute the following two images.

The image Lat : N2 → R3 contains the attenuated radiance that reaches the
camera without any interactions in the medium. The image Lsc : N2 → R3 con-
tains the radiance that is scattered but not absorbed on the way to the camera.

The next step is to compute the spreading widths of the pixels’ points spread
functions. Before doing that, we rescale the distances D with regards to P to
get the rescaled distances D′ : N2 → R. With D′, we then compute the spreading
widths W = W (D′). The rescaling step has been introduced in our approach to
support non-homogeneous media.

Filtering

During the filtering step, we build the Gaussian MIP chain L[0...K]
sc . To reduce

artifacts of the filtering approach, we use three important concepts. The first
one is based on luminance weighting for which we build the MIP chain W[0...K].
The second one is based on depth blurring, so we build the MIP chain D′[0...K].
The last step is based on separation of bright pixels, when we separate pixels
Lssc : N2 → R3 from Lsc and build another MIP chain L[0...K]

ssc .

Composition

Based on the MIP chains, we have to compose the final image L′ : N2 → R3.
For this purpose, we use interpolation for fetching the correct pixels from the
corresponding levels of the MIP pyramids. Furthermore, during the composition,
we also add an arbitrary emissive term for enhanced visual results.
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4.2 Preprocessing
The main goal of the preprocessing step is to prepare the values that are later
used during filtering and compositing (Section 4.4). Our preprocessing approach
is more complicated than the preprocessing for homogeneous media introduced
by Elek et al. [2013] (Section 3.1.3). That is because for non-homogeneous media,
we must handle densities and spreading widths in a different way.

4.2.1 Density
According to the RTE (Section 1.3.1), the light travelling from a pixel through a
participating medium is attenuated with regards to the extinction coefficient. For
a line segment l between the pixel and the camera, the attenuation corresponds
to decreasing the radiance with the transmittance T (Section 1.2.4).

To compute T by using the Beer–Lambert law (Equation 1.8), we first have to
know the optical thickness τ(l) along l. We can get τ by integrating the extinction
coefficient (Equation 1.7) and that requires us to integrate the density ϱ:

τ(l) =
∫

l
σt(x) dx =

∫
l
(Ca + Cs)ϱ(x) dx = Ct

∫
l
ϱ(x) dx. (4.2)

Let us now assume that we already know how to integrate the density of
our medium. Examples are later derived in Section 4.3. As the letter P is the
uppercase of ϱ, let P : N2 → R denote the integrated densities along the line
segments between the pixels and the camera. We integrate from the camera
position in the 3D space towards the pixel’s position in the 3D space (as in
Section 2.1.3):

P(x) =
∫ pixel x

camera
ϱ(x′) dx′. (4.3)

4.2.2 Attenuated and scattered radiance
Similarly to Equations 3.3 and 3.4 introduced by Elek et al. [2013], we can express
the attenuated and scattered radiance. This time, however, we cannot use the
distances D directly in case the medium is not homogeneous. We have to combine
Equation 4.2 with the Beer–Lambert law.

The attenuated image Lat can be computed as:

Lat = exp (−Ct · P) · L. (4.4)

The scattered but not absorbed Lsc can be computed as:

Lsc = exp (−Ca · P) · (1− exp (−Cs · P)) · L. (4.5)

4.2.3 Spatial spreading and distance rescaling
Now that we know what part of the energy is attenuated and what part is scat-
tered, the idea is to blur the scattered radiance Lsc. We already know that the
blurring width W (D) for the length D can be approximated with Equation 3.1.

The equation, unfortunately, assumes the medium parameters to be spatially
invariant along the light path. But we want to use the equation even in media
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that are not homogeneous. The original solution by Premože et al. [2004] is
based on sampling the light path at multiple sample points, but the rendering
takes several minutes. Instead, we propose to use the original equation for W (D),
but we rescale the distances D according to the optical thickness.

Rescaling idea

When light travels along a line segment with the length D, the spreading width
W (D) depends on the scattering interactions occurring along the segment (Sec-
tions 1.2 and 3.1.2). By looking at the light scattering as a stochastic process with
many realizations, we can assume that W (D) does not depend on where exactly
the particles are accumulated along the line segment. We are only interested in
how many particles in total could have interacted with the light.

We can use the following simple observation. For the line segment with the
length D, if the light passes through a lot of particles, it spreads more than
if it passes through less particles. And that is even though the length D is
still the same. Therefore, we propose to approximate heterogeneous media by
homogeneous ones, but we rescale the distances D with regards to the total
optical thickness along the segments.

Naive mathematical derivation

For the line segment l of the length D, we can express the optical thickness τ(l)
by using Equation 4.2. In a homogeneous medium with parameters σa + σs = σt,
we can write:

τ(l) =
∫

l
σt(x) dx = σt ·D. (4.6)

For a heterogeneous medium with parameters Ca + Cs = Ct and a density
function ϱ(x), the optical thickness is:

τ(l) = Ct ·
∫

l
ϱ(x) dx. (4.7)

We are working with an assumption that we can approximate an arbitrary
medium by a homogeneous one by working with a rescaled length D′. From the
equality between Equations 4.6 and 4.7, we get:

σt ·D′ = Ct ·
∫

l
ϱ(x) dx. (4.8)

Suppose that we know the relation between the constant density ϱ′ of the
homogeneous medium and the spatially varying ϱ(x) of the other medium, so we
can write:

ϱ(x) = ϱ′ · ϱ′′(x),
where ϱ′′(x) is a spatially varying ratio between the densities of the arbitrary and
the homogeneous medium. For the homogeneous medium itself, the ratio would
obviously be constant for all locations in space: ϱ′′(x) = 1.

The optical thickness can now be expressed using the density function as:

τ(l) = Ct

∫
l
ϱ(x) dx = Ct · ϱ′ ·

∫
l
ϱ′′(x) dx.
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Now because in homogeneous media, σt = Ct · ϱ′ from the definition, we can
solve Equation 4.8 for D′ as:

σt ·D′ = Ct

∫
l
ϱ(x) dx,

σt ·D′ = Ct · ϱ′ ·
∫

l
ϱ′′(x) dx,

D′ =
∫

l
ϱ′′(x) dx. (4.9)

This equation naively enables us to approximate an arbitrary medium by a
homogeneous one. We should verify that the equation holds true at least in case
we compare the same homogeneous media. In that case, the length of the line
segment l is D and the density ratio is obviously ϱ′′(x) = 1 for all x ∈ R3 as we
compare the exactly same media. Solving Equation 4.9 gives us:

D′ =
∫

l
ϱ′′(x) dx =

∫
l
1 dx = D, (4.10)

which obviously holds true as the length remains the same.

4.2.4 Spreading in screen-space
The problem with rescaling the distances is that it requires us to know the ratio
function ϱ′′(x). When simulating an arbitrary medium, it is not clear how it can
relate to a certain homogeneous medium.

When experimenting with various approaches, we found out that very good
visual results can be obtained by simply assuming that the ratio function can be
approximated by the density function: ϱ′′ ≈ ϱ. This approach assumes that the
original homogeneous medium has a constant density ϱ′ = 1, therefore σt = Ct.

This is a very important observation, because it significantly simplifies our
method. We can use the original Equation 3.1 for the spatial spreading width by
using the rescaled distances (Equation 4.9):

W (D′) = W
(∫

l
ϱ′′(x) dx

)
≈ W

(∫
l
ϱ(x) dx

)
. (4.11)

Let D′ : N2 → R denote the rescaled distances D and let W : N2 → R denote
the spreading widths of the pixels in Lsc. With regards to Elek et al. [2013], we
will also call W the spread space. We can simply write W = W (D′), but we may
also notice that Equation 4.11 tells us D′ ≈ P:

W = W (D′) ≈ W (P).

As we can see, the spreading widths depend on the densities between the
pixels and the camera. The higher the density along the camera ray, the more
the pixel spreads. For homogeneous media, our equation is in agreement with the
original theory of Premože et al. [2004], because in homogeneous media, D′ = D
(Equation 4.10).

In heterogeneous media, our approximation may give us certain errors. For
example, if the density varies a lot and the variation is perpendicular to the
line segment, the multiple-scattered rays can behave differently above and under

44



the segment. In that case, we would not be able to assume the 2D Gaussian
distribution anymore, because the interactions would not be evenly distributed.

Please note that in the rest of this thesis, we will write D′ and P separately
even though our observation enables us to write D′ ≈ P. Despite this approxima-
tion, we think it is important to understand the difference between the exactly
integrated densities P and our naively approximated rescaled distances D′.

4.3 Analytical integrations of densities
In the previous section, we assumed that we can compute the integrated densi-
ties P in real-time. Let us now have a look at a few density functions that can be
analytically integrated, i.e., the integrals can be exactly expressed by a formula
that we can directly compute in a negligible time.

We will now work in the 3D world-space coordinate system as illustrated in
Figure 4.1. We assume the camera to be located at the position c ∈ R3. We will
integrate the densities P for each pixel individually, i.e., we will calculate P(x2D).
Let x2D ∈ N2 denote the pixel’s position on the screen and x ∈ R3 denote the
corresponding pixel’s position in the 3D space. The normalized direction from
the camera towards that pixel is ω ∈ R3. The distance between the pixel and the
camera is ∥x− c∥ = D ∈ D.

screen projection %

x

c

x2D

R
x

c %(x 0) dx 0

!

Figure 4.1: Integrating the density between the camera and the pixel.

4.3.1 Homogeneous medium
The simplest medium has a constant particle density ϱ(x) = ϱ′ for all points in
space. Let us call ϱ′ ≥ 0 the constant factor of the density function. We can
integrate the density along a line segment between the camera and the pixel as:

P(x2D) =
∫ x

c
ϱ(x′) dx′ = ϱ′

∫ x

c
1 dx′ = ϱ′ ·D.

4.3.2 Exponential medium
By the exponential medium we understand a medium where the particle density
can be modeled by an exponential function. The idea is closely related to the
barometric formula (Equation 4.1). If the particle density changes with regards
to altitude, the integration can be done as shown by Qúılez [2010].

Let us now derive a more general exponential medium (Figure 4.2). We
suppose that the density can exponentially decrease in any normalized direc-
tion n ∈ R3. Furthermore, the density can be offset by any value o ∈ R3.
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Figure 4.2: Integrating the density in an exponential medium.

The simple altitude-based model assumes that the density ϱ(x′) only depends
on the altitude h(x′) of the location x′. For a constant density factor ϱ′ ≥ 0 and
an exponential parameter b > 0, we get:

ϱ(x′) = ϱ′ · exp (−b · h(x)) . (4.12)

In the general case, though, when the exponential is offset by o and its direc-
tion is n, we have to update the equation:

ϱ(x′) = ϱ′ · exp (−b · ⟨x′ − o, n⟩) , (4.13)

where ⟨·, ·⟩ denotes the inner product. Notice that Equation 4.12 is a special case
where o = (0, 0, 0), n = (0, 1, 0), and h(x′) = ⟨x′ − (0, 0, 0), (0, 1, 0)⟩.

In order to integrate the density, we express the ray r between the camera
and the pixel parametrically. For the parameter t, the camera ray r is defined as:

r(t) = c + t · ω,

where in our case, we assume 0 ≤ t ≤ ∥x− c∥ = D.
The density integral then becomes:

P(x2D) =
∫ x

c
ϱ(x′) dx′

=
∫ D

0
ϱ (r(t)) dt

=
∫ D

0
ϱ(c + t · ω) dt

= ϱ′
∫ D

0
exp (−b · ⟨c + t · ω − o, n⟩) dt

= ϱ′
∫ D

0
exp (−b · (⟨c, n⟩+ t⟨ω, n⟩ − ⟨o, n⟩)) dt, (4.14)

where the last equality holds true because of the bilinearity of the inner product.
As the terms ⟨c, n⟩, ⟨ω, n⟩, and ⟨o, n⟩ are constant for a certain pixel, the

definite integral can be expressed by simply integrating the exponential function:

P(x2D) = · · · = ϱ′ ·
[
−exp (−b · (⟨c, n⟩+ t⟨ω, n⟩ − ⟨o, n⟩))

b · ⟨ω, n⟩

]D

0
.
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In case ⟨ω, n⟩ = 0, we cannot divide, so we solve Equation 4.14 directly.
Otherwise, we compute the definite integral at the bounds D and 0, subtract the
values, and apply the bilinearity again, which gives us the following formula:

P(x2D) = · · · = ϱ′

b · ⟨ω, n⟩
· exp (−b · ⟨c− o, n⟩) · (1− exp (−b ·D · ⟨ω, n⟩)) ,

which can now be used to compute the integrated densities P.

4.3.3 Spherical medium
By the spherical medium we understand a medium where the density is accumu-
lated in a sphere (Figure 4.3). Let R > 0 denote the radius of the sphere. Let
us derive the equations for a situation where the density quadratically decreases
outwards the center o ∈ R3 of the sphere. Analytical integration of this density
function has been derived, for example, by Qúılez [2015].

The density ϱ(x′) depends on our arbitrary factor ϱ′ ≥ 0 and the distance
from the center. It is important to consider the points outside of the sphere: the
density there is zero. We can therefore express the density as:

ϱ(x′) =

⎧⎨⎩ϱ′ ·
(
1− ∥x′−o∥2

R2

)
if ∥x′ − o∥ ≤ R,

0 otherwise.
(4.15)

Identically to the exponential medium, we use the parametric equation:

r(t) = c + t · ω, 0 ≤ t ≤ D. (4.16)

The density function (Equation 4.15) is expressed differently for two cases.
In order to integrate the density, we have to first compute where the camera ray
intersects with our sphere. This will be the bounds of the definite integral.

%
c

x2D

x

!

R
x

c %(x 0) dx 0

r
o

R

intersections at t1; t2

Figure 4.3: Integrating the density of a spherical medium.

Finding the intersections

All points on the sphere have the same distance R from the center o. To obtain
the intersections of the ray and the sphere, we can solve the following equation
for the parameter t; 0 ≤ t ≤ D:

∥r(t)− o∥ = R,

∥c + t · ω − o∥ = R,

∥t · ω + (c− o)∥ = R,
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by squaring both sides and expanding the Euclidean distance, we get:

∥t · ω∥2 + ∥c− o∥2 + 2⟨t · ω, c− o⟩ = R2,

then because ω is normalized, we have ∥ω∥ = 1, and by using the bilinearity of
the inner product, we get:

t2 + ∥c− o∥2 + 2t⟨ω, c− o⟩ = R2, (4.17)

which after rearranging the terms gives us:

t2 + 2t ⟨ω, c− o⟩  
B

+ ∥c− o∥2 −R2  
C

= 0, (4.18)

and that is a standard quadratic equation for t.
We can solve Equation 4.18 with the standard procedures for solving quadratic

equations. We obtain the values t1, t2, which are the parameters of the ray where
it intersects with the sphere:

t1,2 = −B ±
√

B2 − C.

Obviously, if B2 − C < 0, the equation does not have a real solution because
the ray does not intersect the sphere. Then because 0 ≤ t ≤ D, we define the
values t1 ≤ t2 as follows:

t1 = max
{
0,−B −

√
B2 − C

}
,

t2 = min
{
D,−B +

√
B2 − C

}
.

Integrating the density

Now that we have the bounds t1, t2, we can integrate the density function (Equa-
tion 4.15). We use the equation of the ray (Equation 4.16) within the bounds:

P(x2D) =
∫ x

c
ϱ(x′) dx′

=
∫ t2

t1
ϱ (r(t)) dt

=
∫ t2

t1
ϱ(c + t · ω) dt

= ϱ′
∫ t2

t1

(
1− ∥c + t · ω − o∥2

R2

)
dt

= ϱ′
∫ t2

t1

R2 − ∥c + t · ω − o∥2

R2 dt.

We now expand the Euclidean distance again similarly to the steps that gave
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us Equation 4.17. By using the values B, C from the previous part, we get:

P(x2D) = · · · = ϱ′
∫ t2

t1

R2 − t2 − ∥c− o∥2 − 2t⟨ω, c− o⟩
R2 dt

= −ϱ′ ·R−2 ·
∫ t2

t1

(
t2 + 2Bt + C

)
dt

= −ϱ′ ·R−2 ·
[

t3

3 + Bt2 + Ct

]t2

t1

= −ϱ′ ·R−2 ·
(

t3
2 − t3

1
3 + B

(
t2
2 − t2

1

)
+ C (t2 − t1)

)
.

Qúılez [2015] suggests to multiply the result by 4
3R to normalize the density

distribution. We can include this normalization factor into our density factor ϱ′.

4.3.4 Summary
We have successfully derived the equations for calculating P in three types of
media. Figure 4.4 shows how they may look in our demo scene. It is possible
to simulate very diverse conditions using just these three functions, because they
offer a lot of parameters. Spherical media can be, for example, used for local
effects such as smoke. Rotated exponential media can simulate gust fronts (visible
boundaries of wind flow) in sandstorms.

Our list of analytically integrable media is obviously not exhaustive. We could
try to derive the equations for more density functions, but that is certainly not
the goal of this thesis. When trying to integrate a new medium, it is useful
to remember that we can parametrize the camera ray r(t). This approach has
already helped us in the two heterogeneous cases.

constant density height-based exponential density

rotated exponential densityspherical density

Figure 4.4: Renders of different density functions with highlighted boundaries.
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4.4 Filtering and compositing
The goal of the filtering step is to blur the scattered radiance Lsc according to
the spreading widths W of the pixels. Let us now explain in details how we solve
the problem in our method to reduce the inherent visual artifacts. At the end of
this section, we then explain how to compose the final output image L′ together
with the emissive term.

4.4.1 Naive approaches
Naive gathering approach

We assume that the blurring of the pixels is Gaussian. It means that every
individual pixel should be blurred according to a certain Gaussian PSF. In Sec-
tion 3.1.3, we already explained the approach to the filtering by using the splatting
and gathering algorithms. Unfortunately, their time complexity is too high, so
we refer to these approaches as naive.

Because we implement our method on a GPU, we prefer gathering to splatting
as explained in Section 1.4.6. We use this gathering approach for comparison
with our more efficient filtering, similarly to Elek et al. [2013]. Therefore, we can
understand the gathering approach as our reference to a certain degree.

Naive MIP map approach

Because we assume Gaussian blurring, we can certainly use the efficient MIP map
filtering described in Section 3.2. It requires us to build a simple Gaussian MIP
chain L[0...K]

sc according to Equation 3.6 (Figure 4.6a). The final blurred image L′
sc

is then composed by using the spreading widths W in Equation 3.9.
As we can see in Figure 4.5, the simple MIP map approach suffers from a lot of

visual artifacts. Therefore, we refer to this approach as naive as well. We devote
the following subsections to identifying the artifacts and proposing improvements.
Our goal is to reduce at least some of the artifacts by using more clever filtering.

4.4.2 Luminance weighting
Illumination leaking

Imagine a very bright object with a low standard deviation W , e.g., the yellow
lantern located closer to the camera in Figure 4.5b. If there is a dark object in
the background and its standard deviation W is much higher, the luminance of
the bright pixels leaks into their neighborhood.

It occurs because when building the MIP chain, the luminance of the bright
object is propagated into high MIP levels, even though the standard deviation of
the object is small. When fetching the colors for the dark background, the bright
luminance incorrectly leaks into the dark area.

This problem is called the illumination leaking [Elek et al., 2013] and can be
seen in Figure 4.5bc as the huge yellow blur of the lantern. Notice that the blur
in the gathering solution is much more isolated (Figure 4.5f).
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(f)
Gathering algorithm

(reference)

(b)
Naive MIP filtering

(c)
Improved filtering
with depth blurring

(d)
Improved filtering
with depth bluring,
luminance weighting

(e)
Result

(depth blurring,
luminance weighting
and pixel separation)

(a)
Input image L

Figure 4.5: Comparison of filtering the input image (a) with different approaches.
The naive MIP map filtering (b) suffers from very sharp discontinuities. By
blurring the depth (c), we can eliminate them. The luminance weighting (d)
prevents incorrect light leaking. The pixel separation (e) correctly blurs bright
pixels close to the camera. The gathering algorithm (f) can be understood as a
reference, but it is too slow for our real-time use.
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Masking idea

In order to suppress the illumination leaking, we certainly need to stop the pixels
with low W from propagating to unnecessarily high MIP levels (Figure 4.6b).
The idea presented by Elek et al. [2013] is based exactly on this approach.

When building the MIP chain, we introduce a new auxiliary mask M. Let G
denote our discrete Gaussian filter as introduced in Section 3.2. The MIP chain
for k > 0 is built as:

L[k]
sc =

(
M[k] · L[k−1]

sc

)
∗ G. (4.19)

The mask M can be defined for the level k as:

M[k] = smoothstep
(
T, (1 + ε) · T, W[k−1]

)
, (4.20)

where T and ε control the masking threshold distance and width.
The function smoothstep(e1, e2, x) is a smooth interpolation function, where

e1,2 are left and right edges, respectively. The function returns 0 for x ≤ e1 and 1
for x ≥ e2. For e1 < x < e2, the returned value is a smooth interpolation between
0 and 1.

Because the masking should correspond to the relation between W and k, we
set T = c · 2k−1 (Equation 3.7, Elek et al. [2013]). The width ε ≥ 0 should be set
according to the scene to get the visually best results. When experimenting with
our demo scene, we found that changing ε can be noticed when moving around
the scene. Very low values, such as ε < 0.5, caused high flickering of the blurring.
We managed to slightly reduce the flickering by using ε = 2.

Spread-space MIP chain

The auxiliary mask M in Equation 4.20 requires us to also build the pyramid
W[0...K], where W[0] = W. This MIP chain should correspond to the standard
deviation W averaged for neighboring pixels. That is because we want to mask
the pixels according to W in their neighborhoods.

We weight the pixels according to their luminance, or brightness. Therefore,
in this case, we do not perform Gaussian blurring, but we use a weighted average
as proposed by Elek et al. [2013]:

W[k] =

(
Y[k] ·W[k−1]

)
∗ U

Y[k] ∗ U
. (4.21)

The average is obtained by a convolution with the uniform distribution U of
the same size as G. Convolution with a uniform distribution like in Equation 4.21
is equivalent to averaging the values.

The average is weighted by the luminance of the pixels, hence we call this
step the luminance weighting. It means that we prefer the standard deviation of
brighter pixels. That is because, as we have already explained, we primarily want
to mask the bright pixels. The auxiliary weighting mask Y is therefore obtained
by computing the absolute RGB luminances y:

Y[k] = y(L[k−1]
sc ).

We have now successfully built the MIP pyramid L[0...K]
sc and we are ready to

fetch the filtered values.
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(a) Naive filtering
(b) Filtering with

luminance
weighting

(c) Pixel
separation
filtering

k = 0

k = 2

k = 4

k = 6

k = 8

Figure 4.6: MIP chains of the filtering step at different levels k. The naive
filtering (a) blurs all pixels with the same weight. Luminance weighting (b) stops
propagation of the pixels whose spreading width is too low. The pixel separation
(c) blurs bright pixels separately while weighting their depths.
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4.4.3 Fetching and depth blurring
We now need to compute the correctly blurred image L′

sc. As we have already
explained, the naive algorithm simply fetches the values according to Equation 3.9
with the rescaled depths d′ ∈ D′. The corresponding level ℓ for each pixel can be
therefore expressed similarly to Equation 3.8 as:

ℓ(d′) = clamp
(

log2
W (d′)

c
, 0, K

)
. (4.22)

Depth blurring

Unfortunately, as can be seen in Figure 4.5b and as explained by Elek et al.
[2013], the result computed this way may suffer from noticeable discontinuities.
Typically, the depths D and D′ can be very different even for directly neighboring
pixels because of the geometry in our scene.

In this case, we can eliminate the discontinuities by blurring the depths.
Therefore, we apply the Gaussian MIP map blurring to our rescaled depths D′.
Let us build another MIP chain D′[0...K], where D′[0] = D′ and for k > 0, we have:

D′[k] = D′[k−1] ∗ G.

Fetching from blurred depths

The idea is that we select the corresponding level ℓ according to the blurred
rescaled depth. Elek et al. [2013] further proposes to do this process twice as the
size of the blurring of D′ should be proportional to the size of the blurring of Lsc.
We therefore express the filtered image as:

ℓ′ = ℓ
(
D′[ℓ(D′)]

)
,

L′
sc = L′[ℓ′]

sc . (4.23)

By using this approach, we achieved the result in Figure 4.5d.

4.4.4 Pixel separation
We have managed to prevent the illumination leaking by using the luminance
weighting and to eliminate image discontinuities by using the depth blurring.
Unfortunately, by introducing these two techniques together, we have amplified
another problem that we now explain.

Bright pixels

In HDR images, certain pixels may be much brighter than the rest of the image. In
Figure 4.5d, the yellow lantern is very bright and we have successfully prevented
the leaking of its color by using the luminance weighting mask. On the other hand,
our prevention of the leaking has caused the lamp to not blur correctly compared
to the gathering algorithm. Let us now explain why the error occurred.

Basically, the depth d′
1 ∈ D′ of the bright lantern is much lower than the depth

d′
2 ∈ D′ of the neighboring dark background. In this case, when d′

1 ≪ d′
2, the
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depth blurring step obviously smoothes this large discontinuity. This is the exact
reason why we have introduced the blurring step in the first place: to eliminate
the discontinuities by blurring. Therefore, in case the dark background is bigger
than the bright foreground, the smoothing can completely eliminate d′

1 from high
levels of D′[0...K].

Now when we fetch the background pixels from the MIP chain according to
Equation 4.23, we obviously fetch from a high level because the depth d′

2 of the
background is very high. Unfortunately, because of the luminance weighting, the
high levels do not contain the blur of the bright foreground, because we masked
it during the luminance weighting step. The bright pixels in our case have low
depth, so their blur does not get propagated to the high levels. It essentially
means that the dark area of our image remains dark and the blur of the bright
foreground is “cut” at the edge. This is exactly what happened in Figure 4.5d to
the yellow lantern.

Separation

As explained, the incorrect blurring occurs for very bright pixels in relatively low
depths. One of the possible solutions would be to change our depth blurring
algorithm, e.g., by stating that bright pixels are more important.

However, by preferring the depths of bright pixels, their dark neighborhood
would be fetched from an incorrect level. Essentially, the blurring width of the
bright object would be correct, but we would cause a noticeable discontinuity
on the edge of the blur. It does not really seem to be possible to solve our
contradictory needs by saying “we should prefer those pixels over the others”.

Instead, we introduce a different heuristic technique. Again, we want to solve
the incorrect blurring of bright pixels in low depths. Therefore, we decide to
completely separate these pixels from the original input L (Figure 4.6c).

For this purpose, we introduce a new auxiliary mask M and we split the input L
into two different scattering images. Let Lsc denote the scattering image without
the separated pixels and Lssc the scattering with the separated pixels:

Lssc = e−Ca·P ·
(
1− e−Cs·P

)
·M · L,

Lsc = e−Ca·P ·
(
1− e−Cs·P

)
  

original weight of Lsc

· (1−M) · L. (4.24)

The image 1 denotes an image with all pixels set to 1. Notice that the sum
Lssc + Lsc is equal to the original Lsc from Equation 4.5. This means that we do
not lose any information by introducing this step.

With regards to our intentions, we base the mask M on smoothly selecting
the pixels with high absolute RGB luminance y ∈ Y[0] and low depth d′ ∈ D′[0]:

M =
(
smoothstep

(
Ty, Ty + εy, Y[0]

))
  

high luminance

·
(
1− smoothstep

(
Td′ − εd′ , Td′ , D′[0]

))
  

low depth

,

(4.25)
where the parameters define the thresholds. The minimum luminance we want
to separate is denoted by Ty, the threshold width is εy. The maximum depth
we want to separate is denoted by Td′ , the threshold width is εd′ . These values
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have to be carefully set based on experiments for individual scenes and media
combinations. Whether they give correct results can be verified by comparing to
the gathering algorithm. The values we used in our demo scene are commented
in Section 4.5.4.

Separation MIP chain

The image Lsc is filtered using the same luminance weighting technique we de-
scribed in Section 4.4.2. Our pixel separation does not have any impact on the
Lsc filtering as we only masked out the close bright pixels that we want to filter
separately.

However, the MIP chain L[0...K]
ssc is built differently, because the image is mostly

black and only contains a few separated pixels. If we used the same filtering
technique, we would block the luminance from propagating to higher MIP levels,
which is certainly not what we want. Therefore, we use a modified approach.

Because most of the pixels in Lssc are black, we are not interested in their
depths at all. We would like to prioritize the depth of the bright separated
pixels. Hence, we construct the new chain D′[0...K]

ssc based on luminance weighted
averaging:

D′[k]
ssc =

(
Y[k]

ssc · D
′[k−1]
ssc

)
∗ U

Y[k]
ssc ∗ U

, (4.26)

where D′[0]
ssc = D′ and the luminances Y[0...K]

ssc = y(L[0...K]
ssc ). It is exactly the same

principle we used in Equation 4.21 for building W[0...K].
It remains to explain how to build L[0...K]

ssc . As we have already mentioned, we
do not want to use luminance weighting, because we obviously need our separated
pixels to propagate. Unlike in Equation 4.19, we only need to build the Gaussian
MIP chain without any further masking:

L[k]
ssc = L[k−1]

ssc ∗ G, (4.27)

where L[0]
ssc = Lssc. This is not any different from Equation 3.6.

Result

We now build the blurred image L′
ssc. The process is similar to building L′

sc
(Equation 4.23), except we need to take special care of choosing the correct level.
Our depth chain D′[0...K]

ssc is built based on luminance weighted averaging and it is
not exactly clear which level contains the correct depths.

Unfortunately, this heavily depends on how many pixels were actually sep-
arated in our scene. We have to introduce another arbitrary parameter kssc
(0 ≤ kssc ≤ K) based on experimenting. For our demo scene, we achieved sat-
isfying results with higher values close to K, e.g., kssc = 0.7 · K. The fetching
equation is:

ℓ′ = ℓ
(
D′[kssc]

ssc

)
,

L′
ssc = L[ℓ′]

ssc. (4.28)

Figure 4.5e shows how we can correctly blur the bright yellow lantern by
separating its color in Lssc.
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4.4.5 Final compositing
The final step of our method is to generate the correctly attenuated and scattered
image L′. The result is based on three images that we have computed during the
previous steps.

The attenuated radiance Lat corresponds to the radiance that reaches the
camera without any interactions. The blurred radiances L′

sc and L′
ssc together

represent the radiance that is scattered on the way to the camera. The radiance
that is absorbed is not included in any of the three images.

Therefore, the final output is obtained by simply adding the results together:

L′ = Lat + L′
sc + L′

ssc.

4.4.6 Emissive term
When compositing the output image, we can also add an approximated emis-
sive term to the final result (Figure 4.9). Let us suppose that the participating
medium emits the radiance Le towards the camera from each point of the medium.
Therefore, for each camera ray, we can integrate the emitted radiance from every
point along the ray while attenuating it according to the Beer–Lambert law.

Our assumption that Le is constant is obviously not a good approximation for
heterogeneous media where the particle density varies from point to point. Also,
in order to integrate the attenuated emission along the camera ray, we would
have to integrate the optical thickness between the camera and each emission
point individually to correctly compute the transmittance. However, that would
result in an integral inside an exponential function inside another integral. The
complexity of the equation for heterogeneous media would be too high.

To simplify our situation, we can use our rescaled distances D′ (Section 4.2.3).
When introducing the rescaling idea, we mentioned that the distances D′ enable
us to approximate heterogeneous media by homogeneous ones. In case of the
emission, we assume that the radiance Le is constant along the rescaled distances
and the attenuation is computed by using our approximation D′ ≈ P.

We integrate the emissions as if we were working with a homogeneous medium.
Let Lem denote the additional emissive image. For the camera rays of the lengths
D′ ≈ P, we integrate the emissions occurring along the ray and we attenuate them
as they travel towards the camera:

Lem = Le

∫ D′

0
exp (−Ct · d′)  

attenuation

dd′ = Le ·
1− exp (−Ct · D′)

Ct
. (4.29)

Then we can add this emissive term to the final output:

L′ = Lat + L′
sc + L′

ssc + Lem. (4.30)

4.5 Results and their limitations
After describing how to obtain the output images, let us now have a look at a few
examples. Figure 4.7 shows two sets of input and output images filtered using
our method. Both output images are screenshots from our real-time application.
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(a)

(b)

Figure 4.7: Examples of the typical outputs of our method. Above each output
image there is its corresponding input.
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4.5.1 Advantages over competing methods
The general goals of our method were already introduced in Section 4.1.1. Let us
now briefly summarize what exactly the advantages of our method are over the
competing solutions.

Blurring the whole scene

As we can see, our method is capable of blurring the geometry in our scene,
which is a major improvement over all empirical and single-scattering methods
from Chapter 2.

We can also handle light scattering from an arbitrary number of light sources
and our time complexity still remains the same, that is O(n2 log2 n) for the reso-
lution n×n as explained in Section 3.2.5. This is an advantage over the solutions
that can only handle a single source (Section 2.3) or have to compute the contri-
bution from each source individually (Section 2.4).

Various non-homogeneous media

Both images in Figure 4.7 show non-homogeneous media with exponential den-
sities. When compared to the homogeneous results of Elek et al. [2013], we can
see major visual differences in our approach. It is especially interesting how the
roofs of the buildings are blurred much less than the road, which alters the depth
perception of the scene: it looks like the buildings are much taller than they ac-
tually are. This effect can be very useful for video games and other visualizations
where the artists often want to influence how viewers perceive the scene.

Furthermore, various parameters of the density functions can be changed. Ro-
tated exponential media can be used to simulate sandstorms, which are usually
very dense inside the sand cloud but the density outside can be marginal. Spher-
ical media are useful for local effects. Fire, for example, could be simulated by
placing an intense animated light source inside the spherical medium.

Intense light sources

By introducing our new pixel separation step, we have also significantly improved
the quality of the filtering of HDR images with very intense lights. This is impor-
tant for rendering night scenes, where the light sources can be arbitrary intense
and placed at various locations in the scene.

Performance

Finally, the performance of our method seems to be much better than the per-
formance of the competing multiple-scattering method by Shinya et al. [2016]
(Section 3.3). We can process a single HD image in a few milliseconds. More
details about our performance are mentioned later in Section 5.4.

After briefly explaining the advantages over the competing methods, we would
now like to thoroughly describe the inherent limitations. This method and the
competing methods are based on a lot of approximations that we have explained
in the previous sections and chapters. So far, we have not yet described what
exactly these approximations mean in the terms of the quality of the results.
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4.5.2 Limitations caused by incomplete inputs
Our proposed method is based on filtering input images. All information that the
method has available have to be stored in the inputs. As our only inputs are the
rendered image L, the depths of the pixels D, and parameters of the camera and
the medium, the method does not know any other information about the scene.

Visibility and flickering

The limitation that is common for all screen-space approaches, in our case pri-
marily for our method and the methods described in Chapter 3, is that the objects
that we want to process have to be directly visible to the camera. As we can see
in Figure 4.8, when a certain object disappears from the input image, we cannot
correctly blur it, because we are missing the information in the pixels.

This may cause flickering of light sources when we use our method for ren-
dering interactive scenes where the objects and the camera can move. It is also
noticeable for distant light sources that only take a small portion of the screen,
e.g., only 1 pixel that can disappear and appear again when moving the camera.
In that case, the blur from the single pixel may be huge, so flickering occurs.

Figure 4.8: Objects that are not directly visible on the screen do not get blurred.
The left picture shows a white glow around a lantern. The glow has disappeared
after we moved the camera a little bit (right picture).

Light interactions

Another simplification is that we only simulate the light interactions that occur
between the rendered pixels and the camera. In order to correctly simulate the
light transport, we would also have to attenuate and scatter the radiance even
before it reaches the objects and reflects towards the camera.

In that case, our input image L would already have to be rendered with
considering the participating medium. This is not the case of our method nor the
methods from Chapter 3 as we generally assume standardly rendered inputs.

Ambient

Furthermore, the overall atmosphere of the scenes may be influenced by the total
environmental illumination caused by all light sources together. For example, if
all major light sources in our scene are yellow, the whole participating medium
may also appear to have a yellowish color with regards to the scattering and
attenuation parameters.
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As described by Elek et al. [2013], we can simulate the ambient color by
adding an emissive term to the simulated medium. Figure 4.9 shows the same
scene rendered with different emissive terms according to Section 4.4.6. We have
also tried changing the color of the sky and together with the emissions, we can
substantially change the overall atmosphere.

Figure 4.9: The same scene rendered with different sky colors and emissive terms.
The upper images are rendered with a participating medium without emissions.
The bottom images have slightly blue and yellow emissive terms respectively.

4.5.3 General simplifications of our approach
Occlusions

Similarly to the methods of Elek et al. [2013] and Shinya et al. [2016], our method
ignores volumetric occlusions that happen on the way towards the camera after
the radiance is reflected from surfaces. We cannot correctly render volumetric
phenomena such as crepuscular rays (Section 2.3) and volumetric caustics.

If we wanted to take occlusions into account, we would have to introduce
additional steps to the algorithm. In case of a limited number of light sources,
we could sample the occlusions in screen-space similarly to Section 2.3. However,
the correct solution would require us to sample the occlusions for each pixel
individually. Again, by solving the problem in screen-space only, we would be
limited to the information that are available in the input images.

Media simplifications

Since Section 1.2, we have assumed that all interactions happen in a single partic-
ipating medium with identical evenly distributed particles. None of the methods
presented in this thesis take mixed materials, such as milk in water, into account.
Furthermore, the Gaussian PSF approximation by Premože et al. [2004] assumes
spatially invariant parameters of the media.
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We have introduced a very important approximation later in Section 4.2.3
by rescaling the distances and assuming that the heterogeneous media can be
approximated by homogeneous media. In reality, the situation is obviously not
that simple, because the multiple-scattering process depends on where exactly
the particles are accumulated.

Imagine a medium with zero density below a light ray and high density above
the light ray. Our approximation assumes the PSF to be circular, but it is obvi-
ously incorrect in this example, because no scattering can occur in zero particle
density below the light ray.

Furthermore, similarly to all solutions presented in this thesis, we completely
ignore phenomena such as refractions and dispersions [Elek, 2016]. Other phe-
nomena caused by very small particles, e.g., Rayleigh scattering that explains
why the sky appears to be blue [Shinya et al., 2016, Elek, 2016], are also not
taken into account. More sophisticated methods would be required.

4.5.4 Gathering approach and MIP filtering
Comparison

Finally, we have introduced a huge approximation by the efficient MIP map fil-
tering. We had to propose several heuristic improvements including luminance
weighting, depth blurring, and pixel separation. How the pyramidal filtering looks
compared to the gathering approach has already been shown (Figure 4.5).

But we should also note that the MIP map filtering may give visually more
appealing results than the gathering approach. Compare, for example, the mag-
nified images in Figure 4.5ef. The gathering approach blurred the white lantern
with a perfect circular Gaussian PSF. The MIP map approach, on the other hand,
preserved the edge of the building because it was closer to the camera. In this
case, the edge of the building acts as an occlusion of the light and the MIP map
result may look more realistic.

The major difference between the pyramidal filtering and the gathering ap-
proach is the following. The gathering approach assumes that all pixels are spread
according to their PSF. The pyramidal approach approximates the spreading of
other pixels by the depth of the sampled pixel. That is obviously incorrect, hence
we had to introduce so many heuristic improvements to hide the artifacts.

Arbitrary parameters

In order to use our method, it is also necessary to correctly configure certain pa-
rameters. The scaling parameter c in our case was set to 0.86 as we got fairly close
results compared to the gathering approach. The luminance weighting threshold
width ε was mostly set to 2 to reduce flickering caused by high differences between
MIP levels. Elek et al. [2013] mention that the value depends on the scene.

The pixel separation parameters Ty and εy were in our case set to 3. They
generally depend on how intense the emissive materials are in the scene. The
depth separation parameters Td′ and εd′ depend on the parameters of the medium
and the dimensions of the scene. In case of our demo scene and noticeably
dense heterogeneous media, good visual results can be obtained by setting both
parameters to 200 or 250. Finally, kssc was usually set to 0.7 ·K as the ideal level.
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Visible artifacts caused by MIP filtering

Additionally to the already mentioned limitations, there are also artifacts that
are MIP map filtering specific. First problem occurs when rendering very distant
objects that take a large part of the screen, such as sky. Theoretically, the sky
should be rendered in infinity. Obviously, if we depth blurred the infinitely far
pixels of the sky, the blurring would smooth all depths to infinity. Therefore, we
have to set a maximum depth and maximum density and clamp the values.

Another problem occurs when rendering objects at the edge of the screen.
When building the MIP pyramid, the edge pixels have incomplete information
about their neighborhoods and discontinuities may occur. Typically, if a very
distant object, such as the already mentioned sky, is located at the edge of the
screen, flickering may happen when moving with the camera. The easiest solution
to this problem would be to crop the output images, i.e., use inputs with higher
resolution than the output resolution.

We also have to comment on the interpolation and filter sizes (Figure 4.10).
Generally, we should use the bicubic interpolation when fetching the pixels as it
provides much smoother results, especially in motion. Unfortunately, even with
bicubic interpolation, flickering may occur. With regards to the performance of
our implementation (Section 5.4), the 4× 4 filter with the linear-bicubic interpo-
lation seems to be to best compromise between speed and quality.

2× 2 filter with

linear-bilinear

interpolation

4× 4 filter with

linear-bicubic

interpolation

6× 6 filter with

cubic-bicubic

interpolation

Figure 4.10: Comparison between different filter sizes and interpolation tech-
niques. The two right pictures look almost identical. In higher resolutions, the
6× 6 filter looks slightly smoother. The cubic-bicubic interpolation proved to be
almost useless as it requires more fetches with unnoticeable visual improvement.

The last problem that we describe is caused by approximating the blurring
widths by the level of the MIP chain. First, the parameters c and ε are only con-
stant approximations, second, the MIP filtering can only build a few meaningful
levels until we reach the resolution 1× 1. Furthermore, the higher the level, the
lower its resolution, which means less information are available. If the resolution
of the input image is too low for the scattering, we cannot even build sufficiently
many MIP levels.

Therefore, we cannot correctly render high standard deviations, because their
information is stored in high levels that are either not available at all, or their
resolution is too low. This problem is very noticeable for very high scattering pa-
rameters and can be compensated by increasing the absorption, which attenuates
the problematic pixels.
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5. Implementation
In the previous chapter, we proposed a solution for simulating light transport
in participating media. In order to verify how our proposed method behaves
and how our filtering steps improve the results over simpler approaches, we have
implemented the method in a prototype demo application.

The implementation is an important part of this thesis, because it demon-
strates the real behavior of our method. Furthermore, it proves that our solution
is really capable of running real-time with sufficiently high FPS.

Section 5.1 is devoted to a brief overview of what exactly the output of our
implementation is and how our demo scene looks like. In Section 5.2, we explain
our rendering engine and the used technologies. Later, in Section 5.3, we describe
the shaders, i.e., the code that is executed on the GPU. The specific implemen-
tation of our filtering is explained in this section as well. Finally, in Section 5.4,
we analyze the performance of our application to verify that it is indeed sufficient
for real-time purposes.

5.1 Overview
In order to demonstrate our method, we implement a real-time interactive demo
application. It is capable of rendering scenes in a vacuum and then applying our
filtering steps on the rendered images. During this process, the user is able to
freely navigate around the scene, change various parameters of the medium, and
configure the behavior of our method.

The user documentation for the demo application is available as Attachment 1
– User reference. The file paths mentioned in this chapter will be mostly relative
to the demo/ directory (see Attachment 2 – CD contents).

5.1.1 Demo scene
The inherent part of our implementation is the demo scene. We built our scene
in the open source 3D creation suite Blender (Figure 5.1) as it is a common
editor publicly available for free. Our scene depicts a static town street with
buildings, vehicles, and lanterns. The scene is composed of a lot of small 3D
objects that have been dedicated to the Public Domain by Kenney Group and
Jim van Hazendonk.

We decided to demonstrate our light transport simulation at a night scene
with many light sources such as lanterns and lights of the motor vehicles. The
primary motivation for this decision was that the similar method by Elek et al.
[2013] was only demonstrated with scenes with intense ambient light.

Furthermore, certain surfaces in our scene, such as the lanterns or the yellow
windows of the buildings, have emissive colors. It means that radiance is emitted
directly from their geometry. The motivation for emissive textures stems from
the observation that the methods from Chapter 2 do not calculate illumination
from these nontrivial light sources. We would therefore like to demonstrate that
our solution is capable of blurring even intensely emissive surfaces.
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Figure 5.1: Demo scene in Blender. The yellow windows, car lights, and lanterns
have emissive colors of their surface.

Figure 5.2: Demo application displaying the scene and a menu.
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5.1.2 Demo application
When implementing the demo, we could have used an existing modern rendering
engine and only modify it by adding the additional filtering phase. However, at
the time when I started with preparing the demo, I was not satisfied with the
existing solutions, especially because many had a restrictive proprietary license.

On the other hand, I found the existing open-source solutions with unre-
stricted licenses to not have a satisfying documentation. This is especially crit-
ical because our method requires the use of advanced custom building of the
MIP chains and the access to the MIP levels is not always documented or even
available without modifying the original source code.

Therefore, I decided to prepare a completely new demo application (Fig-
ure 5.2) that is fully capable of importing the demo scene, rendering it in real-
time in a vacuum, and then applying our method. The application also enables
to view the different phases of the rendering pipeline and change the majority of
the parameters of the light transport algorithm.

To avoid unnecessarily complicated rendering, the demo does not support
any advanced features such as the rendering of shadows. With regards to this
decision, I have also decided to give the scene a simple “cartoon” look without
any detailed textures and without specular reflections.

The decision not to use an existing engine and therefore only support the
necessary features should in no way harm the quality of the visualization of our
method. The method is implemented in the same way as it would be for more
advanced inputs, because it is based on the screen-space approach.

5.2 Application
Let us now have a look at how the demo application is implemented. This section
is devoted to explaining the used technologies and the structure of the code that
is executed on the central processing unit (CPU). The implementation of the code
that runs on the GPU, i.e., the vertex and fragment shaders, is covered later in
Section 5.3.

It should be noted that the final demo application has only been compiled for
the Windows platform using the builds/vs/LightTransportDemo.sln project
in Visual Studio 20151. However, all technologies that we have decided to use
should be fully compatible with other platforms including mobile phones. The
decision not to compile the demo for other platforms was made because it would
require additional testing of the application. Furthermore, the latest GPU drivers
are usually targeted primarily to the Windows platform.

5.2.1 Technologies
The whole application is programmed in C++ and we use the modern features
available in the latest C++11 and C++14 specifications, such as smart pointers,
lambda functions, and range-based loops. The decision to use this programming
language stems from the availability of cross-platforms compilers that can perform

1 More details can be found in the electronic attachment, file README-COMPILE.txt.
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very efficient optimizations of the compiled code. This is especially useful for real-
time applications.

Scene loading

In order to load the scene from Blender, we first export it to the digital asset
exchange (DAE) format and then load it using the cross-platform C++ library
Assimp. This format and the library have been chosen after experimenting with
various data formats. Assimp is able to extract the scene data from the DAE,
such as the meshes and light sources, without losing any necessary information
exported from Blender.

In case the imported scene contains textures, we need to load the image data
from a texture file. We use the single file image loader called stb_image.

Rendering

The rendering itself is done via calling API functions of the bgfx library. This is
a modern cross-platform graphics API library that supports multiple rendering
backends including OpenGL and DirectX. This was one of the reasons why I have
originally decided to use this library. Unfortunately, for our purposes, we only
use the OpenGL backend of the library, because different errors occurred when
using the DirectX backend on Windows.

Because of a bug in the bgfx MIP map API functions, we had to modify the
source code of the original library. The code was only modified in the OpenGL
part of the code, hence we do not use any other backend. The bug has been
reported to the author of bgfx, but at the time of programming the application,
the bug was still not fixed.

Together with the bgfx library, we also use SDL2. This cross-platform library
handles the creation of the main application window. It also detects the mouse
movement and the pressed keys when the window is focused. The communication
between bgfx and SDL2 is handled transparently for us, the included source codes
have been written by the author of bgfx.

When rendering objects in a 3D space, we often need to work with vectors and
matrices. For this purpose, we use the glm library that only contains templated
C++ header files. It enables us to work with vector and matrix classes such as
glm::vec3 and glm::mat4. The values in these classes can then be passed to
bgfx as data pointers and bgfx correctly transports them to the GPU.

Saving and loading presets

Finally, in order to save and load various configurations (presets) of our demo
application, we use the cross-platform serialization library called cereal. It is also
a modern header-only C++ library that can be easily used for storing and loading
data directly from and to C++ classes without any significant overhead. We have
decided to use the JavaScript Object Notation (JSON) format for storing the data
as it is supported by the standard version of cereal. Additionally, in order to find
what preset files are stored in a directory, we use a tinydir.h header file.
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5.2.2 Initialization and main loop
Entry

The main initialization procedure, i.e., the creation of the SDL2 window, is han-
dled by the source codes in the src/entry/ directory. This code was written as
a part of bgfx and we have included it in our application. The main function is
located in src/entry/entry_sdl.cpp.

Our own code is executed by bgfx in a new thread. For this purpose, we have
the secondary main function called _main_ in LightTransportDemo.cpp. The
LightTransportDemo class is the main class of our demo application. It derives
from entry::AppI, which is the interface that bgfx uses to communicate with
our application from the window.

The application interface defines three important methods that we implement.
The init method initializes our application and loads the resources. The update
method runs in a loop and is where we render the scene. Finally, when the
user decides to close the window, the shutdown method is called and we have to
correctly unload the resources. The approach is illustrated in Figure 5.3.

Initialization

Let us now have a look at the behavior of LightTransportDemo::init. Even
though the window has already been created when init is called, we still have
to initialize the bgfx rendering backend—OpenGL in our case—and declare the
format of our vertex data that we will send to the GPU.

The vertex data represent the meshes that we want the GPU to render for
us. The vertex formats define how the data streams to the GPU look like, i.e.,
which bytes represent the position, the normal vector, the colors, etc. In our case,

LightTransportDemo

entry

load
init

loop

move camera
render scene

display result to user

update

Scene:

Camera

Mesh[]

PointLight[]

SceneRenderer

GeometryPass

LightPass

CombinePass

ParticipatingMediumPass

BufferViewer

unloads resources

shutdown

Figure 5.3: Simplified diagram of the application.
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PositionNormalColorTextureVertex and PositionTextureVertex are the two
formats that we use throughout the application.

After initializing bgfx, we load the scene in the DAE format. For this pur-
pose, we use the class Scene (Section 5.2.3) that uses the API of Assimp to load
all necessary data. Then we initialize the SceneRenderer (Section 5.2.4) that
handles the creation of GPU buffers and the rendering of the scene in various
phases, including the final filtering by our method. We also have to initialize the
BufferViewer (Section 5.2.5) that displays the buffers to the screen so the user
can see them. Finally, we set up the main menu.

Main loop

The main loop of the application is performed by the update method. Its main
goal is to update the camera position and direction according to the state of the
mouse and keys, then render the scene according to the new state, display the
selected buffer to the user, and finally render the main menu over the screen. For
this purpose, we use the classes that we have initialized in init and also other
helping classes, such as CameraMovement that handles the mouse and key states
to move the camera.

5.2.3 Scene representation
The representation of the scene is handled by the Scene class and additional
complementary classes in the src/scene/ directory. For the purposes of our
simple rendering engine, we do not need to store a whole graph of the scene
objects (also called the scene graph). Instead, we represent the meshes, cameras,
and point lights linearly in standard C++ vectors.

Each mesh is represented by the Mesh class that primarily stores the diffuse
and emissive colors, and textures managed by the TextureLibrary. The class
also stores handles to the GPU index buffer and vertex buffer. The necessary
vertex data are copied to the GPU in the Mesh::loadFromScene method that
loads the mesh from the Assimp representation aiMesh.

The cameras are represented by the Camera classes. They store the parameters
of perspectives cameras, especially their positions in world-space coordinates and
their directions. The class is also capable of computing the view matrix that
represents the camera transformation for the GPU shaders. Each camera also
has a field of view (FOV), which is implicitly set to 60◦.

Each point light is represented by the PointLight class that stores the world-
space position, color, and the attenuation coefficients. The attenuation factor
of the light sources is determined by the parameters c1, c2, c3 which denote the
constant, linear, and quadratic attenuation terms respectively. For the distance
d from the light source, the attenuation of the light is computed according to the
following formula [Klawonn, 2008]:

fatt(d) = min
{ 1

c1 + c2d + c3d2 , 1
}

. (5.1)

Additionally, we also store the configuration of the participating medium in
the scene. It is represented by the ParticipatingMedium class, which is merely
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a storage of various parameters, such as the absorption and scattering cross-
sections.

5.2.4 Scene renderer
The rendering of the scene is handled by the SceneRenderer class and other
classes in the src/renderer/ directory. The scene renderer is basically a con-
tainer of the four rendering passes that are illustrated in the diagram in Figure 5.4.
Before explaining the passes, let us first have a look at the interface.

The scene renderer and the rendering passes share a similar interface: init,
shutdown, reset, and render. The init methods are primarily intended for ac-
quiring GPU resources, e.g., creating textures, loading the shader programs, and
creating shader uniforms (parameters of the shader programs). The shutdown
methods should properly unload the acquired resources, otherwise a memory error
may occur when aborting the application.

When a resolution or the state of the bgfx backend changes, we may need to
delete our textures and create them again with the current resolution. That is
the major goal of the reset methods. Finally, the render methods are called
from the main loop and should basically pass data to the vertex and fragment
shaders (Section 5.3) and execute them.

The process we are using for the rendering is sometimes referred to as the
deferred rendering [Klawonn, 2008], because we defer the actual shading to later
phases. In our case, the rendering has three major phases, excluding the partici-
pating medium pass from Chapter 4.

Geometry pass

The first phase is the GeometryPass that primarily renders the scene meshes ac-
cording to the camera view. This phase has five major outputs plus an additional
non-linear z-buffer for the correct depth testing of the GPU.

The most important output is the albedo buffer that represents the colors of
the surfaces without taking any lights into account. The emissive buffer represents
the emissive colors of the surfaces, i.e., the emitted radiance. The distance buffer
represents the linear distances of the pixels from the camera. The normal buffer
are the encoded 3D normal vectors of the surfaces. Finally, the position buffer
represents the 3D position vectors of the pixels.

The outputs are rendered by iterating through the meshes of the scene while
taking the camera view into account. The vertex data are uploaded to the GPU
through bgfx. The data are then passed to the vertex and fragment shaders that
are explained later in Section 5.3.

Light pass

The LightPass is the second phase of our rendering pipeline. This step and all
future steps of the method are screen-space, i.e., they do not render any meshes
of our scene. Instead, we render a single quadrilateral (rectangle) that completely
covers the screen. The rectangle has a texture that we render our outputs to.
This is a trick that enables us to use the GPU to perform screen-space rendering.
The correct rectangle generation code is in ScreenSpaceQuad.hpp.
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Scene

GeometryPass

LightPass CombinePass

ParticipatingMediumPass

albedo emissive distance

normals world position

Figure 5.4: Diagram depicting the various stages of the rendering. The arrows
illustrate the dependencies on the scene and other images (buffers). The distance,
normal, and world position data are encoded into colors for visualization purposes.
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The light pass iterates through all light sources in the scene and calculates
their contribution one by one for each pixel in the output. In order to correctly
calculate the diffuse reflection from geometry surfaces, we need the normals and
world positions as inputs of this pass.

It is important to note that the time complexity of this pass is O(n2m), where
O(n2) is the time complexity of the shader itself for the resolution n × n, and
m is how many times we have to execute the shader, i.e., how many point light
sources we have in the scene. In our case, this step is not optimized for rendering
a lot of light sources, which would require more sophisticated approach.

Combine pass

The combine pass is only responsible for executing the shader that calculates the
final colors of the image rendered in a vacuum according to the rendering equation
from the first chapter (Equation 1.6). The light contributions are multiplied with
the albedo buffer, that gives us the sum in the equation, then we add the emissive
colors that correspond to Le, and finally we add the constant ambient term La.

Participating medium pass

The final rendering pass is the ParticipatingMediumPass. The goal of this
pass is to take the medium configuration ParticipatingMedium, the shader con-
figuration ParticipatingMediumPassConfig, and submit these information as
uniforms to the shaders. The shaders (Section 5.3) then work in screen-space to
preprocess, filter, and compose the images as explained in Chapter 4. The im-
portant implementation code runs on the GPU and explained in Section 5.3. The
C++ code for the light transport is very similar to all previous passes, except we
also need to handle the MIP maps.

For the purpose of correct MIP map handling, we had to modify the orig-
inal bgfx source code. In our version of bgfx (see the electronic attachment
of this thesis), we had to comment the line 5196 in the file lib/bgfx/src/
renderer_gl.cpp. With this line commented, we prevent OpenGL from building
its own MIP chain and overwriting our custom MIP map generation.

It should be noted that the participating medium pass is divided into phases
according to Chapter 4. The preprocessing, filtering, and final compositing
phases correspond to the methods renderPrepareStep, renderMipmaps, and
renderResult respectively. Furthermore, the last two steps are replaced by the
renderGathering in case we want to render using the gathering approach instead
of MIP map filtering. In that case, renderGathering is executed only once (see
the render method) as it is very time consuming even on modern GPUs and can
completely freeze the computer (see Attachment 1 – User reference).

5.2.5 Buffer viewer
The SceneRenderer is responsible for rendering the outputs to buffers. But the
buffers are “hidden” in the GPU memory. In order to display the buffers to the
user, we have to render them again on the screen using the ScreenSpaceQuad.
The BufferViewer is responsible for this step.
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Our demo application allows the user to display various buffers on the screen—
see again Figure 5.4 with images of the buffers. For this purpose, the buffer
viewer enables to set the specific input buffer that is rendered on the screen.
Furthermore, if the input is a MIP chain, we can set the specific level, and if the
input is an HDR image, we can enable tone mapping, i.e., conversion of the HDR
input to a standard [0, 255] RGB output. In case the input represents non-image
data, such as the distance buffer, we can use a colormap, i.e., render the input as
a linear grayscale.

5.2.6 User interface
So far, our application is capable of rendering the scene and displaying the output.
Let us now have a look at the user interface, i.e., the classes that handle the
camera movement, main menu, and presets saving and loading. The necessary
code is located in the src/ui/ directory.

Camera movement

The CameraMovement class handles the mouse and keyboard input from the user.
The movement of the position of the camera depends on the pressed keys, the
velocity and the time that has passed since the last rendered frame (delta time).
This corresponds to the standard formula for the traveled distance with regards
to speed and time.

When handling the rotation of the camera, we use the position of the mouse
on the screen. For that purpose, we have to translate the camera direction vec-
tor into vertical and horizontal angles and then back again using the standard
trigonometric functions and their inverses. We have to pay close attention to using
the correct ranges of the inputs, because otherwise the standard C++ functions
could give us invalid results such as NaN.

Main menu

The main menu is primarily handled by the Menu class that stores the different
menu items. The items are assigned to menu categories (MenuCategory). The
hierarchy of the categories is represented by the stack of open categories. The
default view that shows the current FPS and the help text is the implicit open
category that should never be removed from the stack.

All menu items are represented by various classes that inherit from the main
abstract class MenuItem. The method processInput is of particular interest,
because it defines what happens when the item is selected and the user presses
keys on the keyboard.

The MenuItemSelect is a selectable menu item. It can be used, for ex-
ample, for opening new menu categories when the user selects the item. The
MenuItemFloat represents a floating-point value that can be adjusted by the
user by pressing the arrow keys. Finally, the MenuItemOptions represents an
item where the user can select from a vector of options.

Please note that the menu items are intended to be used with modern C++11
lambda functions. This approach was chosen because it enables us to very quickly
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define even a complicated menu. For an example of how the menu is constructed,
please have a look at the fillMenuItems method of the LightTransportDemo.

Presets

Because configuring the participating medium and the shader can be very time
consuming, the users are allowed to save and load the configurations (presets).
The presets are stored as JSON files in the presets/ directory. The simple
PresetsSerialization class handles the presets saving and loading using the
cereal serialization library and tinydir.h for iterating over all files in a directory.
Because tinydir.h is a C library, the code that we use in this class is a mixture
of C++ and standard C approaches.

5.3 Shaders

5.3.1 Overview
In our case, shaders are the programs that are executed on the GPU and create
the graphical outputs in Figure 5.4. The SceneRenderer class and the rendering
passes explained in the previous section are responsible for loading the shaders,
passing correct data to them, and setting them for execution. But the actual
vertex and pixel calculations are done in the shader programs.

Our application uses two types of shaders, both stored in the shaders/ direc-
tory. The vertex shaders, which in our case are very simple, are executed for each
vertex of the current geometry and calculate the 3D positions of the vertices on
the screen, i.e., the 2D coordinates on the screen and the depth. They are also
used to compute other arbitrary outputs that are then passed as inputs to the
fragment shaders. These shaders are then executed for each pixel (fragment) and
have only a single output—the final color of the pixel on the screen.

5.3.2 Notes regarding bgfx
Because we use the bgfx library for our cross-platform multiple-backend render-
ing, we also have to use a special programming language for writing the shaders.
It is very similar to the OpenGL Shading Language (GLSL) but with certain dif-
ferences2. Our shaders with the .sc extension are then compiled and optimized
for the correct backend, which is OpenGL and GLSL in our case. The shaders
can be compiled by running the shaders/compileAll.bat script. The compiled
shaders are then stored in the shaders/glsl/ directory.

Please note that this universal shading language we use has certain limitations
for compatibility reasons. For example, we are not allowed to define arrays and
our uniforms can only be of a few allowed types. This is also the reason why we
compact a lot of data into 4D vector uniforms whenever possible.

Furthermore, bgfx has certain predefined uniforms that are accessible from
the shaders without the need to specify them in the code. These include for
example the u_modelViewProj matrix or the u_viewRect vector representing

2 More details, rather outdated, about the differences between OpenGL and bgfx shaders can
be found at https://bkaradzic.github.io/bgfx/tools.html#shader-compiler-shaderc.
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the current screen rectangle. The list of the uniforms can be found in the official
API documentation or in the file lib/bgfx/src/bgfx_shader.sh. It should also
be noted that the varying parameters, i.e., the inputs and outputs of the vertex
shaders, are defined in the file shaders/varying.def.sc.

5.3.3 Vertex shaders
In our case, the vertex shaders are very simple, because the most of our render-
ing is based on the screen-space approach. For that case, we have a single ver-
tex shader screenSpaceQuad_vs.sc, which correctly transforms the screen-space
quadrilateral (ScreenSpaceQuad.hpp, Section 5.2.4) to the projected screen-space
coordinates. The projection to the screen is done by multiplying the local quadri-
lateral coordinates by the composed model-view-projection matrix. This is a
standard approach in computer graphics.

The only exception that does not use the screen-space rendering is the geom-
etry pass. The vertex shader deferred_geom_vs.sc primarily needs to correctly
calculate the positions of the geometry vertices according to the model-view-
projection matrix. Additionally, we also pass other information, such as the nor-
mals and world-space positions, as varying outputs to the corresponding fragment
shader.

5.3.4 Deferred rendering fragment shaders
We have already explained the outputs of the deferred rendering passes in Sec-
tion 5.2.4. Let us now have a look at the fragment shaders that are responsible
for computing the outputs.

First of all, let us shortly explain the division of our fragment shaders. We
can divide them into three categories denoted by prefixes in the file names. The
shaders of the deferred rendering passes are denoted by the deferred_ prefix. The
buffer viewer shaders have the bufferViewer_ prefix. Finally, the participating
medium rendering shaders share the participatingMedium_ prefix.

Geometry shader

The deferred_geom_fs.sc shader is very simple as it basically takes the infor-
mation of the meshes and fills the necessary data into the output buffers. The
colors are taken from the uniforms that were passed to the shader. The normal
vectors are encoded into 8-bit RGB data using the bgfx encodeNormalUint func-
tion, which enables the GPU to work with a faster integer buffer. The world
positions are merely copied from the vertex shader. The distances are computed
simply as the lengths of the vectors between the camera and the pixel positions.

Lighting shader

In order to calculate the lights, we execute the deferred_light_fs.sc shader
for each light source. For this purpose, the outputs are blended together, i.e.,
each output of the shader is added to the output of the previous iteration.

The radiance reflected from a surface is computed using the simplified Phong
BRDF (Equation 1.3) for each pixel. We only compute the diffuse reflections to
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maintain the “cartoon” look of the scene, so the original equation is simplified
even more as we assume ks = 0. The BRDF is then used in Equation 1.2. The
light sources are also attenuated according to Equation 5.1.

Combine shader

The outputs of the geometry shader and lighting shader are combined together in
deferred_combine_fs.sc. We basically multiply the albedo color by the light
contribution, i.e., the constant ambient plus the light buffer. Then we add the
emissive colors to the final result.

The only exception are the pixels of the sky. Generally, the sky pixels are
not rendered by the geometry shader at all, because the sky has no geometry.
Therefore, if the alpha channel of the albedo buffer is zero, the final color is
determined by the sky color uniform.

5.3.5 Buffer viewer fragment shaders
The buffer viewer has to display a certain buffer to the screen, i.e., the screen-
space quadrilateral. Because the input buffer may be HDR, have multiple MIP
levels, or may represent other data, we have three different types of fragment
shaders.

In case the input buffer directly represents 8-bit RGBA colors, we simply
read the data and pass them to the output directly. If the input is a MIP
chain, we use texture2DLod to access the correct level. This is performed in
bufferViewer_simpleMapping_fs.sc.

For HDR inputs, we use a similar approach, but we have to scale the range
down to the range [0, 1] in order to correctly display the colors. Note that the [0, 1]
range in the shader corresponds to the [0, 255] range in the final output on the
screen. In our case, the tone mapping is very simple. We compute the final color
as 1− exp (−hdrColor). This is done in bufferViewer_toneMapping_fs.sc.

Finally, the input buffer may represent data that are not colors, such as the
distance data or encoded normal vectors from the geometry pass. In this case,
we use bufferViewer_colormap_fs.sc where we rescale the inputs to the [0, 1]
according to the input range stored in a corresponding uniform.

5.3.6 Participating medium fragment shaders
Rendering of the light transport in a participating medium is handled by the
remaining fragment shaders. The ParticipatingMediumPass class is responsible
for executing these shaders depending on the current shader configuration.

Preprocessing

The participatingMedium_prepare_fs.sc shader is responsible for the prepro-
cessing phase (Section 4.2). This shader is executed for both gathering and MIP
filtering approaches. It has three different outputs (buffer attachments) that have
to be computed.

The scattering attachment is an HDR 16-bit RGBA texture and represents
the Lsc image. Because the scattering image only needs the RGB channels, we
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use the alpha channel to store the rescaled distances D′ ≈ P. Similarly, the Lssc
and the distances D′

ssc are stored in the separation HDR 16-bit RGBA texture.
Finally, we store the standard deviations W in the 16-bit single-channel spread
space texture. Note that the Lat image is not computed and stored here, because
it is only necessary in the compositing step and we do not need to store the data
in the GPU memory.

The integrated densities are computed by the getDensity function. We first
have to get the camera ray of the current pixel by using the inverse matrix of
the camera view. Then we use the analytically integrated formulas (Section 4.3)
for the different types of density functions. The formulas are calculated by the
functions in the separated file participatingMedium_densityFunctions.sc.

According to the integrated densities, we can then compute the final values
for the buffer attachments. For this purpose, we merely use the equations derived
in Section 4.2.

MIP map filtering

The MIP map shader participatingMedium_mipmap_fs.sc is executed once for
every level k > 0, k < K according to Section 4.4. The shader has three output
attachments that represent the appropriate levels L[k]

sc , D′[k] (alpha channel), L[k]
ssc,

D′[k]
ssc (alpha channel), and W[k]. The inputs contain the whole MIP chains, but we

only access the previous level k − 1 in every execution. The necessary variables,
including the Gaussian filter size, are stored in uniforms.

The algorithm consists of two filtering functions. The filterSpreadSpace
function filters W[k] according to Equation 4.21. The filterColorAndDepth is a
general implementation that can filter both scattering and distances in both the
original and separated images. The filters are implemented as standard convo-
lutions simply by iterating over all pixels in the neighborhood, similarly to the
gathering approach.

Final composition

The final output image L′ is composed according to Equation 4.30 and the sup-
plementing Equations 4.23 and 4.28 in participatingMedium_result_fs.sc.
Fetching from specific MIP levels can be done using texture2DLod. This shader
function performs a linear-bilinear interpolation between MIP levels and the pix-
els themselves. Because of the GPU hardware, the interpolation happens com-
pletely transparently to us and we can assume that it is very fast.

However, as mentioned in Section 3.2.3 and shown in Figure 4.10, bicubic
interpolations can give better results. It is especially important when moving
around the scene as the cubic spline has a continuous second derivative, so all
possible flickering when moving the camera is reduced. For this purpose, our
shader also implements the linear-bicubic and cubic-bicubic interpolations.

Unfortunately, as mentioned by Elek et al. [2013], a simple naive bicubic
interpolation requires 16 fetches (texture read operations) per each output pixel.
The linear-bicubic interpolation would require 2 · 16 = 32 texture reads. It is
therefore not wise to use the naive way in real-time applications.

Fortunately, the bicubic interpolation can be computed in a much faster way.
We can use the already mentioned texture2DLod function and fetch the pixels
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at offset positions. The offsets can be computed with regards to the weights of
the cubic spline function.

This way, the bicubic interpolation can be performed using only 4 bilinearly
interpolated fetches with texture2DLod. The linear-bicubic interpolation there-
fore requires 2 · 4 = 8 fetches and our cubic-bicubic implementation requires
4 · 4 = 16 fetches. The implementation in our fragment shader is based on the
algorithm presented in the article by Sigg and Hadwiger [2005, Section 20.2]. The
interpolation functions are a part of participatingMedium_common.sc.

5.3.7 Gathering shader and its artifacts
Instead of executing the MIP map and compositing shaders, we may execute
the gathering algorithm in case the user has selected to use it. The algorithm
is written in the participatingMedium_gathering_fs.sc shader. The final
output color is calculated by summing up the attenuated radiance, the gathering
filtered scattered radiance, and the emissive term.

Because of the high time complexity of the correct gathering algorithm, we
have only implemented the naive incorrectly normalized gathering according to
Algorithm 3. Even this “fast” version of the algorithm still takes tens of seconds
to render, which requires the user to change the GPU driver settings in Windows
to prevent timeouts (see Attachment 1 – User reference).

Figure 5.5: Illustration of the artifacts in our implementation of the gathering
algorithm. The green arrows point at discontinuities and incorrectly bright areas.

Unfortunately, we have noticed certain artifacts because of the incorrect nor-
malization. Figure 5.5 shows an example of incorrectly calculated contributions.
A major error occurs when the contribution to a certain pixel is too low. In that
case, the sum of the weights is very low, even though the sum of the colors can
be high because of emissive light sources.

When normalizing the color by the incorrectly low total weight, floating point
precision errors may occur resulting in bright areas and sharp discontinuities.
This is especially critical for HDR inputs with intense emissive light sources, e.g.,
with our demo scene.

A possible solution is to ignore all pixels whose contribution is too low. Un-
fortunately, it seems to be very difficult to select a correct threshold not to cause
other discontinuities. In our case, we were not able to eliminate the artifacts.

Furthermore, the gathering algorithm requires us to correctly scale the pixel
distances. The Gaussian distribution should obviously not depend on the reso-
lution of the screen. However, it is necessary to introduce correction factors to
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scale the distribution. For example, we need to take the aspect ratio into account
in case the screen is not square. In our case, we obtained the best visual results
by simply multiplying the distances by the size of the screen-space quadrilateral.

Despite the imperfections, the gathering algorithm is important as it enabled
us to compare the blurring of the light sources in Figure 4.5. The artifacts in the
implementation do not affect our previously introduced comparisons in any way.

5.4 Performance
The performance of our prototype was thoroughly tested on a fairly modern
laptop with 64-bit Windows 10 Pro, Intel Core i7-4700HQ, and NVIDIA GeForce
GTX 760M. As our method is primarily targeted to video games and simulations,
we can assume that the users will have at least a similar setup, if not better.

The execution times were measured for the HD resolution 1280 × 720 and
depict how long it took to render a single frame. The measured results are 10-
second averages to eliminate possible spikes.

Implementation notes – bottlenecks of our prototype

Before commenting on specific numbers, let us note that our demo application
is only a prototype. The fragment shaders are not primarily optimized for per-
formance. Our largest fragment shader, after it has been compiled by the bgfx
compiler, has 62 kB. It is mainly because of loop and branching transformations
made by the compiler. Because of the high configurability of our application, the
shaders contain a lot of branching, which is not very optimal for GPUs. There-
fore, it can be assumed that the performance could be much better if the shaders
were rewritten for a single constant configuration.

Furthermore, because of simplicity, our lighting pass in the prototype appli-
cation is not optimized for a lot of point light sources. Our demo night scene
contains 38 point lights and all of them are always rendered for the whole screen
resolution. During our experiments on different platforms, we noticed that our
lighting pass is especially slow on certain types of GPUs. This step is not a part
of our method for rendering the participating media and it is a bottleneck of our
prototype when rendering the input image L (Section 4.1.2).

To prove that the lighting pass is indeed the bottleneck, we added a startup
option to completely disable it. Please see Attachment 1 – User reference.

Results

Rendering the scene without any medium, i.e., generating the input L, took
22.8 ms. It should be noted that by disabling our unoptimized lighting pass,
the rendering only took 4.2 ms, which proves the major bottleneck.

The times to process these input images to render the participating effects
using our method are detailed in Table 5.1. These times were measured with-
out the pixel separation phase. The additional costs of the pixel separation are
detailed in Table 5.2.

As we can see, rendering the participating effects takes 1.8 ms with our fastest
configuration and 2.8 + 1.6 = 4.4 ms with a reasonable configuration with a 4× 4
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filter, linear-bicubic interpolation, and pixel separation.
The time differences between integrating the homogeneous, exponential, and

spherical media were immeasurable. The rendering times remained the same with
±0.2 ms differences for the density functions. That is because the integrations
are performed analytically by solving rather simple formulas for each pixel.

Filter size
Interpolation

Linear-bilinear Linear-bicubic Cubic-bicubic
2× 2 1.8 ms 1.9 ms 2.0 ms
4× 4 2.5 ms 2.8 ms 3.4 ms
6× 6 9.0 ms 9.5 ms 10.3 ms

Table 5.1: Times to process a single 1280×720 frame with an exponential medium
using our method with various filter sizes and interpolation techniques. The times
were measured without the pixel separation step.

Filter size
Interpolation

Linear-bilinear Linear-bicubic Cubic-bicubic
2× 2 0.4 ms 0.8 ms 1.6 ms
4× 4 1.0 ms 1.6 ms 3.5 ms
6× 6 2.6 ms 3.2 ms 4.1 ms

Table 5.2: Additional processing time for the pixel separation step with various
filter sizes and interpolation techniques.

Discussion

The results we have achieved with the 4×4 filter and linear-bicubic interpolation
are fairly similar to the results of Elek et al. [2013]. Similarly to their conclusion,
this configuration seems to be the best compromise between price and quality.

Using the 2× 2 filter cannot be recommended, because it is essentially a box
filter and does not behave like the Gaussian distribution. On the other hand, the
cost of the 6× 6 filter is excessive without any significant visual improvements.

Furthermore, using the cubic-bicubic interpolation does not seem to be neces-
sary and almost same results can be achieved with the linear-bicubic interpolation
(see again Figure 4.10). On the other hand, the linear-bilinear interpolation suf-
fers from very noticeable artifacts when moving or rotating the camera.

The results prove that our method can be used for real-time rendering. Even
with our unoptimized prototype, the total rendering time (4×4, linear-bicubic) is
27.2 ms, lower than our formal 40 ms requirement. Results we could obtain when
using an optimized commercial AAA video game engine would probably be even
much more optimistic.

We would like to note that the naive incorrectly normalized gathering ap-
proach took 79 seconds for the same scene, which is absolutely unsuitable for
real-time rendering. Path-tracing based methods would probably take several
hours or days as shown by Elek et al. [2013] and Shinya et al. [2016].
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Conclusion

Summary
In this thesis, we aimed to propose and fully implement a real-time method for
solving a difficult problem of computer graphics. Our goal was to render light
transport in virtual scenes while considering multiple scattering and other light
interactions in participating media. Furthermore, we assumed interactions not
only in simple homogeneous media, but also in quasi-heterogeneous media whose
density functions can be analytically integrated.

Within this work, we have explained the necessary physical and mathematical
background and examined various existing solutions. After verifying that none of
the approaches is capable of solving our problem while fulfilling all our require-
ments, we presented our own solution. For this purpose, we have selected one of
the existing methods as our baseline for improvements.

We have managed to propose how the equations in the existing approach can
be modified to support non-homogeneous media. Later, we derived and showed
how certain density functions can be integrated in real-time and used in our
method. The various density functions can simulate not only global, but also
local effects. Furthermore, we have enhanced the original filtering by introducing
new steps for better visual results.

The whole method has been successfully implemented in our prototype demo
application. We have also built a demo scene to demonstrate how our solution
behaves in night scenes with intensely emissive light sources. Our implementation
proves that our method is capable of running in real time as the processing of a
single frame takes only a few milliseconds. It also proves that our method can
indeed solve our problem to the necessary degree.

Even though the method is not perfect—and we have thoroughly explained the
limitations and inherent visual artifacts in Section 4.5—it satisfyingly simulates
the participating media while fulfilling all our requirements. Despite the limita-
tions, which are common for the competing methods as well, our solution provides
an alternative that can successfully compete with the existing approaches.

Fulfillment of the goals
Let us now verify that the original goals presented in Introduction have been
successfully fulfilled.

1. Background In order to present our method, we first had to explain the
necessary physical and mathematical background. Chapter 1 was devoted
to clarifying how light behaves in a vacuum and how the behavior changes
when introducing participating media. We presented the important vol-
ume rendering and radiative transfer equations. Finally, we had a look at
the mathematical operation called convolution, we explained what a point
spread function is, and we showed how to handle spatially varying filtering.
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2. Related works In Chapters 2 and 3, we examined a substantial volume of re-
lated works. We began with explaining how others approximated our prob-
lem by empirical or single-scattering approaches. Because these approxima-
tions were rather simple, the following chapter was devoted to much more
precise multiple-scattering solutions. Within the chapter, we also explained
efficient Gaussian MIP map filtering and various physical approaches to the
multiple-scattering problem.

3. Proposed method Our biggest contribution, the proposed method, was ex-
plained in Chapter 4. At the beginning, we formalized our requirements
in the context of physics and the related works. As a result, we decided
to base our own solution on the real-time multiple-scattering method of
Elek et al. [2013]. Then we thoroughly explained our modified approach for
multiple-scattering in analytically integrable participating media. We also
improved the filtering step for better support of HDR images with intensely
emissive materials. Finally, the results and limitations of our method were
precisely analyzed, also in the context of the related works.

4. Implementation To fully demonstrate our method, we have built a demo
scene and implemented a demo application. Not only it allows free naviga-
tion around the scene and modifying various parameters of the participat-
ing medium, the user of our application can also display different steps of
our method and change the configuration of the process fully interactively.
Chapter 5 is dedicated to the implementation details. We described the
technologies, our C++ source codes, and the vertex and fragment shaders.
The last section of the chapter was devoted to the performance of our
method, where we proved that our implementation is capable of real-time
rendering. The demo application is available as an electronic attachment.

Future work
During my work on this thesis, I have realized that the light transport problem is
very broad and difficult, especially when trying to solve it in real-time. In order
to solve the problem, we had to make various assumptions and sophisticated ap-
proximations. As a result, we certainly did not solve all aspects of light transport
and there remains many different paths for possible future exploration. Let us
mention at least a few of them.

Path-tracing reference It would be very interesting to compare our method
to a path-tracing reference similarly to Elek et al. [2013]. The path-tracing
algorithm can take several hours or days to run, but could tell us more
about where exactly our solution gives the less correct results.

Animated media Our analytically integrated densities are constant in time,
but the method itself is not limited to static participating media. It could
be especially interesting for video games to render visually attractive ani-
mations, such as a sand storm moving through a scene.

Occlusions and shadows Enhancing our method with volumetric effects, such
as the crepuscular rays mentioned in Section 2.3, would certainly make
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our results look even more realistic. It would be interesting to explore the
possibilities in this area, possibly calculating the occlusions in screen-space
(Section 2.3) or in 3D cuboids (Section 2.4).

Angular spreading Our method is based on approximating multiple scatter-
ing by a Gaussian spatial spreading distribution on a planar sensor. Real
cameras, however, detect the radiance incoming from different angles, then
passing through lens, and finally reaching the sensor. Future exploration in
this area is especially important because the original equation by Premože
et al. [2004] assumes spatially invariant parameters, which is not true for
non-homogeneous media.

Ambient and illumination before reflecting The inputs of our method are
rendered in a vacuum, so the participating media are only taken into account
on the paths after being reflected towards the camera. Not only is this a
big approximation, it also disallows us to correctly render the scattering
from the ambient light, because it should scatter even without reaching any
surface. We tried experimenting with calculating the ambient term from
the MIP maps, but without satisfying results.

Mixed media Since Chapter 1, we have only assumed a single participating
medium with identical particles. It would be interesting to try to handle
rendering of scenes with mixed media, such as underwater sand whirls. This
could be especially useful in combination with the animated media.

Semi-transparency Finally, in the whole thesis, we have assumed that light re-
flects according to the bi-directional reflectance distribution function with-
out considering semi-transparent materials. It is not exactly clear how our
method could be used to render light transport in scenes with materials
such as glass.
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Attachment 1 – User reference

System requirements
The demo application has been tested on several computers with different setups.
With regards to our observation, the recommended system configuration is:
• Operating system: Windows 7, 8.1, or 10,
• CPU: x86 or x64, frequency 2.0 GHz or higher,
• Physical memory: 1 GB or more,
• GPU1: NVIDIA GeForce GTX 285 or better, or AMD equivalent (tested on

Radeon HD 7670M); newest drivers and support for OpenGL 3.1 or newer,
• Hard drive space: approx. 100 MB free space if not executing from CD,
• Resolution: 1280× 720 or more.
It is also required to have the necessary C++ components available on the

PC. For this purpose, Visual C++ Redistributable for Visual Studio 2015 should
be installed. The package can be either downloaded2 or installed directly from
the electronic attachment (file dependencies/vc_redist.x86.exe).

Startup
The demo application does not have to be installed and can be started directly
by running the file LightTransportDemo.bat. This batch file executes the ap-
plication with the correct working directory.

If your computer cannot run the demo fast enough, try lowering the window
size. Furthermore, you can run a low-quality version with disabled point light
sources by executing LightTransportDemo-NoLights.bat. As explained in Sec-
tion 5.4, the rendering of point lights can be very slow on certain types of GPUs,
because our lighting shader renders all 38 point lights in each frame.

In case the demo is executed from a read-only directory, e.g., the CD attach-
ment, it is not possible to save new presets. Therefore, it is recommended to copy
the whole electronic attachment into a directory with read-write permissions.

General usage
Upon executing the demo, two windows should appear. The window with a text
output is a console and reports the state of the application. In case any error
occurs, information should be available in the console. The graphical window
should display the demo scene with a default participating medium. It is possible
to move and look around the 3D scene without collisions with the geometry:
• W/A/S/D keys control the camera movement,
• holding Ctrl or Alt slows down or speeds up the movement, respectively,
• holding the right mouse button while moving the cursor rotates the camera.

1 On laptops with multiple GPUs, make sure that the executable demo/builds/vs/Release/
LightTransportDemo.exe runs on the dedicated GPU according to your laptop’s manual.

2 https://www.microsoft.com/en-us/download/details.aspx?id=48145
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The main window should display additional text information in the top left
corner, including the frame time and a list of hotkeys. The text can be hidden and
shown again by pressing Tab. The F1 key displays detailed runtime information
provided by the bgfx library. Pressing F7 controls the vertical synchronization
that can limit the frame time.

Main menu
Furthermore, the main menu can be open to control various parameters of the
demo application. The Enter, Esc, and arrow keys are used for navigation in the
menu. Menu items can be selected using the Enter key.

Values (in brackets, e.g., [0.000625]) can be changed using the left and right
arrows. Holding Ctrl or Alt can further control how much the values are changed.
Pressing Space resets the value to minimum. Certain values, e.g., vectors and
colors, can be represented as multiple items.

In certain cases, where it makes sense, the demo application does not disallow
entering incorrectly low or high values. This way, the method can be tested even
with extreme parameters. It can result in severe artifacts according to Section 4.5.

View buffer selection

It is possible to select which buffer should be displayed on the screen. The
different buffers correspond to Figure 5.4 and to our method (Chapter 4). For
MIP chains (denoted by [MIP]), the level to be displayed can be selected. When
a decimal value is entered, the level is linearly interpolated.

Shader configuration

Different parameters such as the filter sizes and interpolation techniques can be
changed. Certain values correspond to parameters in the equations in this thesis:
• “Scaling constant” corresponds to c in Equations 3.7, 4.22, and others,
• “Masking threshold width” corresponds to ε in Equation 4.20,

and the following values correspond to parameters in Equations 4.25 and 4.28:
• “Separation – minimum luminance” corresponds to Ty,
• “Separation – luminance threshold width” corresponds to εy,
• “Separation – maximum optical depth” corresponds to Td′ ,
• “Separation – optical depth threshold width” corresponds to εd′ ,
• “Separation – depth MIP level” corresponds to normalized kssc/K.
Notes regarding optimal values can be found in Section 4.5.4.

Shader configuration / Gathering algorithm

This menu category enables to execute the naive gathering algorithm. Please
note the limitations of our implementation in Section 5.3.7.

Once the “Compute & show gathering result” item is selected, the GPU will
start computing the gathering algorithm with the selected neighborhood size.
This operation may result in Windows aborting the application because the
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GPU driver will probably timeout. The gathering algorithm is very slow and can
take up to several minutes to finish. Once the result is computed, it is displayed
on the screen and stays until the hide option is selected.

In order to prevent Windows from aborting the application, it is necessary
to edit the Windows registry. The simple way to do it is to execute the file
dependencies/tdr_timeout.reg and confirm the changes. It will prolong the
delay to 5 minutes. Please note that it is necessary to restart the computer
after making the change. Advanced users of the Windows operating system may
change the value themselves according to the Windows documentation3.

Medium parameters

It is possible to change various parameters of the participating medium in the
scene. The “Ambient & sky & emissive” menu contains three colors: the am-
bient term La (Equation 1.6), the color of the sky, and the emissive term Le
(Equation 4.29).

We can also change and configure the density function and its factor ϱ′ ≥ 0
(Section 4.3). The more specific parameters of the density functions are changed
separately. The “Set exponential parameters” menu contains the falloff parame-
ter b, the direction n, and the offset o (Section 4.3.2). The “Set sphere parame-
ters” menu contains the sphere radius R and the center o (Section 4.3.3).

Furthermore, the absorption and scattering cross-sections Ca and Cs can be
set along with the scattering asymmetry factor g (Section 1.2).

Shader & medium presets

Because setting the parameters can be time consuming and difficult, the con-
figurations can be saved and loaded later. Several predefined configurations are
available so even inexperienced users can try how the demo application behaves
with different parameters.

The presets are stored in the demo/presets/ directory and can be loaded
from the menu. By pressing the “Save current preset”, the shader and medium
parameters are saved into a new file named NewPreset_X.json, where X is the
lowest available number. The name is always printed to the console window. It
is recommended to rename the file in the Windows file explorer.

Camera selection

The last menu category enables to change the field of view (FOV) of the camera
and teleport to predefined numbered locations in the scene. The FOV parameter
is useful when taking screenshots, because more objects can fit on the screen with
high FOV. Unfortunately, the proportions of the objects may deform.

3 https://docs.microsoft.com/en-us/windows-hardware/drivers/display/
tdr-registry-keys
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Attachment 2 – CD contents
The contents of the accompanying CD are organized as follows:

• demo/ — the demo application with full source codes,

• demo/builds/vs/ — Visual Studio solution and compiled binaries,
• demo/lib/ — the C++ libraries required to compile the project,
• demo/media/ — the demo scene,
• demo/presets/ — predefined configurations of the demo application,
• demo/shaders/ — vertex and fragment shaders,
• demo/src/ — C++ source codes,

• dependencies/vc_redist.x86.exe — Visual C++ redistributable instal-
lation,
• dependencies/tdr_timeout.reg — Windows registry update file to pre-

vent GPU driver timeouts,

• thesis/thesis.pdf — this thesis,

• LightTransportDemo.bat — main startup file,
• LightTransportDemo-NoLights.bat — low quality startup file with dis-

abled point lights shader,
• README.txt — more information including the licenses of the libraries,
• README-COMPILE.txt — information about compiling the application.
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