Let $\Omega \subset \mathbb{R}^n$ be a domain with a moderate boundary regularity, $p \in (1, \infty)$ and let d be the distance function defined by $d(t) = \text{dist}(t, \partial \Omega)$, $t \in \mathbb{R}^n$. Assume that u belongs to the Sobolev space $W^{1,p}(\Omega)$. A classical result states that $u \in W^{1,p}_0(\Omega)$ if and only if $\frac{u}{d} \in L^p(\Omega)$ and $\nabla u \in L^p(\Omega)$. This fact has been several times consecutively refined, and each time the required condition $\frac{u}{d} \in L^p(\Omega)$ was relaxed to a weaker one. The first such improvement shows that the condition $\frac{u}{d} \in L^{p,\infty}(\Omega)$ is sufficient. In the next such result the condition $\frac{u}{d} \in L^1(\Omega)$ was considered. Moreover, this result was extended to Sobolev spaces of higher order. In this thesis we improve the previous results in the case when $n = 1$ and Ω is an open interval I. In our principal result we prove that $u \in W^{1,p}_0(I)$ if and only if $\frac{u}{d} \in L^{1,p}(I)$ and $u' \in L^p(I)$.