
BACHELOR THESIS

Michal Bureš

Startpage for TV application

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Doc. RNDr. Tomáš Bureš, PhD.
Study programme: Computer Science

Study branch: Programming and Software Systems

Prague 2017

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Startpage for TV application

Author: Michal Bureš

Department: Department of Distributed and Dependable Systems

Supervisor: Doc. RNDr. Tomáš Bureš, PhD., Department of Distributed and
Dependable Systems

Abstract: In this thesis we implement configurable set-top box TV application
in context of an embedded web browser. Work is executed in accord with strict
customer requirements and fully integrated into large IPTV platform. It takes
form of a complex start-up menu, whose first section is an interactive tile grid
with tile-scaled video player. Other sections contain smaller applications or sub-
sections. We build upon modules that transform data sources into tiles. They are
then projected to horizontal carousels according to dynamic configuration. A well
defined interface to integrate new modules is provided. Almost twenty different
modules are ready for immediate use. They provide various parametrized tiles
such as live programmes that can be directly started or recorded. Our user inter-
face layer, using React and Redux libraries, leverages the single page application
paradigm. For predictability, any modification of application state is made by
emitting actions handled solely by pure functions. Set-top box performance is-
sues forced us to implement an immutable state optimization that cut the average
render time of our React components by more than a half.

Keywords: Javascript, Set-top-box, Web Development, React, Redux

ii

Název práce: Startpage pro TV aplikaci

Autor: Michal Bureš

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Doc. RNDr. Tomáš Bureš, PhD., Katedra distribuo-
vaných a spolehlivých systémů

Abstrakt: V naší práci implementujeme konfigurovatelnou TV aplikaci pro set-
top box zařízení, v kontextu zabudovaného webového prohlížeče. Práce je ve-
dena dle zákaznického zadání a plně integrovaná do velké IPTV platformy. Má
formu komplexního výchozího menu, jehož první sekcí je interaktivní dlaždicová
struktura obsahující pohyblivý video přehrávač. Ostatní sekce obsahují menší
aplikace, nebo podsekce menu. Základem jsou moduly, které transformují zdroje
dat na dlaždice. Ty jsou pak projektovány na horizontální karusely dle dynam-
ické konfigurace. Navrhli jsme vhodně definované rozhraní k integrování nových
modulů. Necelých dvacet jich je připraveno k okamžitému použití. Poskytují
různé druhy parametrizovatelných dlaždic, například živé programy, s možností
je přímo pustit či nahrát. Naše vrstva uživatelského rozhraní využívá knihoven
React a Redux a je navržena jako jednostránková aplikace. Pro předvídatelnost,
jakákoli změna stavu aplikace je řešena prostřednictvím vytvoření akce, která je
zpracována pouze pure funkcemi. Nedostatečný výkon set-top boxů nás přivedl
k implementaci pomocí immutable stavu aplikace, po kterých se pruměrná doba
rendrování našich React komponent zkrátila o více než polovinu.

Klíčová slova: Javascript, Set-top-box, Webové technologie, React, Redux

iii

I would like to express my sincere gratitude to my supervisor for his precise com-
ments and efficient communication. A special mention goes to my outstanding
colleagues, as they provided me with invaluable assistance and advice.

iv

Contents

1 Introduction 3
1.1 Goals . 4
1.2 Outline . 4

2 Requirements 5
2.1 Administration requirements . 5

2.1.1 Basic platform structure 5
2.1.2 Configuration requirements 5

2.2 Functional requirements . 6
2.3 Set-top box development . 8

3 Analysis 9
3.1 Single-page applications . 9
3.2 Portal structure . 10

3.2.1 Applets . 10
3.2.2 Current framework . 10
3.2.3 Problems . 10

3.3 Libraries . 11
3.3.1 Framework comparison . 11
3.3.2 Choosing React & Redux 11

4 Technology background 13
4.1 Redux . 13

4.1.1 Nomenclature . 13
4.1.2 Immutability . 14
4.1.3 Functional Programming 15
4.1.4 Sagas . 15

4.2 React . 15
4.2.1 Functional Components 15
4.2.2 Virtual DOM . 15
4.2.3 Reconcilliation . 16
4.2.4 Optimizations . 16

4.3 Webpack . 17
4.3.1 Entry . 17
4.3.2 Output . 17
4.3.3 Loaders . 17
4.3.4 Plugins . 17

4.4 EcmaScript 6 . 18
4.4.1 Modules . 18
4.4.2 Generator functions . 18

5 Implementation 19
5.1 Architecture . 19

5.1.1 General structure . 19
5.1.2 Files structure . 20

1

5.2 Configuration service . 22
5.3 Data service . 23

5.3.1 Sources manager . 23
5.3.2 Tiles cache . 23
5.3.3 Managers and applications 23

5.4 User interface layer . 24
5.4.1 Reducers . 25
5.4.2 Middleware . 26

5.5 Menu applications . 29
5.6 Tile sources interface . 30

5.6.1 Contract . 30
5.6.2 Producing tiles . 31

6 Evaluation 33
6.1 Browser Profiling . 33
6.2 React & Redux developer tools 34
6.3 Rendering Optimality . 35
6.4 Measuring the effect . 36
6.5 Player in picture . 37

7 Conclusion 38
7.1 Implementation assessment . 38
7.2 Future work . 38

Bibliography 39

A Documentation 40
A.1 Basic configuration . 40
A.2 Grid configuration . 41

A.2.1 Row definition . 41
A.3 Available tile types . 42

A.3.1 Types producing multiple tiles 42
A.3.2 Types producing a single tile 46

List of Figures 59

List of Tables 60

List of Abbreviations 61

Attachments 62

2

1. Introduction
Nowadays, television services are an ever present standard. In 2013, 79% of all
households owned a TV set [1]. Operators, striving for customers, provide services
such as television over IP, non-linear (archived) TV, personalized video content
or custom applications.

In this thesis we extend an existing IPTV portal, running on set-top box
(STB) devices, with a modern startpage. The project has to be implemented in
line with given customer requirements. The old textual menu is to be replaced
by a complex application that will serve as a multi-functional home screen with
live data. In the following text we refer to it as the Startpage (SP) application
or simply as application.

Our work will be done in context of a complex platform suited for large op-
erators to provide both IPTV and over-the-top (OTT) video streaming. We will
frequently talk about the multi-functional system running on STB device pro-
viding not only video streaming but many other useful features. Throughout
the text we refer to it as STB portal. Another frequently mentioned component
of the platform is the application server that serves as a source of content and
meta-data for large groups of end devices. Besides STBs the server provides data
for mobile devices. This way users can enjoy basic TV services on their mobile
devices.

Modern TV sets contain various applications based on different systems. Their
functionality is diverse and often focuses on non-live content. Unfortunately, they
often lack non-linear TV services and are outlived by the hardware. A possible
solution is using a unified platform on a set-top box device that can be connected
to any modern TV. It can provide aggregation of live and non-live content which
is an advantage over standalone solutions. It results in a stable solution with
consistent experience across devices. The STBs are relatively cheap and can
easily replaced by the provider.

The set-top box devices have other capabilities besides turning the source
signal to video output. In most cases there is a Linux system running that
enables further utilization of the hardware. They come with APIs that enable
using functionality of the STB connected with the video output. In this way
applications can be created with much more user-friendly interfaces.

The STB portal is a javascript-driven web application running in an embed-
ded web browser, mostly Webkit or Mozilla. The video is streamed into some
special element behind the browser DOM. Thus we are working in the context
of web browsers, we can use the same technologies and leverage the skills of web
developers. However, we have to keep in mind that we work with weaker hard-
ware, the devices contain older version browsers and our applications may have
to run continuously for many days.

3

1.1 Goals
The goal of this thesis is a deep rework of the central page of the STB portal. We
take customer requirements and turn them into a production ready application.

The SP application is designed to be a complex start-up menu. First section
will contain a grid-like structure of horizontal carousels. They will be filled with
interactive tiles providing shortcuts to frequent actions in the STB portal. Other
sections will integrate existing applications or serve as menu sub-sections.

We will focus on satisfying the requirements, while implementing an efficient
and well maintainable application. Performance is a non-negligible parameter of
our implementation. We have to make sure that the STB experience is satisfac-
tory at least on the targeted devices. In Chapter 2, we describe the requirements
in greater detail.

1.2 Outline
The thesis begins with introducing our goals and presenting the outline. We also
provide some contextual background for set-top box development.

Chapter 2 contains the fixed requirements on the application. At first, we
analyze them from the administrator’s point of view. Secondly, we focus on most
important functional requirements.

Chapter 3 presents our analysis not only from the perspective of the applica-
tion alone but also as a future part of the ecosystem. The current framework of
STB portal is analyzed. Taking into account its problems we discuss the choice
of technologies and libraries used in our implementation.

Chapter 4 presents basic concepts of the libraries we decided to use. It focuses
mainly on the features required to understand the implementation. We present
the functionality of used libraries that was helpful and made strong impact on
the structure and paradigms of the final implementation.

In Chapter 5 we provide an overview of the implementation and our archi-
tectural decisions. Its contents serve as a documentation to any contributor. We
explain the structure of the project and the basic flow of the program. It also
contains an overview of the interface for tile source modules.

Chapter 6 shortly evaluates our implementation and discusses performance
testing. We focus mainly on the effect of the optimizations we made.

In Conclusion we evaluate the final implementation from the perspective of
both hard and soft requirements. Finally, we discuss the space for possible ex-
tensions.

4

2. Requirements
In this chapter we present the requirements and constraints for our application.
Most of them are provided by the customer. The implementation is based mainly
on a design manual that describes the structure and behaviour of the page under
varying circumstances. However, the manual is not exhaustive and many features
had to be resolved ad-hoc by mutual agreement. Second important source of
information is the list of functionality the tile sources should provide.

2.1 Administration requirements
This section discusses the basic integration and configuration. It enumerates
the necessary levels of configuration that have to be available in order to fit the
required use cases.

2.1.1 Basic platform structure
SP application has to communicate mainly with two systems.

The STB portal provides access to local information and to services that can
be used to get additional data from the server. Our application has to enable
easy access to the other sections of the portal. It has application has to seem like
a an integral part of the STB portal.

Secondly, the application server provides data mainly about users, movies,
channels or programmes via REST API. Many of the tiles should be constructed
using new API possibilities, preferably via /subscription/search/search. This
method uses Elastic search on the server so it is handled more efficiently. This
should enable the server to respond to more requests.

2.1.2 Configuration requirements
The application has to be highly customizable in three different aspects.

Runtime configuration by JSON
The requirements on the structure of the large grid can vary across cus-
tomers and change over time. This means there has to be an option to
change the configuration easily. A prefer options is a JSON file adhering
some definition that can be configured by administrator and provided by
the application server. Another level of configuration is the menu. It can
be customer specific and has to reflect current capabilities (STB, off-line
mode).

Easy addition of other tile modules
It is necessary that extending the functionality by new tile types is easy.
Writing only a simple module in a single file should suffice. The interface
has to be stable and well defined.

Different content for each user
Each user has different content available. He has a specific programme in

5

his player, different active channel list, recordings, activity or recommen-
dations. This has to be ensured by querying the server for personalized
content and observing the state of the whole application.

2.2 Functional requirements
It is important that the user interface simplifies the access to the most frequent
actions. This is ensured by concentrating the most interesting content to the SP
and presenting it in a visual manner. Thus just after starting the TV user has
many suggestions how to entertain himself.

Figure 2.1: Application visual – screenshot

Grid menu with carousel

The tiles are organized in a two dimensional array with carousel functionality.
Each tile is at least an image with an action that is invoked when selecting that
tile. There can be more actions bound to a single tile invoked on another key
on the remote controller (RC). For instance red key can start recording of a TV
programme and ok key can open its detail.

The individual rows can be wider than the visible space on the page. This
should be solved by sliding the row so that the selected tile is always completely
in the specified visible area. When a tile out of the area is to be selected the
whole row has to be slided to move the tile to the visible area.

Player in picture

It is important not to hide the player from the user when in SP. SP, unlike the
former main menu, is designed to be a startup screen. It enables booting directly
to the SP, not to the player. The solution to be used in SP is embedding the
player in tile. This is done by moving the player to the higher layers of the DOM.

6

This is the player in picture functionality provided by most STB APIs. It has to
be determined how to have this done, not all devices provide a direct solution.

Embedded menu

The application has to contain not only the grid based interface but also textual
menu to provide access to less used applications and to maintain the former
functionality. It has a new simple design and each menu section contains a custom
banner that can be configured remotely. The right banner has to be available
immediately after section change.

Figure 2.2: Embedded menu – screenshot

Data source modules

The cornerstone of this application have to be the modules that specify the be-
haviour of different tiles. The application has to support a dozen of tile types
configured by the JSON file. So we need a reliable system how to write them,
and a clear specification of the features they have to satisfy.

An important aspect of the tile functionality is that they have to react to any
events in their data sources. When a new recording is completed or programme
on a channel changes it has to be pushed to be observed by the SP application.
The corresponding tiles should change or new tiles should appear as a result.

Figure 2.3: Tiles – screenshot

Reloading the application with different configuration should be available at
runtime without any other visible actions. It may be required to react to limited
access to resources such as in offline regime.

7

As there are almost twenty modules required we encourage the reader to
consult Appendix A that provides list of all sources that were part of the require-
ments.

Menu containing applets

Textual menu that can navigate the user to functionality unavailable directly from
the startpage also has to embed focusable applications. They have to be a natural
part of the page and navigation between them should not bring confusion. An
interface to control these applications has to be designed. Two such applications
are a part of our implementation. Primarily, it is the grid application in the
first menu section. We also have to integrate an already implemented search
application to fit our needs and use it as a part of the menu.

2.3 Set-top box development
To give the reader more precise image of the devices we list the configuration of
the STB model that is the primary target of SP application. It can be found in
Listing 1.

EVO4-T
CPU:
ARM A9 1700 DMIPS Entropic TSC131 Processor
Memory:
512MB 1033MHz DDR3 (2 x 256MB)
512MB NAND Flash
Resolutions:
576i/576p/720p/1080i/1080p
MPEG-4 Part 10 AVC HD/ H.264 HP@L4, MP@ L3

Listing 1: Target STB model configuration

Development of applications for set-top box devices has one basic aspect. We
always have to work with some API provided by the STB vendor. The application
itself can be supported by many various technologies. Startpage is targeting web
browser that are available in those devices.

Many of our problems can be solved from the perspective of web development.
However, we have to take special care about performance and support of new
standards. Naturally, the STB devices lag behind personal computers both in
adoption of new browsers and the computational power available. We also have
to care about memory usage, as the memory of this devices can be scarce.

Another feature is that such an application is often long-running. We cannot
refresh the page as easily as in traditional scenarios. This means that we have to
take extra care of memory leaks. They can be disastrous as they can cause gradual
slow-down of the application and even lead to forced restarts of the device.

During our work we have to be aware of these risks and take necessary pre-
cautions to avoid them. We are creating web application in environment where
we cannot afford unnecessary operations or excessive memory consumption.

8

3. Analysis
This chapter is devoted to the pre-implementation stage. It uncovers the core
decisions and presents the reasoning they were based upon. We explain our
architectural choices and to reveal the reasons why we use the chosen tools and
libraries.

Our project has a set of important features. It is a web page, but classical
URL routing does not make any good sense in our context. We need to avoid any
visible reloads. Smooth transitions between sections are necessary. Persistent
application state is also a desired aspect. When traversing between the screens
we need to have everything prepared and manage the state efficiently.

The server load caused by the client should be minimal. We have to avoid
unnecessary requests. Any inefficiency in this area will result in superfluous
requests from thousands of devices.

In this situation we decided to implement the Startpage as a single-page ap-
plication. We show why this architecture is the best fit for our problem.

3.1 Single-page applications
In Mesbah and Van Deursen [2] one of the early papers about moving to SPA
structure, we can find a reasonable list of defining features of SPAs.

• Although representing a whole application, it is divided into many compo-
nents. The components interact with each other and can be composed.

• The application is typically not reloaded during a single session. However
the content can be changed dynamically.

• SPAs are heavy on user interaction and is responsible for handling all im-
portant inputs.

Developers are recommended to consult books, that provide an overview of
the essential topics, before they undergo the adventure of writing a SPA. During
implementation of our application we also consulted mainly Scott [3].

Features and benefits of SPAs are discussed in Mikowski and Powell [4]. It
is argued that javascript SPAs are the best choice for modern web development.
They list several reasons.

Primarily, they mention much more engaging user experience. This can be
caused by the similarity to desktop application which are more responsive. They
also write about application wide state. The advantage is observed mainly in
systems where the individual pages share a lot of information. Often the data
are more logically bound with the session than with individual page. In these
cases the data can then be reused in contrast to the usual stateless pages. An
important aspect is the javascript environment which nowadays provides all the
necessary tools to write complex SPAs. This only supports our decision to use
the SPA architecture.

9

3.2 Portal structure
The STB portal itself is a large SPA. The reasons are similar to those explained
in our case. However, the portal contains many small application that have to be
managed by a custom system.

3.2.1 Applets
The modules representing separate UI entities in portal are frequently called
applets. They are managed by a custom window manager that can start any
applet, force it to became focused, unfocused, selected, unselected or closed.
Applets have to implement this interface to remain in a consistent state and to
free resources properly across any state transitions.

3.2.2 Current framework
Behind the applet abstraction an UI framework is used to express the logic and
presentation of individual applets. It is a combination of doT.js templating sys-
tem, rivets.js data-binding library and other custom extensions that emerged
as a fast solution to urgent needs. It is build on the model, view, view-model
basis but throughout the time many deficiencies became apparent.

Applet became the basic building block. As this cannot be sufficient applets
can dynamically use components that can implement part of their functionality.
The applet mainly consists of all three parts of the model, view, view-model
(MVVM) architecture.

Applet has to explicitly specify usage of a component both in view-template
and in view-model. An instance of an event object that can pass events is created
in the applet’s view-model and passed to the component’s controller. After the
component template is loaded it is bound with that controller.

The controller is a special view-model whose only interface is the events ex-
tended object injected into its constructor. Then the applet can control the
component with triggered signals through that object.

Alternatively, the component can trigger events in the other direction. That
makes it sometimes hard to reuse components as they have to be quite universal
and often do not suit new needs precisely. The components are written to serve
to the first applet. When we want use them in another applet, the applet often
has to be modified to suit to the component.

3.2.3 Problems
The problems we encounter frequently are:

• The layered structure is hard to maintain and the reasoning is often chaotic.
Lot of communication is based on weakly typed signals that are triggered.
They often have to bubble through three or four layers without any added
functionality. Any changes that have to be made in those long chains of
function calls are painful and can easily break other functionality.

• The model and view-model are often mixed together chaotically. There are
different practices used across various applets.

10

• During the long existence of the project, mistakes once made propagated
to newly written modules. Code was often copied and modified to solve the
current problem instead of being written to model the situation. This often
led to inefficient and complicated solutions.

• The system based on triggers can be bent to do almost anything but the
solutions tend to be over-complicated and certainly are not transparent.

Accounting for the problems with the current framework we decided to find a
more modern solution that can help us eliminate old problems in new solutions.
During analysis we identified the best layer where to integrate new framework.
The applet interface seemed to be the thinest and well-defined border, that was
followed without exception throughout the portal.

3.3 Libraries
Community around Javascript is more vibrant than it ever was. There are cur-
rently many libraries that can prove useful when used in our solution. Many
useful comparisons of currently used frameworks can be found on the web [5, 6].
We compared currently most popular frameworks in how they suit our needs.

3.3.1 Framework comparison
We decided to explore Angular2, Ember, React, Vue and Meteor. In the case
of Angular2 the broad options it offered were impressive. However, the syntax
has gone far from the natural javascript and seemed a little messy. Ember is
discussed to have a steep learning curve and seems to bring a lot of complexity.
Both Vue and React seemed to be quite accessible with their focus on declarative
components. The former seemed to work lot more with bindings while the latter
viewed components more as functions of data. Unfortunately, Meteor showed to
be too large-scale for our context, more suited to complete solutions.

In Figure 3.1 we present a comparison of the scale the frameworks declare
to operate on. Partial solutions exist so using the complete stack is not strictly
necessary.

Ultimately we decided to use React. It is probably the most popular library,
a common skill among javascript programmers and we like the declarative sim-
plicity. During the process we also became acquainted with Redux. After seeing
and example application and reading the documentation we decided to try it in
our project.

3.3.2 Choosing React & Redux
Nevertheless, the primary reason why we decided to use React is that we can use it
fully even in setups where rewriting the whole applet is not possible. We can just
replace the template with react component and adjust the direct dependencies.
In places where we are implementing all of the layers, we can use other libraries,
possible different to care about the logic. In our project we decided to use Redux
as it can help us tame our large application state and feed the React components
consistently.

11

Figure 3.1: Frameworks scale comparison

Besides our personal preference we try to list the strengths of React & Redux
according to our opinion:

Fast integration
React and Redux solve just a part of the problem without forcing us into
unnecessary complexities, they seemed to be well suited for our task.

Focuses on predictability
Redux greatly fitted in our requirement for tracking the state changes. It
not only offers a solid solution but is based on beautiful functional program-
ming principles.

React is simple and popular
React has a simple system and an uncomplicated syntax that is in line with
classical javascript. It does not bring a complicated DSL and has a decent
learning curve.

Strong synergy
Redux was designed with React in mind. There are recommendations how
to combine them to maximize the synergy. There are also many successful
projects built with React & Redux.

Alternative to bindings
Data bindings are powerful. Unfortunately, they often result in chaotic that
is split between templates and models.

12

4. Technology background
In this chapter we explain the basic concepts of libraries we used. We focus
on their subset that is necessary to understand the next chapter dealing with
implementation. We focus primarily on the features we used.

4.1 Redux
Most of the information presented here is based on our experience with the li-
brary mixed with information from the Redux documentation [7]. It states three
principles of Redux that capture the gist of its usage.

Single source of truth
The whole state is stored in a tree-like structure using single javascript
object. It enables easy implementation of undo & redo behaviour or state
serialization.

Read-only state
The state cannot be modified in any other way than by emitting an action.
Action is a plain object describing what happened. As a result a new state
is created on top of the old one.

Mutations with pure functions
The only way to replace the current state with a new one is to handle and
action in a pure function called reducer which can be composed of other
reducers arbitrarily.

Redux is built upon the Flux architecture. It applies functional programming
principles taken mostly from Elm to make the state modification predictable.

4.1.1 Nomenclature
Here we present basic terms we encounter in Redux applications.

Store

The store is a central object in every Redux application. In contrast to our
libraries, Redux API is minimal. This can be exhibited even on the store object,
illustrated in Listing 2.

Actions

Objects that represent actions are the only information that flows to the store.
They must have the type property which is used to decide what how the action
shoud be managed. It can have any amount of additional parameters. The actions
can be stored to replay the behaviour at later stage or to be used for serializing
the state history.

13

// Redux store API
// get copy of state object
getState()
// calls middleware and reducers potentionally modifying state
dispatch(action)
// subscribe to changes of state
subscribe(listener)

Listing 2: Redux store API

Reducers

Reducers are pure functions that modify the state. They receive an action and a
state (or sub-state) as parameters and return a new state instance. This is the
main essence of Redux.

// (state, action) => newState
function selectableReducer(previousState, action) {

switch (action.type) {
case SELECT:

return previousState.merge({ selectedItem: action.index });
case DESELECT:

return previousState.merge({ selectedItem: null });
}

}

Listing 3: Simple reducer

Middleware

Middleware in the context of Redux is a chain of composed functions. They
get access to the action before reducers do. They do not modify anything in
store, but can perform side-effects or dispatch new actions both synchronously
and asynchronously.

4.1.2 Immutability
Immutable object, once created, cannot be modified. It retains its shape through
its lifetime. Redux manages its state as immutable. Unfortunately, the im-
mutability is only a convention so it may be useful to use some library that can
enforce it.

Javascript objects are not immutable. But if we do not mutate it or use some
immutable data structure we can use it to improve performance. The ability to
do a reference comparison on objects to determine if they changed can prevent
unnecessary rendering.

14

4.1.3 Functional Programming
It may now seem clear that Redux is inspired by functional programming. It is
heavily focused on function composition. Reducers are pure functions and return
new instances. This can provide a clean solution to many situations. The state of
the application can be viewed as an accumulate operation across all the actions
starting with the initial state. We do a series of mutations of immutable objects
that are declaratively described by actions. We can use smart data structure
that can reuse the object by sharing the common structure among individual
instances.

4.1.4 Sagas
We also have to explain the Redux saga library that takes inspiration from [8].
In this case sagas are used to declaratively describe side-effects in middleware.
They are based on ES6 generator functions. In this way the sagas naturally
represent state transitions. This can be used to model asynchronous transactions
or sequences of user actions.

4.2 React
React is a library for creating user interfaces [9]. It is based on creating com-
ponents often defined using JSX with syntax similar to XML. The components
are a combination of a template and code that express the logic behind and their
data dependencies. Each component has to define at least a render method. In
this sense the resulting view is a function of properties and state. Properties are
the data the component is fed by the application. State can encapsulate some
local logic that does not have to be shared with the application. For example, a
check box can store whether it is checked in it state.

4.2.1 Functional Components
React encourages one way data flow and currently supports functional compo-
nents. They are pure functions of the properties passes as parameters. Their
return value is then used as the resulting view. Such components are concise,
comprehensive and focus solely on presentation.

4.2.2 Virtual DOM
One of the benefits of using React is that it maintains a virtual DOM structure in
javascript. This means that when React application starts the component syntax
is parsed and transformed into a tree-like structure in memory. This virtual
DOM is then transformed to the regular DOM. After that, any change of the
components is done on the virtual DOM. When the modifications are done, the
minimal amount of operations to update the regular DOM is computed. The
changes are then made based on the computation. This saves performance and
makes consecutive DOM operations cheaper.

15

Figure 4.1: React & Redux application structure

4.2.3 Reconcilliation
The mysterious computation mentioned above has to discover minimal differences
between two trees. The creators of the library were aware that the currently
best algorithms have polynomial complexity with respect to tree sizes. This
would be too slow for this scenario. Instead they use a heuristic algorithm with
linear complexity in number of nodes. They state two assumptions reasonable in
practical situations.

• If the nodes have different types, they produce different sub-trees

• Using a unique key property, they can determine which two child nodes of
the same type should be compared.

If React compares two nodes and they are of a different type it has to destroy
the tree and rebuild it. If it they have the same type, only attributes are updated
and the instance is reused. After that the algorithm continues with the children.
However, we should avoid moving elements across the tree freely as they are are
reused only if moved within the same parent.

4.2.4 Optimizations
Another means of improving performance is to prevent any unnecessary compu-
tation in the render methods. React components can be supplied by a predicate

16

which decides if the component is to be recomputed. Generally, pure components
that are about to receive the same set of properties need not to be recomputed.

This is not the only case. We can decide that not all of the properties are
important enough to trigger a new render. This is the place where we can decide
it. On the other hand, this is also useful when we are trying to have a special
condition for a render that is not expressed by the properties.

4.3 Webpack
Webpack is a module bundler for javascript applications [10]. It lets us declare
our dependencies and do useful transformations. It builds a dependency graph,
prepares the modules and then creates bundles to be deployed. To understand
Webpack we explain the basic concepts in the order in which they are used at
build-time.

4.3.1 Entry
It makes sense that we have to somehow indicate where the process should start.
Multiple entry points with different names can be specified. This way we can
separate files for more veondors or specify dependencies for multi-page applica-
tions. Generally, the entry points are recommended to correspond with individual
HTML files.

4.3.2 Output
The next thing that has to be specified is where to put the bundles Webpack
prepared. In addition many options related to naming chunks of the bundle or
exporting as a library can be used.

4.3.3 Loaders
Loaders are used to transform non-javascript files into modules so they can be
included in the dependency graph. They have two essential parts.

• Loaders contain a regular expression under the test property. If any file
matches the expression it is handled by the loader.

• In order to specify the loader to be used on the files satisfying the test a
loader name has to be specified by the use property.

4.3.4 Plugins
As loaders can be used only on individual files, plugins are designed to perform
actions on the bundle. Before a plugin can be used it has to be required. There
is a vast amount of plugins that can solve frequent problems in a simple way.

17

4.4 EcmaScript 6
The ES6 standard brings many new useful features to javascript. Even though
browsers do not currently support the whole standard a transpiling tool, for ex-
ample Babel, can be used. It takes ES6 adherent code and transforms it to chosen
older standard. We do not explain here all the features but restrict ourselves to
two of them widely used in the SP project.

4.4.1 Modules
The ES6 module system offers default, named and aliased imports and their
export counterparts. Every file can define any number of exported symbols but
at most one can be exported as default. This means it can be imported without
the need to refer to its name. Any import can be aliased.

import React from "react"; // default import
import { newItems } from "../selectAction.js"; // named import
import { update as u } from "../menuAction.js"; // aliased import

Listing 4: ES6 imports

4.4.2 Generator functions
Generator functions are the basis of the Saga library. Using a generator we can
write readable iterators by defining functions that seem to remember state and
return multiple values. They provide a nice syntactic sugar above iterators. Gen-
erator functions are marked with an asterisk and can contain yield contextual
keyword. Any yielded value is immediately returned. When the function is called
next time it resumes its execution in that exact place. Listing 5 shows how gen-
erator functions in synergy with sagas can be used to capture blocking process in
a sequential manner. This function captures a process of creating new network
recording which is inherently asynchronous in a declarative style.

function* createNewRecording(userId, program) {
try {

// return object that requests API call, pause execution
const record = yield call(Api.newRecord, userId, program)
// saga resumes exexution when the response arrives
// update Redux store with new recording
return yield put({ type: 'RECORDING_SUCCESS', record })

} catch(error) {
yield put({ type: 'RECORDING_ERROR', error })

}
}

Listing 5: Generator functions usage in sagas

18

5. Implementation
In this chapter we present the architectural considerations of the SP application.
The implementation is described to provide a coherent overview that can serve
as a guide to dive into the code. After reading this chapter, any contributor
should be able to maintain and extend the application in accord with the original
intentions.

5.1 Architecture
The SP application has to be integrated into the platform. It is necessary to fetch
data from the server and communicate with portal API Figure 5.1 shows the basic
interaction with application server and STB application. It communicates with
both the STB portal and application server. The configuration is handled with a
separate service. The data layer is separated from the user interface. It is done
to separate concerns and simplify development in the long run. A wrapper is
needed to adapt the application to be used in the portal. It also has to react to
certain life-cycle events. The portal can be run with or without the application
making it an enhancement rather than necessary part of the system.

5.1.1 General structure
Here we divide the project into basic logical entities, that can be helpful when
reasoning about the implementation.

Configuration service
This service cares about providing consistent information from the config-
uration files.

Data service
It manages the current state of the data for the application. UI layer is
notified about any important change. Additionally it provides access to the
external applications and managers.

UI layer
User interface is represented by a large React & Redux SPA that manages
the complete UI state in a predictable manner.

Tile modules
They are a collection of files that contain functions serving as various
providers for tiles. All of them have to adhere to a simple interface.

External applications
They form a heterogeneous group of applications and managers that inte-
grate existing solutions or encapsulate auxiliary modules.

19

Figure 5.1: Plan for integration with the platform

5.1.2 Files structure
The structure of files follows the dependencies among them. Code is separated
into larger number of smaller files. Those which are interdependent are focused
together to work as small modules. Emphasis is given to the minimization of
distant dependencies. We do not tolerate any circular dependencies.

The system used for the management of modules is the one from the ES6
standard. It is briefly described in the preceding chapter.

In the project root there is a package.json file that describes necessary in-
formation about the package. It lists external dependencies of the application,
some metadata and basic scripts used in development.

Additionally, there is a pair of Webpack scripts used when building the ap-
plication. The first one is for development uses, with additional tools enabled.
The second one is used for production build and contains operations that minify,
optimize and bundle the output.

The src folder contains folders with parts of the application. Figure 6.4 is
included to provide better overview of the file structure.

20

startpage
package.json

devServer.js

webpack.config.dev.js

webpack.config.prod.js

doc
startpage.md

src

src
applet.js

indexPortalApplet.js

core

sagas

service

tileSources

reducers

components

img

less

Figure 5.2: Basic directory structure

In the src folder aside from source files img and less folders can be found.
The former contains statically defined images used in the application. In the
less folder all files with application LESS styles can be found.

In the following paragraphs we explain the basic folder structure of our source
codes. More detailed description of their contents can be found further in the
text.

core

In core folder we can find the module that takes care about the creation of our
UI layer. The creation of Redux store and composition of reducer functions are
also present.

service

The service folder contains both the data and configuration services. Along with
them we include all auxiliary managers and providers which are used exclusively
by the services.

sagas

Here we can find the middleware functions of the Redux store. This includes
updates, focus and actions sagas.

tileSources

In tileSources folder we put the generic code that handles behaviour of tiles
and the registration of a tile source module to the collection of available modules.
Two important subfolders are multiTiles and singleTiles. The former folder

21

contains modules capable of producing variable amount tiles. The latter consists
of modules that produce at most one.

reducers

Our application uses reducer functions to modify its state. All of them are stored
in the reducers folder. Each important reducer has its own folder. It contains the
action creators tied with the reducer, selectors that can query the state managed
by the reducer. Naturally, it also contains the reducer itself.

selectable

selectable.js selectableActions.js selectableSelectors.js

Figure 5.3: Example of a folder in reducers

components

In components folder we can find our React components. If the classification
makes sense they are divided into the subfolders grid and menu. The rest is
directly in the components folder.

5.2 Configuration service
The configuration service is a simple module that separates the rest of the appli-
cation from the concern of having a valid configuration. It offers a simple interface
where we can observe any change in the configuration relevant for the SP. This
service listens to the service providing the structure of main menu and enhances
it with its own applications. It also manages the SP configuration JSON and
implements a retry mechanism. In case of an unsuccessful request the applica-
tion is provided with a consistent offline configuration. Meanwhile the request is
repeated in an interval of exponentially increasing length.

// returns unsubscribe
addMenuConfigObserver: function(observer) {

return setObserver(menuObservable, observer);
},
// returns unsubscribe
addGridConfigObserver: function(observer) {

return setObserver(gridObservable, observer);
}

22

5.3 Data service
We had to separate the logic of the UI from the integration with the rest of
the system. The data service provides a core of the application that adapts to
the change of configuration. The application can be completely reloaded with a
different configuration or transition to an offline state at runtime.

5.3.1 Sources manager
Sources manager is an important module encapsulating the data structure man-
aging the whole grid of tiles. It can also be used to invoke life-cycle events of the
tiles, signaling sleep, wake up, refresh or disposal. Freeing the resources used by
tiles is crucial as not doing so can lead to memory leaks. The sources manager
internally uses a simple cache for tile objects.

5.3.2 Tiles cache
The grid structure provided by the sources manager is only a view on the data
structure. Each tile has its own identifier and its functionality is stored only in
the cache. However, tile views with smaller footprint can be manipulated freely.
They have all the attributes needed for the UI. When an action is invoked on the
grid, an identifier of the target tile and type of action are passed to the sources
manager. Then the corresponding tile object is found in the cache and the action
is invoked from the data service.

5.3.3 Managers and applications
The last important capability of the data service is providing managers for exter-
nal functionality and abstraction from applications that can be included dynam-
ically into the menu.

Menu items provider

Menu items received from the service are in a different format than required by
the SP. This module adjusts them to the right structure and adds menu sections
that activate embedded applications.

Figure 5.4: Menu enhancement

23

Banner manager

Banner manager is a simple component that provides a DOM element that can
render any banner from a collection. It provides a callback that takes an index
as a parameter. When called, it changes the banner rendered in the element
according to the specified index.

Search application

The search application is used to find lookup entities across the whole platform.
A suitable implementation was available, but it was implemented as a full screen
application. We have written an interface, that enables using applications in
an embedded form as a part of the SP. They just have to implement the re-
quired methods so they can be directed by the menu. We will focus more on the
description of menu applications interface later.

Figure 5.5: Search applications – screenshot

Native application

The tile grid is partly a menu application and should implement the interface.
However, it is also managed by the Redux state. From the menu point of view it
is part of the application so it is not registered externally.

5.4 User interface layer
The Redux store stores the whole user interface state. It is a simple javascript
object that can be modified only by a selected set of actions. It follows the
structure of reducers. In our case it stores mainly the tiles in an ID store. Rows,
which are arrays of tile references, are also stored by IDs. Grid is just an array of
rows to be displayed. Besides that, the store contains information about current
focus and it stores the structure and state of the textual menu.

24

5.4.1 Reducers
Reducers can be written in a specialized manner or to be more universal. We
decided to write universal reducers and leverage function composition to bend
them to fit the specific case.

Root reducer

In Figure 5.6 we can see how the reducers are composed into one root reducer
which handles all the state modifications.

Figure 5.6: Reducers structure and workflow

The root reducer is a composition of our reducers. Generally, for each top
level key in the Redux store we have a single reducer managing the sub-state.
There is no restriction on composing the reducers as long as they remain pure.
We also enhance the root reducer with two mechanisms.

The first enhancement performs batching of multiple actions. If an action of
BATCHED_ACTIONS type is dispatched, it is not passed to the reducers directly but
actions from its actions property are dispatched instead. This means that all
state changes in this batch are passed to listeners as one.

The second one enables domain specific actions. If an action has a property
domain defined it is compared with the top-level keys in the store. The action is
then handled exclusively by the reducer attached to that key.

Concepts

We can, for example, notice that the selectable reducer is used twice. For the
first time, we use it as the reducer managing the grid state. In the second case
the selectable reducer is used as a part of the reducer handling rows.

In this manner we capture the similarity in the navigation within rows and
between them. We create a logical concept of selectable that can manage a

25

state of a defined structure and execute actions to modify it. In Figure 6 we
provide an illustration of the selectable concept.

/* Available actions:
SELECT(index)
NEXT
PREVIOUS
INSERT_ITEM(index, item)
REMOVE_ITEM(index)
NEW_ITEMS(items) */

initialState = Immutable({
items: [],
selected: 0

});

Listing 6: Selectable illustrated

While in grid the selectable concept is applied directly on the management
of the collection of rows, the rows themselves use a more complicated mechanism.
The row reducer also cares about storing the individual row data under unique
identifiers using the idStore concept. Besides that, we also use a small dockRe-
ducer to maintain the right shift of the row. It depends on the item selected, the
geometry of the tiles and the process by which we got to the state. Neverthe-
less, the algorithm is quite simple. After each state change we check whether the
newly selected item is completely in the specified visible area. If not, we move
shift the whole row in the direction that moves the tile to the visible area. The
length of the shift is computed as the minimal shift that gets the entire selected
tile to the visible area.

As we mentioned, the idStore reducer works as a traceable ID map. The
menu reducer handles a two dimensional array that can be refreshed and traversed
in a circular way. The focus reducer stores simple information about current focus.
Focus is handled mostly in middleware functions. The reasons why we do not use
reducers for this functionality is described in the next section.

5.4.2 Middleware
Middleware functions are functions that are called on actions before reducers, but
they do not modify the state. They can solve some problems that are difficult to
handle in reducers. We continue with a list of notable features of middleware in
comparison with reducers.

• In middleware we manage with side effects. They are the place where we
can interact with external code or call server APIs.

• In middleware we can dispatch actions. This is a nice way to handle asyn-
chronous operations. After receiving some user initiated we call the API,
but do not handle the original action in reducers. When the request is re-
ceived we create a new action telling the reducer to adjust the state to the
new data.

26

• Middleware can query the whole state while reducers work only on its sub-
set. This gives them complete information about the application.

• Middleware is a great extension point. Many libraries providing middleware
functionality exist.

In our middleware we use the Redux Sagas library. It is based on composition
of few generator functions. Each of them tries to pattern match the action. In
case of success it can handle the action with read-only access to the state. We
create three instances of saga middleware to handle data updates, actions with
external impact and focus.

Figure 5.7: Middleware usage

Focus

The focus saga exists because of the non-contextual nature of RC input. Unlike
traditional mouse inputs and touch inputs, our input does not include information
about position. That means we have to track the state of the focus. In our
application there is a large amount of focusable entities on the screen. We decided
to track separately which top-level component is currently focused. This enables
us to decide which component should be notified about the action.

It is important to realize how to direct focusable components. We designed
them so that they understand certain events specific to them. This means we
have to take care of several issues.

• We have to translate events without context to events specific to top-level
components. For this translation we need to know the target. To state an
example, KEY_LEFT, when the focus state is menu, is translated to PREVIOUS
action within the menu domain.

27

• The transfer of focus between two top-level components cannot be solved
internally. Every such component has to either provide a method for deduc-
ing whether the component will lose focus on a certain key event or provide
its state a let the director decide. The focus middleware uses the latter
while menu applications have to provide a canLoseFocusOn method.

• We query application state to decide how to interpret the action. For ex-
ample when moving between rows we have to know details of the row losing
focus to focus the right tile on the row that is being focused.

function* moveBetweenRows(action /* KEY_UP or KEY_DOWN */)
{

center = yield select(selectCenter);
yield put(enhanceAction(action, { domain: "grid" }));

rowId = yield select(selectedRow);
tilePosition = yield select(selectTileAtPos, center);

yield put(enhanceAction(
Selectable.actions.select(tilePosition),
{ domain: "rows", id: rowId }

));
}

Listing 7: Focus saga - movement between rows

When an action is fired the focus saga middleware interprets the action in
context of the currently focused component. In Listing 7 we can see how KEY_UP
and KEY_DOWN arrow keys are handled when the grid is focused. First, we query
the state for the center of the currently selected tile. Then we dispatch action for
the grid to change selected row. Ultimately, we find the tile below the formerly
focused tile and instruct the newly focused row to focus it.

Updates

Updates saga takes care about translating updates from the data service to Redux
actions. For the updates saga we decided to include simplified excerpt from the
source code. In Listing 8 we present the events handled by the updates saga.

Actions

The actions saga handles interaction with other applications. When an action of
channel tile is invoked the channel should be opened in player. Movie tile should
lead to its detail. This is done through actions saga. Key events are examined
and if an action for the selected tile is found for that key, it is executed. One tile
can handle multiple actions.

28

switch (e.event) {
case ROWS_CACHE_CHANGED:

yield put(enhanceAction(
performUpdates(transformToRows(e.toAdd), e.toDelete),
{ domain: "rows" }

));
case TILES_CACHE_CHANGED:

yield put(enhanceAction(
performUpdates(e.toAdd, e.toDelete),
{ domain: "tiles" }

));
case ROW_REFS_CHANGED:

yield put(enhanceAction(
newItems(e.references),
{ domain: "rows", id: e.targetId }

));
case ROW_REF_CHANGED:

yield put(enhanceAction(
replaceItem(e.oldId, e.newId),
{ domain: "rows", id: e.targetId }

));
case GRID_REFS_CHANGED:

yield put(enhanceAction(
newItems(e.items),
{ domain: "grid" }

));
case MENU_CHANGED:

yield put(menuUpdate(e.items));

Listing 8: Simplified excerpt from updates saga

5.5 Menu applications
We have built in a mechanism into the focus saga which manages switching
between different menu applications. We illustrate how it works on the example
of the search application.

Search is an application built in a framework that uses the MVVM architec-
ture. We decided that the best way to utilize it is by appending the compiled
view to a React component. That way we can manage the view and easily modify
it.

To direct it we take the model that paired with the view and write an adapter
to our interface. It has to be able to accept signals and translate our actions to
events understandable by the model.

Handling signals
Menu applications have to react correctly to several signals. These are
focus(), unfocus() and init(). In the case of search, on focus() we
have to select the right button. Handling unfocus() is more complicated.

29

Search can open other applications within it. There are two another levels
of hierarchy that can be opened when using search filter. We have to take
care of closing them properly when leaving the search application. Lastly,
init() cares about getting the model to a consistent initial state.

Translating events
When the application is focused we have to provide it by key events. It
cannot be done directly for two reasons. We have to translate the events
to the right form and check whether we want to take focus back. The
translation in our case is straight-forward, we just take pass the original
key events. The function name is passKeyEvent(event).

Losing focus
To know when to leave the application we implement canLoseFocusOn()
function. It should return the set of events that lead to losing focus under
the current state of the model.

The manager provides two additional getters getEl() and getClasses().
They are used to get the view and additional classes to use for this instance
respectively.

5.6 Tile sources interface
The content of our application is presented mainly via the homogeneous tiles.
Our implementation has been chosen to have the following properties. All of
those functions are non-parametric.

• Every tile source is an independent module. It has to be registered as an
available module and can it be used by creating a new configuration object
in the JSON configuration.

• The modules communicate via universal interface. It specifies the contract
between individual tile sources and the service.

• The modules are responsible for freeing all resources they hold. The service,
on the other hand, is responsible for notifying them when they cease to be
managed by the service.

5.6.1 Contract
The individual modules should export a single function that returns API of the
tile source. The object returned has four optionally defined functions.

Unsubscribe
The tile source is required to get rid of all references to it that exist in the
application. This means mainly that the modules have to take care about
disposal of any observers they registered. Due to the nature of javascript
runtime, no object for which a reachable reference exists can be garbage
collected.

30

Refresh
The tile sources can define an explicit way to refresh information from data
sources they use. For that case a refresh method is to be defined.

Sleep
This method is called when SP is ceasing to be present on the screen. Tile
sources can stop unnecessary operations when inactive.

Wake
Tile sources get a wake notification when they should recover from inactiv-
ity. It should perform operations inverse to sleep.

There are another two, even more important, parameters of the tile source
constructor function. The first parameter sourceConf is the configuration taken
from the JSON configuration file. It contains the essential information for the
creation of tiles. The second parameter acceptTilesCallback is a function
provided by the service.

The service maps each callback it provides to a certain place in the grid
structure. The configuration grid consists of sources structured in rows. The
visual grid is constructed by the tiles provided by the sources at the places defined
by the mapping.

Name Type Notes

description string Text under tile.

bigLogoSrc URL Large overlay logo.

logoSrc URL Small overlay logo.

progress number (0, 1) Shows progress bar.

progressCaption string Shows progress bar caption.

whiteBadge string or number Red badge with value.

redBadge string or number White badge with value.

overTitle string Shows title as overlay

overTime string Other overlay. Originally time.

overLogoSrc URL Shows logo as overlay.

recording boolean Show recording indication.

Table 5.1: Tile sources option parameters

5.6.2 Producing tiles
To push tiles to the service through acceptTilesCallback function has to be
called with the produced tiles as parameters. In Figure 9 we list the possible

31

overloads of the callback. The first option is to send an individual tile as output
and it replaces current tiles. The second option is used to replace tile on a
specified index. The caller is responsible not to use it on a non-existent index
within the source. The last one is used to replace all tiles of that source with
another set of them.

acceptTilesCallback({ TILE }) // single tile
acceptTilesCallback({ TILE }, indexToReplace) // replace
acceptTilesCallback([{ T1 }, { T2 }, ...]) // mutliple tiles

Listing 9: Overloads of tiles callback

The tile objects pushed to the service can make use of two properties of object
type. Firstly, actions can contain functions as properties. Their key serves as
an identifier of the type of key event that invokes the action. Secondly, options
object can contain various properties from a predefined set.

In Table 5.1 the possible properties of the options object are listed. All of
them are implemented visually and are ready for usage by any tile source.

32

6. Evaluation
Our application targets currently used STB devices. We tested our implementa-
tion both on STBs and PCs. On STBs we mainly checked the results while on
PC we did a more detailed analysis trying to detect and resolve specific problems.

To evaluate the performance we used basic time measurements and Chrome
profiling tools. They proved useful for checking many quantitative an qualitative
aspects of our implementation.

6.1 Browser Profiling
A useful tool for checking if the actual renders are minimal is the rendering tab in
Chrome developer tools. Paint flashing easily uncovers which elements are ren-
dered when an action occurs. It also provides frame rate measuring, distribution
graphs and processor usage.

Layers tab can provide a high-level overview of the DOM structure. It helps
with finding redundant elements and computing aggregate paint operations. An-
other feature is a three-dimensional view on the DOM. That helps with analysis
of stacking contexts and z-index property.

Figure 6.1: Layers tool at work

Profiling tab enables taking heap snapshots, control memory allocation and
perform classic profiling. We used it to check for memory leaks by comparing
heap snapshots over larger time intervals.

33

6.2 React & Redux developer tools
During implementation, we used specialized developer tools for React & Redux.
The Redux tools were invaluable as they enabled us to track all partial state
changes of our application. We can inspect how the action looks like, the prior
and posterior state, and of course the changes made by the reducers. Detecting
bugs can be much easier, as we just check whether the action resulted in the
expected state mutations.

Figure 6.2: Application state in Redux developer tools

In Figure 6.2 we can see the structure of our application state. Grid is a simple
list of IDs of currently displayed rows. Similarly, each row references individual
tiles managed by the tiles reducer, which uses the idStore concept.

Figure 6.3: Saga events in Redux developer tools

34

The tools can be used to debug complicated actions. Figure 6.3 shows an
UPDATE_EVENT action received from the data service. It instructs the store to
remove old tile from the idStore and replace it with a new one also refreshing
the references. This update was a result of a new programme starting on one of
the channels from nowInTv tile source.

(a) Main component – properties (b) Row component – properties
Figure 6.4: React developer tools

React developer tools can be used to track the changes of the virtual DOM.
They also provide similar debugging tools for the virtual DOM as Chrome does
for the regular one. Figure 6.4 contains properties list of two components. The
main component integrates the external functionality and contains the grid and
menu components. Row component receives all the state necessary to render it
from the Redux store.

6.3 Rendering Optimality
During prototyping we found that a naive approach that recomputed the whole
virtual DOM each time the state changed is not viable. One action took more
than half a second when there were many tiles on the screen. We had to restrict
the computation only to components that had to be rendered again.

We used Seamless immutable library that provides immutable structures with
API of plain javascript objects and arrays. We only had to replace classical
mutations with immutable merges. In the component tree we added check for
reference equality that detected if the properties changed from the last time and
thus have to be rendered. Thus components which receive the same reference on
a part of the immutable structure are not recomputed. The immutable structures
from store persist the transfer through selectors and are passed to the individual
components from the root component.

35

6.4 Measuring the effect
We have done some benchmarks on the main targeted STB model featured in the
first chapter. To analyse the effect of render optimizations that became viable
with immutable state, we decided to measure the duration of individual renders.

We identified the number of tiles as the key factor for performance. We do not
expect the page should contain more than a hundred tiles. On the other hand,
we recommend, for visual reasons, that there are at least thirty tiles in at least
four rows.

Immutable structure Mean Standard Deviation

No 256.8ms 40

Yes 118.3ms 23.6

Table 6.1: Action event duration – 30 tiles, 100 observations

We built a production version of the application with four different setups.
At first, we removed the immutable optimizations and provided a configuration
with thirty and then with one hundred tiles. We designed our benchmark so that
it is similar to our use cases. In total we measured 100 actions in each setup.
Exactly 10 of them were a movement between rows. The remaining ninety moves
were made within rows rotating through the carousel.

We repeated the same process with the optimizations. In Figure 6.1 we can
find results for the smaller setup. We see a significant improvement with the
immutable checks. The comparison with the larger setup, however, is more in-
teresting. While in the case without immutable we can see linear relationship
between the render time and amount of tiles, this is not true for the optimized
case. In Figure 6.2 we see that the unoptimized setup took more than thrice the
time in average. On the contrary, the optimized one took only 30% more time.
That is approximately ten times lower slowdown.

The vertical movement showed to be approximately two times slower than
the movement within row. That is because all rows on the page change position
when moving between rows.

Immutable structure Mean Standard Deviation

No 807.4ms 132

Yes 155.2ms 44

Table 6.2: Action event duration – 100 tiles, 100 observations

36

6.5 Player in picture
Two of the STB models that we are required to support have issues with using
player in picture functionality. The video plays in a special element behind the
web browser. Using the API function that in fact cuts a rectangular hole through
the DOM made the STB slower by a degree. So we were forced to find another
solution.

As we were unable to get the player to foreground we had to ensure that
there will not be any non-transparent element in front of it. This had to be
incorporated into the DOM structure. Essentially, it meant that we had to focus
on two problems.

• In any moment there cannot be any tile or other visual object covering the
player. This has shown to be easy to satisfy, as the player is a tile in itself
and there was no need to cover it. Only thing to be done was to make the
tile produced by the player tile source transparent.

• We have to maintain a transparent rectangular space in the background
gradient. That is challenging, as the player does not have a fixed position.
It has to be moved as the user navigates himself within the grid.

We arrived at the conclusion that we have to split the background into four
parts which will stretch around the player and together form the background
gradient. Background parts not only change dimensions as the player moves
but they also have the background offset recomputed to maintain consistency of
the gradient. This approach showed to work significantly better than the API
function.

37

7. Conclusion
As an integral part of this thesis we implemented a complete startpage application
for TVs that runs on set-top box devices. We have successfully accomplished the
required functionality, both from the administrative and functional point of view.
All tile source modules are ready to use, and have some additional configuration
options beyond the requirements.

7.1 Implementation assessment
The interface we proposed for the tile source modules showed as simple and
flexible. We extended it to enable modules to optionally implement life-cycle
callbacks. We also implemented an universal mechanism to embed custom appli-
cations into menu sections.

We consider the usage of React and Redux libraries as highly beneficial to our
effort. The code is well structured and highly declarative. The whole application
state is stored in an immutable structure and managed only by pure functions.
We can say that the views are just a pure function of the state and is inherently
stateless.

We implemented rendering optimizations, leveraging the immutable state.
Without them, the application would be too slow to be used on the targeted
devices. We used Redux Saga library to handle non-contextual actions in a
concise way. Webpack provided seamless build, hot-reloading and bundling. We
extensively used new features of ES6, mainly generator functions and modules.

Startpage can be parametrized by the configuration JSON that clearly defines
the structure of the grid and menu applications to be used. The configuration can
be changed at runtime, disposing the old resources. The grid is then restructured
according to the new configuration. Overall, we consider the goals fulfilled.

7.2 Future work
The application is considered as completed. However, two possible extensions
come to mind.

Create new tile sources
New tile sources can be used to make more functionality accessible from the
Startpage. Whether it be a shortcut to settings or recommended movies
listing, the interface will make it simple to write a new module.

Integrate new menu application
New applications can be integrated into the menu, for example weather or
news overview.

At some point it may not be sufficient to configure the Startpage structure
globally. Individual users could add their own tiles to the grid from a predefined
set. Other applications of their choice could be made accessible through the
menu. Eventually, they would be able to individually manage they TV home
screen as on their mobile devices.

38

Bibliography
[1] Tom Butts. The State of Television, Worldwide.

http://www.tvtechnology.com/opinions/0087/
the-state-of-television-worldwide/222681, December 2013.
Accessed: 2017-05-05.

[2] Ali Mesbah and Arie Van Deursen. Migrating multi-page web applications
to single-page ajax interfaces. In CSMR ’07 Proceedings of the 11th
European Conference on Software Maintenance and Reengineering, pages
181–190. IEEE, 2007.

[3] Emmit Scott. SPA Design and Architecture: Understanding Single Page
Web Applications. Manning Publications Co., Greenwich, CT, USA, 1st
edition, 2015. ISBN 1617292435, 9781617292439.

[4] Michael S. Mikowski and Josh C. Powell. Single page web applications.
Manning Publications, 2013.

[5] Eugeniya Korotya. 5 best javascript frameworks in 2017.
http://da-14.com/blog/5-best-javascript-frameworks-2017,
January 2017. Accessed: 2017-03-23.

[6] Eric Elliott. Top JavaScript Frameworks & Topics to Learn in 2017.
http://medium.com/javascript-scene/
top-javascript-frameworks-topics-to-learn-in-2017-700a397b711,
December 2016. Accessed: 2017-03-23.

[7] Redux - Introduction. http://redux.js.org/docs/introduction/,
January . Accessed: 2017-04-26.

[8] Hector Garcia-Molina and Kenneth Salem. Sagas, volume 16. ACM, 1987.

[9] React. http://facebook.github.io/react/. Accessed: 2017-04-26.

[10] Webpack. https://webpack.js.org/. Accessed: 2017-04-27.

39

http://www.tvtechnology.com/opinions/0087/the-state-of-television-worldwide/222681
http://www.tvtechnology.com/opinions/0087/the-state-of-television-worldwide/222681
http://da-14.com/blog/5-best-javascript-frameworks-2017
 http://medium.com/javascript-scene/top-javascript-frameworks-topics-to-learn-in-2017-700a397b711
 http://medium.com/javascript-scene/top-javascript-frameworks-topics-to-learn-in-2017-700a397b711
http://redux.js.org/docs/introduction/
http://facebook.github.io/react/
https://webpack.js.org/

A. Documentation
This appendix serves as a guide for the administrator who is in charge of con-
figuring the application and its content. It also lists API dependencies of the
individual tile sources.

A.1 Basic configuration
Server configuration

The sws configuration has to contain the keys in table A.1.

Key Type Explanation

startpage.enabled boolean Enable or disable startpage

startpage.config.jsonUrl URL Startpage configuration

mainMenu.config.jsonUrl URL Menu configuration

banners.url.startpage URL Banners API URL

Table A.1: Server configuration – required keys

Menu section banners

Menu sections in startpage can have different interactive banners. In case of
banners.url.startpage containing URL of an image all sections will share the
same banner. In case of using some API the request for will contain parameter
applet=startpage:[SECTIONID] where section [SECTIONID] is id of the corre-
sponding category in mainMenuConfig.

Configuration JSON

The configuration file must contain a JSON with the following structure:

{
"version": "1.0",
"addToMenu": <menu-definition-json>,
"grid": <tiles-definition-json>

}

Listing 10: Configuration top level structure

40

Additional menu sections

Startpage displays the main menu, taken from mainMenuConfig, in its top row.
This can be extended with few startpage specific applications under added menu
sections. Currently supported are:

home Displays the graphical tiles.

search Search applet embedded into Startpage. It follows the visual style and
controls of the new user interface.

"addToMenu": [
{

"insertAt": 0,
"appId": "home",
"titles": {

"eng": "Home",
"cze": "Doma"

}
},
{

"insertAt": 10,
"appId": "search",
"titles": {

"eng": "Search",
"cze": "Hledat"

}
}

]

Listing 11: Menu enhancement definition

A.2 Grid configuration
The tile grid is specified as a list of rows. Each element of the array defines one
row. Row has array of sources where each element is an tile source definition
object.

A.2.1 Row definition
Each row has the following parameters:

All TILE DEFINITION objects have similar form and common parameters
listed in Table A.3.

41

"grid": [
{

"height": "large",
"titles": {

"eng": "Applications",
"cze": "Aplikace"

},
"sources": [

TILE DEFINITION1,
TILE DEFINITION2,

...
]

},
...

]

Listing 12: Row definition

Name Type Notes

height string Either large or small.

titles JSON Optional. Titles in JSON.

titles array List of tile definition objects described below.

Table A.2: Row parameters

A.3 Available tile types
The tiles usually carry additional parameters, which are specified in the following
description of all possible tile types.

Frequent portal API dependencies

sws
.call
.getAbsoluteMediaUri

Logger
format

A.3.1 Types producing multiple tiles
This section lists all the tile sources that are able to produce multiple visual tile
objects.

Now on TV

Displays multiple tiles in a row. Each tile corresponds to a TV channel in the
currently active channel list. It displays the TV programme currently running on

42

"type": "someTileType",
"orientation": "portrait",
"tiles": {

"eng": "English Title",
"cze": "Český titulek",
...

},
...

Listing 13: Tile source objects

Name Type Notes

type string Required. Tile types are in the following sections.

orientation string Tile orientation, either “landscape” or “portrait”.

titles JSON Optional. Localized variants.

Table A.3: Common tile parameters

that channel. The tiles link to the TV player, switching playback to the respective
channel in "live" mode. Optionally, the tiles can open TV program detail page of
the program they display.

"type": "nowOnTV",
"maxTiles": 12,
"play": true

Listing 14: Now on TV – Example

Actions

keyOk Play the currently selected programme and channel.

keyRed Record the currently selected programme.

Portal API dependencies

channelService
.getChannelListChannels
.getChannel

tvApp
.getCurrentChannelListKey
.addChannelListChangeObserver
.removeChannelListChangeObserver
.play

pvrService

43

.addRecordingObserver

.removeRecordingObserver
epg.bufferedEpgService

.getPFPrograms
pvr

.RecordUtil
dialogs.utils.entityDetails

.epgDetail

Name Type Notes

maxTiles number Upper bound on tiles produced.

play boolean Go to player/go to detail.

Table A.4: Now on TV parameters

Recordings

Displays multiple tiles in a row, that correspond to last recorded TV programs.
The tiles link to the record detail page.

"type": "recordings",
"maxTiles": 12

Listing 15: Recordings – Example

Actions

keyOk Open detail of the recorded entity.

REST API dependencies

/subscription/search/search

Portal API dependencies

pvrService
.addRecordingObserver
.removeRecordingObserver

dialogs.utils.entityDetails
.npvrDetail

44

Name Type Notes

maxTiles number Upper bound on tiles produced.

Table A.5: Recordings parameters

VOD movie category

Displays multiple tiles in a row, which correspond to individual VOD movies
that fall into movie category specified by search filter, see parameter description
below. Tiles display movie cover images.

Actions

keyOk Open detail dialog of the selected entity.

"type": "vodCategory",
"maxTiles": 12,
"params": {

"genre": [5, 23, 64],
"providerCodes": ["code"],
"sortField": "rating",
"sortOrder": "DESC"

}

Listing 16: VOD movie category – Example

REST API dependencies

/subscription/search/search

Portal API dependencies

.dialogs.utils.entityDetails
.vodDetail

TV, VOD, OPVR categories

This flexible tile type can display one or more tiles in a row, which correspond
to individual categories of appropriate epgCategories, vod or opvr, applications
which in turn must be configured in the set-top box main menu.

The example shows configuration of three category tiles that link to respective
categories of the application epgCategories, which must be configured in the main
menu. In other words, the main menu configuration must include a menu item.

45

Name Type Notes

maxTiles number Upper bound on tiles produced.

params JSON Parameters for VOD application

params.providerCodes string[] Enumerates enabled providers.

params.sortField string Field used for sorting.

params.sortOrder string ASC or DESC.

params.genre number[] Enumerates enabled genres.

Table A.6: VOD movie category parameters

Actions

keyOk Run the applet specified by the configuration with defined parameters.

Portal API dependencies

mainMenu.mainMenuService
.getItem

portal.mainMenuConfig
.items

Name Type Notes

mainMenuItemId string Reference to main menu config ited

categories JSON[] Specifies individual categories to list.

categoryId string Enumerates enabled providers.

tileImage URL Absolute or relative URL

titles JSON Optional.

Table A.7: Categories parameters

A.3.2 Types producing a single tile
Player in picture

This tile source can be used only once per application. It creates a tile with player
in picture.

Actions

keyOk Go to player with the current playing entity.

46

"type": "categories",
"orientation": "portrait",
"menuItemId": "epgCategories",
"categories": [
{

"categoryId": "top",
"tileImage": "startpage-img/tv/top.jpg"

},
{
"categoryId": "series",
"tileImage": "startpage-img/tv/series.jpg",
"titles": {

"eng": "Series",
"cze": "Seriály"

}
},
{

"genre": "6",
"tileImage": "startpage-img/tv/comedy.jpg",
"titles": {

"eng": "Comedy",
"cze": "Komedie"

}
}

Listing 17: Categories – Example

Portal API dependencies

player.playerApplet.controller
.switchToPlayerInfo

channelService
.getChannel

playerApp
.unsubscribe
.subscribe

Link to EPG

Single tile that links to EPG page with custom title and image.

Actions

keyOk Go to EPG applet.

Portal API dependencies

epg.init.run

47

"type": "player",
"titles": {

"eng": "Currently playing",
"cze": "Právě hraje"

}

Listing 18: Player in picture – Example

"type": "epgLink",
"titles": {

"eng": "Program guide",
"cze": "TV program"

},
"tileImage": "startpage/img/epg.png"

Listing 19: Link to EPG – Example

Name Type Notes

tileImage URL Both absolute and relative URLs are allowed.

Table A.8: Link to EPG parameters

Paused TV programmes

Displays single tile that corresponds to the first paused TV programme.

• When there is no paused TV program at all, this tile is not displayed.

• When there is at least one paused TV program, this tile either links to most
recent program’s detail or starts program playback directly. See parameter
description below.

• When there are several paused TV programs, this tile can optionally link
to a history page that lists all "Paused programmes".

Actions

keyOk Try to play or open detail of last paused programme.

REST API dependencies

/subscription/content/get-visited

Portal API dependencies

signals
.saveStateOfVisited.addObserver
.playbackEnded.removeObserver

48

"type": "visitedEpg",
"titles": {

"eng": "Paused",
"cze": "Rozkoukáno"

},
"paused": true,
"play": true,
"moreToHistory": true

Listing 20: Paused TV programmes – Example

vod.run
.history

dialogs.utils
.entityDetails

tvApp
.play

Name Type Notes

paused boolean Only paused programmes.

play boolean Start programme directly/open detail.

moreToHistory boolean Multiple items → go to history

Table A.9: Paused TV programmes parameters

Last recorded programmme

Displays single tile that corresponds the most recently recorded TV programme.

• When there is no recorded program at all, this tile can either disappear, or
display a link to particular VOD movie, for example a video tutorial that
introduces the PVR feature. See parameter description below.

• If there is exactly one recorded program, this tile either links to this pro-
gram’s detail or starts program playback directly. See parameter description
below.

• In case of several recorded programs, this tile links to the PVR app which
lists all recorded programs.

Actions

keyOk Try to play or open detail of last paused programme. Alternatively open
history applet.

49

"type": "lastRecorded",
"titles": {

"eng": "My records",
"cze": "Moje nahrávky"

},
"fallbackEntityId": 7869,
"fallbackEntityPlay": true

Listing 21: Last recorded programmme – Example

REST API dependencies

/server/vod/entity-detail
for the fallback tile

/subscription/vod/pvr-programs
for recordings, search API is delayed by elastic search

Portal API dependencies

pvrService
.removeRecordingObserver
.addRecordingObserver

playerApp
.play

dialogs.utils.entityDetails
.vodDetail

dialogs.utils.entityDetails
.npvrDetail

vod.run
.pvr

Name Type Notes

fallbackEntityId number Optional. Add alternative VOD movie.

fallbackEntityPlay boolean Optional. Start programme/open detail.

Table A.10: Last recorded programmme parameters

Last rented VOD movie

Displays single tile that corresponds to the last rented VOD movie.

• When there is no recorded program at all, this tile is not displayed.

• When there is exactly one rented movie, this tile either links to this movie’s
detail or plays it.

50

• When there are several rented movies, this tile links to the VOD app which
lists lists the rented movies.

"type": "lastOrderedVod",
"titles": {

"eng": "Rented movies",
"cze": "Zapůjčené filmy"

},
"params": {

"providerCodes": [
"code"
]

}

Listing 22: Last rented VOD movie – Example

keyOk Try to play or open detail of the movie. Alternatively open VOD browser
applet with rented movies.

REST API dependencies

/subscription/search/search
/subscription/vod/purchased-entities

Portal API dependencies

purchaseService
.addPurchaseObserver
.removePurchaseObserver

dialogs.utils.entityDetails
.vodDetail

vod.run
.vod

Name Type Notes

params JSON

params.providerCodes string[] List of content provider codes.

Table A.11: Last rented VOD movie parameters

VOD movie

Displays single tile that corresponds to particular VOD movie. Either opens
movie detail or starts movie playback when clicked.

51

"type": "vodDetail",
"entityId": 7869,
"play": false

Listing 23: VOD movie – Example

Actions

keyOk Try to play or open detail of the specified movie.

REST API dependencies

/server/vod/entity-detail

Portal API dependencies

player.entity
.VodEntity

player
.WatchUtil

dialogs.utils.entityDetails
.vodDetail

Name Type Notes

entityId number Identifies the VOD movie

play boolean Start programme/open detail.

Table A.12: VOD movie parameters

TV program

Displays single tile that corresponds to particular TV program. Either opens
program detail or starts program playback when clicked. This tile differs from
VOD movie tile in visual representation. Standard title is specified in JSON
configuration. TV program name is displayed as overlay text over the tile image.

Actions

keyOk Try to play or open detail of the specified programme.

keyRed or keyRecord Record selected programme.

REST API dependencies

/server/vod/entity-detail

52

"type": "epgDetail",
"epgId": 10217742,
"titles": {
"eng": "Recommended programme",
"cze": "Doporučujeme z \acs{TV}"
},
"play": true

Listing 24: TV program – Example

Portal API dependencies

epg.epgService
.getProgramDetail

tvApp
.play

dialogs.utils.entityDetails
.epgDetail

pvr
.RecordUtil

channelService
.getChannel

Name Type Notes

epgId number Identifies the TV program.

play boolean Start programme/open detail.

Table A.13: TV program parameters

Banner

Displays ad banner according to banner API. Parameter bannerType can be
one of fullBanner (460x60), verticalBanner (240x400), squareButton (125x125)
or button1. (120x90).

Actions

keyOk Execute banner action.

Portal API dependencies

banners
configService
stbInfo
Ajax

53

"type": "banner",
"titles": {

"eng": "Recommended",
"cze": "Doporučujeme"

},
"bannerType": "fullBanner",
"bannerId": "startpagebanner"

Listing 25: Banner – Example

Name Type Notes

bannerType string One of types specified in description.

bannerId string Optional. More in API

Table A.14: Banner parameters

Link to series

Displays single tile corresponding to a series episode and links to the series section
of the VOD app.

"type": "seriesLink",
"titles": {

"eng": "Series",
"cze": "Seriály"

},
"params": {

"originalName": "Miranda",
"providerCodes": [

"nangu"
]

}

Listing 26: Link to series – Example

Actions

keyOk Open series episodes.

REST API dependencies

/subscription/search/search

Portal API dependencies

vod.run.vod

54

Name Type Notes

params JSON

params.providerCodes string[] List of content provider codes.

Table A.15: Link to series parameters

Link to episode detail

Displays single tile corresponding to a series episode and links to the series section
of the VOD app.

"type": "seriesDetail",
"params": {

"originalName": "The Ricky Gervais Show",
"providerCodes": [

"code"
]

}

Listing 27: Link to episode detail – Example

Actions

keyOk Open series listing.

REST API dependencies

/subscription/search/search

Portal API dependencies

dialogs.utils.entityDetails
.vodDetail

Name Type Notes

params JSON

params.providerCodes string[] List of content provider codes.

Table A.16: Link to episode detail parameters

55

Link to channel list

Single tile that links to the channel listing page in the TV application. titles
property is optional. When titles are not specified, this tile displays the name of
the channel list it links to.

"type": "channelsLink",
"titles": {

"eng": "Channel list",
"cze": "Seznam kanálů"

},
"tileImage": "startpage/img/channels.png"

Listing 28: Link to channel list – Example

Actions

keyOk Open channels listing.

Portal API dependencies

tvApp
.addChannelListChangeObserver
.removeChannelListChangeObserver
.getCurrentChannelListKey

channelService
.getChannelListName

tv.tvBrowser.init
.switchToTvBrowser

Name Type Notes

tileImage URL Absolute or relative URL

Table A.17: Link to channel list parameters

Custom application (widget)

Displays single tile that links to ADK W3C widget or other external application.

Actions

keyOk Open custom application.

56

"type": "widget",
"tileImage": "http://example.com/chameleon.png",
"widgetId": "nangu-app"

Listing 29: Custom application – Example

Name Type Notes

tileImage URL Absolute or relative URL

widgetId string Widget ID or absolute URL

Table A.18: Custom application parameters

Portal API dependencies

nStore.runWidget

Link to TV/Radio player

Displays single tile that links to the TV/radio player application.

"type": "switchToSection",
"tileImage": "http://example.com/startpage/radio.png",
"section": "RADIO"

Listing 30: Link to TV/Radio player – Example

Actions

keyOk Switch to TV or Radio section.

Portal API dependencies

tvApp.play

Name Type Notes

tileImage URL Absolute or relative URL

section string TV, RADIO or INTERNET_TV/RADIO

Table A.19: Link to TV/Radio player parameters

57

Name Type Notes

title string Optional. Overrides movie title.

tileImage URL Overrides default image.

params JSON Lower.

params.providerCodes string[] Enumerates enabled providers.

params.sortField string Field used for sorting.

params.sortOrder string ASC or DESC.

params.genre number[] Enumerates enabled genres.

Table A.20: Link to VOD category parameters

Link to VOD category

Displays single tile that links to specific movie category in the VOD app. The
movie category is specified implicitly by search filter, see parameter description
below. Tile image corresponds to the first movie in the search result.

"type": "vodCategoryLink",
"titles": {

"eng": "Sale",
"cze": "Filmy v akci"

},
"tileImage": "http://example.com/override-movie-image.jpg",
"params": {

"providerCodes": ["code"],
"sortField": "rating",
"sortOrder": "DESC",
"genre": "Documentary"

}

Listing 31: Link to VOD category – Example

Actions

keyOk Switch to TV or Radio section.

REST API dependencies

/subscription/search/search

Portal API dependencies

vod.run.vod

58

List of Figures

2.1 Application visual – screenshot 6
2.2 Embedded menu – screenshot . 7
2.3 Tiles – screenshot . 7

3.1 Frameworks scale comparison . 12

4.1 React & Redux application structure 16

5.1 Plan for integration with the platform 20
5.2 Basic directory structure . 21
5.3 Example of a folder in reducers 22
5.4 Menu enhancement . 23
5.5 Search applications – screenshot 24
5.6 Reducers structure and workflow 25
5.7 Middleware usage . 27

6.1 Layers tool at work . 33
6.2 Application state in Redux developer tools 34
6.3 Saga events in Redux developer tools 34
6.4 React developer tools . 35

59

List of Tables

5.1 Tile sources option parameters . 31

6.1 Action event duration – 30 tiles, 100 observations 36
6.2 Action event duration – 100 tiles, 100 observations 36

A.1 Server configuration – required keys 40
A.2 Row parameters . 42
A.3 Common tile parameters . 43
A.4 Now on TV parameters . 44
A.5 Recordings parameters . 45
A.6 VOD movie category parameters 46
A.7 Categories parameters . 46
A.8 Link to EPG parameters . 48
A.9 Paused TV programmes parameters 49
A.10 Last recorded programmme parameters 50
A.11 Last rented VOD movie parameters 51
A.12 VOD movie parameters . 52
A.13 TV program parameters . 53
A.14 Banner parameters . 54
A.15 Link to series parameters . 55
A.16 Link to episode detail parameters 55
A.17 Link to channel list parameters 56
A.18 Custom application parameters 57
A.19 Link to TV/Radio player parameters 57
A.20 Link to VOD category parameters 58

60

List of Abbreviations
ADK Application development kit

API Application programming interface

DOM Document object model

DSL Domain specific language

EPG Electronic programme guide

ES6 ECMA-Script 6 language standard

HTML Hyper-text markup language

EPG Electronic programme guide

ID Identifier
IP Internet protocol

IPTV Television over internet protocol

JSON Javascript object notation

JSX Declarative language used for React components

LESS Stylesheet language based on CSS

MVVM Model view view-model architecture
PC Personal Computer

PVR Programme video recording

OPVR Programme video recording provided by operator

OTT Over-the-top content

REST Representational state transfer

RC Remote controller
SP Startpage application

SPA Single page application

STB Set-top box device

TV Television
UI User interface
URL Uniform resource locator
VOD Video on Demand
W3C World Wide Web consortium
XML Extensive markup language

61

Attachments
We include a zip archive with the complete project.

1. The Startpage project contains:

(a) Source code of the application
(b) Administration documentation in .md format
(c) package.json and build configuration files
(d) static images and .less style files

The project, as included, can be built with node and npm. To download depen-
dencies, npm install has to be run from the project root folder. The application
can then be served by a development server by running npm start. By using npm
run build:prod an optimized, compressed production build is produced to the
dist folder.

npm install # install npm dependencies

npm start # run application in development mode

npm run build:prod # production build

The application requires to be run by the STB portal and to have its API
available. The device also has to be provided with access to the application server
and own a valid identity.

62

	Introduction
	Goals
	Outline

	Requirements
	Administration requirements
	Basic platform structure
	Configuration requirements

	Functional requirements
	Set-top box development

	Analysis
	Single-page applications
	Portal structure
	Applets
	Current framework
	Problems

	Libraries
	Framework comparison
	Choosing React & Redux

	Technology background
	Redux
	Nomenclature
	Immutability
	Functional Programming
	Sagas

	React
	Functional Components
	Virtual DOM
	Reconcilliation
	Optimizations

	Webpack
	Entry
	Output
	Loaders
	Plugins

	EcmaScript 6
	Modules
	Generator functions

	Implementation
	Architecture
	General structure
	Files structure

	Configuration service
	Data service
	Sources manager
	Tiles cache
	Managers and applications

	User interface layer
	Reducers
	Middleware

	Menu applications
	Tile sources interface
	Contract
	Producing tiles

	Evaluation
	Browser Profiling
	React & Redux developer tools
	Rendering Optimality
	Measuring the effect
	Player in picture

	Conclusion
	Implementation assessment
	Future work

	Bibliography
	Documentation
	Basic configuration
	Grid configuration
	Row definition

	Available tile types
	Types producing multiple tiles
	Types producing a single tile

	List of Figures
	List of Tables
	List of Abbreviations
	Attachments

