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Consequences and applications of the
Fock space representation theorem

Department of Probability and Mathematical Statistics

Supervisor of the master thesis: prof. RNDr. Viktor Beneš, DrSc.
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above-standard effort while helping me write this thesis.

iii



Contents

Introduction 2

1 Theoretical framework 4
1.1 Point process as a random measure . . . . . . . . . . . . . . . . . 4
1.2 Finite point processes . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Point processes with Papangelou conditional intensity . . . . . . . 8
1.4 Gibbs point processes with pair potential on Rd . . . . . . . . . . 10
1.5 Particle processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Gibbs particle processes . . . . . . . . . . . . . . . . . . . 12

2 Fock space representation 14
2.1 Difference operator . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Fock space representation theorem . . . . . . . . . . . . . . . . . 15
2.3 Covariance identity . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Hard-core process in the real line 22

4 Stein’s method 28
4.1 Principle of Stein’s method . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Bounds for Poisson functionals . . . . . . . . . . . . . . . . . . . . 29
4.3 Bounds for innovations of point processes with Papangelou condi-

tional intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Bounds for innovations of Gibbs point processes on Rd . . . . . . 33
4.5 Bounds for innovations of Gibbs particle processes . . . . . . . . . 35

4.5.1 Central limit theorem for an innovation of a Gibbs planar
segment process . . . . . . . . . . . . . . . . . . . . . . . . 39
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Introduction

Let F be a Poisson functional, i.e. a measurable function of a Poisson process
η. If F is square integrable, then the infinite sequence is of expected difference
operators of F is an element of the Fock space. By the Fock space representation
theorem, the second moment of F equals the squared norm in the Fock space.
In this thesis, we present selected theoretical applications closely related to the
Fock space representation theorem.

The first chapter covers basic definitions and results within the theory of point
processes needed in the rest of the work. In particular, we define class of point
processes with density with respect to the distribution of a Poisson process η.
Also, point processes having Papangelou conditional intensity are introduced in
order to define Gibbs particle process with pair potential.

The second chapter is devoted to the Fock space representation theorem. We
introduce related definitions, e.g. the difference operator, and then show the proof
of the Fock space representation theorem. As a direct application, we prove the
covariance identity. This chapter is a compilation of theoretical results in Last
and Penrose, 2017, Chapters 18 and 20.

In the third chapter, we study properties of the hard-core process in the real
line. The first original contribution of this work is evaluating the first order cor-
relation function of the hard-core model. In order to obtain this result, analytical
form of the normalising constant in the density is derived. An application to the
maximum likelihood estimation is presented.

The last chapter reviews some applications of Stein’s method in stochastic
geometry. First, we explain the basic principle of Stein’s method and next, we
derive bounds on the Wasserstein distance in four different settings, each cov-
ered in a separate section. First, we recall results covered in Last and Penrose,
2017, Chapter 21, where the Wasserstein distance is estimated for a functional
of a Poisson point process using the covariance identity. In addition, we include
a solution to Exercise 21.4 in Last and Penrose, 2017 as an application. In Section
4.3, we show general bounds on the Wasserstein distance between the standard
normal distribution and the distribution of an innovation of a point process hav-
ing Papangelou conditional intensity. One of the most important classes of point
processes having Papangelou conditional intensity is formed by Gibbs point pro-
cesses, that enable us to incorporate dependence among the points. In Section
4.4, the Wasserstein distance is estimated for Gibbs point processes with pair
potential on Rd. Sections 4.3 and 4.4 are covered in Torrisi, 2017. The second
main contribution of this thesis is presented in Section 4.5. While in the litera-
ture, asymptotic results for Gibbs point processes are formulated exclusively in
Rd, d ∈ N, here, we generalize the result of Section 4.4 for Gibbs particle pro-
cesses, i.e. Gibbs point processes on the space C(d) of all non-empty, compact
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subsets of Rd with the Hausdorff metric. Among others, we used the estimates
for the correlation function based on the covariance identity to prove the result.
As an application, we present a central limit theorem for a functional of a Gibbs
planar segment process.
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Chapter 1

Theoretical framework

Throughout this work, we will always assume the probability space (Ω, A,P).
If not specified otherwise, we will assume that we are working on a locally com-
pact, Polish (i.e. separable, complete, metric) space X equipped with Borel σ-field
B(X), with reference measure σ. Denote by B0(X) the set of all bounded Borel
sets in X. The aim of this chapter is to introduce the theoretic fundamentals and
notation needed for further results.

1.1 Point process as a random measure
The background presented in Sections 1.1 and 1.3 can be found in Møller and

Waagepetersen, 2003 and Last and Penrose, 2017, Chapter 5.

Definition 1.1 (Locally finite measure). A measure µ on X is said to be locally
finite if

µ(B) < ∞, ∀B ∈ B0(X).

Notation. Let M denote the space of all locally finite measures on X and N
the subset of M containing only measures that take values in N∪{0, ∞}. Further,
we will denote by M the smallest σ-field on M which makes all the projections
µ ↦→ µ(B) measurable for all Borel sets B. On the space N, we define σ-field N
by

N = {M ∩ N : M ∈ M}.

Elements of M (or N) are measures. Although, we will alternatively handle
them as locally finite random sets of points. Therefore, we will write x ∈ µ for
µ ∈ M (or N) instead of x ∈ supp µ.

Definition 1.2 (Random measure). A random measure on X is a measurable
mapping

Ψ : (Ω, A,P) → (M, M).

Definition 1.3 (Point process). A point process on X is a measurable mapping

µ : (Ω, A,P) → (N, N ).

Remark. Point process is a special example of the random measure. Measurable
space (N, N ) is often called the outcome space of a point process on X.
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Definition 1.4 (Simple point process). A point process µ on X is called simple
if

P(µ({x}) ≤ 1, ∀x ∈ X) = 1.

Definition 1.5 (Distribution of a point process). Let µ be a point process on
X. By the distribution of the point process µ, we understand the probability
measure Pµ on the space (N, N ) given by

Pµ(A) = P(µ ∈ A), A ∈ N .

Definition 1.6 (Intensity measure). Let µ be a point process on X. The measure
on X defined by

λ(B) = E [µ(B)], B ⊂ X,

is called the intensity measure of the point process µ.

Definition 1.7 (Intensity function). Let λ be the intensity measure of a point
process µ on X satisfying for some non-negative measurable function χ

λ(B) =
∫

B
χ(x)σ(dx), B ⊂ X.

Then χ is called the intensity function of point process µ. If χ is constant, we
talk about the intensity of the point process µ.

Suppose that µ is a point process on X, and we wish to give each x ∈ µ
a random mark y with values in some locally compact, Polish space (Y, Y), called
the mark space. In this way, we are able to construct a point process on the
product space X×Y. Let K be a probability kernel from X to Y, i.e. a mapping
K : X × Y → [0,1], such that K(x, ·) is a probability measure for each x ∈ X,
and K(·, C) is measurable for each C ∈ Y . Further, for x ∈ X, we denote by δx

the Dirac measure in x.

Definition 1.8. (K-marking) Let µ be a point process on X and ν a random
variable with values in N ∪ {0, ∞} such that µ = ∑ν

n=0 δxn . Let y1, y2, . . . be
random elements in Y, such that the conditional distribution of (yn)n≤m given
ν = m and (xn)n≤m is that of independent random variables with distribution
K(xn, ·), n ≤ m. Then the point process

ξ :=
ν∑

n=1
δ(xn,yn)

is called a K-marking on µ.

Definition 1.9. (p-thinning) Let p : X → [0, 1] be measurable and consider the
probability kernel K from X to [0, 1] defined by

Kp(x, ·) := (1 − p(x))δ0 + p(x)δ1, x ∈ X.

If ξ is a Kp-marking of a point process µ, then ξ(· × {1}) is called a p-thinning
of µ.

Remark. If a point process µ has an intensity function λ(x), then its p-thinning
has the intensity function p(x)λ(x).
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Definition 1.10 (Poisson point process). Let λ be a σ-finite measure on X such
that for all points x ∈ X it holds λ({x}) = 0. The Poisson point process on
X with intensity measure λ is a point process η on X satisfying the following
conditions

1. for every compact set B ⊂ X, η(B) is a Poisson distributed random variable
with parameter λ(B);

2. if B1, . . . ,Bn, n ∈ N, are pairwise disjoint compact subsets of X, then
η(B1), . . . , η(Bn) are independent random variables.

Theorem 1.1. (Thinning theorem) Let p : X → [0, 1] be measurable and let ηp be
a p-thinning of a Poisson process η. Then ηp and η − ηp are independent Poisson
processes.

Theorem 1.2. (Superposition theorem) Let ηi, i ∈ N, be a sequence of indepen-
dent Poisson processes on X with intensity measures λi. Then

η :=
∞∑

i=1
ηi

is a Poisson process with intensity measure λ = λ1 + λ2 + · · · .

1.2 Finite point processes
Theoretical background related to this section is covered in Baddeley, 2007.

Definition 1.11 (Finite point process). A point process µ on X is called finite if

P(µ(X) < ∞) = 1.

Let η be a finite Poisson point process on X with intensity measure λ and
distribution Pη. In this section, we will introduce the class of point processes
having density with respect to Pη.

Definition 1.12 (Finite point process with density with respect to the distribu-
tion of the Poisson point process). Consider a measurable mapping p : N → R+
satisfying ∫

N

p(x)dPη(x) = 1.

A point process µ with distribution Pµ, such that

Pµ(A) =
∫
A

p(x)dPη(x), A ∈ N ,

is called the point process with density p with respect to the distribution of the
Poisson point process η.
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Theorem 1.3 (Baddeley, 2007, page 62-63). For a point process µ with density p
with respect to the distribution of a Poisson point process η with intensity measure
λ on a bounded set B ⊂ Rd we have

P(µ ∈ A) = e−λ(B)

⎛⎝1 +
∞∑

n=1

1
n!

∫
B

. . .
∫

B
1{(x1, . . . ,xn) ∈ A}

p(x1, . . . ,xn)λ(dx1) . . . λ(dxn)
⎞⎠

for any A ∈ N , and

E [g(η)] = e−λ(B)

⎛⎝1 +
∞∑

n=1

1
n!

∫
B

. . .
∫

B
g(x1, . . . ,xn)λ(dx1) . . . λ(dxn)

⎞⎠, (1.1)

E [g(µ)] = e−λ(B)

⎛⎝1 +
∞∑

n=1

1
n!

∫
B

. . .
∫

B
g(x1, . . . ,xn)

p(x1, . . . ,xn)λ(dx1) . . . λ(dxn)
⎞⎠

for any integrable function g : N → R+.
Remark. The identities for the point process µ in Theorem 1.3 can be shortly
rewritten as follows

P(µ ∈ A) = E [p(η)1A(η)],
E [g(µ)] = E [g(η)p(η)].

Example 1.1 (Strauss process). The Strauss process is a standard example
of a finite point process with density with respect to the distribution of a Poisson
point process. A special case of the Strauss process is the hard-core process. We
will study this particular example in more detail in Chapter 3.

Let B ⊂ Rd, d ∈ N, be bounded set and σ = Leb on B, where Leb denotes the
Lebesgue measure of the corresponding dimension. Denote by n(x) the number
of points in a realization x ∈ N in B of some point process. Let for real parameters
β > 0, 0 ≤ γ ≤ 1 and r > 0 define the number of points in the realization x in B
being close to u as a function

t(u,x) =
∑
x∈x

1{∥u − x∥ < r},

and furthermore, define the number of pairs of points in a realization x in B
being at most r units apart from each other as a function

s(x) =
∑

x,y∈x
1{∥x − y∥ < r}.

The Strauss point process is constructed as a finite point process having den-
sity p with respect to the distribution of the Poisson point process η with intensity
measure λ = Leb,

p(x) = αβn(x)γs(x),

where α is the normalising constant.
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Remark. The normalising constant α is not in full generality available in a closed
form as a function of variables β, γ and r. For special choice of γ = 0, we get
the hard-core process κr with parameter r > 0, for which we will derive the
normalising constant in case of R1 later on in Chapter 3.

If we set γ = 1, we will get the Poisson point process with the intensity
measure λ.

1.3 Point processes with Papangelou conditional
intensity

Definition 1.13 (Papangelou conditional intensity). Let µ be a point process
on X with distribution Pµ. Suppose C ! is a measure on X × N that is absolutely
continuous with respect to σ ⊗ Pµ and satisfies for every B ⊂ X Borel set and
A ∈ N

C ![B × A] = E

⎡⎣∑
x∈µ

1{x ∈ B}1{µ − δx ∈ A}

⎤⎦ .

Then the Radon-Nikodým derivative λ∗ : X × N → R+ of C ! with respect to
the product measure σ ⊗ Pµ is called the Papangelou conditional intensity (or
simply conditional intensity) of µ.

Remark. In fact, conditional intensity λ∗ is defined to satisfy for all B ⊂ X Borel
and A ∈ N the condition

C ![B × A] =
∫
B

E [λ∗(u,µ)1{µ ∈ A}] σ(du).

We can interpret the conditional intensity of the point process µ as the con-
ditional probability that in an infinitesimal neighbourhood of some fixed point
x ∈ X, there will be a point of µ, given we know the location of all points of µ
outside this neighbourhood.

Theorem 1.4 (Georgii-Nguyen-Zessin formula). Let µ be a point process on X
with Papangelou conditional intensity λ∗ and intensity measure λ. Then

E
∫
X

f(x, µ − δx)µ(dx) = E
∫
X

f(x,µ)λ∗(x, µ)λ(dx)

for all non-negative functions f : X × N → R.

Definition 1.14 (Innovation of a point process). Let µ be a point process on
X with Papangelou conditional intensity λ∗ and intensity measure λ. Then we
define the innovation of the point process µ as a random variable

Iµ(ϕ) :=
∑
x∈µ

ϕ(x, µ − δx) −
∫
X

ϕ(x,µ)λ∗(x,µ)λ(dx)

for any measurable ϕ : X × N → R, for which |Ix(ϕ)| < ∞ for µ-a.a. x ∈ N.

Remark. By Theorem 1.4, we have immediately E[Iµ(ϕ)] = 0 for any innovation
defined above.
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Definition 1.15. [Repulsive conditional intensity] The Papangelou conditional
intensity λ∗ of a point process µ on X is said to be repulsive if

λ∗(x,x) ≥ λ∗(x,y), whenever x, y ∈ N, x ⊆ y, x ∈ X.

Definition 1.16 (Conditional intensity of p-th order). Let µ be a point process
on X. For p ∈ N, we define the conditional intensity of the p-th order as a mea-
surable function λ∗

p : Xp × N → [0, ∞) defined by

λ∗
p(u1, . . . , up, µ) := λ∗(u1, µ)λ∗(u2, µ + δu1) · · · λ∗(up, µ + δu1 + · · · + δup−1),

u1, . . . , up ∈ X.

Remark. Theorem 1.4 can be iterated, i.e. for p ∈ N,

E
∫
Xp

f(u1, . . . ,up, µ − δu1 − · · · − δup)µ(p)(d(u1, . . . ,up))

= E
∫
Xp

f(u1, . . . , up,µ)λ∗
p(u1, . . . ,up, µ)λp(d(u1, . . . ,up))

for each measurable function f : Xp ×N → [0, ∞), where µ(p) is the p-th factorial
measure of µ.

Definition 1.17 (Correlation function). Let µ be a point process with conditional
intensity of the p-th order λ∗

p, p ∈ N. Then the expectation of λ∗
p,

ρp(u1, . . . ,un) = E λ∗
p(u1, . . . ,up,µ), u1, . . . , up ∈ X,

is called the correlation function of the p-th order of the point process µ.

Notation. We will further use also the notation ρ for the first order correlation
function ρ1.

For point processes with density with respect to the distribution of Poisson
point process defined in Section 1.2, the following representation of the conditional
intensity holds true.

Theorem 1.5 (Baddeley, 2007, page 65). Let µ be a finite point process on
a bounded set B ⊂ Rd with density p. Assume that

p(x) > 0 ⇒ p(y) > 0, x, y ∈ N, y ⊂ x.

Then the conditional intensity of the point process µ exists and equals

λ∗(u,x) = p(x ∪ {u})
p(x) , x ∈ N, u ∈ B, u ̸∈ x,P(u ∈ µ) = 0.

If we have p(x) = 0, we set λ∗(u,x) = 0.

Remark. In a similar way as in Theorem 1.5, we can see for p ∈ N, p > 1, that

λ∗
p(u1, . . . ,up,x) = p(x ∪ {u1, . . . ,up})

p(x) ,

where u1, . . . ,up ∈ B are pairwise different. Note that λ∗
p is a symmetric function

in variables u1, . . . , up.
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1.4 Gibbs point processes with pair potential on
Rd

In this section, we will introduce Gibbs point processes with pair potential
on the Euclidean space Rd defined by the Papangelou conditional intensity. Pre-
sented theory is based on Torrisi, 2017. A generalisation of this definition will
follow in the next section.

Assume the space Rd, d ∈ N, equipped with the Lebesgue measure Leb of the
corresponding dimension.

Definition 1.18 (Pair potential). We call a function φ : Rd → R∪ {∞} the pair
potential if it is Borel measurable and φ(x) = φ(−x) for any x ∈ Rd.

Definition 1.19 (Relative energy). For x ∈ N and u ∈ Rd, we define the relative
energy of interaction between the point u and the configuration x by

E(u, x) =

⎧⎪⎨⎪⎩
∑

y∈x
φ(u − y), if ∑

y∈x
|φ(u − y)| < ∞,

+∞, otherwise.

Definition 1.20 (Gibbs point process with pair potential). Take τ > 0 and
a pair potential φ. A point process µ on Rd is called the Gibbs point process with
activity τ and pair potential φ if its Papangelou conditional intensity takes form

λ∗(u, x) = τ exp{−E(u,x)}, u ∈ Rd, x ∈ N.

Remark. Let T = {τx, x ∈ Rd} be the shift group, where τx : N → N is
the translation by the vector −x ∈ Rd. A point process µ on Rd is said to be
stationary if µ is invariant with respect to T . Conditions for the existence of
a stationary Gibbs point process with pair potential are given in Ruelle, 1970.
We can not say anything about the uniqueness, so we always consider one such
stationary process.

Definition 1.21 (inhibitory Gibbs point process). We call a Gibbs point process
µ with pair potential φ inhibitory if φ ≥ 0 on Rd.

Definition 1.22 (Gibbs point process with finite range). A Gibbs point process
µ with pair potential φ is said to have finite range if 1−e−φ has compact support.

In Section 1.2, we have defined the hard-core point process on Rd by its
probability density. Since the idea of the hard-core process is based on repulsive
interactions between each two points, it is also possible to define it as a Gibbs
point process with pair potential.

Example 1.2 (Hard-core point process with pair potential). Take r > 0 fixed
and let φ : Rd → R ∪ {∞} be a real function defined by

φ(y) =

⎧⎨⎩0, if ||x|| > r,

+∞, if ||x|| ≤ r.
(1.2)
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Set the relative energy between point u ∈ Rd and system of points x ∈ N as

E(u, x)=

⎧⎪⎨⎪⎩
∑

y∈x
φ(u − y), if ∑

y∈x
|φ(u − y)| < ∞,

+∞, otherwise

=

⎧⎨⎩0, if ||u − y|| > r, ∀y ∈ x.
+, ∞ otherwise.

.

Then we define the hard-core point process with pair potential by its Papangelou
conditional intensity

λ∗(u, x) = τ exp{−E(u, x)} = τ1[||u−y||>r, ∀y∈x], u ∈ Rd, x ∈ N.

Lemma 1.6. Let µ be a hard-core point process on Rd with pair potential φ and
activity τ > 0. Then µ is inhibitory and has finite range.

Proof. Point process µ is inhibitory straightforwardly from the definition of its
pair potential. It is also not difficult to see, that µ has finite range, i.e. function
g(x) := 1 − e−φ(x) has compact support. The function g is nonzero if and only if
x ∈ b(0,r), which is a compact subset of Rd.

1.5 Particle processes
Particle processes are point processes in the space of all nonempty compact

subsets of Rd, d ∈ N. For further details, see Schneider and Weil, 2008, Section
4.1.

Notation. Denote by Cd the system of all compact subsets in Rd and set

C(d) := Cd \ {∅}.

Let K ∈ C(d). Then we denote by B(K) the circumscribed ball of K and by z(K)
the centre of B(K). Further, we denote

C(d)
0 := {K ∈ C(d) : z(K) = 0},

where 0 is the origin in Rd.
Take K, L ∈ C(d). By the Minkowski sum of K and L, we mean

K + L := {x + y : x ∈ K, y ∈ L}.

Moreover, we denote Ǩ := {−x : x ∈ K}.

Definition 1.23 (Hausdorff metric). Let || · || denote the Euclidean distance. On
C(d), the Hausdorff metric is defined by

ρH(K,L) := max
{

max
x∈K

inf
y∈L

||x − y||, max
y∈L

inf
x∈K

||x − y||
}

, K, L ∈ C(d).

We define particle processes as point processes on the space C(d) equipped
with Hausdorff metric. Such space is a Polish, locally compact space (see Rataj,
2006).
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Definition 1.24 (Particle process). Let C(d) be equipped with the Hausdorff
metric, B(C(d)) be the Borel σ-field on C(d) and let Nd denote the space of all
measures µ on C(d) with values in N0 ∪ {∞}, such that µ({L ∈ C(d) : L ∩ K ̸=
∅}) < ∞ for all K ∈ C(d). We equip Nd with the smallest σ-field such that the
mappings µ ↦→ µ(A) are measurable for all measurable A ⊂ C(d). Then a point
process on C(d) is called the particle process.

Definition 1.25 (Stationary particle process). For a measure ξ on C(d) set
txξ(A) :=

∫
1{K + x ∈ A}ξ(dK), A ∈ C(d), and K + x := {y + x : x ∈ K}.

We call a particle process µ stationary, if txµ
d= µ for each x ∈ Rd.

Theorem 1.7. The intensity measure of a stationary particle process µ can be
decomposed as

θ(A) = γ
∫

C(d)
0

∫
Rd

1{K + x ∈ A}dx Q(dK), A ∈ B(C(d)), (1.3)

where γ > 0 and Q is a probability measure on B(C(d)
0 ).

1.5.1 Gibbs particle processes
In the context of Gibbs particle processes, we often use the reference intensity

measure λ = θ/γ. Also, we will make the assumption that there exists R > 0
such that

Q({K ∈ C(d)
0 : B(K) ⊂ b(0,R)}) = 1. (1.4)

Definition 1.26 (Gibbs particle process). We call a particle process µ the Gibbs
particle process with Papangelou conditional intensity λ∗ and activity τ > 0 if

E
∫

C(d)

ϕ(K, µ − δK)µ(dK) = τE
∫

C(d)

ϕ(K, µ)λ∗(K, µ)λ(dK)

holds or all measurable ϕ : C(d) × Nd → [0, ∞).

Remark. In this thesis, we will work with the conditional intensity of the form

λ∗(K, µ) := τ exp
{

−
∫

g(K ∩ L)µ(dL)
}

, K ∈ C(d), (1.5)

where g : Cd → [0, ∞) is a measurable, translation invariant function with prop-
erty g(∅) = 0, called the pair potential.
Remark. The existence of a stationary marked Gibbs point process is discussed
in Mase, 2000.

Definition 1.14 can be rewritten for an innovation of a Gibbs particle process
µ as

Iµ(ϕ) =
∑
K∈µ

ϕ(K, µ − δK) −
∫

C(d)

ϕ(K,µ)λ∗(K,µ)λ(dK).

The following lemma gives a lower and an upper bound for the p-th order
correlation function of a Gibbs particle process. These bounds are similar to those
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in Stucki and Schuhmacher, 2014 for Gibbs point processes on Rd. Although, both
are derived using different methods. Bounds in Stucki and Schuhmacher, 2014
are built based on Stein’s method for Poisson approximation (see Xia, 2005),
meanwhile bounds that we will use can be obtained using the Fortuin-Kasteleyn-
Ginibre inequality and the covariance identity (both in Last and Penrose, 2017).

Take p ∈ N and denote by Up, Vp : (C(d))p → [0, ∞) a measurable functions
defined by

Up(K1, . . . , Kp) :=
∑

1≤i<j≤p

g(Ki ∩ Kj),

Vp(K1, . . . , Kp) :=
∫

C(d)

(
1 − e−

∑p

i=1 g(K∩Ki)
)

λ(dK),

K1, . . . , Kp ∈ C(d).

Lemma 1.8 (Last, 2017). Let µ be a stationary Gibbs particle process with ac-
tivity τ > 0 and particle distribution Q. Take p ∈ N, then

ρp(K1, . . . , Kp) ≥ τ p exp {−Up(K1, . . . , Kp)} exp {−τVp(K1, . . . , Kp)}

for λp-a.a. K1, . . . , Kp ∈ C(d).
If, moreover, there exists b ∈ [0, ∞) such that V1(K) ≤ b for λ-a.a. K ∈ C(d),

then

ρp(K1, ..., Kp) ≤ τ p exp {−Up(K1, ..., Kp)}
(
1 − e−τb(1 − exp {−τVp(K1, ..., Kp)})

)
for λp-a.a. K1, . . . , Kp ∈ C(d).

Example 1.3 (Planar segment process). Denote by S ⊂ C(2) the space of all pla-
nar segments with fixed length r > 0. Any segment K ∈ S can be parametrized
as K = (x, ϕ), where x ∈ R2 is the centre and ϕ ∈ S1 is the axial orientation.

Take a > 0. On C(2), we define a pair potential

g(K) := a1{K ̸= ∅}, K ∈ C(2). (1.6)

We define the segment process ξ in R2 as a Gibbs particle process with inten-
sity measure λ concentrated on S, activity τ > 0 and the Papangelou conditional
intensity defined as

λ∗(K, x) = τ exp

⎧⎨⎩−a
∫
S

1{K ∩ L ̸= ∅}dx(L)

⎫⎬⎭ K ∈ S, x ∈ N2.

In fact, λ∗(K, x) = τe−aNx(K), where Nx(K) denotes the number of inter-
sections of K with the segments in x. The directional distribution Q can be
interpreted as an even probability measure on the unit sphere S1.

13



Chapter 2

Fock space representation

This chapter is devoted to the Fock space representation theorem. We will
introduce the definition of the Fock space, show the proof of this theorem and then
cover some applications. The most important application will follow in a separate
Chapter 4. Results presented in this chapter can be found in Last and Penrose,
2017, Chapters 18 and 20. Suppose, we have a Poisson point process η on X with
σ−finite intensity measure λ and distribution Pη. First, recall some results that
will be needed.

Theorem 2.1 (Bogachev, 2007, page 146). Let W be a vector space of R-valued,
bounded functions on X that contains the constant functions. Further, suppose
that for every increasing, uniformly bounded sequence of non-negative functions
fn ∈ W, n ∈ N, the function f = limn→∞fn belongs to W. Let G be a subset
of W that is closed with respect to multiplication. Then W contains all bounded
σ(G)-measurable functions on X.

Theorem 2.2. (Multivariate Mecke Equation) Let m ∈ N. Then, for every
f : Xm × N → R+ ∪ {∞} measurable function

E

⎡⎣∫
Xm

f(x1, . . . , xm, η)η(m)(d(x1, . . . , xn))
⎤⎦

=
∫
Xm

E [f(x1, . . . , xm, η + δx1 + . . . + δxm)]λm(d(x1, . . . ,xm)), (2.1)

as long as the right-hand side is finite.

2.1 Difference operator
Definition 2.1 (Difference operator). Let F : N → R be a measurable function.
For y ∈ X, we define the difference operator as a functional DyF : N → R
satisfying

DyF (µ) = F (µ + δy) − F (µ).
Iterating this definition, we get for n ∈ N, n ≥ 2, the difference operator of

the n−th order defined as a functional Dn
y1,...,yn

F : N → R

Dn
y1,...,yn

F = D1
y1Dn−1

y2,...,yn
F,

14



where D1 = D and D0F = F.

Remark. We can see that for the n−th order difference operator, it holds

Dn
y1,...,yn

F (µ) =
∑

J⊂{1,...,n}
(−1)n−|J |F

⎛⎝µ +
∑
j∈J

δyj

⎞⎠ . (2.2)

Also, it will be useful to notice that Dn
y1,...,yn

F is symmetric mapping in
y1 . . . ,yn ∈ X and (µ, y1, . . . , yn) ↦→ Dn

y1,...,yn
F (µ) is measurable.

Notation. For purposes of the following section, we will denote for F : N → R
and n ∈ N

TnF (y1, . . . ,yn) = E[Dn
y1,...,yn

F (η)]
and set T0F = E[F (η)], whenever these expectations exist. Set TnF (y1, . . . ,yn) =
0 otherwise.

Note that the mapping TnF : Xn → R is again symmetric and measurable.

2.2 Fock space representation theorem
To obtain the Fock space representation theorem, we need to introduce some

further notation.

Notation. The scalar product of f, g ∈ L2(Xn, λn) is denoted by

⟨f, g⟩n =
∫
Xn

fg dλn.

The associated norm is then denoted by

||f ||n =
√

⟨f,f⟩n.

Definition 2.2 (Fock space). Let Hn denote the space of all symmetric functions
f ∈ L2(Xn,λn) equipped with norm ||f ||n. Then we define the Fock space H as
the space of all sequences f = (fn)n≥0, fn ∈ Hn, i.e. as the product space

H =
∞×

n=0
Hn.

with a scalar product defined by

⟨f,g⟩H =
∞∑

i=0

1
n!⟨fn,gn⟩n, f,g ∈ H.

Remark. H is a Hilbert space.

Theorem 2.3 (Fock space representation). Let f, g ∈ L2(N, Pη). Then

E [f(η)g(η)] = (E [f(η)]) (E [g(η)]) +
∞∑

n=1

1
n! ⟨Tnf, Tng⟩n . (2.3)

In particular,
E [f(η)2] = (E [f(η)])2 +

∞∑
n=1

1
n! ||Tnf ||2n. (2.4)
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Remark. Let us for f ∈ L2(N, Pη) define the sequence Tf = (Tnf)n≥0. Theorem
2.3 gives us that Tf ∈ H and

E[f(η)g(η)] = ⟨Tf, Tg⟩H .

Proof. We will prove the theorem in four steps. In prior to show that the equality
holds for arbitrary f, g ∈ L2(N, Pη), we will prove it for special space of bounded
and measurable functions, which will be proved to be dense in L2(N, Pη). Than
we apply some approximation arguments to prove the theorem.

Step 1 Let X0 be the system of all measurable sets B ∈ B(X) for which λ(B) < ∞.
Denote by R0(X) the space of all bounded functions v : X → R+ vanishing
outside some B ∈ X0. Furthermore, denote by G the space of all (bounded and
measurable) functions g : N → R of the form

g(µ) = a1e
−µ(v1) + . . . + ane−µ(vn),

where n ∈ N, a1, . . . , an ∈ R and v1, . . . , vn ∈ R0(X). Let us show that equality
(2.3) holds for f, g ∈ G.

By linearity, it is sufficient to consider functions f and g of the form

f(µ) = exp[−µ(v)], g(µ) = exp[−µ(w)]

for v, w ∈ R0(X). First, we will calculate Tnf and Tng for n ∈ N. For each µ ∈ N
and x ∈ X, we have

f(µ + δx) = exp
⎡⎣−

∫
X

v(y)(µ + δx)(dy)
⎤⎦ = exp[−µ(v)] exp[−v(x)],

and therefore,
Dxf(µ) = exp[−µ(v)](exp[−v(x)] − 1).

Iterating this identity, we can get for all n ∈ N and all x1, . . . , xn ∈ X that

Dn
x1,...,xn

f(µ) = exp[−µ(v)]
n∏

i=1
(exp[−v(xi)] − 1). (2.5)

Recall that for the Poisson point process η with intensity measure λ, the
Laplace functional takes form

Lη(u) = exp
[
−λ(1 − e−u)

]
, u : X → R+. (2.6)

From (2.5) and (2.6), we obtain that

Tnf = exp[−λ(1 − e−v)]
n∏

i=1
(exp[−v(xi)] − 1). (2.7)

Analogously for g. Since v, w ∈ R0(X) it follows that Tnf, Tng ∈ Hn, n ≥ 0.
Using again equality (2.6), we obtain that

E[f(η)g(η)] = exp[−λ(1 − e−(v+w))].

Now, we can compute the right hand side of (2.3)
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∞∑
n=1

1
n! ⟨Tnf, Tng⟩n

= exp[−λ(1 − e−v)] exp[−λ(1 − e−w)]
∞∑

n=1

1
n!λ

n(((e−v − 1)(e−w − 1))⊗n)

= exp[−λ(2 − e−v − e−w)] exp[λ((e−v − 1)(e−w − 1))]
= exp[−λ(1 − e−(v+w))]

and hence the assertion holds true for f, g ∈ G.

Step 2 We need to prove that the set G is dense in L2(N, Pη). Let W be the space
of all bounded measurable g : N → R that can be approximated in L2(N, Pη)
by functions in G. We want to use the functional version of the monotone class
theorem, i.e. Theorem 2.1. We can see that space G is closed under uniformly
bounded convergence. It also contains the constant functions and it is closed
under multiplication. If we denote by N ′ the smallest σ-field on N such that
µ ↦→ h(µ) is measurable for all h ∈ G, then according the Theorem 2.1 W
contains any bounded N ′-measurable g.

On the other hand we can write for every C ∈ X0 that

µ(C) = lim
t→0+

t−1(1 − e−tµ(C)), µ ∈ N,

such that µ ↦→ µ(C) is N ′-measurable. Since λ is σ-finite, for any C ∈ X there
exists a monotone sequence Ck ∈ X0, k ∈ N such that C = ∪Ck, so that µ ↦→ µ(C)
is N ′-measurable. Thus, N ′ = N and it follows that W contains all bounded
measurable functions. Hence W is dense in L2(N, Pη).

Step 3 For further purposes we would like to show that f, f 1, f 2, . . . ∈ L2(N, Pη)
satisfying fk → f in L2(N, Pη) as k → ∞ implies

lim
k→∞

∫
Cn

E [|Dn
x1,...,xn

f(η) − Dn
x1...,xn

fk(η)|]λn(d(x1, . . . , xn)) = 0 (2.8)

for all n ∈ N and C ∈ X0. According to (2.2), it is sufficient to prove

lim
k→∞

∫
Cn

E
[⏐⏐⏐⏐⏐f

(
η +

m∑
i=1

δxi

)
− fk

(
η +

m∑
i=1

δxi

)⏐⏐⏐⏐⏐
]

λn(d(x1, . . . , xn)) = 0 (2.9)

for all m ∈ {0, . . . , n}. The case of m = 0 is obvious. Assuming m ∈ {0, . . . , n},
we apply on the integral inside the limit (2.8) the multivariate Mecke equation,
i.e Theorem 2.2.∫

Cn

E
[⏐⏐⏐⏐⏐f

(
η +

m∑
i=1

δxi

)
− fk

(
η +

m∑
i=1

δxi

)⏐⏐⏐⏐⏐
]

λn(d(x1, . . . , xn))

= λ(C)n−m
∫

Cm

E
[⏐⏐⏐⏐⏐f

(
η +

m∑
i=1

δxi

)
− fk

(
η +

m∑
i=1

δxi

)⏐⏐⏐⏐⏐
]

λm(d(x1, . . . , xm))
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= λ(C)n−mE

⎡⎣ ∫
Cm

⏐⏐⏐f(η) − fk(η)
⏐⏐⏐ ηm(d(x1, . . . , xm))

⎤⎦
≤ λ(C)n−mE

[⏐⏐⏐f(η) − fk(η)
⏐⏐⏐ η(m)(Cm)

]
≤ λ(C)n−m(E [(f(η) − fk(η))2]) 1

2 (E [(η(m)(Cm))2]) 1
2 .

Last estimate follows from the Cauchy-Schwartz inequality. Since all moments of
the Poisson distribution exists, we obtain (2.9) and hence (2.8).

Step 4 Recall the polarization identity of the scalar product

4⟨f, g⟩H = ⟨f + g, f + g⟩H − ⟨f − g, f − g⟩H.

Because of the linearity of the scalar product, it is sufficient to show that (2.4)
holds to prove the theorem.

Since the system G is dense in L2(N, Pη), for every f ∈ L2(N, Pη) there is a
sequence fk ∈ G such that fk → f in L2(N, Pη) as k → ∞. In step 3, we proved
that Tfk, k ∈ N, is a Cauchy sequence in H, hence has a limit f̃ = (f̃n) ∈ H,
meaning that

lim
k→∞

∞∑
n=0

1
n! ||Tnfk − f̃n||2n = 0. (2.10)

Taking the limit in the identity E[fk(η)2] = ⟨Tfk, T fk⟩H yields

E[f(η)2] = ⟨f̃ , f̃⟩H.

Equation (2.10) immediately implies that f̃0 = E[f(η)] = T0f . It remains to show
that for any n ≥ 1, we have

f̃n = Tnf, λn-a.e. (2.11)

Let C ∈ X0 and let B := Cn. Denote by (λn)B the restriction of the mea-
sure λn to B. By (2.10) Tnfk converges to f in L2(B,(λn)B) and hence also in
L1(B, (λn)B). Meanwhile, by the definition of Tn and the equality (2.8), Tnfk

converges in L1(B, (λn)B) to Tnf . Hence the uniqueness of these limits yields
f̃n = Tnfλn- a. e. on B. Since λ is assumed to be σ−finite, this implies (2.11)
and hence the theorem.

2.3 Covariance identity
Covariance identity is a direct consequence of the Fock space representation

theorem. It can be further used, for instance, to obtain bounds on the Wasserstein
distance between the standard normal distribution and distribution of a Poisson
functional (cf. Section 4.2).

Notation. Denote

L0
η = {F ; F = f(η) P-a.s. for some measurable f : N → R}.

If F ∈ L0
η, F = f(η), then f is called a representative of the functional F .

Further, denote for q > 0

Lq
η = {F ∈ L0

η; E [|F |q] < ∞}.
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Assume, we have a square integrable Poisson functional F (i.e. F ∈ L2
η) and

t ∈ [0, 1]. To obtain the covariance identity, we need to introduce Poisson func-
tional PtF defined by a combination of t-thinning and independent superposition.
Then we will be able to rewrite the Fock space series representation as an integral
equation involving only the first order difference operator and the operator Pt.

Definition 2.3. (Operator Pt) Let for F ∈ L1
η with a representative f define

PtF = E

⎡⎣∫
N

f(ηt + µ)Π(1−t)λ(dµ)

⏐⏐⏐⏐⏐⏐η
⎤⎦ , t ∈ [0, 1],

where ηt is a t-thinning of η and Πλ′ denotes the distribution of a Poisson process
with intensity measure λ′.

Lemma 2.4. [Last and Penrose, 2017, page 265] Let f : Ω ×X → R̄+ be a mea-
surable function, f ∈ L1(Ω × X,P ⊗ λ). Let G ⊂ A be a σ−field. Then there is
a measurable version of E[f(x)|G] satisfying

E

⎡⎣∫
X

f(x)λ(dx)

⏐⏐⏐⏐⏐⏐G
⎤⎦ =

∫
X

E [f(x)|G]λ(dx), P-a.s.. (2.12)

Remark. According to Theorems 1.1 and 1.2, we get that

Πλ = E

⎡⎣∫
N

1{ηt + µ ∈ ·}Π(1−t)λ(dµ)
⎤⎦ . (2.13)

It follows that the definition of PtF does not depend on the chosen representative
of F up to almost sure equality. Moreover, using Lemma 2.4 gives us equality

PtF =
∫
N

E [f(ηt + µ)|η]Π(1−t)λ(dµ), t ∈ [0, 1].

We can also see that
Pt = E [f(ηt + η′

1−t)|η],

where η′
1−t is a Poisson process with intensity measure (1 − t)λ, independent of

the pair (η,ηt).
It follows from (2.13) that

E [PtF ] = E [F ], F ∈ L1
η (2.14)

and PtF ∈ L1
η, whenever F ∈ L1

η.
Using the conditional version of the Jensen inequality and equality (2.14), we

can determine an estimate for the p-th absolute moment of PtF .

Lemma 2.5. (Contractivity property) For any p ≥ 1, F ∈ Lp
η and t ∈ [0, 1], we

have
E [|PtF |p] ≤ E [|F |p].
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Proof. Let f be a representative of F and denote g = |f |p, G = g(η). Then we
can estimate

E [|PtF |p] = E
⏐⏐⏐E [f(ηt + η′

1−t)|η]
⏐⏐⏐p ≤ E

[
E [|f(ηt + η′

1−t)|p|η]
]

= E
[
E [g(ηt + η′

1−t)|η]
]

= E [PtG] = E [G] = E [|F |p].

Lemma 2.6. (Mehler’s formula) Let F ∈ L2
η, n ∈ N and t ∈ [0, 1]. Then

Dn
x1,...,xn

(PtF ) = tnPtD
n
x1,...,xn

F, λn-a.a. (x1, . . . , xn) ∈ Xn, P − a.s.

In particular,

E [Dn
x1,...,xn

PtF ] = tnE [Dn
x1,...,xn

F ], λn-a.a. (x1, . . . , xn) ∈ Xn.

Notation. Let for F ∈ L2
η denote by DF the mapping (ω, x) ↦→ (DxF )(ω). The

next theorem will additionally require DF ∈ L2(Ω × X,P ⊗ λ), i.e.

E

⎡⎣∫
X

(DxF )2λ(dx)
⎤⎦ < ∞.

Theorem 2.7 (Covariance Identity). For any F, G ∈ L2
η such that DF, DG ∈

L2(Ω × X,P ⊗ λ), we have

E [FG] − E [F ]E [G] = E

⎡⎣∫
X

1∫
0

(DxF )(PtDxG)dtλ(dx)
⎤⎦ . (2.15)

Proof. Using first the Cauchy-Schwartz inequality and then the contractivity
property (Lemma 2.5) we can estimate⎛⎝E

⎡⎣∫
X

1∫
0

|DxF ||PtDxG|dtλ(dx)
⎤⎦⎞⎠2

≤ E

⎡⎣∫
X

(DxF )2λ(dx)
⎤⎦E

⎡⎣∫
X

1∫
0

(PtDxG)2dtλ(dx)
⎤⎦

≤ E

⎡⎣∫
X

(DxF )2λ(dx)
⎤⎦E

⎡⎣∫
X

(DxG)2λ(dx)
⎤⎦ ,

which is finite by the assumption. Therefore, using Fubini’s theorem and Mehler’s
formula (Lemma 2.6), we obtain that the right-hand side of (2.15) equals

∫
X

1∫
0

t−1 E [(DxF )(PtDxG)]dtλ(dx). (2.16)

We can now apply the Fock space representation (Theorem 2.3) to the expectation
inside the integral. For t ∈ [0, 1] and taking into account also Lemma 2.6 we
obtain

E [(DxF )(DxPtG)] = tE [DxF ]E [DxG]

+
∞∑

i=1

tn+1

n!

∫
Xn

E [Dn+1
x1,...,xn,xF ]E [Dn+1

x1,...,xn,xG]λn(d(x1,..., xn)).
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We want to insert this expression into formula (2.16) and use Fubini’s theorem
(to be justified below). Compute (2.16) as

∫
X

1∫
0

E [DxF ]E [DxG]dtλ(dx)

+
∞∑

n=1

1∫
0

tn

n!dt
∫
X

∫
Xn

E [Dn+1
x1,...,xn,xF ]E [Dn+1

x1,...,xn,xG]λn(d(x1,..., xn))λ(dx)

=
∫
X

E [DxF ]E [DxG]λ(dx)

+
∞∑

n=1

1
(n + 1)!

∫
X

∫
Xn

E [Dn+1
x1,...,xn,xF ]E [Dn+1

x1,...,xn,xG]λn(d(x1,..., xn))λ(dx)

=
∞∑

n=1

1
n!

∫
Xn

E [Dn
x1,...,xn

F ]E [Dn
x1,...,xn

G]λn(d(x1,..., xn)).

Eventually, by Theorem 2.3, this equals to E [FG] − E [F ]E [G], which yields
the asserted formula (2.15). The use of Fubini’s theorem is justified by identity
(2.4) and the Cauchy-Schwartz inequality.

To conclude this section, we can point out the consequences of the Fock space
representation theorem (Theorem 2.3) occurring in this work. First of all, the
Fock space representation theorem plays a crucial role while proving the covari-
ance identity (Theorem 2.7).

In section 4.2, we obtain bounds on the Wasserstein distance between the
standard normal distribution and the distribution of a Poisson functional by
combining the covariance identity with Stein’s method.

Furthermore, using the covariance identity, it is possible to prove Lemma
1.8, which is needed in Section 4.5 to derive bounds on the Wasserstein distance
between the standard normal distribution and the distribution of an innovation
of a Gibbs particle process.
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Chapter 3

Hard-core process in the real line

It is generally a very non-trivial or impossible task to evaluate terms Tnf,
f ∈ L2(N, Pη) in the Fock space representation theorem because of the expec-
tation. We will show that it is non-trivial even for case of n = 0. The Poisson
functionals will be defined as indicator functions of a Poisson point process being
included in the domain of the hard-core process on the real line. We will deter-
mine some characteristics such as the normalising constant in the density or the
correlation function of the first order.

We will restrict ourselves to the space R1. Recall first the general definition
of hard-core process κr on a bounded set B ⊂ Rd with density with respect to
the distribution of a Poisson point process η with intensity measure λ = Leb.

Definition 3.1 (Hard-core proces). For r > 0 denote

Sr
n =

{
(x1, . . . ,xn) ∈ B!n :∥ xi − xj ∥≥ r, for all i ̸= j

}
, n ≥ 1,

and
Sr =

∞⋃
n=0

In(Sr
n),

where Ik : B!k → Nk is defined by Ik(x1, . . . ,xk) = δx1 + . . . + δxk
and B!k is the

set of all ordered k-tuples of pairwise different points of the set B, i.e.

B!k = {(x1, . . . ,xk) : xi ∈ B, xi ̸= xj, for all i ̸= j}.

I0(Sr
0) can by understood as the one point set containing only null measure.

Then, we define the hard-core process κr as a point process with density p
with respect to distribution of a Poisson point process η with intensity measure
λ = Leb, where

p(x) = αr1{x ∈ Sr}, x ∈ N.

Remark. For the normalising constant αr from Definition 3.1, it holds

αr = 1
P(η ∈ Sr) .
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Notation. While working on the real line, we denote for n ≥ 1

Sr
n,u1,...,uk

[a, b] =

⎧⎨⎩(x1, . . . ,xn) ∈ [a, b]n : ∥xi − xj∥ ≥ r, ∀
i ̸=j

i,j∈{1,...,n}

; ∥xi − uj∥ ≥ r,

i = 1, . . . ,n, j = 1, . . . ,k

⎫⎬⎭, if (u1, . . . , uk) ∈ Sr
k[a, b]

= ∅, otherwise

and

Sr
n[a, b] =

⎧⎨⎩ (x1, . . . ,xn) ∈ [a, b]n :∥ xi − xj ∥≥ r, ∀
i ̸=j

i,j∈{1,...,n}

⎫⎬⎭.

Now, we will derive the analytical form of the normalising constant and the
correlation function ρ(r) for the hard-core process κr on an interval [a, b], a < b.
Note that since we are working on a closed interval, hard-core property allows the
process κr to have only finitely many points. The maximum number of points
depends on length of the interval [a, b], a < b and on the parameter r.

Theorem 3.1. Set r > 0 and denote by m := ⌊ b−a
r

⌋ + 1 the maximal possible
number of points of the point process κr in the interval [a, b]. Then the normalising
constant αr of the hard-core point process κr on [a, b], a < b, can be expressed as
following

αr = 1

e−(b−a)
(

1 +
m∑

n=1
1
n!(b − a − (n − 1)r)n

) .

Proof. Using Theorem 1.3 we can see for the Poisson point process η that

P (η ∈ Sr) = E [1{η ∈ Sr}]

= e−(b−a)

⎛⎝1 +
∞∑

n=1

1
n!

b∫
a

· · ·
b∫

a

1{(x1, . . . , xn) ∈ Sr
n[a, b]} dx1 . . . dxn

⎞⎠
= e−(b−a)

(
1 +

∞∑
n=1

1
n!Leb(Sr

n[a, b])
)

.

Further for n = 1, . . . , m we compute Leb(Sr
n[a, b]). If n > m, then Leb(Sr

n[a, b]) =
0. Denote

I(i1, . . . ,in) = Leb
(
{(x1, . . . ,xn) ∈ [a, b]n : xi1 < . . . < xin ; ∥ xik

−xil
∥≥ r, ∀k ̸= l}}

)
.

Then,

Leb(Sr
n[a, b]) =

∑
(i1,...,in)∈Pn

I(i1, . . . ,in), n ≥ 1,

where Pn denotes the set of all permutations on the set {1, . . . ,n}. It is not
difficult to see that I : Pn → R+ is symmetric in its variables, thus

Leb(Sr
n[a, b]) = n!I(1, . . . ,n), n ≥ 1.
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It is sufficient to compute I(1, . . . ,n).

I(1, . . . ,n) =

=
b−(n−1)r∫

a

b−(n−2)r∫
x1+r

b−(n−3)r∫
x2+r

· · ·
b−2r∫

xn−3+r

b−r∫
xn−2+r

b∫
xn−1+r

1 dxndxn−1 . . . dx1

=
b−(n−1)r∫

a

b−(n−2)r∫
x1+r

b−(n−3)r∫
x2+r

· · ·
b−2r∫

xn−3+r

b−r∫
xn−2+r

(b − r − xn−1) dxn−1 . . . dx1

=
b−(n−1)r∫

a

b−(n−2)r∫
x1+r

b−(n−3)r∫
x2+r

· · ·
b−2r∫

xn−3+r

b−2r−xn−2∫
0

y dydxn−2 . . . dx1

= 1
2

b−(n−1)r∫
a

b−(n−2)r∫
x1+r

b−(n−3)r∫
x2+r

· · ·
b−2r∫

xn−3+r

(b − 2r − xn−2)2 dxn−2 . . . dx1

= 1
2

b−(n−1)r∫
a

b−(n−2)r∫
x1+r

b−(n−3)r∫
x2+r

· · ·
b−3r−xn−3∫

0

y2 dydxn−3 . . . dx1

= 1
(n − 1)!

b−(n−1)r∫
a

(b − (n − 1)r − x1)n−1 dx1

= 1
(n − 1)!

b−a−(n−1)r∫
0

yn−1 dy

= (b − a − (n − 1)r)n

n! .

For each integral of the form

b−jr∫
xn−j−1+r

(b − jr − xn−j)j dxn−j, j = 0, . . . , n − 2,

we used the substitution z = b − jr − xn−j. Thus, for n = 1, . . . , m, we get

Leb(Sr
n[a, b]) = n! · (b − a − (n − 1)r)n

n! = (b − a − (n − 1)r)n.

Finally, by Theorem 1.3 we prove the assertion by the following argument

αr = 1
P(η ∈ Sr) = 1

e−(b−a)
(

1 +
∞∑

n=1
1
n!Leb(Sr

n[a, b])
)

= 1

e−(b−a)
(

1 +
m∑

n=1
1
n!(b − a − (n − 1)r)n

) .

Example 3.1 (Maximum likelihood estimation of the parameter r). Since we
determined the analytical form of the normalising constant αr, and hence the
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density of the hardcore process from the class κr, r > 0, we can quite easily
construct an estimate of the parameter r. For given realisation x ∈ N of the
point process κr on [a, b], we maximize the likelihood function

l(r, x) = αr1{x ∈ Sr} =
1
{

min
(x1,x2)∈x2

̸=

|x1 − x2| ≥ r

}

e−(b−a)

⎛⎝1 +
⌊ b−a

r
⌋+1∑

n=1
1
n!(b − a − (n − 1)r)n

⎞⎠ .

Function ∑⌊ b−a
r

⌋+1
n=0

1
n!(b−a−(n−1)r)n is decreasing for 0 < r ≤ min

(x1,x2)∈x2
̸=

|x1 −x2|,

and so the maximum of likelihood function l(r, x) lies in point

r̂ = min
(x1,x2)∈x2

̸=

|x1 − x2|,

which is the estimate of the parameter r using the maximum likelihood method.

Theorem 3.2. Let u ∈ [a, b] and r > 0. Denote by m1 = ⌊u−a
r

⌋, resp. m2 =
⌊ b−u

r
⌋ the maximal possible number of points of point process κr on [a,u−r], resp.

[u + r,b]. Then, for the correlation function ρ(r) of the hard-core process κr on
[a, b], a < b, it holds

ρ(r)(u) =

m1+m2∑
n=0

min(n,m1)∑
p=max(0,n−m2)

1
p!(n − p)!(u − a − pr)p(b − u − (n − p)r)n−p

1 +
m∑

n=1

1
n! (b − a − (n − 1)r)n

.

Proof. Before we go any further, it is useful to became aware of the following
relations,

ρ(r)(u) = E[p(η ∪ {u})]
= E[αr1{η ∪ {u} ∈ Sr}]

= P(η ∪ {u} ∈ Sr)
P(η ∈ Sr)

=
1 +∑∞

n=1
1
n!Leb(Sr

n,u[a, b])
1 +∑∞

n=1
1
n!Leb(Sr

n[a, b]) .

(3.1)

In the last equality, we used again formula (1.1) from Theorem 1.3.
We can easily evaluate the denominator of the last fraction according to The-

orem 3.1. We will now focus on the corresponding nominator, i.e. on the com-
putation of the measure of the set Sr

n,u[a, b]. For n = 1, . . . , m1 + m2, we will
compute the measure of Sr

n,u[a, b]. If n > m1 + m2, then Leb(Sr
n,u[a, b]) = 0.

The main idea of the proof is very similar to the one in the proof of Theorem
3.1. We will again decompose the set Sr

n,u[a, b] into n! disjoint parts, that are
determined by the ordering xi1 < . . . < xin , (i1, . . . ,in) ∈ Pn. Furthermore, we
denote the number of elements in n-tuple (x1, . . . ,xn) being smaller than u by

p := ♯{x ∈ {x1, . . . , xn}; x < u}
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For technical purposes, set x0 = a, xn+1 = b and denote

I(p, i1, . . . ,in) = Leb
({

(x1, . . . ,xn) ∈ [a, b]n :

xi1 < . . . < xip ≤ u−r < u+r ≤ xip+1 < . . . < xin ; ∥ xik
−xil

∥≥ r, ∀k ̸= l}
})

.

Again, we need to realized that the mapping I : N × Pn → R+ is symmetric for
given p ∈ N on the set Pn. It is not difficult to show that I(p, · , . . . , ·) is non-zero
only for p = max(0, n − m2), . . . , min(n, m1). Thus, for n ≥ 1

Leb(Sr
n,u[a, b]) = n!

min(n,m1)∑
p=max(0,n−m2)

I(p,1, . . . ,n).

Similar steps as in the proof of Theorem 3.1 are used here while computing
I(p,1, . . . ,n). Let p be fixed. Then,

I(p,1, ...,n) =

=
u−pr∫
a

u−(p−1)r∫
x1+r

· · ·
u−2r∫

xp−2+r

u−r∫
xp−1+r

b−((n−p)−1)r∫
u+r

· · ·
b−r∫

xn−2+r

b∫
xn−1+r

1 dxn . . . dx1

=
u−pr∫
a

u−(p−1)r∫
x1+r

· · ·
u−r∫

xp−1+r

b−((n−p)−1)r∫
u+r

· · ·
b−r∫

xn−2+r

(b − r − xn−1) dxn−1 . . . dx1

=
u−pr∫
a

u−(p−1)r∫
x1+r

· · ·
b−((n−p)−1)r∫

u+r

· · ·
b−2r∫

xn−3+r

(b − 2r − xn−1)2

2 dxn−2 . . . dx1

=
u−pr∫
a

u−(p−1)r∫
x1+r

· · ·
u−2r∫

xp−2+r

u−r∫
xp−1+r

(b − u − (n − p)r)(n−p)

(n − p)! dxp . . . dx1

= (b − u − (n − p)r)(n−p)

(n − p)!

u−pr∫
a

u−(p−1)r∫
x1+r

· · ·
u−2r∫

xp−2+r

u−r∫
xp−1+r

1 dxp . . . dx1

= (b − u − (n − p)r)(n−p)

(n − p)!

u−pr∫
a

u−(p−1)r∫
x1+r

· · ·
u−2r∫

xp−2+r

(u − 2r − xp−1) dxp−1 . . . dx1

= (b − u − (n − p)r)(n−p)

(n − p)!

u−pr∫
a

u−(p−1)r∫
x1+r

· · ·
u−3r∫

xp−3+r

(u − 3r − xp−2)2

2! dxp−2 . . . dx1

= (b − u − (n − p)r)(n−p)

(n − p)!

u−pr∫
a

(u − pr − x1)(p−1)

(p − 1)! dx1

= (b − u − (n − p)r)(n−p)

(n − p)!
(u − a − pr)p

p! .

We derived the Lebesgue measure of the set Sr
n,u[a, b] for n ≥ 1 as

Leb(Sr
n,u[a, b]) = n!

min(n,m1)∑
p=max(0,n−m2)

1
p!(n − p)!(u−a−pr)p(b−u−(n−p)r)n−p. (3.2)
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The right hand side of (3.2) is applicable in case of n = 0 as well. By plugging
the formula (3.2) into the last equality in (3.1), we prove the assertion.

Remark. It is also possible to express the correlation function ρ(r) as

ρ(r)(u) =

m1+m2∑
n=0

min(n,m1)∑
p=max(0,n−m2)

1
p!(n − p)!Leb(Sr

p [a, u − r])Leb(Sr
n−p[u + r, b])

1 +
m∑

n=1

1
n!Leb(Sr

n[a, b])
.

The following picture demonstrates the behaviour of the correlation function
ρ(r) in case of [a, b] = [0, 2] depending on the point u ∈ [0, 2] for different choices
of the parameter r ∈ (0, 2].
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HrLHuL

r = 1
100
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Figure 3.1

Figure 3.1 : Plot showing the dependence of the correlation function ρ(r) of the
point process κr on the point u ∈ [0, 2] for different choices of parameter r ∈ (0, 2].
We can observe that for parameter r being close to zero, the hard-core process
behaves similarly to the Poisson point process with constant intensity equal to
1. On the other hand with increasing parameter r realisations with points being
close to each other are eliminated and consequently, the intensity decreases.

When trying to evaluate the correlation function of the hard-core model in
R2 or higher dimensions, we are not able to get explicit formulas. It is generally
known that moment formulas are not available for a large class of point processes
with known conditional intensity. Therefore, it is useful to derive stochastic
approximations of these quantities, cf. Stucki and Schuhmacher, 2014 or Lemma
1.8 in this thesis.
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Chapter 4

Stein’s method

Stein’s method is a general method used to obtain bounds on distance between
two probability distributions. Typical aim in case of stochastic geometry is to
approximate behaviour of certain functionals of point processes with standard
normal distribution or with Poisson distribution. In this work, we will focus on
the normal approximation and deriving bounds for Wasserstein distance, even
though other choices of probability distances are applicable. For example bound
on total variation distance using Stein’s method is discussed in Schuhmacher and
Stucki, 2014.

In Last and Penrose, 2017, Chapter 21, Stein’s method is combined with the
covariance identity presented in Section 2.3. This combination yields an upper
bound on the Wasserstein distance between the standard normal distribution and
distribution of a Poisson functional.

In Torrisi, 2017, bounds on the Wasserstein distance betwen the standard
normal distribution and distribution of an innovation are proved using Malliavin-
Stein calculus for point processes having Papangelou conditional intensity. Con-
sequently, these bounds are derived for Gibbs point processes in Rd, d ∈ N.

The main contribution of this chapter is combining a consequence of the co-
variance identity and the general bound for innovations from Torrisi, 2017 to
generalize bounds for Gibbs particle processes.

Each method will be discussed and examples demonstrating its usage will be
incorporated.

4.1 Principle of Stein’s method
Results in Sections 4.1 and 4.2 can be seen in Last and Penrose, 2017, Chapter

21.

Notation. Let Lip(1) denote the space of all Lipschitz functions h : R → R with
a Lipschitz constant less then or equal to one.

Moreover, denote by AC1,2 the set of all differentiable functions g : R → R
such that g′ is absolutely continuous and

sup{|g′(x)| : x ∈ R} ≤
√

2/π, sup{|g′′(x)| : x ∈ R} ≤ 2

for almost all x ∈ R, where g′′ is a Radon-Nikodým derivative of g′.
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Proposition 4.1 (Stein’s equation). Given fixed function h ∈ Lip(1), there exists
a function g ∈ AC1,2 solving so called Stein’s equation

h(x) − E [h(Z)] = g′(x) − xg(x), (4.1)

where Z denotes a standard normal distributed random variable.

Definition 4.1. (Wasserstein distance) Let X, Y be two real random variables.
The Wasserstein distance between X and Y is defined by

dW (X, Y ) = sup
h∈Lip(1)

|E [h(X)] − E [h(Y )]|.

Remark. It can be shown, that if a sequence of random variables Xn, n ∈ N
converges to a random variable X with respect to dW , then Xn converges to X
in distribution.

Theorem 4.2. (Stein’s method) Let F : N → R be a measurable function such
that E [|F |] < ∞. Then

dW (F, Z) ≤ sup
g∈AC1,2

|E [g′(F ) − Fg(F )]|.

Proof. Theorem 4.2 is a simple consequence of Proposition 4.1. For every function
h ∈ Lip(1), we can find a function g ∈ AC1,2 solving the Stein’s equation (4.1).
From that it follows

|E [h(F )] − E [h(Z)]| = |E [g′(F ) − Fg(F )]|.

Plugging this expression into the deffinition of the Wasserstein distance and taking
the supremum yields the assertion.

4.2 Bounds for Poisson functionals
In Chapter 2, we have proved the covariance identity for two Poisson function-

als using the Fock space representation theorem (Theorem 2.3). By combining
the covariance identity with Stein’s method, we can obtain an upper bound on the
Wasserstein distance between the standard normal distribution and distribution
of a Poisson functional.

Suppose that η is a Poisson point process with intensity measure λ and dis-
tribution Pη.

Theorem 4.3. Let F ∈ L2
η satisfies DF ∈ L2(Ω ×X,P⊗λ) and E [F ] = 0. Then

dW (F,Z) ≤E

⎡⎣⏐⏐⏐⏐⏐⏐1 −
∫
X

1∫
0

(PtDxF )(DxF )dtλ(dx)

⏐⏐⏐⏐⏐⏐
⎤⎦

+ E

⎡⎣∫
X

1∫
0

|PtDxF |(DxF )2dtλ(dx)
⎤⎦ .
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Since the bound in Theorem 4.3 involves the operator Pt, it is often difficult
to apply. However, by using again the covariance identity (Theorem 2.7) and the
contractivity property (Lemma 2.5), it is possible to determine bound depend-
ing only on the first and the second order difference operators, which could be
evaluated for some simple choices of the Poisson functionals (see Example 4.1).

Theorem 4.4 (Second order Poincaré inequality). Suppose that F ∈ L2
η satisfies

DF ∈ L2(Ω × X,P⊗λ), E [F ] = 0 and V ar[F ] = 1. Denote

αF,1 := 2
⎡⎣∫
X3

(E [(Dx1F )2(Dx2F )2])1/2(E [∆x1,x2,x3(F )])1/2λ3(d(x1, x2, x3))
⎤⎦1/2

,

αF,2 :=
⎡⎣∫
X3

E [∆x1,x2,x3(F )]λ3(d(x1, x2, x3))
⎤⎦1/2

,

αF,3 :=
∫
X

E [|DxF |3]λ(dx),

where ∆x1,x2,x3(F ) = (D2
x1,x3F )2(D2

x2,x3F )2. Then the upper bound on the Wasser-
stein distance can be expressed in terms of the constants αF,1, αF,2, αF,3 as

dW (F,Z) ≤ αF,1 + αF,2 + αF,3.

Example 4.1 (CLT for non-homogeneous Poisson processes). Let η be a Poisson
point process on R+, whose intensity measure λ satisfies 0 < λ([0,t]) < ∞ for all
sufficiently large t and λ[0,∞) = ∞.

We will define Poisson functionals Ft, t > 0 as the normalized difference
between the actual number of points of point process η in the interval [0, t] and
the expected number of points in this interval, i.e.

Ft(η) = η([0,t]) − λ([0,t])√
λ([0,t])

.

We want to use Theorem 4.4 to induce the central limit theorem. First, we
have to verify its assumptions. We can observe that all moments of Ft exists,
since Poisson distribution has all moments finite. Furthermore, since

E [η([0, t])] = V ar[η([0, t])] = λ([0, t]),

the assumptions on the variance and the expectation are evidently satisfied.
Take an arbitrary point x ∈ R+. Then for the difference operator of the

functional Ft, it holds from the definition that

DxFt(η) = (η + δx)([0, t]) − η([0, t])√
λ([0,t])

= 1[x ∈ [0, t]]√
λ([0,t])

.

The difference operator of Ft is no longer random, which implies that the assump-
tion of square integrability of DF holds and moreover, the difference operators
of the higher orders are zero.

It remains to plug the difference operator of Ft into the formulae for the
constants αF,1, αF,2, αF,3 in Theorem 4.4, i.e.
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αF,1 = 0,

αF,2 = 0,

αF,3 =
∫

E[|DxF |3]λ(dx) = 1
(λ([0,t])) 3

2

∫
1[x ∈ [0, t]]λ(dx) = 1√

λ([0,t])
.

Thus,
dW (F (t),Z) ≤ 1√

λ([0,t])
. (4.2)

The right hand side of (4.2) tends to infinity as t goes to infinity, hence we have
derived the central limit theorem.

4.3 Bounds for innovations of point processes
with Papangelou conditional intensity

We are interested in bounds on the Wasserstein distance between the standard
normal distribution and distribution of so called innovation introduced in the first
chapter by Definition 1.14.

Suppose that these innovation are induced by a point process µ having Papan-
gelou conditional intensity λ∗ and intensity measure λ. Using theory of Malliavin-
Stein calculus, the following very general bound is proved in Torrisi, 2017.

Theorem 4.5 (Torrisi, 2017, page 6). Let ϕ : X × N → R be a measurable
function satisfying

E

⎡⎣∫
X

|ϕ(x,µ)|λ∗(x,µ)λ(dx)
⎤⎦ < ∞ and E

⎡⎣∫
X

|ϕ(x,µ)|2λ∗(x,µ)λ(dx)
⎤⎦ < ∞.

Then,

dW (Iµ(ϕ),Z) ≤
√

2
π
E

⎡⎣⏐⏐⏐⏐⏐⏐1 −
∫
X

ϕxDxIµ(ϕ)λ∗(x,µ)λ(dx)

⏐⏐⏐⏐⏐⏐
⎤⎦

+E

⎡⎣∫
X

|ϕ(x,µ)||DxIµ(ϕ)|2λ∗(x,µ)λ(dx)
⎤⎦ .

Remark. Big advantage of Theorem 4.5 is that it allows the innovation ϕ to de-
pend also on a given realisation of point process. That gives us opportunity to
study important functionals as the volume of intersections between particles in
this realisation, etc.. Unfortunately, in most cases this bound is not applicable,
since it is impossible to evaluate for most point processes. There is one modifica-
tion in Torrisi, 2017 enabling us to express the bound above in terms of difference
operators of ϕ instead of Iµ(ϕ). This modification also solves this general case
but with the same difficulty to be applied.

The following result simplifies considerably the bound in Theorem 4.5, but
with the price that the function ϕ no longer depends on a given realisation,
hence it is only function on X.
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Notation. For brevity, define functions α2 : X2 → R, α3 : X3 → R by

α2(x,y,µ) := E[λ∗(x,µ)λ∗(y,µ)],
α3(x,y,z,µ) := E[λ∗(x,µ)λ∗(y,µ)λ∗(z,µ)],

for x, y, z ∈ X and the point process µ on X.
Theorem 4.6 (Torrisi, 2017, page 10). Let ϕ : X → R be a measurable function
such that∫

X

|ϕ(x)|E [λ∗(x,µ)] λ(dx) < ∞ and
∫
X

|ϕ(x)|2 E [λ∗(x,µ)] λ(dx) < ∞. (4.3)

Then,

dW (Iµ(ϕ), Z) ≤√
2
π

√1 − 2
∫
X

|ϕ(x)|2 E [λ∗(x,µ)]λ(dx) +
∫
X2

|ϕ(x)ϕ(y)|2α2(x,y,µ)λ(dx)λ(dy)

+
∫
X

|ϕ(x)|3 E [λ∗(x,µ)]λ(dx)

+
√

2
π

∫
X2

|ϕ(x)ϕ(y)|E [|Dxλ∗(y,µ)|λ∗(x,µ)]λ(dx)λ(dy)

+ 2
∫
X2

|ϕ(x)|2ϕ(y)|E [|Dxλ∗(y,µ)|λ∗(x,µ)]λ(dx)λ(dy)

+
∫
X3

|ϕ(x)ϕ(y)ϕ(z)|E [|Dxλ∗(y,µ)Dxλ∗(z,µ)|λ∗(x,µ)]λ(dx)λ(dy)λ(dz).

Moreover, if we add the assumption of repulsivity (see Definition 1.15), we
can express bound of Theorem 4.6 using the correlation function up to the third
order.
Corollary 1 (Torrisi, 2017, page 12). Let ϕ : X → R be a measurable function
such that

∫
X

|ϕ(x)|E [λ∗(x,µ)] λ(dx) < ∞ and
∫
X

|ϕ(x)|2 E [λ∗(x,µ)] λ(dx) < ∞.

Then

dW (Iµ(ϕ), Z) ≤√
2
π

√1 − 2
∫
X

|ϕ(x)|2ρ1(x)λ(dx) +
∫
X2

|ϕ(x)ϕ(y)|2α2(x,y,µ)λ(dx)λ(dy)

+
∫
X

|ϕ(x)|3ρ1(x)λ(dx) +
√

2
π

∫
X2

|ϕ(x)ϕ(y)|(α2(x,y,µ) − ρ2(x,y))λ(dx)λ(dy)

+ 2
∫
X2

|ϕ(x)|2ϕ(y)|(α2(x,y,µ) − ρ2(x,y))λ(dx)λ(dy)

+
∫
X3

|ϕ(x)ϕ(y)ϕ(z)|(α3(x,y,z,µ) − ρ3(x,y,z))λ(dx)λ(dy)λ(dz).
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Remark. For some cases, the bound in Corollary 1 can be actually used to induce
a central limit theorem if we know the analytical form of the correlation functions
up to the third order. We saw in Chapter 3 that the first order correlation function
can be computed analytically for the hard-core on the real line.

4.4 Bounds for innovations of Gibbs point pro-
cesses on Rd

In Torrisi, 2017, bounds on the Wasserstein distance between the distribution
of an innovation of a Gibbs point process with pair potential and the standard
normal distribution are derived. We will recall this result and show its applica-
tion on the hard-core process, which can be defined also using its Papangelou
conditional intensity. Generalisation of this result for Gibbs particle processes
will follow in Section 4.5.

For purposes of this section, assume the space Rd, d ∈ N, equipped with the
Lebesgue measure Leb of the corresponding dimension.

Another simplification when deriving bounds on the Wasserstein distance
arises if we know the exact form of the conditional intensity. This is the case
of the Gibbs point processes with pair potential given by Definition 1.20.

Theorem 4.7 (Torrisi, 2017, page 20). Let µ be a stationary Gibbs point process
with activity τ > 0 and pair potential φ : Rd → [0, +∞], and suppose

ϕ ∈ L1(Rd, Leb) ∩ L2(Rd, Leb).

If, moreover, µ has finite range, then for any p, q, p′, q′ > 1 such that 1
p

+ 1
q

=
1
p′ + 1

q′ = 1,

dW (Iµ(ϕ), Z) ≤
√

2
π

√
1 − 2c1||ϕ||2L2(Rd,Leb) + τc2||ϕ||4L2(Rd,Leb) + c2A,

where

A :=||ϕ||3L3(Rd,Leb) +
√

2
π

τ ||ϕ||2L2(Rd,Leb)||1 − e−φ||L1(Rd,Leb)

+ 2τ ||ϕ||2Lq(Rd,Leb)||1 − e−φ||L1(Rd,Leb)

+ τ 2||ϕ||Lpp′ (Rd,Leb)||ϕ||Lpq′ (Rd,Leb)||ϕ||Lq(Rd,Leb)||1 − e−φ||2L1(Rd,Leb)

and

c1 := τ

1 + τ ||1 − e−φ||L1(Rd,Leb)
, c2 := τ

2 − exp{−τ ||1 − e−φ||L1(Rd,Leb)}
.

Example 4.2 (Central limit theorem for an innovation of a hard-core process in
Rd). Application of Theorem 4.7 can be illustrated on the hard-core process intro-
duced in Example 1.3. We can induce a central limit theorem for the normalized
number of points of the hard-core process.
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Theorem 4.8. Consider for each n ∈ N a stationary hard-core point process µ(n)

in Rd with activity τn > 0 such that τn → τ as n → ∞, and with pair potential

φn(y) =

⎧⎨⎩0, if ||x|| > rn,

+∞, if ||x|| ≤ rn,
(4.4)

where rn ≥ 0, an → 0 as n → ∞. Let Kn, n ∈ N, be bounded borel sets in Rd

such that Leb(Kn) → ∞ as n → ∞. Define functions

ϕn(x) = 1√
τnLeb(Kn)

· 1Kn(x), n ∈ N, x ∈ Rd.

Then,
dW (Iµ(n)(ϕn), Z) → 0

as n → ∞.

Proof. According to Lemma 1.6, the hard-core point processes µ(n) have finite
ranges. Also, for every n ∈ N

∫
Rd

|ϕn(x)|dx =
∫
Rd

⏐⏐⏐⏐⏐⏐ 1√
τnLeb(Kn)

· 1Kn(x)

⏐⏐⏐⏐⏐⏐ dx =
√

Leb(Kn)
τn

< ∞

and ∫
Rd

|ϕn(x)|2dx =
∫
Rd

⏐⏐⏐⏐⏐⏐ 1√
τnLeb(Kn)

· 1Kn(x)

⏐⏐⏐⏐⏐⏐
2

dx = 1
τn

< ∞.

Hence, the assumptions of Theorem 4.7 are satisfied and so we can compute
bounds on the Wasserstein distance between the standard normal distribution Z
and the innovation Iµ(n)(ϕn) for each n ∈ N.

First, we need to compute the L1 norm of the function 1 − e−φn .

||1 − e−φn||L1(R,Leb) =
∫
Rd

|1 − e−φn(x)|dx =
∫

b(0,rn)

1dx = πr2
n.

Set p = q = p′ = q′ = 2 and compute for given n ∈ N the constants A(n), c
(n)
1

and c
(n)
2 from Theorem 4.7.

c
(n)
1 = τn

1 + τn||1 − e−φn||L1(Rd,Leb)
= τn

1 + τnπr2
n

,

c
(n)
2 = τn

2 − exp{−τn||1 − e−φn||L1(Rd,Leb)}
= τn

2 − exp {−τnπr2
n}

and

A(n) = ||ϕn||3L3(Rd,Leb) +
√

2
π

τn||ϕn||2L2(Rd,Leb)||1 − e−φn||L1(Rd,Leb)

+ 2τn||ϕn||2L2(Rd,Leb)||1 − e−φn||L1(Rd,Leb)

+ τ 2
n||ϕn||2L4(Rd,Leb)||ϕn||L2(Rd,Leb)||1 − e−φn||2L1(Rd,Leb)

= 1
τ

3/2
n

√
Leb(Kn)

+
√

2
π

πr2
n + 2πr2

n +
√

τn√
Leb(Kn)

(πr2
n)2.
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We can see that

c
(n)
1 → τ, c

(n)
2 → τ, A(n) → 0

as n → ∞. All together, using bound from Theorem 4.7, we obtain

dW (Iµ(n)(ϕn), Z) ≤
√

2
π

√
1 − 2c

(n)
1 ||ϕn||2L2(Rd,Leb) + τnc

(n)
2 ||ϕn||4L2(Rd,Leb) + c

(n)
2 A(n)

=
√

2
π

√
1 − 2c

(n)
1

1
τn

+ c
(n)
2

1
τn

+ c
(n)
2 A(n),

which tends to 0 as n approaches +∞.

4.5 Bounds for innovations of Gibbs particle pro-
cesses

Let X = C(d), d ∈ N, be the space of all compact subsets of Rd with the
Hausdorff metric and with a σ-finite reference measure σ. We know that the
space C(d) is a Polish, locally compact space, and hence we can use theorems
from Section 4.3.

Consider a stationary Gibbs particle process with activity τ > 0 and particle
distribution Q. Recall, that the conditional intensity of µ takes form

λ∗(K, µ) = τ exp
{

−
∫

g(K ∩ L)µ(dL)
}

, K ∈ C(d), (4.5)

where g is the pair potential. Since g ≥ 0 we have that λ∗ is repulsive.
By computing the difference operator of λ∗ and plugging the result into

the bound presented in Theorem 4.6, we can obtain the following result.

Theorem 4.9. Let µ be a stationary Gibbs particle process with activity τ > 0
and particle distribution Q as in Definition 1.20. In addition, we suppose that
ϕ : C(d) → R satisfies conditions of Theorem 4.6. Then

dW (Iµ(ϕ), Z) ≤
√

2
π

·

·
√1 − 2

∫
C(d)

|ϕ(K)|2E[λ∗(K,µ)]λ(dK) +
∫

(C(d))2

|ϕ(K)ϕ(L)|2α2(K,L,µ)λ(dK)λ(dL)

+
∫

(C(d))2

|ϕ(K)|3E[λ∗(K,µ)]λ(dK)

+
√

2
π

∫
(C(d))2

|ϕ(K)ϕ(L)||1 − e−g(K∩L)|α2(K,L,µ)λ(dK)λ(dL)

+ 2
∫

(C(d))2

|ϕ(K)|2|ϕ(L)||1 − e−g(K∩L)|α2(K,L,µ)λ(dK)λ(dL)

+
∫

(C(d))3

|ϕ(K)ϕ(L)ϕ(M)||1 − e−g(L∩K)||1 − e−g(L∩M)|·

· α3(K,L,M,µ)λ(dK)λ(dL)λ(dM).
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Proof. Idea of the proof is similar to the proof of Theorem 5.1 in Torrisi, 2017
for Gibbs point processes with pair potential on Rd.

Take K ∈ C(d). We will use formula (4.5) to compute the difference operator
at point K of λ∗(L, x), L ∈ C(d).

DKλ∗(L, x)

= τ exp

⎧⎪⎨⎪⎩−
∫

C(d)

g(L ∩ M)(x + δK)(dM)

⎫⎪⎬⎪⎭− τ exp

⎧⎪⎨⎪⎩−
∫

C(d)

g(L ∩ M)x(dM)

⎫⎪⎬⎪⎭
= τ exp

⎧⎪⎨⎪⎩−
∫

C(d)

g(L ∩ M)x(dM)

⎫⎪⎬⎪⎭
(
e−g(L∩K) − 1

)
= λ∗(L, x)

(
e−g(L∩K) − 1

)
.

By plugging this result into the bound of Theorem 4.6, we obtain the assertion
immediately.

Corollary 2. Let µ be a stationary Gibbs particle satisfying conditions of Lemma
1.8. Then,

τe−τb ≤ Eλ∗(K,µ) ≤ τ (4.6)

for λ-a.a. K ∈ C(d).

Proof. For the lower bound, we set p = 1 in Lemma 1.8 and recall the definition
of the first order correlation function

ρ(K) = Eλ∗(K,µ), K ∈ C(d).

Further, we use that e−τb ≤ e−τV1(K) for λ-a.a. K ∈ C(d). The upper bound is
a direct consequence of the definition of λ∗ (formula 4.5).

Corollary 2 gives us uniform bounds on Eλ∗(K,µ). We will use them to prove
the main result of this chapter.

Theorem 4.10. Let µ be a stationary Gibbs particle process with activity τ > 0
and particle distribution Q. Suppose, there exists b ∈ [0, ∞) such that V1(K) ≤ b
for λ-a.a. K ∈ C(d). Moreover, assume that ϕ : C(d) → R satisfies

ϕ ∈ L1(C(d), λ) ∩ L2(C(d),λ).

Then for any p, q > 1 such that 1
p

+ 1
q

= 1,

dW (Iµ(ϕ), Z) ≤
√

2
π

√
1 − 2τe−τb||ϕ||2

L2(C(d),λ) + τ 2||ϕ||4
L2(C(d),λ) + τA,

where

A :=||ϕ||3L3(C(d),λ) +
√

2
π

τ ||ϕ||2Lp(C(d),λ)Dq + 2τ ||ϕ||2L2p(C(d),λ)||ϕ||Lp(C(d),λ)Dq

+ τ 2||ϕ||3Lp(C(d),λ)D
′
q

36



and

Dq :=

⎛⎜⎝ ∫
(C(d))2

|1 − e−g(K∩L)|qλ(dK)λ(dL)

⎞⎟⎠
1/q

,

D′
q :=

⎛⎜⎝ ∫
(C(d))3

|1 − e−g(K∩L)|q|1 − e−g(K∩M)|qλ(dK)λ(dL)λ(dM)

⎞⎟⎠
1/q

.

Proof. We would like to estimate terms of the bound in Theorem 4.9 individually.
First of all, we need to verify the assumptions. We use the trivial estimate
following straightforwardly from the definition of the conditional intensity λ∗ of
µ, i.e.

λ∗(K, x) = τ exp

⎧⎪⎨⎪⎩−
∫

C(d)

g(K ∩ L)x(dL)

⎫⎪⎬⎪⎭ ≤ τ, (4.7)

for any K ∈ C(d) and x ∈ Nd.
Therefore, from the integrability assumptions∫

C(d)

|ϕ(K)|E[λ∗(K,µ)]λ(dK) < τ ||ϕ||L1(C(d),λ) < ∞

and ∫
C(d)

|ϕ(K)|2E [λ∗(K,µ)] λ(dK) < τ ||ϕ||L2(C(d),λ) < ∞

and hence, the assumptions are verified.
Using the notation of Theorem 4.9, we can obtain the following bounds on α2

and α3 based on the corollary of Lemma 1.8.

α2(K, L, µ) ≤ τ 2,

α3(K, L, M, µ) ≤ τ 3,
(4.8)

whenever K, L, M ∈ C(d).
Finally, we can estimate the terms in Theorem 4.9 individually. Take p, q > 1

such that 1
p

+ 1
q

= 1 and suppose, that

ϕ ∈ L3(C(d), λ) ∩ Lp(C(d),λ) ∩ L2p(C(d),λ).

Otherwise, there is nothing to prove.
In the first term, we will use estimates (4.6) and (4.8) to obtain the bound√

2
π

√1 − 2
∫

C(d)

|ϕ(K)|2E[λ∗(K,µ)]λ(dK) +
∫

(C(d))2

|ϕ(K)ϕ(L)|2α2(K,L,µ)λ2(dK)λ(dL)

≤
√

2
π

√1 − 2τe−τb

∫
C(d)

|ϕ(K)|2λ(dK) + τ 2
∫

(C(d))2

|ϕ(K)ϕ(L)|2λ(dK)λ(dL)

≤
√

2
π

√
1 − 2τe−τb||ϕ||2

L2(C(d),λ) + τ 2||ϕ||4
L2(C(d),λ).
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The second term can be estimated analogically.∫
C(d)

|ϕ(K)|3E[λ∗(K,µ)]λ(dK) ≤ τ
∫

C(d)

|ϕ(K)|3λ(dK) ≤ τ ||ϕ||3L3(C(d),λ).

In the following two terms, we will use additionally Hölder’s inequality on the prod-
uct space ((C(d))2, λ⊗2) for functions

f1(K, L) := |ϕ(K)ϕ(L)| and f ′
1(K, L) := |1 − e−g(K∩L)|, (K,L) ∈ (C(d))2

in the first case and

f2(K, L) := |ϕ(K)|2|ϕ(L)| and f ′
2(K, L) := |1 − e−g(K∩L)|, (K,L) ∈ (C(d))2

in the second one. Term α2(x, y) will be estimated similarly as in the previous
case. Thus,√

2
π

∫
(C(d))2

|ϕ(K)ϕ(L)||1 − e−g(K∩L)|α2(K,L,µ)λ(dK)λ(dL)

≤ τ 2

√
2
π

⎛⎜⎝ ∫
(C(d))2

|ϕ(K)ϕ(L)|pλ(dK)λ(dL)

⎞⎟⎠
1/p⎛⎜⎝ ∫

(C(d))2

|1 − e−g(K∩L)|qλ(dK)λ(dL)

⎞⎟⎠
1/q

= τ 2Dq

√
2
π

⎛⎜⎝ ∫
C(d)

|ϕ(K)|pλ(dK)

⎞⎟⎠
1/p⎛⎜⎝ ∫

C(d)

|ϕ(L)|pλ(dL)

⎞⎟⎠
1/p

= τ 2Dq

√
2
π

||ϕ||2Lp(C(d),λ)

and

2
∫

(C(d))2

|ϕ(K)|2|ϕ(L)||1 − e−g(K∩L)|α2(K,L,µ)λ(dK)λ(dL)

≤ 2τ 2

⎛⎜⎝ ∫
(C(d))2

|ϕ(K)|2p|ϕ(L)|pλ(dK)λ(dL)

⎞⎟⎠
1/p⎛⎜⎝ ∫

(C(d))2

|1 − e−g(K∩L)|qλ(dK)λ(dL)

⎞⎟⎠
1/q

≤ 2τ 2Dq

⎛⎜⎝ ∫
C(d)

|ϕ(K)|2pλ(dK)

⎞⎟⎠
1/p⎛⎜⎝ ∫

C(d)

|ϕ(L)|pλ(dL)

⎞⎟⎠
1/p

≤ 2τ 2Dq||ϕ||2L2p(C(d),λ)||ϕ||Lp(C(d),λ).

In the last term, we will use Hölder’s inequality on the product space ((C(d))3, λ⊗3)
for functions

f(K, L, M) := |ϕ(K)ϕ(L)ϕ(M)| and f ′(K, L, M) := |1−e−g(K∩L)||1−e−g(K∩M)|,

where (K, L, M) ∈ (C(d))3.
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∫
(C(d))3

|ϕ(K)ϕ(L)ϕ(M)||1 − e−g(K∩L)||1 − e−g(K∩M)|α3(K,L,M,µ)λ(dK)λ(dL)λ(dM)

≤ τ 3

⎛⎜⎝ ∫
(C(d))3

|ϕ(K)ϕ(L)ϕ(M)|pλ(dK)λ(dL)λ(dM)

⎞⎟⎠
1/p

·

⎛⎜⎝ ∫
(C(d))3

|1 − e−g(K∩L)|q|1 − e−g(K∩M)|qλ(dK)λ(dL)λ(dM)

⎞⎟⎠
1/q

= τ 3D′
q

⎛⎜⎝ ∫
C(d)

|ϕ(K)|pλ(dK)

⎞⎟⎠
1/p⎛⎜⎝ ∫

C(d)

|ϕ(L)|pλ(dL)

⎞⎟⎠
1/p⎛⎜⎝ ∫

C(d)

|ϕ(M)|pλ(dM)

⎞⎟⎠
1/p

= τ 3D′
q||ϕ||3Lp(C(d),λ).

Adding these estimates together yields the theorem.

4.5.1 Central limit theorem for an innovation of a Gibbs
planar segment process

As an example of possible application of Theorem 4.10, we will derive a central
limit theorem for an innovation of a Gibbs planar segment process defined in
Example 1.3. First, it is useful to realize the following property of planar segment
processes.

Lemma 4.11. Let ξ be a stationary Gibbs planar segment process with activity
τ > 0, particle distribution Q concentrated on S and pair potential g defined by
formula (1.6). Then

V1(K) ≤ (1 − e−a)4πr2

for λ-a.a. K ∈ S.

Proof. From the definition of V1 and using Theorem 1.7, we obtain

V1(K) =
∫

C(2)

(
1 − e−g(K∩L)

)
λ(dL) = (1 − e−a)

∫
C(2)

1{K ∩ L ̸= ∅}λ(dL)

= (1 − e−a)
∫
S0

∫
R2

1{K + (L + x) ̸= ∅}dxQ(dL)

= (1 − e−a)
∫
S0

Leb(K + Ľ)Q(dL),

where K + Ľ is the Minkowski sum of K and Ľ and S0 is the system of
segments centred in the origin.

We assumed (1.4), i.e.

Q({K ∈ S : B(K) ⊂ b(0,r)}) = 1.

Thus, we can estimate Leb(K + Ľ) by Leb(b(0, 2r)) = π4r2 and hence the asser-
tion.
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We present a central limit theorem for a functional of a Gibbs planar segment
process, where the functional is the normalized number of segments in a win-
dow. We take windows from a van Hove sequence (Ruelle, 1970), i.e. monotone
increasing sequence of bounded Borel sets converging to R2.

Theorem 4.12. Consider for each n ∈ N a stationary Gibbs planar segment
process ξ(n) with activity τn > 0 and uniform directional distribution Q. Assume
that τn → τ, τ > 0, as n → ∞. Define the pair potential of ξ(n) by

gn(K) = an1{K ̸= ∅}, K ∈ C(2),

where an ≥ 0, an → 0, as n → ∞. Let Wn, n ∈ N be a van Hove sequence of
convex sets in R2. For each n ∈ N define functions

ϕn(K) = 1√
τnLeb(Wn)

· 1{K ∩ Wn ̸= ∅}, K ∈ S.

Then
dW (Iξ(n)(ϕn), Z) → 0

as n → ∞.

Proof. We want to use Theorem 4.10 for S ⊂ C(2). The reference measure is
λ = θ/γ.

First, we have to verify the assumptions of Theorem 4.10. By Lemma 4.11,
we can set bn = (1 − e−an)π4r2. Evidently, bn → 0 as n → ∞.

Further, for every n ∈ N,∫
C(2)

|ϕn(x)|λ(dK) =
∫

C(2)

1{K ∩ Wn ̸= ∅}√
τnLeb(Wn)

λ(dK)

= 1√
τnLeb(Wn)

∫
S0

∫
R2

1{(K + x) ∩ Wn ̸= ∅}dxQ(dK)

= 1√
τnLeb(Wn)

∫
S0

Leb(Ǩ + Wn)Q(dK) < ∞,

since Wn is bounded and K is the segment of the length r. Integration is over
directions only. Similarly,∫

C(2)

|ϕn(x)|2λ(dK) =
∫

C(2)

1{K ∩ Wn ̸= ∅}
τnLeb(Wn) λ(dK)

= 1
τnLeb(Wn)

∫
S0

∫
R2

1{(K + x) ∩ Wn ̸= ∅}dxQ(dK)

= 1
τnLeb(Wn)

∫
S0

Leb(Ǩ + Wn)Q(dK) < ∞.

Hence, the assumptions of Theorem 4.10 are satisfied and so we can compute
the explicit bounds on the Wasserstein distance between the standard normal
distribution Z and the distribution of the innovation Iξ(n)(ϕn) for each n ∈ N.
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Take p = q = 2 and focus on the constants D
(n)
2 , D

′(n)
2 , n ∈ N, defined in The-

orem 4.10. For D
(n)
2 , we have

D
(n)
2 =

⎛⎜⎝ ∫
(C(2))2

|1 − e−gn(K∩L)|2λ(dK)λ(dL)

⎞⎟⎠
1/2

=
⎛⎝∫

S2

|1 − e−an|21{K ∩ L ̸= ∅}λ(dK)λ(dL)
⎞⎠1/2

.

Functions fn(x,y) := |1 − e−an|21{K ∩ L ̸= ∅}, K, L ∈ S converge uniformly
to 0 as n → ∞ and therefore,

lim
n→∞

D
(n)
2 = lim

n→∞

⎛⎝∫
S2

fn(K,L)λ(dK)λ(dL)
⎞⎠1/2

=
⎛⎝∫

S2

lim
n→∞

fn(K,L)λ(dK)λ(dL)
⎞⎠1/2

= 0.

Further, we use Lemma 4.11 to estimate the constant D
′(n)
2 for fixed n ∈ N. We

have that

D
′(n)
2 =

⎛⎜⎝ ∫
(C(2))3

|1 − e−g(K∩L)|2|1 − e−g(K∩M)|2λ(dK)λ(dL)λ(dM)

⎞⎟⎠
1/2

=

⎛⎜⎝ ∫
(C(2))2

|1 − e−g(K∩L)|2
⎛⎜⎝ ∫

C(2)

|1 − e−g(K∩M)|λ(dM)

⎞⎟⎠λ(dK)λ(dL)

⎞⎟⎠
1/2

≤ (1 − e−an)24πr2D
(n)
2 .

Hence, also D
′(n)
2 converges to 0 as n → ∞.

Take some fixed n ∈ N and α > 1. Using Theorem 1.7 and Steiner theorem
(Schneider and Weil, 2008), we obtain

||ϕn||Lα(C(d),Leb) =

⎛⎜⎝ ∫
C(2)

⏐⏐⏐⏐⏐⏐1{K ∩ Wn ̸= ∅}√
τnLeb(Wn)

⏐⏐⏐⏐⏐⏐
α

λ(dK)

⎞⎟⎠
1
α

= 1√
τnLeb(Wn)

⎛⎜⎝∫
S0

Leb(Ǩ + Wn)Q(dK)

⎞⎟⎠
1
α

= 1√
τnLeb(Wn)

(
Leb(Wn) + r

π
U(Wn)

) 1
α

,

where U(Wn) denotes the perimeter of the set Wn.
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Therefore, the constant A(n) can be evaluated as

A(n) = ||ϕn||3L3(C(2),λ) +
√

2
π

τn||ϕn||2L2(C(2),λ)D
(n)
2 + 2τn||ϕn||2L4(C(2),λ)||ϕn||L2(C(2),λ)D

(n)
2

+ τ 2
n||ϕn||3L2(C(2),λ)D

′(n)
2

= 1
τ

3/2
n

⎛⎝ 1√
Leb(Wn)

+ r

π

U(Wn)
Leb(Wn)3/2

⎞⎠+
√

2
π

(
1 + r

π

U(Wn)
Leb(Wn)

)
D

(n)
2

+ 2
√

τn

⎛⎝ 1√
Leb(Wn)

+ r

π

U(Wn)
Leb(Wn)3/2

⎞⎠D
(n)
2 + √

τn

(
1 + r

π

U(Wn)
Leb(Wn)

)3/2

D
′(n)
2 .

We can see, that A(n) → 0 as n → ∞.
Finally, by using the bound from Theorem 4.10, we obtain

dW (Iξ(n)(ϕn), Z) ≤
√

2
π

√
1 − 2τne−τnbn||ϕn||2

L2(C(2),λ) + τ 2
n||ϕn||4

L2(C(2),λ) + τnA(n)

=
√

2
π

√1 − 2e−τnbn

(
1 + r

π

U(Wn)
Leb(Wn)

)
+
(

1 + r

π

U(Wn)
Leb(Wn)

)2

+ τnA(n),

which tends to 0 as n approaches +∞.

The assumption of an → 0 as n → ∞ in Theorem 4.12 is somewhat limiting
(analogously to the assumption of r = 1/n in Example 5.9 in Torrisi, 2017, where r
was the hard-core distance). The presented methodology does not enable to relax
the assumption an → 0 and it is an open problem for our further research how
to do it.
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R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . real numbers
R+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . non-negative real numbers
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . integral numbers
N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . integral numbers and zero
P (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probability of event A

E (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . expected value of a random variable X

(Ω,A,P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probability space
λ1 ⊗ λ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .product of measures λ1 and λ2

X × Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . product space generated by spaces X and Y
1{B} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . indicator function of a set B

δy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dirac measure concentrated in a point y

(X,σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . space X with reference measure σ

||f ||Lp(X,σ) = (
∫
X |f |pdσ)

1
p . . . . . . . . . . . . . . . . . . . . . . . . . . .Lp norm in the space (X,σ)

Lp(X,σ) . . . . . . . . . . . . . . . . .
{
f : ||f ||Lp(X,σ) < ∞, f measurable function on (X,σ)

}
Cd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the space of all compact subsets in Rd

C(d) . . . . . . . . . . . . . . . . . . . . . . . . . . the space of all nonempty compact subsets in Rd

C(d)
0 . . . . . . . . . . . . B ∈ C(d) with the centre of the circumscribed ball in the origin

b(x,r) . . . . . . . . . . . . . . . . ball in Rd with the radius r > 0 and the centre in x ∈ Rd

S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unit sphere in R2

Leb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lebesgue measure
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