Univerzita Karlova
Přírodovědecká fakulta

Studijní program: Chemie
Studijní obor: Učitelství chemie pro střední školy – Učitelství matematiky

Bc. Jan Břížďala

Chemické úlohy pro střední školy se zemědělským zaměřením
Chemistry tasks for agricultural high schools

Typ závěrečné práce:
Diplomová práce

Vedoucí práce: RNDr. Petr Šmejkal, Ph.D.

Praha 2017
Prohlášení:

Prohlašuji, že jsem diplomovou práci zpracoval samostatně a že jsem uvedl všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu.

V Praze dne 17. května 2017
Abstrakt
Zemědělství je klíčovým oborem pro budoucí rozvoj hospodářství a potravinářství. Samotné pěstování rostlin, chov zvířat a následné zpracování rostlinných i živočišných produktů je neodmyslitelně spojeno s chemií. Při pěstování rostlin je tak například důležité zvolit vhodné hnojivo a jeho správné dávkování, při chovu zvířat jim dodávat vyváženou stravu a u produktů zemědělské výroby přísně sledovat jejich složení. Zemědělsky zaměřené obory je možné v České republice studovat na vysokých i středních školách. Podle rámových vzdělávacích programů určených pro zemědělské obory na středních školách patří chemie mezi povinné předměty, které musí žáci absolvovat. Tyto dokumenty předpisují i nutnost propojovalání teoretického učiva s aplikacemi v zemědělství. Minimální požadavky na obsahovou stránku výuky chemie vychází z rámového vzdělávacího programu, jejich rozšíření je pak záležitostí jednotlivých škol a jejich vyučujících. Toto upřesnění požadavků a očekávaných výsledků vzdělávání v chemii je součástí školních vzdělávacích programů. V první části diplomové práce jsou uvedeny nabízené zemědělské obory pro studium na středních školách a provedena analýza rámového vzdělávacího programu zemědělského oboru Agropodnikání a školních vzdělávacích programů tohoto oboru na různých školách. Součástí teoretické části diplomové práce je také analýza dostupných studijních zdrojů pro výuku chemie na zemědělsky zaměřených středních školách. V praktické části práce je formou orientačního šetření mezi učiteli chemie na středních zemědělských školách zjišťován stav výuky tohoto předmětu v rámci maturitního zemědělského oboru Agropodnikání. Na základě tohoto šetření bylo zjištěno, že učitelé navzdory požadavkům rámového vzdělávacího programu oboru Agropodnikání v někola případech vyučují chemii příliš obecně, tedy bez vazby na zemědělskou praxi. Jako důvod této skutečnosti uvádí nedostatečné množství podkladů pro výuku a vyjadřují se, že by ocenili vznik nové sbírky početních a laboratorních úloh z chemie souvisejících se zemědělstvím. Z tohoto důvodu baly vytvořena požadovaná sbírka, metodický a didaktický popis její tvorby je popsán v praktické části této diplomové práce. Následně byla vytvořená sbírka zaslána učitelům chemie na středních zemědělských školách vyučujících maturitní obor Agropodnikání. Z jejich vyjádření vyplynulo, že vznik nové sbírky oceňují, plánují ji používat pro přípravu na své vyučování a
líbí se jim její grafické provedení. Více zdrženliví jsou však v otázce případného doporučení učebnice svým žákům jako studijního materiálu nebo v návrhu na vyplňování pracovních listů na místo psaní laboratorních protokolů. Z evaluačního šetření vyplynula i dobrá materiální vybavenost škol laboratorními pomůckami i chemikáliemi.

Klíčová slova: výuka chemie – zemědělské školy – chemické úlohy
Abstract

Agriculture is an important discipline for a future development of economy and food industry. Breeding of plants and animals and processing of their products are definitely related with chemistry. In breeding of plants it is important to choose a fitting fertilizer and its accurate concentration. In breeding of animals it is important to get its balanced food and in a case of agriculture’s product it is necessary to control its composition. In the Czech Republic it is possible to study agricultural branches at universities or at high schools. In the direction of the general education programs for agriculture branches at high schools, chemistry is an obligatory subject. This document describes an obligatory connection of a theory with an application in agriculture and minimal claims for content of chemistry education. Spreading this content is a matter of each schools. The first part of the thesis is an overview about agriculture branches at high schools and analysis of a general education program of a Agrobusiness branch with connection of a school education programs of the same branch. This thesis includes also an analysis of study materials for chemistry education in agriculture branches. In a practical part of the thesis there is situated a tentative investigation between chemistry teachers in agriculture branches and chemistry education in Agrobusiness branch. On the base of this investigation was determined that teachers teach chemistry only in general contents without connection to agriculture. It is caused by a small amount of materials for teaching chemistry in agriculture branches. It was also a reason to make a study materials. Its methodic and didactic description is included in this thesis. Produced study materials was sent to chemistry teachers of the Agrobusiness branch. They were fancy to get study material and praised its graphical aspect. They considered to replace making laboratory protocols by filling a working sheets. High schools with agriculture branches own laboratory equations.

Keywords: chemistry education – agriculture schools, chemistry tasks
Poděkování

Tímto bych chtěl poděkovat vedoucímu práce RNDr. Petru Šmejkalovi, Ph.D. za cenné podněty a komentáře, které mi poskytl a bezesporu vedly ke zkvalitnění textu této diplomové práce. Poděkování patří také Gymnáziu Třebíč, na kterém jsem mohl jednotlivé chemické experimenty vyzkoušet a zdokumentovat.
Obsah

1 ÚVOD A CÍL PRÁCE .. 8

2 TEORETICKÁ ČÁST .. 10
 2.1 ORGANIZACE VZDĚLÁVÁNÍ A KURIKULÁRNÍ DOKUMENTY .. 10
 2.2 VÝUKA CHEMIE .. 11
 2.3 ZEMĚDĚLSKY ZAMĚŘENÉ STŘEDNÍ ŠKOLY .. 13
 2.4 RÁMCOVÝ VZDĚLÁVACÍ PROGRAM OBORU AGROPODNIKÁNÍ 20
 2.5 VYBRANÉ ŠKOLNÍ VZDĚLÁVACÍ PROGRAMY OBORU AGROPODNIKÁNÍ 23
 2.6 POUŽÍVANÉ UČEBNÍ ZDROJE ... 29

3 PRAKTIKÁ ČÁST .. 42
 3.1 ORIENTAČNÍ ŠETŘENÍ .. 42
 3.2 METODIKA TVORBY SBÍRKY .. 48
 3.2.1 Chemické výpočty .. 49
 3.2.2 Chemické experimenty ... 54
 3.2.3 Metodická příručka .. 58

4 EVALUACE VYTVOŘENÝCH MATERIÁLŮ .. 59

5 ZÁVĚR .. 62

SEZNAM POUŽITÉ LITERATURY ... 64
1 Úvod a cíl práce

Chemie je přírodní věda, která je vyučována na všech základních a středních školách v České republice. V některých případech (často na základních školách a gymnáziích) je vyučována jako samostatný předmět, zatímco v jiných (například na některých středních odborných školách) tvoří pouze součást nějakého obecnějšího předmětu sdružujícího přírodní vědy.

Výuka chemie na základních školách a gymnáziích má velký význam pro získání jak všeobecného přehledu, tak v případě gymnázií pro případné další studium na vysokých školách a s ním spojené přijímací zkoušky na tyto školy. Získané elementární poznatky ze studia chemie pak mohou mnozí lidé využít i v praktickém životě.

Na středních odborných školách (např. chemických, zdravotnických, zemědělských, potravinářských) by měla být očekávaným cílem výuky chemie příprava žáků těchto škol na budoucí praxi. Zatímco na středních školách chemického zaměření lze předpokládat intenzivní přípravu žáků na práci v chemickém průmyslu či v laboratořích, tak v případě zdravotnických středních škol by měli být žáci seznámení s oblastí chemie léčiv (farmakochemií). Obdobně u zemědělských škol se předpokládá intenzivní výuka zemědělské chemie (agrochemie) nebo na potravinářských středních školách výuka chemie potravin.

Chemie je také vyučována v rámci zemědělských oborů na vysokých školách, jak je možné zjistit z výukových sylabů těchto škol (v ČR jimi jsou Česká zemědělská univerzita v Praze, Zemědělská fakulta Jihočeské univerzity v Českých Budějovicích a Agronomická fakulta Mendelovy univerzity v Brně). Cílem výuky chemie na takovémto stupni vzdělávání je jak prohloubení učiva získaného při studiu na střední škole, tak jeho rozšíření a doplnění třeba o partie z analýzy vody, půdy či potravin.
Podle vypovědí vedoucích osob ze zemědělských podniků a zemědělsky zaměřených vysokých škol (osobní nemonitorované rozhovory s některými řediteli zemědělských firem ze skupiny AGRO 2000 s.r.o. a proděkanem Zemědělské fakulty Jihočeské Univerzity v Českých Budějovicích, Ing. Karlem Suchým, Ph.D.) bývá na středních školách vyučujících zemědělský obor chemie často probírána příliš obecně, bez uvedení přímé souvislosti se zemědělskou činností. Z toho je možné usuzovat, že žáci mohou být studiem chemie demotivováni, jelikož v teoretickém učivu nevidí jeho přesah do reálné praxe. Zřejmě také v důsledku této skutečnosti je pro studenty problematické studium chemie na vysokých školách, kde se tento předmět řadí k těm nejvíce obtížně zvládnutelným.

Na základě těchto poznatků byly vytyčeny cíle diplomové práce:

- Vytvořit přehled všech zemědělských středoškolských oborů (učebních, nástavbových a maturitních) a z Rejstříku škol a školských zařízení provést výpis středních škol, na kterých je vyučován obecný zemědělský obor,
- provést analýzu rámcového vzdělávacího programu zemědělského oboru Agropodnikání a jemu odpovídajících školních vzdělávacích programů vybraných zemědělsky zaměřených středních škol, s ohledem na popis výuky chemie na tomto oboru,
- provést analýzu běžně používaných a dostupných zdrojů pro výuku chemie na zemědělsky zaměřených středních školách, s ohledem na uvádění konkrétních aplikací teoretických poznatků v zemědělské praxi,
- realizovat orientační šetření mezi učiteli na zemědělsky zaměřených středních školách zabývající se pojetím výuky chemie na těchto školách, jejich materiálním vybavením a zájmem o vznik nové sbírky chemických úloh aplikovaných v zemědělství,
- na základě provedeného orientačního šetření vytvořit sbírku početních a laboratorních úloh z chemie, které budou tematicky zaměřené na zemědělství, a připravit tak učitelům chemie na středních zemědělských školách možný podklad pro jejich výuku, kteří se potýkají s nedostatkem takovýchto přípravných materiálů.
2 Teoretická část

V teoretické části diplomové práce jsou popsány obecné informace týkající se organizace vzdělávání a kurikulárních dokumentů, dále cíle výuky chemie a její formy na různých stupních a typech škol. Následuje výpis zemědělských středoškolských oborů a s tím souvisejících přehled středních škol, na kterých je obecný zemědělský obor vyučován. U tohoto oboru je provedena analýza jeho rámcového vzdělávacího programu a souvisejících školních vzdělávacích programů na různých školách. Kromě toho je provedena také rešerše dostupných výukových materiálů pro výuku chemie na zemědělsky zaměřených středních školách.

2.1 Organizace vzdělávání a kurikulární dokumenty

V České republice je školské vzdělávání organizováno v primárním, sekundárním a terciárním stupni. Primárním stupněm vzdělávání se rozumí povinná devítiletá docházka, studium základní školy určené pro žáky ve věku 6–15 let. Sekundární vzdělávání je uskutečňováno na středních školách (gymnáziích, středních odborných školách či středních odborných učilištích), které navštěvují žáci ve věku od 15 do 18 let. Jako terciární vzdělávání se označuje studium na vyšších odborných školách, konzervatořích, vysokých školách nebo univerzitách, které absolvují studenti starší 18 let. [1]

Rámcový obsah výuky v rámci primárního a sekundárního vzdělávání (tež i předškolního vzdělávání) je vymezen národními kurikulárními dokumenty, které se nazývají rámcové vzdělávací programy (RVP). Tyto strategické dokumenty stanovují vzdělávací oblasti, které musí žáci absolvovat, a jejich minimální obsahovou náplň, očekávané výstupy a těmto oblastem přidělenou hodinovou dotaci. Mimo jiné obsahují informace také o některých dalších podmínkách realizace vzdělávání (majetkové, personální...), v případě gymnázií a středních odborných škol určují strukturu maturitní zkoušky apod. [1]
Rámcové vzdělávací programy pro základní školy a gymnázia vydává Výzkumný ústav pedagogický v Praze, vydavatelem rámcovým vzdělávacích programů pro střední odborné školy a střední odborná učiliště je Národní ústav odborného vzdělávání v Praze. [2]

Každá základní a střední škola je povinna organizovat vzdělávání v souladu s rámcovým vzdělávacím programem oboru, který vyučuje. Kromě toho musí na základě tohoto kurikulárního dokumentu vypracovat vlastní školní vzdělávací program (ŠVP), který detailně popisuje organizaci vzdělávání na dané škole. Obsah učiva vymezený v rámcovém vzdělávacím programu musí být zanesen rovněž ve školním vzdělávacím programu, případně může být rozšířen.

2.2 Výuka chemie

Chemie je vzdělávacím oborem, který je povinně vyučován na všech základních školách v rámci vzdělávací oblasti Člověk a příroda (společně s fyzikou, přírodopisem a zeměpisem) vymezené Rámcovým vzdělávacím programem pro základní vzdělávání. Výuka chemie se na těchto školách uskutečňuje zpravidla v 8. a 9. ročníku a odpovídajících ročnících víceletých gymnázií. [3]

Na gymnáziích je chemie zařazena do vzdělávací oblasti Člověk a příroda (společně s fyzikou, biologii, geografií a geologií) vymezené Rámcovým vzdělávacím programu pro gymnázia (RVP G) a na středních odborných školách do oblasti Přírodovědné vzdělávání (společně s fyzikou a biologií) vymezené rámcovými vzdělávacími programy příslušných oborů. Po proběhlé kurikulární reformě, která zavedla rámcové vzdělávací programy, je chemie v určité míře vyučována ve všech středoškolských maturitních oborech. Některé z těchto dokumentů i přímo stanovují minimální hodinovou dotaci pro tento předmět (pro obor Agropodnikání jsou to 4 týdenní hodiny). Na školách, kde je chemie „okrajovým“ předmětem, bývá součástí určitého „integrovaného“ přírodovědného předmětu. Ve skutečnosti se však mnohé nejedná doslova o integrovaný předmět, v rámci kterého by se průběžně prolínalo učivo chemie,
biologie a fyziky (tato praxe je spíše obvyklá v zahraničí – především v západních zemích), ale o předmět, v rámci kterého jsou tyto jednotlivé předměty vyučovány po jednotlivých ročnicích či pololetích. Učitelé, kteří vyučují daný integrovaný předmět, obvykle nemají současně kvalifikaci pro výuku chemie, biologie i fyziky, a tak některý z těchto předmětů zpravidla učí neaprobovaně. [2] [3]

Dalším významným problémem výuky chemie na nechemický zaměřených středních školách je nedostatečná hodinová dotace, která je pro ní vyčleněná. Učitelé tak reálně stíhoun pouze zopakovat učivo ze základní školy a minimálně na něj navázat. [6]

Omezená hodinová dotace vede i ke skutečnosti, že učitelům nezbývá dostatečný časový prostor pro realizaci demonstračních experimentů, které by mohly žáky motivovat nebo jim pomoci zkonkretizovat naučené teoretické poznatky. Přitom i zavedení laboratorních praxí do výuky má zásadní vliv na zvýšení cblíbenosti chemie u žáků. Prováděné experimenty mohou být zatracivněny, jestliže budou při nich využity různé měřicí systémy či ICT. [7] [6] [7]

Další příčinou, proč učitelé na středních odborných školách nechemického zaměření nezařazují do výuky chemie demonstrační experimenty, je skutečnost, že podle orientačních průzkumů pouze přibližně 40 % škol disponuje skladem chemikálií a laboratorními pomůckami a pouze 25 % vlastní chemickou laboratoří. [10]

Jak již bylo zmíněno, učivo chemie na nechemický zaměřených středních školách bývá pro žáky příliš abstraktní, a tak si nedostatečně uvědomují souvislost chemie s reálnou praxí. Nezávinnost chemie pro tyto žáky se následně odráží i v nejrůznějších průzkumech veřejného mínění o chemii, jako vyučovaném předmětu, kde bývá hodnocena jako neoblíbená, neboť většina absolventů středních škol pochází právě ze středních odborných škol nechemického zaměření. [9]
V České republice již bylo podrobněji řešeno téma výuky chemie na středních průmyslových školách stavebních. Na základě provedeného orientačního šetření na těchto školách a analýzy dostupných českých a zahraničních výukových materiálů byl připraven učební materiál včetně pracovního sešitu, který je určený pro výuku chemie na tomto typu středních škol [10].

Problém nedostatečné asociace učiva chemie na nechemický zaměřených středních školách s reálnou praxí se nedotýká pouze středních škol, ale dokonce také škol vysokých. Na nich chemii obvykle vyučují pedagogové, kteří mají vystudovanou odbornou chemii, ale ne odborné zaměření oboru, v jehož rámci chemii vyučují (např. fyzioterapie, ekologie, medicina, zemědělství). To rovněž snadno přispívá ke skutečnosti, že opadá zájem studentů o chemii i na vysokých školách. V případě zemědělských vysokých škol patří tento předmět mezi nejobtížněji zvládnutelný pro žáky, ačkoliv se dle neoficiálně zhlédnutých ukázkových verzí zápočtových a zkouškových testů ze Zemědělské fakulty Jihočeské univerzity v Českých Budějovicích jedná o učivo na úrovni gymnázia. [11]

2.3 Zemědělsky zaměřené střední školy

Výuka chemie na středních školách se zemědělským zaměřením se řídí obdobnými požadavky jako tomu je v případě jiných středních odborných škol, neboť jednotlivé pasáže příslušných rámcového vzdělávacích programů věnované výuce chemie jsou obdobné. Z toho důvodu je možné předpokládat, že v přechodním oddíle uvedené trendy ve výuce chemie na středních odborných školách lze aplikovat i na zemědělsky zaměřené střední školy. V České republice se doposud nikdo nezabýval selektivně problematikou výuky chemie na středních školách se zemědělským zaměřením, pouze její výukou na středních stavebních školách.

Středoškolské zemědělské vzdělání (učební, maturitní) je možné v České republice získat na několika středních odborných učilištích nebo středních odborných školách (obecně jen „středních školách“). Zemědělské obory jsou součástí kategorie studijních oborů č. 41
Zemědělství a lesnictví. V rámci tohoto bloku je nabízeno 10 učebních a 9 maturitních oborů. [14]

Učebními obory jsou:

41-51-H/01 Zemědělec – farmář
41-51-H/02 Včelař
41-52-H/01 Zahradník
41-53-H/01 Rybář
41-53-H/02 Jezdec a chovatel koní
41-54-H/01 Podkovář a zemědělský kovář
41-55-H/01 Opravář zemědělských strojů
41-56-H/01 Lesní mechanizátor
41-56-H/02 Opravář lesnických strojů
41-57-H/01 Zpracovatel dřeva

Maturitními obory jsou:

41-04-M/01 Rostlinolékařství
41-41-M/01 Agropodnikání
41-42-M/02 Vinohradnictví
41-43-L/01 Chovatel cizokrajných zvířat
41-43-M/01 Rybářství
41-43-M/02 Chovatelství
41-44-M/01 Zahradnictví
41-45-M/01 Mechanizace a služby
41-46-M/01 Lesnictví

Po absolvování libovolného z uvedených učebních oborů je možné si doplnit maturitní vzdělání na některém ze 4 nabízených oborů nástavbového studia pro zemědělce.
Nástavbovými obory jsou:

41-43-L/51 Rybářství

 pro absolventy učebního oboru:
 41-53-H/01 Rybář

41-43-L/52 Trenérství dostihových a sportovních koní

 pro absolventy učebního oboru:
 41-51-H/01 Zemědělec – farmář
 41-53-H/02 Jezdec a chovatel koní

41-44-L/51 Zahradnictví

 pro absolventy učebního oboru:
 41-51-H/02 Včelař
 41-52-H/01 Zahradník

41-45-L/51 Mechanizace zemědělství a lesního hospodářství

 pro absolventy učebního oboru:
 41-51-H/01 Zemědělec – farmář
 41-52-H/01 Zahradník
 41-54-H/01 Podkovař a zemědělský kovář
 41-55-H/01 Opravář zemědělských strojů
 41-56-H/01 Lesní mechanizátor
 41-56-H/02 Opravář lesnických strojů
 41-57-H/01 Zpracovatel dřeva

Absolventi středních škol s maturitním vzděláním mohou pokračovat ve svém studiu na vysokých školách. Z veřejných vysokých škol nabízí zemědělské vzdělání Česká zemědělská univerzita v Praze [15], Mendelova univerzita v Brně [16] a Jihočeská univerzita v Českých Budějovicích [17].

Pro účely této diplomové práce se bude dále vycházet z nejobecnějšího (z hlediska rovnoměrného rozdělení výuky obecných a odborných předmětů, odborných i z hlediska zaměření na rostlinnou a živočišnou odbornost) a nejrozšířenějšího (vyučován na nejvíce středních škol ze všech zemědělských oborů) maturitního zemědělského oboru na středních školách, kterým je Agropodnikání.
Minimální požadovaná hodinová dotace vyčleněná pro výuku chemie v rámci maturitního oboru Agropodnikání je shodná jako třeba u oborů Rostlinolékařství či Chovatelství. Ačkoliv je možné reálně očekávat, že chemické znalosti budou více klíčové pro absolventy oboru Rostlinolékařství, kteří budou v rámci své praxe reálně přicházet do styku s chemickými přípravky pro výživu, hnojení a léčení rostlin, tak nebyl tento obor pro účely této diplomové práce vybrán, neboť v jeho rámcovém vzdělávacím programu nejsou zaneseny předměty související s živočišnou výrobou (obor tak ztrácí na zemědělské obecnosti) a tento obor je vyučován pouze na 3 středních školách v rámci celé České republiky (v Praze, Frýdlantu a v Českých Budějovicích). [18]

Podle Rejstříku škol a školských zařízení má maturitní obor Agropodnikání zapsáno celkem 45 středních škol, avšak reálně je v současnosti vyučován pouze na 40 z nich, jak vyplývá z tabulky 2.1. [18]

Tab. 2.1 Přehled středních škol, které mají v Rejstříku škol a školských zařízení zapsaný maturitní obor Agropodnikání včetně údajů o nejvyšším povoleném počtu vzdělávání žáků

<table>
<thead>
<tr>
<th>Název školy</th>
<th>Kapacita (denní)</th>
<th>Kapacita (dálkové)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vyšší odborná škola a Střední zemědělská škola, Benešov, Mendelova 131 Benešov</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td>Střední zemědělská škola, Čáslav, Sadová 1234</td>
<td>360</td>
<td>0</td>
</tr>
<tr>
<td>Střední zemědělská škola a Střední odborná škola</td>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>Poděbrady, příspěvková organizace</td>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>Střední zemědělská škola, Brandýs nad Labem – Stará Boleslav, Zápiská 302</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>Vyšší odborná škola a Střední odborná škola, Březnice, Rožmitálská 340</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>Střední zemědělská škola, Rakovník, Pražská 1222</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>Česká zemědělská akademie v Humpolci, střední škola</td>
<td>460</td>
<td>150</td>
</tr>
<tr>
<td>Střední zemědělská škola, Písek, Čelakovského 200</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>Střední zemědělská škola Dalovice, příspěvková organizace</td>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>Střední škola zemědělská a potravinářská, Klatovy, Národních mužů 141</td>
<td>245</td>
<td>0</td>
</tr>
<tr>
<td>Gymnázium a Střední odborná škola, Plasy</td>
<td>120</td>
<td>0</td>
</tr>
</tbody>
</table>
Střední odborná škola, Stříbro, Benešova 508
Střední škola zahradnická a zemědělská Antonína Emamuela Komerské, Děčín – Libverda, příspěvková organizace
Střední škola technická, gastronomická a automobilní, Chomutov, příspěvková organizace
Střední škola hospodářská a lesnická, Frýdlant, Bělíkova 1387, příspěvková organizace
Obchodní akademie a Střední odborná škola zemědělská a ekologická, Žatec, příspěvková organizace
Gymnázium, střední odborná škola, střední odborné učiliště a vyšší odborná škola, Hořice
Střední škola zemědělská a ekologická a střední odborné učiliště chladicí a klimatizační techniky, Kostelec nad Orlicí
Střední odborná škola zemědělská a veterinární Lanškroun
Střední vinařská škola Valtice, příspěvková organizace
Střední odborné učiliště Kyjov, příspěvková organizace
Obchodní akademie, Střední zdravotnická škola, Střední odborná škola služeb a Jazyková škola s právem státní jazykové zkoušky Jiřího Jíhla
Výšší odborná škola a Střední škola veterinární, zemědělská a zdravotnická Třebíč
Střední odborná škola a Gymnázium Staré Město
Gymnázium a Střední odborná škola zdravotnická a ekonomická Výškov, příspěvková organizace
Střední odborná škola a Střední odborné učiliště Výškov, příspěvková organizace
Střední odborná škola Znojmo, Dvořáková, příspěvková organizace
Výšší odborná škola a Střední odborná škola zemědělsko-technická Bystrice nad Pernštejnem
Střední průmyslová škola a Obchodní akademie, Bruntál, příspěvková organizace
Střední škola zemědělství a služeb, Město Albrechtice, příspěvková organizace
Střední škola technická a zemědělská, Nový Jičín, příspěvková organizace
Střední škola zemědělská a zahradnická, Olomouc, U Hradiska 4

<table>
<thead>
<tr>
<th>Název instituce</th>
<th>Středisko</th>
<th>Osobnosti</th>
<th>Příspěvková organizace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Střední odborná škola</td>
<td>132</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední škola zahradnická a zemědělská Antonína Emamuela Komerské</td>
<td>120</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední škola technická, gastronomická a automobilní</td>
<td>240</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední škola hospodářská a lesnická, Frýdlant</td>
<td>60</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Obchodní akademie a Střední odborná škola zemědělská a ekologická, Žatec</td>
<td>180</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gymnázium, střední odborná škola, střední odborné učiliště a vyšší odborná škola, Hořice</td>
<td>132</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední škola zemědělská a ekologická a střední odborné učiliště chladicí a klimatizační techniky, Kostelec nad Orlicí</td>
<td>240</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední odborná škola zemědělská a veterinární Lanškroun</td>
<td>240</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Střední vinařská škola Valtice, příspěvková organizace</td>
<td>120</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední odborné učiliště Kyjov, příspěvková organizace</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Obchodní akademie, Střední zdravotnická škola, Střední odborná škola služeb a Jazyková škola s právem státní jazykové zkoušky Jiřího Jíhla</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Výšší odborná škola a Střední škola veterinární, zemědělská a zdravotnická Třebíč</td>
<td>130</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední odborná škola a Gymnázium Staré Město</td>
<td>120</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gymnázium a Střední odborná škola zdravotnická a ekonomická Výškov, příspěvková organizace</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední odborná škola a Střední odborné učiliště Výškov, příspěvková organizace</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední odborná škola Znojmo, Dvořáková, příspěvková organizace</td>
<td>130</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Výšší odborná škola a Střední odborná škola zemědělsko-technická Bystrice nad Pernštejnem</td>
<td>160</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední průmyslová škola a Obchodní akademie, Bruntál, příspěvková organizace</td>
<td>120</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední škola zemědělství a služeb, Město Albrechtice, příspěvková organizace</td>
<td>120</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední škola technická a zemědělská, Nový Jičín, příspěvková organizace</td>
<td>270</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Střední škola zemědělská a zahradnická, Olomouc, U Hradiska 4</td>
<td>220</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace 180 0
Střední škola zemědělská, Přerov, Osmek 47 240 150
Střední odborná škola, Šumperk, Zemědělská 3 60 0
Střední škola zemědělská a přírodovědná Rožnov pod Radhoštěm 240 0
Vyšší odborná škola a Střední zemědělská škola, Tábor, Náměstí T. G. Masaryka 788 240 90
Vyšší odborná škola a Střední odborná škola, Roudnice nad Labem, Špindlerova 690, příspěvková organizace 120 0
Integrovaná střední škola, Jesenice, Žatecká 1 96 0
Střední odborná škola a Střední odborné učiliště, Horšovský Týn, Littrowa 122 120 0
Střední odborná škola, Frýdek-Místek, příspěvková organizace 120 0
Albrechtova střední škola, Český Těšín, příspěvková organizace 250 0
Vyšší odborná škola ekonomická a zdravotnická a Střední škola Boskovice, příspěvková organizace *) 120 0
Městská střední odborná škola, Klobočky u Brna, nám. Miru 6, příspěvková organizace 95 0
Střední škola zemědělská a Vyšší odborná škola Chrudim 240 90

Součet 7 470 690

*) označení škol, na kterých se obor nevyučuje

Z uvedené tabulky 2.1 si lze povšimnout, že většina škol nabízí studium maturitního oboru Agropodnikání pouze v denní formě studia, jen některé i v dálkové. Výpočtem (vydělením celkové kapacity škol z hlediska počtu žáků oboru Agropodnikání v denní formě studia počtem těchto škol) lze zjistit, že průměrná kapacita zemědělsky zaměřené školy je 166 žáků, tj. 41,5 žáka na ročník – v každé škole by tak průměrně mohly být otevřené až 2 třídy v ročníku, ve kterých by se studoval zmíněný zemědělský obor.
Na obrázku 2.1 jsou na mapovém podkladu (Google Maps) označeny polohy jednotlivých středních škol v České republice, které mají v Rejstříku škol a školských zařízení zapsaný obor Agropodnikání.

Obr. 2.1 Mapa ČR s vyznačením (pomocí označníků) středních škol, které mají v Rejstříku škol a školských zařízení zapsaný maturitní obor Agropodnikání. Na červeně označených není obor v současnosti vyučován. Podkladová mapa pochází z aplikace Google Maps [19].

Zajímavostí je, že ačkoliv se v Praze, Brně a Českých Budějovicích nachází vysoké školy nabízející studium zemědělství, nejsou v těchto městech žádné střední školy, na kterých by byl vyučován obecný zemědělský obor Agropodnikání. Tato skutečnost je více překvapující v případě Brna a Českých Budějovic, neboť Jihočeský kraj, jehož krajským městem je Brno, a Jihočeský kraj, jehož krajským městem jsou České Budějovice, patří mezi zemědělsky nejvýznamnější regiony v republice. Nicméně jsou v těchto regionech vyučovány některé specifické maturitní obory – např. Rostlinolékařství je vyučováno na Střední odborné škole veterinární, mechanizační a zahradnické a Jazykové škole s právem státní jazykové zkoušky v Českých Budějovicích a Střední zahradnické škole a Středním odborném učilišti s.r.o. v Praze, Chovatelství je vyučováno na Střední škole dostihového sportu a jezdeckého v Praze.
2.4 Rámcový vzdělávací program oboru Agropodnikání

Součástí vzdělávací oblasti „Přírodovědné vzdělávání“ je v rámcovém vzdělávacím programu Agropodnikání [20]:

- fyzikální vzdělávání,
- chemické vzdělávání,
- biologické a ekologické vzdělávání.

Rámcový vzdělávací program umožňuje vyučovat uvedené předměty buď samostatně, či integrované do jednoho společného vzdělávacího bloku. Rovněž dovoluje každé střední škole si zvolit variantu obtížnosti jednotlivých vzdělávacích celků u fyziky, zpracované v RVP ve 3 variantách – A, B, C, a chemie, zpracované v RVP ve 2 variantách – A, B (viz tabulky 2.2 a 2.3).

Tab. 2.2: Varianta A chemického vzdělávání dle rámcového vzdělávacího programu oboru Agropodnikání (doslovný přepis) [20]

<table>
<thead>
<tr>
<th>Výsledky vzdělávání</th>
<th>Učivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zák:</td>
<td>1 Obecná chemie</td>
</tr>
<tr>
<td>- rozlišuje pojmy těleso a chemická látka;</td>
<td>- chemické látky a jejich vlastnosti</td>
</tr>
<tr>
<td>- dokáže porovnat fyzikální a chemické vlastnosti různých látek;</td>
<td>- částicové složení látek, atom, molekula</td>
</tr>
<tr>
<td>- popíše stavbu atomu, rozlišuje atom, ion, izotop, nuklid;</td>
<td>- chemická vazba</td>
</tr>
<tr>
<td>- vysvětlí vznik chemické vazby a charakterizuje typy vazeb;</td>
<td>- chemické prvky, sloučeniny</td>
</tr>
<tr>
<td>- rozlišuje pojmy prvek, sloučenina a používá je ve správných souvislostech;</td>
<td>- chemická symbolika, značky a názvy prvků, oxidační číslo, vzorce a názvy jednoduchých sloučenin</td>
</tr>
<tr>
<td>- zná názvy a značky vybraných chemických prvků;</td>
<td>- periodická soustava prvků</td>
</tr>
<tr>
<td></td>
<td>- směsi homogenní, heterogenní, roztoky</td>
</tr>
<tr>
<td></td>
<td>- látkové množství</td>
</tr>
<tr>
<td></td>
<td>- chemické reakce, chemické rovnice, základní typy chemických reakcí</td>
</tr>
</tbody>
</table>
| 1 | - dokáže napsat vzorec a název jednoduché sloučeniny, umí využívat oxidaciční číslo atomu při odvozování vzorců a názvů sloučenin;
- vysvětlí obecně platné zákonitosti vyplyvající z periodické soutavy prvků;
- charakterizuje obecné vlastnosti nekovů a kovů;
- popíše metody oddělování složek ze směsi a uveďte příklady využití těchto metod v praxi;
- vyjádří složení roztoků různým způsobem, přípraví roztok požadovaného složení;
- vysvětlí podstatu chemických reakcí a dokáže popsat faktory, které ovlivňují průběh reakce;
- zapiše chemickou reakci chemickou rovnici a vyčíslí ji;
- provádí jednoduché chemické výpočty při řešení praktických chemických problémů;
- vysvětlí vlastnosti anorganických látek;
- tvoří chemické vzorce a názvy anorganických sloučenin;
- charakterizuje vybrané prvky a anorganické sloučeniny a zhodnotí jejich využití v odborné praxi a v běžném životě, posoudí je z hlediska vlivu na zdraví a životní prostředí;
- uplatňuje poznatky o určitých chemických reakcích v chemické analýze;
- zhodnotí postavení atomu uhlíku v periodické soutavě prvků z hlediska počtu a vlastností organických sloučenin;
- charakterizuje skupiny uhlovodíků a jejich deriváty a tvoří jejich chemické vzorce a názvy;
- uveďte významné zástupce organických sloučenin a zhodnotí jejich využití v odborné praxi a v běžném životě, posoudí je z hlediska vlivu na zdraví a životní prostředí;
- charakterizuje typy reakcí organických sloučenin a dokáže je využít v chemické analýze v daném oboru;
- charakterizuje biogenní prvky a jejich sloučeniny;
- uveďte složení, výskyt a funkce nejdůležitějších přírodních látek;
- vysvětlí podstatu biochemických dějů;
- popíše a zhodnotí význam dýchání a fotosyntézy. |
|---|---|
| 2 | Anorganická chemie
- anorganické látky, oxidy, kyseliny, hydroxidy, soli
- základy názvosloví anorganických sloučenin
- vybrané prvky a jejich anorganické sloučeniny |
| 3 | Organická chemie
- vlastnosti atomu uhlíku
- klasifikace a názvosloví organických sloučenin
- typy reakcí v organické chemii
- organické sloučeniny v běžném životě a v odborné praxi |
| 4 | Biochemie
- chemické složení živých organismů
- přírodní látky, bílkoviny, sacharidy, lipidy, nukleové kyseliny, biokatalyzytory
- biochemické děje |
Tab. 2.3: Varianta B chemického vzdělávání dle rámcového vzdělávacího programu oboru Agropodnikání (doslovný přepis) [20]

<table>
<thead>
<tr>
<th>Výsledky vzdělávání</th>
<th>Učivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Žák:</td>
<td>1 Obecná chemie</td>
</tr>
<tr>
<td>- dokáže porovnat fyzikální a chemické vlastnosti různých látek;</td>
<td>- chemické látky a jejich vlastnosti</td>
</tr>
<tr>
<td>- popíše stavu atomu, vznik chemické vazby;</td>
<td>- částicové složení látek, atom, molekula</td>
</tr>
<tr>
<td>- zná názy, značky a vzorce vybraných chemických prvků a sloučenin;</td>
<td>- chemická vazba</td>
</tr>
<tr>
<td>- popíše charakteristické vlastnosti nekovů, kovů a jejich umístění v periodické soustavě prvků;</td>
<td>- chemické prvky, sloučeniny</td>
</tr>
<tr>
<td>- popíše základní metody oddělování složek ze směsi a jejich využití v praxi;</td>
<td>- chemická symbolika</td>
</tr>
<tr>
<td>- vyjádří složení roztoku a přípraví roztok požadovaného složení;</td>
<td>- periodická soustava prvků</td>
</tr>
<tr>
<td>- vysvětli podstatu chemických reakcí a zapíše jednoduchou chemickou reakci chemickou rovnicí;</td>
<td>- směsí a roztoky</td>
</tr>
<tr>
<td>- provádí jednoduché chemické výpočty, které lze využít v odborné praxi</td>
<td>- chemické reakce, chemické rovnice</td>
</tr>
<tr>
<td>- vysvětli vlastnosti anorganických látek;</td>
<td>- výpočty v chemii</td>
</tr>
<tr>
<td>- tvoří chemické vzorce a názyvy vybraných anorganických sloučenin;</td>
<td>2 Anorganická chemie</td>
</tr>
<tr>
<td>- charakterizuje vybrané prvky a anorganické sloučeniny a zhodnotí jejich využití v odborné praxi a v běžném životě, posoudí je z hlediska vlivu na zdraví a životní prostředí;</td>
<td>- anorganické látky, oxidy, kyseliny, hydroxidy, soli</td>
</tr>
<tr>
<td>- charakterizuje základní skupiny uhlovodíků a jejich vybrané deriváty a tvoří jednoduché chemické vzorce a názyvy;</td>
<td>- názvosloví anorganických sloučenin</td>
</tr>
<tr>
<td>- uveďe významné závěry jednoduchých organických sloučenín a zhodnotí jejich využití v odborné praxi a v běžném životě, posoudí je z hlediska vlivu na zdraví a životní prostředí;</td>
<td>- vybrané prvky a jejich anorganické sloučeniny v běžném životě a v odborné praxi</td>
</tr>
<tr>
<td>- charakterizuje biogenní prvky a jejich sloučeniny;</td>
<td>3 Organická chemie</td>
</tr>
<tr>
<td>- charakterizuje nejdůležitější přírodní látky;</td>
<td>- vlastnosti atomu uhlíku</td>
</tr>
<tr>
<td>- popíše vybrané biochemické děje.</td>
<td>- základ názvosloví organických sloučenin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4 Biochemie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- chemické složení živých organismů</td>
</tr>
<tr>
<td></td>
<td>- přírodní látky, bílkoviny, sacharidy, lipidy, nukleové kyseliny, biokatalyzátory</td>
</tr>
<tr>
<td></td>
<td>- biochemické děje</td>
</tr>
</tbody>
</table>
Varianta A klade větší důraz na aplikaci učiva chemie v zemědělské praxi. Jelikož je v příslušném RVP výuce chemie předurčena minimální týdenní dotace 4 hodiny a výuka ve variantě A, dalo by se očekávat, že střední školy budou požadovat na asociaci teoretických poznatků s praktickým uplatněním ve své výuce reflektovat.

Cílem výuky přírodních věd má být podle rámcového vzdělávacího programu naučit žáky využívat přírodovědných poznatků v osobním i profesním životě. Nutno podotknout, že uvedené tabulky s obsahovou náplní chemického vzdělávání a očekávanými výstupy jsou univerzální pro širokou škálu středních odborných škol. Proto i z tohoto důvodu se v těchto tabulkách hovoří pouze obecně o „uplatnění v praxi“ a není zmíněný konkrétní přesah do oboru zemědělství.

2.5 Vybrané školní vzdělávací programy oboru Agropodnikání

V následujících pododdílech jsou vypsány informace ze školních vzdělávacích programů, vytvořených k oboru Agropodnikání, vztahujících se k výuce chemie na vybraných zemědělsky zaměřených středních školách. Pro tyto účely byly vybrány z hlediska počtu žáků největší zemědělsky zaměřené střední školy ze zemědělsky významných krajů (Kraj Vysočina, Olomoucký kraj, Jihomoravský kraj), a síce:

- Česká zemědělská akademie v Humbolci, střední škola,
- Střední škola zemědělská, Přerov, Osmek 47,
- Střední vinařská škola Valtice, příspěvková organizace.

Mnohé obecné pasáže školních vzdělávacích programů různých škol bývají často shodné či velmi podobné.
2.5.1 Česká zemědělská akademie v Humpolci, střední škola

Kapacita oboru Agropodnikání této školy je 460 žáků denní a 150 žáků dálkové formy vzdělávání.

Týdenní hodinová dotace výuky chemie na škole je:

- v 1. ročníku: 3 hodiny, z toho 1 hodina laboratorního praktika
- v 2. ročníku: 3 hodiny, z toho 1 hodina laboratorního praktika.

Rozsah učiva chemie je 96 hodin v 1. ročníku a 96 ve 2. ročníku studia, což je v součtu o 48 hodin méně, než bývá v případě gymnázií.

O propojení chemie se zemědělskou činností se hovoří v pasážích o:

- obecném cíli předmětu („Znalosti chemie jsou předpokladem uvědomělého šetrného vztahu k přírodě.“),
- charakteristice učiva („Výuka předmětu chemie směřuje k tomu, aby žáci uměli ... zdůvodnit vliv a dopad chemických látek na životní prostředí a zdraví člověka, zaujímat stanoviska při aplikaci chemických látek v zemědělství, potravinářství, kosmetice a produkci spotřebního zboží, samostatně provádět analyzy, vyhodnotit je a použít v praxi, využít biochemických poznatků k porozumění fyziologickým pochodem v těle živočichů i rostlin.“),
- přínosu předmětu pro rozvoj klíčových kompetencí a průřezových témat („Předmět rozvíjí schopnosti... hledat nové postupy a způsoby využívání chemie, které eliminují její negativní dopady na životní prostředí a zdraví člověka.“).
Probíranými tématy jsou:

- Obecná a fyzikální chemie rozsah 60 hodin
- Anorganická chemie rozsah 8 hodin
- Analytická chemie rozsah 3 hodiny
- Organická chemie rozsah 40 hodin
- Makromolekulární chemie rozsah 3 hodiny
- Chemie přírodních látek rozsah 10 hodin
- Biochemie rozsah 10 hodin
- Environmentální chemie a toxikologie rozsah 2 hodiny

Z uvedeného vyplývá, že oproti rámcovému vzdělávacímu programu zavádí školní vzdělávací program do výuky tematické celky analytická chemie, makromolekulární chemie, chemie přírodních látek a environmentální chemie a toxikologie. Velmi kladně lze hodnotit rozpracování pojetí vyučovacího předmětu chemie na obecný cíl předmětu, charakteristiku učiva, strategii výuky, hodnocení výsledků žáků a přínos předmětu k rozvoji klíčových kompetencí a průřezových témata včetně uvedení možného využití poznatků v zemědělské praxi.

Podle informací uvedených ve školním vzdělávacím programu této školy

2.5.2 Střední škola zemědělská, Přerov, Osmek 47

Kapacita oboru Agropodnikání této školy je 240 žáků denní a 150 žáků dálkové formy vzdělávání.
Týdenní hodinová dotace výuky chemie na škole je:

- v 1. ročníku: 3 hodiny,
- v 2. ročníku: 2 hodiny.

Rozsah učiva chemie je 96 hodin v 1. ročníku a 96 ve 2. ročníku studia.

O propojení chemie se zemědělskou činností se hovoří v pasážích o:

- obecném cíli předmětu („Cílem je poskytnout žákům … a dále klást důraz na schopnost aplikace dovedností a vědomostí do jiných souvisejících předmětů, všeobecně vzdělávacích, odborné praxe i běžného občanského života“),
- charakteristice učiva („Výuka předmětu chemie směřuje k tomu, aby žáci uměli … zdůvodnit vliv a dopad chemických látek na životní prostředí a zdraví člověka, zaujímat stanoviska při aplikaci chemických látek v zemědělství a potravinářství, řešit otázky, spojené s využitím chemických látek v oblasti praxe, samostatně provádět jednoduché analyzy, vyhodnotit je a použít v praxi“),
- strategii výuky („V průběhu výuky teorie je používáno vhodných přírodní a praktických příkladů z běžného života, nebo situací, se kterými se žáci mohou běžně setkat a do kterých se v praktickém životě zpravidla dostanou“),
- hodnocení žáků („Při hodnocení žáků bude kladen důraz na schopnost využívat poznatky v souvisejících předmětech, v běžném životě a v zemědělské praxi“),
- přínosu předmětu pro rozvoj klíčových kompetencí a průřezových témat („Z průřezových témat je realizováno zejména téma Člověk a životní prostředí tím, že žáci se zamýšlejí nad vlivem chemických prostředků na životní prostředí a seznámají se s postupy, které eliminují negativní dopady chemie na životní prostředí a zdraví člověka“).
Probíranými tématy jsou:

- Obecná chemie
 rozsah 39 hodin
- Systematická anorganická chemie
 rozsah 22 hodin
- Organická chemie
 rozsah 62 hodin
- Biochemie
 rozsah 26 hodin
- Makromolekulární chemie
 rozsah 8 hodin
- Základy toxikologie
 rozsah 8 hodin
- Analytická chemie
 rozsah 27 hodin

Z uvedeného vyplývá, že oproti rámcovému vzdělávacímu programu zavádí školní vzdělávací program do výuky tematické celky makromolekulární chemie, základy toxikologie a analytická chemie. Bohužel zde není ani tematicky naznačena náplň laboratorního praktika. Velmi kladně lze hodnotit rozpracování pojetí vyučovacího předmětu chemie na obecný cíl předmětu, charakteristiku učiva, strategii výuky, hodnocení výsledků žáků a přínos předmětu k rozvoji klíčových kompetencí a průřezových témat včetně uvedení možného využití poznatků v zemědělské praxi.

2.5.3 Střední vinařská škola Valtice, příspěvková organizace

Kapacita oboru Agropodnikání této školy je 120 žáků denní formy vzdělávání.

Týdenní hodinová dotace výuky chemie na škole je:

- v 1. ročníku: 3 hodiny, z toho 1 hodina laboratorního praktika,
- v 2. ročníku: 2 hodiny, z toho 1 hodina laboratorního praktika.

Rozsah učiva chemie je 96 hodin v 1. ročníku a 64 ve 2. ročníku studia.
O propojení chemie se zemědělskou činností se hovoří v pasážích o:

- **cíli předmětu** („Cílem je poskytnout žákům … a dále klást důraz na schopnost aplikace dovedností a vědomostí do jiných souvisejících předmětů všeobecně vzdělávacích, odborné praxe i běžného občanského života”),

- **charakteristice předmětu** („Výuka předmětu chemie směřuje k tomu, aby žáci uměli … zdůvodnit vliv a dopad chemických látek na životní prostředí a zdraví člověka, zaujímat stanoviska při aplikaci chemických látek vzemědělství a potravinářství, řešit otázky, spojené s využitím chemických látek v oblasti praxe, samostatně provádět jednoduché analýzy, vyhodnotit je a použít v praxi”),

- **metodách a formách výuky** („V průběhu výuky teorie je používáno vhodných přírovnání a praktických příkladů z běžného života, nebo situací, se kterými se žáci mohou běžně setkat a do kterých se v praktickém životě zpravidla dostanou”),

- **hodnocení žáků** („Při hodnocení žáků bude kladen důraz na schopnost využívat poznatky v souvisejících předmětech, v běžném životě a v zemědělské praxi”),

- **přínosu předmětu pro rozvoj klíčových kompetencí a průřezových témat** („Z průřezových témat je realizováno zejména téma Člověk a životní prostředí tím, že žáci se zaměří na vlivem chemických prostředků na životní prostředí a seznámí se s postupy, které eliminují negativní dopady chemie na životní prostředí a zdraví člověka”).

Probíranými tématy jsou:

- Obecná chemie rozsah 44 hodin
- Systematická anorganická chemie rozsah 20 hodin
- Chemické cvičení rozsah 32 hodin
- Organická chemie rozsah 24 hodin
- Biochemie rozsah 8 hodin
- Analytická chemie rozsah 32 hodin
Z uvedeného vyplyvá, že oproti rámcovému vzdělávacímu programu zavádí školní vzdělávací program tematicky celek analytická chemie do výuky a uvádí tematické okruhy prováděných laboratorních úloh (v rámci chemického cvičení). Velmi kladně lze hodnotit rozpracování pojed vyučovacího předmětu chemie na cíl předmětu, charakteristiku učiva, metody a formy výuky, hodnocení žáků a přínos předmětu pro rozvoj klíčových kompetencí a průřezových témat včetně uvedení možného využití poznatků v zemědělské praxi.

Z porovnání těchto 3 školních vzdělávacích programů jsou patrné značné rozdíly ve výuce chemie mezi jednotlivými školami. Zatímco třeba Střední vinařská škola ve Valticích má vyčleněno 32 hodin pro výuku analytické chemie, tak na České zemědělské akademii v Humpolci jsou to pouze 3 hodiny, což je pouze 9,4% hodin oproti valtické škole. Naopak Střední vinařská škola ve Valticích má značně podprůměrnou hodinovou dotaci vyčleněnou pro výuku biochemie (8 hodin), kdežto Střední škola zemědělská v Přerově má pro výuku biochemie vyčleněno 26 hodin (tj. 3,25x více). Nutno podotknout, že studované školní vzdělávací programy jsou v obecných věcech velmi podobně koncipovány (popis rozvíjených klíčových kompetencí, posílených mezipředmětových vaze apod.) a konkrétně neudávají jednotlivé aplikované příklady propojení předmětu chemie s reálnou zemědělskou praxí. Souhrnně je možné konstatovat, že hodinová dotace výuky chemie na středních zemědělských školách je s ohledem na důležitost tohoto předmětu pro reálnou zemědělskou praxi nedostatečná a zaostává i například oproti všeobecně zaměřeným gymnáziím.

2.6 Používané učební zdroje

Orientačně byly analyzovány nejrozšířenější učebnice chemie využívané pro výuku chemie na základních školách a středních odborných školách.
Již v učebnicích chemie určených pro základní školy se objevují drobné informace o souvislosti mezi zemědělstvím a chemií, ačkoliv ne vždy je zdůrazněn význam daného poznatku pro zemědělský obor.

Přímo v úvodu učebnice Základy chemie 1 [19] (viz obr. 2.2) je uveden význam chemie, ve kterém je reflektována její důležitost pro zemědělství: „Život rostlin a živočichů včetně člověka … jsou spojeny s chemickými změnami. Kdyby člověk v současnosti nemohl ke svému prospěchu využívat poznatky z chemie, zůstal by hladový, žíznivý…“

![Obr. 2.2 Obálka učebnice Základy chemie 1](image)

Další zmínka je například v úlohách o významu chemie, kde se po žákovi chce, aby uvedl výrobky používané v zemědělství, které by neexistovaly bez chemického průmyslu. Tato úloha je přiřazovací a správným řešením je asociace s průmyslovými hnojivy.

Při výuce směší se provádí odpařování minerální vody, aby se žáci přesvědčili o tom, že se jedná o směs rozpuštěných minerální látek ve vodě. Rovněž v otázkách na procvičení je po žákovi požadováno, aby uvedl, jakým typem směsi jsou například rozpýlené částečky zeminy v říční vodě. Dále je žák tázán na možnost urychlení rozpouštění cukru ve vodě při zavařování kompotu, nebo má vypočítat hmotnostní zlomek cukru v roztoku pro dokrmování včel, v ovocné šťávě a soli v roztoku pro nakládání rychlovačných okurek. Jako příklad destilace je uváděna výroba alkoholických nápojů (koňaku, slivovice), krystalizace a sublimace je popsána na přečištění kyseliny benzoové (s uvedením jeho využití pro konzervaci potravin).
V učebnici je popsán také experiment na získání extraktu barví z rostlin (listy kopřiv nebo špenátu, šipky, mrkv, lusky červené papriky) a následné rozdělení těchto barví pomocí chromatografie. Jako zajímavost je uváděno získávání propolisu, produkovaného včelami, pro přípravu jeho ethanolového roztoku využívaného v lidovém léčitelství. Na samostatné práci žáka je ponecháno zjišťovat, zda červená řepa obsahuje pouze jedno, nebo více barví.

V kapitole o vodě je zdůrazněn její význam pro samotný život i například uvedena zajímavá tabulka popisující spotřebu vody pro získání 1 kg některé suroviny (pšenice, hovězího masa, cukru z řepy...). Uvedena je i přehledová mapka se situováním léčivých minerálních pramenů v České republice nebo uvedena klasifikace vody (podle obsahu minerálních látek či nečistot), její čištění a využití jednotlivých druhů vod.

Při výkladu učiva o stavbě atomu je popsána difúze z historického hlediska, jako pozorování pohybu zněk pylu v kapce vody (Brownův pohyb), i je uveden návod na pozorování difúze zrnka kafru ve vodě.

Učivo pojednávající o halogenech je doplněno otázkou na důvody vymízení zápachu nevyměňované vody ve váze s květinami po přidání chlorové vody. Objev fosforu v roce 1669 alchymistou H. Brandem je popsán jako pozorování světélkování při zahřívání zahuštěné moči s písčtem, z čehož je odvoditelný výskyt fosforu v moči.

V popisu vybraných sloučenin je uvedeno jejich využití i vzemědělské branži, například u oxidu sířičitého: „při výrobě celulózy a papíru ze dřeva, k bělení (vlny, bavlny, slámy), k dezinfekci (síření) sudů, sklepnicích prostor, včelích úlů.“ U oxidu uhličitého je pak zmíněn jeho význam při fotosyntéze, tak při sycení nápojů. Chlorid sodný je charakterizován jako nezbytná složka potravy živočichů a uvedeno je jeho využití při konzervaci potravin. Zmíněna je jak důležitost příjmu soli v potravě, tak jeho nebezpečnost v případě předávkování.

V kapitole věnované kyselinám a zásadám je uveden výskyt kyselin chlorovodíkové v žaludku (význam pro trávení potravy), využití kyselin sírové, dusičné, fosforečné a
amoniaku při výrobě průmyslových hnojiv. Odstavec obsahuje kromě konkrétních příkladů hnojiv také jejich informace o jejich využití a významu.

Samostatný odstavec v kapitole o solích je určen hnojivům. Ta jsou rozdělena na přírodní a průmyslová, ta průmyslová dále na jednosložková a vícesložková.

Druhý díl učebnice, Základy chemie 2 [20] (viz obrázek 2.3), obsahuje, ve vztahu chemie k zemědělství, stručné pojednání o zdrojích energie (např. fosilních palivech), dále se pak zaměřuje na chemii organickou a biochemii – chemii přírodních látek a procesů probíhajících v živých organismech.

![Základy chemie 2](image)

Obr. 2.3 Obrázek učebnice Základy chemie 2

Kapitola o alkoholech a fenolech je uvedena historickým exkurzem, v němž je zmíněna znalost výroby alkoholických nápojů kvašením sladkých roztoků již starověkými Egyptany a Sumery. Proces kvašení je rovněž popsán i chemickou rovnicí. U kyseliny octové je zmíněno využití jejího vodného roztoku v potravinářství. Karboxylové kyseliny jsou dány do
souvislostí se svým zastoupením v různých plodinách.

Neopomenuty jsou estery, u kterých je uvedeno: „Tvoří přijemné voničky složky plodů rostlin, jsou složkou vosků, zejména tuků.“ Žákům je předložena k vyřešení otázka, zda cukrářský výrobek obsahuje alkohol, jestliže do těsta na jeho výrobu byla přidána rumová esence (ethylester kyseliny mravenčí).

Samostatná kapitola (14 – Významné látky v organismech) pojednává o přírodních látkách, které jsou zde charakterizovány, uvedeny jejich příklady, důkazy, využití a významy. Těmito látkami jsou sacharidy, tuky, bílkoviny a biokatalyzátory (enzymy). Navazující kapitola (15 – Chemie slouží i ohrožuje) pak pojednává mimo jiné o pesticidech, zdravé výživě či znečišťování vody a půdy.

Mezi nové učebnice chemie pro základní školu patří titul Chemie 8 učebnice pro základní školy a víceletá gymnázia [21] (viz obrázek 2.4). Ta obsahuje v porovnání s kolekcí učebnic Základy chemie podstatně méně textů, ale více fotografii, obrázků a jiné grafiky.

Obr. 2.4 Obálka učebnice Chemie 8 učebnice pro základní školy a víceletá gymnázia

První asociace chemie se zemědělství se objevuje na úvodním obrázku muží nacházejícího se u svého kola, automobilu a domu se zahradou. Na obrázku jsou popsány jednotlivé jeho komponenty, které jsou chemií. Asociace se zemědělstvím je v tomto případě zmíněna skrz umělá hnojiva.
V učivu o směších jsou různé typy směsí prezentovány i pomocí příkladů souvisejících s potravinářstvím (pěna piva, důs s dužinou, salát...). U destilace je uvedeno její využití při výrobě alkoholických nápojů, s chromatografií je pojen pokus na oddělování rostlinných barviv.

U vodíku je uvedeno jeho využití při ztužování tuků, v odstavci o chorlu zase jeho uplatnění při výrobě prostředků proti plevelům či hmyzu. Neopomenuto je umělé přidávání jodu do kuchynské soli a mléka. Také u kyseliny dusičné a amoniaku je zmíněno jejich využití při výrobě umělých hnojiv. Oxid uhličitý je zmíněn v souvislosti s výrobou nejrůznějších nápojů, oxid sířičitý pak konkrétně s výrobou vína.

V kapitole o uhličtu je připomenut výskyt methanu v bioplynu, vlastnost ethylenu umožňující urychlování zrání ovoce. Rovněž učivo věnované hořčíku obsahuje zmínku o jeho zastoupení v zeleném rostlinném barvivu chlorofyly, řících, banánech či obilí. S chlorofýlem je pojena i informace uvedena u oxidu sířičitého, konkrétně že tento plyn narušuje tvorbu barviva, což v důsledku vede ke žloutnutí a následnému opadávání listů a jehličí u stromů. Využití v potravinářství (jako regulátor kyselosti či látky ošetřující mouku) či při vápnění půdy má oxid vápenatý.

Učivo halogenderivátů obsahuje i informace o nebezpečnosti polychlorovaných bifenylov (PCB) a dichlordifenyltrichlorethanu (DDT). Jako zajímavost je uveden výskyt dusíkatého derivátu s vůní připomínající nitrobenzen v jádřech peckovic a připomenuta souvislost s otravami ve starověkém Egyptě. U methanolu a ethanolu je zmíněno jejich využití jako alternativních paliv, v případě methanolu je to bionafta. Mnoho zajímavostí je uvedeno v kapitole zaměřené na karboxylové kyseliny, například že se kyselina mravenčí přidává do krmiva pro kuřata, neboť nicí bakterie v trávicím traktu, známé využití je popsáno u kyseliny octové a výskyt u kyseliny citronové, palmitové, stearové a olejové. Zmíněn je také výskyt esterů v různých potravinách či benzoanu draselného v malinách.
V závěru učebnice jsou uvedeny také informace o tvrdosti vody a jejím čištění, nebezpečnosti šťavelanu vápenatého či požívání nadměrného množství chloridu sodného a konečně také kapitola o solích používaných jako hnojiva.

Navazujícím dílem popisované učebnice je titul Chemie 9 učebnice pro základní školy a víceletá gymnázia [22] (viz obrázek 2.5).

![Obr. 2.5 Obálka učebnice Chemie 9 učebnice pro základní školy a víceletá gymnázia](image)

V tomto díle je zařazeno učivo přírodních látek. U tuků je například zmíněno jejich získávání z rostlin (slunečnicový a panenský olej) a výskyt v těle živočichů. Výskyt cukrů je připomenut na hroznech, meďů či cukrové řepě. Samostatná kapitola je věnována fotosyntéze, která je doplněna i o pokus na dělení rostlinných barví. Příosné je uvedení různých typů rostlin (C3, C4, CAM), ačkoliv je to v tomto případě spíše nad rámec učiva chemie na základních školách. Další kapitola je zaměřena na podrobnější popis kvašení (kromě alkoholového je uvedené i mléčné, máslíne a octové kvašení) a za ní následuje učivo bílkovin. Denaturace bílkovin je představena na příkladu tepelné úpravy potravy a popsány jsou jednotlivé funkce bílkovin (stavební, transportní, katalytické, řídící a regulační...). Potešující je i zmínka o syntéze bílkovin v těle rostlin z dusičnanů a amoných sloučenin, které tvoří hnojiva. U textu o nukleových kyselinách jsou uvedené i geneticky modifikované organismy (GMO), zvlášť kukuřice, kapitola o vitamínech obsahuje i informace o jejich výskytech v rostlinách. Následující kapitoly pojednávají o hormonech a alkaloidech. Do učiva o chemických reakcí
jsou v souvislosti s katalyzátory představeny enzymy a zmíněn jejich význam třeba při výrobě syra. Chemické výpočty obsahují i příklady z praxe – hmotnostní zlomek je uváděn na příkladu tuku v jogurtu, kyseliny octové v octu či cukru v kompotu, látková koncentrace pak na analýze pitné vody. Závěr učebnice pojednává o energetických zdrojích, hnojivech, pesticidech a léčivech. Hnojiva jsou rozdělena na jednosložková a vícesložková a uvedeny jejich konkrétní příklady. Stejně tak pesticidy jsou rozdělené na insekticidy, herbicidy, fungicidy a rodenticidy.

Obecnou středoškolskou učebnicí chemie je Chemie pro střední školy [23] (viz obrázek 2.6).

Obr. 2.6 Obálka učebnice Chemie pro střední školy

V úvodní kapitole učebnice je uvedeno využití chemie v zemědělství („průmyslová hnojiva, pesticidy a další ochranné prostředky proti rostlinným a živočišným škůdcům a proti chorobám“) a potravinářství („ztracené tuky, pivo, lihoviny, cukr (sacharóza), ocet a jiné produkty získané ze zemědělských plodin“). Učivo směší, ve kterém se jinak přímo nabízí uvedení různých příkladů i ze zemědělské praxe, je zde zpracováno příliš stroze a pro žáky zemědělských oborů nemotivačně. U hmotnostního zlomku jsou uvedeny příklady na složení cukerného roztoku pro dokrmování včel a roztoku octa. Další zmínka je uvedena až v kapitole o vodě, kde jsou popsány její vlastnosti a druhy. U oxidu sířičitého je popsáno jeho využití při sifenci sudů a sklepů, u dusíku a amoniaku jejich využití při výrobě hnojiv. Menší pasáž o hnojivech je součástí textu pojednávajícího o fosforu. V kapitole organické chemie jsou základní alkany (methan, etan, propan, butan) dány do souvislosti se složením bioplýnu. U
ethanolu je zmíněna jeho výroba kvašením a souvislost s alkoholickými nápoji. Pouze přibližně polovina stránky A4 je věnována pesticidům (s rozdělením na herbicidy, insekticidy a fungicidy). Potěšující je úvodní laboratorní úloha v kapitole biochemie, neboť je zaměřena na oddělování rostlinných barviv. V další části učebnice je uveden, převážně příliš obecný, popis bílkovin, sacharidů, lipidů, nukleových kyselin, enzymů a vitaminů. Poslední dvě kapitoly obsahují elementární učivo analytické chemie a náměty na laboratorní úlohy.

Další používánou středoškolskou učebnicí chemie je učebnice Chemie pro studijní obory SOŠ a SOU nechemického zaměření [26] (viz obrázek 2.7).

Obr. 2.7 Obálka učebnice Chemie pro studijní obory SOŠ a SOU nechemického zaměření

V úvodu učebnice je zcela opomenuta zmínka o souvislosti chemie se zemědělským průmyslem (uvedeny jsou například průmysly farmaceutické, sklářské, keramické či stavebních materiálů). Rovněž i zde je učivo pojednávající o směsích a metodách jejich dělení příliš strohé a zcela zde chybí příklady z praxe blízké žákům zemědělských oborů. Bohužel prakticky zaměřené nejsou ani chemické výpočty, které jsou koncipovány jen na „čistě chemické“ problémy. V kapitole věnované vodě je uvedeno její dělení i představena tvrdost vody. U textu věnované síře chybí zmínka o významu oxidu sířičitého ve vinařství. Učivo dusíku a fosforu obsahuje pouze strohou informaci o jejich využití jako složek hnojiv. Ačkoliv je u odstavce věnovaného metanu uvedena jeho produkce při „hnití rostlin v bahně a odpadků v kalu městských kanalizací“, není produkt této přeměny (bioplyn) konkrétně pojmenován. Rovněž v případě etylenu je uvedeno, že se „používá k urychlování dozrávání

37
jižního ovoce ve skladech“, ale není zmíněno, že je tento plyn hormon. U ethanolu je sice uvedeno jeho získávání kvašením, ale chybí zde informace o jeho výskytu v alkoholických nápojích. Kapitola o lipidech obsahuje zmínku o jejich vzniku přeměnou sacharidů u rostlin a vlastní tvorbě z potravin (příp. sacharidů či bílkovin) u živočichů. Opět, spíše obecně, je představeno učivo sacharidů, bílkovin, biokatalyzátorů (vitamíny, enzymy, hormony), nukleových kyselin, steroidů, alkaloidů a terpenů. Pesticidům je věnována přibližně 1 stránka velikosti A5.

Velmi stručnou středoškolskou učebnicí chemie (v podobě „sešitového vydání“ formátu A5 o rozsahu 46 stran, avšak obsahující CD s podrobnějším učivem) je Základy přírodovědného vzdělávání pro SOŠ a SOU – chemie [25] (viz obrázek 2.8).

![Základy přírodovědného vzdělávání pro SOŠ a SOU - chemie](image)

Obr. 2.8 Obálka učebnice Základy přírodovědného vzdělávání pro SOŠ a SOU - chemie

První souvislost chemie se zemědělskou (resp. potravinářskou) praxí je možné najít při výkladu učiva hmotnostního zlomku, kde je uveden příklad na složení třešňového kompotu. V papírovém vydání učebnice zcela chybí učivo věnované síře, dusíku či fosforu. Až v kapitole věnované oxidům je stručná poznámka o využití oxidu sířičitého při sítění sudů, stejně tak zastoupení kyselin uhličitých pěstlivých nápojích a pivu. Stručná kapitola o solích obsahuje pasáž o průmyslových hnojivech. U ethanolu je zmínka o jeho získávání při kvašení, konkrétně je pak zmíněna výroba alkoholických nápojů. Veškeré přírodní látky jsou představeny velice stroze na 3 stránkách formátu A5, malý odstavec je věnován pesticidům (s dělením na herbicide, fungicide a zooside).
Poslední vydanou (nyní se již nevydává) středoškolskou učebnicí chemie zaměřenou pro výuku na zemědělsky zaměřených školách byla Chemie – Učebnice pro střední zemědělské školy [26] (ciz obrázek 2.9).

Obr. 2.9 Obálka učebnice Chemie – Učebnice pro střední zemědělské školy

Poněkud nešťastně je zpracováno učivo obecné chemie, jehož součástí jsou i chemické výpočty. Samotné výpočty nejsou zaměřeny na úlohy ze zemědělské praxe a jedinou zmínkou v této kapitole tak zůstává popis pufráčních schopností půdy v odstavci věnovaném pufrům. Trochu podrobněji je pojato učivo vody, kde je uvedena souvislost anomálie vody se zvětráváním hornin, popsána její tvrdost, koloběh v přírodě, ekologie, úprava pitné a odpadní vody. Kapitola anorganické chemie je na tom podstatně lépe, se zemědělskou praxí jsou dány do souvislosti halogenidy, kyslíkaté sloučeniny halogenů, síra, polysulhydry, oxid sířičité, dusík, amoníak, fosfor a jeho sloučeniny. Zvlášť je popsán koloběh dusíku v přírodě, dusíkatá, fosforečná, vápenatá a draselná hnojiva a hlinitokřemičitany. V kapitole organické chemie jsou do souvislosti se zemědělskou praxí uvedeny alkany (methan, propan, butan), tak mnohé deriváty uhlovodíků (jodoform, methanol, ethanol, pentanol aj.). Zvlášť je popsána ekologie halogenderivátů uhlovodíků. Běžně jsou popsány lipidy, sacharidy, bílkoviny, enzymy a vitamíny. Velmi pozitivní je zařazení odstavce o chemii půdy, pesticidech a základů analytické chemie do učebnice.
Pro zajímavost je možné uvést, že učebnice chemie věnované zemědělským školám vycházely již na začátku 20. století. Příkladem je přehledně psaná učebnice *Chemie pro nižší zemědělské školy*, která byla vydána v roce 1934.

Ze současné nabídky středoškolských učebnic chemie je obtížné některou doporučit pro výuku chemie na zemědělsky zaměřených školách, neboť nabízené učebnice jsou buď psány příliš obecně, nebo jsou příliš stručně. V obou případech však chybí dostatek příkladů ze zemědělské praxe, aby bylo možné propojit teoretické učivo s konkrétními aplikacemi. Tyto skutečnosti, že žádná z běžně dostupných učebnic komplexně nepokrývá požadavky na chemické vzdělání na zemědělských školách stanovených příslušným rámovým vzdělávacím programem, byla výrazným podnětem pro vytvoření nového studijního materiálu (sbírky úloh). Analyzované učebnice byly srovnány dle stanovených kritérií a souhrnně jsou porovnány v tabulce 2.4 na následující straně.
<table>
<thead>
<tr>
<th>Tab 2.4 Porovnání analyzovaných učebnic dle stanovených kritérií</th>
</tr>
</thead>
<tbody>
<tr>
<td>Základy chemie 1+2</td>
</tr>
<tr>
<td>1. Učebnice obsahuje některé početní úlohy související se zemědělskou prací</td>
</tr>
<tr>
<td>2. Učebnice obsahuje návody na experimenty související se zemědělskou prací</td>
</tr>
<tr>
<td>3. Učebnice obsahuje samostatnou kapitolu popisující souvislost chemie se zemědělstvím (např. hnojiva)</td>
</tr>
<tr>
<td>4. V učebnici je probrána chemie životního prostředí (kvalita vody, půdy, vzduchu)</td>
</tr>
<tr>
<td>5. V učebnici jsou pírůzné přírodní látky (cukry, tuky, bílkoviny)</td>
</tr>
<tr>
<td>6. V učebnici jsou uvedeny postupy používané v analytické chemii související se zemědělstvím</td>
</tr>
</tbody>
</table>
3 Praktická část

V rámci praktické části práce bylo provedeno orientační šetření na středních školách, které vyučují maturitní zemědělský obor Agropodnikání, s cílem zjistit, jaký je stav výuky chemie na těchto školách a porovnat takto získané výsledky s běžnými trendy. Největší přínos práce spočívá ve vytvoření sbírky teoretických a praktických úloh zařaditelných do výuky chemie na zemědělsky zaměřených středních školách. Samotná sbírka tvoří přílohu diplomové práce, v rámci praktické části je však rozvedena metodologie její tvorby a výsledky orientačního hodnocení vytvořené příručky.

3.1 Orientační šetření

Pro účely této diplomové práce bylo prováděno orientační šetření mezi učiteli chemie na středních zemědělských školách nabízejících maturitní obor Agropodnikání zaměřené na výuku tohoto předmětu. Zjišťována byla obsahová stránka výuky chemie (zda převažuje obecné učivo, nebo se prolíná s konkrétními aplikacemi), vybavenost jednotlivých škol laboratořemi, dostupnost výukových materiálů apod. Z oslovených 39 škol (na webové prezentaci jedné školy nebyly dohledatelné žádné e-mailové kontakty), na kterých je uvedený obor vyučován, vyplnilo dotazníkový formulář 23 z nich, tedy jeho návratnost byla 59 %. Na následujících stránkách jsou shrnuty pokládané otázky a získané odpovědi.
1. Uveďte počty týdenních vyučovacích hodin teoretické/ praktické chemie v jednotlivých ročnících studia:

Odpovědi jsou zapracovány do tabulky 3.1 a grafu 3.1.

Tab. 3.1 Četnost jednotlivých počtů týdenních vyučovacích hodin teoretické a praktické chemie v rámci jednotlivých ročníků na středních zemědělských školách

<table>
<thead>
<tr>
<th>Počty hodin</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ročník</td>
<td>0</td>
<td>2</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>2. ročník</td>
<td>3</td>
<td>4</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>3. ročník</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4. ročník</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Z tabulky je možné například vyčíst, že na 13 školách vyučují chemii v rozsahu 2 týdenních hodin současně v 1. a 2. ročníku nebo že na 2 školách jsou pro praktickou výuku chemie vyčleněny v 1. ročníku 2 týdenní hodiny.

Graf 3.1 Průměrné počty týdenních vyučovacích hodin teoretické a praktické chemie v rámci jednotlivých ročníků na dotázaných zemědělských školách
2. Disponuje Vaše škola chemickou laboratoří?

Odpovědi jsou zapracovány do grafu 3.2.

Graf 3.2 Absolutní a relativní četnost středních zemědělských škol, které vlastní chemickou laboratoř a které nikoliv.

3. Jak jsou zaměřeny laboratorní úlohy, které ve škole provádíte?

Odpovědi jsou zapracovány do grafu 3.3.

Graf 3.3 Absolutní a relativní četnost učitelů provádějících obecně, odborně a kombinovaně zaměřené laboratorní úlohy ve výuce chemie
4. Jak jsou koncipovány početní úlohy, které ve škole probíráte?
Odpovědi jsou zapracovány do grafu 3.4.

Graf 3.4 Absolutní a relativní četnost učitelů probírajících obecně, odborně a kombinovaně zaměřené laboratorní úlohy ve výuce chemie

5. Uvítali byste vznik databáze laboratorních úloh, použitelných ve výuce, koncipovaných odborně?
Odpovědi jsou zapracovány do grafu 3.5.

Graf 3.5 Absolutní a relativní četnost učitelů, kteří by uvitli vznik databáze odborně zaměřených laboratorních úloh a kteří nikoliv

45
6. Uvítali byste vznik databáze početních úloh, použitelných ve výuce, koncipovaných odborně?
Odpovědi jsou zapracovány do grafu 3.6.

Graf 3.6 Absolutní a relativní četnost učitelů, kteří by uvítali vznik databáze odborně zaměřených početních úloh a kteří nikdy

Učitelé, kteří uvědli, že provádějí pouze obecně koncipované laboratorní úlohy či řeší jen obecně zaměřené početní příklady, byli dále dotázáni na důvody tohoto přístupu. Jako hlavní důvody uvedli nedostatek zdrojových materiálů pro odborné úlohy a příklady, jejich pravděpodobnou vyšší obtížnost a nedostatečný časový prostor pro jejich probrání.

Všichni respondenti měli možnost se v závěru dotazníkového šetření k problematice výuky chemie na své škole vyjádřit. Získané předmětné reakce jsou v gramaticky editované podobě uvedeny na následujících řádcích:

- „V dnešní době je k dispozici podstatně více obecně zaměřených studijních a pracovních materiálů než těch odborných, zaměřených na zemědělství. Proto bych vznik nějakých úloh z chemie se zaměřením na zemědělství přivítal.“
• „Laboratorní úlohy, které provádíme, jsou zaměřeny na kvantitativní chemickou analýzu, aby je bylo možné vyhodnocovat na známky podle odchylky, které se žák při své práci dopustí. Toleranci v rámci každého stupně známky se žáci dozvědí předem. Každé cvičení i se všemi výpočty zpracují do protokolu, který je vyhodnocen známkou.“

• „Na trhu chybí učebnice chemie pro zemědělské školy. Poslední pochází z nakladatelství Credit a byla vydána v roce 1997.“

• „Problémem výuky chemie na středních průmyslových školách je stále nižší vědomostní úroveň žáků, nezařazení praktik do výuky a celkově špatná koncepce školství.“

Výsledky zjištěné v rámci orientačního šetření je možné sumarizovat takto:
Na dotázaných středních zemědělských školách je chemie vyučována pouze v 1. a 2. ročníku. V obou ročních je chemie vyučována v přibližném rozsahu 2 hodiny teoretické a 1 hodina praktické výuky týdně. Většina středních zemědělských škol disponuje vlastní chemickou laboratoří, ve které jsou prováděny jak obecně, tak odborně koncipované laboratorní úlohy. Stejný přístup preferují učitelé chemie na těchto školách rovněž pro chemické výpočty. Těměř všichni učitelé by uvítali vznik sbírky chemických výpočtů a laboratorních úloh zaměřených na zemědělskou problematiku, což bylo podnětem pro její vytvoření.

Porovnání se současnými trendy
Oproti jiným středním odborným školám nechemického zaměření si dotázané střední zemědělské školy stojí doceň dobre, neboť hodinovou dotaci chemie na nich lze v porovnání s nimi hodnotit jako nadprůměrnou a rozhodně je možné kvitvat velké zastoupení středních škol s vlastní chemickou laboratoří. Mezi střední odborné školy, které nedisponují vlastní chemickou laboratoří, patří pravděpodobně ty, které nabízejí studijní obory typu obchodní akademie či hotelnictví. Při porovnání s výukou chemie na gymnáziích je však výuka chemie na středních zemědělských školách, navzdory její důležitosti pro zemědělské aplikace, poddizenzovaná. Gymnázia zpravidla rovněž disponují vlastní chemickou laboratoří, využívají ji ve stejném rozsahu, avšak mají o 2 týdenní hodiny teoretické chemie více.
3.2 Metodika tvorby sbírky

Na základě provedeného šetření byla realizována tvorba sbírky početních a laboratorních úloh pro výuku chemie na středních školách se zemědělským zaměřením. Vytvořená sbírka má rozsah 95 stran a je přílohou této diplomové práce v tištěné podobě a v elektronické jako soubor Sbirka.pdf uložený na CD nosiči. Snahou bylo klást důraz na didaktickou názornost probíraného učiva, a proto byla sbírka zpracovaná v grafické podobě užívající žlutou, červenou, modrou a zelenou barvu. Pro sazbu textu byl použit bezpatkový font písma Signika. Samotná sbírka byla vytvořena v programu Microsoft Publisher, který umožňuje snadnější tvorbu graficky náročnějšího textu než třeba Microsoft Word.

Největší přínos vytvořené sbírky spočívá v tom, že obsahuje zkompletenané různé chemické úlohy, které velmi úzce souvisí se zemědělskou tématikou a vychází z požadavků kladenými příslušnými rámovými vzdělávacími programy zemědělských oborů. Veškeré experimenty byly vyzkoušeny, zdokumentovány a sepsány metodické poznámky pro jejich realizaci. Aplikovatelnost úloh ze sbírky by mohla vést v konečné fázi k větší motivování žáků ke studiu chemie, neboť by měli rozumět asociaci teoretických poznatků s konkrétními příklady z reálné zemědělské praxe. Na trhu není dostupná žádná obdobná chemická sbírka zemědělsky zaměřených úloh určená pro střední školy, což v prováděném orientačním šetření přiznávali i učiteli chemie na zemědělsky zaměřených středních školách.

Ke sbírce byla vytvořena i metodická příručka obsahující správná řešení úloh obsažených ve sbírce či údaje o časové náročnosti a možnosti zařazení jednotlivých experimentů do výuky chemie a další. Tato metodická příručka je určena pro učitele, má rozsah 35 stran a je uložena pod názvem Metodicka-priruka.pdf rovněž na CD nosiči, které je přiloženo k této diplomové práci.
3.2.1 Chemické výpočty

Rámcový vzdělávací program maturitního oboru Agropodnikání [14] uvádí jako povinně vyučované učivo v rámci obecné chemie, které se týká chemických výpočtů:

- směsi homogenní, heterogenní, roztoky,
- látkové množství,
- chemické reakce, chemické rovnice, základní typy chemických reakcí,
- jednoduché výpočty v chemii – z chemických vzorců, chemických rovnic a složení roztoků.

Očekávanými výsledky vzdělávání podle zmíněného strategického dokumentu jsou ty, že žák:

- vyjádří složení roztoků různým způsobem, připraví roztok požadovaného složení,
- zapíše chemickou reakci chemickou rovnicí a vyčíslí ji,
- provádí jednoduché chemické výpočty při řešení praktických chemických problémů.

- Relativní atomová a molekulová hmotnost
- Hmotnostní zlomek
- Objemový zlomek
- Látkové množství
- Molární hmotnost a molární objem
- Molární koncentrace
- Výpočty z chemických rovnic
Například v rámci kapitol hmotnostní zlomek a molární koncentrace jsou obaženy informace, které vedou k ovládnutí očekávaného výstupu „vyjádřit složení roztoků různým způsobem“ vymezeného rámcovým vzdělávacím programem.

Pro tvorbu teoretické části kapitoly věnované chemickým výpočtům byly použity běžné učebnice a příručky určené pro výuku chemie. Nejčastěji bylo pracováno s tituly Chemie obecná a anorganická [29], Přehled středoškolské chemie [30], Obecná chemie [31] a Chemické výpočty a reakce [30]. Zadání úloh byla často buď modifikována, nebo vytvářena zcela unikátně tak, aby tyto úlohy obsahovaly souvislost s poznatky ze zemědělství.

Každý článek obsahuje ve žlutém rámčku motivaci úvod sdělující, proč se zavádí nová veličina, v červeném rámčku její definici (s barevně odlišeným popisem jednotlivých proměnných) a v modrém rámčku zadání řešených a neřešených početních úloh. Jednotlivá sdělení bývají doplněnová informacemi v postranních zelených sloupcích. Struktura článků věnovaných jednotlivým typům výpočtů je představitelná na libovolném z nich. Proto třeba na obrázcích 3.7 a 3.8 (na následující stránce) jsou uvedeny kopie stránek z vytvořené sbírky.

Obr. 3.7 Na první stránce (vlevo) je ve žlutém rámčku uvedena motivace zavedení nové veličiny (hmotnostní zlomek), červené rámčky obsahuje definici hmotnostního zlomku a hmotnostního procenta, v modrých rámčcích jsou vždy uvedeny zadání jednotlivých úloh. Jestliže jsou tyto úlohy řešené, je komentovaný postup uvedený přímo pod zadáním. V zelených postranních panelech jsou často uvedeny doplňující informace, obrázky nebo zajímavosti. Grafika je provedena v černé, žluté, červené, modré a zelené barvě, použitý je font písma Sígnika.
Obr. 3.8 V závěru každé kapitoly je uvedena sada neřešených příkladů, které jsou obdobou řešených typů příkladů. Zadání těchto úloh je opět zapracováno do modrých rámečků a přiležitostně doprovázeno doplňujícími informacemi, zajímavostmi a obrázkky vztahujícími se k dané úloze.

Dále jsou podrobněji popsány konkretní části článku. Obrázek 3.9 obsahuje ukázku motivační části článku o hmotnostním zlomku.

2.2 Hmotnostní zlomek

Látky bývají tvořené z různých jednotlivých složek, které svoji hmotnosti úměrně přispívají k celkové hmotnosti dané látky. Hmotnost každé látky je tedy dána součtem hmotností jednotlivých jejich složek. Poměrně (procentuální) zastoupení jednotlivých složek v látku je vhodné umět vyjádřit, neboť je tak možné například zjistit, jaká je složení roztoků (kolik procent hmotnosti roztoku tvoří daná látká — například pro vyláčení zvražení zvířat se používá 3% vodný roztok peroxidu vodíku) či zastoupení prvků ve sloučení (kolik procent hmotnosti vybrané sloučeniny zaujíma určitý prvek — například dusík tvoří 47% hmotnosti močoviny, která se používá při hnojení pědy).

Mathematically it is possible to calculate the mass fraction (or desetinného čísla) yield, i.e. the share of the particular compounds in a mixture of the same mass. The mass of each compound is proportional to the total mass of the mixture, and it can be useful to express the composition of solutions (the percentage of solution mass — for example, for the preparation of animal toxins, 3% of a water solution of hydrogen peroxide is used) or the percentage of elements in a compound (the percentage of element mass in a particular compound — for example, hydrogen takes up 47% of the mass of sodium nitrate, which is used in animal feeding).

První ze způsobů vyjádření se nazývá hmotnostní zlomek složky A, w_A, ten druhý jako hmotnostni procento složky A, w_A (%).

Matematicky je možné popsat složku (řešením desetinného čísla) vyjádřit, jaká stejná složka v látce (například tvoří-li 7 dílů z 10, vyjádří se jako část tuzem jako 7/10 nebo 0.7). Obdobně je možné tuto část vyjádřit v procentech (70%).

Obr. 3.9 Ve žlutém rámečku je uvedena motivace zavedení veličiny hmotnostní zlomek a hmotnostní procento. Popsána je pro zemědělství důležitá souvislost se složením směsí (například roztoků) i jednotlivých sloučenin (prvkové zastoupení). Zelený postranní sloupec obsahuje doprovodnou grafiku a text.
Struktura definice veličin je znázorněna na obrázku 3.10.

Obr. 3.10 Definice veličin jsou uvedeny v červených rámečcích, jednotlivé proměnné jsou od sebe barevně rozlišeny. Zelený postranní sloupec obsahuje související informace.

Struktura ukázkové úlohy je prezentována na obrázku 3.11.

Obr. 3.11 Čtenáři jsou učeni schopnosti vypočítat hmotnostní procento konkrétního prvku ve hnojivu. Tato znalost je pro budoucí zemědělce stěžejní – na základě znalosti obsahu konkrétního výživového prvku ve hnojivu jsou schopni rozhodnout, které hnojivo je pro jejich podnik ekonomicky výhodnější k nákupu, což je nepochybně jeden z faktorů, který budou při výběru přípravku zohledňovat společně s dalšími vlastnostmi.
V sekci chemických výpočtů jsou zařazeny i veličiny, které zemědělec v přímé praxi příliš nevyužije, avšak jsou důležité pro chápání jiných veličin. V takovém případě jsou i tyto úlohy koncipovány tak, aby měly se zemědělstvím souvislost, popř. vypočítaná hodnota poskytovala nějakou zajímavou informaci. Příkladem takové úlohy jsou koncentrace roztoku herbicidu glyfosátu, jak je uvedeno na obrázku 3.12.

6.4 Glyfosát C₃H₈NO₅P se používá jako herbicid. Prodává se jeho koncentrát, který obsahuje 588 g rozpuštěného glyfosátu v 1 litru vody. Před aplikací se tento koncentrát ředí vodou, pro likvidaci jednoletého plevele na orné půdě se připravuje postřik zředěním 1,5 litru koncentrátu vodou na objem 200 litrů. Vypočítejte molární koncentrace koncentrátu a roztoku připraveného pro postřik a porovnejte je s jeho nejvyšší přípustnou koncentrací v pitné vodě (0,6 mmol/l).

Obr. 3.12 Zadání neřešené úlohy na výpočet koncentrace koncentrátu a postřikového roztoku glyfosátu. Ačkoliv je tato informace pro praktické zemědělství nedůležitá, je úloha koncipována tak, aby jejím výsledkem byla zajímavá informace – kolikrát koncentrovanější je roztok postřiku a koncentrát glyfosátu než je jeho nejvyšší přípustná koncentrace v pitné vodě.

Inovativnost vytvořených početních příkladů spočívá především v tom, že jsou kompletně koncipovány jako úlohy odborné zemědělské praxe. Nejedná se tedy o běžné chemické výpočty, které slouží pouze k procvičení tématu chemických výpočtů, ale výsledky zadaných úloh se odraží v reálné zemědělské praxi.

Žádná z úloh nebyla přímo převzata z jiné sbírky. Jednotlivé příklady byly vytvořeny buď transformací zadání úloh z jiných učebnic (záměnou hodnot či počítaných veličin), nebo zcela nezávisle na jiných stávajících učebních zdrojích. Příkladem modifikované úlohy je zadání z učebnice Základy chemie 1 [19], v doslovné citaci:

„Včelaři používají k dokrmování včel vodný roztok řepného cukru. Při přípravě tohoto roztoku míchají např. 6 kg řepného cukru a 4 kg vody. Vypočítejte, kolik procent (hmotnostní zlomek) řepného cukru takto získaný roztok obsahuje.“
Modifikace příkladu v připravené sbírce je následující:

„Pro dokrmování včel používají včelaři vodný roztok řepného cukru, který podle receptu připraví rozpuštěním 3 kg cukru ve 2 kg vody. Kolik hmotnostních procent řepného cukru obsahuje takto připravený vodný roztok? Kolik kg cukru a kolik kg vody by bylo zapotřebí pro přípravu 20 kg tohoto roztoku?“

K tomuto textu jsou v postranním sloupci uvedené ještě následující doplňkové informace:

„Dokrmování včelstev se provádí před zimou nebo v sezóně ve specifických případech. “
„Pro řepný cukr se používá chemický název sacharóza a jeho sumární vzorec je C₁₂H₂₂O₁₁. “

Z uvedeného je patrné, že příklad byl modifikován po stránce vstupních hodnot a úloha byla doplněná jak o další užití vypočítané hodnoty, tak o další související informace k dané problematici dokrmování včelstev.

Část věnovaná výpočtům z chemických rovnic vychází z kapitoly zaměřené na laboratorní úlohy – jedná se o výpočty z rovnic realizovaných reakcí a je tak teoretickou přípravou k řešení zadaných experimentů, resp. řešení souvisejících chemických výpočtů.

3.2.2 Chemické experimenty

Laboratorní úlohy vycházejí z těchto povinně vyučovaných učebních celků:

- chemické látky a jejich vlastnosti,
- chemická vazba,
- chemické prvky, sloučeniny,
- periodická soustava prvků,
- směsi homogenní, heterogenní, roztoky,
- látkové množství,
- chemické reakce, chemické rovnice, základní typy chemických reakcí,
- anorganické látky, oxidy, kyseliny, hydroxidy, soli,
- vybrané prvky a jejich anorganické sloučeniny,
- typy reakcí v organické chemii,
- organické sloučeniny v běžném životě a v odborné praxi,
- chemické složení živých organismů,
- přírodní látky, bílkoviny, sacharidy, lipidy, nukleové kyseliny, biokatalyzátory,
- biochemické děje.

Navržené chemické experimenty svým konceptem vedou k tomu, aby žáci dokázali dosáhnout očekávaných výsledků vzdělávání ve zmíněném rámcovém vzdělávacím programu. Jedná se především o ty výstupy, kde se očekává, že žák:

- dokáže porovnat fyzikální a chemické vlastnosti různých látek,
- popíše metody oddělování složek ze směsí a uvede příklady využití těchto metod v praxi,
- vyjádří složení roztoků různým způsobem, připraví roztok požadovaného složení,
- vysvětlí podstatu chemických reakcí a dokáže popsat faktory, které ovlivňují průběh reakce,
- provádí jednoduché chemické výpočty při řešení praktických chemických problémů,
- vysvětlí vlastnosti anorganických látek,
• charakterizuje vybrané prvky a anorganické sloučeniny a zhodnotí jejich využití v odborné praxi a v běžném životě, posoudí je z hlediska vlivu na zdraví a životní prostředí,
• uplatňuje poznatky o určitých chemických reakcích v chemické analýze,
• uvede významné zástupce organických sloučenin a zhodnotí jejich využití v odborné praxi a v běžném životě, posoudí je z hlediska vlivu na zdraví a životní prostředí,
• charakterizuje typy reakcí organických sloučenin a dokáže je využít v chemické analýze v daném oboru,
• charakterizuje biogenní prvky a jejich sloučeniny,
• uvede složení, výskyt a funkce nejdůležitějších přírodních látek,
• vysvětlí podstatu biochemických dějů.

Například laboratorní úloha na stanovení kyselosti mléka přispívá k naplnění očekávaných výstupů „vyjádření složení roztoků různým způsobem“ (zjištěním kyselosti mléka se vyjádří obsah přítomné kyseliny mléčné), „vysvětlení podstaty chemických reakcí a popsání ovlivňujících faktorů“ (kyselina mléčná vzniká oxidaci laktosy), „realizace jednoduchých chemických výpočtů“ (z prováděného měření se vypočítá obsah kyseliny mléčné) nebo „vysvětlení podstaty biochemických dějů“ (oxidace laktosy na kyselinu mléčnou).

Veškeré experimenty jsou koncipovány s odkazem na reálnou zemědělskou praxi. Například pro zemědělce není důležité využívat alkalimetrickou titraci pro zjištění koncentrace kyseliny chlorovodíkové, ale pro zmíněné stanovení kyselosti mléka (titrace kyseliny mléčné obsažené v mléce). Obdobně není v rámci výuky učiva věnovaného plynům až tak pro reálnou zemědělskou praxi podstatné umět připravit vodík a znát jeho vlastnosti, ale mít povědomí o možnostech přípravy oxidu uhličitého (například rozkladem vápence přítomného ve skořápce vajíčka či kvašením cukerných štáv) a jeho vlastnostech (je nedýchatelný plyn nepodporující hoření) či oxidu siřičitého využívaného ve vinařství (pro síření sudů) a zahradnictví (pro hubení hladavců).
Celkem bylo vytvořeno 29 návodů na chemické experimenty, které lze realizovat v 11 dvouhodinových laboratorních praktikách. Z toho 3 praktika pro výuku obecné chemie, 5 pro výuku anorganické chemie a 3 pro výuku obecné chemie a biochemie. Vybrané experimenty jsou využitelné i jako demonstrační pokusy zařaditelné do frontální výuky.

Návody na laboratorní experimenty jsou zpracovány v jednotném grafickém provedení, což má za cíl text zatrativnit a zvýšit jeho přehlednost pro čtenáře. Na úvod návodů jsou ve žlutém rámečku uvedeny teoretické poznatky k danému tématu, názvy jednotlivých experimentů jsou uvedeny v červeném rámečku a jsou k němu přidružené další informace o konkrétním experimentu. Dále je v modrém rámečku uveden výčet všech potřebných pomůcek a reagencí. Následuje postup realizace daného experimentu a poté pracovní list, do kterého se přišli naměřené hodnoty a pozorování, chemické rovnice, provádí chemické výpočty a zodpovídají související otázky a úlohy. V zeleném postranním sloupci jsou uvedeny doplňující informace k daným experimentům či bezpečnostní symboly používaných reagencí. Struktura návodů je prezentována na obrázku 3.13.

Obr. 3.13 Na začátku laboratorní úlohy je ve žlutém rámečku vždy uvedený obecný úvod k danému tématu. Červený rámeček je název konkrétního experimentu, který je následně uveden. Modrý rámeček obsahuje seznam všech používaných pomůcek a látek (reagencí) pro realizaci daného experimentu. Následuje návod a poté pracovní list pro zápis naměřených hodnot a pozorování, napsání chemických rovnic, provedení výpočtů a zodpovězení souvisejících otázek a úloh. K většině témat je vytvořeno více souvisejících experimentů.
Zdrojem pro tvorbu chemických experimentů byly některé starší středoškolské učebnice, například Chemie pro I. ročník gymnázií [33] či Chemie pro III. ročník gymnázií [34], různé publikace zaměřené na experimenty jako například Školní pokusy z organické chemie [33], Experimentář [34] či Ne-tradiční experimenty z organické a praktické chemie [37], dále různá skripta týkající se agrochemie, analýzy potravin nebo některé závěrečné práce. Kompletní seznam použitých zdrojů je uvedený v závěru vytvořené sbírky.

3.2.3 Metodická příručka
K připravené sbírce úloh byla připravena i metodická příručka obsahující správně výsledky neřešených úloh uvedených ve sbírce, didaktické a technické poznámky k jednotlivým laboratorním úlohám, informace o možnostech zařazení do výuky či řešení souvisejících otázek a úloh. Metodická příručka poskytuje také informace o alternativních možnostech realizace jednotlivých experimentů, což je vhodné například v situacích, kdy by daná škola nedisponovala některou pomůckou (např. byretami).
4 Evaluace vytvořených materiálů

Elektronická verze vytvořené sbírky byla e-mailem zaslána učitelům chemie na středních školách se zemědělským zaměřením, kteří byli osloveni i v souvislosti s prováděným orientačním šetřením týkajícím se výuky chemie na těchto školách (viz oddíl 3.1). Příjemci byli požádáni o zhodnocení vytvořené sbírky a případné přídání některého osobního sdělení. Evaluací šetření se provádělo pomocí formulářů Google Form. Z oslovených 39 učitelů sbírku (v omezeném časovém období 3 pracovních dnů) zhotovilo 14, tedy návratnost evaluacího dotazníku byla 36 %.

Veškeré otázky měly být hodnoceny na škále 1-5, kde hodnota „1“ znamenala „Určitě ano“ a hodnota „5“ měla význam „Určitě ne“. Respondenti se tedy vyjadřovali, jak moc souhlasí s uvedenými tvrzeními. Získané odpovědi jsou zaznamenány v tabulce 4.1.

Tab. 4.1 Výsledky evaluacího šetření vytvořené sbírky chemických úloh pro střední školy se zemědělským zaměřením – v tabulce jsou uvedeny četnosti jednotlivých odpovědí na škále 1-5, kde „1“ znamená „Určitě ano“ a „5“ má význam „Určitě ne“.

1. Vznik nové příručky pro výuku chemie na středních školách se zemědělským zaměřením považují za přínosný	1	2	3	4	5
2. Příručku budu využívat jako zdroj podnětů pro svoji výuku chemie	10	4	0	0	0
3. Příručka je doporučená pro podpůrný materiál	6	5	2	0	1
4. Bylo by vhodné vydat příručku jako tiskněnou brožuru	11	0	1	1	0
5. Pomůcky a látky používané při experimentech jsou pro nás dostupné	2	11	1	0	0
6. Vyplňování pracovních listů považuju za přínosnější než psaní protokolů	6	4	2	2	0
7. Grafické zpracování brožury je přijatelné	11	3	0	0	0

Učitelé, kteří uvedli, že jsou pro ně některé pomůcky či látky nedostupné, jako příklady uvedli organická rozpouštědla (dichlormethan, 1,2-dichlorethan, petrolether…), z anorganických sloučenin chlorid antimonitý a z pomůcek nástavce na pipety.
Mnozí učitelé využili také možnosti osobních sdělení, které jsou zde v citované podobě:

„Srdečně děkuji za zaslání Vaší příručky, určitě ji hned využijí, náročnost je adekvátní, zpracování výborné a názorné, zajímavosti a poznámky za okrajem k zemědělské problematice aktuální. Velmi doporučuji k tištěnému vydání, již delší dobu postrádám v této oblasti nějakou novinku.“

„Zpracování příručky považuji za velmi podnětné a jeho způsob za zajímavý. Připomínám mi přítomnost okrajů zajímavou publikaci Odmaturuj z chemie, vše je aplikováno na výuku chemie ve třídách zaměřených na zemědělství. Sbírku hodnotím velmi kladně, učím tuto problematiku asi 27 let. Příručka shraňuje spoustu podnětů a příkladů, které všeobecně zaměřené učebnice chemie postrádají.“

„Moc pěkně zpracováno, vhodné pro všechny středoškoláky, nejen pro zemědělce.“

„Některé experimenty určitě použijí při cvičeních z chemie.“

„Děkuji za zaslání příručky. Velmi oceňuji označení jednotlivých chemikálií příslušnými piktogramy s nebezpečnými vlastnostmi.“

„Děkuji, vypadá to super!“

Evaluací šetření lze vyhodnotit tak, že všichni učitelé, kteří zaslali své odpovědi, považují vznik příručky za pozitivní, plánují ji využívat při svých přípravách na vyučovací hodiny a oceňují její grafickou úpravu. Větši rozdíly jsou u otázky, zda-li by učitelé doporučili příručku svým žákům jako studijní materiál – většina odpověděla, že ano, avšak těchto výrazně souhlasných odpovědí byl menší počet než těch, zda-li budou tuto příručku využívat sami učitelé při svých přípravách. Z toho bylo možné teoreticky odvodit skutečnost, že učitelé příručku berou spíš jako podklad pro svoji výuku než jako studijní materiál pro své žáky.
Většina respondentů se také souhlasně vyjádřila s návrhem na vydání brožury v těšené podobě, avšak vzhledem k tomu, že příručka by nesloužila jako studijní materiál pro žáky, nebyla by tato varianta příliš realní. Rozdílné názory panují také v otázce vyplňování pracovních listů na místo psaní laboratorních protokolů. Navzdory tomu, že na středních školách bývá běžně psaní laboratorních protokolů na místo vyplňování pracovních listů, 10 ze 14 učitelů se přiklonili k této alternativní variantě. Za zmínku stojí i velmi dobrá vybavenost jednotlivých škol laboratorními pomůckami a chemikáliemi, pouze ojediněle školy nedisponují některými z pomůcek či látek, které bývají spíše méně obvyklé (např. dichlormethan, 1,2-dichlorethan...), nástavce na pipety apod.
5 Závěr

Chemie je povinně vyučovaným předmětem na všech zemědělsky zaměřených středních školách. Podle orientačního šetření prováděného mezi učiteli chemie na těchto školách je jejich výuka chemie zaměřena příliš obecně bez uvádění aplikace se zemědělskou problematikou, což je v rozporu s příslušným rámcovým vzdělávacím programem (a také jednotlivými školními vzdělávacími programy, které musí povinně z rámcového vzdělávacího programu vycházet). Jako příčinu této skutečnosti učitelé uvedli absenci zemědělsky zaměřené učebnice chemie, rádi by však uvítali vznik nějaké nové příručky. Výhodou zemědělských středních škol je skutečnost, že na většině z nich je k dispozici chemická laboratoř a vyučováno laboratorní praxí. Z provedených analýz i vyplynulo, že hodinová dotace vyčleněna pro výuku chemie na středních školách se zemědělským zaměřením je nedostatečná vzhledem k důležitosti tohoto předmětu pro zemědělece, tento rozsah vyučovacích hodin přesahuje většina všeobecně zaměřených gymnázií.

V důsledku těchto zjištění byla vytvořena sbírka početních úloh a 11 laboratorních prací sestávajících se z 29 experimentů vytvořených specificky pro výuku chemie na středních zemědělských školách. Rozsah celé sbírky je 95 stran, byla vytvořena pomocí programu Microsoft Publisher jako graficky přívětivá příručka. Veškeré úlohy jsou koncipovány v souvislosti s poznatky z reálné zemědělské praxe a v souladu s požadavky kladenými Rámcovým vzdělávacím programem čtyřletého maturitního oboru Agropodnikání, který lze považovat za všeobecně zaměřený zemědělský obor. Veškeré navržené chemické experimenty byly vyzkoušeny, zdokumentovány a popsány k nim metodické poznámky pro jejich snadnější realizaci. Současně byla také připravena metodická příručka, která je určena výhradně učitelům a obsahuje řešení jednotlivých příkladů se sbírky, správné odpovědi na otázky a úlohy uváděné u chemických experimentů či další informace k jejich realizaci.

Byla provedena rovněž orientační evaluace vytvořené sbírky, ze které vyplynulo, že učitelé pozitivně hodnotí vznik nové sbírky úloh, plánují ji využívat pro přípravu na svoji výuku a oceňují její grafické zpracování. Více zdrženlivější však jsou v případném doporučení sbírky
pro výuku svým žákům a v otázce vyplňování pracovních listů k laboratorním úlohám na místo vypracovávání laboratorních protokolů. Při dotazech na materiálním vybavení chemické laboratoře bylo zjištěno, že až na výjimky jsou střední zemědělské školy solidně zařízeny laboratorními pomůckami i chemikáliemi.
Seznam použité literatury

66