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Abstract 
Human immunodeficiency virus (HIV) is globally spread virus without available cure. Since 

its life-long presence, virus is carefully monitored as well as patient’s immunological status. 

Replicative fitness of the virus is one of important aspects which can be taken into account, 

when monitoring HIV. Here, we are measuring HIV replicative fitness of gag recombinant 

viruses and comparing the results with replicative fitness of primary isolates. Further, we are 

comparing our findings of replicative fitness change over time with disease progression in the 

patient. We found that gag can be major contributor to overall fitness, although not in all 

cases. Additionally, we observed a correlation of replicative fitness development and slope of 

patient’s CD4+ T cells. Moreover, this relation was even more noticeable in patients with slow 

disease progression or in carriers of protective alleles. In summary, our results extend the 

understanding of replicative fitness and its role in disease progression; and pave the way to 

use the recombinant HIV for replicative fitness measurement in clinical practice. 

Keywords: HIV, replicative fitness, recombinant virus, HIV disease progression, gag 

 

Abstrakt 
 Virus lidské imunodeficience (HIV) je celosvětově rozšířen a bez možnosti vyléčení. 

Kvůli své celoživotní přítomnosti je virus pozorně sledován společně s imunologickým 

stavem pacienta. Replikační zdatnost viru je jedním z důležitých aspektů, které mohou být 

brány v potaz při sledování HIV. V této práci měříme replikační zdatnost HIV pomocí gag 

rekombinantních virů a srovnáváme výsledky s replikační zdatností změřenou s použitím 

primárních izolátů. Dále srovnáváme naše poznatky o změně replikační zdatnosti v čase 

s vývojem nemoci u pacienta. Zjistili jsme, že gag může být hlavním přispěvatelem k celkové 

zdatnosti, ovšem ne ve všech případech. Dále jsme pozorovali korelaci vývoje replikační 

zdatnosti a vývoje počtu CD4+ T buněk u pacienta. Tento vztah byl patrnější u pacientů, které 

řadíme mezi pomalé progresory nebo u pacientů, kteří mají některou z protektivních alel. 

Souhrnem, naše výsledky posouvají dále porozumění replikační zdatnosti a její role v progresi 

nemoci a připravují cestu k použití rekombinantního HIV pro měření replikační zdatnosti 

v klinické praxi. 

Klíčová slova: HIV, replikační zdatnost, rekombinantní virus, progrese nemoci HIV, gag 
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1. Introduction 
Viruses are well-known obligatory parasites with considerable impact on human 

health. Occasionally viruses can be spread all over the world to cause pandemic infection. 

HIV is one of the viruses with global spread. Although scientists developed broad spectrum of 

antiretroviral drugs, clearance of the virus have not been successful until today as well as 

development of vaccine. Due to gradual expansion of virus, more and more research capacity 

was dedicated to its treatment. Today we know a lot about HIV molecular biology, gene 

function and pathogenesis, but large amount of knowledge yet remains to be explained. 

Furthermore, attention was drawn to better management of patients and personalization of 

treatment. For this reason it is important to characterize aspects on the intersection between 

virus and patient, like dynamics of CD4+ T cells turnover and HIV viremia. Besides those 

characteristics, virus fitness is emphasized. In other words, fitness is an ability of virus to 

replicate in particular environment. Further knowledge of this problematics can elucidate way 

to efficient management of patient before and after start of antiretroviral treatment. 

 In our laboratory we are focusing on HIV fitness and its role in HIV pathogenesis and 

disease progression. Further, our interest is drawn to contribution of particular HIV genes to 

overall fitness of the virus. Importantly, we are using recombinant viruses for measuring 

fitness contribution of a particular gene. For those reasons, my thesis is oriented on 

contribution of gag to overall replicative fitness. Gag is one of three main genes typical for 

every retrovirus and its proteins are important targets of immune response; therefore it was 

chosen to evaluate its contribution to overall fitness. Moreover, our interest is also drawn to 

how HIV fitness changes in particular patient and how it influences disease progression in 

patients. Patients can be divided in several categories according to their immunological status. 

We are dividing our patients between slow progressors and typical progressors, based on their 

CD4+ T cells decline. Research conducted for purposes of this thesis is part of a pilot study 

evaluating the role of HIV fitness on disease progression in the context of Czech, treatment 

naïve patients.  
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2. Aims of the thesis 
Our laboratory conducts multistage research in the field of HIV replicative fitness. The 

work in this thesis is a part of the project about The Role of HIV Fitness on Disease 

Progression in the Absence of Antiretroviral Treatment. Aims of the thesis are: 

 

1. Preparation of gag recombinant virus and primary HIV isolates from untreated 

patients and comparison of replicative fitness values. 

 This aim includes: 

A. Insertion of patient specific gag in vector through method of PCR, yeast 

recombination, subcloning, and preparation of gag recombinant virus by 

transfection. 

B. Isolation of primary HIV isolates from patients’ samples. 

C. Replicative fitness values measured by different methods using viral growth 

kinetics and competition experiments. 

 

2. Characterization of replicative fitness development in disease progression of 

typical progressors and slow progressors. 

 This aim includes: 

A. Insertion of patient specific gag, from blood samples collected in several years 

span, in vector and preparation of gag recombinant viruses. 

B. Analysis of HIV replicative fitness development in the environment of two 

immunologically different groups of patients. 
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3. Literature review 

3.1. Human immunodeficiency virus 

Human immunodeficiency virus (HIV) was discovered in 1983 as a pathogen causing 

disease, later known as Acquired immune deficiency syndrome (AIDS), which was observed 

two years earlier (Barre-Sinoussi et al. 1983; CDC 1981; CDC 1982). HIV has been 

categorized as a member of family Retroviridae, genus Lentivirus. All retroviruses are 

classified as a group VI, single-stranded RNA viruses with reverse transcription activity 

(ssRNA-RT) (Francki 1991). Since its discovery, HIV has become pandemic with more than 

36 million currently infected people globally (UNAIDS 2016). During tracing of virus origin, 

another type of HIV was identified and named HIV-2, while original isolates were referred as 

HIV-1 (Clavel et al. 1986). HIV-2 never achieved pandemic status and is prevalent mainly in 

Western Africa (van der Loeff & Aaby 1999). 

3.2. Human immunodeficiency virus-1 

3.2.1. Virus origin and epidemiology 
 After initial confusion about suddenly appearing pandemic virus, researchers tracked 

down its origin. HIV-2 phylogenetic mapping revealed great similarity to viruses causing 

immunodeficiency in old world monkeys and apes (Guyader et al, 1987). New species in 

Lentivirus genus was named Simian immunodeficiency virus and are today believed to be the 

original source for zoonotic transfer to human (Gao et al. 1999). More than 40 of those 

viruses were identified in old world monkeys, including chimpanzee, western gorilla and 

sooty mangabey and those three species are considered source of HIV-1 and  

HIV-2 (Sharp & Hahn 2011.).  

 HIV-1 is categorized in four different groups. Group M (major) is associated with 

pandemic spread. This group is the oldest lineage with extrapolated time of transfer in 1920s 

or 1930s (Korber et al. 2000) from chimpanzee Pan troglodytes troglodytes in Western Africa 

(Gao et al. 1999). 

 Group N (non-M/O) has similar origin as group M, although zoonotic transfer was 

independent. In comparison with prevalent dissemination of group M, less than 20 patients 

with group N lineage have been found, all localized in south of Cameroon (Simon et al. 1998; 

Delaugerre et al. 2011). 
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 Origin of group O (outlier) remains to be determined. This virus is greatly restricted to 

Cameroon, Gabon and Equatorial Guinea with ~1% prevalence (Vessiere et al. 2010). 

 Group P (putative) lineage of virus was found in two patients worldwide. Sequencing 

and phylogenetic analysis are displaying great similarity to SIV of western gorillas, indicating 

possible source of transmission (Plantier et al. 2009). 

 Thanks to pandemic spread, group M lineage had a lot of time and opportunities to 

gradually evolve and diverse itself. Today we recognize nine different subtypes. Those 

subtypes are A, B, C, D, F, G, H, J and K. Several are rare and some are the most prevalent 

throughout the world (Hemelaar et al. 2011). In many cases superinfection by two or more 

strains in one patient takes place, recombination links together parts of two genomes and 

recombinant form arises. These recombinants are named as a circulating recombinant form 

(CRF) if virus was confirmed in three uncoupled patients and as a unique circulating form 

(URF) when found only in a single patient (Robertson et al. 2000). Dozens of CRFs and 

URFs were identified worldwide and are responsible for around 20 % of infections mostly in 

Sub-Saharan Africa, where all known subtypes are present (Hemelaar et al. 2011).  

In central Europe, Czech Republic specifically, subtype B is the most prevalent one, 

followed by subtype A and CRF01_AE (Abecasis et al. 2013). Subtype B is the most 

prevalent also in Western Europe and Northern America. 

3.2.2. Molecular biology of the virus 
 Genomic sequence of HIV-1 contains 9180 nucleotides in form of positive single 

stranded RNA. This number increases in later stage of virus cycle, when RNA is reversely 

transcribed into the proviral genomic DNA, up to 9719 base pairs after extension of long 

terminal repeats (LTRs). Genome is highly organized and encodes nine genes in three open 

reading frames (ORFs) (fig. 1). Except encoded genes, genome contains also cis-acting RNA 

elements necessary for particular steps in viral life cycle (Foley et al. 2016). Genes can be 

further categorized into two groups; first group includes three main genes coding structural 

proteins, enzymes and envelope proteins, those are gag, pol and env. Second group consists of 

genes responsible for accessory and regulatory proteins; genes vif, tat, vpr, rev, vpu and nef. 

Among those vpu gene is exclusively found in HIV-1 (Cohen et al. 1988). 
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Fig. 1. HIV-1 genomic organization. All nine genes organized in the proviral DNA genome are shown. Three 

major genes gag, pol and env and in rectangles their encoded proteins are depicted. Genes tat and rev are 

depicted with pattern of spliced exons (shaded units). Numbering is based on HXB2 isolate, a reference 

sequence from Los Alamos National laboratory HIV database. Adapted from Foley et al. 2016. 
 

In detail, gag, pol and env encode polyprotein precursors subsequently processed in 

particular stages of viral life cycle. Gag polyprotein is cleaved in six protein entities. Matrix 

protein (MA) also known as p17 is responsible for recruitment of viral and host factors. MA 

itself is located under envelope. Capsid protein (CA) or p24 contains C-terminal and N-

terminal domains, responsible for dimerization or pentamerization and hexamerization of CA 

units, respectively (Pornillos et al. 2011). Nucleocapsid (NC) or p7 is multifunctional protein 

with ability to bind viral RNA and plays role in packaging and reverse transcription (Levin et 

al. 2010). Remaining proteins p1, p2 and p6 have some minor functions in capsid maturation 

or serve as spacer peptides (Bell & Lever 2013). 

 Enzymes of HIV-1 are auto-cleaved from Gag-Pol precursor polyprotein. Ratio of 

synthesized Gag and Gag-Pol polyproteins is critical for viral life cycle (Dinman & Wickner 

1992). Pol ORF encodes protease with autocatalytic activity, reverse transcriptase and 

integrase (Foley et al. 2016). Particular functions in detail are discussed in chapter about viral 

life cycle. 

 Last important member of HIV-1 main genes is env. Polyprotein product of this gene, 

Env (or gp160), is processed by cellular enzymes. Final products are gp120 and gp41, both 

responsible for membrane fusion and recognition of CD4 receptor and chemokine  

co-receptors on target cells (Dalgleish et al. 1984; Clapham & McKnight 2001). 

Small proteins of HIV-1 are classified into two groups. First are regulatory proteins, 

translated from multiple spliced mRNA (fig. 1.). These are necessary for viral replication. Tat 

has crucial part in early phase of viral infection. This transactivator binds stem loop of the 

trans-activation response element on the 5’LTR and recruits cellular kinase that 

phosphorylates RNA polymerase II (Nekhai et al. 1997). Other regulatory protein is Rev. It 

contains nuclear localization signal which allows its accumulation in the nucleus. There it 
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recognizes Rev responsible element at unspliced and partially spliced viral mRNA, binds it 

and facilitates transport of the unspliced transcripts out of the nucleus due to own nuclear 

export signal (Malim et al. 1989). 

Second group of accessory proteins includes four members. Nef is multifunctional 

protein, which acts as a virulence factor. It helps to shape host environment during viral 

infection. Main sign of this reshaping is lower expression of CD4 on the surface of the 

infected cells (Aiken et al. 1994). It can also lower the level of cytotoxic T-lymphocyte-

associated protein 4, negative regulator of T-cell activation (El-Far et al. 2013). Both these 

effects aid to narrow T-cell response for activation and enhance viral dissemination. Vif 

protein acts mainly as a protector of budding virions from incorporation of APOBEC3G, 

cellular protein with antiviral function. Vif targets APOBEC3G for ubiquitination and 

proteasomal degradation (Yu et al. 2003). Vpr is important cofactor of the genomic DNA 

integration. It helps to transport pre-integration complex (complex of DNA and proteins) to 

the nucleus. This allows viral genomic DNA to be integrated even in the genome of 

nondividing cells with stable nuclear membrane (Heinzinger et al. 1994). Vpu is responsible 

for degrading of CD4. Consequently, CD4 are not binding Env in endoplasmatic reticulum, 

allowing proper budding (Willey et al. 1992). Genes in genome of HIV-1 are surrounded by 

two long terminal repeats, 3’LTR and 5’LTR (fig. 1). They consist of U3, R and U5 regions in 

this order and contain secondary RNA structures responsible for integration and regulation of 

transcription of integrated provirus (Foley et al. 2016). 

3.2.3. Virion structure 
HIV-1 is enveloped virus with cone-shaped capsid. Although, this shape is typical for 

matured virion, immature version also exists (fig. 2). It was reviewed in Sundquist & 

Krausslich (2012) that spherical shape of immature particle is composed of Gag polyprotein. 

Later in maturation Gag is cleaved, CAs create cone-shaped capsid core and NCs and MAs 

adopt their places inside capsid or below envelope, respectively.  
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Fig. 2. HIV-1 virion structures. Structure and organization of polyproteins in the immature virion is spherical. 

After maturation, infective virion has polyproteins cleaved and reorganized. Difference is mainly in capsid 

structure with genomic RNA inside. Adapted from Freed 2015. 
 

Capsid core consists of CA hexamers and pentamers (Ganser et al. 1999). 

Cryoelectron studies also show that minority of virions can contain several capsid cores or 

core with tube shape. This is due to the flexibility of the hexameric CA units during virion 

assembly (Briggs et al. 2003). Inside the capsid are two molecules of genomic RNA in almost 

every case (Chen et al. 2009). Aside from genomic RNA, virion also contains number of 

copies (~20) of tRNALys, annealed to primer binding site inside of the 5’LTR (Huang et al. 

1994). Ott summarized many cellular proteins within virion, but majority of their functions in 

viral life cycle remains to be determined (Ott 2008). Accessory and regulatory proteins of 

viral origin are also present in the virion (Sundquist & Krausslich 2012). Structure and 

function of viral envelope were recently reviewed by Merk & Subramaniam (2013). 

Heterodimers gp120/gp41 organize themselves into the trimeric conformation. Surface of 

HIV accomodates usually from 7 to 14 trimers (Sundquist & Krausslich 2012). 

3.2.4. Viral life cycle 
HIV-1, similar as any other virus, needs cellular host for own replication. First crucial 

step in viral life cycle is attachment to the host cell and entry of virion in the cell (fig. 3). 

HIV-1 gp120/gp41 proteins on surface of the envelope recognize CD4 receptor with high 

affinity (Dalgleish et al. 1984). The complete process from structural and functional point of 

view was recently reviewed (Klasse 2012). Protein gp120 interacts with CD4 and 

subsequently with co-receptor CCR5 or CXCR4. Correct glycosylation is necessary (Li et al. 

1993). Binding triggers conformational change and gp41 fusion peptide is injected into host 

plasma membrane followed by membrane fusion (Klasse 2012). 
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Fig. 3. HIV life cycle. Simplified picture of crucial steps in life cycle of HIV-1. After attachment and fusion, 

capsid is released in cytoplasm. Genomic RNA is reversely transcribed to proviral DNA and integrated in the 

host genome. Subsequent expression of viral proteins results in assembly of immature virion on the cell 

membrane. Proteins undergo proteolytic cleavage in released virion and the virion maturates. Adapted from 

D’Souza & Summers 2005. 

 

After the fusion capsid is uncoated and reverse transcription complex is formed. 

Complex contains reverse transcriptase, integrase, protease and matrix protein with Vpr; it 

also includes cellular histones (Karageorgos et al. 1993). Its purpose is to reversely transcribe 

genomic RNA into the linear dsDNA. Reverse transcription is initiated by tRNALys which 

binds to 18 complementary nucleotides on the binding site (Arts et al. 1996). After successful 

reverse transcription the preintegration complex is formed, consisting of viral DNA, integrase, 

Vpr, MA and many cellular components and is transported to the nucleus via nucleopore (Rey 

et al. 1998). Process of integration was reviewed by Krishnan & Engelman (2012). HIV DNA 

becomes an intrinsic part of host genetic information and it can be integrated almost anywhere 

in the host genome. Incorporated HIV DNA is called provirus. 

Transcription of proviral DNA is catalyzed by host RNA polymerase II. Tat protein is 

important in recruiting cellular factors enabling phosphorylation of polymerase and successful 

elongation of mRNA full transcript (Kao et al. 1987). Tat protein also helps post-

transcriptionally with capping of the viral mRNA (Zhou et al. 2003). Further post-
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transcriptional modification includes polyadenylation on 3’ end (Brown et al. 1991). mRNA 

can be transported from nucleus by Rev protein and serves as genomic RNA for new virions 

or as a template for Gag-Pol polyprotein synthesis (Malim et al. 1989). Except full genomic 

mRNA, HIV-1 manifests multiplex splicing pattern. In work of Karn & Stoltzfus (2011) more 

than 40 different spliced mRNAs were reviewed. They can be divided in two classes: singly 

spliced mRNAs and multiply spliced mRNAs. Authors also describe main difference between 

early and late phase of replication. In early phase, multiply spliced mRNAs (for Rev, Tat and 

Nef) are exported to cytoplasm by ordinary cellular pathways. Later on, Rev protein returns to 

the nucleus and start exporting unspliced or singly spliced mRNAs, moving thus cycle to later 

phase (Karn & Stoltzfus 2011). 

Translation of small proteins, Gag and Gag-Pol polyproteins occurs in cytoplasm 

meanwhile translation of Env takes place on ribosomes attached to ER. Synthesis of Gag or 

Gag-Pol from same mRNA is determined by -1 ribosomal frameshift, which allows 

translation of Pol ORF (Dinman et al. 1991) (fig. 1). Guerrero et al. (2015) summarized the 

ability of HIV-1 to utilize host translational apparatus. Initiation can start through cap 

dependent event or on IRES. Env and Vpu share common mRNA within different ORFs, 

which is common space saving mechanism of many viruses. Start of Vpu ORF is upstream of 

Env (fig. 1). Translation from Env ORF is enabled by ribosomal leaky scanning and missing 

starting codon of Vpu (Schwartz et al. 1990). Env, synthesized on endoplazmatic reticulum is 

transported to Golgi apparatus, cleaved by cellular enzymes and glycosylated (Li et al. 1993; 

McCune et al. 1988). 

Also, assembly and maturation, final steps in viral life cycle, were recently reviewed 

(Freed 2015). Gag polyprotein is targeted to cytoplasmic membrane and genomic RNA, 

previously transferred to cytoplasm by Rev, binds to Gag polyprotein via NC domain (Malim 

et al. 1989; Freed 2015). Processed gp120/gp41 complexes are transported to the membrane 

by vesicular transport and via interaction of MA domain of Gag polyprotein with C-terminal 

end of gp41 (Freed 2015). Next, cellular complex hijacked by Gag mediates budding of the 

immature virion. Budded virion then proceeds to maturation, where protease first cleaves 

itself from Gag-Pol polyprotein, followed by stepwise cleaveage of Gag and Gag-Pol 

polyproteins to particular proteins (Pettit et al. 1994). Capsid protein afterward builds cone-

shaped core and virion becomes matured and fully infective (fig. 2).  
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3.2.5. HIV pathogenesis 
HIV-1 name was chosen to describe its ability to cause immunodeficiency in humans. 

Basis for this immunodeficiency is in infection of CD4+ lymphocytes, known as T helper 

lymphocytes. HIV-1 also infects macrophages and dendritic cells, which helps the virus to 

disseminate into the CD4+ lymphocytes (Granelli-Piperno et al. 1998). Acute phase of the 

disease is characterized with fast drop of CD4+ lymphocytes due to directly or indirectly 

induced cell death. Infected CD4+ lymphocytes can form short living syncytia (Sylwester et 

al. 1997) or they can be induced to apoptosis by CD8+ T lymphocytes. Fast depletion of CD4+ 

lymphocytes is accompanied by great increase of viral load in plasma (fig. 4). After few 

weeks of acute infection virus proceeds to latency, chronic state accompanied by slow decline 

of CD4+ lymphocytes, which slowly over years progresses towards AIDS. WHO is 

responsible for current definition of how to diagnose AIDS based on amount of CD4+ 

lymphocytes in patient (http://www.who.int/hiv/pub/en/). During AIDS, patients have weak 

immune system; therefore they easily contract secondary and opportunistic infections, often 

with fatal results. Although therapy is highly effective today, it is still impossible to clear the 

virus once latency is established. Studies confirm that in patients on highly active 

antiretroviral therapy (HAART), peripheral monocytes and CD4+ lymphocytes (both activated 

and resting) are still source of the virus (Zhu et al. 2002).  

Important part in HIV pathogenesis is viral tropism. We distinguish HIV based on co-

receptor they use for entry: R5 (utilizing CCR5 co-receptor) and X4 (utilizing CXCR4 co-

receptor). Mixed and dual tropic viruses (R5/X4) with ability to bind both co-receptors also 

exist (Xiang et al. 2013). Recognition of co-receptor is mostly based in V3 hypervariable loop 

of gp120 (Sharon et al. 2003). Study by Ochsenbauer and her colleagues (2012) analyzes 

founder effect of predominantly R5-utilizing T-tropic virus (infects CD4+ lymphocytes 

through CCR5 co-receptor) during beginning of infection. Virus quickly adapts to R5-

utilizing M-tropism, ability to infect macrophage/monocyte cells, extending range of target 

cells (Ochsenbauer et al. 2012). Most of the virus population starts switching towards X4 

tropism in later stage of infection. Desired effect is ability to infect naïve CD4+ lymphocytes 

with high level of CXCR4 co-receptor (Shankarappa et al. 1999). Switch is accompanied with 

drastic loss in CD4+ lymphocytes due to the syncytia formation and followed by progress of 

disease (Berger et al. 1999). 

 

 

 

http://www.who.int/hiv/pub/en/
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3.2.6. Disease progression 
Based on the disease progression, we can divide patients in several groups. The most 

common group are progressors (PROs) with slow decline of CD4+ T cells count and slow 

increase in viral load over several years (fig. 4). Rare group are long-term nonprogressors 

(LTNPs) that have asymptomatic HIV over 10 years after infection with stable or very slowly 

decreasing CD4+ T cells count in the absence of antiretroviral therapy. LTNPs can be further 

divided according to level of control of viremia into viremic controllers, noncontrollers and 

elite controllers. LTNPs are able to maintain CD4+ T cell level above 500 per microliter of 

blood for at least eight years of infection without therapy and low level of viral RNA in 

plasma (Madec et al. 2009). Elite controllers in addition to preserving stable CD4+ T cell 

count maintain undetectable levels of viral RNA in plasma (below 50 copies per milliliter) 

(Grabar et al. 2009). Last group, the rapid progressors, develops AIDS very quickly, usually 

within 3 years (Casado et al. 2010). 

 

 
Fig. 4. Curves of disease progression in typical progressor. Time is plotted on axis x, on axis y1 is plotted 

CD4+ T cells count and on y2 is plotted level of viral RNA in blood. Curve with squares represents CD4+ T cells. 

Solid line represents viremia. Primary infection constitutes peak in viral load. High viremia is accompanied with 

rapid level drop of CD4+ T cells. Latent phase is established and viral load drops again. In subsequent years, 

level of CD4+ T cells is slowly declining eventually accompanied with increase in viral load. Adapted from 

Pantaleo & Fauci 1996. 

 

Disease progression varies significantly between patients and can be influenced by 

many host and viral factors. One of the most protective effects is deletion in CCR5 co-

receptor. 32bp long deletion introduces stop codon, resulting in nonfunctional CCR5 co-

receptor (Dean et al. 1996). Protective mechanism is not yet completely clear, but this 

deletion provides natural resistence for entry of CCR5 tropic viruses (Agrawal et al. 2004). 

Another host protective factor in AIDS development are HLA class I alleles. Particularly 
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HLA-B*27, HLA-B*57 and HLA-B*13 are associated with strong cytotoxic T-lymphocytes 

response (Migueles et al. 2000; Brettle et al. 1996, Shahid et al. 2015) leading to slow disease 

progression. Individuals expressing protective HLA I alleles exhibited strong induction of 

cytotoxic T-lymphocytes response early in the infection targeted against a specific epitope 

within HIV-1 capsid protein (Streeck et al. 2007). On the other hand, APOBEC3G, well-

characterized antiviral restriction factor known to inhibit also HIV-1, is not elevated in elite 

controllers and cannot explain control of disease (Gandhi et al. 2008). Another example of 

host restriction factor is TRIM5-alpha. This protein carries several functions contributing to 

HIV-1 restriction, including receptor for viral capsid and signal transducer (Pertel et al. 2011). 

Many studies have been focusing on viral factors in disease progression. Early 

research proved link between virus genotype and disease progression (Koot et al. 1992). 

Koot’s study opened new opportunities to examine particular mutations in genes and their 

effect on disease progression. 

Recent study showed effect of viral single nucleotide polymorphism in LTR of 

provirus. LTR orchestrates viral gene expression together with host transcription factors and 

other viral regulators. Study stresses out presence of several viral polymorphisms, one at 

position 108 in particular and their effect on disease severity. Effect is due to elevated binding 

of host transcription factors in binding site on LTR caused by mutations at position 108 

(Nonnemacher et al. 2016). Genotype variation of Env was evaluated for effect in disease 

progression, particularly in brain microglia. Brain microglias have lower level of CD4 than 

PBMCs. Mutant N283 is associated with lower CD4 dependence due to new hydrogen 

bonding with this receptor. This means that higher affinity of Env N283 mutant to CD4 

receptor mediates efficient infection of brain microglia. It leads to high rate of HIV-associated 

dementia among patients with HIV Env variant N283 (Dunfee et al. 2006). Role of Gag in 

disease progression is associated with host HLA class I alleles. Specifically, broad spectrum 

of CTL (cytotoxic T-lymphocytes) escape mutations was identified and anlalyzed (Boutwell 

et al. 2013). Further, escape mutations are reverted or compensated by secondary mutations in 

order to re-elevate fitness of the virus (Sunshine et al. 2015). To summarize, host factors and 

viral factors are both valid participators in disease progression. 

3.2.7. Quasispecies 
 HIV population does not consist of homogenous species but rather forms diverse 

swarm of species termed quasispecies. Concept of quasispecies was introduced to the field of 

RNA viruses in the work by Steinhauer & Holland (1987). Two major aspects contribute to 
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HIV-1 quasispecies formation. First, RT has high error rate due to low fidelity and absence of 

proofreading. Mutation rate of RT is around 10-4 per nucleotide per replication cycle (Hu & 

Hughes 2012). Second, HIV replication is very dynamic, allowing HIV-1 to reach vast 

amount of possible mutants in few cycles.  

Quasispecies theory has implication for HIV transmission and disease progression. 

During initial infection virus goes through bottleneck, resulting in sequence variability drop. 

This effect is also accompanied by drop of viral fitness. However, virus quickly establishes 

dynamic range of similar sequences, which are derived from introducing sequences and form 

new quasispecies (fig. 5) (Lauring & Andino 2010). We have to consider virus always as a 

swarm of diversified sequences. They are constantly mutating, evolving and quickly adapting 

to environment changes and consequently influence progress of infection. For example, 

virulence is enhanced if broad quasispecies are present in contrast with presence of few even 

highly specialized variants (Vignuzzi et al. 2006). 

 
Fig. 5. Development of quasispecies. Simplified diagram of quasispecies development over time. Black spot is 

original introducing sequence marking center of sequential space. Further from center, sequence is more mutated 

from the original sequence. Although original sequence does not have to be preserved in host and can be 

outcompeted, it is kept here for better orientation. Concentric circles portrait individual rounds of replication. In 

every round new centers are established surrounded by quasispecies in subsequent round of replication (colored 

spots). Adapted from (Lauring & Andino 2010). 

3.2.8. Viral fitness 
Viral fitness is complex term, describing ability of virus to survive, develop and 

reproduce itself in particular environment (Domingo & Holland 1997). Viral replicative 

fitness is subset of viral fitness, focusing on virus ability to replicate in certain conditions. 

Another concept, used by many authors, is replicative capacity. Concept focuses on 

replicative ability of virus however, only in single round of infection. 
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3.2.8.1. Methodology of viral fitness 
Different methods are used for viral fitness determination. It includes in vivo and ex 

vivo methods (Quiñones-Mateu & Arts 2001). Growth kinetics and competition experiments 

are mainly in particular interest, also accompanied today with deep sequencing to detect rare 

variants in virus population (Zanini et al. 2015). Method of growth kinetics portrays amount 

of virus in each time point. Virus amount can be quantitated by analyzing reverse 

transcriptase activity or by detecting of p24 protein levels, although this method can examine 

productivity but not survival of the virus and results can differ (Weber et al. 2003). Since 

growth kinetics is method based on mono-infection, it expresses fitness diference with lesser 

distinction than competition kinetics (fig. 6). Therefore dual-infection based competition 

kinetics can reveal small differences in fitness (Dykes & Demeter 2007). 

 

 
Fig. 6. Growth kinetics and competition experiment diagrams.  Growth kinetic assays determine HIV fitness 

in parallel infection whereas growth competition assays in one dual infection. As it is depicted here, difference 

between two viruses is more profound in competition experiment. 

 

Deep sequencing method is useful method for detecting genetic variation in 

quasispecies and fitness of drug resistant HIV. Virus has to react on many host restriction 

factors and, of course, to potential drug therapy. With deep sequencing it is possible to 

observe changes in minority of virus population and evaluate effects of restriction factors. It is 

used also in longitudinal studies observing development of sequence in patients’ context 

(Zanini et al. 2015). Deep sequencing is now a high-throughput method and has been 

successfully used for evaluation of fitness of drug resistant HIV-1 mutants. This method can 

compare representation of different sequences in presence or absence of particular 

antiretroviral drugs and draw conclusion of viral fitness advantage of particular mutated 

sequence over another (Brumme et al. 2013). 
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Another important issue for HIV-1 fitness determination is to consider whether to use 

HIV-1 primary isolates from patients or recombinant viruses. Both have advantages and 

disadvantages. Firstly, primary isolates need to be isolated from patients, which is laborious, 

expensive and time consuming. Also, it was discovered that during isolation shifts in 

quasispecies may occur (Kusumi et al. 1992). On the other hand, HIV fitness determined with 

recombinant viruses disregards fitness effects of regions outside of the cloned gene(s) and has 

to be carefully evaluated in context of overall fitness (Weber et al. 2006; Dykes & Demeter 

2007). 

To obtain recombinant virus, several approaches were utilized. Homologous 

recombination of particular gene and vector was done in mammalian cells (Covens et al. 

2009). Direct approach of subcloning HIV gene amplicon into the vector carrying rest of HIV 

sequence was also adapted (Claiborne et al. 2015). Further, homologous recombination was 

done in yeast cells (Dudley et al. 2009). Additionally, recombinant viruses were marked by 

reporter gene. First studies were altering ORFs of HIV genes to introduce reporter gene. First 

method, introducing two alternative reporter genes in HIV genome without HIV ORFs 

alteration was done in 2006. Resulting recombinant virus is detectable thanks to fluorescent 

proteins, either EGFP or DsRed2 (Weber et al. 2006). Both Brumme with colleagues (2011) 

and Covens with colleagues (2009) used green fluorescent protein to detect presence of 

recombinant virus as well. Absence of probe is not limiting to use viral growth kinetics if 

virus output is measured by radioactive RT or p24 ELISA assay. Using recombinant virus 

with reporter gene was proven to be valid approach for HIV-1 replicative fitness evaluation 

(Weber et al. 2006). 

3.2.8.2. Transmission and fitness 
In transmission, infection is built on few genetic variants of HIV. In addition, it was 

shown that virus has to be fit in order to be transmitted and its need for fitness is growing with 

obstacles virus has to overcome during transmission (Carlson et al. 2014). Transmitted virus 

needs to adapt to new environment such as pH, density of target cells or shape of host 

immune system (Tebit et al. 2007). Severe bottlenecks on the onset of every infection are 

important, because they select HIV species that will establish infection into the new host. In 

general, transmission bottlenecks influence fitness of HIV-1 and subsequently also 

pathogenesis (Tebit et al. 2007). 

Later in infection, virus starts to select variants to adapt to the host environment. 

Earlier works discovered, that older HIV-1 isolates from 1986-89 outcompeted newer isolates 
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from 2002-2003 (Arien et al. 2005). Although first conclusions were focused on attenuation 

because of new host adaptation, other works provided model of HIV-1 quasispecies behavior 

in fitness landscape (Rolland et al. 2007). In Rolland’s work HIV-1 is defined as gaining 

robustness instead of losing fitness. This follows theoretical model ‘survival of the flattest’ 

(Wilke et al. 2001). Fitness landscape is theoretical space, where two dimensions express 

sequence variability and third dimension express fitness. Isolates on high narrow peak have 

excellent fitness however; they are very sensitive to any mutation which can push them down 

from the peak. Flatter and much broader peak occupies lot of space in two sequential 

dimensions although its fitness is not so high (fig. 7). This flat population is versatile and can 

easily and quickly search near sequential space for advantage spots (local peaks) and move 

through space. It is also constant in unstable mutating environment. In overall, fitness of 

flatter population is on average higher than fitness of population on high narrow peaks and 

better represents behavior of virus after transmission (Rolland et al. 2007; Lauring & Andino 

2010). 

 
Fig. 7. Survival of the ‘flattest’. Consequences of high mutational rate in narrow population are often 

detrimental. On the other hand, flat population is not so impaired and has time to move in sequence space and 

search for other local fitness peaks. This demonstrates advantage of keeping flat population as a highly mutating 

virus. Adapted from Lauring & Andino 2010. 

3.2.8.3. Drug resistance 
Since introduction of first antiretroviral drug, it was possible to observe how HIV-1 

quickly adapts and becomes resistant (Iyidogan & Anderson 2014). HIV-1 is adapted to host 

and when new strong selective pressure is introduced, e.g. antiretroviral drug, it has to change 

rapidly. Usually, HIV-1 resistant mutations are selected in the drug target region (reverse 

transcriptase, protease, integrase or envelope proteins), and these mutations are generally 

accompanied with decrease of fitness (Yang et al. 2015). Virus then has to compensate for 

fitness loss. With introduction of HAART, combination of several antiretroviral drugs, it has 

been for virus very difficult to select resistant mutations for each drug and simultaneously 
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keep sufficient fitness (Iyidogan & Anderson 2014), although not impossible. HIV usually 

compensates for fitness loss by selection of additional compensatory mutations in the drug 

target region. Interestingly, in case of HIV-1 protease, resistant mutations in protease are 

compensated by mutations selected in gag and pol regions near the processing sites. Mutated 

polyproteins are then effectively cleaved by mutated protease so virus maintains its resistance 

and concurrently compensates for fitness loss due to poor catalytic effectivity of mutated 

protease (Kozisek et al. 2012). 

If fitness price from resistant mutation is not high, compensatory or reverse mutations 

develop slowly or not at all after transmission to new patient (Yang et al. 2015). This has a 

big influence on drug resistance persistence in population. It was shown that transmitted drug 

resistance is maintained mainly in therapy naïve patients (Drescher et al. 2014). In general, 

fitness is important factor for survival of HIV-1 during therapy. 

3.2.8.4. Fitness and disease progression 
 Amount of CD4+ T cells is widely used as gold standard to evaluate HIV disease 

progression (Fahey et al. 1990). Other important marker of disease progression is number of 

HIV RNA copies per ml of blood (viral load; VL). Other studies suggested link between viral 

fitness and disease progression, stating that VL can not predict disease progression unless 

reaching extreme values (both low and high) (Prince et al. 2012). Authors followed up and 

used Gag recombinant viruses to elucidate role of viral replicative fitness as a predictor of 

disease progression. Furthermore, they showed replicative fitness, VL and presence of 

protective HLA alleles as factors in prediction of disease progression (Claiborne et al. 2015). 

Moreover, higher viral fitness was linked not only to CD4+ T cells decline but also to higher 

CD8+ T cells activation with lower cytotoxic effect and higher proviral burden in CD4+ T 

cells (Claiborne et al. 2015). 

 Considering host immunological factors, viral replicative fitness and disease 

progression, several studies are important to mention. CTL response escape mutations, 

accumulated in gag have noticeable effect on virus fitness. Virus is escaping CTLs by 

mutating epitopes of Gag protein and evades presentation of epitope on HLA. HLA driven 

selection has considerable effect on mutagenesis of gag, mainly in the first year of infection 

(Brumme et al. 2008). Boutwell and his colleagues showed that majority of escape mutations 

cause also reduction in replicative fitness. Pattern of mutations is linked with genetical status 

of the patient, namely with specific HLA class I alleles (Boutwell et al. 2013, Shahid et al. 

2015) and accompanied by compensatory mutations. Thus, fitness cost is apparent in acute 
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phase; later in the disease it can dissipate. In chronic infection, HIV-1 has time to acquire 

compensatory mutations and balance fitness cost (Gijsbers et al. 2013, Liu et al. 2014). 

Furthermore, development of compensatory mutations happens more frequently than 

reversion of escape mutations (Sunshine et al. 2015). Effort to compensate original lost in 

fitness is driving HIV-1 evolution during later stage of infection. Virus fitness cost in patient 

with protective alleles has long-lasting effect up to chronic stage (Brockman et al. 2010). 

Study of elite controllers provides extensive perspective for effect of viral fitness on 

disease progression. Persistent low viremia in elite controllers is related to fitness of virus and 

immune response of the host. Strong pressure from host CTL is one of examples, how elite 

controllers maintain low fit virus (Troyer et al. 2009). However, poor viral fitness can not be 

explained solely by presence of protective HLA alleles associated with vigorous CTL 

response. This is exemplified by missing protective alleles in half of elite controllers. Thus, 

other factors have to contribute (fig. 8). Gag-protease derived from elite controllers and 

recombined in HIV-1 vector (pNL4-3) showed lower replicative fitness than Gag-protease 

derived from chronic progressors (Lobritz et al. 2011). On the contrary, virus isolates from 

elite controllers displayed full replication potential (Blankson et al. 2007). 
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Fig. 8. Mutual relationship between virus fitness and host genetics. Distribution of replicative fitness is 

following Gaussian distribution, where only few clones are introduced to new patient during transmission. Elite 

controller is depicted as a result of both, low fit clone transmitted and good host genetics (illustrated by 

protective alleles). Most common example is classical chronic progressor accounting for ~90% of all infections. 

Adapted from Lobritz et al. 2011. 

 

 To summarize, viral replicative fitness is important characteristics for disease 

progression. Importance of gag region for virus replicative fitness was shown in several 

studies, highlighting the impact of CTL escape mutation. Following previous research, 

emphasis of this thesis is given to study of gag contribution to overall replicative fitness. 

Replicative fitness is measured through recombinant viruses and primary isolates. 

Furthermore, replicative fitness development, evaluated by gag recombinant viruses, and 

disease progression are analyzed. 
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4. Material and methods 

4.1. Plasmids 

pNL4-3-EGFP: plasmid containing complete sequence of HIV laboratory strain NL4-3 with 

green fluorescence probe between env and nef. Contains ampicillin resistance gene. 

p83.2: NL4-3 strain derived plasmid containing region from 5’LTR up to part of vpr gene. 

Contains ampicillin resistance gene. 

pRECnfl-TRP-△gag/URA3: plasmid containing near full length of HIV where gag is 

replaced by Ura3 gene. Contains Trp1 gene and ampicillin resistance gene. 

4.2. DNA primers 

Sequences are written in direction from 5’ to 3’. 

Primers for reverse transcription of viral RNA in cDNA and amplification of gag with 

surrounding sequence in external PCR. 
GAG P17 FWD 

8M 

GCGAAAGTAAAGCCAGAGGAGATCTCTCGACGCAVGRCTCGGCTTGCT 

 

POL PRO REC 

CON BWD 7 

ACTAATGCTTTTATTTTTTCTTCTGTCAATGGCCAYTGTTTRAYYYTTGG 

 

 

Primers for amplification of gag with surrounding sequence in nested PCR. 
GAG P17 FWD 

7M 

GTAAAGCCAGAGGAGATCTCTCGACGCAGGACTCGGCTTGCTGARGYGCG 

POL PRO REC 

CON BWD 8 

TTTCTTCTGTCAATGGCCATTGTTTAACTTTTGGNCCATCCATHCCTGGY  

 

Primers for introduction of MluI restriction site by site directed mutagenesis. Substituted 

nucleotides are underlined. 
MluI-SDM-F GTACTGGATGTGGGCGACGCGTATTTTTCAGTTCCC 

MluI-SDM-R GGGAACTGAAAAATACGCGTCGCCCACATCCAGTAC 

 

 



29 
 

 

Primers for introduction of PspXI restriction site by site directed mutagenesis. Substituted 

nucleotides are underlined. 
PspXI-SDM-F GCCCGAACAGGGACTCGAGGGCGAAAGTAAAGCCAGAGG 

 

PspXI-SDM-R CCTCTGGCTTTACTTTCGCCCTCGAGTCCCTGTTCGGGC 

 

Primers for deletion of native MluI restriction site in pRECnfl-TRP-△gag/URA3-PM plasmid 

by site directed mutagenesis. Substituted nucleotides are underlined. 
MluI-delSDM-F CAGTGAGCGCGCGTATTCGTGTTGACATTGATTATTG 

MluI-delSDM-R CAATAATCAATGTCAACACGAATACGCGCGCTCACTG  

 

Primers to insert linker in pNL4-3-EGFP-PM-linker plasmid. 
PspXI-MluI-F TCCAGTVCTCGAGBGGCGCGCCACGCGTATAGCA 

PspXI-MluI-R TGCTATACGCGTGGCGCGCCVCTCGAGBACTGGA 

 

4.3. Molecular markers 

DNA molecular marker: MassRuler™ DNA Ladder Mix, ready-to-use (ThermoFisher). 
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4.4. Bacterial and yeast strains, viruses and cell lines 

Bacterial strain TOP10 Electrocomp™ E. coli cells: F- mcrA Δ(mrr-hsdRMS-mcrBC) 

φ80lacZΔM15 ΔlacΧ74 recA1 araD139 Δ(ara-leu) 7697 galU galK rpsL (StrR) endA1 nupG 

λ- (ThermoFisher) 

Yeast strain SL1463: Saccharomyces cerevisiae MATα leu2 ura3-52 trp1 his3-Δ200 (Case 

Western Reserve University) 

HIV-1: NL4-3 strain (obtained from NIH AIDS Reagent Program) 

HIV-1: B2 primary isolate 92US076 (obtained from NIH AIDS Reagent Program) 

MT4: Human T-cell line transformed by Human T-cell lymphotropic virus type 1 (obtained 

from NIH AIDS Reagent Program). 

TZM-bl: HeLa derived cell line expressing CD4 and CCR5. Contains  luciferase and ß-

galactosidase genes under control of the HIV-1 promoter (obtained from NIH AIDS Reagent 

Program). 

HEK293T: Human embryonic kidney cell line transformed with large T antigen from Simian 

virus 40 (Stanford University). 

OKT3: Mouse x mouse hybridoma, producing IgG2a against the human T cells CD3 antigen 

(European Collection of Cell Cultures). 

4.5. Culture media 

4.5.1. Culture media for bacteria 
LB medium: 2% (w/v) LB broth (Sigma-Aldrich) 

SOC medium (Invitrogen): 2% (w/v) Tryptone, 0.5% (w/v) Yeast Extract, 10 mM NaCl, 2.5 

mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose 

LB agar plates: 2% (w/v) LB broth 1.2% (w/v) Agar, Ampicillin (all Sigma-Aldrich) 

4.5.2. Culture media for yeast 
YEPD medium: 1% (w/v) Yeast Extract, 2% (w/v) Peptone, 2% (w/v) Dextrose (all Sigma-

Aldrich) 

YEPD plates: 1% (w/v) Yeast Extract, 2% (w/v) Peptone, 2% (w/v) Dextrose, Bacto agar (all 

Sigma-Aldrich) 
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4.5.3. Culture media for mammalian cells 
DMEM medium with 10% serum: DMEM (Dulbecco’s Modified Eagle’s Medium), 10% 

(v/v) Fetal Bovine Serum HI (both Biotech), 1% (v/v) Penicillin (10,000 U/ml) Streptomycin 

(10 mg/ml) (Sigma-Aldrich) 

DMEM without serum: DMEM (Dulbecco’s Modified Eagle’s Medium, Biotech), 1% (v/v) 

Penicillin (10,000 U/ml) Streptomycin (10 mg/ml ) (Sigma-Aldrich) 

Freezing medium: 89% (v/v) Fetal Bovine Serum HI (Biotech), (v/v) 10% Dimethyl 

sulfoxide, 1% (v/v) Penicillin (10,000 U/ml) Streptomycin (10 mg/ml) (both Sigma-Aldrich) 

RPMI medium with 10% serum: RPMI 1640 with L-Glutamine, 10% (v/v) Fetal Bovine 

Serum HI, 1% (v/v) 1M HEPES (all Biotech), 1% (v/v) Penicillin (10,000 U/ml) 

Streptomycin (10 mg/ml) (Sigma-Aldrich) 

RPMI medium - phenol RED free: RPMI 1640 Medium, no glutamine, no phenol red,  

1% (v/v) 200mM L-glutamine (both Sigma-Aldrich), 10% (v/v) Fetal Bovine Serum HI, 1% 

(v/v) Penicillin (10,000 U/ml) Streptomycin (10 mg/ml), 1% (v/v) 1M HEPES (all Biotech) 

PBMCs medium: RPMI 1640 with L-Glutamine, 10% (v/v) Fetal Bovine Serum HI, 1% 

(v/v) 1M HEPES (all Biotech), 1% (v/v) PHA (100U/ml), 0.001% (v/v) IL-2 (100 ng/µl) 

(both Life Technologies), 1% (v/v) Penicillin (10,000 U/ml) Streptomycin (10 mg/ml) 

(Sigma-Aldrich) 

PBMCs without PHA: RPMI 1640 with L-Glutamine, 10% Fetal Bovine Serum HI, 1% 

(v/v) 1M HEPES (all Biotech), 1% (v/v) Penicillin (10,000 U/ml) Streptomycin (10 mg/ml) 

(Sigma-Aldrich), 0.001% (v/v) IL-2 (100 ng/µl) (Life Technologies),  

OKT3 medium (Sigma Aldrich): DMEM, 2mM glutamine, 20% Fetal Bovine Serum 

4.6. Antibiotics 

Ampicillin (Sigma-Aldrich) (working concentration 100 μg/ml). 

Penicillin (10,000 U/ml), Streptomycin (10 mg/ml ) mixture for mammalian cells cultivation 

(Sigma-Aldrich). 

4.7. Sterilization 

Used solutions and media were sterilized by liquid cycle at 121°C in autoclave for 15 

minutes. Laboratory glass was sterilized at same conditions. Solutions unsterilized by 

autoclave were sterilized through filter with 0.22μm pores. Sterilization of inoculating loops 

and cell spreaders was done by denatured ethanol and flame. All liquids and liquid 



32 
 

contaminated tools and containers in BSL-3 laboratory were disinfected in SAVO diluted 

with water at ratio 1:2 and autoclaved. 

4.8. Work with DNA and RNA 

4.8.1. Isolation of HIV RNA from plasma 
Isolation of HIV RNA from plasma was done by commercial QIAamp Viral RNA Mini Kit 

(Qiagen) according to provided protocol. RNA was eluted once by 60 μl of AVE buffer.  

4.8.2. Isolation of RNA from virus particles 
Isolation of RNA from virus particles was done QIAamp Viral RNA Mini Kit (Qiagen) 

according to provided protocol. RNA was isolated from 70 µl of virus supernatant and eluted 

once in 60 μl of AVE buffer.  

4.8.3. Polymerase chain reaction 
For amplification of viral genetic information three step PCR in Mastercycler® pro 

(Eppendorf) was used. 

 

Reverse transcription annealing was performed using primer POL PRO REC CON BWD 7. 

Reaction was done in 12.5 µl reaction volume including 0.5µM primer, 1mM dNTPs and 5 µl 

of RNA. Annealing was performed at 65°C for 5 minutes and 4°C for 5 minutes. cDNA 

synthesis was done with annealed mixture, 1x FS buffer, 100 U SuperScript™ III Reverse 

transcriptase (both Invitrogen), 10mM DTT and 40 U RNAse inhibitor (New England 

BioLabs). Synthesis was performed at 50°C for 60 minutes and 70°C for 15 minutes. 

 

External PCR reaction was performed using primers POL PRO REC CON BWD 7 and GAG 

P17 FWD 8M. Amplification was done in 50 µl reaction volume including 1mM MgCl2, 

200μM dNTPs, 0.4μM both primers, 1x Pfu buffer, 3.75 U of PfuTurbo polymerase (both 

Agilent) and 5 μl of cDNA template. PCR reaction performed at 95°C for 2 minutes for 

denaturation followed by 35 cycles of 92°C for 30 seconds denaturation, 55°C for 30 seconds 

annealing and 72°C for 5 minutes extension. PCR was finished by last extension at 72°C for 

10 minutes. 

 

Nested PCR reaction was performed using primers POL PRO REC CON BWD 8 and GAG 

P17 FWD 7M. Amplification was done in 50 µl reaction volume including 0.5mM MgCl2, 
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200μM dNTPs, 0.4μM both primers, 0.31 U of PfuTurbo polymerase (Agilent), 1x Taq buffer 

and 1.875 U Taq DNA polymerase (both New England BioLabs) and 5 μl of DNA from 

external PCR as template. PCR reaction performed at 95°C for 2 minutes for denaturation 

followed by 35 cycles of 92°C for 30 seconds denaturation, 55°C for 30 seconds annealing 

and 72°C for 3 minutes extension. PCR was finished by last extension at 72°C for 10 minutes. 

4.8.4. Agarose electrophoresis 
Relevant amount of agarose was dissolved in 1x TAE buffer (40mM Tris, 20mM acetic acid, 

1mM EDTA). During my experiments 0.8% to 3% agarose gels were prepared. Mixture of 

agarose and TAE buffer was boiled in microwave. DNA samples were mixed with 6X DNA 

Loading Dye (ThermoFisher Scientific). Gels run at 6.25 V/cm. Finished gel was stained with 

ethidium bromide solution (0.5 μg per ml of distilled H2O) for 20 minutes and thereafter 

photographed. 

4.8.5. PCR purification 
Purification of PCR products was done by commercial QIAquick PCR Purification Kit 

(Qiagen). Procedure was following provided protocol. DNA was eluted in 30 μl of ddH2O. 

4.8.6. Site-directed mutagenesis 
Site-directed mutagenesis was done by commercial kit QuikChange II XL (Agilent 

Technologies). Reaction was done analogously to PCR reaction using one set of mutating 

primers. Total volume of reaction was 50 μl, including 1x reaction buffer, 1µl of provided 

dNTP mix, 0.2 μM both primers, 3 μl of QuikSolution and 2.5 U of PfuTurbo polymerase 

(Agilent). Template was 50 ng of plasmid dsDNA. Mutagenesis reaction performed at 95°C 

for 1 minutes for denaturation followed by 18 cycles of 95°C for 50 seconds denaturation, 

60°C for 50 seconds annealing and 68°C for 15 minutes extension. PCR was finished by last 

extension at 68°C for 7 minutes. Each sample was  treated with DpnI at 37°C for 1 hour to 

degradate parental, nonmutated DNA. DpnI treated mixture was transformed in E.coli by 

electroporation. 

4.8.7. DNA isolation from gel 
Isolation of DNA from agarose gels was done by two different methods. 
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4.8.7.1. Isolation of DNA from gel by excision 
DNA was resolved on agarose gel and correct size bands were excised under UV light. 

Sample was processed by QIAEX II Gel Extraction Kit (Qiagen). Procedure followed 

provided protocol and DNA was dissolved in 20 μl of ddH2O.  

4.8.7.2. Isolation of DNA by E-gel technique 
Isolation of majority of bands was done by E-Gel™ Electrophoresis System (ThermoFisher). 

Pre-casted 0.8% E-Gel CloneWel gels stained with SYBR®  with 8 wells in two rows were 

used (ThermoFisher). Samples of DNA were loaded in upper row of wells with E-Gel 96 

High Range DNA Marker in designated well. Samples run for required amount of time, until 

correct size band reached second row of wells, filled with ddH2O. When band disappeared in 

water filled well pure DNA was collected in a tube. Presence of correct band was verified by 

standard agarose gel electrophoresis. 

4.8.8. DNA isolation from bacteria 
Isolation of DNA from bacterial cells was done by QIAprep Spin Miniprep, Midiprep or 

Maxiprep Kits (Qiagen). Method was done according to provided protocol and DNA was 

eluted in 50, 100 or 500 µl of ddH2O, respectively. Presence of DNA was verified by standard 

electrophoresis. 

4.8.9. DNA isolation from yeast 
Yeast colonies grown on CSM-TRP 5-FOA plates were resuspended in 3 ml of YEPD media. 

Then, 1.5 ml of mixture was centrifuged for 5 seconds to collect yeast at the bottom of the 

tube. Pellet was resuspended in 200 μl of breaking buffer (20 % (v/v) 10% Triton X-100, 10 

% (v/v) 10% SDS, 2 % (v/v) 5M NaCl, 1 % (v/v) 1M Tris-Cl (pH=8), 0.2 % (v/v) 0.5M 

EDTA). Suspension was mixed with 0.3 g of glass beads (425 - 600 μm in diameter) and 200 

μl of UltraPure™ Phenol:Chloroform:Isoamyl Alcohol (25:24:1, v:v; all Sigma-Aldrich). 

Mixture was vortexed for two minutes and centrifuged at 18000 g for 5 minutes at room 

temperature. 50 μl from aqueous phase was collected and precipitated with 700 μl of absolute 

ethanol. Mixture was centrifuged for 10 minutes at previous conditions and supernatant 

discarded. Pellet was washed by 70% ethanol and dissolved in 20 μl of ddH2O. DNA was 

transformed in One Shot TOP10 Electrocomp E. coli (ThermoFisher) by electroporation. 
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4.8.10. DNA sequencing 
DNA was sequenced by GATC Biotech company, using Sanger sequencing methodology. 

Mixture for each sequencing contained: DNA sample (at least 100 ng), 10μM appropriate 

primer (5 μl), ddH2O up to 10 μl. Results were analyzed in SeqMan Pro program™ from 

DNASTAR® and full sequence contigs were constructed. 

4.8.11. Measuring concentration of DNA 
Concentration of DNA was measured using NanoDrop™ ND-1000 (ThermoFisher). 

Operating program was NanoDrop 1000 Operating Software, version 3.8.1. 

4.8.12. DNA restriction by enzymes 
All used restriction enzymes were from New England BioLabs. All mixtures consist of: DNA, 

restriction buffer (New England BioLabs) 5 μl, 10 U of restriction enzyme per μg of DNA 

and ddH2O up to 50 μl. Digest proceeds in temperature suitable for specific restriction 

enzyme. Digested DNA was evaluated by agarose gel electrophoresis. 

4.8.13. Partial digestion 
Partial digestion method is analogous to standard digestion by restriction enzymes. However, 

restriction enzyme was diluted to achieve partial digestion of DNA. Time of digestion was 

precisely designed. Partial digestion was done with enzyme in serial dilution and enzyme was 

inactivated to prevent further digestion. Purpose of this method was to ensure that enzyme 

will not digest plasmid completely at both restriction sites.  

4.8.14. Dephosphorylation of 5’ end of DNA 
To remove 5’end phosphate vector was treated by phosphatase. Suitable amount of DNA was 

mixed with 5 μl of Antarctic Phosphatase Reaction Buffer (New England BioLabs), 10U/μg 

of DNA of Antarctic Phosphatase (New England BioLabs) and ddH2O up to 50 μl. Mixture 

was incubated at 37°C for 1 hour and deactivated at 80°C for 5 minutes. Dephosphorylated 

vector was further used in ligation. 

4.8.15. Ligation  
Suitable vector was treated by restriction enzymes and dephosphorylated. 100 ng of vector 

was mixed with amount of insert corresponding to desired molar ratio. 
𝑘𝑘 𝑜𝑜 𝑖𝑖𝑠𝑠𝑠𝑠
𝑘𝑘 𝑜𝑜 𝑣𝑠𝑐𝑠𝑜𝑠

 ×  𝑖𝑛 𝑜𝑜 𝑣𝑠𝑐𝑠𝑜𝑠 = 𝑖𝑛 𝑜𝑜 𝑖𝑖𝑠𝑠𝑠𝑠 𝑜𝑜𝑠 1: 1 𝑠𝑟𝑠𝑖𝑜 

http://www.nanodrop.com/Library/ND1000_3.8.1.zip
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Vector and insert were mixed with 2 μl of 10x T4 DNA Ligase Reaction Buffer (New 

England BioLabs) and 200U of T4 DNA Ligase (New England BioLabs). Mixture was filled 

with ddH2O up to 20 μl and incubated at 16°C overnight. One tenth of ligation product was 

transformed in One Shot TOP10 Electrocomp E. coli (ThermoFisher) by electroporation. 

4.9. Work with bacteria 

4.9.1. Cultivation of bacterial cultures 
One Shot TOP10 Electrocomp E. coli were plated on agar plates with LB media and 

ampicillin as selective marker and incubated at 34°C. Same cells were also incubated in LB 

media with ampicillin at 34°C with shaking at 225 rpm. Incubation proceeded overnight. 

4.9.2. Electroporation 
DNA vectors designated to be amplified in bacterial cells were electroporated in One Shot 

TOP10 Electrocomp E. coli cells. Electroporation cuvette of width of 0.1 cm (Bio-Rad) was 

placed on ice and filled with 62 μl of ddH2O, 1.5 μl of DNA and 20 μl of thawed 

electrocompetent cells. Mixture was incubated on ice for 5 minutes. Cooled cells/DNA 

mixture was subjected to a pulse at 1.8kV, 25 μF and 200 Ω in Multiporator electroporator 

(Eppendorf). 480 μl of SOC media (ThermoFisher) were added immediately after pulse. 

Whole mixture was transferred in snap-cap tube and incubated at 34°C and 225 rpm for 1 

hour. After incubation, 250 μl of mixture were plated on prewarmed agar plate with LB media 

and ampicillin. 

4.9.3. Harvesting bacterial colonies from agar plates 
Colonies grown on LB agar plates with ampicillin were counted. 5 ml of LB media with 

ampicillin was applied on agar plate and colonies were washed down. Four ml were collected 

in snap cap tube for further cultivation. In case, where only one colony from plate was 

needed, such a colony was transferred by sterile toothpick in 5 ml of LB media with 

ampicillin. 

4.10. Work with yeast 

4.10.1. Preparation of CSM-TRP 5-FOA plates 
Composition of mixture was: 0.074 % (w/v) Complete supplement mixture w/o tryptophan, 

0.167 % (w/v) Yeast nitrogen base w/o ammonium sulfate, 2 % (w/v) Dextrose, 0.5 % (w/v) 
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Ammonium sulfate, 0.003 % (w/v) Uracil, 2 % (w/v) Bacto agar; (all Sigma-Aldrich). 

Mixture was sterilized in autoclave. After sterilization, solution was stirred at 55°C for 30 

minutes. Later, 1 % (v/v) 100x 5-FOA was added and mixed thoroughly. FOA is light 

sensitive. Liquid was dispensed in 10cm petri dishes, 25 ml each. Plates were stored in dark 

place to solidify. 

4.10.2. Yeast cells transformation 
Single colony of yeast cells was inoculated in 5 ml of YEPD media and incubated overnight 

at 30°C and 250 rpm. Following day, optical density at 600 nm of overnight culture (diluted 

ten times with fresh YEPD) was measured. Plain YEPD was used as a blank. Required 

amount of YEPD, 5 ml per sample, was inoculated by overnight culture to a final OD600nm of 

0.3. Culture was incubated at 30°C and 250 rpm until OD600nm reached 0.7 to 0.8. Grown 

culture was centrifuged at 2100 g at 4°C for 10 minutes. Pellet was resuspended in 5 ml (per 

50 ml of yeast culture) of cold LiAc/TE buffer (10 % (v/v) 10x LiAc, 10 % (v/v) 10x TE 

buffer (both Sigma-Aldrich)). Suspension was centrifuged at the same conditions for 5 

minutes and pellet was resuspended with 500 μl of cold LiAc/TE buffer (per 50 ml of yeast 

culture). Competent yeast cells (50 µl per transfection) were added as last to a mixture 

containing following ragents: 5 μl of boiled salmon sperm DNA (10 mg/ml) (Sigma-Aldrich), 

2 to 8 μg of PCR purified DNA (patient specific gag amplicon), 4 μg of SacII-linearized 

vector pRECnfl-TRP-∆gag/URA3-PM-Mdel, 300 μl of liquidized PEG 3350 (Sigma-Aldrich). 

Prepared samples were vortexed and shaken in horizontal position at 30°C, 250 rpm for 30 

minutes. After incubation, 35 μl of DMSO (Sigma-Aldrich) were added to samples and mixed 

by vortexing. Mixture was heat shocked at 42°C for 20 minutes, briefly centrifuged and pellet 

resuspended in 250 μl of warm YEPD. Samples were incubated at 30°C, 250 rpm for 2.5 

hour. After final incubation, mixture of each sample was plated on warmed CSM-TRP 5-FOA 

plates and incubated for 3 days at 30°C. Number of colonies was counted. 

4.11. Work with mammalian cells 

4.11.1. TZM and HEK293T cells passage 
TZM and HEK293T cells were incubated in DMEM with 10% serum at 37°C and 5% CO2. 

Cells were passaged every 3-4 days at ration 1:10. Medium was aspirated from confluent cells 

and they were washed with 1x PBS/EDTA (Biotech). Cells were treated with 2 ml of 1x 

Trypsin solution (Sigma-Aldrich) and let to incubate until cells are released in medium. 

Afterward, 8 ml of DMEM with serum were added to cells for incubation. 
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4.11.2. MT4 cells passage 
MT4 cells were incubated in RPMI medium with 10% serum at 37°C and 5% CO2. Cells were 

passaged with fresh media at ratio 1:4 every 2-3 days. 

4.11.3. Counting cells 
200 μl of cell suspension were mixed with 600 μl of 1x PBS (Biotech) and 200 μl of 0.4% 

Trypan blue (Sigma-Aldrich). 10 μl of the mixture were added in Neubauer improved cell 

counting chamber and cells were counted. At least two fields, representing 0.1 mm3 of volume 

were used for calculation and sum was divided by number of counted fields to reach average 

number of cells per field. The final number of cells was multiplied by dilution factor 5 and 

volume factor 10000 to get number of cells per ml. 

4.11.4. Transfection 
2x106 of HEK293T cells in 5 ml of DMEM with 10% serum were seeded on 6cm petri dish. 

Next day, cells were examined under microscope for 90-95% confluency and medium was 

replaced with fresh 5 ml of DMEM with 10% serum. Cells were incubated at 37°C and 5% 

CO2 for 30 minutes. During this interval, 8 μg of plasmid DNA was mixed with 500 μl of 

DMEM without serum. Concurrently, 20 μl of Lipofectamine 2000 (Life Technologies) 

reagent were gently mixed in 480 μl of DMEM without serum. DNA mixture was added to 

Lipofectamine 2000 mixture, mixed gently in a falcon tube and incubated at room 

temperature for 15 minutes. After 30 minutes incubation 1 ml of the DNA-Lipofectamine 

2000 mixture was slowly added dropwise to HEK293T cells and the dish was swirled gently 

to distribute the mixture evenly. Transfected cells were incubated at 37°C and 5% CO2 for 48 

hours and virus was harvested. 

4.12. Work with virus 

4.12.1. Harvesting virus 
Virus culture was aspirated with pipette from the HEK293T cells. Virus supernatant was 

filtered through 0.45μm filter unit (P-Lab) and aliquoted. 

4.12.2. Virus titer determination using TZM-bl cells 
TZM-bl cells were counted and 3x104 of TZM-bl cells were seeded per well in 96 well plate 

with flat bottom in 100 μl of DMEM with 10% serum. Plates were incubated at 37°C and 5% 

CO2 overnight. Following day cells were checked for 90-95% confluency under microscope 
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and 50 μl of DMEM with 10% serum and DEAE-dextran (Sigma-Aldrich) with final 

concentration of 40 µg/ml was added. Then, 50 μl of four-fold serial diluted viruses (12-step 

dilution) in DMEM medium were added to the cells in triplicate.  Three negative controls 

containing 50 μl of DMEM without serum and three positive controls containing known 

amount of NL4-3 were added. Cells were incubated at 37°C and 5% CO2 for 48 hours. To 

determine which virus dilutions still resulted in infection, commercial Steady-Glo® Luciferase 

Assay System (Promega) was used according to the manufacturer's protocol. Firefly luciferase 

activity was measured in VICTOR X Multilabel Plate Reader (PerkinElmer) and 50% tissue 

culture infectious dose (TCID50) were analyzed using the Reed and Muench method (Reed 

and Muench 1938). Virus titers were expressed as infectious units per milliliter (IU/ml). 

4.12.3. Isolation of PBMCs from HIV-1 negative blood 
Blood sediment, collected at Institute of Hematology and Blood Transfusion and screened 

there for absence of HIV-1, were mixed with PBS at 1:1 ratio. 15 ml of ficoll-paque (Scintila) 

was added in 50ml falcon tube, then, slowly overlaid by 30 ml of buffy coats/PBS mixture. 

Falcon tube was held at angle of approximately 45° during addition. Samples were 

centrifuged at room temperature, 600 g for 25 minutes. Acceleration and brake were reduced 

(level 3) (Beckman Coulter, Allegra X15R centrifuge) to avoid disruption of the layers. After 

centrifugation, tube contained yellowish layer of PBMCs, separated between phase of blood 

plasma and ficoll. PBMCs layer was aspirated in new 50ml-tube and washed with PBS. Tube 

was centrifuged at room temperature, 600 g for 7 minutes. Pelleted PBMCs were resuspended 

in 25 ml of PBS and centrifuged again at the same conditions. Supernatant was discarded 

again and PBMCs were resuspended in 30 ml of warm PBMCs medium and counted. 

4.12.4. Isolation of PBMCs from HIV-1 positive blood 
Procedure was done at same conditions as in the case of HIV negative blood. Except no PBS 

dilution step is necessary at the beginning of the procedure because starting material is whole 

blood. In addition, 6 ml of plasma (layer above PBMCs layer) were collected in cryotubes and 

stored at -80°C. Collected plasma was later used for HIV RNA isolation. PBMCs collected in 

falcon tube were processed by centrifugation as in previous protocol (4.12.3.). 

 



40 
 

4.12.5. Preparation of CD3 treated cultivation flask for PBMC stimulation 
CD3 antibody-producing OKT3 cells were cultivated at 37°C and 5% CO2 until in OKT3 

medium until confluent. Culture supernatant was harvested, filtered and aliquoted. To prepare 

CD3 coated flask an empty 75 cm2 cultivation flask bottom was covered with 8 ml of 

harvested supernatant and incubated at 37°C and 5% CO2 overnight. Next day, supernatant 

was discarded and CD3 treated flask was used for stimulation of CD8+ T cells depleted 

PBMCs. 

4.12.6. CD8+ T cells depletion and stimulation of HIV-1 negative PBMCs 
Isolated HIV-1 negative PBMCs need to be depleted of CD8+ T cells to improve isolation and 

propagation of primary isolates. Required amount of PBMCs were centrifuged at 300 g at 

room temperature for 10 minutes. Afterward, pellets were resuspended in PBS/EDTA/BSA 

buffer (pH7.2, 2mM EDTA, 0.5% BSA) at final cell concentration of 1x108 cells per 500 μl 

of buffer, stained with human CD8 MicroBeads (Miltenyi Biotec), transferred on LD columns 

and exposed to magnetic field in MidiMACS separator (Miltenyi Biotec). Collected CD8+-

depleted cells were resuspended in 30 ml of PBS and counted. Amount of cells was divided to 

three equal batches and centrifuged at 300 g at room temperature for 10 minutes. First CD8+-

depleted PBMCs pellet was resuspended in PBMCs medium, second CD8+-depleted PBMCs 

pellet was resuspended in PBMCs medium with 5-times lower PHA concentration and third 

CD8+-depleted PBMCs pellet was resuspended in PBMCs medium without PHA and 

transferred to CD3 coated flask. Final concentration of cells was 4x106 per ml. Cells were  

incubated at 37°C and 5% CO2 for 3 days. After incubation, all cells were combined, 

centrifuged at 300 g at room temperature for 10 minutes and resuspended in 30 ml of PBMCs 

medium without PHA. Cells were counted and used for isolation and culturing of primary 

isolates. 

4.12.7. Isolation of HIV-1 from HIV+ PBMCs 
HIV-1 primary isolates were prepared by co-cultivation with stimulated CD8+-depleted HIV-

negative PBMCs. Briefly, 10x106 stimulated CD8+-depleted HIV-negative PBMCs were 

mixed with 5x106 PBMCs isolated from HIV-1 positive patient. Cell mixture was  incubated  

at 37°C and 5% CO2 for up to 4 weeks. Every 3 to 4 days fresh PBMCs medium without PHA 

was added and every 7th day 5 x 106 HIV-1 negative, stimulated CD8+ -depleted PBMCs 

were added. Virus culture was monitored twice a week for cytopathic effect under microscope 
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and for virus activity in TZM-bl assay. Negative cultures were discarded and strong HIV 

positive cultures were pooled, filtered through 0.45μm filter and aliquoted. 

4.12.8. Evaluation of HIV activity in TZM-bl assay using X-gal staining 
Steps were the same as previously described in 4.12.2. chapter except X-galactosidase 

staining was employed instead of determination of firefly luciferase activity. After 48h long 

incubation, supernatant was discarded and cells were washed with 100 μl of PBS. Cells were 

fixed with 1% glutaraldehyde (Sigma-Aldrich) for 20 minutes and afterward, fixative was 

discarded. Each well was stained with 50 μl of 2% X-gal staining solution (2% (w/v) X-Gal; 

Dimethylformamide (both Sigma-Aldrich) and plates were incubated at 37°C for 2 hours. 

After incubation, staining solution was discarded and cells were washed by 100 μl of PBS. 

Reaction was stopped by addition of 50 μl of 70% glycerol (Sigma-Aldrich) and stored at 4°C 

for 10 minutes. Blue spots in each well were counted under microscope and compared to 

number of blue spots produced by NL4-3 control. 

4.12.9. Viral growth kinetics of recombinant virus 
Amount of virus necessary for infection of 5x104 MT4 cells with MOI = 0.005 in triplicate 

was calculated from TCID50 and diluted with RPMI medium with 10% serum up to 1 ml for 

each sample. MT4 cells were centrifuged in a snap-cap tube at 600g for 5 minutes at room 

temperature, supernatant was discarded and cells were resuspended with RPMI medium 

containing virus inoculum. Cell/virus mixture in snap-cap tube was  incubated at 37°C, 5% 

CO2 for 2 hours. During incubation mixture was gently shaken few times by tapping on the 

tube. After incubation, infected cells were centrifuged at above conditions and washed twice 

by 3 ml of 1x PBS. After last centrifugation, cells were resuspended in RPMI medium with 

10% serum and pipetted in triplicate in 96-well plate. Medium only was used as a mock 

control and three wells were used as a positive control, where MT4 were infected by NL4-3-

EGFP virus. Infected cells were incubated at 37°C, 5% CO2 for 10 days. At days 0, 3, 4, 5, 6, 

7 and 10, 50 μl from each well were saved in new 96-well round bottom plate and stored at -

80°C. After each collection, volume was replenished with 50 μl of fresh RPMI medium with 

10% serum. At day 5, 50 μl of the fresh RPMI medium with 5x104 MT4 cells were added. 

Stored samples were used in the reverse transcriptase assay to determine HIV activity. 
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4.12.10. Viral growth kinetics of primary isolates 
Analogously to 4.12.9., 5x105 of fresh PBMCs were infected at MOI = 0.005. Cells were 

treated by PBMC medium without PHA and with 0.5% IL-2. Medium only was used as mock 

control. Viruses B2 (92US076), A2 (92UG029) and E1 (CMU06) served as positive controls 

of infection. Growth kinetics was done for 17 days with collections at days 0, 3, 4, 5, 6, 7, 10, 

14, 17. Removed media was replaced by fresh media. At days 7 and 14 wells were 

replenished with 2.5x105 stimulated PBMCs. 

4.12.11. Growth competition experiments 
MT4 cells were resuspended, mixed with trypan blue and automated Countess® cell counter 

(ThermoFisher Scientific) was used to enumerate number of cells per ml and to verify if 

viability is higher than 93 %. 2x106 MT4 cells in 1 ml of RPMI medium were added in a 

snap-cap tube and viruses, both sample and competing control were added in volume 

corresponding to the MOI = 0.0001 per virus (total MOI in snap-cap tube was equal to 

0.0002). As a wild-type control to recombinant virus containing EGFP probe, NL4-3-Crimson 

virus was used. Infection was incubated in thermostat at 37°C and 5% CO2 for 2 hours, snap-

cap tubes were shaken occasionally. After incubation, snap-cap tubes were centrifuged at 

600g at room temperature for 5 minutes and cells were rinsed by 3 ml of 1x PBS twice. After 

rinsing, cells were resuspended in RPMI medium - phenol RED free to final concentration 

5x105 cells per ml. 5x104 of cells were added in triplicate to wells on the 96-well plate with 

flat bottom. Plate was further incubated in thermostat another 72 hours. At day 3, cells were 

resuspended and 75 μl were transferred into the wells on 96-well plate with round bottom and 

joined with 75 μl of PBS. Next, Guava® easyCyte HT flow cytometer with guavaSoft 2.2.3 

software and InCyte™ program was used for analysis. Number of recorded events was set to 

10000 and plot of Side-scattered light and Forward-scattered light (FSC) was used to subduct 

debris. At a next plot, FSC-Height and FSC-Area were used to select only singlet cells. 

Additionally, rest 25 μl in the 96-well plate with flat bottom were replenished with RPMI 

medium – phenol RED free with fresh MT4 cells. Final volume in replenished wells was 100 

μl with 5x104. Plate was incubated another 24 hours. After incubation, at day 4 samples were 

processed analogously to day 3.  

4.12.12. RT assay 
Virus samples were quickly thawed. Three wells on one plate were selected for positive 

control and filled with 50, 5 and 0.5 μl of NL4-3 virus, respectively. Another three cells were 
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selected for negative control and filled with 50 μl of PBS. 15 μl of unlabeled RT buffer (5 % 

(v/v) 1M Tris-HCl pH 7.8; 3.75 % (v/v) 2M KCl; 0.2 % (v/v) 1M DTT; 2.5 % (v/v) 200mM 

MgCl2; 0.5 % (v/v) NP-40 (all Sigma-Aldrich)) was added per each well and incubated at 

37°C, 5% CO2 for 30 minutes to lyse the virions. Then, 10 μl of labeled RT buffer containing 

10µmCi/ml α-32P labeled dTTP were added to each well and incubated at 37°C, 5% CO2 for 

2 hours. After incubation, 10 μl from each well was spotted on separate field of DEAE 

stamped blotting paper. Blotting papers were dried at room temperature and then washed with 

1x SSC buffer (15mM Sodium citrate tribasic dihydrate, 150mM NaCl (both Sigma-Aldrich)) 

five times for 5 minutes on a plate shaker. After this step, papers were washed with 85% 

ethanol two times times for 5 minutes on a plate shaker. Blotting papers were air dried and put 

in phosphor screen storage cassette (Life Technologies) for overnight incubation. Next day 

phosphor screen was scanned using Typhoon phosphorimager 8600 (GE Healthcare). Density 

of particular spots, which corresponds to the HIV activity, was measured by array analysis in 

ImageQuant TL program and data were used to construct growth kinetics curves. 

4.13. Statistical analysis 

Graphs were constructed in GraphPad Prism program version 6.02 (GraphPad Software, La 

Jolla, CA). Values are depicted with standard deviations or as normalized averages. Pearson’s 

and Spearman’s correlations were used to evaluate linear and monotonic relationship between 

variables, respectively. Values with p < 0.05 were considered statistically significant. 
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5. Results 

5.1. Construction of plasmids used for the gag recombinant virus production 

Successful production of gag recombinant HIV required homologous recombination 

step in yeast followed by a cloning step in bacteria. For that we had to prepare two specific 

plasmids pRECnfl-TRP-△gag/URA3-PM-Mdel and pNL4-3-EGFP-PM. During their 

preparation we used following plasmids: (1) yeast vector pRECnfl-TRP-△gag/URA3 derived 

from pRECnfl-TRP-△p2-int/URA3 plasmid that was proved to be a convenient tool for 

generation of p2-int-recombinant viruses (Weber et al. 2011); (2) pNL4-3-EGFP plasmid, 

originally prepared for generation of fluorescently labelled viruses for HIV-1 fitness research 

(Weber et al. 2006); and (3) p83-2 plasmid containing the 5’-half of pNL4-3 (i. e. 5’LTR, 

complete gag, pol, vif coding regions and part of the vpr gene) from NIH AIDS Reagent 

Program, Division of AIDS, NIAID, NIH from Dr. Desrosiers. All plasmids were further 

modified in the course of this work. 

5.1.1. Construction of plasmid pRECnfl-TRP-△gag/URA3-PM-Mdel 
Plasmid pRECnfl-TRP-△gag/URA3-PM-Mdel was prepared in a serie of successive 

steps. It originated from pRECnfl-TRP-△gag/URA3 plasmid that contains near full length of 

HIV-1 from pNL4-3, except 5`LTR and gag, which was replaced by Saccharomyces 

cerevisiae uracil biosynthesis gene ura3 (fig. 9). Plasmid was used as a vector for DNA 

recombination in yeast cells, therefore second LTR would be contradictory. 3`LTR and 

5`LTR sequences are the same and their linkage during recombination leads toward 

undesirable excision of whole HIV-1 sequence from plasmid. Gene gag was replaced by ura3, 

which was used as a negative selective marker for successful recombination in yeast. 
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Figure 9. Plasmid pRECnfl-TRP-△gag/URA3. Original plasmid used for recombination of DNA in yeast cells. 

Plasmid contains near full length of HIV-1 except 5`LTR and gag. This gene was replaced by selective marker, 

gene ura3. Apart from the HIV-1 sequence, plasmid contains also gene for ampicillin resistance and gene Trp1 

for tryptophan biosynthesis, providing positive selective markers for growth in bacteria and yeast, respectively. 

Restriction sites of PstI, SacI and SacII enzymes are depicted. Picture was prepared in program SeqBuilder 

(DNASTAR v.10.0.1). 
 

 Plasmid further contains beta-lactamase gene amp providing ampicillin resistance and 

gene Trp1 for tryptophan biosynthesis, providing positive selection of yeast with incorporated 

plasmid during homologous recombination. 

 DNA integrity of the original plasmid pRECnfl-TRP-△gag/URA3 was verified by 

restriction with three separate enzymes: PstI, SacI and SacII. These restriction enzymes digest 

this plasmid with different frequency resulting in specific restriction pattern. Each enzyme 

was used in separate restriction reaction and DNA restriction pattern was verified by 1% 

agarose electrophoresis (fig. 10). All restriction reactions resulted in correct number and size 

of bands. 
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Figure 10. Agarose gel or restricted plasmid pRECnfl-TRP-△gag/URA3. A) Marker. B) Unrestricted 

plasmid. C) Plasmid restricted by PstI resulting in 13.3 kb and 1.5 kb long fragments. D) Plasmid restricted by 

SacI resulting in 6.2, 5 and 3.5 kb long fragments. E) Plasmid restricted by SacII resulting in single linear 

fragment of size 14.8 kb. 
 

During the gag-recombinant virus preparation it is necessary to remove recombined 

gag regions from yeast vector and insert them in pNL4-3-EGFP vector (complete vector with 

both LTR regions) that is able to produce replication-competent virus upon transfection in 

HEK293T cells. As we did not find any suitable naturally occurring recognition sites in these 

plasmids we decided to introduce restriction sites by site directed mutagenesis. The most 

important selection criterion for these restriction sites was that their recognition sites are not 

(or very rarely) naturally present in HIV-1 gag regions. For that we analyzed over 10000 

HIV-1 gag sequences maintained in HIV sequence database at Los Alamos laboratory website 

(https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html). Restriction enzymes PspXI 

and MluI were selected because their recognition sites occurred in less than 1% of available 

HIV-1 gag sequences. Both sites were unique in pNL4-3-EGFP plasmid but MluI recognition 

site was present in pRECnfl-TRP-△gag/URA3, but outside of any important regions. We still 

decided to use MluI site and silence the native MluI site by site directed mutagenesis. 

5.1.1.1. Introduction of MluI restriction site 
 First step in pRECnfl-TRP-△gag/URA3 plasmid modification was to establish new 

MluI restriction site at position 2508 to generate new plasmid designated as pRECnfl-TRP-

△gag/URA3-M. This position was chosen because only two nucleotide substitutions were 

necessary to achieve MluI recognition site without change of any amino acids. MluI site was 

introduced in 5’ end region of reverse transcriptase gene. This site became 3’ end of fragment 

https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html
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later during ligation step. Plasmid pRECnfl-TRP-△gag/URA3 contains native site for MluI and 

this site was removed in later steps. Introduction of MluI site was done by site directed 

mutagenesis with primers MluI-SDM-F and MluI-SDM-R and resulting DpnI-treated DNA 

was transformed in TOP10 Electrocompetent E.coli cells by electroporation. Ten single 

colonies were scraped off and transferred in LB media with ampicillin. Isolated DNA of 

single colonies was verified by restriction with enzyme MluI only and positive clone was 

verified by restriction with MluI and SalI-HF and visualized by gel electrophoresis on 1% 

agarose gel (fig. 11). 

 
Figure 11. Verification of plasmid pRECnfl-TRP-△gag/URA3-M. A) Marker. B) Control plasmid pRECnfl-

TRP-△gag/URA3 restricted by MluI. C) Control unrestricted plasmid pRECnfl-TRP-△gag/URA3. D) Plasmid 

pRECnfl-TRP-△gag/URA3-M (introduced MluI site) restricted by MluI and SalI-HF enzymes resulting in 9.3, 

2.9 and 2.5 kb fragments. E) Plasmid pRECnfl-TRP-△gag/URA3-M unrestricted. Two bands display different 

species of plasmid DNA. 
 

 Product of site directed mutagenesis restriction by MluI and SalI-HF resulted in three 

fragments of size 9.3 kb, 2.9 kb and 2.5 kb as expected consequence of successful 

mutagenesis. As a control, non-mutated plasmid pRECnfl-TRP-△gag/URA3 was only 

linearized by MluI enzyme utilizing native MluI site in the plasmid. Introduced site was 

verified by sequencing and aligning with original sequence of unmutated plasmid (fig. 12). 

Sequencing confirmed presence of the new, MluI recognition site with motif ACGCGT. 
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Figure 12. Verification of introduced MluI site by sequencing. Two substitutions as a result of site directed 

mutagenesis. Top line of sequence of mutated plasmid contains ACGCGT motif, recognized by MluI enzyme. 

Picture was prepared in program SeqMan Pro (DNASTAR v.10.0.1). 

5.1.1.2. Introduction of PspXI restriction site 
 Along with MluI site, plasmid pRECnfl-TRP-△gag/URA3 has to contain second, 

specific restriction site. We selected restriction site for PspXI that was introduced in position 

619 in vector, thus upstream of ura3 gene to generate plasmid pRECnfl-TRP-△gag/URA3-

PM. Position of described restriction site was chosen carefully to be in the non-coding region 

between 5’LTR and gag gene. As in previous procedure, also here was new restriction site 

introduced by site directed mutagenesis; three nucleotides were substituted, using primers 

PspXI-SDM-F and PspXI-SDM-R. Mutated plasmid was transformed in TOP10 

Electrocompetent E.coli cells by electroporation and isolated DNA was verified by restriction 

with enzymes MluI and PspXI and DNA fragments were separated by gel electrophoresis on 

1% agarose gel (fig. 13). 

 
Figure 13. Verification of plasmid pRECnfl-TRP-△gag/URA3-PM. 1) A) Marker. B) Plasmid pRECnfl-TRP-

△gag/URA3 unrestricted. C) Plasmid pRECnfl-TRP-△gag/URA3 restricted by enzyme PspXI. Original plasmid 

contains no native site for PspXI, therefore was not restricted. 2) A) Marker, B) Plasmid pRECnfl-TRP-

△gag/URA3-PM (newly introduced site for PspXI) unrestricted. C) Plasmid pRECnfl-TRP-△gag/URA3-PM, 

restricted by MluI and PspXI, resulting in three visible fragments, smallest fragment (size 600 b) is present due 

to native MluI site in the plasmid. 
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 Original plasmid pRECnfl-TRP-△gag/URA3 was restricted with enzyme PspXI as a 

control of presence of native PspXI sites. No sites were detected by restriction or sequence 

analysis (fig. 13, 1; B and C). After successful mutagenesis, final plasmid pRECnfl-TRP-

△gag/URA3-PM had newly introduced site for PspXI enzyme (fig. 13, 2; C). Three individual 

bands are visible. Furthermore, existence of PspXI site with motif CCTCGAGT was 

confirmed by sequencing (fig. 14), where all three substituted nucleotides are displayed. 

 

 
Figure 14. Verification of introduced PspXI site by sequencing. Original unmutated plasmid pRECnfl-TRP-

△gag/URA3 was aligned with sequence of new plasmid with introduced site for enzyme PspXI. Sequence newly 

contained motif CCTCGAGT. Picture was prepared in program SeqMan Pro (DNASTAR v.10.0.1). 

5.1.1.3. Substitution of native MluI restriction site 
 As a last step, we silenced the native MluI site in plasmid pRECnfl-TRP-△gag/URA3-

PM. For the further cloning, it was fundamental to secure clear excision of recombined patient 

gag gene therefore, additional MluI site at the beginning of promotor in the plasmid pRECnfl-

TRP-△gag/URA3-PM was removed.  Site directed mutagenesis with primers MluI-delSDM-F 

and MluI-delSDM-R were used for substitution of two nucleotides in plasmid sequence to 

generate pRECnfl-TRP-△gag/URA3-PM-Mdel. Mutated plasmid was transformed in TOP10 

Electrocompetent E.coli cells by electroporation and amplified DNA was isolated and verified 

on 1% agarose gel (fig. 15). 
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Figure 15. Verification of plasmid pRECnfl-TRP-△gag/URA3-PM-Mdel. A) Marker. B) Plasmid pRECnfl-

TRP-△gag/URA3-PM restricted by enzymes PspXI and MluI. This plasmid still contains native MluI site hence, 

restriction resulted in presence of 621 b long fragment. C) Plasmid pRECnfl-TRP-△gag/URA3-PM-Mdel 

restricted by enzymes PspXI and MluI. New, mutated plasmid has native MluI site substituted and 621 b long 

fragment is absent. D) Unrestricted plasmid pRECnfl-TRP-△gag/URA3-PM. E) Unrestricted plasmid pRECnfl-

TRP-△gag/URA3-PM-Mdel. 
 

 Original plasmid pRECnfl-TRP-△gag/URA3-PM after restriction by enzymes PspXI 

and MluI excised 621 bases and 2.2 kb long fragments. New plasmid pRECnfl-TRP-

△gag/URA3-PM-Mdel contains just one MluI site and after restriction by same enzymes 

under same conditions exhibits only 2.2 kb long fragment, which contains our target gag 

region replaced by ura3 gene. In addition, Sanger sequencing was used to confirm 

substitution of native MluI site with TCGTGT sequence unrecognizable by MluI enzyme (fig 

16.). 

 

 
Figure 16. Verification of substituted native MluI site by sequencing. Original unmutated plasmid pRECnfl-

TRP-△gag/URA3 was aligned with sequence of new plasmid with substituted MluI native site. Plasmid has MluI 

recognition motif ACGCGT replaced by neutral sequence TCGTGT. Picture was prepared in program SeqMan 

Pro (DNASTAR v.10.0.1). 
 

 After last step of mutagenesis, plasmid pRECnfl-TRP-△gag/URA3-PM-Mdel was 

ready to be used as a vector in yeast transformation. Two introduced sites, recognized by 

enzymes MluI and PspXI, surrounds ura3 gene, which was replacing sequence of gag in this 

plasmid (fig. 17). Purpose of this mutagenesis was to facilitate excision of patient specific gag 

region after it was recombined in plasmid pRECnfl-TRP-△gag/URA3-PM-Mdel during yeast 

transformation. Later, the gag region is excised with PspXI and MluI and introduced in vector 

pNL4-3-PM-linker. 
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Figure 17. Map of plasmid pRECnfl-TRP-△gag/URA3-PM-Mdel. Final product of site directed mutagenesis 

of plasmid pRECnfl-TRP-△gag/URA3. Newly introduced sites recognized by enzymes PspXI and MluI are 

depicted with position number. Native site recognized by MluI, formerly present in plasmid pRECnfl-TRP-

△gag/URA3, was substituted with neutral sequence in plasmid pRECnfl-TRP-△gag/URA3-PM-Mdel. Specified 

site is highlighted with red frame. Picture was prepared in program SeqBuilder (DNASTAR v.10.0.1). 

5.1.2. Construction of plasmid pNL4-3-EGFP-PM 
Another important plasmid for my work was plasmid pNL4-3-EGFP-PM with 

introduced PspXI and MluI sites and deleted gag region. This plasmid was used as a vector 

for transfection into the HEK293T cells to produce HIV-1 recombinant virus. Original 

plasmid, pNL4-3-EGFP has been prepared by members of our laboratory during earlier 

research of HIV-1 fitness from plasmid pNL4-3. Plasmid contains full sequence of HIV-1 

with probe EGFP (enhanced green fluorescent protein) sequence inserted between env and nef 

ORFs. Since plasmid pNL4-3-EGFP-PM is over 15 kb long, above recommended length for 

efficient mutagenesis, we decided to use shorter 8kb long plasmid p83.2 for site-directed 

mutagenesis and subsequently ligate fragment with introduced PspXI and MluI sites in pNL4-

3-EGFP scaffold. Plasmid p83.2 is 8151 bp long and except gene providing ampicillin 

resistance, contains also 5’ half of HIV-1NL4-3 sequence. Included sequence is from 5’ LTR up 

to vpr, although this gene is contained only partially (fig. 18).  
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Figure 18. Plasmid 83.2 Plasmid p83.2 is known also as HIV-1NL4-3 5´ Clone. Plasmid carries 5’ LTR, gag, pol, 

vif and part of vpr gene. Plasmid also contains gene for ampicillin resistance. Plasmid was used for mutagenesis 

Picture was prepared in program SeqBuilder (DNASTAR v.10.0.1). 
 

 Absence of MluI and PspXI restriction sites was verified by restriction of specific 

enzymes and confirmed by 1% agarose gel electrophoresis (fig. 19).  

 
Figure 19. Control restriction of plasmid p83.2. A) Marker. B) p83.2 unrestricted. C) p83.2 treated by 

enzymes MluI and PspXI. Double bands display supercoiled and relaxed circular forms of plasmid DNA. 
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5.1.2.1. Introduction of MluI and PspXI restriction sites in plasmid p83.2. 
Introduction of mutated sites in plasmid p83.2 was analogous to procedure of 

establishing restriction sites in plasmid pRECnfl-TRP-△gag/URA3. Restriction sites were 

introduced into the corresponding positions; 654 (PspXI) and 2888 (MluI). PspXI site is 

located in non-coding region between 5’LTR and gag gene; and MluI site is located in 5’ end 

of gene for reverse transcriptase (fig. 20). 

 
Figure 20. Plasmid p83.2-PM. Introduced restriction sites are depicted with corresponding position. Restriction 

sites PspXI and MluI are surrounding gag gene. Picture was prepared in program SeqBuilder (DNASTAR 

v.10.0.1). 

 

 MluI restriction site was introduced by site directed mutagenesis with primers MluI-

SDM-F and MluI-SDM-R, following the procedure as for plasmid pRECnfl-TRP-△gag/URA3 

mutagenesis. After transformation of DpnI-treated DNA in electrocompetent E. coli cells 

through electroporation, two colonies were scraped off the plate and restricted by enzyme 

MluI (fig. 21). 
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Figure 21. Verification restriction of plasmid p83.2-M. A) Marker. B) Plasmid p83.2 unrestricted. C & D) 

DNA from colonies 1 and 2, unrestricted. E & F) DNA from colonies 1 and 2, restricted by enzyme MluI. Both 

restrictions resulted in linearized DNA of size around 8 kbp, newly prepared plasmid p83.2-M. 

 

 DNA from both colonies resulted in one correct-sized band after MluI restriction. One 

of the positive colonies was used as source plasmid p83.2-M for introduction of PspXI 

restriction site (fig. 21; E). Also, presence of MluI restriction site in plasmid p83.2-M was 

verified by sequencing (fig. 22). Motif recognized by enzyme MluI, ACGCGT was present in 

plasmid p83.2-M. 

 
Figure 22. Sequence verification of p83.2-M.  Plasmid p83.2-M was sequenced and aligned with original 

plasmid p83.2. Restriction site for MluI with motif ACGCGT is newly introduced. Picture was prepared in 

program SeqMan Pro (DNASTAR v.10.0.1). 
 

 Next, restriction site for PspXI was introduced in plasmid p83.2-M by synonymous 

procedure as in case of the pRECnfl-TRP-△gag/URA3-M. In brief, primers PspXI-SDM-F and 

PspXI-SDM-R were used and DNA was transformed in E. coli. Positive clone was verified by 

restriction (fig. 23; 1). PspXI restricted plasmid p83.2-PM was linearized and restriction by 

both MluI and PspXI resulted in excised fragment of size 2.2 kbp. Presence of motif 

CCTCGAGT was verified by sequencing (fig. 23; 2). 
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Figure 23. Verification of plasmid p83.2-PM. 1) Restriction verification of p83.2-PM A) Marker. B) plasmid 

p83.2-PM, unrestricted. C) plasmid p83.2-PM linearized by enzyme PspXI. D) plasmid p83.2-PM restricted by 

enzymes MluI and PspXI. Lower band displays excised fragment of size 2.2 kbp. 2) Sequence verification of 

CCTCGAGT motif in plasmid p83.2-PM. Picture was prepared in program SeqMan Pro (DNASTAR v.10.0.1). 

5.1.2.2. Ligation of EcoRI-p83.2-PM-BspEI fragment in pNL4-3-EGFP vector 
 Since plasmid p83.2-PM contains only part of the HIV clone NL4-3 sequence, it is not 

suitable for transfection to produce recombinant viruses. Therefore, fragment of the p83.2-PM 

containing introduced restriction sites was ligated in pNL4-3-EGFP vector. As we did not find 

two restriction enzymes that would restrict both plasmids just once, we had to employ partial 

digest method in case of pNL4-3-EGFP vector preparation. We selected enzyme EcoRI that 

digests both plasmid just once and BspEI that digests once p83.2 and twice pNL4-3-EGFP 

(fig. 24). Initially, plasmid p83.2-PM was fully digested by enzymes BspEI and EcoRI to 

prepare fragment containing introduced PspXI and MluI sites.  

Next, plasmid pNL4-3-EGFP was fully digested by enzymes EcoRI and SphI. We 

used additional digest by SphI to get better separation between individual bands on agarose 

gel after partial digest. Both enzymes utilize single restriction sites inside pNL4-3-EGFP 

sequence. Finally, we used BspEI partial digest to preserve inner BspEI site (at position 

10125, fig. 24) to generate vector fragment BspEI-EcoRI. 
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Figure 24. Partial digestion of plasmids p83.2-PM and pNL4-3-EGFP. Plasmid p83.2-PM was digested by 

enzymes BspEI and EcoRI, utilizing single restriction sites. Excised fragment is displayed by light yellow box; 

this fragment has BspEI and EcoRI overhangs on 3’ and 5’ end. Excised fragment contains only sequence of 

clone NL4-3 with introduced restriction sites for PspXI and MluI. Plasmid pNL4-3-EGFP was digested by 

enzymes SphI and EcoRI a partially digested by enzyme BspEI to preserve second BspEI restriction site; 

highlighted in red box. Excised vector fragment for ligation is displayed by light yellow box and contains BspEI 

and EcoRI overhangs on 3’ and 5’ end. Picture was prepared in program SeqBuilder (DNASTAR v.10.0.1). 

 

 In order to achieve successful partial digestion of pNL4-3-EGFP, the optimal amount 

of BspEI enzyme was determined. BspEI was serially diluted (concentrations between 6 U 

and 0.005 U per µg of DNA) and used in 15-min partial digestion followed by 20 minutes of 

inactivation at 80°C. Concentrations 3.35 U and 1.1 U per µg of DNA were chosen for final 

partial digestion (fig. 25; 1). Incomplete digestion resulted in presence of several different 

bands, including our fragment of interest with size 10,131 bp with BspEI and EcoRI 

overhangs. Fragment of interest was purified on 0.8% E-Gel and isolated by E-Gel 

Electrophoresis system. Next, the presence of purified fragment was verified by 1% gel 

electrophoresis (fig. 25; 1). Digested plasmid p83.2-PM was also isolated by E-Gel 

Electrophoresis system; fragment of interest has size 5,435 bp (fig. 25; 2). 
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Figure 25. Agarose gel of partial digestion and DNA purification. 1) A) Marker. B-C) plasmid pNL4-3-

EGFP fully digested by enzymes SphI and EcoRI and subsequently partially digested by 3.35 U per µg of DNA 

of enzyme BspEI for 15 minutes. D-E) plasmid pNL4-3-EGFP fully digested by enzymes SphI and EcoRI and 

subsequently partially digested by 1.1 U per µg of DNA of enzyme BspEI for 15 minutes. F) plasmid p83.2-PM 

digested by BspEI and EcoRI. G-J) Isolation of 10,131 bp long fragment from samples displayed at lines B-E, 

respectively. 2) A) Marker. B-C) Isolation of 5,435 bp long fragment from digested p83.2-PM. 

 

 E-gel purification of digested p83.2-PM plasmid resulted in one pure 5,435 bp long 

fragment. E-gel purification of 10,131 bp long fragment from pNL4-3-EGFP resulted in 

mixture of correct and still contained minority of other fragments. Mainly fragment of size 

11,270 bp was not removed, because of limited separation power of E-Gel Electrophoresis 

system. Although fragment of size 11,270 bp was present in equal amount to fragment of 

interest, its presence did not hamper ligation as larger fragment had SphI and EcoRI 

overhangs. 

 To generate pNL4-3-EGFP-PM fragments BspEI-p83.2-PM-EcoRI and BspEI-pNL4-

3-EGFP-EcoRI were ligated in molar ratio 4:1 and one tenth of ligation mixture was 

transformed in E. coli by electroporation. 

Four colonies were scraped-off the plate and isolated DNA was digested by enzymes 

MluI and PspXI for one hour and verified by 1% agarose gel electrophoresis (fig. 26). 
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Figure 26. Agarose gel of plasmid pNL4-3-EGFP-PM. A) Marker. B, D & F) DNA isolated from three 

different colonies, unrestricted. C, E & G) DNA isolated from same three colonies, restricted by enzymes MluI 

and PspXI. No digestion occurred, also bands have incorrect size. H) DNA isolated from fourth colony, 

unrestricted. I) DNA from the fourth colony restricted by MluI and PspXI resulted in excised band of 2.2 kbp 

size. Bands have correct size expected from plasmid pNL4-3-EGFP-PM. 

 

 Gel electrophoresis displayed correct restriction pattern expected from pNL4-3-EGFP-

PM plasmid in one isolated clone. Next, we performed sequence analysis of whole BspEI-

p83.2-PM-EcoRI region to verify that we did not introduce any other substitution during site-

directed mutagenesis step. Plasmid pNL4-3-EGFP-PM was further modified by introducing 

small linker sequence instead of NL4-3 gag region. 

5.1.3. Construction of plasmid pNL4-3-EGFP-PM-linker 
 In order to generate patient HIV gag-recombinant viruses without the possibility of 

contamination with NL4-3 gag sequence the original gag region in plasmid pNL4-3-EGFP-

PM was replaced with short linker. 

 Plasmid pNL4-3-EGFP-PM was digested by enzymes PspXI and MluI overnight and 

large fragment was isolated by excision from gel, as any contamination by smaller fragment 

would be counterproductive (fig. 27). Linker was prepared from primers PspXI-MluI-F and 

PspXI-MluI-R. Primers were mixed together, heated up for 95°C for 3 minutes and let to cool. 

Prepared dsDNA was digested by enzymes MluI and PspXI and product PspXI-MluI linker 

was verified on 3% agarose gel electrophoresis (fig. 27). 
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Figure 27. Verification of isolated vector pNL4-3-EGFP-PM and linker PspXI-MluI. A, C & E) Marker. B) 

plasmid pNL4-3-EGFP-PM digested by MluI and PspXI. D) Large fragment isolated from digested plasmid 

pNL4-3-EGFP-PM. F) dsDNA of linker PspXI-MluI digested by MluI and PspXI. G) dsDNA of linker PspXI-

MluI. 

 

 Isolated large fragment of pNL4-3-EGFP-PM was dephosphorylated and mixed with 

digested linker PspXI-MluI in molar ratio 1:3. One tenth of ligation mixture was transformed 

in E. coli and several colonies were scraped off the plate.  

 DNA isolated from colonies was digested by enzymes AatII and SphI. Restriction site 

for SphI is present in replaced gag gene; therefore plasmid with linker cannot utilize it. 

Digested DNA was verified by 1% agarose gel electrophoresis (fig. 28). 

 
Figure 28. Digestion verification of ligation. A) Marker. B, D & F) DNA isolated from three different colonies, 

unrestricted. C, E & G) DNA isolated from those three colonies restricted by enzymes AatII and SphI. Presence 

of 3 kbp long fragment displays presence of both restriction sites.  

 

 Presence of 3 kbp long fragment on gel indicated occurrence of gag and absence of the 

linker sequence. One of the samples from single colony demonstrated only linearization after 

digestion (fig. 28; E). In addition, this clone had correct size as expected from pNL4-3-EGFP-

PM-linker plasmid. Finally, presence of the linker, replacing gag gene and surrounding 

sequence, was verified by Sanger sequencing (fig. 29). Both restriction sites; PspXI and MluI 

are now separated only by short linker. 
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Figure 29. Sequencing of introduced linker PspXI-MluI. Both, PspXI and MluI restriction sites (highlighted 

red) are present in short sequence of linker replacing gag gene and surrounding sequence. Picture was prepared 

in program SeqMan Pro (DNASTAR v.10.0.1). 

 

 As a final result, plasmid pNL4-3-EGFP-PM-linker has replaced gag gene with 

surrounding sequence. This plasmid is used for incorporation of patient derived gag and 

production of recombinant virus upon transfection (fig. 30). In summary, together with 

plasmid pRECnfl-TRP-△gag/URA3-PM-Mdel, pNL4-3-EGFP-PM-linker are both prepared 

for generation of recombinant viruses. 

 
Fig. 30. Plasmid pNL4-3-EGFP-PM-linker. Plasmid carries sequence of HIV with gag gene replaced by short 

linker (15 bp). Linker ir surrounded by restriction sites PspXI and MluI. 
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5.2. Generation of recombinant viruses 

 To begin with replicative fitness evaluation, set of recombinant viruses had to be 

generated. Preparation of recombinant virus from patient-derived plasma samples and 

constructed plasmids was crucial part of my research. In order to achieve production of 

replication-competent recombinant virus a series of consecutive steps was performed (fig. 31). 

Briefly, RNA was isolated from patient-derived plasma and gag region (gag-protease) was 

amplified by PCR. Next, through steps of homologous recombination in yeast, transformation 

into E.coli, digestion and ligation of patient’s gag region into linker vector a complete 

replication-competent plasmid was produced. Finally, 48 h after transfection we harvested 

recombinant virus. 

 

 
Figure 31. Generation of recombinant virus with patient-derived gag. First, blood of HIV positive patient is 

separated into cell pellet and plasma. RNA is isolated from plasma and gag region is reverse transcribed to 

cDNA and amplified by PCR. Afterward, amplicon is recombined into plasmid pRECnfl-TRP-△gag/URA3-PM-

Mdel by homologous recombination in yeast. After recombination, incorporated gag is excised with surrounding 

sequence by PspXI and MluI. Next, excised fragment is ligated into PspXI and MluI digested plasmid pNL4-3-

EGFP-PM-linker, resulting in pNL4-3-based plasmid with patient-derived gag and EGFP probe. Finally, ligated 

plasmid is transfected into HEK293T cells and recombinant virus is produced. 
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5.2.1. PCR amplification of patient gag sequence 

To begin with generation of recombinant virus, gag specific region is amplified by 

PCR. Patient-derived RNA was reverse transcribed into cDNA using primer POL PRO REC 

CON BWD 7. In addition, cDNA was amplified by two-step PCR using POL PRO REC CON 

BWD 7 and GAG P17 FWD 8M pair of primers in first, external PCR step; and POL PRO 

REC CON BWD 8 and GAG P17 FWD 7M pair of primers in second, nested PCR step. 

Second step of PCR is necessary to enhance PCR product yield.  

As a matter of fact, all primers are degenerate to overcome sequence variability of 

HIV and relatively long to facilitate yeast homologous recombination. It increased our success 

rate of PCR to 81 % (Table 1). In general, purpose of PCR was to amplify ~1.9 kb long 

fragment (fig. 32) containing patient’s gag and surrounding sequence, utilized during 

homologous recombination.  

 

 
Figure 32. PCR amplification. A) Marker. B-Q) Patient-derived RNA was amplified by PCR into dsDNA. 

Columns B-Q displays particular patient-derived samples. Indeed, some of the samples are absent of ~1.9 kb 

long fragment. In addition, several samples display presence of non-specific band. 

 

Although most of PCRs were successful, samples associated with viral load fewer than 10,000 

copies per ml of blood were hardly amplified. Moreover, some of the samples also exhibited 

non-specific bands. Eventually, presence of such a non-specificity hampered subsequent steps 

of recombinant virus production.  

 

Number of samples in PCR Number of amplified samples 

105 85 

Table 1. Success rate of PCR. PCR amplification was successful in 81 % of the samples. 

5.2.2. Homologous recombination in yeast cells 
 First, PCR-amplified gag amplicon is purified to obtain pure DNA for homologous 

recombination. Step of homologous recombination in yeast is crucial for maintaining 
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sufficient quasispecies of virus. In fact, number of yeast colonies after homologous 

recombination was deciding factor if the procedure was continued.  

 To begin with homologous recombination, plasmid pRECnfl-TRP-△gag/URA3-PM-

Mdel was linearized by enzyme SacII and used as a vector. Next, purified gag amplicon was 

introduced into the vector by homologous recombination. When homologous recombination 

occurs negative selection marker ura3 gene is replaced by patient-derived sequence.  

 Yeast colonies were counted and only plates with more than 100 colonies were used 

for DNA preparation. DNA extracted from yeast cells contains large amounts of genomic 

DNA and only minority of plasmid DNA, therefore DNA isolated from all yeast colonies was 

transformed in E. coli. Again, only plates with at least 100 bacterial colonies were used for 

preparation of plasmid DNA. Finally, size and quality of DNA isolated from all colonies was 

verified by 0.8% agarose gel electrophoresis (fig. 33). 

 

 
Figure 33. Homologous recombination in yeast. DNA recombined in yeast cells and amplified in bacterial 

cells was purified and electrophoresed. A) Marker. B-Q) Samples of DNA purified from particular bacterial 

colonies. R) Positive size control (pRECnfl-TRP-HIV). 

 

 As a result of successful recombination, the size of the plasmid increases by 345 bp. 

Agarose gel electrophoresis provides first control of recombination since the size of 

recombined plasmid pRECnfl-TRP-‘patient-derived-gag’-PM-Mdel should match the size of 

positive control pRECnfl-TRP-HIV. After size verification, plasmid was digested by enzymes 

PspXI and MluI overnight and result was verified by 1% agarose gel electrophoresis (fig. 34). 

 

 
Figure 34. Digestion of plasmids by enzymes PspXI and MluI. DNA purified from samples was digested and 

subsequently, presence of 2.2 kb long fragment was verified by agarose gel electrophoresis. A) Marker. B-Q) 

Samples of plasmid DNA digested by enzymes PspXI and MluI.  
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 Samples with weak correct band (fig. 33) yield weak or no excised fragment while 

digestion of strong correct samples usually results in the presence of excised band (fig. 34). 

Nevertheless, several samples with correct size band in fig. 33 did not yield correct excised 

fragment in fig. 34. Presence of larger bands than excised fragment is not detrimental, since 

fragment of interest was purified by 0.8% E-Gel Electrophoresis system (fig. 35). 

 

 
Figure 35. Excised fragments from pRECnfl-TRP-‘patient-derived-gag’-PM-Mdel. DNA of excised 

fragment was purified by 0.8% E-Gel electrophoresis. A) Marker. B-N) Isolated fragments from particular 

samples. 10 µl of fragment was loaded on gel. 

 

 Success rate of homologous recombination is 81 % (Table 2). In summary, after 

successful homologous recombination and maintenance of quasispecies, patient-derived gag 

fragments with surrounding NL4-3-derived sequence were excised and purified. Purified 

fragments were used in ligation to obtain replication-competent plasmid. 

 

Number of samples initiating homologous 

recombination 

Number of samples with successful excision of 

fragment 

85 69 

Table 2. Success rate of homologous recombination. Homologous recombination in yeast was successful in 81 

% of the samples. 

5.2.3. Ligation 
 In the next step of recombinant virus production, we had to transfer excised fragment 

into the plasmid with full HIV sequence however, with gag replaced by short linker. Excised 

gag fragments were ligated in pNL4-3-EGFP-PM-linker. Initially, vector pNL4-3-EGFP-PM-

linker was digested by enzymes MluI and PspXI overnight and verified by 0.8% agarose gel 

electrophoresis (fig. 36). 
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Figure 36. Linearization of vector pNL4-3-EGFP-PM-linker. A) Marker. B, C) Vector pNL4-3-EGFP-PM-

linker isolated by QIAprep Spin Midiprep (B) and Maxiprep (C) Kits. D, E) Vector pNL4-3-EGFP-PM-linker 

restricted by enzymes MluI and PspXI. F) Positive size control of linearization. 

 

 After restriction verification, vector was dephosphorylated to minimize self-ligation. 

Next, ligation was performed with 30 ng of linearized vector and purified fragment from 

pRECnfl-TRP-‘patient-derived-gag’-PM-Mdel in molar ratio 1:3. Subsequently, 1.5 µl of 

mixture was transformed in bacteria by electroporation. As previously described, number of 

colonies is important factor for maintaining quasispecies variation. Samples with less than 

100 colonies on the plate were not processed. Finally, DNA was purified from all colonies 

and verified by 0.8% agarose gel electrophoresis (fig. 37). 

 

 
Figure 37. DNA preparation of pNL4-3-EGFP-PM-linker. A) Marker. B-J) DNA isolated from colonies of 

particular samples. K) Size control of successful ligation. L) Size control of unsuccessful ligation. 

 

 80% success rate of ligation was limited by number of colonies and correct size of 

isolated plasmid (Table 3). Whereas plasmid pNL4-3-EGFP-PM provides positive size 

control, plasmid pNL4-3-EGFP-PM-linker serves as negative size control to ligation (fig. 37; 

K and L). Plasmid concentration was determined for each sample and 8 µg of DNA were used 

in transfection of HEK293T cells. 

 

Number of samples initiating subcloning Number of samples with successful subcloning 

69 55 

Table 3. Success rate of subcloning. Depicted is number of samples going into the subcloning and number of 

samples yielding at least 100 colonies after ligation step. 
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5.2.4. Titer measurement of recombinant virus and selection of samples 
 After subcloning step, plasmid pNL4-3-EGFP-PM carrying patient-derived gag was 

transfected. Next, virus was used for titer evaluation by endpoint dilution assay. Fifty percent 

tissue culture infective dose (TCID50) was calculated. Success rate of transfection was 100 %, 

thus we prepared 55 recombinant viruses. Although we measured TCID50 for all prepared 

viruses, only 24 samples were further analyzed (Table 4). 

 

Sample TCID50 

(10^)/ml 

Sample TCID50 

(10^)/ml 

Sample TCID50 

(10^)/ml 

Sample TCID50 

(10^)/ml 

1*1 4 7*1 4.5 13*1 4.6 7*2 4 

2*1 3.9 8*1 3.9 14*1 4.3 8*2 4.5 

3*1 4 9*1 3.9 2*2 3.9 9*2 4.2 

4*1 3.9 10*1 4.3 3*2 4.5 10*2 4.5 

5*1 4.3 11*1 4.6 4*2 4.2 11*2 4 

6*1 4.1 12*1 4.8 5*2 4.2 14*2 3.6 

 
Table 4. Overview of recombinant viruses with titer. TCID50 was calculated for each sample by endpoint 

dilution method. First number states particular patient-derived sample, number separated by asterisk marks 

earlier (*1) or later sampling (*2). 

 

Concerning samples selection, they were divided according to two criteria in 

individual batches. First, to compare fitness contribution of gag to overall fitness, we selected 

ten viruses with corresponding primary isolate in one batch (Table 5). Second, we selected 

matching pairs of recombinant viruses derived from the same patient from two separate time 

points and organized them in another batch (Table 5). Purpose was to compare replicative 

fitness development using early- and late-sampling derived gag recombinant virus. 

Distribution of samples goes along with particular aims of my thesis. Nomenclature of 

samples is marked by numbers to distinguish particular patients. Specifically, samples are 

marked by *1 add-on to indicate earlier patient-derived sample and *2 to indicate later 

patient-derived sample. Between earlier and later sampling is span of at least two years. 
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First batch of samples Second batch of samples 

1*1 1 – primary isolate 2*1 2*2 

2*1 2 – primary isolate 3*1 3*2 

5*1 5 – primary isolate 4*1 4*2 

6*1 6 – primary isolate 5*1 5*2 

8*1 8 – primary isolate 7*1 7*2 

9*1 9 – primary isolate 8*1 8*2 

10*1 10 – primary isolate 9*1 9*2 

11*1 11 – primary isolate 10*1 10*2 

12*1 12 – primary isolate 11*1 11*2 

13*1 13 – primary isolate 14*1 14*2 

 Table 5. Samples distribution in batches. First batch of samples was used to compare recombinant 

virus and primary isolate replicative fitnesses. Second batch was used to determine replicative fitness 

development over time. 

5.2.5. Sequence integrity verification 
 Before we can proceed with replicative fitness characterization it is necessary to verify 

sequence integrity of prepared recombinant viruses. For this reason, RNA was purified from 

24 recombinant viruses. Similarly, we isolated RNA directly from plasma of patients. Next, 

gag gene region was sequenced and sequences were aligned by ClustalW method. Sequence 

of NL4-3 virus was included as a control to exclude any contamination issues. Phylogenetic 

analysis was performed two times according Table 5. 

First, gag recombinant virus sequences were aligned with corresponding primary 

isolate sequences. Primary isolate sequence represents here HIV genetic information from 

RNA isolated from patient’s plasma. Phylogenetic analysis demonstrates close sequence 

proximity between patient-derived gag recombinant virus and same patient-derived primary 

isolate (fig 38.). 
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Figure 38. Phylogenetic tree of primary isolates and corresponding recombinant viruses. Alignment was 

done by ClustalW method. Numbers indicates particular patients; number followed by ‘isolate’ indicates 

sequence of primary isolate. NL4-3 is a control sequence. 

 

 Likewise, gag recombinant virus sequence from earlier patient-derived recombinant 

virus and from later patient-derived recombinant virus were aligned. Phylogenetic tree 

displays nucleotide substitution rate in gag region between early and late sampling (fig. 39). 

 
Figure 39. Phylogenetic tree of early- and late-sampling derived recombinant viruses. Alignment was done 

by ClustalW method. Numbers indicates particular patients. Marks ‘-1’ and ‘-2’ point on earlier and later 

sampling-derived recombinant virus. NL4-3 is a control sequence. 

 

 After alignment, phylogenetic trees were constructed using MegAlign program 

(DNASTAR v.10.0.1). Samples from the same patients are clustering together in the tree. 

Expectedly, sequence distance between first and second sampling-derived recombinant virus 

from the same patient (fig 39.) is larger than between first sampling-derived recombinant 
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virus and primary isolate sequence from the same patient (fig. 38). NL4-3 sequence is not 

identical with any of sequenced samples; hence contamination of samples is excluded. 

Sequence verification is final step in the preparation of recombinant viruses. In summary, 

recombinant viruses were prepared with 52% success rate in total. From pool of prepared 55 

viruses, 24 candidates were chosen for further replicative fitness measurement. 

5.3. Patients’ characterization 

 For purpose of further data analysis we collected demographic, clinical and virological 

parameters for all fourteen patients. CD4+ T cells counts were determined at Hospital Na 

Bulovce and viral loads were measured in National Institute of Public Health. CD4+ T cells 

counts and viral loads were determined during routine medical examination usually two or 

three times per year. Characteristics are shown in Table 6.  

Patients’ characterization 

Patient Sex Age in the 

time of 

last 

sampling 

Follow-

up 

(months) 

Average 

CD4+ T cell 

per µl 

 

Slope of 

CD4+ T 

cells 

Average 

viral load 

average (log 

of RNA 

copies per 

ml) 

Protective 

allele 

1 Male 57 51 505 3.1 5.24 None 

2 Male 26 73 681 2.4 4.67 HLA-B*13 

3 Male 36 74 447 -0.6 4.13 HLA-B*27 

4 Male 44 60 690 -6.6 4.35 HLA-B*57 

5 Male 32 31 398 -9.6 5.38 None 

6 Male 39 20 608 -9.2 4.4 None 

7 Male 32 166 544 -1.3 4.58 None 

8 Male 39 58 986 -3.7 4.15 HLA-B*13 

9 Male 44 72 813 -11.6 4.5 None 

10 Male 38 55 674 1 3.98 None 

11 Male 37 57 705 -2.5 5.25 None 

12 Male 30 24 650 -8 5.09 None 

13 Male 40 35 660 7.8 4.53 None 

14 Male 38 32 335 -4.2 4.67 None 

Table 6. Patients’ characterization. In table are present summarized data about patients. CD4+ T cells counts 

were provided by Hospital Na Bulovce and viral loads are from National Institute of Public Health. Slopes of 

CD4+ T cells were calculated by linear regression of all counts of CD4+ T cell per µl during the follow-up. Bold 

numbers of CD4+ T cell slope marks slow progressors. HLA typization was done by Inno-Train GmbH. 
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 Slopes of CD4+ T cells were calculated as a CD4+ T cell decline determined as cells/µl 

per month using all CD4+ T cell counts during the clinical follow-up. This slope displays 

general trend of patient’s immunological status development during infection. Further, we 

used CD4+ T cell slopes to divide patients in arbitrary categories of slow progressors (slope > 

-1) and typical progressors (slope < -1). All collected samples and analyzed data were from 

untreated patients infected by subtype B. Age of patients is displayed at time of later 

sampling. 

5.4. Replicative fitness measurement 

5.4.1. Viral growth kinetics evaluation 
 Initially, replicative fitness of all recombinant viruses was determined by viral growth 

kinetics. Experiment was evaluated by RT assay performed on cell-free supernatants from 

individual collection days. All viral growth kinetics wereperformed in triplicate and aliquots 

were harvested from each well. After RT assay assessment, curves of viral growth (fig. 40) 

were drawn and slopes were calculated through linear regression from ln transformed day 0 

values to day 3 and day 4 values respectively. In my experiments, peak of infection was 

usually reached during day 4. 

 
Figure 40. Viral growth curves. Virus growing in cells was collected in particular days. Reverse transcriptase 

activity of collected samples was measured by radioactive assay and growth kinetics was constructed. Displayed 

are samples of recombinant viruses used for comparison of replicative fitness with primary isolate. 

 

Sample 11*2 is exception in calculation of slopes average. Its slope from day 0 to day 3 is 

absent in calculation due to impossibility to drawn ln transformation of zero. Slopes 
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distribution was plotted in graph using mean with minimum to maximum dispersion of values 

(fig. 41). 

 
Figure 41. Mean of slopes of recombinant viruses evaluated from viral growth kinetics. Value for each 

sample is drawn from slopes calculated from day 0 to days 3 and 4. Value is displayed as mean of slopes of 

included days; whiskers indicate minimal and maximal dispersion of values. NL4-3 is a control. 

  

 Furthermore, for purpose of subsequent analysis, values from figure 41 were 

normalized to highest value (referred as 100%) in the set, excluding NL4-3-EGFP control. 

Span of samples is 79.9 % to 100 %, thus the weakest virus is 1.25 times weaker than the 

strongest. 

 Replicative fitness evaluation of primary isolates was done analogously (fig. 42). 

However, due to usage of different type of cells for viral growth kinetics of primary isolates, 

different control virus was chosen. Namely, strain B2 (92US076) is preferred for control 

infection in PBMCs, since NL4-3 is performing weakly in this type of cells. Normalized 

values of sample were between 51 % and 100 %. Therefore, replicative fitness measured on 

primary isolates shows greater range of values than replicative fitness of recombinant viruses, 

since the weakest virus is 2 times weaker than the strongest one. 
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Figure 42. Mean of slopes of primary isolates evaluated by viral growth kinetics. Value for each sample is 

drawn from slopes calculated from day 0 to days 3 and 4. Value is displayed as mean of slopes of included days; 

whiskers display min – max distribution of values. B2 is a control virus. 

 

From comparison between figure 41 and 42 is apparent, that values are more dispersed 

in the case of recombinant virus growth kinetics, especially for recombinant viruses 2*2, 5*1, 

8*2 and 12*1. This effect is due to inequalities in triplicate measurement (days 3 and 4). 

However, those values were used for further analysis, since any outliers were not detected by 

ROUT method in GraphPrism program (Q = 1 %). Next, values drawn from figure 42 were 

also normalized to the highest value in the set (excluding B2 control). Normalized percentage 

values were used in correlations. 

5.4.2. Viral competition evaluation 
 Additionally, viral competition experiment was used to evaluate replicative fitness of 

recombinant viruses. Viral competition was done at MOI = 0.0001 (according to TCID50 

value measured in TZM-bl cells) for each virus participating in dual infection. Dual infection 

was done in triplicate for each recombinant/control virus pair. Competition in each well was 

between sample of recombinant virus with EGFP probe and control NL4-3 virus with red E2-

Crimson probe. Dual infections were analyzed by flow cytometry. Number of counted events 

was set up to 10,000 within manually defined gating. Manual gating filtered only living single 

cells to be counted as an event. For further data analysis, automated gating approach was 

adopted (Finak et al. 2014). Next, data obtained after automated gating processing were used 

for calculation of selection coefficients (s). 
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𝑠 =  
ln [𝐻(𝑇)

𝐻(0)]

𝑙𝑙16+ln�𝑊(𝑇)
𝑊(0)�+ 𝛿𝛿

  

Where, W(T)/W(0) is fold change of NL4-3 virus with E2-Crimson probe from day 4 to day 

3. H(T)/H(0) is fold change in EGFP/E2-Crimson carrying viruses ration from day 4 to day 3. 

Ln16 in denominator stains for 16x dilution between day 3 and 4 and δT is dying coefficient 

of cells, stated arbitrarily as 0.5, multiplied by time of experiment. Equation for s calculation 

was adapted from work of Marée and his colleagues (2000). Relation between day 3 p. i. and 

day 4 p. i. was chosen to represent viral competition development, based on our previous 

experiments. We diluted dual infections by fresh media to repress number of double-infected 

cells in day 4 measurement. Finally, relative fitness was derived according to formula 1 + s. 

Relative fitness calculation was done for every well separately. Three values, corresponding 

to a triplicate of sample, were plotted in figure 43 as mean with minimum to maximum value 

distribution. Relative fitness was normalized to highest value (excluding control). Values 

were spanning between 59 % and 100 %. Thus, the weakest virus was competing with control 

1.7 times worser than the strongest virus. 

 
Figure 43. Relative fitness of recombinant viruses measured by viral competition. Relative fitness was 

derived from selection coefficient (s); s was calculated according to formula used previously (Marée et al. 2000). 

Relative fitness was calculated in triplicate and plotted as mean with min to max value distribution. NL4-3-

EGFP is control dual infection, where NL4-3 virus with green probe competed with NL4-3 with red probe.  

  

 Furthermore, presence of positively infected cells was verified by confocal 

microscopy. Measurement was done in day 5 of undiluted dual infection. Noticeably, without 
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dilution, almost all cells are exhibiting both colors (fig. 44). We repressed numbers of double 

infected cells by dilution, since presence of double infected cells is adversely influencing 

calculation of selective coefficient. 

 

 
Figure 44. Microscopy of dual infection. MT4 cells were observed under microscope at day 5 p. i. in undiluted 

sample of dual infection between NL4-3-EGFP and NL4-3-E2-Crimson. At day 5, signal of double infected cells 

is visible. Scale bar of 10 µm. 

5.4.3. Comparison of replicative fitness measurement methods 
 Next, we were interested in how replicative fitness results from viral growth kinetics 

and viral competition compare to each other. For that, we plotted values obtained through 

viral growth kinetics against values of relative fitness obtained from competition experiment 

(fig. 45). 

 
Figure 45. Comparison of replicative fitness measurement outcomes. Relative fitness was measured in 

triplicate and plotted with standard deviation against slope of viral growth with standard deviation. Values of all 

24 recombinant viruses were plotted. Trend describing curve was drawn through regression and is describing 

monotonic trend with p < 0.05 (Spearman’s correlation). Red circle marks group of recombinant viruses with 

high slope in viral growth kinetics but poor relative fitness in competition experiments. 
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 Values of replicative fitness from whole set of 24 recombinant viruses were included 

and plotted in the graph with standard deviations. We observed statistically significant 

association between slopes from growth kinetics and relative fitness from competition 

experiments. Interestingly, group of recombinant viruses with relatively high slope of viral 

growth but somewhat low value of relative fitness can be observed in the graph (fig. 45; red 

circle). This group represents recombinant viruses that replicate fairly well in mono-infections 

but they are outcompeted with our control NL4-3 virus in competition assays.  

5.4.4. Comparison of replicative fitness between gag recombinant virus and primary 
isolate 
 According to first aim of this thesis, replicative fitness was compared between primary 

isolates and gag recombinant virus. Replicative fitness of recombinant virus was obtained 

through viral growth kinetics experiment and through viral competition experiment. On the 

other hand, replicative fitness of primary isolates was measured only by viral growth kinetics. 

Normalized values were plotted in two separate graphs (fig. 46). For comparison 10 pairs of 

gag recombinant and primary isolate were used. 

 

Figure 46. Replicative fitness comparison between gag recombinants and primary isolates. A) Replicative 

fitness values obtained through viral growth kinetics are plotted against replicative fitness values of primary 

isolates. B) Replicative fitness values obtained through viral competition are plotted against replicative fitness 

values of primary isolates. All values were normalized to highest value in particular set. Trend line is drawn 

through linear regression; correlation was calculated by Pearson’s correlation, without statistical significance. 

Blue square and circle mark samples of patients 6 and 12. 
 

 Furthermore, linear trends were drawn in graphs through linear regression. Trend of 

replicative fitness of recombinants and primary isolates, measured by growth kinetics, is 

without statistical significance (fig. 46; A). Similarly, trend of replicative fitness measured by 
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competition experiment is also statistically insignificant (fig. 46; B). However, we identified 

two samples, namely 6 and 12. Those samples display similar replicative fitness values, 

measured on recombinant virus same as on primary isolate. Importantly, selected samples 

exhibit similar values not only if they are measured by viral growth kinetics, but also 

measured by competition experiment. However, due to low number of samples (n=2), 

correlation is not supported with statistical test. 

5.4.5. Characterization of replicative fitness development in disease progression 
 In addition to comparison of replicative fitness between primary isolates and 

recombinant viruses, we were interested in determining if fitness of gag recombinant viruses 

changes over time and if it correlates with disease progression in patients without 

antiretroviral treatment. In order to quantify change of replicative fitness over time, 10 pairs 

of recombinant viruses were prepared (Table 5). Each pair was derived from same patient 

with a span of at least two years between samplings. We hypothesized that two years’ span 

will be enough to observe change in replicative fitness of gag recombinant viruses.  

 Initially, slopes obtained from viral growth kinetics for early- and late-sampling 

derived recombinant virus (fig. 41) were converted to natural logarithm. Slopes were drawn 

by linear regression between two values, one for each time-derived sampling. Calculated 

slopes are describing fitness development in patients. Disease progression in patient was 

evaluated, as CD4+ T cells counts over time, displayed as slope of CD4+ T cells in Table 6. 

Finally, slope of CD4+ T cells was plotted against slope describing change of replicative 

fitness over time (fig. 47). Calculated values are in Table 7. 

 
Patient Fitness change Fold change Patient Fitness change Fold change 

2 -0.305 -1.28x 8 -0.291 -1.25x 

3 -0.140 -1.11x 9 +0.08 +1.06x 

4 +0.03 +1.02x 10 +0.043 +1.03x 

5 +0.357 +1.35x 11 -0.024 -1.02x 

7 -0.021 -1.02x 14 +0.034 +1.02x 

Table 7. Replicative fitness change. Replicative fitness change of gag recombinant viruses over time. Fitness 

change is expressed as difference between late and early virus slope from viral growth kinetics. Fold change is 

expressed as ratio between higher and lower replicative fitness values. Plus sign denotes increase in replicative 

fitness in late sample, negative sign denotes decrease in replicative fitness in late sample. Bold are marked slow 

progressors. Blue letters mark carriers of protective allele. 
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Figure 47. Fitness change and disease progression. Fitness change is calculated from replicative fitness of two 

recombinant viruses from consecutive blood sample collections from same patient separated by at least two 

years. Replicative fitness change is calculated from viral growth kinetics; linear regression between values from 

early- and late-sampling derived patient was used for calculation. Trend describing lines are drawn through 

linear regression with displayed p value and r value calculated by Pearson’s correlation. Squares display patients 

who are in category of slow progressors. Presence of blue color marks patients carrying protective allele. 

 

 CD4+ T cells counts are widely used as a marker for disease progression; therefore we 

also adopted this marker. Fitness change calculated from viral growth kinetics, shows to be 

descriptive factor correlating with disease progression with statistical significance (p < 0.05). 

Fold change of replicative fitness was in the range of -1.28 to +1.35. Furthermore, 2 of 3 slow 

progressors displayed noticeable decline of replicative fitness over time (-1.28- and -1.11-fold 

change) together with distinctively stable CD4+ T cells slope. Additionally, virus derived 

from late sampling from patient 5 was the only one that displayed marked increase of 

replicative fitness (+1.35-fold change). Carrier of protective allele HLA-B*13, patient 8 

displays -1.25-fold decrease of replicative fitness. Other viruses practically did not display 

any changes in replicative fitness (fold change from -1.02 to +1.06). 

5.4.6. Fitness cost characterization 
 For further investigation of genetic background behind fitness development, I 

analyzed genetic polymorphism and divergence of each viral isolate. Time span between 

early- and late-sampling derived recombinant viruses is 2.2 year. In contrast, among 10 

compared pairs were three pairs included with larger time span. Namely, samples derived 

from patients 3, 4 and 7. Specifically, pairs from patient 3 and 4 are separated by four year-

long span and pair from patient 7 is spanned by thirteen years. We included those samples 
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with intention to observe fitness change in larger time scale. Finally, sequence divergence was 

calculated (fig. 48) from phylogenetic tree by program MegAlign (DNASTAR v.10.0.1). 

 
Figure 48. Sequence divergence of recombinant viruses. Pairwise percent identity and divergence were 

calculated for all 10 pairs of early- and late-sampling derived recombinant viruses. Noticeably, divergence 

between pairs with longer span, derived from patients 3, 4 and 7 (black bars)  is in average higher than between 

pairs derived from other patients (gray bars). 

 

 Distinctly, samples with large span between pair members display higher divergence 

of sequence. Divergence between 3*1 and 3*2 is 1 % and between 4*1 and 4*2 is 0.8 %, 

while divergence between 7*1 and 7*2 is 2.2 %. Patient 7 derived pair with thirteen year-long 

span is expressing the highest level of divergence. In average, samples with longer time span 

have average divergence 1.3 % meanwhile samples with shorter span have in average 0.4 % 

divergence. For further interest of fitness development in patient, I examined functional 

changes in sequence. Specifically, sequences were translated to proteins Gag corresponding to 

Gag ORFs and searched for known fitness changing mutations linked with CTL escape. 

 Mutations in Gag protein sequence were analyzed through Epitope Variant and Escape 

Mutation Database (www.hiv.lanl.gov). Furthermore, work of Boutwell and his colleagues 

was taken in account (Boutwell et al. 2013). As a matter of fact, in early infection, virus is 

acquiring escape mutations to avoid immune system. Those mutations often reduce replicative 

fitness of the virus and are later in infection reverted or compensated. All analyzed samples 

were detected to be carrying escape mutations. Interestingly, some of the escape mutations 

were present only in sequence of one member of patient-derived pair of recombinant viruses. 

Escape mutations are displayed in Table 8. 

 

 

http://www.hiv.lanl.gov/
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Patient Early CTL escape mutations Late CTL escape mutations 

2 A146P A146P 

3 K28R, Y79F, R264K, E312D Y79F, R91G, E211D, R264K, E312D, 

G357S, E412D 

4 K28R, I147L, T242N, G248A, E312D, 

T427N, E482D 

K28R, I147L, T242N, G248A, E312D, 

T427N 

5 G357S, E482D K26R, S310T, G357S, E482D 

7 A146P, A223I Y79F, A146P 

8 K28Q, R91G, A146P, I147L, E211D, E312D, 

G357S 

K28Q, R91G, A146P, I147L, E211D, E312D, 

G357S 

9 K28R, Y79F, I147L, T186M, T303V L75I, Y79F, I147L, T186M, T303V 

10 K28R, R91G, R264K, T303V, E312D K28R, R91G, R264K, T303V, E312D 

11 R264K, L268M, T303V, E312D, G357S, 

T427N 

R264K, L268M, T303V, E312D, G357S, 

T427N 

14 K28R K28R, I147L 

Table 8. Escape mutations in recombinant viruses. Escape mutations with reducing effect on replicative 

fitness (Boutwel et al. 2013). Bold mark mutations have significantly greater reduction of replicative fitness than 

replicative fitness of virus with RT mutation M184V (serves as benchmark in HIV fitness field). 

 

Some of the samples contain several escape mutations, namely 3*2, and both viruses 

representing patients 4, 8, 9, 10 and 11. Mutations with statistically significant effect on 

replicative fitness are marked by bold letters. Effect of mutations on replicative fitness was 

measured by Boutwell and his colleagues, as a control was used mutation M184V. This 

mutation is linked with resistance to nucleoside analog reverse transcriptase inhibitors and to 

reduction of fitness. 

In table are also described changes in mutation, as they developed over time. Most of 

the samples did not change their mutation pattern, although crippling mutations can be 

reverted or compensated. Interestingly, sample 3*2 developed four new mutations and lost 

only one in comparison to 3*1. Accumulation of those mutations can account for lower fitness 

of 3*2 in comparison to 3*1, as it is depicted in Table 7. Interestingly, sample 4 is the only 

one which reduced absolute number of mutations in late sample (4*2) in comparison to early 

sample (4*1). More interestingly, both 4*1 and 4*2 viruses are maintaining mutations T242N 

and G248A, both linked with HLA-B*57. Additionally, virus derived from patient 4 is only 

one carrying those two escape mutations. 

Moreover, we were looking for presence of known compensatory mutations 

accumulated in Gag as a response to reduced replicative fitness by escape mutations. We 
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detected mutation N252H in virus 4*1. This compensatory mutation was previously described 

to have positive effect on replicative fitness restoration if virus develops T242N escape 

mutation (Gijsbers et al. 2013). More surprisingly, compensatory mutation N252H is not 

present in virus 4*2. Further, we identified putative compensatory mutation V190I in patient’s 

9 derived samples (Liu et al. 2014); this mutation is present in majority of viruses with escape 

mutation T186M. Also, Ile present in position 147 is linked with escape mutation A146P and 

such amino acid we identified at viruses from patients 2 and 7. Patient’s 8 virus, carrier of 

A146P has Leu present in position 147. This mutation is described in minority of A146P 

carriers (Liu et al. 2014). In summary, we observed changes of escape mutation pattern in 

HIV gag region between early and late time point. Interestingly, we did not observe 

accumulation of previously described compensatory mutations nor reversion of escape 

mutations during our monitoring period. 
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6. Discussion 
 Up to this day, thirty years since its discovery, HIV is still spread world-wide with 36 

million people infected. Although incredible amount of research was conducted on HIV, we 

are still unable to eliminate the virus. Many drugs were discovered that can effectively inhibit 

HIV replication. However, virus exhibited quick development of resistance. Thus, interest 

was drawn to virus population behavior and development in particular environment and term 

virus fitness was coined (Domingo & Holland 1997). Consequently, interest was drawn to 

link HIV fitness, host immunologic, and genetic factors with their roles in disease 

progression. 

Two basic approaches are used for replicative fitness evaluation; first approach 

measures replicative fitness of whole viruses isolated from patient’s cells meanwhile second 

approach utilizes recombinant virus (Dykes & Demeter 2007). Although nowadays majority 

of studies is assessing fitness using recombinant viruses, interest of those studies is usually 

focused on drug resistant mutants (Iyidogan & Anderson 2014). Therefore, identification of 

whole gag contribution to overall fitness of nonresistant HIV may help to determine if 

recombinant virus can be used to measure HIV replicative fitness in untreated patients.  

Additionally, information about intra-patient replicative fitness change over time can further 

improve personalized treatment of patients. Thereby, analysis of whole gag development in 

single patient and its contribution to replicative fitness change will help to evaluate replicative 

fitness as another marker of disease progression. 

In theory, replicative fitness of virus is well represented by primary isolate, since virus 

contains all genes and can take their contribution to replicative fitness into account. However, 

primary isolates preparation through co-cultivation is laborious and can lead to alteration of 

viral quasispecies (Kusumi et al. 1992). Particularly, the maintenance of quasispecies is a 

vital aspect of replicative fitness determination in complex viral population. Therefore, 

recombinant viruses are frequently utilized for measuring of the replicative fitness in the last 

decade. General approach for production of recombinant virus has evolved over the years. For 

analysis of HIV replicative fitness, we adapted strategy of introduced reporter gene between 

ORFs of env and nef (Weber et al. 2006). Presence of reporter gene allowed us to measure 

amount of infected cells through flow cytometry or under the microscope. Importantly, assay 

developed by Weber and colleagues measures replicative fitness of recombinant virus without 

altering expression of HIV-1 genes. Further, our approach adapted homologous 

recombination step in yeast cells described by Dudley (Dudley et al. 2009) and successfully 
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used by Weber and colleagues (Weber et al. 2013) for replicative fitness measurement. My 

thesis is a part of project focused on role of HIV fitness in disease progression. The project 

evaluates contribution of all three main genes (gag, pol, and env) to replicative fitness of the 

virus. Specifically, gag-recombinant viruses were utilized in my work. Besides gag 

contribution to replicative fitness, we were interested in the correlation of disease progression 

and fitness development. For this reason, patients were arbitrarily divided in two different 

groups according their immunological status, represented by CD4+ T cells count development 

(Weber et al. 2017). Moreover, great emphasis was given to analyze samples from only 

treatment naïve patients. 

Although recombinant viruses are utilized in many studies, majority consider only 

single mutation introduced in NL4-3 scaffold (for example Boutwell et al. 2013). As we are 

measuring contribution of whole gag gene to overall fitness, we were amplifying mentioned 

region by PCR from RNA isolated from patient’s plasma. Importantly, we were utilizing two 

pairs of primers in three-step PCR to secure amplification of sufficient amount of DNA of gag 

region. Moreover, all four primers are degenerate at 5’ end to secure amplification of broad 

extent of quasispecies (Tsibris et al. 2009). Thanks to the effect of degenerative primers, we 

succeeded in amplification of more than 80% (n=105) of all samples. Additionally, samples 

with unsuccessful PCR were often with viral load under 10,000 copies per ml of blood. 

Presence of non-specific amplicons in final mixture is, in our opinion, due to degenerate 

nature of primers. 

Regarding homologous recombination in yeast cells, we established success rate of 

procedure to be 81 %. Although subcloning using intrinsic restriction sites in amplified HIV 

sequence was used for recombinant virus generation by ligation previously (Weber et al. 

2006, Claiborne et al. 2015), we adopted approach of recombination as intermediate step to 

maintain broad quasispecies. Furthermore, we adopted method of homologous recombination 

in yeast rather than approach through bacteria or mammalian cells, since those alternatives are 

less efficient (Dudley et al. 2009, Weber et al. 2011). During procedure, we encountered 

inability of few samples to excise gag fragment after MluI and PspXI digestion. We conclude 

that homologous recombination performed weakly. Since we are amplifying highly variable 

sequences of HIV, we assume that recombination could be negatively influenced by non-

specific PCR products. 

To produce transfection competent plasmid, we established subcloning of gag 

fragment to pNL4-3-EGFP scaffold. Final subcloning for purpose to produce replication 

competent plasmid yielded 80% success rate. We conclude that without complete removal of 



83 
 

phosphate on 5’ end of the vector by dephosphorylation, we could not prevent religation of 

linearized vector. However, all isolated plasmids were replication competent as showed by 

our 100 % success rate of transfection. Importantly, isolated viruses exhibited TCID50 > 1x104 

IU/ml in most of the cases. Strength of the virus is important for correct set-up of replicative 

fitness experiments, as a very low TCID50 can influence virus performance even after 

recalculation to MOI. Certainly, we clearly demonstrate complexity of gag recombinant virus 

production with overall 52% success rate. Nonetheless, we were successful to generate pool 

of 55 gag recombinant viruses. Next, we selected 24 candidates for further analysis and 

sequenced their whole gag region. Sequencing of gag was done also for 10 samples from HIV 

RNA isolated directly from the patient’s plasma. It is believed that isolated HIV RNA from 

plasma best represents the sequence variability of circulating primary isolates. To deal with 

sequence variability inside the gag gene, we adopted primer design recommended in HIV 

Sequence Compendium from Los Alamos National Laboratory (Sanders-Buell et al. 1995).  

To determine contribution of gag gene to overall replicative fitness, we established 

one batch of samples consisting of early-derived gag recombinant virus from patient and 

corresponding late primary isolate from the same patient. Similar approach, although oriented 

on env and pol genes was done previously (Rangel et al. 2003, Weber et al. 2003). 

Specifically, sequence analysis of primary isolates and analogous recombinant viruses showed 

us more than 98% identity between primary isolate and recombinant virus through all ten 

pairs. However, we concluded that most of the changes were in ambiguous positions. Thus, 

we can assume that gag sequence of circulating viruses is almost identical with sequence of 

recombinant viruses. 

Since Gag polyprotein is a strong immunogenic target of CTL response (Troyer et al. 

2009), we wondered if we would see particular influence of gag gene to overall fitness of the 

virus. We have not found significant relationship between replicative fitness of primary 

isolates and replicative fitness of analogous gag recombinant virus. However, since we are 

taking into account only one of three main genes; we were not expecting to see significant 

contribution of gag on overall fitness in all samples. Indeed, we detected 2 samples with 

corresponding replicative fitness measured on primary isolate and on recombinant virus. We 

hypothesize that overall fitness of samples 6 and 12 is determined by the fitness input from 

gag gene. Other study oriented on env gene (Rangel et al. 2003), showed significant 

relationship between primary isolate fitness and env recombinant virus fitness in all samples 

(n=7). However, they included viruses with resistance mutations in the env region that exerted 

strong impact on overall fitness. Furthermore, study performed on pol recombinant viruses 
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concluded that replicative capacity of pol recombinant viruses can be used to estimate overall 

fitness. However, study limits this conclusion to patients treated by protease or reverse 

transcriptase inhibitors (Weber et al. 2003). In other words, if pol accumulates resistance 

mutations, it becomes major contributor to replicative fitness (or replicative capacity 

measured by Weber and colleagues). Likewise, my conclusion based on fitness comparison of 

samples 6 and 12 is, that gag recombinant virus can be considered to estimate overall 

replicative fitness only in case, when the gag gene has a major impact on fitness. The gag 

gene contribution does not have to be necessarily linked with drug resistance to strongly 

influence overall fitness. Instead CTL escape mutations in the gag region can be such major 

fitness contributors (Shahid et al. 2015, Sunshine et al. 2015, Brockman et al. 2010) and 

therefore, we can observe major gag contribution to overall fitness even in treatment naïve 

patients. 

HIV infection is developing over time and adapting itself to the patient (Tebit et al. 

2007). For this reason we were interested to see how HIV replicative fitness, based on gag 

recombinant virus, changes together with clinical characteristics over time. According to 

clinical characteristics of patients, CD4+ T cell counts development is widely used predictor 

of disease progression (Fahey et al. 1990). Our patients were divided into two groups based 

on their slopes of CD4+ T cells. Arbitrary groups were: slow progressors with slope > -1 and 

typical progressors with slopes < -1 cell/month/µl (Weber et al. 2017). Whereas progression 

is typically established over many years, our on average 3 year follow-up does not have to 

necessarily represent true status of the patient. Specifically, in second batch of our samples, 

established for purpose to measure change of replicative fitness over time, we designated 

patients 2, 3 and 10 as slow progressors. Moreover, patients 2 and 3 are carriers of protective 

alleles HLA-B*13 and HLA-B*27, respectively. Presence of protective alleles can explain 

stable slope of CD4+ T cells as well as declining replicative fitness over time (Shahid et al. 

2015, Brettle et al. 1996). Calculation of replicative fitness change between early- and late-

sampling derived recombinant viruses was done from viral growth kinetics. Fitness change is 

represented as slope between replicative fitness values measured on earlier and later sample, 

respectively. Correlation of fitness change and slope of CD4+ T cells of all ten patients 

displayed significant negative correlation (p < 0.05). More importantly, slow progressors, 

patients 2 and 3 and typical progressor patient 8, carrier of protective allele HLA-B*13, 

displayed the largest drop in HIV replicative fitness. We conclude that presence of protective 

allele seems to have negative effect on replicative fitness over time. In other words, we 

observe virus attenuation in carriers of protective alleles. Conclusion corroborates previous 
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studies about protective alleles (Boutwell et al. 2013, Gijsbers et al. 2013, Shahid et al. 2015). 

Moreover, we observed statistically significant association between patient clinical status and 

replicative fitness change over time, thus suggesting that gag recombinant viruses can be used 

for fitness change characterization. 

In order to characterize association of replicative fitness development with genetic 

polymorphisms and sequence diversity, we sequenced whole gag region in all consecutive 

HIV samples. We could observe sequence divergence between early and late sample to be in 

the range of 0.2 % to 2.2 %. Additionally, we translated the sequences in Gag polyprotein in 

silico. Primarily, we were looking for gag mutations associated with fitness decline in 

literature (Boutwel et al. 2013, Liu et al. 2014). As we observed broad spectrum of escape 

mutations among our samples, we decided to analyze their impact on replicative fitness. 

Interestingly, comparing early and late viruses derived from patient 3, we noticed four new 

CTL escape mutations introduced in later sample. Since patient 3 is carrier of protective 

HLA-B*27, we assume that early sampling was obtained relatively briefly after acute 

infection and new CTL escape mutations were further selected. We also observed drop in 

replicative fitness of the later sampling-derived virus and we believe, that further 

accumulation of escape mutations lead to reduction of replicative fitness. Highly dynamic 

CTL escape was previously observed (Sunshine et. al. 2015). Noticeably, several samples 

preserved CTL linked mutations over our time scale. Namely samples 4, 8, 10 and 11 were 

carrying at least five CTL escape mutations in early as well as in late virus. Although patients 

4 and 8 are carriers of protective alleles, patients 10 and 11 are not. Therefore, we assume that 

persistence of mutations does not have to be necessarily linked with protective allele. 

Furthermore, except virus in patient 8, replicative fitness of those viruses displayed practically 

no change. Moreover, Sunshine (2015) noted that reverse mutations occurs rarely and virus 

rather develops compensatory mutations. Unfortunately compensatory mutations are not 

characterized as well as escape mutations. Previously, analysis was done on escape mutations 

specifically linked with CTL response of HLA-B*57 carrying patient (Brockman et al. 2007, 

Gijsbers et al. 2013). Namely, mutations T242N and G248A are both occurring in patient 4 

thus we were looking for known compensatory mutations in gag. Although we have not 

detected any compensatory mutation described by Brockman (2007), we have found 

compensatory mutation N252H (Gijsbers et al. 2013). Surprisingly, compensatory mutation 

occured only at early-sampling derived virus and is absent in late-sampling derived virus. 

Furthermore, we did not observe notable change in replicative fitness. We conclude that 

N252H loss had no critical effect on improvement of replicative fitness in this particular virus 
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genetic background. From other compensatory mutations described in literature, we have 

found V190I mutation, linked with escape mutation T186M. Escape mutation T186M is 

present in viruses derived from patient 9. Additionally, Ile presented in position 147 is 

compensating escape mutation A146P (Liu et al. 2014). All viruses carrying A146P had 

compensating Ile in position 147 except viruses from patient 8. Since viruses from patient 8 

are carrying another escape mutation I147L in this position, we conclude this is due to 

presence of protective allele HLA-B*13 in patient 8. More importantly, I147L is linked in 

escape with HLA-B*13 (Boutwell et al. 2013). Viruses derived from patient 5 display 

emergence of K26R. Mutation was shown to have mild negative effect on replicative fitness 

(Boutwell et al. 2013). However, we observed the largest increase of replicative fitness over 

time in this particular virus. We assume that unknown compensatory mutation(s) is/are 

responsible for this effect. In summary, virus in patients with protective alleles evolves by 

accumulating of CTL escape mutations however; this rule is not general since virus from 

patient 2 is present with only one known CTL escape mutation. We also showed that 

emergence of multiple escape mutations can have negative effect on replicative fitness as i tis 

displayed in viruses from patient 3, on the other hand, viruses from patient 5 with emerging 

mutation K26R showed the opposite effect. Viruses without change in pattern of escape 

mutations display stable replicative fitness over time in most of the cases. However, further 

research is required to clarify emergence of compensatory mutations and their effect on HIV 

fitness of gag recombinant viruses. Additionally, even though effect of compensatory 

mutations in gag on fitness was presented in literature, we do not observe this trend in our 

pool of samples probably because of short time span between sampling. However, only few 

compensatory mutations are well described in literature and are linked with specific escape 

mutations (Brockman et al. 2010, Gijsbers et al. 2013, Sunshine et al. 2015). Thus we could 

identify only limited number of them. Furthermore, we assume that detailed sequence analysis 

through deep sequencing, planned in the future for this project, could enlighten pattern of 

evolved mutations in whole quasispecies and indicate new putative compensatory mutations. 

As demonstrated here gag region can be major contributor to overall HIV fitness. 

Further research about role of HIV replicative fitness in disease progression would benefit 

from similar analysis about pol and env contribution to overall fitness. In detail, unveiling if 

pol and env can influence overall fitness more than gag would outline future path for 

recombinant virus application in replicative fitness measurement. Furthermore, deep 

sequencing analysis can provide important details about behavior of quasispecies over time. 
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Although longitudinal study of HIV sequence development was done (Zanini et al. 2015) it 

was not correlated with replicative fitness changes. 

In conclusion, by comparison of replicative fitness using viral growth kinetics and 

competition experiments on gag recombinant viruses and primary isolates, we proved gag can 

be major contributor to overall fitness, but not exclusively. Furthermore, we shoved that 

development of fitness, measured on gag recombinant viruses is correlating with patient’s 

slope of CD4+ T cells. More importantly, we recognized that patients carrying protective 

alleles and/or slow progressors displayed attenuation of replicative fitness over time. 

Moreover, we detected many CTL escape mutations, but rather small number of reversion or 

appearance of CTL escape mutations during our monitoring period. We believe that our 

findings are paving the way to application of recombinant viruses to measure replicative 

fitness for clinical purposes. 
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7. Conclusions 
In this chapter is provided summary of results corresponding to the aims of my thesis. 

 

1. Preparation of gag recombinant virus and primary HIV isolates from untreated 

patients and comparison of replicative fitness values. 

Production of gag recombinant viruses was established. Pool of recombinant viruses was 

generated (n=55) as well as isolation of primary isolates (n=10), all derived from treatment 

naïve patients. Replicative fitness of ten gag recombinant viruses was measured likewise 

replicative fitness of ten corresponding primary isolates. Comparison of results showed that 

gag recombinant virus can estimate overall replicative fitness in cases when gag is major 

contributor to overall fitness. 

 

2. Characterization of replicative fitness development in disease progression of 

typical progressors and slow progressors. 

From pool of produced recombinant viruses (n=55), ten pairs were selected. Pairs were 

consisting of early-sampling derived HIV and late-sampling derived HIV with at least two 

years span between samplings. We observed positive and negative change in replicative 

fitness as well as no change at all during our monitoring period. Furthermore, we observed 

that gradual increasement of replicative fitness leads to decrease of CD4+ T cells in the 

patient. We showed that not only slow progressors but also carriers of protective alleles can 

attenuate virus replicative fitness. Additionally, we detected escape mutations previously 

linked with replicative fitness attenuation and observed a decline of replicative fitness after 

accumulation of new escape mutations. 
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