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Abstract: The aim of this diploma thesis was to study the Heusler compounds
using both optical and magneto-optical (MO) methods. In the case of the first
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Ni2MnGa and increasing optical and MO response in the near infrared region of
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posses zero magnetization.
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Introduction
The Heusler compounds have gained significant amount of attention in the past
years owing to high application potential. Because of the highly tunable elec-
tronic structure and extraordinary magneto-optical (MO), magnetoelectric, and
magnetocaloric properties, Heusler compounds have found use in a vast number
of research fields, including superconductivity [1], magnetic shape memory [2]
and, most recently, topological insulators [3]. They have also proven to be more
than suitable for utilization in spintronics because of the high spin polarization
some of them exhibit [4].

In this work, two of these extraordinary materials have been studied. The
first one is the recently synthesized Co2FeGa0.5Ge0.5. This Co-based Heusler
compound is being actively researched in present days because of its potential
application in giant magnetoresistance devices, lateral spin valve-based reading
heads and microwave assisted magnetic recording techniques. The second mate-
rial is a magnetic shape memory alloy (MSMA), Fe2MnGa, that has been syn-
thesized in order to improve the functionality of the original MSMA, Ni2MnGa.
Because of the large magnetic shape memory effect they exhibit, the MSMAs
are planned to be employed as sensors and actuators as well as active/passive
vibration damping devices.

The MO methods are simple, yet powerful experimental techniques for the
characterization of physical properties of materials. In the present, magneto-
optics is regularly used for the real-time imaging of magnetic domains (Kerr
microscopy), or the measurements of hysteresis loops (Kerr magnetometry). The
main part of our research involves a combination of spectroscopic ellipsometry
and MO spectroscopy. While the first experimental technique is a prominent
and universal tool, the second one is its extension to the magnetic field-induced
anisotropy region. When combined, these two methods may provide unique infor-
mation about the electronic structure of the material. In addition, Kerr magne-
tometry has been employed as well. Being fast, contactless and non-destructive,
optical and MO-based methods are the perfect instruments for investigating the
Heusler compounds.

This work has been divided into five chapters. Chapter one contains the theo-
retical basis necessary for presented research, including basic wave optics, optical
properties of materials and a description of the MO phenomena. The second
chapter is primarily devoted to the general description of Heusler compounds.
Their basic basic properties, such as composition, band structure and the rather
important issue of structural disorder are mainly discussed. In the third chapter,
we provide basic information about the particular compounds investigated in this
work - the above-mentioned Co2FeGa0.5Ge0.5 and Fe2MnGa. The fourth chapter
contains detailed description of the methods we have used for our research. Apart
from spectroscopic ellipsometry and MO spectroscopy, Kerr magnetometry will
also be discussed. Finally, the fifth chapter provides the results of our research.
In the case of Co2FeGa0.5Ge0.5, we have examined the manifestation of structural
disorder in the optical and MO response of the samples. In the case of Fe2MnGa,
the research concerned the difference of this response between alloys with different
composition.
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1. Basic theory

1.1 Electromagnetic waves
The aim of this section is to introduce basic theoretical approaches employed in
wave optics. These concepts will be necessary for the description of magneto-
optical effects and understanding of physical properties of Heusler compounds.
Firstly, we will describe the wave-like behavior of electromagnetic radiation. We
shall discuss the physical processes that govern the electromagnetic waves and
we will also present the basic relations between their components and character-
istics. This will enable us to understand the polarization of light, which will be
introduced in the next part. Understanding this phenomenon is important for the
studies of the magneto-optical Kerr effect and we will, therefore, study it rather
throughly.

In the last subsection, a mathematical model known as the Jones calculus will
be introduced. It will be put to use throughout most of the chapters, mostly in
chapter 4, which is devoted to the description of experimental techniques used in
this work.

1.1.1 Basic wave optics
The wave equation

Firstly, we will show that it is possible for the electromagnetic field to propagate
through space in a wave-like manner. Let us begin by writing down the Maxwell
equations for media that are linear, isotropic and homogeneous in all properties
and contain no free charge [5]. For the electromagnetic field, described by the
vectors E and B, the equations are as follows:

∇ · E = 0 , (1.1)

∇ × E = −∂B
∂t

, (1.2)

∇ · B = 0 , (1.3)

∇ × B = µj + µε
∂E
∂t

. (1.4)

Here ε and µ are the permittivity and permeabilty of the medium.
For the sake of simplicity, we will assume that the medium is nonconducting

and its conductivity σ is zero [6]. Employing Ohm’s law,

j = σE , (1.5)

equation (1.4) becomes

∇ × B = µε
∂E
∂t

. (1.6)
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Figure 1.1: Propagation of plane waves through space. k⃗ is the wave vector, λ is
the wavelength and r⃗ denotes the spatial vector with x, y and z as its components
[7].

We will now derive the wave equation for the electric component of the elec-
tromagnetic field, noting that the same can be done for the magnetic component
as well [5]. Applying the curl operator to equation (1.2), we get

∇ × (∇ × E) = − ∂

∂t
(∇ × B) . (1.7)

By employing the vector identity ∇ × (∇ × v) = ∇(∇ · v) − ∇2v, where v is
an arbitrary vector, and using equations (1.1) and (1.4), we obtain

∇2E = µε
∂2E
∂t2 . (1.8)

Equation (1.8) is a hyperbolic partial differential equation. Equations of this
type are used for the description of wave motion and, therefore, this particular
one describes the wave-like motion of the electric field.

The product of µ and ε defines the velocity of propagation of the electromag-
netic wave in a given medium,

µε = 1
v

, (1.9)

which follows from the general form of the wave equation.

Plane waves

Now, let us discuss a solution of equation (1.8) in its simplest form - the harmonic
plane wave [7]. All wavefronts of a plane wave are infinite parallel planes that are
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perpendicular to the direction of propagation (see figure 1.1). In this form, the
solution of equation (1.8) and its magnetic counterpart is

E = E0e
i(kr−ωt+δ) , (1.10)

B = B0e
i(kr−ωt+δ) . (1.11)

Here ω is the wave’s angular frequency, |k| = ω
v

is the so-called wave vector
and δ is the initial phase of the wave. E0 and B0 are spatially and temporarily
independent vector amplitudes of electric and magnetic fields.

The spatial periodicity of waves can be described by its wavelength λ - the
distance between the two closest points on the wave that have the same phase.
Let us also define the refraction index,

n = c

v
, (1.12)

as a ratio of the wave’s velocity in a vacuum, c, and its velocity in a given
medium, v. It is convenient to mention that through equation (1.9), v (and
therefore n) is directly connected to the optical properties of matter described by
µ and ε. It should be noted, however, that one usually has to deal only with the
electric component of the field. Including µ in the theoretical models is, therefore,
unnecessary in most cases.

Let us also write down some basic relations between the above-mentioned
quantities:

|k| = 2π

λ
= nω

c
= ω

v
. (1.13)

Should the reader be interested in the detailed derivation of these relations,
it can be found in [8], or any other optical handbook.

For a plane wave, it can be shown that the vectors E, B and k form an
orthogonal system. Substituting expressions (1.10) and (1.11) to equations (1.1)
through (1.4), one finds that

E = −|v|2

ω
k × B (1.14)

and

B = 1
ω

k × E . (1.15)

Considering the properties of vector multiplication, one can directly see from
(1.14) and (1.15) that both E and B are perpendicular to k. Since k is parallel
to the direction of propagation, this means that the electromagnetic waves are
transverse. For more details, see [5] or [9].

1.1.2 Polarization
Polarized and unpolarized light

Each vectorial wave has an intrinsic property called polarization. In the case of
electromagnetic radiation, this property specifies the direction of the oscillations
of the field vectors, E and B.
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Figure 1.2: Two linearly polarized light beams of the same phase and amplitude
form a third one by the means of superposition [10].

Let us imagine the simplest case, in which E oscillates in one plane. We refer
to this kind of polarization as the linear polarization. Let E1(r, t) and E2(r, t)
be two orthogonally linearly polarized beams of equal amplitude. If ∆δ = δ1 − δ2
is their phase difference then for ∆δ = 0, the two beams will create a linearly
polarized beam (see figure 1.2). This beam has its linear polarization tilted by
45◦ with respect to the original pair. If ∆δ is precisely 90◦, the resultant light
beam will have its components oscillating in a circle, when looked upon frontally.
We shall refer to this beam as being circularly polarized.

For ∆δ is an arbitrary, we obtain an elliptically polarized beam. This case is
the most general one for strictly monochromatic optical fields [11] and we shall
now describe it in more detail.

Elliptic polarization

When a linearly polarized light beam is reflected from the surface of a conductive
material, the reflected part of the beam becomes generally elliptically polarized.
Analysis of the parameters of the polarization ellipse yields information about the
material’s composition, electronic structure, roughness of its surface, etc. The
theories concerning these changes in polarization are, therefore, vividly employed
in material science and optics [11].

To describe the polarization ellipse mathematically, one can restrict them-
selves to only four parameters. It is important to note that there are several
choices of parameters, which one can use. Moreover, there is a certain freedom in
the choice of the sign convention (some angles can be defined with either positive,
or negative sign).

These two facts lead to the polarization parameters being defined differently
by almost every author. One must, therefore, proceed rather carefully when
referring to results from different handbooks. Here, we choose the definitions
listed in [12] as all the magneto-optical theory in this work is deduced from this

7



Figure 1.3: The polarization ellipse with a denoting the semi-major and b denoting
the semi-minor axis. Here E0x and E0y are the components of electric intensity
E⃗. The polarization parameters, azimuth and ellipticity, are denoted by θ and ϵ
[14]

literature.
Figure 1.3 provides the frontal view of the polarization ellipse, as well as the

parameters describing it. These parameters can be defined as follows:

• θ is the angle between the major axis and the positive direction of x. This
is the so-called azimuth and it is limited to

⟨
−π

2 , π
2

)
.

• Ellipticity e is the ratio of the semi-minor and semi-major axis of the ellipse,
e = b

a
. It is convenient to define the ellipticity angle ϵ, so that e = tan ϵ,

where ϵ ∈
⟨
−π

4 , π
4

⟩
.

• The measure of strength of the elliptical vibration is defined by the amplitude
E00 =

√
a2 + b2.

• The angle δ0 is the absolute phase and it is the angle between the vector E
at the initial time (t = 0) and the major axis of the ellipse.

For our purposes, all four parameters will be necessary - the first pair will be
put to use in the studies of magneto-optical effects, while the second one will be
used in the mathematics of spectroscopic ellipsometry.

1.1.3 The Jones formalism
The Jones vectors

In practice it is often necessary to describe the effect of optical elements on the
polarization of the light beam. For this purpose, we will now introduce a simple
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mathematical apparatus called the Jones calculus. It should be noted, how-
ever, that there are several formalisms at hand - namely the illustrative Poincaré
sphere, or the Stokes formalism developed for handling partially polarized light
(should the reader be interested, a detailed explanation is given in [7]). Developed
in 1941 by R. C. Jones, the Jones formalism is a practical and simple represen-
tation of polarized monochromatic light. Unlike the Stokes calculus it only deals
with polarized waves.

Firstly, let us define the so-called Jones vectors 1. Choosing the coordinate
axis z to be parallel to the direction of propagation, the electric component of
the plane wave can be written as

E(z, t) =
[

Ex(z, t)
Ey(z, t)

]
. (1.16)

Let us now proceed to simplifying vector (1.16) to a more convenient form.
Firstly, we shall exclude the frequency from our model, since there is no need for
it in the description of polarization changes. Secondly, we shall restrict to only
one transverse plane - for instance z = 0. At this point equation (1.16) takes the
form of

E =
[

Exeiδx

Eyeiδy

]
, (1.17)

δx and δy being the respective phases.
Finally, we shall normalize the vectors to unity, so that

|J|2 = J†J = JJ† = 1 (1.18)

for all Jones vectors J. Normalization is justifiable for applications where the
exact information about amplitudes and phases is not necessarily needed [7].

The Jones vectors are defined in a two-dimensional complex vector space.
There is, in principle, an infinite number of basis to this space [13], the most
commonly used being the Cartesian basis and the circular basis.

The Cartesian basis is composed of two perpendicular linear polarizations

Ex =
[

1
0

]
, Ey =

[
0
1

]
. (1.19)

The circular basis is composed of two circular polarizations with an opposite
orientation. With respect to the Cartesian basis, the vectors take the form of

ER = 1√
2

[
1
i

]
, EL = 1√

2

[
1

−i

]
. (1.20)

Any polarization can now be decomposed between these pairs of vectors [7].
Let us note that the basal vectors of (1.19) are often chosen as p-polarized and

s-polarized. Ep denotes polarization in the plane of incidence and Es polarization
perpendicular to this plane.

1It is convenient to only use E in order to describe optical fields. If needed, B can always
be calculated from (1.15).
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Figure 1.4: The elliptically polarized light propagates in the direction of the
z-axis, described by the Jones vector JI . Upon entering the polarizing optical
system described by the Jones matrix T , the polarization state changes to JO

[14].

The Jones matrices

We shall continue by describing elements that can change the polarization vector.
In the Jones calculus, any of the optical elements (polarizers, waveplates, etc.) is
represented by a 2x2 complex matrix. If JI is the Jones vector of the light beam
entering the polarizing system and JO is the vector of the beam leaving it, then

JO = TJI , (1.21)

where T is the Jones matrix that represents the system (see figure 1.4).
A polarizing optical setup composed of N elements is described by a product

of the respective Jones matrices,

T = Π1
i=NTi = TNTN−1...T1 , (1.22)

where T1 is the matrix of the first component in the system and TN is the
matrix of the last one [14]. Multiplying the matrices in such sequence will preserve
the order in which the light passes through the respective elements.

Before we proceed to specifying Jones matrices for the most frequently used
components, we shall mention two important details. Firstly, every Jones matrix
is always defined relatively to the polarization basis - in the following we shall
always use the Cartesian basis (1.19). Secondly, the orientation of the optical
elements with respect to the coordinate system should not be overlooked. Should
the elements be rotated by some angle, their matrices should be transformed
using the rotation matrix (as described in [14])

Here are the most important examples of the Jones matrices:

• A linear polarizer rotated by an angle α:

Pα =
[

cos2 α cos α sin α
cos α sin α sin2 α

]
. (1.23)
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• A waveplate with a phase shift δ:

Rδ =
[

eiδ/2 0
0 e−iδ/2

]
. (1.24)

• A reflective surface:

Z =
[

1 0
0 −1

]
. (1.25)

In summary, when treating an optical polarizing system, we first need to
calculate the Jones matrix of said system with the help of (1.22). Then, using
equation (1.21), we apply this matrix to the known vector JI (usually chosen
to be linearly polarized). Obtaining JO, we can now proceed to calculating the
intensity2 of the light beam propagating through the system,

IO ≈ 1
2J†

OJO . (1.26)

1.2 Optical properties of matter
In this section, we will describe the way matter behaves when exposed to electro-
magnetic radiation. The theory described will be necessary for the description of
both optical and magneto-optical phenomena.

We shall start by defining the permittivity tensor. As it was explained in
the previous part, light can be viewed as a harmonic disturbance of the elec-
tromagnetic field. Electromagnetic properties of matter are fully described by
its permittivity and permeability. However, when dealing with the interaction of
light and matter, one finds that permeability can be excluded from the theoretical
models - at optical frequencies the interaction between electromagnetic radiation
and electron spins is negligible [14]. Permittivity, on the other hand, affects all
kinds of various optical properties of materials, from dichroism to refraction [15].
We will confine to study only the phenomena relevant to this work.

In the next part, we will list the basic mathematical models explaining the
response of materials to radiation. There is a vast number of theories concerning
this topic and we will only explain the most essential approaches - the Lorentz
model and the Drude model.

Finally, we shall present a microscopic view on the interaction between light
and matter. We will explain the basics of the band theory of solids and use them
to discuss the optical absorption via interband transitions. We will also include a
definition of the density of states to illustrate the half-metallic behavior of Heusler
compounds.

2In common optical measurements one cannot directly measure polarization - a combination
of polarizing elements and intensity detectors has to be used.
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1.2.1 The permittivity tensor
Although we considered permittivity to be a scalar in the first parts, it is in fact
a second rank tensor (sometimes called the dielectric tensor). In the Cartesian
system, it is represented by the matrix

ε =

⎡⎢⎣ εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤⎥⎦ . (1.27)

Each of the components has both a real and an imaginary part. The tensor
is therefore fully described by 18 quantities in total. However, from the Poynting
theorem3,

∇ · S + ∂w
∂t

= 0 , (1.28)

it can be shown that the components of the permittivity tensor must satisfy
the condition

εij = εji . (1.29)

The tensor is then represented by a symmetric matrix

ε =

⎡⎢⎣ εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎤⎥⎦ . (1.30)

This symmetry reduces the 18 independent variables to only 12 (for a detailed
derivation, see [8] or [15]).

For optically anisotropic media, off-diagonal parts of (1.30) are generally non-
zero. In magneto-optics, the optical anisotropy is induced by magnetic fields and
the number of variables can be reduced to four by a suitable configuration of the
magnetic field and the material (see sections 1.3 and 4.2).

For optically isotropic media, the diagonal elements are equal and the off-
diagonal ones become zero. Thus, (1.30) becomes a diagonal matrix composed of
only two independent variables. This is the case for the measurements conducted
with the help of spectroscopic ellipsometry (section 4.1).

1.2.2 The spectral dependency of permittivity
The Lorentz model

The response of matter to radiation is generally dependent on the wavelength of
the incoming electromagnetic wave. In 1878, H. A. Lorentz introduced a tool for
calculating the physical quantities that govern optical processes in materials. This
so-called Lorentz model is almost as simple as it is illustrative and is nowadays
used as a basic principle for modeling the optical response.

This model views light as a harmonic disturbance to a system of electric
dipoles. Let us now assume that matter is composed solely of atomic cores and

3Here w is the density of energy carried by the electric field and S is the Poynting vector.
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Figure 1.5: Examples of the Lorentzian peak described by the equation (1.38).
The frequency of the probing radiation is given in eV. Sets of varying parame-
ters described in the legend have been substituted to equation (1.38) in order to
demonstrate the influence of each parameter on the shape bandwidth and am-
plitude of the peak. ωp is the so-called plasma frequency defined by equation
(1.40).

electrons, every electron being paired with only one of these cores. Each dipole
possesses a dipole moment given by

p = qx . (1.31)

The mass of electrons is more than a thousand times smaller than the mass
of protons and it is therefore reasonable to assume that the cores will remain
motionless relatively to their respective electrons.

The electron is bound to the core by a force that increases linearly with
distance, just like in the case of a linear harmonic oscillator. Let us note that this
representation of the binding force is only an approximation used for the first-
order phenomena. By adding contributions of higher order (quadratic, cubic,
etc.) to this force, we would get a model describing higher-order optical effects.

Using classical mechanics, the motion of the electron brought about by the
electric force is given by the equation 4

mẍ + mγẋ + κx = qE . (1.32)

Here m is the mass of the electron, γ is the damping factor and κ is the
”rigidness” of the electron-core bond [15].

The electric force takes the shape of

E(t) = E0 exp[−iωt] . (1.33)

It is reasonable to assume that the dipole will be oscillating with the same
frequency as the electromagnetic field and we can therefore search for a solution

4Assuming the vector of the field E is parallel to x and denoting it simply as E
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of (1.32) in form of

x(t) = x0 exp[−iωt] . (1.34)
Substituting this solution into (1.32) we get

x0 = qE0

m

1
Ω2 − ω − iωγ

, (1.35)

where Ω2 = κ
m

is the square of the resonant frequency . Equation (1.35)
represents the maximum distance the electron can get to before being drawn
back to the core. We can now connect this amplitude to a physical quantity
- polarization P. For N identical electric dipoles the polarization is given by
P = Np = Nqx.

Through the calculation of electric susceptibility, we get

ε = 1 + Nq2

ε0m

Ω2 − ω2 + iωγ

(Ω2 − ω2)2 + ω2γ2 . (1.36)

Should the reader be interested in a more detailed derivation, a rather thor-
ough one is given in [15].

It is convenient to separate the real and imaginary parts of this function as

ℜ{ε} = Nq2

ε0m

Ω2 − ω2

(Ω2 − ω2)2 + ω2γ2 + 1 , (1.37)

ℑ{ε} = Nq2

ε0m

iωγ

(Ω2 − ω2)2 + ω2γ2 . (1.38)

Equations (1.37) and (1.38) are a very important result that fits surprisingly
well to the permittivity spectra of various types of materials. If plotted against
frequencies, function (1.38) takes the shape of the famous Lorentz curve, having
a peak at the resonant frequency Ω (see figure 1.5). We will later use this model
to fit the experimental data obtained by spectroscopic ellipsometry.

The Drude model

The reasons for electric conductivity lie in the mobility of the electron gas present
in the material. The so-called conductive electrons are, in theory, able to move
through the crystal freely. This can easily be embodied in the previous approach
by simply setting κ = 0, therefore making the attractive force F = κx zero.
Through this, the resonant frequency Ω also becomes zero, which we can now
simply substitute to equation (1.36):

ε = 1 − Nq2

ε0m

ω2 − iωγ

ω4 + ω2γ2 = 1 −
ω2

p

ω

ω − iγ

ω2 + γ2 . (1.39)

Here

ωp =
√

Nq2

ε0m
(1.40)

is the so-called plasma frequency which for most metals is in the order of 1016

Hz [15]. For a detailed physical explanation of ωp, see [16].
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Figure 1.6: A simplified view of the band structure in the parabolic approximation
[16]. Here k and E denote the wavevector and energy, respectively, while Eg

stands for the width of the forbidden energies. A and B are denote the valence
and conduction band.

The Drude model is used predominantly when describing materials with a
large concentration of free carriers, such as metals. However, from (1.38) we can
directly see that for Ω = 0 Hz, ℑ{ε} diverges, which is quite inconvenient. To
describe the absorption properties of metals, one often confines to the optical
conductivity σ, rather than ε.

1.2.3 Quantum theory of optical processes
Energy bands

We shall now proceed to more advanced theories of the optical response. However,
before getting to the interaction of light and matter, we first need to define
the basic quantum-mechanical concepts of material science. We will start by
discussing the possible energy states for electrons in solid state matter5.

When solving the Schrödinger equation for an electron in a Coulomb potential
(originating from an atomic core), one finds that the energy states create a discrete
spectrum. Let us now increase the number of nearby cores to a larger amount.
The electron becomes affected by the potentials of other cores, which brings more
available states into the spectrum - the energy levels begin to overlap [19].

Solids contain about 1023 atomic cores in a cubic centimeter. Therefore, the
amount of sublevels to an energy ”level” in a cubic centimeter of crystallized
matter is roughly of the same order. These sublevels are packed tightly together
creating a quasi-continuous spectrum of allowed and forbidden energies (the so
called energy bands and band gaps) [20].

The bands are either vallence or conductive (see figure 1.6). Vallence bands
contain electrons that are bound to their respective cores and cannot move freely
through the crystal. The electrons belonging to the conductive band are, on

5For the basics of quantum theory, see for instance [17] or [18]
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Figure 1.7: Materials with different transport characteristics as viewed by the
band theory [16]. The isolators have their valence bands filled with the forbidden
energy band too wide to posses any free carriers. The conductors posses a signifi-
cant amount of free electrons around the Fermi energy, while the semiconductors
may have free carriers injected into the conductive band from the valence one.

the other hand, able to travel through to crystal and participate in conducting
electric currents. If given enough energy, electrons can overcome the band gap
and travel from the vallence band to the conductive one.

Types of conductivity

Based on the band theory, we can now divide solid state matter into three basic
groups based on its conductive properties (see figure 1.7):

• Insulators - For a material with a large gap (more than 4 eV) the electrons
have no way of gaining enough energy to get to a conductive state, hence,
under natural conditions, the material does not conduct electric current.

• Semiconductors - If a band gap is small enough (from 0.1 eV to 2 eV),
electrons can, under certain conditions, pass to the conductive band. These
conditions include a rise in the temperature of the crystal or the interaction
with electromagnetic radiation.

• Conductors - For this type of solid state matter, the Fermi level lies inside
the conductive band. There is, therefore, a large portion of electrons able
to move the charge through the crystal.
For more details, see [19].

Interband transitions

We will now discuss the semi-classical theory of interband transitions. Firstly, let
us note that in this approach, light will be viewed as an electromagnetic wave,
while matter will be described in a quantum-mechanical manner - hence the word
”semi-classical”. Also, we shall only be treating direct band transition.
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The probability that the electron will transfer from the valence state |i⟩ to a
conductive state |f⟩ can be calculated6 using the Fermi Golden Rule

Pi→f = 2π

~
|⟨i|Ĥ|f⟩|2δ(Ef − Ei − ~ω) . (1.41)

Here δ is the Dirac δ-function and Ĥ is the Hamiltonian of the system, which,
in the direct calculation of (1.41) can be replaced by a so-called interaction Hamil-
tonian, Hi. In a Coulomb gauge and for a monochromatic wave, the interaction
Hamiltonian is

Ĥi = − e

m
p · A , (1.42)

where A is the oscillating vector potential of the electromagnetic wave.
The initial and final states of the electron are both in a form of a Bloch wave7

of a corresponding energy band,

|i⟩ = uv,kv(r) exp(ikv · r) , (1.43)

|f⟩ = uc,kc(r) exp(ikc · r) , (1.44)
where u(r) denotes a periodic function.
Using (1.41-1.44), we can now calculate

Ptot =
∑
i,f

Pi→f , (1.45)

which is the total probability of the transition. In order to do so, we shall
assume that the wavelength of the electromagnetic perturbation is far larger than
the proportions of the system and the wave appears to be independent of the
spatial coordinates (thus it is possible to exclude it from the integration in (1.45)).
This is the so-called electric dipole approximation.

We shall also assume that the momentum of the photon can be neglected and
it will not affect the momentum of the electron. This has already been mentioned
above as this condition is necessary for band transitions that are direct.

The calculation of (1.45) then results in

Ptot = 2π

~
eE0

2ωm

∑
k

|pcv|2δ(Ef − Ei − ~ω) , (1.46)

where pcv is a material constant [21].
We shall now proceed by connecting microscopic quantities with their macro-

scopic projections. The total power loss in a unit volume of the material, Wtot,
is given by

Wtot = ~ωPtot . (1.47)
With the help of Beer’s law we get

Wtot = ε0ω

2 |E0|2ℑ{ε} . (1.48)

6For short enough relaxation times.
7See [16], [19], [20], [21] or any other textbook concerning solid state matter.
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Using (1.48) with (1.46) we finally get

ℑ{ε} = e2π

ε0ω2m2

∑
k

|pcv|2δ(Ef − Ei − ~ω) . (1.49)

As it was mentioned above, ℑ{ε} represents a physical quantity that is used
to describe absorption of matter. From its spectral dependency we can see tran-
sitions between the energy bands a therefore indirectly observe the electronic
structure of the material.

Density of states

When describing materials in a condensed state, one often refers not only to their
band structure, but also to the degeneracy of the energy levels. This property
can be represented easily by a quantity called the density of states (abbreviated
as DOS), which is simply a number of allowed states per unit energy

g(E) = dN

dE
, (1.50)

This quantity is sometimes also defined as

g(E) =
∑

k

δ(E − Ek) , (1.51)

where k labels all the possible states at energy Ek. For more details, see [20]
or [21].

DOS is, for most cases, the same for all electrons. For a specific type of
materials, however, the DOS varies for electrons with a different spin. This
significantly affects the conductive properties of the material. For instance, it
can behave as a semiconductor for spin-down electrons and a conductor for spin-
up electrons, as seen on figure 1.8. These are the so-called half-metals and their
properties will be studied thoroughly in chapter 2.

1.3 Magneto-optical effects
After laying down the basic principles concerning the light-matter interaction, we
are now able to proceed to studying particular applications of these concepts.

Many magnetized materials gain the ability to change the polarization of the
interacting light, either upon reflection (magneto-optical Kerr effect) or transmis-
sion (Farraday and Voigt effects) [12]. Studying these effects yields information
about the magnetization of the material and can therefore be used to measure
its hysteresis loops, domain structure, etc. Thus, magneto-optical (MO) methods
have been established as a valuable research tool in the magnetism field.

This section is devoted to describing the mathematics of the most prominent
MO effect - the magneto-optical Kerr effect (MOKE). Firstly, we shall extend
the concept of permittivity to magnetized matter. This will enable us to define
its reflection matrix and will ultimately lead to the introduction of measurable
MOKE parameters, the Kerr rotation and Kerr ellipticity.

Secondly, we will define a set of different MO configurations. The geometry
of the incident light, the material sample and the magnetic field substantially
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Figure 1.8: The calculated spin-resolved DOS of a half-metallic Heusler compound
Co2FeSi [22]. The DOS for minority-spin electrons is located on the left side
(green), while the DOS for majority-spin electrons is on the right side (red). The
respective band structures are presented on the sides of the figure.

changes the effect and different orientations are used in order to gain various
information.

In the last part, we will characterize the various types of MOKE. The effect
can be either linear or quadratic in magnetization and a detailed explanation of
both will be presented by introducing the linear and quadratic MO tensors.

1.3.1 Light and magnetized media
Permittivity and magnetization

As it was explained in section 1.2, the elements of tensor (1.30),

ε =

⎡⎢⎣ εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎤⎥⎦ ,

can be further reduced under certain conditions. Let us consider an optically
isotropic medium that is subjected to a uniform time-independent magnetic field.
By choice, the z - axis will be parallel to the direction of magnetization. Due to
the symmetry of the system8, the tensor is invariant to all rotations around the
z-axis.

The rotation about the z - axis is represented by the rotation matrix,

R(θ) =

⎡⎢⎣ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤⎥⎦ , (1.52)

considering a counter-clockwise rotation by an arbitrary angle θ. Tensor (1.30)
8The symmetry group being C∞h [12].
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can only be invariant to this operation in the form

ε =

⎡⎢⎣ εxx εxy 0
−εxy εxx 0

0 0 εzz

⎤⎥⎦ . (1.53)

The permittivity tensor must also be invariant to the reversal of time. Accord-
ing to [23], the time reversal is in this case equal to reversing the magnetization
vector9. As it is explained in [12] and [14], this leads to the so-called Onsager
relation,

εij(M) = εji(−M) . (1.54)

Applying (1.54) to (1.53), we can immediately see that switching off the mag-
netic field nulls the off-diagonal elements. Hence, an optically isotropic material
becomes optically anisotropic, once it has been magnetized. This is the underly-
ing principle of all MO effects.

The Jones matrix of magnetized samples

Recalling the concept presented in section 1.1, we shall now proceed to defining
a Jones matrix of a magnetized sample studied in an optical setup. In the ex-
perimental techniques employed in measuring MOKE, the setup is built so that
the light beam reflects from the surface of the material. For a demagnetized,
optically isotropic and perfectly reflective surface, the Jones matrix is given by
(1.25),

Z =
[

1 0
0 −1

]
.

For real samples, however, only a portion of light is reflected a the rest is
absorbed or transmitted through the material. Moreover, the reflection gener-
ally depends on the polarization of the incoming light (more so in the cases of
magnetized samples).

The Jones matrix characterizing these reflective properties can be written as

R =
[

rpp rps

rsp −rss

]
. (1.55)

The indices of the matrix elements correspond to the notation of s- and p-
polarization mentioned in section (1.1).

As it was stated in the previous parts, the optical properties of matter, in-
cluding reflectivity, are completely characterized by the permittivity tensor. We
have shown that the symmetry breaking induced by magnetization changes the
tensor significantly. It is, therefore, evident that the reflective nature of matter
will be modified in the presence of a magnetic field.

9One can imagine the magnetic field being produced by an electric loop. Once the time is
reversed, the current begins to flow in the opposite direction and the field vector turns to the
opposite direction.
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Figure 1.9: A simplified principle of the MO Kerr effect. The magnetization of
the samples, M⃗ , changes the polarization of the incident light upon reflection.

This manifests through the elements rij, as they are, in general, functions of
the magnetization vector:

rij = rij(M) . (1.56)

The reflection matrix determines the polarization of the reflected beam. Hence,
the dependency of its elements on the magnetization vector suggests that the
magnetization of the sample will affect the polarization of the probing light (see
figure 1.9). This is the so-called magneto-optical Kerr effect (MOKE).

For a general orientation of M, a simple relation between permittivity and
the reflection coefficients (1.56) exists only for special configurations - some of
which we will discuss later. For now let us only note that these coefficients form
a bridge between the material tensors and measurable changes in polarization of
the reflected light.

Kerr rotation and Kerr ellipticity

MOKE is characterized by two measurable quantities, Kerr rotation θK and Kerr
ellipticity ϵK (corresponding to change of the azimuth θ and the ellipticity angle
ϵ defined in section 1.1). The Kerr effect ΦK is defined as a complex number,

Φp
K := θp

K − iϵp
K , (1.57)

Φs
K := θs

K − iϵs
K , (1.58)

s and p denoting the respective polarizations10.
The effect itself is determined by the magnetization-dependent ratio of diag-

onal and off-diagonal elements of the reflection matrix,

Φp
K ≈ rsp

rpp

, (1.59)

10It is important to mention that the sign convention in (1.57) may vary in different books
in the same manner as the parameters describing the polarization ellipse (see section 1.1).
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Figure 1.10: Basic MO geometries based on the orientation of the magnetic field
and the plane of incidence. a) polar b) longitudinal and c) transversal configura-
tion. M denotes the magnetization vector.

Φs
K ≈ −rps

rss

. (1.60)

1.3.2 Polar MOKE
In section 1.2 we have discussed the shape of the permittivity tensor when sub-
jected to a magnetic field directed parallel to the z-axis. Obviously, the permit-
tivity tensor will be in a different form, should the magnetization point in another
direction.

Hence, changing the magnetization direction gives different types of MOKE
[24]. In magneto-optics, three basic geometries are distinguished (see figure 1.9):

• Polar - M is parallel to the plane of incidence and perpendicular to sample
surface.

• Longitudinal - M is parallel to the plane of incidence and perpendicular
to sample surface.

• Transversal - M is perpendicular to plane of incidence and parallel to
sample surface.

We will now look closely to the geometry used in the experimental measure-
ments employed in this work. For a normal angle of incidence, the matrix (1.55)
can be, with the help of (1.59), renormalized as

R =
[

1 −ΦK

−ΦK −1

]
. (1.61)

Notice that in this case we do not distinguish between Φs
K and Φp

K , because
there is no way of defining a plane of incidence for a normal angle, so s- and
p-polarization lose their meaning.

The permittivity tensor for a polar configuration is in the form of (1.53), that
has been previously discussed. It is convenient to label its components so that

ε =

⎡⎢⎣ ε1 −iε2 0
iε2 ε1 0
0 0 ε3

⎤⎥⎦ , (1.62)
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which is the convention that we will be using for polar MOKE from now on.
As it is explained in detail in [14], the relation between the tensor and MOKE

is, in polar configuration,

ΦK = iε2√
ε1(ε1 − 1) . (1.63)

This is a very important result, as we can now use this relation to gain the
spectral dependency of ε2 through a polar MOKE measurement. However, in
order to obtain this dependency, we first need to determine ε1. That may be
achieved by the method of spectroscopic ellipsometry (see section (4.1)).

1.3.3 Linear and quadratic effects
The expansion of permittivity

Let us now discuss the exact dependency of the MOKE on magnetization. The
MOKE, in the simplest approximation, has a linear dependency on M and for
most applications, this is all one has to consider. In reality, however, there are
higher-order contributions to MOKE that can manifest themselves in specially
designed measurements [25] as well as during routine Kerr analysis, such as mea-
surements of Kerr loops [26].

The permittivity tensor can be expanded in an infinite series11,

ε(M)ij = ε
(0)
ij + ε

(1)
ij (M) + ε

(2)
ij (M) + ... , (1.64)

the first element being independent of magnetization [27].
In this work, we shall only confine to studying only the first two of the M-

dependent contributions, ε
(1)
ij (M) and ε

(2)
ij (M).

The first-order contribution is the so-called linear magneto-optical Kerr effect
(LMOKE) as it only depends linearly on M,

ε(M)(1)
ij = KijkMk , (1.65)

where we have used the Einstein convention.
The second-order one is called quadratic magneto-optical Kerr effect (QMOKE)

and depends on the product of components of the magnetization vector,

ε(M)(2)
ij = GijklMkMl . (1.66)

Let us now look more closely on the quantities from equations (1.65) and
(1.66).

Magneto-optical tensors

K and G are the so-called magneto-optical tensors. They govern the MO effects
and are closely related to the crystallographic ordering of the material.

11The superscript of the respective elements denotes the order of their dependency on M.
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K is the so-called linear magneto-optical tensor. This third-rank tensor can
be represented as a 3x8 matrix [12] when rewriting equation (1.65) as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
ε23
ε31
ε12
ε32
ε13
ε21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
K111 · · · K113

... . . .
K211 K213

⎤⎥⎥⎦
⎡⎢⎣ M1

M2
M3

⎤⎥⎦ . (1.67)

The 24 components of K can of course be reduced by using general symmetry
relations. For this we find

Kijk = Kjik (1.68)

and

Kiik = 0 , (1.69)

for all i ̸= j ̸= k.
As for G, this fourth-rank tensor is, for obvious reasons, called a quadratic

magneto-optical tensor. In a similar representation, equation (1.66) can be rewrit-
ten as ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
ε23
ε31
ε12
ε32
ε13
ε21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1111 . . . G1121
. .
. .
. .

G2111 G2121

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M2
1

M2
2

M2
3

M2M3
M3M1
M1M2
M3M2
M1M3
M2M1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.70)

its general symmetry being

Gijkl = Gjikl = Gjilk = Gijlk , (1.71)

for all i ̸= j ̸= k.
General symmetry relations reduce the number of independent variables per

tensor substantially. For a particular crystal structure, this number can be further
reduced depending on the symmetry group of the system. The form of MO tensors
for all crystal systems can be found in [12] and we will now tend to the simplest
one - a cubic lattice.
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Cubic crystals

We shall now study the MO tensors for a cubic lattice. In this case, K only has
six non-zero components, all of them being equal. The linear MO tensor can then
be rewritten as

Kcubic =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

K 0 0
0 K 0
0 0 K

−K 0 0
0 −K 0
0 0 −K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.72)

which, of course, considerably simplifies equation (1.67).
The quadratic tensor G simultaneously breaks down to only three independent

parameters denoted as G11, G12 and G44. We can rewrite it as follows

Gcubic =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

G11 G12 G12 0 0 0
G12 G11 G12 0 0 0
G12 G12 G11 0 0 0
0 0 0 2G44 0 0
0 0 0 0 2G44 0
0 0 0 0 0 2G44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.73)

It is suitable to also write down the zeroth-order element of (1.64) for a cubic
crystal. From the part of this work concerning the permittivity tensor for optically
isotropic media, it should be evident that

ε
(0)
ij = δijε1 , (1.74)

where δij is the Kronecker delta. The matrix can then be written as

ε
(0)
cubic =

⎡⎢⎣ ε1 0 0
0 ε1 0
0 0 ε1

⎤⎥⎦ . (1.75)

The MO effects to the second order are, in conclusion, governed by four com-
plex valuables, K, G11, G12 and G44. Using present day experimental techniques,
K and G44 are directly measurable, while for G11 and G12 we can gain only partial
information [25].
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2. Heusler compounds

2.1 Basic properties
The Heusler compounds1 were discovered by a German mining engineer, Friedrich
Heusler, in 1903. Heusler studied a 2:1:1 stoichiometric compound, Cu2MnSn.
He found that, although none of its components are magnetic, their compound
shows ferromagnetic behavior nonetheless [28].

Since this major discovery, about one thousand of such compounds have been
identified. These extraordinary materials are now actively researched due to their
application potential in spintronics, magnetic shape memory, superconductors
and topological insulators as well as their future utilization in thermoelectronics
and solar cells [1].

In this section, we will introduce basic properties of these materials. We will
start with their chemical composition and stoichiometry. Next, we will analyze
the phenomenon that governs the magnetic properties of these compounds, the
so-called half-metallicity (briefly described in the previous chapter). In the third
part of this section we will introduce the so-called Slater-Pauling rule. This
simple tool is frequently used for calculations of the magnetic moment of Heusler
compounds.

2.1.1 Composition
Heusler compounds are generally composed of three elements, here denoted by
X, Y and Z. X and Y fall under a group of elements called the transition metals
a Z is a main group element (see figure 2.1) [3].

The most recent research has been revolving around cobalt and nickel at
the X-position, iron and manganese at the Y -position and silicon, gallium and
germanium at the Z-position. detailed information about the material, electronic,
optical and magnetic properties of various combinations of these elements are
thoroughly summarized in [30]. Recently a group of Heusler compounds with
cobalt as the X element has been in the center of attention, having remarkably
high Currie temperature [35] and exhibiting an extraordinarily large MO response
[25].

The Heusler compounds investigated in this work posses an X2Y Z stoichiom-
etry - these are the so-called full-Heuslers. However, it is possible to prepare
Heusler compounds with a different stoichiometry as well. Two other groups of
Heusler compounds exist - the half-Heuslers and the inverse Heuslers. The first
class is fully stoichiometric, while the other is made with an XY2Z stoichiome-
try. For a rather detailed description of the differences between these groups, we
recommend the reference [29].

1In literature, Heuslers are named ”compounds” as often as ”alloys”, as they technically fall
under both of the groups. However, as stated in [1], the term ”intermetallic compounds” is the
more appropriate one.
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Figure 2.1: The possible composition of the Heusler compounds [1]. X and Y
belong in the transition metals (red and blue), whereas the Z element is in the
main group (green).

2.1.2 Half-metallicity
One of the many interesting properties of Heusler compounds is the capacity for
the so-called half-metallic ferromagnetism. In 1983, de Groot et al. [31] discovered
that several Heusler compounds exhibit an asymmetric band character: while
some electrons around the Fermi level behave as conduction electrons in metals,
electrons with an opposite spin direction experience a band gap as if the material
was actually semi-conducting (see figure 2.2).

Let us define the spin polarization P,

P = ρ↑ − ρ↓

ρ↑ + ρ↓
, (2.1)

Here ρ↑ and ρ↓ are the spin-resolved densities of states. The arrows ↑ and ↓
denote the majority- and the minority-spin states, respectively.

For some half-metallic materials we have a 100% spin polarization around the
Fermi level. This feature attracted a large amount of attention due to its potential
application in the emerging field of spintronics [22]. The asymmetric character of
the energy bands is also responsible for the ferromagnetic properties of Heusler
compounds. Thus, the term half-metallic ferromagnetism (HMF) is frequently
used. HMF is directly responsible for various interesting spin-dependent phe-
nomena, for instance the anomalous Hall effect ([41]), giant magnetoresistance
([42], [51]) or spin transfer torque [43]. There is a number of other materials ca-
pable of HMF. The Heusler compounds are, however, the most suitable ones for
future applications due to high Currie temperature [32] and therefore retainability
of high spin polarization even at room temperature.
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Figure 2.2: The spin-resolved density of states calculated for Co2FeSi [22]. The
green color symbolizes the DOS for the minority-spin carriers, while the red color
represents the DOS for the majority-spin ones.

2.1.3 Magnetism
The Heusler compounds may exhibit various magnetic orderings, including fer-
romagnetic, ferrimagnetic, antiferromagnetic and helimagnetic structures [29].
Their magnetic properties do not depend extensively on the particular elements,
but rather on the number of valence electrons NV [1]. Slater and Pauling (1936
and 1938) have found that the magnitude of the magnetic moment per unit cell,
m, can be predicted by a simple rule that has since been called the Slater-Pauling
rule:

m = NV − 2n↓ , (2.2)

Here m is given in multiples of the Bohr magneton, µB, and n↓ is the number
of electrons in the spin-down states.

The magnetic moment originates from the half-metallic character of the band
structure. For fully ordered Heusler compounds, the magnetic moment is caused
by the interactions between the X and Y atoms and the consequent hybridization
of d-bands. The d-orbitals hybridize due to the position symmetry of the X
elements and create five bonding d-states. These states then hybridize with the
d-states of Y atoms. This results in 12 occupied minority states, which leads to
(2.2) being

m = NV − 24 . (2.3)

This is the form of the Slater-Pauling rule that is used for the calculation of
the magnetic moment of Heusler compounds. If the reader be interested in its
detailed derivation, a rather thorough one is presented in [33].

As we can see from (2.3), the magnetic moment is a linear function of the
number of valence electrons. We can immediately see that compounds with less
than 24 vallence electrons are not magnetic at all.

Let us now present the manifestation of the Slater-Pauling rule in one of the
most important groups of Heuslers - the cobalt-based Heusler compounds. In
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Figure 2.3: The magnetic moment per formula unit as a function of the number
of valence electrons per formula unit of the Co-based Heusler compounds [1].

figure 2.3, we present their magnetic moment as a function of the number of
valence electrons [1]. As we can see, all of these compounds indeed follow a linear
dependency given by equation (2.3).

2.2 Structure
It is a well known fact that the crystallographic ordering influences the properties
of all solid-state matter. In the case of Heusler compounds, the crystalline struc-
ture affects all of the interesting properties of these compounds, including high
Currie temperature and high values of spin polarization. This is why most of the
authors investigate the exact structure of the studied samples before proceeding
to further analysis.

Here, we will firstly introduce the basic phenomenology used for the descrip-
tion of the crystallographic ordering - the Strukturbericht and Pearson symbolics.
Secondly, we will present the ideal Heusler structure, L21. To achieve this type
of structural ordering in the Heusler compounds is a challenging task due to
many types of disorder that may arise may arise during the growth process. The
disordered phases and their influence on the properties of the compound will
be described in the third part of this section. In the last part, we will list the
present-day approaches that are used for structure determination. This will later
allow us to illustrate the convenience of the usage the MO methods instead.
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Figure 2.4: The ideal Heusler structure, L21. The X elements are marked by the
red color, Y by the blue color and Z by the green color.

2.2.1 Basic classification
There are several systems used for the description of the crystal structure of
solids. The first one is the so-called Strukturbericht notation and the second one
is the Pearson symbolism.

The Strukturbericht classification denotes monoatomic crystals X by the let-
ter A, binary crystals XY by B, binary XY2 by C and so on. After the letter
comes a number denoting the specific structure type.

A list of examples is shown in the table bellow.

Material Strukturbericht symbol
Diamond A4
Graphite A9
NaCl B1
CsCl B2
Perovskite E21
Heusler L21

Table 2.1: Examples of the Strukturbericht symbolic.

The Pearson (W.B. Pearson) notation involves a lowercase and an uppercase
letter, followed by a number. The lowercase letter signifies the particular crystal
family - a for anorthic (triclinic), m for monoclinic, o for orthorombic etc. The
centering type is denoted by the capital letter - for instance, R stands for rhom-
bohedral centering. Finally, the number simply stands for the number of valence
electrons per unit cell.

The materials listed above have the following Pearson symbols:
Detailed information can be found for example in [38].
Although both systems are commonly used for the description of Heusler com-

pounds, in this work we will, for the sake of simplicity, employ the Strukturbericht
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Material Pearson symbol
Diamond cF8
Graphite hP4
NaCl cF8
CsCl cP2
Perovskite cP5
Heusler cF16

Table 2.2: Examples of the Pearson symbolic.

classification only.

2.2.2 Ideal structure
In the ideal case, full-Heusler compounds2 are formed by four interpenetrating
fcc sublattices. The X atoms are located at (0,0,0) and (1/2,1/2,1/2) positions,
Y at (3/4,3/4,3/4) and Z at (1/4,1/4,1/4) position [36].

Using the Strukturbericht classification, this lattice is denoted by the symbol
L21. This ordering is the cause of the unique properties of Heusler compounds
and is generally known as the Cu2MnAl-type structure, named after one of the
compounds discovered by Heusler.

X atoms are positioned tetrahedrally, while Y and Z are organized octahe-
drally. This composition can be viewed as a zincblende structure (space group
F43m). Describing the crystallographic ordering in this way is rather convenient
as it underlines the covalent bonding between the Y and Z elements. This bond-
ing has a substantial impact on the electronic properties of all Heusler compounds
[37].

2.2.3 Disordered phases
Types of ordering

Apart from L21, there are several other orderings that can be found in Heusler
compounds. These orderings has generally negative impact on desired properties
of the material (magnetization, spin polarization, etc.) and we will now categorize
the most common ones.

Firstly, let us note that all of the bellow-mentioned orderings are viewed as
being deviant from the ”correct” Heusler structure L21. Moreover, in all of these
arrangements the atoms are positioned in a more random manner than in L21.
Therefore, the term structural disorder is commonly used.

In figure 2.5 we can see various types of disorder that may occur in Heusler
compounds. The first type, B2 (CsCl), happens when the Y and Z atoms are
distributed evenly in the 4a and 4b positions.

DO3 (BiF3), the second type of disorder, is the random swapping of X↔Y
or X↔Z. This type may be rather challenging to detect using standard X-ray
measurements, as will be explained in the last part of this section.

2It is important to note that inverse and half-Heuslers crystallize in different orderings with
different types of disorder.
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Figure 2.5: The four possible disorders that may arise in the Heusler compounds:
a) B2 (CsCl structure) b) D03(BiF3 structure) c) A2 (W structure) and d) B32a
(NaTl structure) [1].

A rather rare type of disorder, which may often be left out of consideration,
is the B32a (NaTl) disorder. The X atoms are located in 8a and Y and Z at 8b
positions (randomly).

A completely random distribution of all atoms among all four crystallographic
sublattices is called an A2 (W) disorder.

Annealing is the standard method for post-deposit treatment of Heusler com-
pounds. This technique has been reported by many authors to improve the
ordering of Heuslers which are usually in an A2-disordered state after the de-
position. For temperatures typically around 500o C the compounds become B2
ordered and start to crystallize in the L21 phase at temperatures above 700o C.

The symmetry groups (determined by T. Graf et al. in [1]) and the number of
the symmetry operations performable on respective orderings (obtained at [40])
are as follows:

Structure type Space group Number Number of operations
L21 Fm3m 225 48
B2 Pm3m 221 48
D03 Fm3m 216 24
B32a Fd3m 227 48
A2 Im3m 229 48

Table 2.3: The symmetry groups of the possible phases in Heusler compounds.
The specific space group along with its respective number is followed by the
number of the symmetry operations belonging to this group.
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Effect on magnetic properties and spin polarization

Disorder from the ideal L21 structure generally has generally negative impact
on the unique spin-dependent properties of Heusler compounds caused by the
half-metallic character of their electron structure. Rearranging the atoms in the
crystal lattice will, obviously, change the DOS of the material (see figure 2.6). It
has been shown by a number of authors that while some disorder may preserve
the half-metallicity, other may destroy it completely, blurring the energy gap in
the minority-spin DOS. Let us now name several cases of investigation of the
impact of disorder on the spin-dependent properties of Heusler compounds.

Figure 2.6: The calculated DOS for a perfectly L21-ordered (dashed line) and a
perfectly B2-disordered (full line) Co2CrAl [46].

For example, Li et al. [44] reported that the DO3 disorder in Co2MnGa0.75
Ge0.25 causes the degradation of spin polarization. In their work Li et al. treated
the disorder as anti-site defects between the X, Y and Z elements. They argue
that the CoMn anti-sites (DO3 disorder) substantially reduce the magnetic mo-
ment in the unit cells because the Mn atoms posses spins opposite from the Co
atoms.

Similar effect has been predicted for Co2MnSi in [45]. Using Monte Carlo
simulations, Hülsen et al. has shown that the substitution of the Co atom to the
Mn or Si site destroys HMF due to the creation of minority spin states in the gap.
However, they found that for a fully-ordered L21 Co2MnSi Heusler compound the
spin polarization is indeed 100% (for T=265 K).

Miura et al. investigated the disorder in Co2CrAl in [46]. They found that,
similarly to Co↔Mn antisites mentioned above, the DO3 disorder of Co↔Cr
considerably decreases the spin polarization (more than 30 % reduction for 90
% ordered structure in comparison to a 100 % ordered one). Miura claims that
Cr↔Al (B2) disorder preserves HMF in Co2CrAl and that the magnetic moment
is in accordance with the Slater-Pauling behavior. The spin polarization, however,
is reduced only due to the decrease of majority-spin DOS at the Fermi energy.

Aftab et al. [47], which studied the substitution of Cr atoms in Co2MnSi,
has found that while L21-ordered compounds follow the Slater-Pauling rule (2.3),
the presence of A2 disorder causes severe deviations from it. A completely A2-
disordered compound shows no magnetic moment whatsoever.
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In summary, the order-disorder phenomena has considerable influence on the
DOS in the Heusler compounds. As mentioned in chapter 1, the optical methods
are an ideal tool for the investigation of these changes. Therefore, using optical
probes should enable us to detect structural disorder in Heusler compounds.

Moreover, the results mentioned above prove that the disorder may cause
deviation from the Slater-Pauling rule (2.3). This causes a severe change in
the magnetic properties of Heuslers and, therefore, their MO properties as well.
Thus, a change in structural ordering should be, in principle, detectable by the
measurement of MOKE. Before we proceed to this part, let us first name a few
methods that are in hand when determining the crystallographic structure of
Heusler compounds.

2.2.4 Structure determination
For the reasons that were described in the previous text, the knowledge of the
structural ordering in Heusler compounds is of substantial importance. The deter-
mination of the exact structure of the compound has become a routine procedure
prior to any further investigation.

In this work, we have investigated the Heusler compounds using spectroscopic
ellipsometry and MO spectroscopy. There is, however, a number of alternative
methods at hand and we will now present the most commonly used ones.

• X-ray diffraction (XRD) - One of the most prominent techniques used
in crystallography. Viewing the atoms of a crystal as an array of scattering
points, XRD uses X-ray radiation to produce secondary electromagnetic
waves diffracted by the lattice. The secondary waves interfere negatively
in most directions, but there is constructive interference in angles that are
typical for particular crystal orderings. These angles are determined by the
famous Bragg’s law,

2d sin θ = nλ ,

where θ is the scattering angle, d is the distance between diffraction planes,
n is a positive integer and λ is the wavelength of the X-rays.
This method, although often used, may not lead to an unambiguous deter-
mination of the crystallographic ordering in the case of some of the Heusler
compounds. The L21 ordering and the DO3 disorder may share the same
form-factor (a measure of the scattering amplitude) and their diffraction
peaks can therefore completely overlap [1].

• Extended X-Ray Absorption Fine Structure (EXAFS) - EXAFS
is an oscillating part of the spectrum obtained by X-ray absorption spec-
troscopy. This method enables the calculation of the X-ray absorption coef-
ficient µ through measuring the incident (Ii) and transparent (It) intensities
through the relation

µ = − log It/Ii

x
,
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where x is the thickness of the sample.
When plotting the µ spectrum against energy, one observes sharp peaks,
each of them corresponding to a ionization state. After every peak, a typical
oscillation will occur, originating from the backscattering of waves emitted
by the ionized element. This backscattering is caused by the neighboring
atoms and are typical for each crystallographic ordering. Basic information
can be found in [48].

Figure 2.7: An example of the neutron scattering peaks as presented in [49]. The
magnetic reflection is shaded.

• Neutron diffraction - Suitable for bulk samples, neutron scattering is
used in a similar way as XRD. However, unlike X-rays, neutrons interact
directly with the atomic cores and, due to their significant energy, can probe
further in the sample.
The neutron scattering is also used for probing the magnetic structure of
materials. Although neutrons do not carry any electric charge, they posses
a non-zero spin. Neutron diffraction can therefore be used to determine the
magnitude and direction of the moments in a unit cell.
Used neutrons are either thermal or cold (referring to the temperature of the
neutron source). They are generated by a nuclear reactor and their energy
distribution is narrowed in a crystal monochromator by Bragg’s reflection.
Although a mighty tool for the investigations of the magnetic properties of
matter, the necessity for a nuclear reactor remains a considerable disadvan-
tage over other techniques [49].
Depicted in figure 2.7 is an example of the neutron scattering spectrum.
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3. Studied compounds
In this chapter, we will give basic information about the materials that have
been investigated in the experimental part of this work. First, we will introduce
a new member of the Co-based Heusler compounds - Co2FeGa0.5Ge0.5. We will
start with the description of two parental compounds, Co2FeGa and Co2FeGe.
Next, we will present the characteristics of the compound itself, along with its
utilization in present-day spintronic applications.

In the second part, we will present the magnetic-shape memory (MSM) com-
pounds, an extraordinary group of Heusler compounds that has been vividly
investigated in the past two decades. Due to the breakthrough of the original
magnetic-shape memory compound, Ni2MnGa, a similar compound of Fe, Mn
and Ga has been synthesized. Our research will be focused primarily on this
novel material and demonstrating the differences in its characteristics in compar-
ison to Ni2MnGa.

In this part of the chapter, we shall give a detailed description of both of the
compounds as well as a basic introduction to MSM-based technology.

3.1 Ultra-high spin polarization Heusler com-
pounds

3.1.1 Co2FeGa and Co2FeGe
Before we proceed to the Co2FeGa0.5Ge0.5, let us first summarize the proper-
ties of its two parent compounds, Co2FeGa and Co2FeGe. For all spintronic
devices, from most the basic (magnetic tunnel junctions) to more advanced ones
(second-generation MRAMS, reading heads), a demand for high spin polarization
materials is rapidly rising.

The Co-based Heusler compounds, that are known for their half-metallic char-
acter and high Currie temperature, have therefore been in the center of attention
for many years. In the present days, new Co-based compounds are being devel-
oped in order to satisfy the growing demand for high-performance materials.

Since the discovery of the Co2FeSi Heusler compound, attempts have been
made to synthesize a Co2FeZ compound that would further enhance the proper-
ties of the original. Two of the most promising ones were Co2FeGa and Co2FeGe.

Co2FeGa and Co2FeGe are both half-metallic and while for Co2FeGe the Fermi
energy lies inside the minority-spin gap, for Co2FeGa it lies outside (see figure
3.1). For both the compounds, the majority-spin electrons at the Fermi energy
behave as free carriers.

To set the Fermi energy in the middle of the energy gap of the minority-spin
electrons, Co2FeGa and Co2FeGe were mixed in an equal amount, creating a
quaternary Heusler compound, Co2FeGa0.5Ge0.5. This material has shown some
extraordinary results in the very recent past and we will now proceed to their
review.
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Figure 3.1: The spin-resolved DOS of Co2FeGe (left) and Co2FeGa (right) as
calculated by Balke et. al. in [22]. The green color symbolizes the DOS of the
spin-down states and the red color symbolizes the DOS for the spin-up ones.

3.1.2 Co2FeGa0.5Ge0.5

Since 2013, Co2FeGa0.5Ge0.5 (CFGG) has gained a large amount of attention due
to its promising application potential in the current-perpendicular-to-plane giant
magnetoresistance (CPP-GMR) devices [51] [52], lateral spin valve-based reading
heads [53] and microwave assisted magnetic recording techniques [54].

Out of all Co-based Heusler compounds, CFGG seems to be the most promis-
ing one discovered so far. Ikhtiar et al. [53] has shown that its spin polarization
is about 15% higher than that of Co2FeSi or CoFeAl at low temperatures. More-
over, the value of the spin polarization is preserved at room temperature (see
figure 3.2), exceeding the spin polarization of Co2FeSi and CoFeAl by roughly
30%.

As discussed in section 2.2, disorder in Heusler compounds may have a neg-
ative impact on the value of their spin polarization. It has been found by Du
et. al. [55] that the spin polarization of CFGG is the highest for L21 ordering
and lowers with the increase of B2-disorder. However, even for a B2-disordered
structure, the spin polarization is still reasonably high. Due to practical restric-
tions described in [55], CFGG is usually prepared B2- rather than L21-ordered.
Nevertheless, authors have confirmed that even under such conditions, CFGG is
highly applicable in the utilizations listed above.

3.1.3 Research outline
Balke et al. argues that, since the main group element is from the same period of
the periodic system as the transition metals, XRD and neutron diffraction can-
not unambiguously distinguish between the DO3 and L21 structures (see section
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Figure 3.2: The dependency of normalized spin polarization of CFGG on the
temperature of the compound as presented in [53].

2.2). In order to determine the quality of the samples, EXAFS and Mössbauer
spectroscopy are mostly used.

In section 2.2, we have outlined the basic principle of the above-mentioned
methods, as well as their disadvantages. The Mössbauer spectroscopy requires
a rather complex experimental setup and the EXAFS spectra may prove to be
complicated to interpret.

Therefore, we shall explore the possibilities of an alternative method, the MO
spectroscopy, to determine the changes in atomic disorder. MO spectroscopy is a
simple, fast and non-destructive method. The setup can be assembled from basic
optical components and the spectra do not require any complicated software to
be interpreted. Due to these advantages, it may prove to be the perfect tool for
the investigation of structural disorder in Heusler compounds.

3.2 Magnetic shape memory alloys

3.2.1 Magnetic shape memory
Since their discovery in 1995, magnetic shape memory compounds (MSMAs)
are a subject of wide interest due to their potential application in contactless
technology. While devices based upon other active materials are usually operated
via electrical contacting, the MSMA technology does not require any wiring,
as the active material is operated remotely by magnetic fields. Moreover, in
comparison with heat-operated shape memory materials, the MSMAs perform
about a hundred times faster.

These assets make the MSMAs a perfect candidate for application as sensors
or actuators [2]. Other utilizations include active and passive vibration damping
[56]. Simultaneously, new application paradigms such as the MSM contactless
microfluidic pump, have also emerged (the basic principle of this pump is depicted
in figure 3.3).
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Figure 3.3: The basic principal of a microfluidic pump based on the Ni-Mn-Ga
MSM Heusler compound [2]

3.2.2 Fe-Mn-Ga
The first discovered MSM Heusler compound was Ni2MnGa. Despite the impact
it had on the development of the MSM field, Ni2MnGa cannot be used in the
industrial applications due to its limited range of optional temperatures.

Therefore, an intensive search for other MSM materials begun in 1996 in order
to further improve the functionality of the MSMAs. Constituents of Ni2MnGa
were replaced by other elements, such as Mn and Co as the Y -element or Al and
Ga as the Z-element [57].

In the recent development, the possibility of replacing Ni by Fe at the X-
position has been investigated. The Fe-Mn-Ga compounds have been found to
exhibit MSM properties as well as Ni2MnGa (see figure 3.4). Fe-Mn-Ga exhibits
a relatively high Currie temperature of up to 750 K and its band structure retains
a half-metallic character [58]. The MSM effect may be up to 3.6 % [59].

Regarding their magnetic character, Fe-Mn-Ga compounds were reported
to exhibit in ferromagnetic, antiferromagnetic or paramagnetic properties [60].
Their magnetic behavior is, however, quite extraordinary.

Figure 3.4: The phase diagram of Fe-Mn-Ga compounds. Triangles denote the
FCC and BCC structures while the blue line surrounds the compounds that
exhibit MSM [59].

39



An important thermodynamic transition occurs in the Fe-Mn-Ga compounds.
For high enough temperatures, Fe2MnGa is in a paramagnetic austenite phase1

that is L21-ordered. At low temperatures, it undergoes a martensite transforma-
tion to a ferromagnetic L10-ordered martensite phase.

As reported by Zhu et al. [59], the martensite phase of Fe-Mn-Ga shows higher
magnetization than its parent austenite phase, which is different from the other
MSMAs mentioned above, such as Ni2FeGa, Mn2NiGa or Ni2MnAl.

Gasi et al. [58] showed that at room temperature, Fe2MnGa undergoes a
first-order phase transition from a ferromagnetic to an antiferromagnetic phase.
Disorder in the material serves as nucleation centers for antiferromagnetic clusters
resulting in a coexistence of both phases. As the temperature decreases, the
antiferromagnetic inclusions convert to ferromagnetic ones.

Tang et al. [61] reported that the transition from the ferromagnetic to anti-
ferromagnetic phase can be reached in lower temperatures when applying higher
magnetic fields - the rate being approximately 10 K/103 Oe. Omori et al. [57]
have found the same for the martensite transformation from the paramagnetic
austenite to the ferromagnetic phase. The temperature increases by 20 K for a
field of 7 T.

3.2.3 Ni-Mn-Ga
Similar to Fe-Mn-Ga compounds, at high temperatures Ni2MnGa exists in a para-
magnetic L21 austenite phase. In temperatures from 350 to 380 K the austenite
undergoes a martensitic transformation to a ferromagnetic state.

For perfectly stoichiometric Ni2MnGa, the magnetic moment is approximately
4.17 µB per unit cell. It is primarily localized around the Mn elements as the
moment of Mn is approximately 3.5 µB.

Recently, a 12% elongation was detected in a nearly stoichiometric Ni2MnGa
compound with small amount of Co and Cu by Sozinov et al. [62]. This is the
largest magnetic field-induced reorientation observed up to date.

A major obstacle for large-scale application of Ni2MnGa compounds is the
very limited range of operational temperatures. Ni2MnGa exhibits magnetic
field-induced reorientation up to 300 K. At this point, processes working against
the martensitic transformation responsible for the MSM effect begin to occur.
Extending the range of operational temperatures has therefore become a contem-
porary challenge for the MSM research.

A complete summarization of magnetic and mechanical properties, as well as
their temperature dependencies can be found in [2] or [63].

3.2.4 Research outline
Exactly how much of Fe should be present in the Fe-Mn-Ga compounds is contem-
porarily a matter of discussion. Our measurements will be performed on samples
with varying amount of iron to determine its effect on optical, magnetic and
MO properties. Subsequently, the results will be compared to those obtained for
Ni2MnGa in order to demonstrate the difference between the novel and prototype
MSMAs.

1Often labeled as being its ”parent” phase.
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4. Experimental techniques
This chapter is devoted to the description of the experimental techniques used
for the investigation of both optical and MO properties of studied samples. It
contains description of basic physical principles, which are employed in the mea-
surements, as well as the used equipment.

4.1 Spectroscopic ellipsometry

4.1.1 Basic information
Prior to its description, we should mention that ellipsometry is a rather broad
field with a vast number of experimental techniques, setups and utilizations. Here
we present only brief summarization of the basic concepts. For more information
about this topic, we recommend references [10] or [11].

Spectroscopic ellipsometry is generally defined as the measurement of the
change of the polarization state of light either upon reflection or upon transmis-
sion and the subsequent analysis of this change based on theoretical modeling.
The term ”spectroscopic” refers to the fact this change is measured for a contin-
uous spectrum of wavelengths ranging from infrared to ultraviolet light.

This prominent optical method has found use in a vast number of applications.
It is mostly employed to determine partial or even complete information about
the optical properties of investigated material and sample structure.

The sample structure includes its thickness, surface and interface roughness,
composition and conductivity type. The optical properties include the refraction
index, permittivity, absorption, reflection and so on.

The change in polarization is traditionally described by the Ψ and ∆ param-
eters. Ψ describes the absolute value of the ratio of reflection coefficients for an
s- and p- polarized wave, rss and rpp, while ∆ is their phase shift.

Ψ and ∆ are joined into one complex value, ρ, that is commonly defined as

ρ = tan Ψei∆ . (4.1)

Ψ and ∆ are measured experimentally. Via theoretical modeling and the
least square minimization, the spectral dependencies of both real and imaginary
parts of permittivity are obtained. These models include the Lorentz and Drude
models, described in the first chapter, as well as more advanced theories [11].

4.1.2 Experimental setup
There is a number of possible experimental setups for spectroscopic ellipsometry.
The polarizer-analyzer1 pair is commonly used. The polarizer is used in order to
linearly polarize the light emitted by the lamp. The analyzer is used in combina-
tion with an intensity detector to analyze the change in polarization of the light
reflected from the sample.

1”Analyzer” is a term used in such system for a second polarizer. The term originates from
its function in the measurement.

41



The most common ellipsometric setups are based on the so-called null tech-
nique. In a PSCA system2, the polarizer is rotated by and angle α, the compen-
sator by γ and the analyzer by β − γ. Usually, γ = ±45o and α and β are set so
that the intensity becomes zero at the output [11].

Multiplying the Jones matrices of all optical elements and setting the output
intensity to zero, we get

ρ = − tan(α − π

2 )
±1 + i tan(β − π

2 ∓ π
4 )

1 ∓ i tan(β ∓ π
4 ) . (4.2)

Ψ and ∆ are measured for four distinct values of α and β, which excludes the
inaccuracy of the estimation of the rotation angles of the polarizer-analyzer pair.
The ellipsometric angles are then obtained as

Ψ = 1
4(α1 − α2 + α3 − α4) , (4.3)

∆ = 1
2(β1 + β2 + β3 + β4) . (4.4)

Figure 4.1: RC2 Woolam spectroscopic ellipsometer. The source is located on
the right side of the figure, while the detector is located on the left side. The
sample holder is situated in the middle.

4.1.3 Equipment
We have used a dual rotating compensator RC2 Woollam ellipsometer (pictured
in figure 4.1). It operates in both reflection and transmission modes. The wave-
length of the incident light ranges from 190nm (6.5 eV) to 1750 nm (0.7 eV).
Hence it covers the near infrared (NIR) region, as well as the visible and the
ultra-violet (UV) region.

2Polarizer-sample-compensator-analyzer. The ellipsometric setups are usually named in such
manner.
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To process the experimental data, a rather complex software, CompleteEase,
has been used. This tool, developed by J.A. Woollam Co., has been used for the
above-mentioned modeling of the optical response of the material.

4.2 Polar MOKE spectroscopy

4.2.1 Basic information
In chapter 1, we explained how measuring MOKE can lead to obtaining valu-
able information concerning the magnetic properties of materials. As we further
discussed in this chapter, MOKE can be measured in three distinct geometries,
polar, longitudinal and transversal (see figure 1.10).

In this work, we have measured the spectral dependencies of MOKE in the
polar configuration, where the magnetization vector is oriented parallel to the
plane of incidence and perpendicular to the surface of the sample. In this geom-
etry, MOKE can be as small as a few millidegrees and the resolution of the setup
must be corresponding.

There is a number of methods that can satisfactorily resolve such small changes
in polarization and a detailed list can be found in [14]. For spectroscopic mea-
surements, an experimental technique based on rotating analyzer was employed.

4.2.2 The rotating analyzer method
The basic principles of the rotating analyzer method are very similar to those of
spectroscopic ellipsometry. The major difference, however, is that the sample is
placed in a magnetic field.

The light is emitted by the polychromatic light source L (see figure 4.2).
The beam first passes through a linear polarizer P and becomes p- or s-polarized.
After propagating through a lens that focuses the beam on the sample S, the light
beam is reflected from the sample surface. The reflected beam passes through an
analyzer A rotated by an angle α (relative to the crossed position with the input
polarizer). The beam is then focused with the help of a second lens and detected
by a CCD spectrometer D. Inside the spectrometer, the light is diffracted with
the help of a diffraction grating and the intensity at individual wavelengths is
detected by a CCD chip.

With the help of this particular setup, the Kerr rotation θK is measured. For
the measurement of the Kerr ellipticity, ϵK , one only has to include a compensator
C that changes the phase of the light by δ. This compensator is placed between
the sample and the analyzer.

In this geometry, the angle of incidence φ should, in principle, be 0o. In
practice, this angle is of course unobtainable 3. Polar MOKE is, therefore, usually
measured for φ=5o or lower.

3Although when dealing with monochromatic sources at particular wavelengths, beamspliters
can be used in order to obtain it.
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Figure 4.2: The polar MOKE spectrometer. The letter L labels the light source,
P the polarizer, A the analyzer and D the detector.
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4.2.3 Mathematical description
We shall now proceed to applying the Jones formalism introduced in the first
chapter to calculate the output intensity measured by the CCD spectrometer. In
the following, we denote the corresponding Jones matrices by the capital letters
used for each element in the text above.

Firstly, let us calculate the output polarization state Jout from the Jones
vector of the light polarized by polarizer P, Jin,

Jout = A ∗ C ∗ S ∗ Jin . (4.5)

By substituting the corresponding Jones matrices we get

Jout =
[

cos2 α cos α sin α
cos α sin α sin2 α

] [
ei δ

2 0
0 e−i δ

2

]
r

[
1 −ΦK

−ΦK −1

] [
0
1

]
, (4.6)

and, by using standard rules for matrix multiplication,

Jout = −r

[
θKei δ

2 cos2 α + e−i δ
2 sin α cos α

θKei δ
2 sin α cos α + e−i δ

2 sin2 α

]
. (4.7)

Using equation (1.26) we get

Iout = 1
2 |r|2[cos2 |θK |2 + sin2 α + sin(2α)ℜ{θKeiδ}] . (4.8)

Considering that the Kerr effect is usually in the order of millidegrees, the
output intensity is approximately

Iout = 1
2 |r|2[sin2 α + (θK cos δ + ϵK sin δ) sin 2α] . (4.9)

With no compensator present, Iout only depends on the Kerr rotation. Once
the rotation is measured, the compensator is added to the setup in order to obtain
the Kerr ellipticity as well.

4.2.4 Equipment
The light source used in the measurements was a 150 W Xe lamp made by
Hamamatsu Photonics. The spectral range of this lamp is from 185 nm (6.7
eV) to 2000 nm (0.61 eV). The average stability of the lamp is ± 0.5 % per one
hour.

P and A were both a-BBO Rochon polarizers. This type of polarizer is made
of two birefringent material prisms. Upon entering the second prism, the p-
polarized beam continues unchanged in the same direction, while the s-polarized
one deviates from it at a wide angle. The second beam is then removed from the
setup with the help of an iris-type aperture. The analyzer is set in a rotary stage
that rotates with the accuracy of 10−3 degree.

The magnetic field is created via a coil electromagnet. Using a 7 A current a
1.4 T field is achieved in polar configuration. The magnet requires water cooling
in order to produce stable magnetic field.
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We have used a Czerny-Turner-type Andor Shamrock 303i Spectrograph. Its
spectral range spans from 190 nm (6.52 eV) to 1100 nm (1.12 eV) with a 0.3
nm resolution. Shamrock 303i uses a blazed diffraction grating to decompose the
light and a CCD chip to detect it. The Andor iDus CCD is cooled to -70 oC using
a Peltier cell. This helps to increase the signal-to-noise ratio originating from the
dark current.

The light is brought into the setup using a pack of optical fibers with a colli-
mator lens. In the same manner, optical fibers are used to bring the light to the
CCD spectrograph.

4.3 Kerr magnetometry

4.3.1 Basic information
Measuring the hysteresis loops is one of the basic tasks encountered when dealing
with any magnetic material. From the loop we can deduce the essential magnetic
characteristics, ranging from the type of magnetism demonstrated by the material
to its coercivity or saturation field.

For this purpose, various methods have been developed. The most common
ones are the superconducting quantum interference device (SQUID), the vibrating
sample magnetometers (VSA) or inductive sensors.

MO Kerr rotation is, in most cases, linearly dependent on magnetization.
Therefore, by changing the magnetic field while simultaneously measuring the
Kerr rotation, we can indirectly measure the magnetization of the material.
Nowadays, this is perhaps the most common utilization of MOKE measurements.

4.3.2 Differential intensity detection
Let us now briefly introduce another method of measuring MOKE. Unlike the
rotating analyzer method, this one is much faster, although not as precise.

The setup again comprises of a light source, polarizer, sample in a polar
configuration and a waveplate. In this case, however, the rotating analyzer is
replaced by a Wollaston prism W (see figure 4.3).

Wollaston prisms have the ability to decompose light into two orthogonal
linear polarizations. The two beams are than detected by a pair of photodiodes.

In addition, a monochromatic source is used rather than a polychromatic one,
since the hysteresis loops usually do not differ for various wavelengths. It is
convenient to use a wavelength for which the MOKE is the highest, in order to
increase the signal-to-noise ratio.

4.3.3 Mathematical description
Similarly to the previous method, we shall now use the Jones calculus to obtain
the output intensities, I1 and I2. Firstly, Jout is given by

Jout
1,2 = W 1,2 ∗ C ∗ S ∗ Jin . (4.10)
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Figure 4.3: The polar Kerr magnetometer. The letter L denotes the laser diode,
P the polarizer, S the sample holder, M the electromagnet, W the Wollaston
prism and D1,2 the photodiodes.
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Here W 1,2 is a Jones matrix that corresponds to the two polarizations Jout
1,2

[14]. Substituting the respective matrices we obtain

J1,2
out =

[
1 ±1

±1 1

] [
ei δ

2 0
0 e−i δ

2

]
r

2

[
1 −ΦK

−ΦK −1

] [
cos α
sin α

]
, (4.11)

where α is a very narrow angle by which the polarizer is rotated with respect
to the s-polarization.

Consequently, using equation (1.26), we get

I1 − I2 = |r|2[ϵK sin δ − (θK + α) cos δ] . (4.12)

Using (4.12) we can gain the values of the MO angles. For the measurements
of hysteresis loops, only the Kerr rotation is predominantly measured. Therefore,
the waveplates can be excluded from the setup completely.

4.3.4 Equipment
Except for the detectors and light source, the setup has been build with the same
equipment as the previous one.

We have used standard laser diodes made by Thorlabs with a wavelength cor-
responding to the highest MOKE exhibited by the particular sample. The beams
were detected by PDA100A Si amplified photodiodes made again by Thorlabs.
Their spectral sensitivity was between 320 nm (3.87 eV) and 1100 nm (1.12 eV).

The magnetic field has been varied between -1.4 an 1.4 T. The field was
measured first in situ via a Hall probe and then remeasured with no sample
present in order to obtain the exact value of the magnetic field in the sample
location.
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5. Experimental results
The previous chapters contained both theoretical and experimental approaches
to the research of Heusler compounds. We have also added the basic information
about two extraordinary members of the Heusler family - Co2FeGa0.5Ge0.5 and
Fe2MnGa. In this chapter we will provide the results obtained for these two
materials by the tools presented in the previous text.

Starting with Co2FeGa0.5Ge0.5, we will first summarize the basic characteriza-
tion given by E. Vilanova, the author of the Co2FeGa0.5Ge0.5 samples studied in
this work. This includes X-ray diffraction and atomic force microscopy measure-
ments. We will continue by presenting our own research, namely the results of
spectroscopic ellipsometry, MO spectroscopy and MO magnetometry. To confirm
our interpretation of the experimental results, ab initio calculations made by Dr.
Kudrnovsky will also be presented in this part.

In the second part, we will present the results obtained for Fe2MnGa. This
section will only contain our original results, again obtained by spectroscopic
ellipsometry, MO spectroscopy and MO magnetometry. Those will be compared
to the results we have obtained for Ni2MnGa, for reasons that were explained in
section 3.2.

5.1 Co2FeGa0.5Ge0.5

5.1.1 Sample description
A set of sixteen Co2FeGa0.5Ge0.5 (CFGG) samples was made by E. Vilanova at
the Johannes Gutenberg University of Mainz [64]. The samples were deposited
using an ultrahigh vacuum DC-sputtering system.

During the deposition process, the chamber was first outgassed to the pressure
of roughly 10−9 mbar. The system was then filled with inert high purity Ar gas.
The pressure in the chamber has been set to approximately 10−2 mbar.

The CFGG compounds were sputtered on (100) MgO substrate. This sub-
strate is commonly used for Heusler compounds as it reportedly allows high qual-
ity epitaxial growth. Heusler compounds generally grow diagonally on MgO, e.i.
rotated by 45o with respect to the cubic structure of the substrate.

The samples differ in both thickness and deposition temperature. The sub-
strate was heated to temperatures between 650 and 1050o C. For each sample,
the corresponding deposition temperatures are listed in table 5.1. The thickness
of the samples ranges from 15 to 80 nm and was estimated by XRR in [64]. After
the deposition, all samples were caped by several nanometers thick Pt layer.

5.1.2 Atomic force microscopy
In order to obtain surface roughness of the CFGG samples, a series of atomic
force microscopy (AFM) and topography measurements was performed [64]. For
samples deposited at temperatures around 650 oC, the surface creates a labyrinth-
like structure, while the estimated roughness is approximately 15 nm.
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Number Deposition temperature [oC] Thickness [nm]
68 1050 83
69 1050 Unknown
70 1050 33
56 950 67
57 950 52
58 950 24
59 850 62
60 850 34
61 850 24
62 750 55
72 750 71
63 750 41
64 750 23
73 750 21
65 650 53
66 650 33
71 650 20

Table 5.1: Parameters of the CFGG sample set (evaluated by Vilanova [64])

However, when increasing the deposition temperature to 750 oC, CFGG starts
to form columns separated by cave-like cavities (see figure 5.1a). These cavities
begin to fall down to the MgO substrate for temperatures above 950 oC.

The height of the columns is determined not only by the deposition temper-
ature of the samples, but also by their thickness. As it is shown in figure 5.1b,
the roughness of the samples increases with the CFGG layer thickness.

The creation of the column-like surface in CFGG thin films deposited at high
temperatures was also reported by Li et. al. [51]. Using AFM, Li investigated
film stacks of annealed CFGG-Ag-CFGG deposited on Cr-Ag buffer layers grown
on a (001) MgO substrate. It was found that for these samples, the cracks begin
to form at the annealing temperature of 650o C.

5.1.3 X-ray diffraction
In order to study the structural disorder of the compounds, X-ray diffractometry
(XRD) measurements were performed by Cejpek and Vilanova [64]. As it has
been mentioned in the previous chapter, the order-disorder phenomenon is hard
to detect unambiguously by XRD in the case of some Heusler compounds.

The DO3 disorder in CFGG is the random exchange of Co and Fe atoms in an
L21 Heusler lattice. These atoms, however, share the same form factor. Hence,
both orderings provide a non-vanishing (111) peak in the XRD spectrum.

The intensity of the (111) diffraction peak is, however, lowered by the presence
of B2 disorder. Therefore, by measuring the height of the (111) diffraction peak
we are able to determine the change of the amount of the B2 disorder in the
CFGG compounds.

The amount of A2 disorder can be estimated from the height of the (200)
peak, which vanishes for a perfectly A2-disordered compound. In addition, the
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(a) Left: sample no. 68 (Td=1050o C, 80 nm thick). Right: sample no. 62
(Td=750o C, 53 nm thick).

(b) Left: sample no. 56 (Td=950o C, 66 nm thick). Right: sample no. 58
(Td=950o C, 24 nm thick).

Figure 5.1: Comparison of AFM results for CFGG [64]. a) Samples varying by
temperature, b) samples varying by thickness.
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(111) peak also lowers by the presence of the A2 phase.
In summary, by measuring the ratio of the peak intensities I111 and I200, one

can determine the change in the ratio of L21, B2 and A2 disorders present in the
CFGG samples. The results are, however, influenced by the DO3 disorder as it
also contributes to I111.

Figure 5.2: Results of XRD measurements performed by Petr Cejpek. The x-axis
represents the deposition temperature, y-axis the thickness of each sample. On
the z-axis there is the ratio of I111 and I400 which represents the content of the L21
and DO3 phases present in the samples divided by the content of the B2 phase.

Using the information given above, Vilanova [64] has found that the ratio
of I111 and I200 gradually rises with the deposition temperature and reaches a
maximum at 650o C. Ab initio calculations show that the DO3 has a relatively
high formation energy. According to Vilanova, it becomes considerable at tem-
peratures higher than 600o C. Therefore, XRD measurements will not provide
the precise amount of the L21 phase present in the CFGG compounds for the
samples investigated in this work.

In figure 5.2 we present results of XRD scans obtained by P. Cejpek. As
we can see, the overall amount of L21 and DO3 phases rises with the deposition
temperature at the expense of the B2 disorder.

From the XRD results it can also be seen that the amount of L21 and DO3
phases is slightly lower for thinner samples. However, an opposite trend has
been observed in [64] for samples deposited at temperatures between 490 oC and
710 oC. In figure 5.3 we see a gradual decline of this ratio for lower deposition
temperatures and thicker samples.

Figures 5.2 and 5.3 give a partial image of the creation of structural disorder in
CFGG thin film samples varying by both deposition temperature and thickness.
When rising the deposition temperature from 450o C, the amount of the L21
phase increases, which manifests itself in the increase of the I111 peak. It has
been shown by Li et. al. [51] that this is at the expense of the A2 phase, as the
amount of B2 disorder remains almost constant at this temperature range. This
confirms the well-known fact that the A2 disorder can be suppressed by this kind
of temperature treatment.
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Figure 5.3: Results of XRD measurements performed by Enrique Vilanova [64].
The x-axis represents sample thickness and the y-axis the amount of the L21 and
DO3 phases present in the samples divided by the amount of the B2 phase.

From the figures above we can see that the I111/I200 ratio lowers with the
thickness of the samples deposited at the temperature range between 490 and
710 oC. Above 650 oC the possibility of the creation of the DO3 disorder may
occur. At this point, it cannot be unambiguously distinguished from the XRD
spectra, whether the rise of the I111/I200 ratio is caused by L21 or DO3. A series
of optical and magneto-optical measurements was therefore conducted in order
to investigate CFGG thin films deposited at this temperature range.

Figure 5.4: An example of the Ψ (red lines) and ∆ (green lines) spectra measured
in reflection mode at the angles of incidence (AoI) of 60o and 65o. The results
are shown for the sample number 60 (Td=850 oC, 34 nm thick).
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5.1.4 Spectroscopic ellipsometry
As it was explained in the previous part, the XRD results cannot be unam-
biguously interpreted. In order to determine the exact amount of the L21 phase
present in the samples, we examined the electron structure of the materials by the
means of spectroscopic ellipsometry. This technique, together with the particular
method and equipment used in this work, is described in section 4.1.

Before the measurements, the samples were cleaned using high-purity ethanol
for UV spectroscopy. The spectra of Ψ and ∆ were measured for each of the
CFGG samples. These spectra were measured at three different angles of in-
cidence, 55o, 60o and 65o in the photon energy range from 1.24 to 6.5 eV. An
example of the Ψ and ∆ spectra is shown at 5.4.

As explained in section 4.1, the most important part of the spectroscopic
ellipsometry routine is the theoretical fitting of the data that were obtained ex-
perimentally. Our model describes the samples as a thin layer of CFGG on an
MgO substrate. Above the CFGG compound there is another layer, described
by the effective medium approximation1 (EMA). This layer contains a mixture
of air, Pt and CFGG and represents the surface roughness of the samples.

The thicknesses together with the optical properties were fitted via the least
square method. The starting points of these fits are the corresponding thicknesses
measured by XRR. The ratio of the constituents in the EMA layer was fitted as
well.

Figure 5.5: An example of the spectral dependence of ε1. The results are shown
for the sample number 61 (Td=850 oC, 24 nm thick).

An example of the spectrum of the diagonal part of the permittivity tensor (its
imaginary part) can be found in figure 5.5. In the NIR part of the spectrum the
optical response begins to rise in a Drude-like manner (see section 1.2). In figure
3.1, we can see a non-zero DOS for the majority states around the Fermi energy.
These states describe free electrons that behave as in metal, hence contributing
to the permittivity spectrum in a way that can be described by the Drude model.

Between approximately 1.5 and 2.5 eV we can see two peaks. These correspond
to the distance between the states on both sides of the gap in the minority-spin

1Bruggeman model.
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DOS (see again figure 3.1). The minority-spin electrons around the Fermi energy
behave as if they were in a semi-conducting medium, their contribution to the
optical response can therefore be characterized by the Lorentz model.

For each CFGG sample, we have measured the Ψ and ∆ spectra and calculated
the spectral dependence of both real and imaginary parts of ε1 using the model
described above.

The resulting spectra of both real and imaginary part of permittivity are
displayed in figures 5.6 and 5.7.

Figure 5.6: The spectral dependence of the real part of ε1 of the CFGG samples
56 through 71. The legend contains the number of the sample, its deposition
temperature and thickness calculated by theoretical modeling of the optical re-
sponse.

Since the electronic structure of materials is directly connected to the imagi-
nary part of permittivity (see section 1.2), the real part was further left out from
our considerations and only the imaginary part will be discussed.

We will now focus our attention on the Lorentzian transitions mentioned
above. From figure 5.7 we can see that the lower-energy peak slightly shifts
to higher energies as the deposition temperature rises.

This dependency is more evident in figure 5.8. We have extracted the energy
of the Lorentzian transition from the ellipsometric data and plotted their depen-
dence on the thickness and deposition temperature of the respective samples.

We can clearly see that the electron transition moves to higher energies for
samples with higher deposition temperatures. For samples with thickness around
23 nm this change is approximately 0.5 eV, that is almost 30% of the low-
temperature value. We can also see a slight decrease of the transition energy
for thicker samples.

5.1.5 Magneto-optical spectroscopy
As it has been mentioned in section 2.2, the disorder in Heusler compounds has a
substantial impact on their electric, magnetic and optical properties. The disor-
der generally changes the magnetic moment of the Heusler structure and should,
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Figure 5.7: The spectral dependence of the imaginary part of ε1 of the CFGG
samples 56 through 71. The legend contains the number of the sample, its depo-
sition temperature and thickness calculated from the optical response. The red
circles represent the maxima of the lower-energy Lorentzian peaks.

Figure 5.8: The energy of the low-energy Lorentzian peak as a function of the
deposition temperature and thickness of the CFGG samples. The red circles
represent the width of the energy gap obtained from the analysis of the Im{ε1}.
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therefore influence its magneto-optical response. In addition, the ellipsometric re-
sults have shown a shift in the electronic transition energies for high-temperature
samples. This should also affect the measured MO response via linear MO tensor
(see section 1.3).

We have measured the spectrally dependent Kerr rotation θK and Kerr elliptic-
ity ϵK for each CFGG sample. The spectra were measured in polar configuration
using the method presented in 4.2. In figures 5.9 and 5.10 we present examples
of the Kerr rotation and Kerr ellipticity spectra (sample 64).

Figure 5.9: The Kerr rotation spectrum for the sample number 64 (Td=750 oC,
thickness 23 nm).

Figure 5.10: The Kerr ellipticity spectrum for the sample number 64 (Td=750
oC, thickness 23 nm).

Let us now focus our attention on the Kerr rotation spectrum. We can see a
large (over 0.4 degrees) peak rising near 1.5 eV. The Kerr rotation slowly drops
for higher energies, becoming almost negligible in the UV region.

The Kerr ellipticity, on the other hand, remains almost constant over the
visible and UV regions and exhibits a rise in amplitude in the NIR part of the
spectrum.
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The measured Kerr spectra for each CFGG sample are presented in figures
5.11 and 5.12. We can see that all of the samples exhibit a similar MO response,
sharing a rotation peak in the NIR region.

In order to analyze the MO response further, we have, in the same manner
as with the ellipsometry results, investigated the NIR peak in the Kerr rotation
spectra. The respective maxima of Kerr rotation are denoted by a red circle in
figure 5.11.

Figure 5.11: The Kerr rotation spectra for all CFGG samples. The legend con-
tains the deposition temperature and thickness for each sample. The maximum
Kerr rotation for each sample is denoted by a red circle.

Figure 5.12: The Kerr ellipticity spectra for all CFGG samples. The legend
contains the deposition temperature and thickness for each sample.

To illustrate the behavior of the peak, we present the maximum of the Kerr
rotation with respect to the thickness and deposition temperature of the sample
in figure 5.13.

The amplitude of the peak decreases for high deposition temperatures and
thick samples. The maximal Kerr rotation decreases roughly by 0.13 degrees for
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Figure 5.13: The maximum Kerr rotation as a function of thickness and temper-
ature of the CFGG samples.

the samples with the highest deposition temperature and highest thickness.
Finally, we have combined the spectra obtained by spectroscopic ellipsometry

with the Kerr spectra presented in this section and calculated the off-diagonal
part of permittivity for each sample. In figures 5.14 and 5.15, we present the
calculated spectra of the real and imaginary parts respectively.

Figure 5.14: The spectral dependence of the real part of ε2 of the CFGG samples
56 through 71. The legend contains the number of the sample, its deposition
temperature and thickness calculated from the optical response.

In figure 5.15, we have marked the maxima of the MO transitions. Using
the same approach as in the previous sections, we have plotted the energy of
the MO transitions against the thicknesses and deposition temperatures of the
samples. This dependence is given in figure 5.16. Again, we can see that the
energy of this transition rises with the deposition temperature - its value for
the high-temperature samples is approximately 11% higher than that of the low-
temperature samples.
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Figure 5.15: The spectral dependence of the imaginary part of ε2 of the CFGG
samples 56 through 71. The legend contains the number of the sample, its depo-
sition temperature and thickness calculated from the optical response. The red
circles represent the maximal values of the spectra.

Figure 5.16: The energy of the peaks as a function of the deposition temperature
and thickness of the CFGG samples. The red circles represent the width of the
energy gap obtained from the analysis of the Im{ε2}.
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5.1.6 Magneto-optical magnetometry
Before we proceed to the explanation of the above-mentioned results based on
ab-initio calculations, let us first present the results obtained via the Kerr mag-
netometer described in section 4.3.

The magnetometry of CFGG samples was measured in a polar geometry. The
hysteresis loops are therefore considered for out-of-plane magnetization. An in-
plane magnetization setup has been built as well and is currently being tuned
for better precision. Following this work, in-plane magnetization curves will be
measured on CFGG as well.

In figure 5.17 we show the Kerr hysteresis loops measured for CFGG samples.
These loops were measured with the same electromagnet as we have used for
the MO spectroscopy measurements. The magnet produces magnetic fields up to
approximately 1.2 T. As we can see from figure 5.17, the samples did not achieve
the full magnetic saturation in this field.

Figure 5.17: The Kerr loops of the CFGG compounds. The legend contains the
number of the sample, its deposition temperature and thickness calculated from
the optical response.

Vilanova et. al. has found in [41] that the saturation magnetization is unaf-
fected by the change in deposition parameters for CFGG samples deposited at
the temperature range from 450 oC to 750 oC. Although we have not reached
saturation for our set of samples, we can see from the results presented in figure
5.17 that there is no apparent dependence either.

5.1.7 Ab initio calculations
To confirm the data interpretation provided above, a series of ab initio calcula-
tions was performed by Dr. Kudrnovsky at the Czech Academy of Sciences. The
calculations were made in order to find the DOS of CFGG with various structural
disorder.

In figure 5.18 the DOS for a perfectly ordered L21 CFGG can be found2. Using
2Calculated via generalized gradient approximations.
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this result we can now interpret the results of the spectroscopic ellipsometry more
thoroughly.

Figure 5.18: Spin-resolved density of states for a perfectly L21-ordered CFGG
Heusler compound (exchange potential described by the generalized gradient ap-
proximation). Denoted by the blue line is the majority-spin DOS and by the
red line the minority-spin DOS. The full line represents the zero line, while the
dashed line the position of the Fermi energy. The black and green arrows denote
the electron transitions visible in the spectra of diagonal permittivity.

As we can see from figure 5.18, there are two main transitions possible in the
minority spin channel (denoted by black and green arrows). The lower energy
transition (black arrow) corresponds to the lower-energy Lorentzian peak studied
in section 5.1.4.

In the majority spin channel we can see the absence of the gap around the
Fermi energy. Obviously, the spin-up electrons behave as conduction electrons at
this part of the energy spectrum, hence contributing in a Drude-like behavior to
the optical response of the material. This explains the rise of the permittivity
shown in figure 5.7.

The densities of states for a perfectly B2-disordered and a perfectly DO3-
disordered have been calculated as well. In figure 5.19 we can see that the B2
structure preserves the minority-spin band gap, while DO3 disorder completely
suppresses it.

Finally, the magnetic moment of L21, B2 and DO3 has been calculated and is
listed in table 5.2.

Structure m [µB per f.u.]
L21 5.507
B2 5.498
DO3 5.536

Table 5.2: The calculated magnetic moment m for various types of disorder in
CFGG.

We can see, that the DO3 has been predicted to induce the highest moment
of all the phases present in the sample set. The B2-type disorder seems to lower
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Figure 5.19: Spin-resolved density of states for a perfectly B2-disordered (left) and
a perfectly DO3-disordered (right) CFGG Heusler compound (GGA model). De-
noted by the blue line is the majority-spin DOS and by the red line the minority-
spin DOS. The full line represents the zero line, while the dashed line the position
of the Fermi energy.

the magnetic moment of the compound, as well as L21. These results will become
substantially important in the next section.

5.1.8 Summary of results
Let us now summarize and interpret the results obtained by all of the above-
mentioned methods. The XRD results revealed that for thin CFGG samples
deposited between 650 and 950 oC, the amount of the B2 phase lowers with the
increasing deposition temperature. As the B2-disorder lowers, the amount of L21
and DO3 phases rises. The XRD cannot, however distinguish between L21 and
DO3.

The spectroscopic ellipsometry has shown that one of the electron transitions
shifts to higher energies as the deposition temperature rises. This can be ex-
plained with the help of the calculated DOS for B2 and L21 phases (see figure
5.20). As we can see, a transition from a completely B2-disordered compound to
an L21-ordered one would widen the energy gap (denoted in the figure by black
arrows).

According to the results of spectroscopic ellipsometry, the gap widens for
samples deposited at higher temperatures. This is in accordance with the XRD
results that show a decrease in the B2 phase present in the samples. This would
also indicate that the amount of the L21 phase is actually increasing, rather than
the DO3 phase - a high amount of DO3 would suppress the band gap.

From the ab initio calculations it follows that the magnetic moment of L21, B2
and DO3 is approximately equal. Although, as shown by Kerr magnetometry, we
have not achieved full saturation for the samples, it is reasonable to say that the
magnetization of all of the phases will be the same. Despite this, the maximum
Kerr rotation measured for each sample gradually lowers with the deposition

63



Figure 5.20: Comparison of the calculated minority-spin DOS for B2 and L21
phases of CFGG. Denoted by the blue line is the minority-spin DOS for a perfectly
L21-ordered sample, while the red line represents the minority-spin DOS of a
perfectly B2-disordered one. The black arrows denote the transition visible in
the spectra of diagonal permittivity in the form of a Lorentzian peak.

temperature and sample thickness. This lowering may therefore be connected
only to the changes in the linear MO tensor caused by the changes of the band
structure of the samples. These changes are clearly visible in figure 5.16 were we
see the widening of the MO gap with rising deposition temperature.

5.2 Fe2MnGa

5.2.1 Sample description
Bulk samples of Fe-Mn-Ga (FMG) compounds were prepared by arc-melting in
an Ar atmosphere using a Bühler MAM-1 furnace at the Institute of Physics,
Czech Academy of Science (Dr. O. Heczko). The samples were annealed at 1000
oC in order to achieve good homogenization and subsequently at 800 oC to obtain
L21 ordering.

Prior to the measurements, the samples were mechanically and electrolytically
polished. The electrolytic polishing was performed using a 20% solution of nitric
acid and methanol. This led to minimal roughness of the samples, which is
required for optical and MO measurements.

In order to examine the influence of substituting Fe for the original nickel at
the X-position, FMG samples with various Fe composition have been prepared.
Hence, a unique sample set was made with the content of Fe varying between
1.46 and 1.95. Table 5.3 contains the exact stoichiometry of the FMG samples.

To compare the results obtained for FMG to the magnetic shape memory
compound, Ni-Mn-Ga (NMG), a bulk sample of NMG has been produced by the
group of Dr. Heczko as well. This reference sample was a perfectly stoichiometric
Ni2MnGa compound in an austenite phase. The sample has been annealed to
achieve L21 ordering.
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Number Fe Mn Ga
2 1.87 0.97 1.17
4 1.95 0.97 1.08
6 1.46 0.94 1.60

Table 5.3: The stoichiometry of the FMG samples.

5.2.2 Spectroscopic ellipsometry
The varying content of Fe is expected to change the electron structure of the
studied samples enormously. In order to investigate these changes and their
dependence on the content of Fe in these compounds, we have performed a series
of ellipsometric measurements. As it has been demonstrated in the previous
section, these measurements and their evaluation can be used to probe the band
structure of the material. For details concerning this experimental technique (well
as the equipment used), see section 4.1.

Figure 5.21: An example of the Ψ and ∆ spectrum of a Fe-Mn-Ga compound.
These are the results for sample 2, Fe1.87MnGa1.17, at an angle of incidence of
60o.

Before each measurement, the samples had been cleaned using UV spec-
troscopy grade high-purity ethanol. Parameters Ψ and ∆ have been measured
in the reflective mode and the angles of incidence were 55o, 60o and 65o. The
spectral range of the incident light was between 0.8 to 6.5 eV. An example of the
Ψ and ∆ spectra is shown in figure 5.21 for sample 2.

The samples were modeled as a bulk FMG compound with a layer of Mn2O3
on top. The top layer has been added in order to account for the oxidation of
the samples. The real and imaginary parts of the diagonal permittivity were
calculated from the measured spectra of Ψ and ∆ with the help of the Lorentz
and Drude models.

In figures 5.22 and 5.23 we present the spectral dependence of the real and
imaginary part of permittivity for each sample.

As we can see, the optical response of FMG rises in the NIR part of the
spectrum in a Drude-like manner and gradually lowers towards higher energies. In
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Figure 5.22: The spectral dependence of the real part of permittivity of FMG.

Figure 5.23: The spectral dependence of the imaginary part of permittivity of
FMG.
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the UV region it becomes almost negligible. There is also a Lorentzian transition
at 4.5 eV. This peak is not clearly visible due to its wide bandwidth and low
amplitude.

The amplitude of ε1 is the highest for the sample number 4, which contains
the highest amount of Fe across all of the FMG samples. The amplitude of ε1
lowers for number 6, which contains the lowest amount of Fe and the it becomes
the lowest for the sample number 2.

The spectral dependence of permittivity is obviously driven by free electrons.
The dominant part of the spectrum is the Drude term, which indicates that the
electrons behave as free carriers. This result can be explained by the presence of
Fe in the samples, which increases the concentration to the concentration of free
electrons.

5.2.3 Magneto-optical spectroscopy
In order to investigate the magneto-optical properties of the FMG compounds
with varying Fe content, we have conducted a series of MO spectroscopy mea-
surements in polar configuration. As in the previous section, these measurements
should provide useful information about the electronic transitions in the samples.

Figure 5.24: The spectral dependence of the the polar Kerr rotation of the FMG
samples.

The investigated spectrum ranges from 1.5 to 4.5 eV. The samples were located
in a magnetic field of approximately 1.14 T. In figures 5.24 and 5.25 we present
polar Kerr rotation and Kerr ellipticity spectra. We see a similar behavior as
in the ellipsometry case. The Kerr rotation rises in the NIR region a gradually
lowers towards higher energies. The Kerr ellipticity, on the other hand, lowers in
the NIR region and is the highest in the UV part of the spectrum. No spectral
structures in the MO spectra can be seen.

For comparison, we present the Kerr rotation spectrum for the NMG sample
(see figure 5.26). We can see multiple peaks at 1.5, 2.5 and 3.5 eV. The maximum
response is up to 200 mdeg. The Kerr rotation changes the sign at approximately
2.8 eV.
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Figure 5.25: The spectral dependence of the the polar Kerr ellipticity of the FMG
samples.

Figure 5.26: The spectral dependence of the the polar Kerr rotation for a stoi-
chiometric NMG compound in an austenite phase.

68



The increase of Kerr rotation in the NIR region may be explained similarly
to the interpretation of the ellipsometric data. The MO response may be entirely
driven by the free electrons provided by the Fe atoms.

Unlike the NMG sample, the FMG does not exhibit any obvious spectroscopic
features in the Kerr rotation spectra. Even the peak at 3.5 eV, that is typical
for Heusler compounds with Mn as the Y element, is absent. It is possible that
substituting Fe for Ni suppresses the Mn-driven electronic transitions entirely.

Figure 5.27: The Kerr loops measured for the Fe-Mn-Ga samples. Left: number
2 (Fe1.87MnGa1.17), right: number 6 (Fe1.46MnGa1.60).

5.2.4 Magneto-optical magnetometry
Using the method described in section 4.3, we have measured the Kerr hysteresis
loops for samples 2 and 6. As it has been found in the previous section, sample
4 does not exhibit any MO response and therefore the Kerr loop could not be
measured.

In figure 5.27 we present the polar Kerr loops measured for fields up to 1.2 T.
Both samples are saturated at approximately 1.15 T. The coercive field is zero in
both cases.

5.2.5 Summary of results
The MO properties of FMG differ noticeably from the original NMG Heusler com-
pound. This is mostly due to the influence of Fe substitution of Ni on the electron
structure. The presence of Fe in the compound causes higher concentration of
free carriers. These carriers are responsible for the enhancement of both the op-
tical and MO response in the NIR region, suggesting a full metallic behavior of
the samples compared to half-metallic behavior of the NMG compound.
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However, the amplitude of MOKE vanishes for higher energies and at 4.5
eV the Kerr rotation of FMG becomes almost negligible. In FMG there is no
significant contribution of the Mn transitions to the MOKE spectra. The three
MO peaks observed for NMG are absent in the FMG spectra, suggesting the
suppression of the Mn involved transitions due to Fe substitution.

The sample with the highest content of Fe, Fe1.95MnGa1.08, has been found
to posses no magnetic moment at all. Hence, its MO response is zero for all
of the investigated spectral regions. For reasons given in section 3.2, this may
suggest that this sample has antiferromagnetic ordering. It does, however posses
the highest optical response in the NIR region.

The saturation magnetization is approximately equal for samples number 2
and 6, that is 1.15 T. Both samples exhibit ferromagnetic behavior with zero
coercive field.
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Conclusion
The aim of this thesis was to employ the optical and magneto-optical (MO) meth-
ods in the research of Heusler compounds. We have systematically studied the
influence of the structural and composition changes of Heuslers on their electronic
structure by the means of spectroscopic ellipsometry, MO spectroscopy and MO
Kerr magnetometry. In addition to our experimental research, the ab initio cal-
culations, as well as X-ray diffraction and atomic force microscopy measurements
were included.

In the first part of the thesis, we have provided the theoretical background nec-
essary for the successful experimental investigation of Heusler compounds as well
as a rigorous interpretation of the obtained results. This part includes basic op-
tical and MO theoretical approaches, characterization of the studied compounds
and the description of the experimental techniques we have used.

In the second part, we have presented the results of our research. Two par-
ticular compounds have been studied - CoFeGa0.5Ge0.5 (CFGG) and Fe2MnGa
(FMG). In the case of the first compound, we have studied the manifestation of
structural disorder in both optical and MO properties of the material. As for the
second compound, we have investigated the effect of composition variation on its
physical properties.

According to the results of atomic force microscopy, CFGG crystallizes in a
column-like structure when the deposition temperature rises above 650 oC. The
XRD measurements revealed the decline of the amount of the B2 disorder in the
samples deposited above this temperature. The combined results of spectroscopic
ellipsometry and MO spectroscopy show that this decline manifests itself through
the shift of one of the peaks towards higher energies. Ab initio calculations have
confirmed that this is indeed caused by the lower amount of B2 disorder in the
material, as this leads to changes in the minority-spin gap. The ab initio analysis
has further shown that the DO3 disorder completely suppresses this gap. Since
this has not been observed in the ellipsometric and MO spectra, we conclude
that this type of disorder is not present in a significant amount. In summary,
the CFGG samples deposited at higher temperatures contain a higher amount
of the L21 ordering, which grown at the expense of the B2 phase. This change
in structural order is detectable by both optical and MO methods. In addition,
the out-of-plane hysteresis loops were measured and do not show any significant
differences between the samples. Using the Kerr magnetometry, we have found
that the saturation magnetization of all samples is above 1.2 T.

All FMG samples exhibited a large optical and MO response in the near in-
frared region. In this region, the amplitude of the diagonal permittivity rises in a
Drude-like manner. This is probably caused by the free electrons introduced by
the Fe atoms. The values of Kerr rotation rise for most samples as well, with the
exception of the sample containing the highest amount of Fe. This composition
has been found to completely suppress the magnetization of the material and pro-
duce no MOKE at all. Comparing our results with the ones obtained for a similar
compound, Ni2MnGa (NMG), we have found that the presence of Fe suppresses
the transitions visible in the NMG spectra. The saturation magnetization for the
remaining samples is approximately 1.15 T.
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