Svoluji k zapůjčení své diplomové práce ke studijním účelům a prosím, aby byla vedena přesná evidence vypůjčovatelů. Převzaté údaje je vypůjčovatel povinen řádně ocitovat.

Univerzita Karlova Přírodovědecká fakulta

Studijní program: Biologie Studijní obor: Genetika, molekulární biologie a virologie

Bc. Martina Pavlíčková

Metabolismus fosfolipidů při tvorbě strukturovaných kolonií kvasinek

Phospholipid metabolism in the formation of structured yeast

colonies

Diplomová práce

Vedoucí závěrečné práce: RNDr. Michaela Schierová, Ph.D.

Praha, 2017

Prohlášení:

Prohlašuji, že jsem závěrečnou práci zpracovala samostatně a že jsem uvedla všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu.

V Praze, 26. 04. 2017

Podpis

Výzkum vedoucí k těmto výsledkům byl financován z Norského finančního mechanismu 2009-2014 projekt č. 7F14083 ve smlouvě č. MSMT-28477/2014. Tato práce byla vypracována také za podpory grantu GAČR 13-08605S "Biofilmové kolonie divokých kvasinek: Vývoj, obranné strategie a regulační dráhy". Dále byla práce podpořena Ministerstvem školství, mládeže a tělovýchovy České republiky v rámci Národního programu udržitelnosti II (Projekt BIOCEV-FAR) LQ1604 a projektem "BIOCEV" (CZ.1.05/1.1.00/02.0109).

Poděkování

Velmi děkuji RNDr. Michaele Schierové, Ph.D. za vedení mé práce. Vážím si její podpory v podobě trpělivosti, ochoty a rychlé odezvy, která mnohdy sahala nad rámec jejích povinností.

Dále bych chtěla poděkovat všem členům Laboratoře biologie kvasinkových kolonií za rady a příjemné pracovní prostředí.

Děkuji také svým rodičům, kteří mi umožnili studium a podporovali mě ve všech ohledech. Poděkování patří i mému příteli za trpělivost, pochopení a duševní oporu.

Abstrakt

Kvasinky ve svém přirozeném prostředí tvoří strukturované kolonie. To jim umožňuje lépe se přizpůsobit okolním podmínkám, ale také snáze odolávat různým typům inhibitorů kvasinkové infekce. S morfologií kolonií úzce souvisí metabolismus fosfolipidů. Důležitým genem metabolismu fosfolipidů je *INO1*, který kóduje inositol-3-fosfátsyntázu. Exprese genu *INO1* je regulovaná negativním transkripčním faktorem Opi1p, který ovlivňuje i řadu dalších genů pro enzymy metabolismu fosfolipidů, je nezbytný i pro expresi genu *FLO11*, jehož produkt Flo11p je esenciální pro tvorbu strukturované kolonie. Hlavním cílem mé práce bylo pozorovat souvislosti mezi morfologií kolonií přírodního kmene *Saccharomyces cerevisiae* a metabolismem fosfolipidů. Zjistila jsem, že exprese genu *INO1* i morfologie kolonií se mění vlivem zdroje uhlíku i působením selenanu či inhibitoru β -oxidace mastných kyselin 2-bromooktanové kyseliny. I když gen *INO1* pro buňku není esenciální, jeho delece nebo nadměrná exprese způsobuje změny v metabolismu fosfolipidů a morfologii kolonie. Vlivem selenanu a 2-bromooktanové kyseliny se také mění exprese genu *FLO11*, což se odráží na strukturovanosti kolonie. Kyselina 2bromooktanová je proto perspektivním agens proti kvasinkovým infekcím.

Klíčová slova: strukturované kolonie, northern analýza, imunodetekce, 2-bromooktanová kyselina, *INO1*, *OPI1*, *FLO11*

Abstract

Yeasts in their natural environment form structured colonies. This allows them to better adapt to environmental conditions, but also to more easily resist various types of yeast infection inhibitors. The metabolism of phospholipids is closely related to the morphology of colonies. An important gene involved in phospholipid metabolism is *INO1*, which encodes inositol-3-phosphate synthase. Expression of the *INO1* gene is regulated by the Opi1p negative transcription factor, which also affects a number of other genes for phospholipid metabolism enzymes, is also necessary for the expression of the *FLO11* gene, encoding Flo11p, which is essential to the formation of a structured colony. The main aim of my work was to investigate the correlation between colony morphology of a natural strain of *Saccharomyces cerevisiae* and phospholipid metabolism. I have found that changes in *INO1* gene expression and colony morphology are influenced by carbon source, selenate activity and the inhibitor of β -oxidation, 2-bromooctanoic acid. Although the *INO1* gene is not essential for cell viability, its deletion or overexpression causes changes in phospholipid metabolism and colony morphology. Selenate and 2-bromooctanoic acid also alter expression of the *FLO11* gene, which is reflected in colony structure. Thus, 2-bromooctanoic acid is a promising agent against yeast infections.

Keywords: structured colonies, northern analysis, immunodetection, 2-bromooctanoic acid, *INO1*, *OPI1*, *FLO11*

Obsah

A	bstrał	<t< th=""><th></th><th> i</th></t<>		i
A	bstrac	ct		ii
0	bsah			iii
Se	eznam	n po	užitých zkratek	v
1	Úvo	d		9
2	Přel	hled	literatury	
	2.1	Kva	asinkové kolonie	
	2.2	Me	zibuněčný kontakt a kontakt buněk s okolním prostředím	
	2.2	2.1	Pseudohyfální růst	
	2.2	2.2	Flo proteiny	
	2.2	2.3	Protein Flo11p a jeho význam pro kvasinkovou kolonii	
	2.2	2.4	Adheze k povrchu a invazivní růst jako virulenční faktor	
	2.3	Str	ukturní gen <i>INO1</i> a enzym Ino1p	
	2.3	3.1	Struktura proteinu Ino1p	
	2.3	3.2	Regulace exprese genu INO1	
	2.3	3.3	Význam inositolu pro buňku	
	2.4	Inh	ibitory metabolismu fosfolipidů	
	2.5	Vli	v Selenu na kvasinky a tvorbu kolonií	
3	Cíle	prá	ce	
4	Mat	eriá	l a metody	
	4.1	Ма	teriál	
	4.1	l.1	Použitý mikroorganizmus	
	4.1	1.2	Použité kvasinkové kmeny	
	4.1	1.3	Použité plazmidy	
	4.1	1.4	Použité primery	
	4.1	1.5	Chemikálie a enzymy	
	4.1	1.6	Antibiotika	
	4.1	L.7	Ostatní materiál	
	4.1	1.8	Média pro kultivaci kvasinek	
	4.1	1.9	Standardy molekulových hmotností	
	4.2	Me	tody	
	4.2	2.1	Sterilizace	
	4.2	2.2	Práce s DNA	
	4.2	2.3	Práce s kvasinkami	
	4.2	2.4	Charakterizace připravených kmenů	
	4.2	2.5	Western blot a imunodetekce	
	4.2	2.6	Northern blot a hybridizace	
	4.2	2.7	Statistické metody	53

	4.2	2.8	Software	53
5	Výsl	ledky	7	55
	5.1	Příp	rava kmenů	55
pro	5.2 odukci	Vliv i Ino1	zdroje uhlíku, selenanu a kys. 2-bromooktanové na morfologii lp-GFP	kolonií a 60
	5.2	2.1	Kmeny PORT, Ino1p-GFP, $opi1\Delta$ a $opi1\Delta$, Ino1p-GFP	60
	5.2	2.2	Morfologie kolonií kmenů TEF-INO1 a $ino1\Delta$	68
	5.3	Nort	thern analýza	
	5.3	8.1	Biomasa	
	5.3	3.2	Detekované geny	79
	5.3	3.3	Výsledky northern analýzy	
6	Disk	kuze.		
	6.1	Příp	rava kmenů	
	6.2	Vliv	zdroje uhlíku na morfologii kolonií	85
	6.3	Vliv	zdroje uhlíku na produkci Ino1p	
	6.4	Vliv	2-bromooktanové kys. a selenanu na morfologii kolonií kmene PORT	
ino	6.5 1∆	Vliv 88	2-bromooktanové kys. a selenanu na morfologii kolonií kmenů TE	F-INO1 a
	6.6	Vliv	2-bromooktanové kys. a selenanu na produkci Ino1p	
	6.7	Nort	thern analýza	
	6.8	Fakt	cory ovlivňující výsledky	
7	Sou	hrn		
8	Pou	žitá l	iteratura	

Seznam použitých zkratek

Δ	označuje kmen s delecí daného genu	gene deletion
AGA1	gen kódující podjednotku a-agglutininu Aga1p	gene encoding subunit of a-agglutinin
АК	aminokyselina	amino acid
ATP	adenosintrifosfát	adenosine triphosphate
BOA	2-bromooktanová kys.	2-bromooctanoic acid
bp	páry bazí	base pair
С	komplementární vlákno DNA	complementary strand of DNA
cAMP	cyklický adenosinmonofosfát	cyclic adenosine monophosphate
CreA	CreA rekombináza (bakteriofág P1)	CreA recombinase
CWI-MAPK	proteinkinázová dráha integrity buněčné stěny aktivovaná mitogenem	cell wall integrity mitogen-activated protein kinase pathway
č.	číslo	number
Da	dalton - atomová hmotnostní jednotka	atomic mass unit
DBP5	gen kódující RNA helikázu Dbp5p	gene encoding RNA helicase
demi H2O	demineralizovaná voda	demineralized water
dest. H ₂ O	destilovaná voda	distilled water
DNA	deoxyribonukleová kyselina	deoxyribonucleic acid
DNA zip code	sekvence umožňující přemístění genu v rámci jádra	sequences required for localization of gene to the nuclear periphery
dsDNA	dvouvláknová DNA	double-stranded DNA
EAP1	gen kódující adhezin (Candida albicans)	gene encoding adhesin (Candida albicans)
ECM	extracelulární matrix	extracellular matrix
Edi	edicin	edicin
ER	endoplazmatické retikulum	endoplasmic reticulum
et al.	<i>et alii</i> = a kolektiv	and others
FAS2	gen kódující podjednotku enzymu katalyzujícího syntézu mastných kyselin	gene encoding fatty acid synthetase
FIG2	gen kódující adhezin Fig2p	gene encoding adhesin
Flo proteiny	souhrnné označení flokulinů	flocculins
FL01	gen kódující flokulin Flo1p	gene encoding flocculin
FL010	gen kódující flokulin Flo10p	gene encoding flocculin
FLO11 (= MUC1)	gen kódující flokulin Flo11p	gene encoding flocculin
FL05	gen kódující flokulin Flo5p	gene encoding flocculin
FL08	gen kódující transkripční faktor Flo8p	gene encoding transcriptional factor
FLO9	gen kódující flokulin Flo9p	gene encoding flocculin
FRE element	vazebné místo pro Ste12p a Tec1p	filamentation response element
G418	geneticin	geneticin
G6P	glukóza-6-fosfát	glucose 6-phosphate
GAL1	promotor genu <i>GAL1,</i> indukovatelný přítomností galaktózy	promotor of GAL1 gene
GFP	zelený fluorescenční protein	green fluorescent protein
GLE1	gen kódující protein Gle1p pro export mRNA z jádra	gene encoding nucleoporin

GM	glycerolové médium	glycerol medium
GMi	glycerolové médium s inhibitorem	glycerol medium with inhibitor
GM-Se	glycerolové médium se selenanem	glycerol medium with selenate
GM-Sei	glycerolové médium se selenanem a inhibitorem	glycerol medium with selenate and inhibitor
GPI kotva	glykosylfosfatidylinositol kovalentně vázající protein k membráně	glycosylphosphatidylinositol anchor
GRS	DNA zip code sekvence	gene recruitment sequence
GS-Se-SG	selenodiglutathion	selenodiglutathione
HAC1	gen kódující transkripční faktor Hac1p dráhy UPR	gene encoding transcription factor
hph	gen rezistence k hygromycinu B	hygromycin B resistance gene
Hyg	hygromycin B	hygromycin B
CHO2 (= PEM1)	gen kódující enzym Cho2p pro syntézu PC	gene encoding PE methyltransferase
IAA	indoloctová kyselina	indole acetic acid
ICR1	nekódující RNA	noncoding RNA
ICRE element	vazebné místo pro aktivační komplex Ino2p-Ino4p	inositol/choline responsive element
INM1	gen kódující enzym Inm1p pro syntézu inositolu	gene encoding inositol monophosphatase
INO1	gen kódující enzym Ino1p (inositol-3- fosfátsyntáza)	gene encoding inositol-3-phosphate synthase
INO2	gen kódující pozitivní transkripční faktor Ino2p	gene encoding transcriptional activator
INO4	gen kódující pozitivní transkripční faktor Ino4p	gene encoding transcriptional activator
Ins	inositol	inositol
Ins3P	inositol-3-fosfát	inositol 3-phosphate
IP ₃	inositoltrisfosfát	inositol trisphosphate
IP ₆	inositolhexakisfosfát	inositol hexakisphosphate
ITR1	gen kódující přenašeč pro inositol Itr1p	gene encoding inositol transporter
ITR2	gen kódující přenašeč pro inositol Itr2p	gene encoding inositol transporter
К	lysin	lysine
kanMX	gen rezistence ke geneticinu	geneticin resistance gene
kap.	kapitola	chapter
KHD1	gen kódující RNA vazebný protein Khd1p	gene encoding RNA binding protein
kys.	kyselina	acid
loxP	sekvence v genomu bakteriofága P1 rozeznávané rekombinázou	sequence derived from bacteriophage P1
LT	laboratorní teplota	laboratory temperature
MAPkináza	proteinkináza aktivovaná mitogenem	mitogen-activated protein kinase
MATa	párovací typ a haploidních buněk <i>S. cerevisiae</i>	mating type a
ΜΑΤα	párovací typ α haploidních buněk <i>S. cerevisiae</i>	mating type α
MEL	mannosylerythriol lipid	mannosylerythriol lipid
mCherry	červený fluorescenční protein	red fluorescent protein
МК	mastná kyselina	fatty acid
mRNA	informační ribonukleová kyselina	messenger ribonucleic acid
MRS	DNA zip code sekvence	memory recruitment sequence
NAD	nikotinamidadenindinukleotid	nicotinamide adenine dinucleotide

NAT	nourseothricin	nourseothricin
nat1	gen rezistence k nourseothricinu	nourseothricin resistance gene
ncRNA	nekódující RNA	noncoding RNA
NF-ĸB	transkripční faktor	transcriptional factor
obr.	obrázek	figure
OD	optická denzita	optical density
OPI1	gen kódující negativní transkripční faktor Opi1p	gene encoding transcriptional repressor
OPI3 (= PEM2)	gen kódující enzym Opi3p pro syntézu PC	gene encoding phospholipid methyltransferase
PA	fosfatidová kyselina	phosphatidic acid
PCR	polymerázová řetězová reakce	polymerase chain reaction
РНА	polyhydroxyalkanoát	polyhydroxyalkanoate
PHAG	Gen u <i>Pseudomonas fluorescens</i> kódující transacylázu PhaG	gene encoding transacylase (<i>Pseudomonas fluorescens</i>)
PI	fosfatidylinositol	phosphatidylinositol
PI3,5P2	fosfatidylinositol-3,5-bisfosfát	phosphatidylinositol-3,5-bisphosphate
PIS1	gen kódující enzym Pis1p pro syntézu PI	gene encoding PI synthase
РКА	proteinkináza A	protein kinase A
РКС	proteinkináza C	protein kinase C
PKC1	gen kódující Pkc1p (proteinkináza C)	gene encoding protein kinase C
PORT	přírodní diploidní kmen S. cerevisiae	diploid wild strain of S. cerevisiae
primer F	forward primer	forward primer
primer R	reverse primer	reverse primer
PřF UK	Přírodovědecká fakulta Univerzity Karlovy	Faculty of Science Charles University
PWR1	nekódující RNA	noncoding RNA
RAS2	gen kódující GTP vazebný protein Ras2p	gene encoding GTP-binding protein
RNA	ribonukleová kyselina	ribonucleic acid
ROS	volné kyslíkové radikály	reactive oxygen species
RPL3	gen kódující ribozomální protein Rpl3p	gene encoding ribosomal protein
RPS26	gen kódující ribozomální protein Rps26p	gene encoding ribosomal protein
S	serin	serine
SCS2	gen kódující protein Scs2p určující lokalizaci Opi1p	gene encoding ER transmembrane protein
SDS-PAGE	elektroforéza v polyakrylamidovém gelu v přítomnosti SDS	Polyacrylamide gel electrophoresis
SFL1	gen kódující transkripční faktor Sfl1p	gene encoding transcriptional activator and repressor
SLT2 (= MPK1)	gen kódující MAPkinázu Slt2p	gene encoding MAP kinase
STE11	gen kódující MAPkinázu Ste11p	gene encoding MAP kinase
STE12	gen kódující transkripční faktor Ste12p	gene encoding transcriptional factor
STE20	gen kódující MAPkinázu Ste20p	gene encoding MAP kinase
STE7	gen kódující MAPkinázu Ste7p	gene encoding MAP kinase
TEC1	gen kódující transkripční faktor Tec1p	gene encoding transcriptional factor
TEF	promotor translačního elongačního faktoru 1α (<i>Ashbya gossypii</i>)	promotor of translational elongation factor 1α (Ashbya gossypii)

TFIIIA	transkripční faktor	transcriptional factor
ТНО	komplex proteinů nezbytný pro transkripci repetitivních sekvencí	protein komplex required for transcription of genes with internal repeats
TPI1	gen kódující enzym triosafosfátizomerázu Tpi1p	gene encoding triose phosphate isomerase
TPK2	gen kódující katalytickou podjednotku PAK	gene encoding cAMP-dependent protein kinase catalytic subunit
UPR	reakce na nesbalené proteiny v ER	unfolded protein response
UPRE	vazebné místo pro Hac1p u genů UPR	unfolded protein response element
UV	ultrafialové záření	ultraviolet light
v/v	objem/objem	volume/volume
w/v	hmotnost/objem	weight/volume
wt	divoký kmen	wild type
YD	glukózové médium	glucose medium
YD01	glukózové médium	glucose medium
YDi	glukózové médium s inhibitorem	glucose medium with inhibitor
YD-Se	glukózové médium se selenanem	glucose medium with selenate
YD-Sei	glukózové médium se selenanem a inhibitorem	glucose medium with selenate and inhibitor
yEGFP	protein GFP optimalizovaný pro kvasinky	yeast enhanced green fluorescent protein

1 Úvod

Svoji diplomovou práci jsem vypracovala v Laboratoři biologie kvasinkových kolonií, která se pod vedením prof. RNDr. Zdeny Palkové, CSc. zabývá studiem kvasinek (především *Saccharomyces cerevisiae*) v jejich přirozeném mnohobuněčném uspořádání. Tvorba strukturovaných kolonií a diferenciace buněk kvasinkám umožňuje lépe se přizpůsobit okolním podmínkám. Studium těchto dějů a komunikace mezi jednotlivými buňkami i mezi koloniemi nám pomáhá pochopit principy fungující v tkáních mnohobuněčných organismů včetně člověka (Palková & Váchová, 2006).

V diplomové práci jsem se blíže zabývala metabolismem fosfolipidů a jeho souvislostí s tvorbou strukturovaných kolonií přírodních kmenů *S. cerevisiae*. Fosfolipidy jsou hlavní strukturní složkou všech buněčných membrán. Složení i množství membrán se mění podle aktuálních potřeb buňky, tj. podle intenzity sekrece, oxidativní fosforylace, dostupnosti živin, teploty a podle dalších faktorů. Fosfolipidy slouží i k modifikaci proteinů, jako zdroj druhých poslů a mohou se stát i prekurzory pro syntézu jiných látek.

Studiem lipidů a dějů s nimi souvisejících se nyní zabývá řada laboratoří. Přesto však zůstává mnoho otázek nezodpovězených a toto téma je aktuální nejen u kvasinek, ale i u jiných organismů (Santos & Riezman, 2012; Sethi & Brietzke, 2017).

Velmi důležitým genem metabolismu fosfolipidů je *INO1*, který kóduje inositol-3fosfátsyntázu. Ta katalyzuje první krok sledu reakcí vedoucích ke vzniku fosfatidylinositolu (PI). PI spolu s fosfatidylcholinem, fosfatidylethanolaminem a fosfatidylserinem tvoří základní buněčné fosfolipidy a od jejich poměru a složení se odvíjí vlastnosti buněčných membrán. PI také slouží jako prekurzor pro syntézu GPI kotvy proteinů. Ty jsou velmi důležité pro tvorbu strukturovaných kolonií. Exprese genu *INO1* je regulovaná negativním transkripčním faktorem Opi1p, který kromě Ino1p ovlivňuje i řadu dalších genů pro enzymy metabolismu fosfolipidů. Je také nezbytný pro expresi genu *FLO11*, jehož produkt Flo11p je esenciální pro tvorbu strukturované kolonie.

Na morfologii kolonie má vliv také zdroj uhlíku, který zásadně ovlivňuje celý metabolismus i metabolismus fosfolipidů. Kvasinky preferují fermentovatelné zdroje (např. glukózu) a v jejich přítomnosti rostou rychleji (Gancedo, 1998).

Cílem mé práce bylo zjistit, jak je metabolismus fosfolipidů a struktura kolonie *S. cerevisiae* kmene PORT ovlivněna různými zdroji uhlíku či působením inhibitoru metabolismu mastných kyselin 2-bromooktanové kyseliny. Pro zdůraznění vlivu na strukturovanost kolonie byla použita i média s obsahem nízké koncentrace selenanu (Na₂SeO₄), který podporuje vrásčitost kolonie (RNDr. Michaela Schierová, Ph.D., nepublikovaná data).

2 Přehled literatury

2.1 Kvasinkové kolonie

V přírodě se kvasinky vyskytují spíše v mnohobuněčných koloniích než jako jednotlivé buňky. Přírodní kmeny mohou tvořit složitě strukturované vrásčité kolonie, zatímco laboratorní kmeny dlouhodobě rostoucí v optimálních podmínkách tvoří kolonie hladké. Ukazuje se, že ztráta vrásčité morfologie u laboratorních kmenů nemusí být způsobena nahromaděním mutací, ale je výsledkem změny exprese genů v rámci adaptace na dané podmínky (Kuthan *et al.*, 2003).

Na morfologii kolonie nemá vliv tvar buněk a způsob pučení (Šťovíček *et al.*, 2010), ale je způsobena především přítomností extracelulární matrix (ECM) složenou z polysacharidů a proteinů, která je uvolňována buňkami v kolonii (Baillie & Douglas, 2000; Kuthan *et al.*, 2003). Vrásčité kolonie obsahují mnohem více ECM než kolonie hladké. ECM poskytuje buňkám mechanickou ochranu a slouží jako rezervoár vody. To způsobuje, že mokrá váha strukturované kolonie je až třikrát vyšší než váha hladké kolonie, přestože hladká kolonie je tvořena větším množstvím buněk (Kuthan *et al.*, 2003; Šťovíček *et al.*, 2010).

Buňky uvnitř kolonie se liší svým metabolismem a genovou expresí podle toho, kde se nacházejí v rámci kolonie (Váchová *et al.*, 2009). Během vývoje kolonie dochází i k regulovanému úmrtí buněk ve středu kolonie, které má mnoho společných znaků s apoptózou mnohobuněčných organismů. Živiny uvolněné z těchto buněk zlepšují podmínky pro růst mladších buněk (Váchová & Palková, 2005). Buňky v kolonii jsou diferencované i vertikálně, na řezu kolonií jsou vidět dvě vrstvy morfologicky různých buněk (U – *upper* a L – *lower*), které se liší i genovou expresí (obr.1)(Čáp *et al.*, 2012).

Obrázek 1: Vertikální řez kolonií. Pomocí fluorescenčního proteinu Ino1p-GFP znázorněn rozdíl v expresi horních (U – *upper*) a spodních (L – *lower*) buněk (stáří kolonie 15 dní). Detail buněk ukazuje rozdíl v morfologii buněk, bílá šipka označuje vakuolu (stáří kolonie 20 dní)(Čáp *et al.*, 2012).

V tvorbě kolonií hraje roli také metabolismus fosfolipidů. Delece genu kódujícího hlavní negativní regulátor exprese genů pro enzymy metabolismu fosfolipidů Opi1p způsobuje výrazné změny v morfologii kolonií (Reynolds, 2006). Dalším příkladem je fosfolipid fosfatidylinositol (PI) sloužící jako součást GPI kotvy (Pittet & Conzelmann, 2007). Ta je nezbytná pro funkci Flo proteinů umožňujících kontakt s ostatními buňkami nebo s povrchem (Hamada *et al.*, 1998; Groot *et al.*, 2003).

2.2 Mezibuněčný kontakt a kontakt buněk s okolním prostředím

2.2.1 Pseudohyfální růst

Kvasinka *S. cerevisiae* je schopna dimorfního růstu. Kromě samostatně fungujících buněk tvoří i pseudohyfy. U diploidních kmenů dochází k pseudohyfálnímu růstu v případě, že buňky trpí nedostatkem dusíku (obr.2)(Gimeno *et al.*, 1992). Buňky změní způsob pučení z převážně náhodného na unipolární a nově vznikající buňky jsou protáhlé a zůstávají v kontaktu s mateřskou buňkou. Pseudohyfy zarůstají mírně do agaru a rozšiřují se z okrajů kolonie po povrchu média. U haploidních kmenů dochází k tvorbě filament naopak při růstu na médiu bohatém na živiny. Buňky haploidních kmenů přepínají z axiálního způsobu pučení na bipolární, aby byly schopné tvořit vlákna. Filamenta zarůstají do agaru více než u diploidních kmenů, ale jsou pouze v oblasti pod kolonií. Haploidní buňky tvořící filamenta nejsou tolik protáhlé jako buňky diploidní (Roberts & Fink, 1994).

Obrázek 2: Kvasinky S. cerevisiae rostoucí jako jednotlivé buňky (A) a tvořící pseudohyfy (B-D). (Gancedo, 2001)

Pseudohyfální a invazivní růst je regulován především MAPkinázovou a cAMP signální dráhou. MAPkinázová signální dráha využívá kinázy Ste7p, Ste11p a Ste20p a transkripční faktor Ste12p, tyto proteiny jsou zároveň součástí MAPkinázové dráhy pro odpověď na přítomnost feromonu. Transkripce genů specifických pro páření však není aktivována zároveň s invazivním růstem (Roberts & Fink, 1994). Ste12p vytváří komplex s dalším proteinem Tec1p a společně se váží do oblasti elementu FRE (filamentation response element)(Madhani & Fink, 1997), který se

nachází v promotoru genu *FLO11*. Tento gen kóduje protein Flo11p nezbytný pro pseudohyfální růst, podrobněji je popsán v kapitole 2.2.3 (Lo & Dranginis, 1998).

Pseudohyfální a invazivní růst je indukován rovněž při aktivaci proteinu Ras2p, která způsobí zvýšenou hladinu cAMP (Gimeno et al., 1992). Pomocí cAMP je aktivována proteinkináza A (PKA). Její katalytická podjednotka kódovaná genem *TPK2* interaguje s transkripčním represorem Sfl1p, a tím mu brání v inhibici transkripce genu *FLO11* (Robertson & Fink, 1998). Pro expresi genu *FLO11* v závislosti na cAMP dráze je nezbytný i protein Flo8p (Rupp *et al.*, 1999).

2.2.2 Flo proteiny

Mezibuněčný kontakt a schopnost buněk držet u sebe jsou zprostředkovány proteiny označovanými zkratkou Flo (odvozeno od flokulace, tvorba shluků buněk v tekutém médiu)(Stratford, 1994). Tyto proteiny (především Flo11p) se podílejí i na morfologii vrásčitých kolonií (Šťovíček *et al.*, 2010) a jsou nezbytné pro adhezi buněk k povrchu média i schopnost invazivního růstu (Lo & Dranginis, 1998).

Existují dva typy Flo proteinů. Do první skupiny patří flokuliny Flo1p, Flo5p, Flo9p a Flo10p. Jsou to proteiny vázané GPI kotvou přímo do buněčné stěny interagující se sacharidy buněčných stěn sousedních buněk (Stratford, 1989; Caro *et al.*, 1997). Tato interakce způsobí shlukování buněk v tekutém médiu a následnou sedimentaci. Tento děj je významný zvláště v pivovarnictví (Rainbow, 1966). Do druhé skupiny patří Flo11p, Fig2p a Aga1p. Geny *FlG2* a *AGA1* jsou exprimovány při konjugaci (Roy *et al.*, 1991; Erdman *et al.*, 1998). Protein Flo11p je velmi významný pro strukturu kolonie, adhezi k povrchu i invazivní růst (Lo & Dranginis, 1998; Reynolds & Fink, 2001).

2.2.3 Protein Flo11p a jeho význam pro kvasinkovou kolonii

Flo11p je protein kódovaný genem *FLO11*, původně nazývaným *MUC1*. Je složen z 1367 aminokyselinových zbytků. Centrální část proteinu je hydrofilní, N- i C-terminální části jsou hydrofobní. Na N-konci proteinu se nachází specifická signální sekvence pro sekretované proteiny (Lambrechts *et al.*, 1996), na C- konci se nachází sekvence specifická pro proteiny vázané GPI kotvou na povrchu buňky (Lo & Dranginis, 1996). Flo11p je protein, který je částečně vylučován buňkou do extracelulárního prostoru a částečně zůstává vázán na povrchu buňky pomocí GPI kotvy (Karunanithi *et al.*, 2010).

Exprese genu *FLO11* je složitě regulována pomocí mnoha různých signálních drah. Některé příklady jsou uvedeny v kapitole 2.2.1. Na obr.3 jsou schematicky znázorněny i další způsoby regulace exprese. Promotor genu *FLO11* je jeden z nejdelších v kvasinkovém genomu (má více než 3 000 bp) a obsahuje mnoho vazebných míst pro různé transkripční faktory (Lo & Dranginis, 1996; Rupp *et al.*, 1999). Exprese genu *FLO11* je regulována i dvěma nekódujícími RNA (ncRNA)

ICR1 a *PWR1* (obr.3A)(Brückner & Mösch, 2012). Přes 3 000 bp dlouhá *ICR1* je kódována v oblasti promotoru *FL011* a její transkripce brání expresi genu *FL011*. *PWR1* je kódována komplementárním řetězcem k *ICR1* a aktivuje expresi genu *FL011* interakcí s *ICR1*. Transkripce těchto ncRNA je regulována transkripčními faktory Flo8p a Sfl1p (Bumgarner *et al.*, 2009). Dále je exprese regulována během transkripce. V genu *FL011* se nachází repetitivní sekvence a pro jejich transkripci je nezbytný komplex proteinů THO (Voynov *et al.*, 2006). Poslední příklad regulace, který zmíním, souvisí s proteiny Rps26p a Khd1p. Ty regulují translaci Flo11p (obr.3B)(Strittmatter *et al.*, 2006; Wolf *et al.*, 2010).

Obrázek 3: A: Schéma regulace exprese genu *FL011*. Znázorněny jsou různé signální dráhy vedoucí k transkripčním faktorům, které přímo nasedají do oblasti promotoru genu *FL011* (znázorněno pouze schematicky, vazebná místa neodpovídají skutečnosti). Tmavě modře je znázorněna regulační (nekódující) ncRNA. IAA – indoloctová kyselina, ? – neznámá signální dráha/neznámý transkripční faktor. B: Regulace exprese genu *FL011* během transkripce a translace. Tmavé pruhy znázorňují repetitivní sekvence. (Brückner & Mösch, 2012)

Protein Flo11p je nezbytný pro invazivní a pseudohyfální růst. Nadměrná exprese genu *FLO11* významně indukuje invazivní růst i u diploidního kmene (Lo & Dranginis, 1998). Flo11p je nezbytný i pro morfologii kolonie. Kmen s delecí genu *FLO11* vytváří kolonie pouze hladké

(Šťovíček *et al.*, 2010). Některé kmeny kvasinek jsou schopny tvořit biofilm na povrchu tekutého média. I tento děj je závislý na Flo11p (Ishigami *et al.*, 2004; Zara *et al.*, 2005). Delece genu *FLO11* významně ovlivňuje transkriptom buňky. Změněná je exprese např. u genů souvisejících s mezibuněčným kontaktem, pářením, homeostází iontů a redoxními ději (Voordeckers *et al.*, 2012).

Protože se ve své práci zabývám metabolismem fosfolipidů, stojí za zmínku také vztah proteinů Flo11p a Opi1p. Opi1p je transkripční represor genů pro enzymy biosyntézy fosfolipidů a více informací je o něm popsáno v kapitole 2.3.2. Je také dalším proteinem nezbytným pro expresi genu *FLO11*. Kmen s delecí genu *OPI1* není schopen invazivního růstu a vytváří hladké kolonie (Reynolds, 2006).

2.2.4 Adheze k povrchu a invazivní růst jako virulenční faktor

Jak již bylo zmíněno v předešlých kapitolách, invazivní růst a adheze buněk k povrchu jsou velmi důležité děje pro funkci a tvorbu kolonií nebo biofilmů. Patogenní mikroorganismy v rámci biofilmu jsou však odolnější k aplikovaným fungicidům (Palmer & White, 1997). U známých patogenních kvasinek *C. albicans* a *C. glabrata* bylo nalezeno mnoho proteinů zodpovědných za adhezi k hostitelským tkáním (Sundstrom, 2002). Např. u *C. albicans* je pro adhezi buněk k povrchu a schopnost invazivního růstu nezbytný gen *EAP1*. Hraje stejnou roli jako geny *FLO8* a *FLO11 u S. cerevisiae* (Lo & Dranginis, 1998; Liu *et al.*, 1996; Li & Palecek, 2003). Kmeny *S. cerevisiae* s delecí genů *FLO8* nebo *FLO11*, ve kterých je exprimován gen *EAP1*, jsou schopny invazivního růstu. Exprese genu *EAP1* podporuje také adhezi buněk *S. cerevisiae* k lidským buňkám (Li & Palecek, 2003).

Tvorba biofilmu u *C. albicans* souvisí také s genem *INO1*, který kóduje enzym důležitý pro syntézu proteinů a glykolipidů s GPI kotvou podstatných pro virulenci (Mille *et al.*, 2004). V kmeni *C. albicans* rezistentnímu k léčivům (azolům) je exprese *INO1* zvýšena (Rogers & Barker, 2003). U buněk vystavených látkám, které brání tvorbě biofilmu (farnesol, kaprinová kyselina), byla naopak exprese *INO1* snížena (Cao *et al.*, 2005). *INO1* je nejvíce regulovaným genem metabolismu fosfolipidů *S. cerevisiae*. Kóduje protein Ino1p, na který jsem se zaměřila v praktické části své diplomové práce.

2.3 Strukturní gen INO1 a enzym Ino1p

Klíčovým genem metabolismu fosfolipidů je strukturní gen *INO1* (Donahue & Henry, 1981). Kódující sekvence je dlouhá 1 602 bp (Dean-Johnson & Henry, 1989) a podle transkriptu je syntetizována jedna podjednotka homotetrameru Ino1p, jehož celková molekulová hmotnost je 240 kDa (Donahue & Henry, 1981).

Ino1p je enzym inositol-3-fosfátsyntáza (ve starších publikacích označována názvem inositol-1-fosfátsyntáza podle staršího systému názvosloví)(Donahue & Henry, 1981)

a optimální pH pro jeho funkci je 7 (Culbertson *et al.*, 1976). Tento enzym katalyzuje první krok ve sledu reakcí vedoucích k syntéze PI (obr.4). Jedná se o přeměnu glukózy-6-fosfát (G6P) na inositol-3-fosfát (Ins3P), reakce vyžaduje přítomnost kofaktoru NAD a probíhá v cytoplazmě (Culbertson *et al.*, 1976; Donahue & Henry, 1981; Dean-Johnson & Henry, 1989). Ins3P je dále defosforylován pomocí inositol-3-fosfátfosfatázy (Inm1p) za vzniku inositolu (Murray & Greenberg, 2000). Význam inositolu pro buňku je popsán v kapitole 2.3.3. Přeměna G6P na Ins3P je krokem limitujícím rychlost reakce, jak u kvasinek (Donahue & Henry, 1981), tak u ostatních eukaryot, mnoha archeí a některých bakterií (Majumder *et al.* 1997; Michell, 2007).

Obrázek 4: Schéma syntézy fosfatidylinositolu. G6P – glukóza-6-fosfát, Ins3P – inositol-3-fosfát, Ins – inositol, PI – fosfatidylinositol.

2.3.1 Struktura proteinu Ino1p

Gen *INO1* kóduje jednu podjednotku tetramerního proteinu Ino1p (obr.5A). Monomer obsahuje 3 domény (obr.5B): NAD-vazebná doména (AK 66-326, pořadí aminokyselinových zbytků proteinu), katalytická a tetramerizační doména (AK 327-441) a centrální doména (ta je složená z C- a N-terminální části proteinu a úseku aminokyselinových zbytků 93-140 uvnitř NAD-vazebné domény). Funkcí centrální domény je především stabilizace kvarterní struktury (Stein & Geiger, 2002). Protein je poměrně stabilní, jeho poločas rozpadu je 24,5 h (Christiano *et al.*, 2014).

Sekvence aktivního místa enzymu je velmi konzervována, především u eukaryot včetně člověka. Pomocí krystalografie bylo nalezeno pravděpodobné aktivní místo enzymu u *S cerevisiae* v úseku 351-409. Stejnou metodou bylo odhaleno aktivní místo o délce 26 aminokyselinových zbytků i u bakterie *Mycobacterium tuberculosis*. Tyto sekvence byly porovnány se sekvencemi z dalších organismů (obr.6). Mezi sekvencemi aktivních míst těchto organismů byla nalezena shoda přibližně 73 %. Odhaleno bylo i několik klíčových aminokyselin (označeny na obr.6 hvězdičkou), u kterých se předpokládá, že jsou esenciální pro vazbu substrátu. (Majumder *et al.*, 2003).

Ino1p je regulován na posttranslační úrovni pomocí fosforylace. Aktivita enzymu může být ovlivněna fosforylací na třech místech: S184, S296 a S374. Seriny S184 a S296 se nachází v NADvazebné doméně, S374 se nachází v doméně katalytické (obr.7). Enzymatická aktivita klesla, když byly tyto seriny nahrazeny jinou fosforylovatelnou aminokyselinou – aspartátem. V případě, že byly nahrazeny alaninem, poklesla aktivita enzymu jen u S296, toto fosforylační místo je tedy nezbytné pro aktivitu enzymu. Stejná fosforylační místa byla nalezena i u lidské inositol-3-fosfátsyntázy (obr.7)(Deranieh *et al.*, 2013). Které kinázy a za jakých podmínek Ino1p fosforylují, zatím nebylo publikováno.

Obrázek 5: (A) 3D model znázorňující strukturu homotetrameru Ino1p. (B) Model monomeru Ino1p s vyznačenými doménami: fialově NAD-vazebná doména, zeleně katalytická doména, červeně N-terminální část proteinu, modře C-terminální část proteinu. Žlutě je vyznačena molekula NAD (Stein & Geiger, 2002).

Další možnou posttranslační modifikací je pravděpodobně ubiquitinylace. V rámci globální analýzy byla objevena ubiquitinylační místa na lysinech K13, K101 a K208 (obr.7)(Swaney *et al.*, 2013).

Aktivita Ino1p může být také inhibována meziproduktem přeměny G6P na Ins3P a jeho analogy, mezi které patří i dihydroxyacetonfosfát, meziprodukt glykolýzy (Migaud & Frost, 1996). Metabolismus fosfolipidů tedy může být touto cestou ovlivňován metabolismem glukózy.

2.3.2 Regulace exprese genu INO1

Na regulaci exprese genu *INO1* se podílí řada proteinů a je ovlivněna mnoha buněčnými ději. Hlavní principy regulace jsou popsány v mé bakalářské práci (Pavlíčková, 2014), a proto je zde zmíním pouze stručně a podrobněji se budu věnovat tématům, která se v bakalářské práci nevyskytují.

195 * *				20	64			
Mycobtuber	GDDIKSQVGA	TITHRVLAKL	FEDRGVQLDR	TMQLNVGGNM	DFLNMLERER	LESKKISKTQ	AVTSNLKREF	
Pyroc-abys	GDD-GATGAT	PLTADILGHL	AQRNRHVLD-	IAQFNIGGNT	DFLALTDKER	NKSKEYTKSS	VVEDILGYDA	
Streptomyc	GSDGKTGE	TLVKSVLAPM	FARRALRVRS	WSGTNLLGGG	DGATLADPER	VVSKNASKGL	VLEAELG	
Archaeoglo	GNDGKTGE	TLVKTTLAPM	FAYRNMEVVG	WMSYNILGDY	DGKVLSARDN	KESKVLSKDK	VLEKMLG	
Entamoeba	GDDFKTGQ	TKIKSVLADF	LVSSGLKLQS	IVSYNHLGNN	DGKNLSSPSQ	FRSKEISKSN	VVSDVVKSNN	
Arabidopsi	GDDFKSGQ	TKMKSVLVDF	LVGAGIKPTS	IVSYNHLGNN	DGMNLSAPQT	FRSKGDSKSN	VVDDMVASNG	
Mesembryan	GDDFKSGQ	TKMKSVLVDF	LVGAGIKPTS	IVSYNHLGNN	DGMNLSAPQT	FRSKEISKSN	VVDDMVASNG	
Sesamum-In	GDDFKSGQ	TKMKSVLVDF	LVGAGIKPTS	IVSYNHLGNN	DGMNLSAPQT	FRSKEISKSN	VVDDMVASNG	
Glycine-ma	GDDFKSGQ	TKMKSVLVDF	LVGAGIKPTS	IVSYNHLGNN	DGMNLSAPQT	FRSKEISKSN	VVDDMVNSNA	
Oryzasativ	GDDFKSGQ	TKMKSVLVDF	LVGAGIKPTS	IVSYNHLGNN	DGMNLSAPQT	FRSKEISKSN	VVDDMVSSNA	
Drosophila	GDDFKSGQ	TKIKSVLVDF	LVGAGIKPVS	IASYNHLGNN	DGKNLSAPQQ	FRSKEISKSN	VVDDMVASNR	
HomoSapien	GDDFKSGQ	TKVKSVLVDF	LIGSGLKTMS	IVSYNHLGNN	DGENLSAPLQ	FRSKEVSKSN	VVDDMVQSNP	
Leishmanim	GDDFKSGQ	TKMKSALVEF	FVGAGIKPEC	IASYNHLGNN	DGYNLSSHKQ	FCSKEITKSN	VVDDMIKSNQ	
Pichia-pas	GDDFKSGQ	TKLKSVLAQF	LVDAGIRPVS	IASYNHLGNN	DGYNLSAPQQ	FRSKEISKAS	VVDDMIESNE	
Saccharomc	GDDLKSGQ	TKLKSVLAQF	LVDAGIKPVS	IASYNHLGNN	DGYNLSAPKQ	FRSKEISKSS	VIDDIIASND	
318	3			*	* *	* *	3	85
265	5		*	New York Constraints of Constraints		**	3	27
Mycobtuber	KTK	DVHIGPSDHV	GWLDDRKWAY	VRLEGRAFGD	VPLNLEYKLE	VWDSPNSAGV	IIDAVRAAKI	
Pyroc-abys	РН-	YIKPTGYL	EPLGDKKFIA	MHIEYVSFNG	AHDELIITGR	INDSPALAGL	LVDLARLGKI	
Streptomyc	НА	VEGGVHIHHV	PDLGEWKTAW	DHVTFEGFLG	ARMTLQFTWQ	GCDSSLAAPL	VLDLARFMAL	
Archaeoglo	YS	PYSITEIQYF	PSLVDNKTAF	DFVHFKGFLG	KLMKFYFIWD	AIDAIVAAPL	ILDIARFLLF	
Entamoeba	IMY-KAG-EH	PDHVIVITYV	PYVGDSHRAM	DDYTSHIFLR	GHNTIALHNT	CEDSLLAAPL	MIDLAVLMEF	
Arabidopsi	ILF-EPG-EH	PDHVVVIKYV	PYVADSKRAM	DEYTSEIFMG	GKNTIVMHNT	CEDSLLAAPI	ILDLVLLAEL	
Mesembryan	ILY-EPG-EH	PDHVVVIKYV	PYVGDSKRAM	DEYTSEIFMG	GTNTIVMHNT	CEDSLLAAPI	ILDLVLLAEL	
Sesamum-In	ILY-EPG-EH	PDHIVVIKYV	PYVGDSKRAM	DEYTSEIFMG	GKSTIVLHNT	CEDSLLAAPI	ILDLVLLAEL	
Glycine-ma	ILY-EPG-EH	PDHVVVIKYV	PYVGDSKRAM	DEYTSEIFMG	GKSTIVLHNT	CEDSLLAAPI	ILDLVLLAEL	
Oryzasativ	ILY-ELG-EH	PDHVVVIKYV	PYVGDSKRAM	DEYTSEIFMG	GKSTIVLHNT	CEDSLLAAPI	ILDLVLLAEL	
Drosophila	LLY-GPD-EH	PDHVVVIKYV	PYVGDSKRAM	DEYTSEIMMG	GHNTLVIHNT	CEDSLLATPL	ILDLVILGEL	
HomoSapien	VLY-TPG-EE	PDHCVVIKYV	PYVGDSKRAL	DEYTSELMLG	GTNTLVLHNT	CEDSLLAAPI	MLDLALLTEL	
Leishmanim	VLF-PEGARK	PDHCIVIKYI	PYVGDSKRAL	DEYTFSIFMG	GQQTVVLHNT	CEDSLLAAPL	IIDLIVLTEL	
Pichia-pas	ILYNEKNGNT	IDHCIVIKYM	KAVGDDKVAM	DEYHSELMLG	GHNTISIHNI	CEDSLLATPL	IIDLVVMAEF	
Saccharome	ILYNDKLGKK	VDHCIVIKYM	KPVGDSKVAM	DEYYSELMLG	GHNRISIHNV	CEDSLLATPL	IIDLLVMTEF	
386	b	* *	*			* *	4	55
320	9				251			
Mycohtuber	AKDRGTG		CDUTDAS	AVIMERDE	331			
Pyrog-abys	AVEKK		-AFCTUVEUN	AFYMENDCOD				
Streptomyc	AHRAGVAG		DVDFT	GEFEKDDUCS				
Archaeoglo	AKKKGVKG		VVKFM	AFFFKSDMDT				
Entamoeba	MTRVTYSTDG	KFF	KNENSUMENT	SYLLKAPWUP				
Arabidopsi	STRIOFKSEG	ECKE	HSFHDVATTI.	SYLTKAPIND				
Mesembryan	STRIOLKAFE	EDKF	HSFHPVATTI.	SYLTKAPLVP				
Sesamum-In	STRIOLKARG	EGKF	HSFHDVATT	SVITKADIVD				
	2 marganese G	- GIL	TOT IL VALLD	OT DISCHELLY P				

Arabidopsi	STRIQFKSEG	EGKF	HSFHPVATIL	SYLTKAPLVI	5
Mesembryan	STRIQLKAEE	EDKF	HSFHPVATIL	SYLTKAPLVI	P
Sesamum-In	STRIQLKAEG	EGKF	HSFHPVATIL	SYLTKAPLVI	P
Glycine-ma	STRIEFKAEN	EGKF	HSFHPVATIL	SYLTKAPLVI	P
Oryzasativ	STRIQLKAEG	EEKF	HSFHPVATIL	SYLTKAPLVI	P
Drosophila	STRIQLENAE	KE-SAPW	VPFKPVLSLL	SYLCKAPLVI	P
HomoSapien	CQRVSFCTDM	DPEP	QTFHPVLSLL	SFLFKAPLVI	P
Leishmanim	MERVTISASD	DTQTPPPASF	EHMETVLSIL	SYLLKAPAVI	P
Pichia-pas	LSRVSYKK	K-GDA-EY	ESLHSVLSFL	SYWLKAPLT	R
Saccharomc	CTRVSYKKVD	PVK-EDAGKF	ENFYPVLTFL	SYWLKAPLT	R
45	6			*	494

Obrázek 6: Porovnání sekvencí aktivních míst inositol-3-fosfátsyntáz z různých organismů (*Mycobacterium tuberculosis, Pyrococcus abyssi, Streptomyces coelicolor, Archaeoglobus fulgidus, Entamoeba histolytica, Arabidopsis thaliana, Mesembryanthemum crystallinum, Sesamum indicum, Glycine max, Oryza sativa, Drosophila melanogaster, Homo sapiens, Leishmania major, Pichia pastoris, S. cerevisiae*). Čísla označující pořadí aminokyselinových zbytků jsou uvedena pro *Mycobacterium tuberculosis* (nahoře) a *S. cerevisiae* (dole). Hvězdičky označují předpokládané klíčové aminokyseliny pro vazbu substrátu (Majumder *et al.*, 2003).

Obrázek 7: Schéma inositol-3-fosfátsyntázy u kvasinek (Ino1p) a u člověka. Vyznačena konzervovaná fosforylační místa. U Ino1p vyznačena i místa ubiquitinylace. Podle (Deranieh *et al.*, 2013).

Exprese genu *INO1* je regulována především v závislosti na hladině inositolu v buňce (Donahue & Henry, 1981). Je aktivována heterodimerem Ino2p-Ino4p (Ambroziak & Henry, 1994), který se konstitutivně váže v promotoru na sekvenci nazvanou ICRE element (inositol/choline responsive element)(Schüller *et al.*, 1992a; Schüller *et al.*, 1992b; J. H. Brickner & Walter, 2004). Negativním regulátorem je transkripční faktor Opi1p (Greenberg *et al.*, 1982a), delece genu *OPI1* způsobuje nadměrnou produkci inositolu, který buňky uvolňují do média (Greenberg *et al.*, 1982b). Opi1p je vázán na membránu ER pomocí transmembránového proteinu Scs2p (Loewen *et al.*, 2003) a kys. fosfatidové (PA). V přítomnosti inositolu je PA spotřebována na syntézu PI a Opi1p se uvolní do cytoplazmy a přemístí se do jádra (Loewen *et al.*, 2004), kde se váže na Ino2p a tím zabraňuje remodelaci chromatinu a aktivaci exprese genu *INO1* (Ford *et al.*, 2008). V případě, že je v růstovém médiu kromě inositolu přítomen ještě cholin, represe je silnější. Samotný cholin na expresi genu *INO1* nemá vliv (Hirsch & Henry, 1986).

Exprese genu *INO1* byla sledována také v přítomnosti různých zdrojů dusíku. Po přenosu buněk z média s bohatým zdrojem dusíku (sulfát amonný) do média s chudým zdrojem dusíku (dusíkaté báze) se zpomalila rychlost jejich růstu a také byla přechodně reprimována exprese *INO1*. Na svou původní úroveň se dostala po sedmi hodinách, tato doba je pravděpodobně potřebná pro adaptaci na méně preferovaný zdroj dusíku. Při přenosu buněk do média bez zdroje dusíku se růst buněk zastavil, exprese *INO1* byla reprimována a už se neobnovila. U kmene s delecí genu pro transkripční faktor Opi1p represe genu *INO1* nenastala, je tedy regulována stejným mechanismem jako inositolem řízená regulace exprese. V těchto pokusech byly buňky pěstovány v prostředí bez inositolu a k přenosu mezi médii došlo vždy v brzké exponenciální fázi růstu. (Griac & Henry, 1999). Mechanismus, kterým je proteinem Opi1p řízena exprese genu *INO1* v závislosti na nedostatku dusíku, by mohl souviset s UPR dráhou (Unfolded protein response pathway). Tato dráha je spuštěna při hromadění nesbalených proteinů v ER a jejím výsledkem je aktivace transkripčního faktoru Hac1p (Shamu & Walter, 1996; Sidrauski & Walter, 1997). Ten se váže na UPRE element (unfolded protein response element), vyskytující se v promotorech genů, které kódují enzymy usnadňující správné skládání proteinů v ER (Cox & Walter, 1996; Mori *et al.*, 1992). UPR dráha je aktivována také při nedostatku inositolu. Protein Hac1p dosud neznámým způsobem podporuje uvolnění Opi1p z oblasti ICRE elementu a tím dochází k nepřímé aktivaci biosyntézy lipidů (obr.8)(Cox *et al.*, 1997; Brickner & Walter, 2004). To umožňuje koordinovat syntézu fosfolipidů a membránových proteinů. K aktivaci UPR dráhy dochází také v přítomnosti bohatého zdroje dusíku, pravděpodobně kvůli velkému množství translatovaných proteinů. Naopak při nedostatku dusíku je UPR dráha deaktivována včetně proteinu Hac1p (Schröder *et al.*, 2000).

Obrázek 8: Způsoby regulace UPR a propojení s biosyntézou fosfolipidů. UPRE – aktivační element genů UPR dráhy, ICRE – aktivační element genů biosyntézy fosfolipidů. (Cox *et al.*, 1997; Schröder *et al.*, 2000)

Exprese genu *INO1* je ovlivněna také zdrojem uhlíku. Nejvíce studovanými zdroji uhlíku jsou hexózy (glukóza, fruktóza, galaktóza a manóza) a potom disacharidy (maltóza a sacharóza). Dále potom dvouuhlíkaté sloučeniny ethanol a acetát. Metabolické dráhy pro zpracování hexóz a disacharidů jsou velmi podobné, liší se pouze v prvních krocích. Také metabolismus ethanolu a acetátu se liší pouze prvními reakcemi. Avšak mezi těmito dvěma skupinami jsou rozdíly významné, každá podporuje spuštění jiných metabolických drah. Gen *INO1* je exprimován především v přítomnosti ethanolu a acetátu, zatímco v přítomnosti glukózy nebo maltózy je spíše reprimován (Daran-Lapujade *et al.*, 2004). To potvrzuje i další studie, kde bylo množství proteinu Ino1p sledováno v buňkách rostoucích ve dvou různých médiích. První obsahovalo 1% (w/v) glycerol a 10% (v/v) ethanol, druhé médium obsahovalo jako zdroj uhlíku 17% glukózu.

Buňky rostoucí v médiu s ethanolem obsahovaly 5× více proteinu Ino1p než buňky rostoucí v médiu s glukózou. To pravděpodobně souvisí s tím, že podmínky prvního média podporují tvorbu biofilmu (Moreno-García *et al.*, 2015). Inositol je pro tvorbu biofilmu potřeba kvůli syntéze GPI kotvy nezbytné pro Flo proteiny.

Pro expresi genu *INO1* je významná také růstová fáze. Nejvíce je exprimován v nepřítomnosti inositolu v průběhu exponenciální fáze růstu, se vstupem buněk do stacionární fáze je exprese reprimována. V buňkách pěstovaných v přítomnosti inositolu byla úroveň exprese nízká ve všech růstových fázích (Jiranek *et al.*, 1998).

Expresi genu *INO1* ovlivňuje také jeho lokalizace v rámci jádra. Když je gen *INO1* aktivován, přesune se k jaderné membráně (Brickner & Walter, 2004; Ahmed *et al.*, 2010). Pro změnu lokalizace po aktivaci genu jsou nezbytné dva cis-elementy DNA, které fungují jako *DNA zip code* (sekvence umožňující přemístění genu v rámci jádra). Nacházejí se v promotorové oblasti genu *INO1*, nazývají se GRS I a GRS II (gene recruitment sequence). Pro maximální aktivaci genu *INO1* je nezbytná přítomnost alespoň jednoho z nich. Tyto elementy umožňují interakci promotoru *INO1* s proteiny jaderného póru. Sekvence GRS I byla nalezena v promotorech dalších genů, především genů souvisejících se stresem v ER. (Ahmed *et al.*, 2010).

Gen *INO1* zůstává v kontaktu s jadernou membránou, i když je gen následně reprimován. To umožňuje rychlejší reaktivaci exprese. Tento způsob transkripční paměti je umožněn díky epigenetické změně, inkorporaci varianty histonu H2A.Z do nukleozomů v oblasti promotoru *INO1*. Přítomnost histonu H2A.Z je charakteristická výhradně pro nedávno reprimovaný gen (Brickner *et al.*, 2007). Změnu ve složení nukleozomu zajišťuje další typ *DNA zip code* sekvence, tzv. MRS (memory recruitment sequence), který je zároveň zodpovědný za asociaci promotoru *INO1* s RNA polymerázou II, což umožňuje rychlou reaktivaci transkripce. Oba mechanismy (řízené pomocí GRS a MRS), způsobující vazbu genu *INO1* k jadernému póru, jsou nezávislé (Light *et al.*, 2010).

Lokalizace aktivního genu *INO1* je také závislá na fázi buněčného cyklu. Během S-fáze po zahájení replikace DNA dochází k přesunu genu od jaderné membrány do nukleoplazmy, přibližně po 20ti-30ti min se vrací zpět. To však neplatí pro nedávno reprimovaný gen, který zůstává u jaderné membrány po celý buněčný cyklus (Brickner & Brickner, 2010).

2.3.3 Význam inositolu pro buňku

Inositol přímo či nepřímo souvisí s mnoha buněčnými ději, a proto je pro buňky esenciální (Culbertson & Henry, 1975). Kvasinky získávají inositol třemi různými způsoby. Kromě již popsané syntézy *de novo* mohou inositol získat z extracelulárního prostředí pomocí transportních proteinů kódovaných geny *ITR1* a *ITR2* (Nikawa *et al.*, 1991). Třetí cesta je

recyklace inositol-1,4-bisfosfátu, ze kterého vznikne inositol dvojitou defosforylací (Berridge & Irvine, 1984).

Největší roli hraje inositol v metabolismu fosfolipidů. Vedle genu *INO1* jsou při nedostatku inositolu aktivovány i další geny kódující enzymy biosyntézy fosfolipidů (Schüller *et al.* 1995). Mutace v genech pro některé z nich vede k ovlivnění regulace exprese genu *INO1*. Jedná se například o geny *CHO2* a *OPI3*, kódující enzymy katalyzující přeměnu fosfatidylethanolaminu na fosfatidylcholin (Kodaki & Yamashita, 1987). Jejich delece vede ke konstitutivní expresi *INO1* (Greenberg *et al.*, 1983; Summers *et al.*, 1988).

Inositol je jedním ze substrátů pro syntézu PI (fosfatidylinositol), který je významnou složkou buněčných membrán. Na rozdíl od ostatních fosfolipidů může být PI fosforylován a stát se tak součástí řady regulačních drah jako signální molekula či zdroj druhých poslů. Zasahuje tak do signální transdukce (Divecha & Irvine, 1995) nebo regulace transportu váčků a výstavby cytoskeletu (Martin, 2001). Další důležitou roli hraje PI jako součást GPI kotvy extracelulárních proteinů (Pittet & Conzelmann, 2007).

Derivát inositolu, inositolhexakisfosfát (IP₆), se účastní regulace exportu mRNA z jádra. Na syntéze IP₆ se podílí mimo jiné také fosfolipáza C. Její aktivita zvyšuje množství inositoltrisfosfátu (IP₃), který je dále fosforylován pomocí dalších enzymů až na IP₆ (York *et al.*, 1999). Ten se pak váže na protein Gle1p a společně aktivují protein Dbp5p (Alcázar-Román *et al.*, 2006). Dbp5p je helikáza nezbytná pro export mRNA z jádra (Tseng *et al.*, 1998). IP₆ v lidských buňkách se účastní i editace RNA (Macbeth *et al.*, 2005). Inositoldifosfát hraje roli také v regulaci délky telomer (York *et al.*, 2005).

Při nedostatku inositolu je aktivována PKC (proteinkináza C) signální dráha (známá také jako proteinkinázová dráha integrity buněčné stěny aktivovaná mitogenem; CWI-MAPK), která je esenciální pro homeostázi lipidů a životaschopnost buněk (Nunez *et al.*, 2008).U savčích buněk dochází k aktivaci dráhy pomocí diacylglycerolu, u *S. cerevisiae* to prokázáno nebylo a nejsou k dispozici žádné výsledky, které by přesvědčivě stanovily nějakou jinou aktivační molekulu (Antonsson *et al.*, 1994). Proteiny PKC dráhy pak ovlivňují řadu dějů souvisejících s metabolismem lipidů např. kontrolu buněčného cyklu, organizaci cytoskeletu a sekrece, morfologické změny a spájení (*mating*)(Heinisch *et al.*, 1999). Delece genu *PKC1* a dalších genů kódujících proteiny této dráhy vede k auxotrofii na inositol. Mezi ně patří i delece genu *SLT2* (= *MPK1*, kódující MAP kinázu), která však neovlivňuje expresi genu *INO1*. Auxotrofie na inositol je způsobená jiným, dosud neznámým, mechanismem (Nunez *et al.*, 2008).

Nedostatek inositolu také významně ovlivňuje membránu vakuoly a její vnitřní pH. Způsobuje nedostatek PI3,5P₂ (fosfatidylinositol-3,5-bisfosfát), který je klíčovým fosfolipidem vakuolárních membrán (Rudge *et al.*, 2004). V-ATPáza je regulována v závislosti na tomto fosfolipidu a při jeho nedostatku se její aktivita snižuje (Li *et al.*, 2014; Deranieh *et al.*, 2015).

Jak již bylo zmíněno, hladina inositolu také ovlivňuje proteiny související se stresem v endoplazmatickém retikulu, jde především o dráhu UPR (Unfolded protein response pathway)(Cox *et al.*, 1997).

Změny a poruchy v dějích zahrnujících inositol nebo PI v lidských nervových buňkách jsou spojovány s mnoha nemocemi. Jedná se např. o rakovinu, diabetes druhého typu a neurologická onemocnění (Alzheimerova choroba, Parkinsonova choroba, bipolární afektivní porucha)(Shi *et al.*, 2006). Velmi významnou roli hraje v neuronech signální dráha zahrnující vazbu IP₃ (inositoltrisfosfát) na IP₃ receptory, která způsobuje prudký nárůst koncentrace iontů Ca²⁺ v cytoplazmě (Berridge, 2009). V nervových tkáních mozku pacientů s Alzheimerovou, Parkinsonovou i Huntingtonovou chorobou je snížené množství těchto receptorů (Kitamura *et al.*, 1989; Warsh *et al.*, 1991; *Garlind et al.*, 1995). Poškození genu pro tento receptor je u myšího modelu ve většině případů letální (Matsumoto *et al.*, 1996).

U Léčiv používaných na bipolární afektivní poruchu (lithium a valproát) bylo prokázáno, že snižují obsah inositolu v buňkách *S. cerevisiae* stejně jako v buňkách mozku potkanů (O'Donnell *et al.*, 2000; Vaden *et al.*, 2001). Valproát snižuje hladinu inositolu v buňkách *S. cerevisiae* a potlačuje aktivitu enzymu Ino1p. V důsledku nedostatku inositolu je exprese genu *INO1* zvýšená ve všech růstových fází, valproát tedy působí inhibičně až na posttranslační úrovni (Ju *et al.*, 2004). Jaký je mechanismus účinku těchto léků, zatím není známo. Zvýšená hladina inositolu však byla nalezena i v buňkách mozku pacientů s Downovým syndromem nebo u sebevrahů (Shetty *et al.*, 1995; Shimon *et al.*, 1997).

2.4 Inhibitory metabolismu fosfolipidů

Jedním z inhibitorů metabolismu fosfolipidů je cerulenin [(2R,3S,E,E)-2,3-epoxy-4-oxo-7,10dodekadienamid](obr.9). Je to látka inhibující aktivitu multienzymového komplexu syntetázy mastných kyselin. Tím blokuje syntézu mastných kyselin *de novo* u mnoha organismů (např. *Corynebacterium diphtheriae, S. cerevisiae, Euglena gracilis,* jaterní buňky potkanů)(Vance *et al.,* 1972). Zároveň inhibuje buněčný růst (Matsumae *et al.,* 1964, podle Vance & Goldberg, 1972).

U *S. cerevisiae* byl zkoumán vliv ceruleninu na tvorbu biofilmu na povrchu tekutého média. V přítomnosti ceruleninu je tvorba biofilmu silně inhibována, zároveň je velmi snížena exprese genu *FLO11*. Když byly do média přidány k ceruleninu ještě mastné kyseliny, nebyly pozorovány změny ve schopnosti tvořit biofilm ani v expresi genu *FLO11*, buněčný růst byl však stále omezen (G. Zara *et al.*, 2012).

Bakterie *Pseudomonas fluorescens* tvoří zásobní polymer polyhydroxyalkanoát (PHA)(Huisman *et al.*, 1989). Prekurzory pro syntézu PHA jsou buď produkty β-oxidace mastných kyselin (v případě, že zdrojem uhlíku jsou mastné kyseliny, např. oktanoát), nebo produkty syntézy mastných kyselin *de novo* (v přítomnosti jiného zdroje uhlíku, např.

fruktózy)(Huijberts *et al.*, 1994). Lee *et. al* potřebovali pro svůj výzkum inhibovat syntézu PHA, ale cerulenin nebyl vhodný kvůli negativnímu vlivu na buněčný růst. Objevili alternativní inhibitor syntézy PHA, 2-bromooktanovou kyselinu (BOA, obr.9), která méně inhibuje buněčný růst a zároveň je levnější. V případě, že zdrojem uhlíku byla fruktóza, BOA inhibovala syntézu PHA z 50 % už při 60 μ M koncentraci a při 2 mM koncentraci byla syntéza PHA inhibována zcela. Na oktanoátu, jako zdroji uhlíku, BOA inhibovala syntézu PHA slabě a zároveň inhibovala buněčný růst. Z toho lze usuzovat, že BOA je slabý inhibitor β -oxidace, ale velmi silný inhibitor dráhy vedoucí k syntéze PHA z fruktózy (Lee *et al.*, 2001). Syntéza mastných kyselin a syntéza PHA je propojena enzymem kódovaným genem *PHAG* (Rehm *et al.*, 1998). Cílem 2-bromooktanové kys. je pravděpodobně enzym PhaG (transacyláza) spojující syntézu mastných kyselin se syntézou PHA (Lee *et al.*, 2001).

cerulenin

2-bromooktanová kys.

Obrázek 9: Chemické vzorce ceruleninu [(2R,3S,E,E)-2,3-epoxy-4-oxo-7,10-dodekadienamid] a kyseliny 2bromooktanové.

Cerulenin a BOA byly použity i u *Candidy antarctica* a to k inhibici syntézy biosurfaktantu MEL (mannosylerythriol lipid). Předpokládaným zdrojem substrátu (mastné kyseliny se středně dlouhým řetězcem, 7-12 uhlíků) pro jeho syntézu je částečná β-oxidace označovaná jako chain-shortening dráha (Kitamoto *et al.*, 1998). U savců je tato dráha známá pod názvem peroxizomální β-oxidace (Hiltunen *et al.*, 1996), zatímco u kvasinek probíhá β-oxidace pouze v peroxizomech (Kunau *et al.*, 1995). U *C. antarctica* má cerulenin vliv na syntézu mastných kyselin *de novo*. Inhibice této dráhy má však pouze malý vliv na syntézu MEL (Kitamoto *et al.*, 1995). BOA působí inhibičně na β-oxidaci i na chain-shortening dráhu a tím inhibuje syntézu MEL velmi efektivně (obr. 10). Zároveň jen málo ovlivňuje růst buněk (Kitamoto *et al.*, 1998).

Obrázek 10: Schéma metabolismu mastných kyselin (MK) u *C. antarctica*. MEL - mannosylerythriol lipid, BOA – 2bromooktanová kyselina. Podle (Kitamoto *et al.*, 1998).

2.5 Vliv Selenu na kvasinky a tvorbu kolonií

Vliv selenu na buňku či organismus je z různých hledisek zkoumán v mnoha laboratořích. U člověka selen působí jako prevence proti některým typům rakoviny. Je zkoumána i možnost léčby rakoviny pomocí různých sloučenin selenu (Clark *et al.*, 1998; Wallenberg *et al.*, 2014; Guo *et al.*, 2015). Ve vyšších dávkách (nad 750-850 µg denně) je však selen toxický a způsobuje oxidativní stres a mutace (Yang *et al.*, 1989; Biswas *et al.*, 2000; Wycherly *et al.*, 2004).

Pro studium toxicity selenu jsou jako modelový organismus využívány kvasinky. Jejich výhodou je, že postrádají selenoproteiny. Na rozdíl od jiných organismů lze tedy sledovat změny v organismu způsobené selenem odděleně od změn souvisejících s funkcí selenoproteinů (Kryukov *et al.*, 2003).

Jak se selen dostává do buněk, záleží na jeho formě. Selenit (SeO₃²⁻) je přenášen fosfátovými přenašeči (Lazard *et al.*, 2010), zatímco selenan (SeO₄²⁻) využívá přenašeče pro síranový aniont (Cherest *et al.*, 1997). V buňce jsou v přítomnosti glutathionu sloučeniny selenu redukovány na sloučeniny selenodiglutathion (GS-Se-SG), elementární selen nebo selan (H₂Se)(Ganther, 1968; Ganther, 1971; Kice *et al.*, 1980). Selen samotný ani selenodiglutathion nejsou příliš toxické látky, na rozdíl od selanu (Tarze *et al.*, 2007). Ten působí toxicky mnoha způsoby. Může vstoupit do metabolických drah pro síru, což vede např. k produkci selenomethioninu, který se v buňce hromadí. Existují i kmeny kvasinek k selenu tolerantní, obohacené selenomethioninem jsou využívány při výrobě doplňků stravy (Schrauzer, 2000; Schrauzer, 2001). Selan a volné kyslíkové radikály (ROS) vznikající při reakci selanu s kyslíkem také způsobují oxidaci glutathionu, čímž mohou ovlivňovat rovnováhu mezi redukovanou a oxidovanou formou glutathionu a tím indukovat oxidativní stres v buňce (Ganther, 1971; Seko & Imura, 1997). Selan také reaguje s ionty kovů, které jsou součástí proteinů. Interaguje s iontem železa v aktivním místě savčího enzymu lipoxygenázy a tím inhibuje jeho aktivitu (Björnstedt *et al.*, 1996). V literatuře byla popsána i interakce sloučenin selenu se zinkem. Selen ve formě ebselenu nebo selenitu inhibuje transkripční faktory obsahující zinc-finger doménu, jedná se např. o TFIIIA a NF-κB (Larabee *et al.*, 2002; Larabee *et al.*, 2009).

Toxicita způsobená selenem byla pozorována i u jiných druhů kvasinek. U *C. utilis* způsobuje selen změny ve velikosti buněk a struktuře vakuoly (Kieliszek *et al.*, 2016), zatímco u *C. albicans* inhibuje růst a tvorbu biofilmu. To je pravděpodobně způsobeno vznikem většího množství ROS, což vede k poškození buněčných struktur (Rosseti *et al.*, 2015).

Přítomnost selenu ovlivňuje také množství a složení mastných kyselin v buňce i poměr nasycených a nenasycených mastných kyselin (Dilsiz *et al.*, 1997).

Laboratoř biologie kvasinkových kolonií PřF UK se zabývá morfologií kolonií přírodní kmenů *S. cerevisiae*. Selen je zde zkoumán z hlediska jeho účinku na morfologii kolonií. RNDr. Michaela Schierová, Ph.D. zjistila, že nízká koncentrace (0,05 mM) selenanu (Na₂SeO₄) indukuje větší vrásnění. U kmene s delecí genu *OPI1* však vrásčité kolonie v přítomnosti selenanu nevznikají (nepublikovaná data). Na základě těchto výsledků byly navrhovány experimenty mé diplomové práce.

3 Cíle práce

- Zjistit, zda úroveň metabolismu fosfolipidů závisí na morfologii kvasinkové kolonie.
- Zjistit, zda v přítomnosti selenanu dochází ke změně metabolismu fosfolipidů.

Dílčí úkoly:

- Připravit kmeny exprimující fúzní proteiny Ino1p-GFP, Opi1p-GFP, ev. GFP-Opi1p od kmene PORT a kmene s delecí genu *OPI1*, který ovlivňuje expresi genu *INO1*.
- Připravit kmen s delecí genu *INO1* a kmen s expresí genu *INO1* řízené promotorem TEF.
- Pomocí fluorescenční mikroskopie, imunodetekce a měření na spektrofluorometru charakterizovat produkci GFP- fúzních proteinů v závislosti na stáří kolonie, zdroji uhlíku a přítomnosti selenanu.
- Charakterizovat morfologii kolonií u rodičovského kmene, u kmenů s delecí genů *INO1* a *OPI1* a kmene *TEF-INO1* v přítomnosti inhibitoru β-oxidace mastných kyselin (2-bromooktanové kyseliny), včetně optimalizace podmínek.
- U těchto kmenů porovnat expresi genů *INO1, OPI1* a *FLO11* pomocí northern analýzy a sledovat vliv 2-bromooktanové kyseliny na produkci Ino1p-GFP (zejména imunodetekce).

4 Materiál a metody

4.1 Materiál

4.1.1 Použitý mikroorganizmus

Kmen *Saccharomyces cerevisiae* PORT byl získán ze sbírky Katedry genetiky a mikrobiologie Přírodovědecké fakulty Univerzity Karlovy. Jedná se o monokoloniální izolát přírodního vinařského kmene WY63 získaného od Dorit Schuller z Universidade do Minho, Braga (Portugalsko). Kmen je diploidní (MATa/MATα) a prototrofní.

4.1.2 Použité kvasinkové kmeny

Seznam všech použitých kmenů je uveden v tabulce1. Autorem kmene PORT-*opi1* je RNDr. Michaela Schierová, Ph.D., ostatní kmeny jsem připravila v rámci diplomové práce.

Název	Genotyp
PORT-ino1	PORT, MATa/MATα ino1Δ::kanMX/ino1Δ::hph
PORT-opi1	PORT, MATa/MATα opi1Δ::nat1/opi1Δ
PORT- <i>opi1</i> /Ino1p-GFP	PORT, MATa/MATα opi1Δ::nat1/opi1Δ INO1-EGFP-kanMX/INO1
PORT-Ino1p-GFP	PORT, MATa/MATα INO1-EGFP-kanMX/INO1
PORT-Opi1p-GFP	PORT, MATa/MATα OPI1-EGFP-kanMX/OPI1
PORT-GFP-Opi1p	PORT, MATα/MATα OPI1-EGFP/OPI1
PORT-TEF-INO1	PORT, MATa/MATα TEF-INO1-kanMX/INO1

Tabulka 1: Seznam kmenů použitých pro účely této práce.

4.1.3 Použité plazmidy

Plazmid pSH66 byl použit na odstranění genu *kanMX* pomocí CreA rekombinázy při přípravě kmene exprimujícího protein GFP-Opi1p (značený na N-konci). Ostatní použité plazmidy sloužily jako PCR templát pro přípravu transformačních kazet. Jejich podrobná charakteristika a kmeny, na jejichž přípravu byly plazmidy použity, jsou uvedeny v tabulce 2. Plazmidy byly získané ze sbírky Euroscarf (European Saccharomyces cerevisiae archive for functional analysis).

Tabulka 2: Seznam použitých plazmidů s příslušnými kmeny, na jejichž pří	pravu byly plazmidy použity.
--	------------------------------

Plazmid	Připravené kmeny	Charakteristika plazmidu
pKT127	PORT-Ino1p-GFP	Plazmid slouží pro přípravu kazet na C-koncové značení proteinů pomocí
	PORT-opi1/Ino1p-GFP	GFP. Nese geny <i>yEGFP</i> (yeast enhanced green fluorescent protein) a
	PORT-Opi1p-GFP	KanMX (produkt způsobuje rezistenci ke geneticinu, slouží jako selekční
		marker). Velikost plazmidu je 4894 bp (obr. 11).
pUG6	PORT-ino1	Plazmid slouží pro přípravu delečních kazet. Nese gen kanMX (produkt
		způsobuje rezistenci ke geneticinu, slouží jako selekční marker)
		ohraničený <i>loxP</i> místy. To umožňuje v případě potřeby rezistenci odstranit
		pomocí CreA rekombinázy. Velikost plazmidu je 4009 bp (obr. 12).
pAG32	PORT-ino1	Plazmid slouží pro přípravu delečních kazet. Nese gen hph (produkt
		způsobuje rezistenci k hygromycinu B, slouží jako selekční marker).
		Velikost plazmidu je 14160 bp (obr. 12).
pYM-N18	PORT-TEF-INO1	Plazmid slouží pro přípravu kazet, které umožňují vložit před námí
		vybraný gen silný konstitutivní promotor <i>TEF</i> . Nese sekvenci kódujíci
		promotor TEF (pochazi z vlaknite houby Ahsbya gossypii, kde je
		promotorem genu IEF kodujicino translacni elongacni faktor 1 α ; Steiner &
		Philippsen, 1994) a gen <i>kulim</i> (produkt zpusobuje rezistenci ke
		(obr 11)
p0M40	DOPT CED Opi1p	Diazmid clouží pro přípravu kazot ko značení protoinů pomocí CED na N
p0M40	FORT-GFF-Op11p	konci Noso gony vECEP (vosst onbancod groon fluoroscont protoin) a
		KanMY (produkt způsobujo rozistanci ko gopaticinu, slouží jako solokční
		marker) obraničený lovP místy. To umožňuje gen KanMY odstranit nomocí
		CreA rekombinázy. Velikost plazmidu je 4777 hp (obr. 13)
nSH66	PORT-GFP-Oni1n	Plazmid slouží pro expresi CreA rekombinázy Nese geny <i>nat</i> (produkt
p51100		znůsohuje rezistenci k nourseothricinu) a <i>Cre</i> (rekombináza hakteriofága
		P1). Gen <i>Cre</i> ie pod kontrolou promotoru <i>GAL1</i> (exprese ie aktivována
		přítomností galaktózy). Velikost plazmidu je 7108 bp (obr. 13).

Obrázek 11: Mapy plazmidů pKT127 (A) a pYM-N18 (B). Obrázky jsou převzaté z <u>http://www.euroscarf.de</u> (European Saccharomyces cerevisiae archive for functional analysis).

Obrázek 12: Mapy plazmidů pUG6 (A) a pAG32 (B). Obrázky jsou převzaté z <u>http://www.euroscarf.de</u> (European Saccharomyces cerevisiae archive for functional analysis).

Obrázek 13: Mapy plazmidů pOM40 (A) a pSH66 (B). Obrázky jsou převzaté z <u>http://www.euroscarf.de</u> (European Saccharomyces cerevisiae archive for functional analysis).

4.1.4 Použité primery

Primery byly navrhovány na základě kódující sekvence daného genu, ke které byly připojeny nekódující sekvence v těsné blízkosti před a za genem, každá o délce 1000 bp. Pro výběr optimálních sekvencí byl použit program Primer z balíčku CLONE. Primery byly objednány u společnosti Sigma-Aldrich. V tabulce 3 jsou uvedeny cílené geny, v tabulce4 jsou uvedeny všechny použité primery. Přímé primery jsou značeny písmenem F a reverzní primery písmenem R. Primery pro ověření správného vložení transformační kazety do genomu jsou značeny písmeny A, B, C nebo D a jejich umístění v rámci genu je schematicky znázorněno na obrázku 14. Primery sloužící na přípravu sond jsou označeny písmenem S, s jejich pomocí lze naamplifikovat úsek uvnitř kódující sekvence daného genu. Sekvence primerů jsou v rámci genomu unikátní.

Gen	Délka kódující sekvence a přilehlých oblastí (každá o délce 1000 bp)
INO1	3602
OPI1	3215
OPI3	2621
FL011	6104
FAS2	7664
RPL3	3164
TPI1	2747

Tabulka 3: Seznam cílených genů.

Název	Sekvence ve směru 5´→ 3´	Poloha
primeru		primeru
INO1 GFP F	TGATTGGATTGCCTTCTCAAAACGAACTAAGATTCGAAGAGAGATTGTTGGGTGACGGTG CTGGTTTA	2550
INO1 GFP R	GTTTTTTTATAGGTAGGCGGAAAAAGAAAAGAAAAGAGAGTCGTTGAAATGAGATCGATGAATT CGAGCTCG	2652 C
INO1 DEL F	AGTAACAATGACAGAAGATAATATTGCTCCAATCACCTCCCAGCTGAAGCTTCGTACGC	994
INO1 DEL R	GAGTCGTTGAAATGAGATTACAACAATCTCTCTTCGAATCGCATAGGCCACTAGTGGATCT G	2619 C
INO1 TEF F	TATTCTGTTTCATTCCCTTTTTTTCCAGTGAAAAAGAAGTAACACGTACGCTGCAGGTCG AC	956
INO1 TEF R	AACTACTTTAACGGAGGTGATTGGAGCAATATTATCTTCTGTCATCATCGATGAATTCTCT GTCG	1045 C
INO1 A	TGCAGAGGAATCTCAAGCAC	454
INO1 B	AGAGGCTTCACCAAGGACAT	1545 C
INO1 C	AAAGTGGCAATGGACGAG	2234
INO1 D	TTCTGGTGAGTCCGCATA	3022 C
INO1 SF	CGGTATTGGCGAATAAGCAC	1251
INO1 SR	CCTGGTCTTGTTAATGGAGC	2487 C
OPI1 GFP F	GATGGCAATTACGTAAAGCCCTCTCAGGACAACGTGGATAGCAAGGACGGTGACGGTGCT GGTTTA	2165
OPI1 GFP R	TAATATTATTACTGGTGGTAATGCATGAAAGACCTCAATCTGTCTCGGTCGATGAATTCG AGCTCG	2263 C
OPI1 NGFP F	GCGTGTGTATCAGGACAGTGTTTTTAACGAAGATACTAGTCATTGATGTGCAGGTCGACA ACCCTTAAT	956
OPI1 NGFP R	CTACCTCTTCCTCTGATAATCCTAAACGTTGATTTTCAGAGCGGCCGCATAGGCCACT	1043 C
OPI1 A	GCATCCATGGTGGCAGAGTT	403
OPI1 B	TCGTCGTCGTCTTCGTCTGA	1593 C
OPI1 C	TCAACGCCAGCGAGCAGTCT	1623
OPI1 D	AACCGGCTTGCTGGACTCCT	2777 C
OPI1 SF	AGACGATGACGATGACGAGC	1264
OPI1 SR	CATTCGCAGTTACGGAGGAG	1988 C
FAS2 SF	TCCAACTCCAGCTGCTAGTG	1330
FAS2 SR	TTCTTCCAGAGCGCCAGCAT	1990 C
FLO11 SF	TACAACCGAAACTACCATTGT	3748
FLO11 SR	TTAGAATACAACTGGAAGAGC	5084 C
OPI3 SF	CAAGTCAAGCGATGAAGGAG	990
OPI3 SR	GTTAGCGTAGATCATGGCAG	1594 C
RPL3 SF	CTGCCTCCATCAGAGCTAGA	1065
RPL3 SR	CCGAACTTAGAAGCAGTGTC	2097 C
TPI1 SF	TGTCCTCCAGCTACCTACTT	1121
TPI1 SR	GAGCATCTTCTGGAGTAGCA	1544 C
GFP F	TTGGTGATGGTCCAGTCTTG	-
GFP MID F	AAGACCAGAGCTGAAGTC	-
GFP 89 R	CGGAGACAGAAAATTTGTGAC	-
GFP 589 R	TAACAAGACTGGACCATC	-
GFP END R	ACCATGGGTAATACCAGC	-
Hph R	GAAATCACGCCATGTAGTGT	-
KanMX F	GATACCAGGATCTTGCCATC	-
KanMX R	CTGATTGCCCGACATTATCG	-

Tabulka 4: Seznam všech použitých primerů. C – komplementární vlákno.

Obrázek 14: Schéma umístění ověřovacích primerů vzhledem ke kódující sekvenci genů *INO1* a *OPI1*.

4.1.5 Chemikálie a enzymy

Název	Zkratka/chemický vzorec	Výrobce
4-(2-aminoethyl)benzensulfonylfluorid, hydrochlorid	AEBSF	Fluka
6× DNA Loading Dye		MBI Fermentas
agar		Dr. Kulich Pharma
agaróza (for routine use)		Sigma-Aldrich
akrylamid	C_3H_5NO	MP Biomedicals
bromfenolová modř	BFM	Bio-Rad
citrát trisodný, dihydrát	$C_6H_5Na_3O_7 \cdot 2 H_2O$	Lachema
Coomassie Brilliant Blue R250	$C_{45}H_{44}N_3NaO_7S_2$	Serva
deoxynukleotidy	dNTP	Top-Bio
D-glukóza	$C_6H_{12}O_6$	Spofa
dihydrogenfosforečnan sodný	NaH ₂ PO ₄	Penta
dimethyl sulfoxid	DMSO	Top-Bio
DL-dithiothreitol	DTT	Sigma-Aldrich
dodecylsulfát sodný	SDS	Sigma-Aldrich
ethanol 96% (v/v)	EtOH	Penta, Lach-Ner
ethidium bromid	EtBr	Serva
Ethylendiamintetraacetát	EDTA	Serva
fenol	C_6H_6O	Sigma-Aldrich
fenylmethansulfonyl fluorid	PMSF	Fluka
formaldehyd	CH ₂ O	Lach-Ner
fosforečnan disodný	Na ₂ HPO ₄	Lach-Ner
galaktóza	$C_6H_{12}O_6$	Sigma-Aldrich
glycerol bezvodý	$C_{3}H_{8}O_{3}$	Lach-Ner
glycin	$C_2H_5NO_2$	Serva
hovězí sérový albumin	BSA	Invitrogen™
hydrogenfosforečnan disodný, dodekahydrát	$Na_2HPO_4 \cdot 12 H_2O$	Penta
hydroxid sodný	NaOH	Lachema, Lach-Ner
chlorid hořečnatý	$MgCl_2$	Top-Bio
chlorid sodný	NaCl	Lach-Ner
chloroform	CHCl ₃	Lachema
igepal CA-630 (nonidet P-40)	NP40	Fluka
inhibitor proteáz mix FY	PIC	Serva
izopropanol	C_3H_8O	Penta, Lachema
kasein z hovězího mléka		Sigma-Aldrich
kvasničný autolyzát (šarže č. 83)	YE 83	IMUNA PHARM
kys. 2-(N-morfolino)ethansulfonová	MES	Sigma-Aldrich
kys. 2-bromooktanová	CH ₃ (CH ₂) ₅ CH(Br)COOH	Sigma-Aldrich
kys. 3-(N-morfolino)propansulfonová	MOPS	Sigma-Aldrich
--	----------------------------------	------------------------
kys. boritá	H_3BO_3	Lachema
kys. chlorovodíková	HCl	Penta
kys. octová	CH ₃ COOH	Penta
kys. orto-fosforečná	H_3PO_4	Lachema
kys. peroctová (35%) Persteril®36	$C_2H_4O_3$	OVERLACK
LA DNA polymerázový mix	LA DNA pol. mix	Top-Bio
LA pufr		Top-Bio
methanol	CH ₃ OH	Merck KGaA
N, N, N´, N´-tetramethylethylendiamin	TEMED	Serva
N, N´-methylen-bis-akrylamid		Serva
octan amonný	NH ₄ Ac	Lachema
octan lithný	LiAc	Serva
octan sodný	NaAc	Sigma-Aldrich
OneTaq®		New England Biolabs
pepton		IMUNA PHARM
peroxid vodíku	H_2O_2	Lach-Ner
persíran amonný	APS	Serva
polyethylenglykol	PEG	Serva, Sigma-Aldrich
PPP PCR Master Mix		Top-Bio
radioaktivně značený deoxycytidintrifosfát	dCTP	MGP
Salmon Sperm DNA	ssDNA	BioLabs
selenan sodný	Na ₂ SeO ₄	Sigma-Aldrich
Tris(hydroxymethyl)aminomethan	Tris	Sigma-Aldrich
Tween® 20	$C_{58}H_{114}O_{26}$	Sigma-Aldrich

4.1.6 Antibiotika

Název	Zkratka	Výrobce
Edicin	Edi	SANDOZ
Geneticin	G418	MP Biochemicals
Hygromycin B	Нуд	Sigma-Aldrich
Nourseothricin	NAT	WERNER BioAgents

4.1.7 Ostatní materiál

Stanovení koncentrace proteinů:

Bradfordovo reagens (Bio-Rad)

Protilátka na imunodetekci:

GFP(B-2)HRP – myší monoklonální protilátka IgG2a (Santa Cruz Biotechnology)

Detekční substráty určené na imunodetekci:

SuperSignal® West Pico Chemiluminescent Substrate (Thermo Scientific) SuperSignal® West Femto Maximum Sensitivity Substrate (Thermo Scientific) *Materiál na vyvolání filmů:*

fotografické filmy (Fomei a.s.)

vývojka Röntgen Rapid Entwickler (Adefo-chemie, GmbH)

práškový RTG rychloustalovač (Adefo-chemie, GmbH)

Pro radioaktivní značení sond:

Random Primer DNA Labeling Kit (Takara)

4.1.8 Média pro kultivaci kvasinek

Tekutá média

•	YD:	2% (w/v)	glukóza	
		1% (w/v)	kvasničný au	tolyzát
•	Galaktózo	vé médium:	2% (w/v)	galaktóza
			1% (w/v)	kvasničný autolyzát
•	Skladovad	cí médium:	60% (v/v)	glycerol
			10% (w/v)	glukóza
			2% (w/v)	pepton
			1% (w/v)	kvasničný autolyzát

Pevná média

- GM: 3% (w/v) glycerol
 1% (w/v) kvasničný autolyzát
 2% (w/v) agar
- GM-Se: GM médium s 0,05 mM Na₂SeO₄
- GMi: GM médium s inhibitorem (kys. 2-bromooktanová, koncentrace je uvedena u jednotlivých experimentů), inhibitor byl rozpuštěn v 0,5 ml EtOH/100 ml média. Do kontrolních médií bez inhibitoru byl EtOH přidáván ve stejném množství.
- GM-Sei: GMi médium s 0,05 mM Na₂SeO₄ a s inhibitorem (podobně jako GMi)

YD: 2% (w/v) glukóza 1% (w/v) kvasničný autolyzát 2% (w/v) agar
YD01: 0,1% (w/v) glukóza

> 1% (w/v) kvasničný autolyzát 2% (w/v) agar

- YD-Se: YD médium s 0,05 mM Na₂SeO₄
- YDi: YD médium s inhibitorem (podobně jako GMi)
- YD-Sei: YDi médium s 0,05 mM Na₂SeO₄ a s inhibitorem (podobně jako GMi)

Média s antibiotikem

• GM nebo YD, pevná nebo tekutá s příslušným antibiotikem

0,002% (w/v)	edicin
0,02% (w/v)	geneticin
0,04% (w/v)	hygromycin B
0,01% (w/v)	nourseothricin

4.1.9 Standardy molekulových hmotností

Standardy použité v rámci této práce na elektroforetickou analýzu DNA, RNA a proteinů jsou uvedeny na obrázku 15.

Obrázek 15: Standard molekulových hmotností fragmentů DNA použitý pro elektroforetickou analýzu DNA: GeneRuler[™] DNA Ladder, Thermo Scientific (A). Standard molekulových hmotností fragmentů RNA použitý pro elektroforetickou analýzu RNA: 1 kb RNA Ladder, Norgen Biotek (B). Standardy molekulových hmotností proteinů použité pro SDS-PAGE: PageRuler[™] Plus Prestained Protein Ladder, Thermo Scientific (C) a Precision Plus Protein[™] Kaleidoscope[™] Standards, MBI Fermentas (D).

4.2 Metody

4.2.1 Sterilizace

Dest. a demi H₂O, roztoky, média, špičky k mikropipetám, mikrozkumavky, párátka a samet pro replica plating byly sterilizovány v autoklávu při tlaku 120 kPa po dobu 20 minut. Plastový materiál a roztoky používáné pro práci s RNA byly sterilizovány dvakrát. Chemické sklo bylo sterilizováno suchým teplem při teplotě 180 °C po dobu 3 hodin. Skleněné kličky používané na mikrobiologický výsev byly sterilizovány namočením v ethanolu a žíháním v plameni. Plastové centrifugační zkumavky o objemu 10 ml a 50 ml byly sterilizovány parami kyseliny peroctové v uzavřeném polyethylenovém sáčku po dobu nejméně 24 hodin.

4.2.2 Práce s DNA

4.2.2.1 Mikroizolace genomové DNA pro PCR

Malé množství biomasy (stáří 1 den) bylo resuspendováno ve 40 µl NaOH (20 mM). Směs byla promíchána (Vortex Genie 2, Scientific Industries) a v tenkostěnných PCR zkumavkách denaturována 15 min při 95 °C (v cykléru PCR termocyklér BIOER GenePRO nebo PCR termocyklér MiniCycler[™], MJ Research). Poté byla směs centrifugována 1 min při 2 000 g (mikrocentrifuga Spectrafuge 24D, Labnet International) a supernatant obsahující DNA byl použit pro PCR reakce. DNA byla uchovávána při -20 °C. Genomová DNA v této kvalitě je vhodná pro ověřovací PCR reakce.

4.2.2.2 Amplifikace DNA pomocí PCR

Metoda PCR (polymerázová řetězová reakce) byla využita pro ověřování transformovaných kmenů a při přípravě transformačních kazet, vzorků na sekvenaci a sond pro northern blot. Použity byly PCR cykléry: gradientový PCR termocyklér BIOER XP, PCR termocyklér BIOER GenePRO a PCR termocyklér MiniCycler[™], MJ Research. Složení reakční směsi a podmínky pro ověření transformace a přípravu vzorků na sekvenování jsou uvedeny v tabulce5. Složení reakční směsi a podmínky pro přípravu transformačních kazet jsou uvedeny v tabulce 7 (kap. 4.2.3.3.1) a pro přípravu sond jsou uvedeny v tabulce 14 (kap. 4.2.6.4).

Tabulka 5: Složení reakční směsi a podmínky pro ověření transformace a přípravu vzorků na sekvenování. Primery jsou rozepsány v tabulkách6,9 a 10. Kroky denaturace dsDNA, nasedání primerů a syntéza se cyklicky opakovaly 35×. ¹Teplota nasedání primerů se lišila v závislosti na vlastnostech daných primerů. ²Teplota syntézy se lišila v závislosti na použitém PCR mixu. ³Doba syntézy se lišila v závislosti na délce amplifikované DNA (1 min/1 kbp).

PCR pro ověření transformace a přípravu vzorků na sekvenaci					
Složení reakční směsi			Podmínky PCR reakce		
templátová DNA	1,5 µl		počáteční denaturace dsDNA	94 °C	2-3 min
OneTaq®/PPP PCR Master	5 µl		denaturace dsDNA	94 °C	30 s
Mix					
primer F	1 μl		nasedání primerů	50-70 °C1	20 s
primer R	1 μl		syntéza	68/72 °C ²	3
demi H ₂ O	3 µl		poslední syntéza	68/72 °C ²	6 min
			ukončení reakce	4 °C	8

4.2.2.3 Srážení DNA

PCR produkty určené na sekvenování (a některé transformační kazety) byly přesráženy pro přečištění a zakoncentrování DNA. Nejprve byl vzorek zředěn na poloviční koncentraci pomocí demi H₂O. Poté byl přidán 2,5 násobek objemu 96% EtOH a 1/10 objemu 3M NaAc. Směs byla ponechána přes noc při -20 °C. Poté byla centrifugována (19 800 g, 15 min, 4 °C; Hettich Universal 320 R, Hettich Zentrifugen). Pelet byl resuspendován v původním objemu 80% EtOH a směs byla znovu centrifugována (19 800 g, 10 min, 4 °C). Po odebrání supernatantu byl pelet obsahující DNA vysušen a následně byl resuspendován v malém množství demi H₂O. Koncentrace vzorku byla změřena pomocí mikrokapilárního spektrofotometru NANODROP 1000 (Thermo Scientific).

4.2.2.4 Elektroforetická analýza DNA

TBE pufr:

0,2 M	Tris
10 mM	EDTA
0,45 M	kys. boritá

Množství a kvalita PCR produktů byla určena pomocí horizontální elektroforézy v agarózovém gelu. Agaróza byla rozpuštěna v TBE pufru v množství potřebném pro přípravu 0,7% (w/v) gelu a rozvařena. Po ochlazení byl přidán roztok EtBr (1 µg/1 ml gelu) a po promíchání byl gel nalit do vaničky z plexiskla. Pro vytvoření jamek na vzorky byl ke kraji gelu zasazen hřeben. Po zatuhnutí gelu byla vanička přenesena do elektroforetické nádoby s TBE pufrem. Do jamek byly naneseny vzorky a standard (GeneRuler[™] DNA Ladder Mix). V případě vzorků připravených pomocí LA DNA pol. mixu byl ke každému nanášenému vzorku přidán 1 µl 6× DNA Loading Dye pro obarvení. Elektroforetická soustava (OWL EASYCAST[™] B1/B2, Bio-Rad) byla napojena ke zdroji stejnosměrného napětí (Power Station 300, Labnet International; 96 nebo 110 V, podle velikosti gelu) po dobu 1 h. Poté byl gel vyfotografován na transiluminátoru (Electronic Dual light[™], Ultra Lum) pod UV světlem, které excituje EtBr barvící DNA.

4.2.2.5 Sekvenování DNA

Templát (PCR produkt) byl připraven stejným způsobem, jako probíhaly PCR reakce pro ověření transformace (kap. 4.2.2.2). Použité dvojice primerů jsou uvedeny v tabulce 6. Produkt PCR byl před sekvenací přesrážen pomocí EtOH a NaAc a jeho koncentrace a čistota byla měřena mikrokapilárním spektrofotometrem NANODROP 1000 (Thermo Scientific). Reakce na sekvenaci byla namíchána v celkovém objemu 8 μ l tak, aby koncentrace templátu byla 5-10 ng/100 bp. Součástí směsi byl 1 μ l příslušného primeru. Sekvenaci prováděla Laboratoř sekvenace DNA, PřF UK. Sekvence byly kontrolovány pomocí programů CLONE a Chromas Lite 2.1.

Kmen	Primer F	Primer R
Ino1p-GFP, <i>opi1∆</i> Ino1p-	INO1 C	GFP 589 R
GFP	GFP F	INO1 D
Opi1p-GFP	GFP MID F	KanMX R
	OPI1 C	GFP END R
	OPI1 SF	GFP 89 R
GFP-Opi1p	GFP F	OPI1 B
	OPI1 A	OPI1 B
	OPI1 A	GFP 89 R
	OPI1 A	GFP 589 R
TEF-INO1	INO1 A	KanMX R
ino1∆	INO1 A	Hph R

Tabulka 6: Dvojice primerů použitých na přípravu PCR produktů určených na sekvenaci.

4.2.3 Práce s kvasinkami

4.2.3.1 Skladování a kultivace kvasinkových kmenů

Kvasinkové kmeny byly uchovávány v mikrozkumavkách ve skladovacím médiu při -80 °C.

Pro práci s příslušným kmenem bylo přeneseno malé množství biomasy na pevné GM médium s edicinem a kultivováno 1-2 dny při teplotě 28 °C. Následně byla biomasa použita pro zaočkování kultury na média potřebná pro daný experiment. Kultury kvasinek byly pěstovány na pevných médiích v Petriho miskách v termostatu při 28 °C nebo v tekutých médiích v Erlenmeyerových baňkách na rotační třepačce (Kühner, Lab-Therm; Multitron Standard, INFORS HT) při 28 °C.

4.2.3.2 Stanovení počtu buněk a měření optické denzity (OD) kultury

Počet buněk v buněčné suspenzi byl stanoven pomocí Bürkerovy počítací komůrky ve světelném mikroskopu (Meopta Praha) při zvětšení 10 × 20. Koncentrace buněčné suspenze byla měřena také pomocí spektrometru (Novaspec Plus, Amersham Biosciences) při vlnové délce 600 nm. Optická denzita byla měřena v plastových kyvetách s optickou dráhou 1 cm. Pro OD v oblasti 0,2-0,5 platí, že hodnota 0,1 odpovídá přibližně 1 × 10⁶ buněk/ml. Jako blank byla použita dest. voda.

4.2.3.3 Princip přípravy nových kmenů

Příprava nových kmenů probíhala pomocí transformace LiAc/ssDNA/PEG metodou využívající vysoké účinnosti homologní rekombinace u kvasinek (Gietz & Woods, 2002).

Do buněk byla vložena transformační kazeta obsahující gen pro rezistenci k některému antibiotiku. Kromě přípravy delečního kmene kazeta obsahovala i gen GFP nebo promotor TEF. Na obou koncích obsahovala kazeta sekvence homologní k cílenému místu v genomu. Následně byly pomocí kultivace na médiu s příslušným antibiotikem vybrány klony, u kterých došlo k homologní rekombinaci a začlenění genu pro rezistenci do genomu. Zda byla kazeta vložena správně, bylo ověřeno pomocí PCR a sekvenace.

Princip přípravy jednotlivých kmenů je znázorněn na obrázcích 16 a 17.

Obrázek 16: Schéma přípravy delečního kmene $ino1\Delta$ (A) a kmene TEF-INO1 (B).

Obrázek 17: Schéma přípravy kmenů Ino1p-GFP, *opi1*∆ Ino1p-GFP, Opi1p-GFP (A) a kmene GFP-Opi1p (B).

4.2.3.3.1 Příprava transformačních kazet

Všechny transformační kazety byly připraveny pomocí PCR reakce. Do tenkostěnných PCR zkumavek byla namíchána reakční směs o celkovém objemu 100 µl za použití LA DNA polymerázového mixu (použito pro amplifikaci delších úseků – transformační kazety pro značení pomocí GFP) nebo 50 µl za použití PPP PCR Master Mixu. Amplifikace DNA probíhala za pomoci PCR cykléru (BIOER GenePRO nebo BIOER XP). Složení reakční směsi a podmínky reakce pro jednotlivé kazety jsou uvedeny v tabulce7. Kvalita kazety byla poté ověřena DNA elektroforézou.

Tabulka 7: Složení reakční směsi a podmínky PCR reakce pro jednotlivé transformační kazety. Kroky denaturace dsDNA, nasedání primerů a syntéza se cyklicky opakovaly 35×.

N-koncové značení protei	inu Ino1p pon	nocí GFP		
Složení reakční směsi	F F	Podmínky PCR reakce		
plazmid pKT127	2 ul	počáteční denaturace dsDNA	94 °C	3 min
LA DNA pol. mix	1 ul	denaturace dsDNA	94 °C	30 s
LA pufr	10 ul	nasedání primerů	51.2-64.5 °C*	20 s
dNTP	5 ul	syntéza	68 °C	2 min 30 s
primer INO1 GFP F	3 ul	poslední svntéza	68 °C	5 min
primer INO1 GFP R	3 ul	ukončení reakce	4 °C	0 mm
DMSO	4 ul	*pro nalezení optimální teploty rez	akce probíhala za	šesti různých
25 mM MgCl ₂	10 ul	teplot v rozmezí 51,2-64,5 °C	F	
demi H ₂ O	62 μl			
N-koncové značení protei	inu Opi1p pon	nocí GFP		
Složení reakční směsi		Podmínky PCR reakce		
plazmid pKT127	2 μl	počáteční denaturace dsDNA	94 °C	3 min
LA DNA pol. mix	1 μl	denaturace dsDNA	94 °C	30 s
LA pufr	10 µl	nasedání primerů	62,7 °C	20 s
dNTP	5 μl	syntéza	68 °C	2 min 30 s
primer OPI1 GFP F	2 μl	poslední syntéza	68 °C	5 min
primer OPI1 GFP R	2 μl	ukončení reakce	4 °C	8
DMSO	8 μl			•
25 mM MgCl ₂	20 µl			
demi H ₂ O	50 µl			
C-koncové značení protei	nu Opi1p pon	nocí GFP		
Složení reakční směsi		Podmínky PCR reakce		
plazmid pOM40	1 μl	počáteční denaturace dsDNA	94 °C	3 min
LA DNA pol. mix	1 μl	denaturace dsDNA	94 °C	30 s
LA pufr	10 µl	nasedání primerů	51-66,3 °C*	20 s
dNTP	5 µl	syntéza	68 °C	2 min 30 s
primer OPI1 NGFP F	10 µl	poslední syntéza	68 °C	5 min
primer OPI1 NGFP R	10 µl	ukončení reakce	4 °C	8
DMSO	8 µl	*pro nalezení optimální teploty re	akce probíhala za	pěti různých
25 mM MgCl ₂	10 µl	teplot v rozmezí 51-66,3 °C		
demi H ₂ O	45 µl			
Delece první alely genu II	V01			
Složení reakční směsi		Podmínky PCR reakce		
plazmid pUG6	2 µl	počáteční denaturace dsDNA	94 °C	5 min
PPP PCR Master Mix	25 µl	denaturace dsDNA	94 °C	40 s
primer INO1 DEL F	5 µl	nasedání primerů	54 °C	45 s
primer INO1 DEL R	5 µl	syntéza	72 °C	1 min 40 s
demi H ₂ O	13 µl	poslední syntéza	72 °C	5 min
		ukončení reakce	4 °C	∞
Delece druhé alely genu <i>l</i>	NO1			
Složení reakční směsi		Podmínky PCR reakce	-	
plazmid pAG32	1,25 µl	počáteční denaturace dsDNA	94 °C	2 min
PPP PCR Master Mix	25 µl	denaturace dsDNA	94 °C	30 s
primer INO1 DEL F	1 μl	nasedání primerů	55 °C	20 s
primer INO1 DEL R	1 μl	syntéza	72 °C	1 min 30 s
demi H ₂ O	21,75 µl	poslední syntéza	72 °C	5 min
]	ukončení reakce	4 °C	8
Vložení promotoru TEF p	řed gen INO1			
Složení reakční směsi		Podmínky PCR reakce	1	r
plazmid pYM-N18	1 μl	počáteční denaturace dsDNA	94 °C	5 min
PPP PCR Master Mix	25 µl	denaturace dsDNA	94 °C	40 s
primer INO1 TEF F	5 µl	nasedání primerů	54 °C	45 s
primer INO1 TEF R	5 µl	syntéza	72 °C	1 min 30 s
demi H2O	14 µl	poslední syntéza	72 °C	5 min
		ukončení reakce	4 °C	∞

4.2.3.3.2 Transformace buněk LiAc/ssDNA/PEG metodou

Transformace byla provedena podle (Gietz & Woods, 2002).

Z 1-2 denní kultury bylo odebráno množství biomasy odpovídající velikosti špendlíkové hlavičky. Buňky byly resuspendovány v 1 ml dest. vody, následně bylo 200 μl této suspenze přeneseno do 10 ml tekutého YD média s edicinem. Kultura byla inkubována na třepačce (Kühner, Lab-Therm; Multitron Standard, INFORS HT) při 28 °C přes noc.

Druhý den byl 1 ml této kultury přenesen do 35 ml tekutého YD média s edicinem. Kultura byla inkubována na třepačce při 28 °C přibližně 4 hodiny, čas byl určen tak, aby proběhla alespoň dvě buněčná dělení. Množství buněk bylo určeno na základě OD kultury změřené pomocí spektrometru (Novaspec Plus, Amersham Biosciences). Kultura byla centrifugována (3 000 g, 5 min, LT; Hettich Universal 320 R, Hettich Zentrifugen). Pelet byl promyt v 35 ml dest. vody a znovu centrifugován stejným způsobem. Následně byl resuspendován v 1 ml dest. vody a krátce centrifugován (11 500 g, 30 s, LT; Hettich Mikro 200, Hettich Zentrifugen). Poté byly buňky resuspendovány v takovém množství dest. vody, aby bylo dosaženo koncentrace 10⁹ buněk/ml. Z této suspenze bylo odebráno 100 µl. Po krátké centrifugaci (11 500 g, 30 s, LT) byl odebrán supernatant a k buňkám byla přidána transformační kazeta (v objemu 5-10 µl, podle koncentrace) a 350 µl transformační směsi (složení je uvedeno v tabulce 8).

Poté byly buňky vystaveny teplotnímu šoku (42 °C) po dobu 40 minut (ve vodní lázni Barnstead International, Lab-Line nebo v termobločku Torrey Pines Scientific). Směs byla centrifugována a pelet byl resuspendován v 1 ml tekutého YD média s edicinem. Kultura byla inkubována na třepačce při 28 °C 3 hodiny. Následně byla směs přenesena na misky s pevným GM médiem a s příslušným antibiotikem pro selekci transformovaných buněk a kultivována při 28 °C.

Tabulka 8: S	ložení transformační	směsi o celkovém obje	emu 350 µl (odpo	ovídající jedné trans	sformaci). ssDNA (Salmon
Sperm ssDNA	.) byla před použitím	denaturována 5 minut	při 95 °C.		

Složky	Objem v µl
1 M LiAc	36
ssDNA (10 mg/ml)	12,5
50% (w/v) PEG 3500	240
dest. voda	61,5
celkem	350

4.2.3.3.3 Ověření transformovaných kmenů s modifikací jedné alely

Z výsevu po transformaci byly po 3-7 dnech kultivace přeneseny narostlé kolonie na nové GM médium s příslušným antibiotikem a kultivovány 1-2 dny. Z těchto klonů byla izolována DNA a pomocí PCR a následné DNA elektroforézy bylo ověřeno správné vložení kazety. Použité primery pro jednotlivé kmeny jsou vypsány v tabulce9. Pozitivní klony byly purifikovány výsevem na GM médium (přečištění od netransformovaných buněk) a kultivovány 3-5 dní. Poté byly narostlé kolonie přeneseny na GM médium s příslušným antibiotikem pro ověření

rezistence. Po 1-2 dnech kultivace bylo znovu ověřeno správné vložení kazety pomocí PCR a DNA elektroforézy. Pomocí primerů uvedených v tabulce 10 bylo také ověřeno, že došlo k transformaci pouze jedné alely. Správné vložení kazety bylo ověřeno i pomocí sekvenace. Pozitivní klony byly přeneseny do skladovacího média a uchovávány při -80 °C.

Kmen	Primer F	Primer R
Ino1p-GFP	INO1 C	GFP 89 R
	INO1 C	GFP 589 R
Opi1p-GFP	OPI1 C	GFP 89 R
	OPI1 C	GFP 589 R
	KanMX F	OPI1 D
GFP-Opi1p (po 1. transformaci)	OPI1 A	KanMX R
	GFP F	OPI1 B
GFP-Opi1p (po 2. transformaci)	GFP F	OPI1 B
	OPI1 A	GFP 89 R
<i>ino1</i> ∆ (po 1. transformaci)	INO1 A	KanMX R
<i>ino1</i> ∆ (po 2. transformaci)	INO1 A	Hph R
TEF-INO1	INO1 A	KanMX R

Tabulka 9: Primery použité u jednotlivých kmenů pro ověření správného vložení transformační kazety do genomu.

Tabulka 10: Primery použité u jednotlivých kmenů pro ověření počtu transformovaných alel.

Kmen	Primer F	Primer R
Ino1p-GFP	INO1 C	INO1 D
Opi1p-GFP	OPI1 C	OPI1 D
GFP-Opi1p	OPI1 A	OPI1 B
ino1∆	INO1 A	INO1 B
TEF-INO1	INO1 A	INO1 B

4.2.3.3.4 Ověření transformovaných kmenů s modifikací obou alel

V případě delečního kmene *ino1*∆ bylo potřeba odstranit obě alely. Při první transformaci byla použita kazeta připravená pomocí plazmidu pUG6 obsahující gen pro rezistenci ke geneticinu. Transformace byla ověřena způsobem popsaným v kapitole 4.2.3.3.3. Kmen byl dále transformován za použití kazety připravené pomocí plazmidu pAG32 obsahují gen pro rezistenci k hygromycinu. Ověřování transformace a purifikace klonů probíhala podobně jako po 1. transformaci. Klony byly testovány na rezistenci k oběma antibiotikům a pomocí PCR bylo ověřeno správné vložení obou kazet (primery jsou uvedeny v tabulce9). Pomocí primerů INO1 A a INO1 B bylo také ověřeno, že nezůstala zachována žádná původní alela. Správné vložení kazety bylo ověřeno i pomocí sekvenace. Pozitivní klony byly přeneseny do skladovacího média a uchovávány při -80 °C.

4.2.3.3.5 Odstranění genu pro rezistenci u kmene s N-koncově značeným proteinem

U kmene GFP-Opi1p bylo potřeba odstranit gen pro rezistenci, aby byla zajištěna správná exprese fúzního proteinu. Za tímto účelem byl kmen transformován postupem popsaným v kapitole 4.2.3.3.2, pouze místo transformační kazety byl použit plazmid pSH66. Ten kóduje gen pro rezistenci k nourseothricinu a gen pro CreA rekombinázu pod kontrolou promotoru GAL1 umožňující řízenou expresi CreA rekombinázy na základě přítomnosti galaktózy v médiu. CreA

rekombináza pak vyštěpí z genomu sekvenci nacházející se mezi loxP místy. V tomto případě byl loxP místy ohraničen gen pro rezistenci ke geneticinu.

Po transformaci byly buňky vysety na pevné YD médium s antibiotiky NAT a G418 a kultivovány 2 dny. Následně byla biomasa přenesena do tekutého YD média se stejnými antibiotiky a kultivována přes noc. Druhý den byly buňky promyty v dest. vodě a přeneseny do tekutého média s galaktózou s antibiotikem NAT a kultivovány 3 hodiny. Poté byla kultura vyseta na pevné YD médium bez antibiotik. Po třech dnech kultivace byly narostlé kolonie obtisknuty pomocí sametu na pevné YD médium bez antibiotik a zároveň na YD médium s G418. Druhý den byly na základě negativní selekce vybrány klony, které díky působení CreA rekombinázy ztratily rezistenci ke G418. Následně byly přeneseny na pevné YD médium a zároveň i na YD médium s NAT. Po kultivaci přes noc byly opět na základě negativní selekce vybrány klony, které ztratily plazmid pSH66 a s ním i rezistenci k NAT. Vybrané klony byly otestovány pomocí PCR (primery jsou uvedeny v tabulkách9 a 10) a vysety na pevné YD médium kvůli přečištění od netransformovaných buněk. Purifikované klony byly znovu ověřeny pomocí PCR a také pomocí sekvenace a uloženy ve skladovacím médiu při -80 °C.

4.2.4 Charakterizace připravených kmenů

4.2.4.1 Sledování morfologie kolonií

Morfologie kolonií (způsob a intenzita vrásnění) byla sledována na monokoloniích různého stáří a fotografována pomocí přístrojů: barevná kamera JENOPTIK Progress® MF^{cool}, objektiv Cosmicar, osvětlovací systém Kaiser RS1 a binokulární lupa Leica MZ 16 F, kamera Nikon Digital Sight DS-U1, osvětlovací systém Leica CLS 150X. Počet kolonií na misce a plocha kolonií byly stanoveny pomocí programu ColonyCounter nebo ImageJ.

4.2.4.2 Sledování schopnosti invazivního růstu do média

Barvící roztok:

0,025% (w/v)	Coomassie Brilliant Blue R250
2,5% (v/v)	kys. octová
10% (v/v)	methanol

Některé kmeny netvoří kolonie pouze na povrchu pevného média, ale zarůstají také do agaru. Schopnost invazivního růstu byla sledována barvením misek, ze kterých byla předem odstraněna biomasa z povrchu média. Misky byly omyty dest. vodou, aby byly odstraněny zbytky biomasy na povrchu. Poté se nechal působit barvící roztok po dobu 20 min při promíchávání na třepačce. Obarvené stopy byly fotografovány pomocí barevné kamery JENOPTIK Progress® MF^{cool} (objektiv Cosmicar, osvětlovací systém Kaiser RS1).

4.2.4.3 Sledování fluorescence kolonií

Fluorescence kolonií byla sledována na monokoloniích různého stáří a fotografována pomocí binokulární lupy Leica MZ 16 F, kamery Nikon Digital Sight DS-U1 a zdroje excitačního světla Leistungselektronik Jena ebq 100.

4.2.4.4 Spektrofluorometrické stanovení intenzity fluorescence

Intenzita fluorescence buněk u kmenů produkujících fúzní protein Ino1p-GFP byla měřena pomocí externí sondy spektrofluorometru FluoroMax-P (Horiba Jobin Yvon). Excitační světelný paprsek o vlnové délce 475 nm byl zaměřen na střed monokolonie či makrokolonie a emisní světlo bylo měřeno v rozsahu vlnové délky 499-531 nm.

Paralelně byla měřena i intenzita fluorescence rodičovských kmenů pro stanovení pozadí a případné autofluorescence. Tyto hodnoty byly následně odečteny od hodnot naměřených u kmenů produkujících fúzní protein Ino1p-GFP. Data byla zpracována pomocí programu Microsoft Office Excel.

4.2.4.5 Mikroskopické pozorování

Buňky byly pozorovány pomocí fluorescenčního mikroskopu Leica DMR při zvětšení 10 × 100 a fotografovány pomocí kamery JENOPTIK Progres® Mf^{cool}. Preparát byl nejprve vyfotografován ve viditelném světle při Nomarského kontrastu, pro zachycení fluorescence proteinu GFP byl použit filtr 513852 a excitační filtr 470/40 bez Nomarského kontrastu.

4.2.5 Western blot a imunodetekce

4.2.5.1 Sběr biomasy pro western blot analýzu

Biomasa byla setřena z povrchu pevného média pomocí kovové špachtle očištěné ethanolem. Buňky byly přeneseny do mikrozkumavky, zváženy a ihned zamraženy v tekutém dusíku. Poté byla biomasa uchovávána při -80 °C.

4.2.5.2 Izolace proteinů

MES pufr s inhibitory proteáz:

10 mM	MES pH 6,8
1/50 objemu	2× koncentrovaný PIC
8 mM	DTT
4 mM	PMSF
2 mM	AEBSF
0,5% (v/v)	NP40

Biomasa a buněčné lyzáty byly po celou dobu manipulace chlazeny na ledu. Biomasa byla resuspendována v MES pufru s inhibitory proteáz (300 µl pufru/100 mg biomasy) a přenesena do mikrozkumavek se skleněnými kuličkami (přibližně 200 µl kuliček). Buňky byly rozbíjeny pomocí homogenizátoru FASTPREP 5 × 20 s s dvouminutovými přestávkami na chlazení. Následně byla odebrána směs nad kuličkami a přenesena do nových mikrozkumavek a centrifugována (1 000 g, 5 min, 4 °C; Hettich Universal 320 R, Hettich Zentrifugen). Supernatant byl přenesen do mikrozkumavek, ze kterých bylo odebráno 50 µl na stanovení koncentrace proteinů, zbytek byl ihned zamražen v tekutém dusíku a uchováván při -80 °C.

4.2.5.3 Stanovení koncentrace proteinů

Koncentrace proteinů byla stanovena metodou podle Bradforda pomocí spektrofotometru Novaspec Plus, Amersham Biosciences. K 800 µl ředěného vzorku bylo přidáno 200 µl Bradfordovo reagens, které se nechalo působit 10 min. Poté byla měřena absorbance v kyvetách s optickou dráhou 1 cm při vlnové délce 595 nm. Vzorek byl naředěn demi H₂O tak, aby se hodnoty absorbance pohybovaly v rozmezí 0,2-0,5. Jako blank bylo použito 800 µl demi H₂O s 200 µl Bradfordovo reagens. Jako standard bylo použito 800 µl BSA o koncentraci 5 µg/ml s 200 µl Bradfordovo reagens. Každý vzorek byl měřen nejméně 2×, hodnoty se nesměly lišit více než o 10 %.

4.2.5.4 Elektroforetická analýza proteinů (SDS-PAGE)

30% (w/v) akrylamid:

29% (w/v) akrylamid 1% (w/v) N, N'-methylen-bis-akrylamid

Separační pufr (pH 8,8):

1,5 M Tris 0,4% (w/v) SDS pH upraveno pomocí 1M HCl

Zaostřovací pufr (pH 6,8):

0,5 M Tris 0,4% (w/v) SDS pH upraveno pomocí 1M HCl

SDS elektrodový pufr:

0,05 M Tris (pH 8,3) 0,384 M glycin 0,1% (w/v) SDS

vzorkový denaturační pufr:

2,5 M	Tris (pH 6,8)
50% (v/v)	glycerol
0,02% (w/v)	BFM
10% (w/v)	SDS

Pro analýzu proteinů byla využita vertikální elektroforéza v polyakrylamidovém gelu probíhající v denaturačním prostředí (SDS-PAGE). Gely byly připraveny v aparatuře Bio-Rad. Skla byla očištěna pomocí demi H₂O a ethanolu a upevněna do stojanu. Mezi skla bylo naneseno 5 ml separačního gelu (složení uvedeno v tabulce 11) a překryto izopropanolem (800 μl). Po zatuhnutí gelu byl izopropanol odmyt pomocí demi H₂O a prostor mezi skly byl doplněn zaostřovacím gelem (tab. 11), do něhož byl vložen hřeben pro vytvoření jamek na vzorky. Po zatuhnutí gelu byl hřeben vyjmut a jamky byly naplněny SDS elektrodovým pufrem. Dvojice gelů ve sklech byla umístěna do elektroforetické aparatury Bio-Rad. Mezi skla i okolo skel byl nalit SDS elektrodový pufr o teplotě 4 °C.

Vzorky byly naředěny pomocí MES (10 mM, pH 6,8) na požadovanou koncentraci (obvykle 0,5 µg/µl), smíchány s dalšími složkami podle tabulky 12 a denaturovány 5 min při teplotě 95 °C. Po ochlazení na ledu byly naneseny na gel. Zároveň s nimi byl nanesen i standard molekulových hmotností (PageRuler[™] Plus Prestained Protein Ladder, Thermo Scientific nebo Precision Plus Protein[™] Kaleidoscope[™] Standards, MBI Fermentas).

Elektroforetická aparatura byla napojena na zdroj stejnosměrného proudu (nastaveno 50 mA konstantně, maximální napětí 250 V; ENDURO™, Labnet International) po dobu 1 h. Aparatura byla chlazena ledem.

	separační gel (9%)	zaostřovací gel
30% akrylamid	3,6 ml	780 µl
separační pufr	3 ml	-
zaostřovací pufr	-	1,5 ml
TEMED	24 μl	24 µl
10% persíran	30 µl	30 µl
amonný		
demi H ₂ O	5,4 ml	3,66 ml

Tabulka 11: Složení separačního a zaostřovacího gelu. Množství odpovídá objemu potřebnému na přípravu dvou gelů.

Tabulka 12: Příprava vzorků na SDS-PAGE. *Vzorky proteinů naředěné pomocí MES (10 mM, pH 6,8) na požadovanou koncentraci (obvykle 0,5 μg/μl).

vzorek*		30 µl
vzorkový	denaturační	12,5 µl
pufr		
0,4 M DTT		5 µl
2× koncentr	ovaný PIC	1 µl
0,1 M PMSF	1 µl	

4.2.5.5 Western blot

TGM (western blot) pufr:

0,025 M Tris 0,192 M glycin 15% (v/v) methanol

Barvící roztok:

40% (v/v) methanol 10% (v/v) kys. octová 0,1% (w/v) Coomassie Brilliant Blue R250

Odbarvovací roztok:

40% (v/v) methanol

10% (v/v) kys. octová

Membrána (PVDF membrána, Immobilon-P, Millipore) byla aktivována 5 min methanolem, poté omyta demi H₂O a namočena do TGM pufru. Filtrační papíry Whatman byly upraveny na požadovanou velikost a spolu s pěnovými podložkami také namočeny do TGM pufru. Na mřížce držáku (Bio-Rad) byly na sebe poskládány všechny potřebné vrstvy tak, jak je schematicky znázorněno na obrázku 18. Gel po SDS-PAGE byl vyjmut ze skel, byl odstraněn zaostřovací gel a jeden roh pro snadné určení orientace gelu. Během skládání bylo vše namáčené do TGM pufru a pomocí skleněné zkumavky byly vyháněny bubliny. Držák byl uzavřen tak, aby všechny vrstvy byly pevně drženy u sebe a spolu s chladící vaničkou vložen do aparatury pro přenos. Ta byla naplněna TGM pufrem o teplotě 4 °C a připojena ke zdroji stejnosměrného napětí (nastaveno 120 V konstantně, maximální proud 250 mA; ENDURO™, Labnet International) po dobu 1,5 h. Aparatura byla chlazena ledem a pufr uvnitř byl míchán pomocí magnetického míchadla.

Po přenosu byla z držáku vyjmuta membrána a byl odstřižen standard. Membrána byla vložena na 20 s do barvícího roztoku a poté byla omyta v odbarvovacím roztoku. Po zaschnutí byla vyfotografována s přiloženým ustřihnutým standardem.

Obrázek 18: Schéma sestavy všech vrstev na western blot.

4.2.5.6 Imunodetekce

PBS pufr (pH 7,4) + Tween 20:

10 mMNa2HPO4·12 H₂O0,15 MNaCl0,05% (v/v)Tween 20pH upraveno pomocí 0,2 M H₃PO4 (pro přípravu 1% kaseinu nebylo pH upravováno)

Detekční substráty:

SuperSignal® West Pico Chemiluminescent Substrate (Thermo Scientific) SuperSignal® West Femto Maximum Sensitivity Substrate (Thermo Scientific)

Membrána s proteiny byla na třepačce 3 min odbarvována v methanolu, poté omývána 3 min v demi H_2O a 5 min v PBS pufru. Poté byla blokována v 1% kaseinu (rozpuštěném v PBS pufru) po dobu 20 min. Následně byla membrána inkubována 60 min s protilátkou (GFP (B-2) HRP – myší monoklonální protilátka IgG_{2a}, 200 µg/ml, Santa Cruz Biotechnology) naředěnou v poměru 1 : 1 500 (při použití substrátu Pico) nebo 1 : 15 000 (při použití substrátu Femto). Protilátka byla rozpuštěna v PBS pufru s 1% kaseinem. Po inkubaci s protilátkou byla membrána omyta v PBS pufru po dobu 2 × 5 min.

Membrána byla 5 min inkubována ve fólii s detekčním substrátem a poté přenesena do vyvíjecí kazety. Ve fotokomoře byl k membráně přiložen film, podle síly signálu byla expozice 30 s-20 h. Po vyvolání byl film vyfotografován.

4.2.6 Northern blot a hybridizace

4.2.6.1 Izolace RNA horkým fenolem

 TES pufr:

 10 mM
 Tris (pH 7,5)

 10 mM
 EDTA

 0,5% (w/v)
 SDS

Biomasa byla sbírána stejným způsobem jako pro western blot analýzu (kap. 4.2.5.1). Do mikrozkumavek bylo nasypáno 200 µl skleněných kuliček a k nim bylo přidáno 400 µl fenol : chloroformu (5 : 1, pH = 4,3-4,7). 50 mg biomasy bylo resuspendováno na ledu ve 400 µl TES pufru a přidáno ke skleněným kuličkám. Směs byla inkubována 30 min ve vodní lázni (Barnstead International, Lab-Line) při 65 °C. Každých 5 min byla míchána po dobu 30 s (Vortex Genie 2, Scientific Industries). Poté byla směs inkubována 30 min při -80 °C. Po rozmrznutí byly mikrozkumavky centrifugovány (20 000 g, 15 min, LT; Hettich Universal 320 R, Hettich Zentrifugen). Do nových mikrozkumavek byla odebrána horní vodná fáze a k ní bylo přidáno 400 µl fenol : chloroformu (5 : 1, pH = 4,3-4,7). Směs byla 3 × 30 s míchána (Vortex Genie 2, Scientific Industries) a centrifugována (20 000 g, 15 min, LT). K vodné fázi bylo přidáno 300 µl chloroformu, směs byla míchána 3 × 20 s a centrifugována (20 000 g, 2 min, LT). Vodná fáze byla odebrána a přesrážena přidáním dvojnásobku objemu EtOH (96% v/v) a 1/10 objemu 3 M NaAc. Vzorky byly inkubovány minimálně 60 min při -20 °C.

Před použitím byly vzorky centrifugovány (20 000 g, 30 min, 4 °C), pelet byl promyt v 80% (v/v) EtOH a znovu centrifugován (20 000 g, 10 min, 4 °C). Po vyschnutí byl pelet rozpuštěn v demi H₂O (40 μ l/50 mg původní biomasy), koncentrace a kvalita RNA byly ověřeny pomocí mikrokapilárního spektrofotometru NANODROP 1000 (Thermo Scientific) a elektroforetické analýzy RNA.

4.2.6.2 RNA elektroforéza

TBE pufr:

0,2 M	Tris
10 mM	EDTA
0,45 M	kys. boritá

2× nanášecí pufr

66,6%	formamid
23,4%	formaldehyd
1/10	15× MOPS pufr
0,36 mM	BFM
0,13 mM	EtBr
0,1 mM	EDTA

15× MOPS pufr (pH 7,0)

6,27% (w/v)	MOPS
1,02% (w/v)	NaAc
0,57% (w/v)	EDTA
pH upraveno pomocí 10	M NaOH

Kvalita RNA byla určena pomocí horizontální elektroforézy v agarózovém gelu. Agaróza (v kvalitě pro RNA) byla rozpuštěna v TBE pufru v množství potřebném pro přípravu 1,5% (w/v) gelu a rozvařena. Aparatura na elektroforézu (OWL EASYCAST[™] B1/B2, Bio-Rad) byla omyta 4× ředěným H₂O₂. Gel byl nalit do vaničky z plexiskla a pro vytvoření jamek na vzorky byl ke kraji gelu zasazen hřeben. Po zatuhnutí gelu byla vanička přenesena do elektroforetické nádoby s TBE pufrem.

Vzorky byly naředěny pomocí demi H_2O na koncentraci 2 µg/µl a smíchány se stejným objemem nanášecího pufru. Pomocí cykléru (PCR termocyklér BIOER GenePRO) byly denaturovány 10 min při teplotě 80 °C. Poté byly chlazeny na ledu až do nanesení na gel.

Do jamek byly naneseny vzorky a standard (1 kb RNA Ladder, Norgen Biotek). Elektroforetická soustava byla napojena ke zdroji stejnosměrného napětí (5 V/cm; ENDURO[™], Labnet International) po dobu 90 min. Poté byl gel vyfotografován na transiluminátoru (Electronic Dual light[™], Ultra Lum) pod UV světlem, které excituje EtBr barvící RNA.

4.2.6.3 Northern blot

5× SSC	
0,75 M	NaCl
85 mM	C ₆ H ₅ Na ₃ O ₇ ·2 H ₂ O

Vanička z plexiskla a všechny skleněné Petriho misky byly omyty $4 \times \text{ ředěným } H_2O_2$. Agarózový gel po vyfotografování, filtrační papíry Whatman a membrána (Hybond N+, GE Biosciences) byly namočeny na 15 min do 5× SSC. V Petriho misce (o průměru 20 cm) byla poskládána soustava pro přenos RNA z gelu na membránu (schematicky znázorněno na obrázku 19). Do misky byl nalit 5× SSC + 10 mM NaOH a spodní Whatmany byly přes vaničku přehnuty tak, aby mohl pufr vzlínat. Parafilm byl položen pouze na okraje sloupce. Průběžně při sestavování byly vyháněny bubliny pomocí skleněné zkumavky. Soustava byla ponechána přes noc, poté byla membrána vyfotografována na transiluminátoru (Electronic Dual light[™], Ultra Lum) pod UV světlem. Následně byla inkubována 5 min v 1 M NH₄Ac a potom 5 min v 2× SSC. Vlhká membrána byla vystavena UV záření pro zafixování RNA na membráně (120 000 µJ/cm², UV Stratalinker 1 800, Stratagene).

Obrázek 19: Schéma sestavy všech vrstev pro northern blot.

4.2.6.4 Příprava radioaktivně značené DNA sondy

Jako templát pro přípravu sondy sloužil PCR produkt připravený pomocí primerů uvedených v tabulce 13. Podmínky PCR reakce jsou uvedeny v tabulce 14. DNA byla přesrážena, jak je uvedeno v kapitole 4.2.2.3, a po změření koncentrace podle potřeby naředěna.

Pro radioaktivní značení byl použit Random Primer DNA Labeling Kit (Takara). K 50-80 ng templátu v celkovém objemu 12 µl byly přidány 2 µl náhodných primerů. Směs byla denaturována 3 min při teplotě 95 °C a poté ochlazena na ledu. K této směsi bylo přidáno 2,5 µl H₂O, 2,5 µl 10× pufru, 2,5 µl dNTP, 1 µl Klenowova fragmentu (enzymová aktivita 5 U/µl) a 2,5 µl radioaktivně značeného dCTP (370 MBq/ml, specifická aktivita \geq 111 TBq). Reakční směs byla inkubována 30 min při 37 °C. Poté byly přidány 2 µl 0,5 M EDTA a 25 µl H₂O, vše bylo promícháno a přeneseno na kolonku připravenou podle návodu (NucAway[™] Spin Columns, Invitrogen) pro přečištění od zbylých radioaktivních dCTP. Směs byla centrifugována (2 min, 1 100 g; Hettich Mikro 20, Hettich Zentrifugen) a promytá sonda byla přenesena do nové mikrozkumavky a v ochranném obalu uchovávána při -20 °C.

Těsně před použitím byla sonda denaturována 3 min při 100 °C a pak ochlazena na ledu.

Tabulka 13: Seznam primerů použitých na přípravu templátů pro radioaktivní značení sond s příslušnou teplotou pro jejich nasedání na DNA při PCR reakci.

Primery	Teplota
	(°C)
FAS2 SF – FAS2 SR	63,4
FLO11 SF - FLO11	55,5
SR	
INO1 SF – INO1 SR	59,4
OPI1 SF – OPI1 SR	64,3
OPI3 SF – OPI3 SR	50,9
RPL3 SF – RPL3 SR	50,9
TPI1 SF – TPI1 SR	59,4

Tabulka 14: Složení reakční směsi a podmínky PCR reakce pro přípravu templátů pro radioaktivní značení sond.

PCR pro ověření transformace a přípravu vzorků na sekvenaci							
Složení reakční směsi			Podmínky PCR reakce				
templátová DNA	3 µl		počáteční denaturace dsDNA	94 °C	2 min		
PPP PCR Master Mix	15 μl		denaturace dsDNA	94 °C	30 s		
primer F	3 μl (FLO11 2 μl)		nasedání primerů	tab. 13	30 s		
primer R	3 μl (FLO11 2 μl)		syntéza	72 °C	1 min 30 s		
demi H ₂ O	9 μl		poslední syntéza	72 °C	6 min		
			ukončení reakce	4 °C	8		

4.2.6.5 Hybridizace sondy s RNA a detekce signálu

0,5 M fosfátový pufr

0,235 M Na₂HPO₄

0,265 M NaH₂PO₄

Prehybridizační pufr

0,45 M fosfátový pufr

1% (w/v) BSA

1 mM EDTA

7% (w/v) SDS

Promývací roztok W1

40 mM fosfátový pufr 0,5% (w/v) BSA 1 mM EDTA 5% (w/v) SDS

Promývací roztok W2

80 mM fosfátový pufr 1 mM EDTA 1% (w/v) SDS

Membrána se zafixovanou RNA byla vložena do hybridizačního válce (Labnet) s 20-30 ml prehybridizačního pufru (65 °C) a inkubována 1-2 h při 65 °C při pozvolném promíchávání v hybridizačním inkubátoru (Labnet ProBlot). Hybridizační pufr byl připraven smícháním denaturované radioaktivní sondy s 20-30 ml prehybridizačního pufru (65 °C), s hybridizačním pufrem byla membrána inkubována při 65 °C přes noc.

Druhý den byl hybridizační pufr uschován v centrifugační zkumavce při -20 °C pro případné další použití. Membrána byla omyta 2× pomocí 50 ml promývacího roztoku W1 (65 °C) po dobu 10 min v hybridizačním inkubátoru při 65 °C. Poté byla stejným způsobem omyta promývacím roztokem W2.

Membrána byla vložena ve fólii do vyvíjecí kazety, k ní byl přiložen film a po dobu expozice (1 h-5 dní) byla kazeta uložena v -80 °C. Po vyvolání byl film vyfotografován.

V některých případech byla membrána po detekci signálu omyta v 50 ml 0,5% (w/v) SDS při 65 °C po dobu 60 min a poté hybridizována s jinou sondou (velikost cílených mRNA se lišila nejméně o 400 b).

4.2.7 Statistické metody

Data získaná pomocí spektrofluorometru a údaje o ploše kolonií vypočítané pomocí programu ImageJ (Colony Counter) byly zpracovány pomocí statistické analýzy. Nejprve byla testována normalita dat (Shapiro-Wilk test)(Shapiro & Wilk, 1965). V případě že normalita byla potvrzena, byla otestována i stabilita rozptylu (Levene's test)(Levene, 1961). Tím byly splněny předpoklady pro využití One-Way Anova testu pro analýzu rozptylu (Howell, 2002). V případě, že data neměla normální rozložení, byl pro analýzu rozptylu využit Kruskall-Wallis test (Kruskal & Wallis, 1952). Vzhledem k povaze dat byl zvolen test One-Way Anova pro data ze spektrofluorometru a Kruskall-Wallis test pro údaje o ploše kolonií. Všechny testy měly nastavenou kritickou hladinu statistické významnosti na 0,05. Na statistickou analýzu byl použit program R (verze 3.3.3).

4.2.8 Software

Práce se sekvencemi a tvorba primerů: Clone Manager 3.11 Chromas Lite 2.1 MEGA 7.0.18 Zpracování dat a obrazu: NIS-Elements AR 3.1 ImageJ 1.50i ACDSee 17 MS Excel 2010 Colony Counter (Schier a Kovář, 2013) Statistické zpracování dat: R 3.3.3

Databáze:

Saccharomyces Genome Database (SGD) – <u>www.yeastgenome.org</u>

National Center for Biotechnology Information (NCBI) – <u>www.ncbi.nlm.nih.gov</u>

5 Výsledky

5.1 Příprava kmenů

Cíl: Připravit kmeny potřebné pro analýzu metabolismu fosfolipidů.

Všechny připravené kmeny byly odvozeny od přírodního kmene *S. cerevisiae* PORT. Byl připraven kmen s delecí genu *INO1*, kmen s expresí genu *INO1* pod kontrolou promotoru TEF a kmeny exprimující fúzní proteiny s GFP (Ino1p-GFP, Opi1p-GFP, GFP-Opi1p). Schéma přípravy konstruktů je znázorněno na obr. 16 a 17 (kap. 4.2.3.3). Seznam použitých plazmidů je uveden v kapitole 4.1.3, seznam použitých primerů v kapitole 4.1.4. Podrobný postup transformace a následné selekce transformovaných kmenů je popsán v kapitole 4.2.3.3. Kromě kmene *ino1*Δ byla transformována vždy pouze jedna alela. Všechny transformované kmeny byly ověřeny pomocí PCR (kap. 4.2.2.2) a sekvenace (kap. 4.2.2.5). Příklady výsledků ověřování jsou uvedeny na obrázcích 20-24.

Při přípravě kmene *ino1* Δ bylo potřeba odstranit obě alely, protože rodičovský kmen je diploidní. Pro každou alelu byla vytvořena deleční kazeta pomocí jiného plazmidu (pUG6 a pAG32) a na základě homologní rekombinace byly alely postupně odstraněny ve dvou po sobě jdoucích transformacích. Pomocí PCR bylo ověřeno, že nezůstala zachována žádná původní alela (obr. 20).

Obrázek 20: Ověření transformace (delece genu *INO1*) pomocí PCR a elektroforetické analýzy produktů. A: vlevo od standardu reakce na ověření vložení kazety s rezistencí k hygromycinu, vpravo od standardu reakce na ověření vložení kazety s rezistencí ke kanamycinu. B: Reakce ověřující, že v genomu nezbyla žádná nenatransformovaná alela. K – kontrola, S – standard, 1-6 – různé klony izolované po purifikaci. Kromě delece genu *INO1* nás zajímal také vliv nadměrné exprese tohoto genu. Původní promotor genu byl nahrazen silným konstitutivním promotorem TEF, který pochází z vláknité houby *Ahsbya gossypii*. Je promotorem genu *TEF* kódujícího translační elongační faktor 1α (Steiner & Philippsen, 1994). Transformační kazeta byla připravena pomocí plazmidu pYM-N18.

Při přípravě kmenů exprimujících fúzní protein Ino1p-GFP byla transformační kazeta připravena pomocí plazmidu pKT127. Transformovány byly dva kmeny: kmen PORT a kmen PORT *opi1*Δ, u kterého byla odstraněna rezistence ke kanamycinu (již dříve připravený RNDr. Michaelou Schierovou, Ph.D.). Kódující sekvence pro zelený fluorescenční protein GFP byla vložena za kódující sekvenci genu *INO1*. Pomocí sekvenace bylo ověřeno, že nedošlo k posunu čtecí fáze (obr. 20-24). Výsledkem je produkce fúzního proteinu Ino1p-GFP, kde je protein GFP připojen na C-konec Ino1p.

Obrázek 21: Schéma znázorňující umístění primerů pro amplifikaci úseku na sekvenaci pro ověření správného vložení transformační kazety u kmene Ino1p-GFP.

			2280	2290	23	300	2310		2320		
INO1			ATAA	CCGGATTI	CCATTCAC	CAATGTT	TGCGAA	GATTC	TTTAC	IGGCT.	ACG
			::::								:::
INO1-GI	FΡ		ATAA	CCGGATTI	CCATTCAC	CAATGTT	TGCGAA	GATTC	TTTAC	GGCT	ACG
			20	3	0	40	5	0	6	C	
	233	30	2340	2350	23	360	2370		2380		
INO1		CCCTTGA	TCATCGA	TCTTTTAG	TCATGACI	GAGTTT	TGTACA	AGAGT	GTCCT	ATAAG	AAG
		::::::	::::::				:::::				:::
INO1-G	FΡ	CCCTTGA	TCATCGA	TCTTTTAG	TCATGACI	GAGTTT	TGTACA	AGAGT	GTCCT	ATAAG	AAG
		70	80	90) 1	00	110		120		
	239	90	2400	2410	242	20	2430		2440		
IN01		GTGGACC	CAGTTAA	AGAAGATO	CTGGCAAP	ATT <mark>C</mark> GAG	AACTTT	TATCC	AGTTT	FAACC	TTC
							* * * * * * *				:::
IN01-GI	FΡ	GTGGACC	CAGTTAA	AGAAGATO	CTGGCAA	ATT <mark>T</mark> GAG	AACTTT	TATCC	AGTTT	FAACC	TTC
	13	30	140	150	16	50	170		180		
	245	50	2460	2470	248	30	2490		2500		
INO1		TTGAGTT	ACTGGTT	AAAAGCTC	CATTAACA	AGACCA	GGATTT	CACCC	GGTGA	ATGGC	TTA
			::::::								:::
INO1-GI	FP	TTGAGTT	ACTGGTT	AAAAGCTC	CATTAACA	AGACCA	GGATTT	CACCC	GGTGA	ATGGC	TTA
	19	90	200	210	22	20	230		240		
	0.51		0500	0500	0.5.4	10	0.5.5.0		0 5 6 0		
TNO1	201	LU AAGAAGG		2530	204∠ תחחחת ההי	HU Immaaca	2000 mmcmmc		236U Mmmcau		~~~~
INOI		AACAAGC		CGCCTTAG	AAAATTTT	TTAAGA	TTGTTG.	ATTGG.	ATTGC	TTCT	
TNO1 CI	сD		· · · · · · · · · · · · · · · · · · ·								::: (777
INOT-GI	רב ייי	AACAAGC	260	270	CC CAAAA		200	ATTGG	ATTGC(JITCI	CAA
	2.	00	200	270	20	50	290		300		
	25	70	2580	2590	260	0	2610		2620		
TNO1	20	AACGAAC	2000 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CGAAGAGA			2010 CATTC	AACCA	2020	րատար	CTTT
INCI						JIAAICI	CALLIC		••		
TNO1-GI	FР	AACGAAC	 	CGAAGAGA	GATTGTT	GGTG			•• TGCTG	••• 3ጥጥጥ Δ	•• תית מ
1001 01	31	10	320	330	34	10		11000	350		360
			020	000	0.						000
	2.63	30	2640	2650	2.66	50	2670		2680		
INO1	T	TCCCCGC	CTACCTA	ТААААААА	CAAGACAT	TCACCA	TTATCC	TATTA	TCCC	TT	CCA
		:	:::	: :: ::	: :	::::	:	: ::		::	
INO1-GI	FΡ	AAC <mark>ATGT</mark>	CTAAAGG	TGAAGAAT	'TA1	TCAC	TGG	TGTTG	TCCCA	ATTTT	GGT
			370	380			390		400		410

Obrázek 22: Porovnání sekvencí pro ověření správného vložení transformační kazety za gen *INO1*. INO1-GFP je sekvence mezi primery INO1 C a GFP 589 R u kmene Ino1p-GFP. Od sekvence genu *INO1* se liší v jedné bázi (červeně vyznačeno). Modrá oblast odpovídá sekvenci na plazmidu pKT 127 těsně před kódující sekvencí pro GFP, která je znázorněna zeleně.

		10	20	30	40	50	60	
pKT127	GGTGACO	GGTGCTGGTTI	AATTAACAT	GTCTAAAGGT	AAGAATTAT	TCACTGGTGTI	GTC	
INO1-GFP	GGTGACO	GGTGCTGGTTI	AATTAACAT	GTCTAAAGGT	GAAGAATTAT	TCACTGGTGTI	GTC	
34	40	350	360	370	380	390		
		70	80	90	100	110	120	
pKT127	CCAATTI	TTGGTTGAATT	AGATGGTGA	IGTTAATGGTC	ACAAATTTT	CTGTCTCCGGI	'GAA	
							:::	
INO1-GFP	CCAATT	TTGGTTGAATT	'AGATGGTGA'	IGTTAATGGTC	ACAAATTTT	CTGTCTCCGGI	'GAA	
4	00	410	420	430	440	450		
		120	140	150	1.60	170	100	
ъ¥Ш107	CCTCAAC						190 722	
priiz/	GGIGAAG		IIACGGIAA	AIIGACCIIAA			. AAA	
TNO1_CEP	CCTCAA				••••••••••••••••••••••••••••••••••••••		יייי עעעי	
INCI OFI	60 60	170	190 190	ALLOACCI IAA	500	510		
, r	00	470	400	490	500	510		
		190	200	210	220	230	240	
pKT127	TTGCCA	GTTCCATGGCC	AACCTTAGT	CACTACTTTAA	CTTATGGTG	TTCAATGTTTT	TCT	
1								
INO1-GFP	TTGCCA	GTTCCATGGCC	AACCTTAGT	CACTTCTTAA	CTTATGGTG	TTCAATGTTTT	TCT	
5	20	530	540	550	560	570		
		250	260	270	280	290	300	
pKT127	AGATACO	CCAGATCATAT	GAAACAACA	IGACTTTTTCA	AGTCTGCCA	TGCCAGAAGGI	TAT	
	::::::						:::	
INO1-GFP	AGATACO	CCAGATCATAT	GAAACAACA	IGACTTTTTCA	AGTCTGCCA	TGCCAGAAGGI	TAT	
58	80	590	600	610	620	630		
		310	320	330	340	350	360	
pKT127	GTTCAAG	GAAAGAACTAT	TTTTTTCAA	AGATGACGGTA	ACTACAAGA	CCAGAGCTGAA	GTC	
	::::::		:::::::::				:::	
INO1-GFP	GTTCAAG	GAAAGAACTAT	TTTTTTCAA	AGATGACGGTA	ACTACAAGA	CCAGAGCTGAA	GTC	
6	40	650	660	670	680	690		
		370	380	390	400			
pKT127	AAGTTTO	GAAGGTGATAC	CTTAGTTAA	FAGAATCGAAI	TAAA			
					::::			
INO1-GFP	AAGTTTO	GAAGGTGATAC	CTTAGTTAA	PAGAATCGAAT	''I'AAA			

Obrázek 23: Porovnání sekvencí pro ověření správného vložení transformační kazety za gen *INO1*. INO1-GFP je sekvence mezi primery INO1 C a GFP 589 R u kmene Ino1p-GFP. Od sekvence plazmidu pKT127 se liší v dvou bázích (červeně vyznačeno). Modrá oblast odpovídá sekvenci na plazmidu pKT 127 těsně před kódující sekvencí pro GFP.

INO1-GFP

NRI	SIHNVCEDSL	LATPLIIDLL	VMTEFCTRVS	YKKVDPVKED	AGKFENFYPV
LTFLSYWLKA	PLTRPGFHPV	NGLNKQRTAL	ENFLRLLIGL	PSQNELRFEE	RLLGDGAGLI
NMSKGEELFT	GVVPILVELD	GDVNGHKFSV	SGEGEGDA <mark>A</mark> Y	GKLTLKFICT	TGKLPVPWPT
LVT <mark>S</mark> LTYGVQ	CFSRYPDHMK	QHDFFKSAMP	EGYVQERTIF	FKDDGNYKTR	AEVKFEGDTL
VNRIELK					
INO1					
MTEDNIAPIT	SVKVVTDKCT	YKDNELLTKY	SYENAVVTKT	ASGRFDVTPT	VQDYVFKLDL
KKPEKLGIML	IGLGGNNGST	LVASVLANKH	NVEFQTKEGV	KQPNYFGSMT	QCSTLKLGID
AEGNDVYAPF	NSLLPMVSPN	DFVVSGWDIN	NADLYEAMQR	SQVLEYDLQQ	RLKAKMSLVK
PLPSIYYPDF	IAANQDERAN	NCINLDEKGN	VTTRGKWTHL	QRIRRDIQNF	KEENALDKVI
VLWTANTERY	VEVSPGVNDT	MENLLQSIKN	DHEEIAPSTI	FAAASILEGV	PYINGSPQNT
FVPGLVQLAE	HEGTFIAGDD	LKSGQTKLKS	VLAQFLVDAG	IKPVSIASYN	HLGNNDGYNL
SAPKQFRSKE	ISKSSVIDDI	IASNDILYND	KLGKKVDHCI	VIKYMKPVGD	SKVAMDEYYS
ELMLGGHNRI	SIHNVCEDSL	LATPLIIDLL	VMTEFCTRVS	YKKVDPVKED	AGKFENFYPV
LTFLSYWLKA	PLTRPGFHPV	NGLNKQRTAL	ENFLRLLIGL	PSQNELRFEE	RLL*
GFP					
MSKGEELFT	GVVPILVELD	GDVNGHKFSV	SGEGEGDA <mark>T</mark> Y	GKLTLKFICT	TGKLPVPWPT
LVT <mark>T</mark> LTYGVQ	CFSRYPDHMK	QHDFFKSAMP	EGYVQERTIF	FKDDGNYKTR	AEVKFEGDTL
VNRIELK					

Obrázek 24: INO1-GFP je aminokyselinová sekvence odpovídající DNA sekvenci mezi primery INO1 C a GFP 589 R u kmene Ino1p-GFP. Hnědá barvy vyznačuje část shodnou se sekvencí proteinu Ino1p. Bodová mutace v DNA sekvenci INO-GFP nezpůsobila změnu aminokyseliny. Modrá oblast odpovídá sekvenci na plazmidu pKT 127 těsně před kódující sekvencí pro GFP. Zeleně je vyznačená shodná oblast s proteinem GFP. 2 bodové mutace způsobily změnu aminokyseliny. Funkce proteinu GFP však byla ověřena pomocí fluorescenční mikroskopie.

Dále byl připraven kmen s hybridním genem *OPI1-GFP*. Postup byl stejný jako u přípravy kmenů exprimujících Ino1p-GFP. Přestože byl kmen ověřen pomocí PCR a sekvenace, nepodařilo se detekovat signál pomocí fluorescenčního mikroskopu ani pomocí imunodetekce. Pro případ, že by C-koncová fúze proteinu Opi1p s GFP byla důvodem nefunkční exprese tohoto fúzního proteinu, byl připraven i kmen, kde je Opi1p značen pomocí GFP na N-konci. Nejprve byla transformována kazeta připravená pomocí plazmidu pOM40. Poté byly pozitivní buňky inkubovány s plazmidem pSH66, který obsahuje gen pro CreA rekombinázu. Její aktivita způsobila odstranění genu pro rezistenci z oblasti před genem pro fúzní protein GFP-Opi1p. Poté byl kmen ověřen pomocí PCR a sekvenace. Přestože transformace proběhla v pořádku, nebyl ani u tohoto kmene detekován žádný signál pomocí fluorescenčního mikroskopu.

5.2 Vliv zdroje uhlíku, selenanu a kys. 2-bromooktanové na morfologii kolonií a produkci Ino1p-GFP

Cíle:

- Zjistit, jaký je vztah mezi morfologií kolonie a hladinou Ino1p-GFP.
- Zjistit, zda se hladina Ino1p-GFP mění v přítomnosti selenanu nebo kys. 2bromooktanové.
- Zjistit, jak se liší hladina Ino1p-GFP u rodičovského kmene a kmene s delecí genu *OPI1*.
- Zjistit, zda absence Ino1p nebo jeho zvýšená produkce ovlivňuje morfologii kolonií nebo reakci kmenů na přítomnost selenanu či kys. 2-bromooktanové.

Připravené kmeny byly zkoumány za různých podmínek, které mohou ovlivnit morfologii kolonií a expresi genu *INO1*. Zkoumány byly především vlivy různých zdrojů uhlíku, přítomnosti selenanu nebo inhibitoru kys. 2-bromooktanové (BOA) a jejich kombinace. Výsledky pozorování nám pomohou porozumět dějům, které propojují metabolismus fosfolipidů a tvorbu morfologie kolonií. V následujícím textu jsou média popisována zkratkami uvedenými v tabulce 15.

Tabulka 15: Složení a zkratky použitých médií. Koncentrace inhibitoru kys. 2-bromooktanové je uvedena u jednotlivých experimentů.

zkratka média	zdroj uhlíku	
YD	2% (w/v) glukóza	
YD01	0,1% (w/v) glukóza	
GM	3% (v/v) glycerol	
YD-Se	2% (w/v) glukóza	0,05 mM Na2SeO4
YDi	2% (w/v) glukóza	kys. 2-bromooktanová
YD-Sei	2% (w/v) glukóza	0,05 mM Na2SeO4 kys. 2-bromooktanová
GM-Se	3% (v/v) glycerol	0,05 mM Na ₂ SeO ₄
GMi	3% (v/v) glycerol	kys. 2-bromooktanová
GM-Sei	3% (v/v) glycerol	0,05 mM Na2SeO4 kys. 2-bromooktanová

5.2.1 Kmeny PORT, Ino1p-GFP, *opi1*Δ a *opi1*Δ, Ino1p-GFP

5.2.1.1 Morfologie kolonií a invazivní růst na různých zdrojích uhlíku

Zkoumanými zdroji uhlíku byly 2% (w/v) a 0,1% (w/v) glukóza a 3% (v/v) glycerol. Zatímco kvasinky rostoucí na 0,1% glukóze či 3% glycerolu získávají energii především respirací, při vysoké koncentraci glukózy (2%) kvasinky fermentují a aktivují katabolickou represi (utlumení metabolických drah pro zpracování jiných zdrojů uhlíku, represe mitochondriálních funkcí)(Polakis *et al.*, 1965; Nevoigt & Stahl, 1997; Gancedo, 1998). Zdroj uhlíku také souvisí

s morfologií kolonií. Glukóza negativně ovlivňuje expresi genu *FLO11*, který je významný pro morfologii kolonie (obr.3, kap. 2.2.3).

Kmen PORT vytváří na GM médiu mírně vrásčité kolonie (obr. 25), zatímco na YD médiu tvoří kolonie zcela hladké. Na YD01 médiu tvoří kolonie vrásčité s hladkým okrajem. Kmen $opi1\Delta$ tvoří na všech médiích kolonie hladké (obr. 26) a také menší než kmen PORT.

Po čtyřech dnech růstu se kolonie na různých médiích viditelně liší velikostí, u obou kmenů stejným způsobem. Největší jsou kolonie rostoucí na YD, kolonie rostoucí na YD01 dosahují průměrně 70 % jejich velikosti a kolonie rostoucí na GM 40 % jejich velikosti.

Invazivní růst byl sledován u 4-5 dní starých kolonií (nevyobrazeno). Buňky kmene PORT zarůstají do GM média po celé ploše rovnoměrně, pouze ve středu kolonie je výraznější bod. Na YD01 médiu vytváří stopu v podobě bodu, ze kterého vychází střapaté paprsky. Do YD média zarůstají buňky rovnoměrně po celé ploše kolonie uprostřed s kořenem zarůstajícím do větší hloubky, při pohledu shora ve tvaru písmene I nebo Y. Buňky kmene *opi1* Δ nezarůstají do GM a YD01 médií vůbec, na YD médiu tvoří velmi slabou stopu.

Kmeny Ino1p-GFP a *opi1*Δ, Ino1p-GFP se od svých rodičovských kmenů morfologicky nijak neliší (rozdíly viditelné na obrázku 25 jsou způsobeny odlišnou hustotou výsevu), produkce fúzního proteinu tedy neovlivňuje morfologii kolonií.

Obrázek 25: Monokolonie (4 dny staré) kmene PORT a kmene Ino1p-GFP rostoucí na médiích GM, YD01 a YD. GFP: expozice 0,2 s. Měřítko: 3 mm.

opi1∆, Ino1p-GFP

Obrázek 26: Monokolonie (4 dny staré) kmene *opi1*Δ a kmene *opi1*Δ, Ino1p-GFP rostoucí na médiích GM, YD01 a YD. GFP: expozice 0,03 s. Měřítko: 3 mm.

5.2.1.2 Analýza produkce Ino1p-GFP

Množství proteinu Ino1p bylo sledováno pomocí fúze s fluorescenčním proteinem GFP. Sledována byla přímo fluorescence proteinu pomocí fluorescenční lupy a spektrofluorometru nebo bylo množství proteinu stanoveno pomocí imunodetekce.

Fluorescence kolonií je zachycena na obrázcích 25 a 26. Intenzita fluorescence kolonií změřená pomocí spektrofluorometru FluoroMax-P se řádově liší mezi kmeny Ino1p-GFP a *opi1* Δ , Ino1p-GFP (obr. 27). Pomocí Shapiro-Wilkova testu normálního rozdělení a Levenova testu shody rozptylu byla ověřena platnost podmínek pro analýzu rozptylu typu – One-Way Anova (normální rozdělení se shodnými rozptyly). Z výsledku testu vyplývá, že mezi kmeny Ino1p-GFP a *opi1* Δ , Ino1p-GFP je signifikantní rozdíl. Delece genu *OPI1* způsobuje nadměrnou expresi genu *INO1*. Fluorescenční signál vzorků kmene Ino1p-GFP se mezi sebou výrazně neliší. Signifikantní rozdíl je mezi koloniemi kmene *opi1* Δ , Ino1p-GFP rostoucími na GM médiu a koloniemi téhož kmene rostoucími na YD nebo YD01.

Obrázek 27: Graf znázorňující intenzitu fluorescence kmenů Ino1p-GFP a *opi1*Δ, Ino1p-GFP rostoucích na médiích YD, YD01 a GM. Fluorescence byla měřena u monokolonií po šesti dnech kultivace, od každého kmene celkem 4 kolonie ze dvou různých misek. Od průměrných hodnot fluorescence byly odečteny průměrné hodnoty naměřené u rodičovských kmenů (bez GFP).

Imunodetekce potvrdila řádový rozdíl v množství proteinu Ino1p mezi kmeny Ino1p-GFP a *opi1* Δ , Ino1p-GFP (obr. 28 vzorky 2 a 5, obr. 29 vzorky 1 a 3). Dále byl u kmene Ino1p-GFP detekován rozdíl v množství proteinu Ino1p při růstu na různých zdrojích uhlíku (obr. 28). Nejvíce proteinu obsahovaly buňky rostoucí na GM, méně buňky rostoucí na YD01 a nejméně buňky rostoucí na YD. Mezi buňkami různého stáří (5, 7 a 11 dní) nebyly nalezeny výrazné rozdíly na žádném z testovaných zdrojů uhlíku. U kmene *opi1* Δ , Ino1p-GFP byl signál stejně silný na všech testovaných zdrojích uhlíku i u buněk různého stáří (5, 7 a 11 dní; obr. 29).

Kmen	wt	t Ino1p-GFP		<i>opi1∆</i> Ino1p-GFP	Ino1p-GFP						wt	
Médium	GM					YD01			YD			
Stáří	7d	5d	7d	11d	5d	4d	7d	11d	4d	7d	11d	4d
Množství proteinů	6 µg				3 µg	6 µg						

Obrázek 28: A – Membrána po western blotu s obarvenými proteiny. B – Film zachycující signál Ino1p-GFP u jednotlivých vzorků. C – Popis vzorků na membráně a filmu (wt – kmen PORT).

Obrázek 29: A – Membrána po western blotu s obarvenými proteiny. B – Film zachycující signál Ino1p-GFP u jednotlivých vzorků. C – Popis vzorků na membráně a filmu.

5.2.1.3 Vliv kys. 2-bromooktanové a selenanu na morfologii kolonií

Dále byl sledován vliv inhibitoru metabolismu fosfolipidů kys. 2-bromooktanové (BOA, koncentrace 0,7 mM) a selenanu. Sledována byla morfologie kolonií rostoucích na médiích YD i GM. Na obrázcích 36-40 je vyobrazen vývoj kolonií kmene Ino1p-GFP v porovnání s rodičovským kmenem. Morfologie kmene Ino1p-GFP je stejná jako u rodičovského kmene na všech použitých médiích.

Na GM médiu jsou kolonie prvních 5 dní lehce vrásčité a poté se struktura ztrácí a kolonie jsou spíše hladké. V přítomnosti selenanu jsou kolonie větší a velmi vrásčité po celou dobu růstu. BOA růst zpomaluje v přítomnosti selenanu i bez něj a kolonie mají méně výrazné vrásnění.

Na YD médiích kolonie dosahují větších rozměrů než na GM a kolonie jsou hladké. U 10 dní starých kolonií na YD je vidět na okrajích kolonie jemná chloupková struktura. Kolonie v přítomnosti selenanu jsou v prvních dnech menší, ale poté rychle přirůstají a kolem 7. dne už jsou větší než při růstu bez selenanu. Ten způsobuje také vroubkovaný povrch kolonií. BOA i na YD zpomaluje růst, na morfologii má pouze slabý vliv, chybí chloupková struktura a v přítomnosti selenanu na morfologii vliv nemá.

Velikosti kolonií na obrázcích neodpovídají průměrné velikosti kolonie, týká se především kolonií rostoucích na YD od 5. dne. Pro focení jsem vybírala záměrně menší kolonie, abych zachytila morfologii celé kolonie při stejném nastavení binokulární lupy. Skutečná plocha kolonie kmene PORT je znázorněna v grafech na obrázcích 30 a 31. Jedná se o průměrnou plochu všech kolonií nejméně ze čtyř misek. Protože data neměla normální rozdělení, použila jsem Kruskall-Wallis test. Zda jsou rozdíly ve velikosti kolonií na různých médiích statisticky významné, je uvedeno v tabulce 16. Z tabulky je zřejmé, že rozdíly v ploše kolonií způsobené vlivem složení média znázorněné pomocí grafů (obr. 30 a 31) jsou signifikantní. Pouze u 3 dny starých kolonií není významný rozdíl mezi koloniemi rostoucími na GMi a GM-Sei a u 10 dní

Obrázek 30: Průměrná plocha kolonií kmene PORT (stáří 3 dny) na různých médiích. Plocha kolonie byla určena z průměrné plochy kolonií na nejméně 4 miskách. Chybové úsečky znázorňují směrodatnou odchylku.

Obrázek 31: Průměrná plocha kolonií kmene PORT (stáří 10 dní) na různých médiích. Plocha kolonie byla určena z průměrné plochy kolonií na nejméně 4 miskách. Chybové úsečky znázorňují směrodatnou odchylku.

Tabulka 16: Výsledky statistické analýzy rozdílů (Kruskall-Wallis test) u 3 dny a 10 dní starých kolonií rostoucích na různých médiích. Kritická hladina statistické významnosti: 0,05. Znaménko + znázorňuje statisticky významný rozdíl mezi uvedenými médii, znaménko - znamená nevýznamný rozdíl.

média	kolonie staré 3 dny	kolonie staré 10 dní
GM/GM-Se	+	+
GMi/GM-Sei	-	+
GM/GMi	+	+
GM-Se/GM-Sei	+	+
YD/YD-Se	+	+
YDi/YD-Sei	+	-
YD/YDi	+	-
YD-Se/YD-Sei	+	-
GM/YD	+	+
GMi/YDi	+	+
GM-Se/YD-Se	+	+
GM-Sei/YD-Sei	+	+

5.2.1.4 Faktory ovlivňující působení kys. 2-bromooktanové

Intenzita působení BOA je závislá pravděpodobně na mnoha faktorech. Dva nejdůležitější pro mé experimenty jsou koncentrace BOA v médiu a hustota kolonií na misce. Čím je koncentrace BOA v médiu vyšší, tím je ztráta morfologie výraznější (obr. 32). Při nižší hustotě výsevu je morfologie kolonií ovlivněna přítomností BOA (1,4 mM) méně než při vyšší hustotě (obr. 33).

Obrázek 32: Vliv koncentrace BOA na morfologii kolonií (stáří 9 dní, médium GM-Se). Měřítko 3 mm.

Obrázek 33: Vliv počtu kolonií na působení BOA (1,4 mM). Čísla vlevo odpovídají přibližnému počtu kolonií na misce. Měřítko 3 mm.

5.2.1.5 Vliv selenanu a kys. 2-bromooktanové na invazivní růst

Invazivní růst byl sledován po odstranění biomasy z povrchu agaru a obarvení buněk, které zarostly dovnitř. Během 20 min barvení pronikla barva pouze těsně pod povrch agaru a kořínky zarůstající hlouběji zůstaly neobarveny. Stopy byly fotografovány zespoda misky, aby byly kořínky dobře vidět (obr. 41).

Na GM zarůstají buňky pouze těsně pod povrch agaru a v přítomnosti selenanu jsou stopy výraznější. Na YD kolonie také zarůstají těsně pod povrch, ale vytváří i kořen ve tvaru písmene I nebo Y zarůstající hluboko do agaru, v přítomnosti selenanu jsou kořínky rozvětvenější.

BOA (0,7 mM) neměla na invazivní růst vliv na žádném z médií.

5.2.1.6 Vliv selenanu a kys. 2-bromooktanové na množství proteinu Ino1p

Sledovala jsem vliv BOA a selenanu na množství proteinu Ino1p. Na obrázcích 36-40 jsou vyobrazeny kolonie kmene Ino1p-GFP v porovnání s rodičovským kmenem pomocí fluorescenční binokulární lupy. Výsledky byly potvrzeny i pomocí imunodetekce (obr. 34). Intenzita fluorescence odpovídající množství proteinu Ino1p je na GM médiích vyšší než na YD (při stejném stáří kolonie). V přítomnosti BOA (0,7 mM) je protein Ino1p exprimován více (na GM i na YD), avšak při porovnání kolonií rostoucích v přítomnosti selenanu (média GM-Se/GM-Sei a YD-Se/YD-Sei) BOA tak významný rozdíl v produkci Ino1p nezpůsobuje (obr. 39). Selenan samotný způsobuje na YD médiu mírné zvýšení produkce Ino1p (porovnání YD/YD-Se), zatímco

na GM selenan způsobuje naopak pokles v produkci Ino1p. Při porovnání kolonií rostoucích v přítomnosti BOA (média GMi/GM-Sei) selenan způsobuje stejně významný pokles v produkci Ino1p. Mezi médii YDi a YD-Sei žádný významný rozdíl pozorován nebyl.

Obrázek 34: Příklad výsledků imunodetekce. A – Membrána po western blotu s obarvenými proteiny. B – Film zachycující signál Ino1p-GFP u jednotlivých vzorků. C – Popis vzorků na membráně a filmu (wt – kmen PORT).

5.2.2 Morfologie kolonií kmenů TEF-INO1 a ino1Δ

Kmeny TEF-INO1 a *ino1* Δ byly vysety na GM médium a jejich morfologie byla porovnána s rodičovským kmenem (obr. 43). U kmene TEF-INO1 byla pozorována mírně výraznější vrásčitost v přítomnosti selenanu a BOA (0,7 mM). Naopak u kmene *ino1* Δ byla pozorována méně výrazná vrásčitost. Vliv BOA a selenanu na velikost kolonií je u všech kmenů podobný (obr. 35). Kolonie rostoucí na GMi a GM-Sei jsou stejně velké a jsou menší než kolonie na GM. Kolonie rostoucí na GM-Se jsou naopak větší než kolonie na GM. Počty kolonií na misce byly u rodičovského kmene a kmene *ino1* Δ stejné (26), u kmene TEF-INO1 jich bylo více (40). Rozdíly v morfologii tedy nejsou způsobeny odlišnou hustotou výsevu.

Obrázek 35: Vliv BOA a selenanu na velikost kolonií kmenů PORT, TEF-INO1 a $ino1\Delta$

zek 36: Kolonie kmene Ino1p-GFP v porovnání s rodičovským kmenem. 3 dny staré kolonie rostoucí na GM a YD médiu v přítomnosti inhibitoru BOA (i) ne omnosti kombinace inhibitoru BOA a selenanu (Sei). Kolonie byly snímány za viditelného světla a poté byla snímána i intenzita fluorescence. Měřítko 3 mm

orázek 37: Kolonie kmene Ino1p-GFP v porovnání s rodičovským kmenem. 4 dny staré kolonie rostoucí na GM a YD médiu v přítomnosti inhibitoru BOA (i) ořítomnosti kombinace inhibitoru BOA a selenanu (Sei). Kolonie byly snímány za viditelného světla a poté byla snímána i intenzita fluorescence. Měřítko 3 n

zek 38: Kolonie kmene Ino1p-GFP v porovnání s rodičovským kmenem. 5 dní staré kolonie rostoucí na GM a YD médiu v přítomnosti inhibitoru BOA (i) neb omnosti kombinace inhibitoru BOA a selenanu (Sei). Kolonie byly snímány za viditelného světla a poté byla snímána i intenzita fluorescence. Měřítko 3 mm.

izek 39: Kolonie kmene Ino1p-GFP v porovnání s rodičovským kmenem. 7 dní staré kolonie rostoucí na GM a YD médiu v přítomnosti inhibitoru BOA (i) ne tomnosti kombinace inhibitoru BOA a selenanu (Sei). Kolonie byly snímány za viditelného světla a poté byla snímána i intenzita fluorescence. Měřítko 3 mm

e**k 40:** Kolonie kmene Ino1p-GFP v porovnání s rodičovským kmenem. 10 dní staré kolonie rostoucí na GM a YD médiu v přítomnosti inhibitoru BOA (i) neb mnosti kombinace inhibitoru BOA a selenanu (Sei). Kolonie byly snímány za viditelného světla a poté byla snímána i intenzita fluorescence. Měřítko 3 mm.

zek 41: Kolonie kmene Ino1p-GFP v porovnání s rodičovským kmenem. 10 dní staré kolonie rostoucí na GM a YD médiu v přítomnosti inhibitoru BOA (i) ne omnosti kombinace inhibitoru BOA a selenanu (Sei). Kolonie byly snímány za viditelného světla a poté byly snímány stopy v agaru po koloniích. Stopy jsou o rrstvu agaru. Měřítko 3 mm.

m	n GM		GMi		GM-Se		GM-Sei				
	morfologie	plocha (mm²)	stáří	morfologie	plocha (mm²)	stáří	morfologie	plocha (mm²)	stáří	morfologie	ploch (mm²
		0,54	4 dny	0	0,47	5 dní		0,68	4 dny		0,58
		0,60	5 dní		0,51	6 dní		0,52	5 dní		0,46
01	0	0,44	4 dny		0,51	5 dní		0,65	4 dny	٠	0,62
		0,50	4 dny		0,48	5 dní		0,60	4 dny		0,42

zek 42: Vzhled, plocha a stáří kolonií odebíraných na izolaci RNA pro northern analýzu.

		GM	GMi	GM-Se	GM-Sei	
	PORT	Sim	0			
4 dny	TEF-INO1	3 mm	0			
	ino1∆	3 mm			0	
	PORT					
6 dní	TEF-INO1	In				
	ino1∆	T			۲	
	PORT	In			۲	
10 dní	TEF-INO1	Ĭm				
	ino1∆	T				

Obrázek 43: Kolonie kmenů TEF-INO1 a *ino1*Δ v porovnání s rodičovským kmenem. 4-10 dní staré kolonie rostoucí na GM médiu v přítomnosti inhibitoru BOA (i) nebo selenanu (Se) nebo v přítomnosti kombinace inhibitoru BOA a selenanu (Sei). Měřítko 3 mm.

5.3 Northern analýza

Cíl: Zjistit vliv BOA a selenanu na hladinu mRNA vybraných genů u kmenů PORT, TEF-INO1, *ino1* Δ a *opi1* Δ při kultivaci na pevném médiu s glycerolem.

5.3.1 Biomasa

Na northern analýzu byla použita biomasa 4-6 dní starých kolonií. Kmeny PORT, TEF-INO1, *ino1* Δ a *opi1* Δ byly pěstovány na médiích GM, GMi, GM-Se a GM-Sei (koncentrace BOA: 0,7 mM). Protože BOA a delece genu *OPI1* zpomalují růst, odebírala jsem biomasu tak, aby byly kolonie stejně velké. Stáří, velikost a morfologie kolonií jednotlivých kmenů v době sběru biomasy je na obr. 42.

5.3.2 Detekované geny

V celkové RNA bylo detekováno 7 různých mRNA pomocí radioaktivně značených DNA sond (příprava je popsána v kap. 4.2.6.4). Zajímala nás hladina mRNA pro proteiny Ino1p, Opi1p, Opi3p, Fas2p a Flo11p, Jako referenční mRNA byly detekovány mRNA pro Tpi1p a Rpl3p. Dále popsané vztahy mezi těmito proteiny jsou znázorněny na obr. 44. Gen INO1 kóduje inositol-3fosfátsyntázu, enzym katalyzující první krok ve sledu reakcí vedoucích k syntéze fosfatidylinositolu (Donahue & Henry, 1981). Gen OPI3 kóduje enzym katalyzující přeměnu fosfatidylethanolaminu na fosfatidylcholin (Kodaki & Yamashita, 1987). Na rozdíl od Ino1p je specifičtější pro stacionární fázi růstu (McGraw & Henry, 1989). Fas2p je součást enzymu katalyzujícího syntézu mastných kyselin (Mohamed et al., 1988). Protein Flo11p je nezbytný pro invazivní a pseudohyfální růst (Lo & Dranginis, 1998). Jeho struktura obsahuje GPI kotvu, která je syntetizována z fosfatidylinositolu (Lo & Dranginis, 1996). Transkripční faktor Opi1p je negativním regulátorem genů INO1, OPI3 i FAS2 (Greenberg et al., 1982a; Schüller et al., 1992a; Santiago & Mamoun, 2003). Je také nezbytný pro expresi genu FL011 (Reynolds, 2006). Geny TPI1 a RPL3 jsou na regulaci pomocí Opi1p nezávislé. Tpi1p je enzym glykolýzy (triosafosfátizomeráza) a je exprimován stabilně během celého růstu (Alber & Kawasaki, 1982; Cankorur-Cetinkaya *et al.*, 2012). Rpl3p je ribozomální protein, jeho exprese koreluje s mírou translace v buňce (Wickner et al., 1982; Lund et al., 2008).

Obrázek 44: Vztahy mezi proteiny, jejichž exprese byla sledována pomocí northern analýzy. PI – fosfatidylinositol, GPI – glykofosfatidylinositol, ? – neznámý způsob interakce.

5.3.3 Výsledky northern analýzy

Radioaktivní signály sond detekované pomocí filmu byly kvantifikovány pomocí programů ImageJ a Microsoft Excel a znázorněny pomocí grafů (příklad zpracování dat na obr. 45). Rozdíl mezi hodnotami signálu byl považován za signifikantní v případě, že vyšší ze dvou porovnávaných hodnot byla alespoň dvojnásobná.

Obrázek 45: Příklad zpracování výsledků northern analýzy. A: elektroforetický gel se vzorky RNA. B: Radioaktivní signál vyzařovaný DNA sondou pro gen *OPI3* zachycený na filmu. C: detekované signály kvantifikovány pomocí programů ImageJ a Microsoft Excel a znázorněny pomocí grafu. Signálu pro kmen PORT z GM média byla přiřazena hodnota 1.

Nejprve byla porovnána míra exprese genů regulovaných pomocí Opi1p (*INO1, OPI3, FAS2*) u jednotlivých kmenů (obr. 46). U kmene TEF-INO1 je míra exprese u kolonií rostoucích na GM a GMi vyšší než u kmene PORT, ale v přítomnosti selenanu (GM-Se a GM-Sei) je exprese vybraných genů srovnatelná. Výrazně vyšší exprese vybraných genů je u kmene *opi1* Δ na všech médiích. Míra exprese u kmene *ino*1 Δ je srovnatelná s expresí u kmene PORT, pouze u kolonií rostoucích na GM médiu je exprese genu *FAS2* dvojnásobná u kmene *ino*1 Δ v porovnání s kmenem PORT.

Míra exprese

Obrázek 46: Porovnání míry exprese genů *INO1, OPI3* a *FAS2* u kmenů PORT, TEF-INO1, *opi1*Δ a *ino1*Δ na různých médiích. Signálu pro kmen PORT z GM média byla přiřazena hodnota 1.

Dále byla porovnána exprese genu *OPI1* u kmenů PORT, TEF-INO1 a *ino1* Δ (obr. 47). U kmene TEF-INO1 je exprese *OPI1* více než trojnásobná ve srovnání s kmenem PORT u kolonií rostoucích na médiích GM a GMi. V přítomnosti selenanu nebo selenanu i BOA už rozdíl v expresi není výrazný. U kmene *ino1* Δ je hladina exprese *OPI1* srovnatelná s kmenem PORT na všech médiích kromě GM, kde je u kmene *ino1* Δ exprese mnohem vyšší.

U kmenů PORT, TEF-INO1 a *ino1* Δ byla porovnána i exprese genu *FLO11* (obr. 47). U kmene TEF-INO1 v porovnání s kmenem PORT je velký rozdíl na médiu GMi, kde u kmene TEF-INO1 je exprese genu *FLO11* více než 4× vyšší. Na médiích GM, GM-Se a GM-Sei výrazné rozdíly mezi kmeny PORT a TEF-INO1 nejsou. U kmene *ino1* Δ je hladina exprese *FLO11* u kolonií rostoucích na všech médiích srovnatelná s kmenem PORT. Pouze na médiu GMi je exprese *FLO11* u kmene PORT dvojnásobná v porovnání s kmenem *ino1* Δ .

Míra exprese

Obrázek 47: Porovnání míry exprese genů *OPI1* a *FLO11* u kmenů PORT, TEF-INO1 a *ino1*Δ na různých médiích. Signálu pro kmen PORT z GM média byla přiřazena hodnota 1.

Hodnoty signálu jednotlivých vzorků získané kvantifikací pomocí programů ImageJ a Microsoft Excel byly vzájemně porovnány a zaznamenány do tabulek (tab. 17-20), kde znaménko + znázorňuje alespoň dvojnásobnou hodnotu signálu, ++ alespoň čtyřnásobnou hodnotu, - alespoň poloviční hodnotu signálu, -- alespoň čtvrtinovou hodnotu signálu, 0 znamená méně výrazný nebo žádný rozdíl a X znamená absenci signálu. Kladná znaménka jsou zvýrazněna zeleně, záporná červeně.

Tabulka 17 znázorňuje analýzu vlivu složení média na expresi vybraných genů u kmene PORT. U kolonií rostoucích na médiu se selenanem je zvýšená exprese všech genů, kromě *OPI1* (GM \rightarrow GM-Se). Podle *RPL3* a *TPI1* je obecně na selenanu vyšší hladina transkriptů. Přítomnost BOA i selenanu nemá vliv na expresi *INO1* v porovnání se samotnou BOA (GMi \rightarrow GM-Sei), zároveň je zvýšená exprese *OPI1*. Výrazně zvýšená je v přítomnosti selenanu exprese *FLO11* (GM \rightarrow GM-Se i GMi \rightarrow GM-Sei). To koreluje s výraznější morfologií kolonií. Při porovnání médií GM a GMi je zvýšená exprese *INO1* v přítomnosti BOA, regulace může být ale nezávislá na Opi1p, protože není zvýšená exprese *OPI3* ani *FAS2*. Exprese *FLO11* je v koloniích rostoucích na GMi snížená oproti GM. Při porovnání genové exprese v koloniích na GM-Se a GM-Sei nebyly zjištěny výrazné rozdíly.

Tabulka 18 znázorňuje analýzu vlivu složení média na expresi vybraných genů u kmene TEF-INO1. Zvýšená exprese *INO1* zmenšuje všechny rozdíly v expresi vybraných genů pozorované u kmene PORT. Významný zůstává pouze rozdíl v expresi genu *FLO11* způsobený selenanem (GM \rightarrow GM-Se, GMi \rightarrow GM-Sei).

Tabulka 19 znázorňuje analýzu vlivu složení média na expresi vybraných genů u kmene *opi1* Δ . Absence signálu pro gen *OPI1* potvrzuje deleci genu. Zároveň je vidět silnou závislost exprese *FLO11* na přítomnosti Opi1p. To se odráží na morfologii kolonií, neboť kolonie jsou hladké na všech médiích (obr. 42). U tohoto kmene nemá selenan ani BOA vliv na expresi vybraných genů. Pouze exprese genu *INO1* je v koloniích rostoucích na médiu s inhibitorem i selenanem vyšší než pouze v přítomnosti BOA (GMi \rightarrow GM-Sei), přestože kolonie kmene *opi1* Δ trpí nadměrnou expresí *INO1*.

Tabulka 20 znázorňuje analýzu vlivu složení média na expresi vybraných genů u kmene *ino1*Δ. Absence signálu pro gen *INO1* potvrzuje deleci genu. U kolonií rostoucích na médiu se selenanem je v porovnání s kmenem PORT menší rozdíl v expresi *FLO11* a nevýznamný rozdíl v expresi *FAS2* (GM \rightarrow GM-Se). Přítomnost BOA i selenanu v porovnání s přítomností samotné BOA (GMi \rightarrow GM-Sei) způsobuje, na rozdíl od výsledků pozorovaných u kmene PORT, větší rozdíl v expresi *FAS2*, exprese *OPI3* je naopak srovnatelná na obou médiích. V nepřítomnosti selenanu má BOA velký vliv na expresi genů *FAS2* a *FLO11* (GM \rightarrow GMi), oba geny mají expresi velmi sníženou. Snížená je exprese i u genu *OPI1*. Přítomnost selenanu i BOA v porovnání se samotným selenanem (GM-Se \rightarrow GM-Sei) má vliv pouze na expresi *OPI3*, která je snížená. **Tabulka 17:** Porovnání hodnot signálů detekovaných pomocí northern analýzy u kmene PORT. Znaménko + znázorňuje alespoň dvojnásobnou hodnotu signálu, ++ alespoň čtyřnásobnou hodnotu, - alespoň poloviční hodnotu signálu a 0 znamená méně výrazný nebo žádný rozdíl. Kladná znaménka jsou zvýrazněna zeleně, záporná červeně.

PORT	$GM \rightarrow GM$ -Se	$GMi \rightarrow GM-Sei$	$GM \rightarrow GMi$	$GM-Se \rightarrow GM-Sei$
INO1	+	0	+	0
OPI1	0	+	0	0
OPI3	+	+	0	0
FAS2	+	+	0	0
FL011	++	++	-	0
RPL3	+	+	0	0
TPI1	+	0	0	0

Tabulka 18: Porovnání hodnot signálů detekovaných pomocí northern analýzy u kmene TEF-INO1. Znaménko + znázorňuje alespoň dvojnásobnou hodnotu signálu a 0 znamená méně výrazný nebo žádný rozdíl. Kladná znaménka jsou zvýrazněna zeleně.

TEF-INO1	$GM \rightarrow GM$ -Se	$GMi \rightarrow GM$ -Sei	$GM \rightarrow GMi$	$GM-Se \rightarrow GM-Sei$
INO1	0	0	0	0
OPI1	0	0	0	0
OPI3	0	0	0	0
FAS2	0	0	0	0
FL011	+	+	0	0
RPL3	0	0	0	0
TPI1	+	0	0	0

Tabulka 19: Porovnání hodnot signálů detekovaných pomocí northern analýzy u kmene *opi1*Δ. Znaménko + znázorňuje alespoň dvojnásobnou hodnotu signálu, 0 znamená méně výrazný nebo žádný rozdíl a X znamená absenci signálu. Kladná znaménka jsou zvýrazněna zeleně.

opi1 A	$GM \rightarrow GM$ -Se	$GMi \rightarrow GM-Sei$	$GM \rightarrow GMi$	$GM-Se \rightarrow GM-Sei$
INO1	0	+	0	0
OPI1	Х	Х	Х	Х
OPI3	0	0	0	0
FAS2	0	0	0	0
FL011	Х	Х	Х	Х
RPL3	0	0	0	0
TPI1	0	0	0	0

Tabulka 20: Porovnání hodnot signálů detekovaných pomocí northern analýzy u kmene *ino1*Δ. Znaménko + znázorňuje alespoň dvojnásobnou hodnotu signálu, ++ alespoň čtyřnásobnou hodnotu, - alespoň poloviční hodnotu signálu, -- alespoň čtvrtinovou hodnotu signálu, 0 znamená méně výrazný nebo žádný rozdíl a X znamená absenci signálu. Kladná znaménka jsou zvýrazněna zeleně, záporná červeně.

ino1 A	$GM \rightarrow GM$ -Se	$GMi \rightarrow GM-Sei$	$GM \rightarrow GMi$	$GM-Se \rightarrow GM-Sei$
INO1	Х	Х	Х	Х
OPI1	0	+	-	0
OPI3	+	0	0	-
FAS2	0	++		0
FL011	+	++		0
RPL3	0	+	-	0
TPI1	+	0	0	0

6 Diskuze

6.1 Příprava kmenů

Cílem této práce bylo prozkoumat souvislosti mezi metabolismem fosfolipidů a morfologií kvasinkové kolonie. Za tímto účelem byly připravené nové kmeny kvasinky *S. cerevisiae* odvozené od kmene PORT. Kmen PORT je monokoloniální izolát přírodního vinařského kmene WY63 a na rozdíl od laboratorních kmenů *S. cerevisiae* tvoří strukturované kolonie. Nové kmeny byly navrhovány tak, abychom mohli odvodit funkce vybraných proteinů souvisejících s metabolismem fosfolipidů a tvorbou strukturované kolonie a pozorovat provázání těchto dějů. Připraveny byly kmeny *ino1*Δ, Ino1p-GFP, TEF-INO1 a *opi1*Δ, Ino1p-GFP. Pro experimenty byl použit i kmen *opi1*Δ již dříve připravený RNDr. Michaelou Schierovou, Ph.D. Kmeny Ino1p-GFP a *opi1*Δ, Ino1p-GFP se od svých rodičovských kmenů morfologicky nijak neliší, produkce fúzního proteinu tedy neovlivňuje morfologii kolonií.

Dále byl připraven kmen s hybridním genem *OPI1-GFP*. Přestože byl kmen ověřen pomocí PCR a sekvenace, nepodařilo se detekovat signál pomocí fluorescenčního mikroskopu ani pomocí imunodetekce. Pro případ, že by C-koncová fúze proteinu Opi1p s GFP byla důvodem nefunkční transkripce nebo špatného skládání proteinu do nativní konformace, byl připraven i kmen, kde je Opi1p značen pomocí GFP na N-konci. Ani u tohoto kmene však při imunodetekci nebyl detekován signál. Z northern analýzy vyplývá, že hladina mRNA pro Opi1p je v buňce velmi nízká. Radioaktivní signál byl detekován při expozici v řádu dní, zatímco u ostatních detekovaných genů byla expozice v řádu hodin. Je tedy pravděpodobné, že množství proteinu Opi1p je v buňce velmi malé. Problém s expresí tohoto fúzního proteinu je možná specifický pro kmen PORT, protože v literatuře byla popsána úspěšná exprese proteinu Opi1p značeného pomocí GFP i pomocí dalšího fluorescenčního proteinu mCherry (Han *et al.*, 2015).

6.2 Vliv zdroje uhlíku na morfologii kolonií

Zdroj uhlíku zásadně ovlivňuje metabolismus kvasinek. Na něm závisí, zda bude kvasinka pro získání energie využívat fermentaci či respiraci. Fermentace je pro kvasinky výhodnější, a proto na fermentovatelných zdrojích uhlíku (např. 2% w/v glukóza) dochází ke katabolické represi (utlumení metabolických drah pro zpracování jiných zdrojů uhlíku, represe mitochondriálních funkcí)(Gancedo, 1998). Při nižších koncentracích glukózy (0,1% w/v) nebo při růstu na glycerolu (3% v/v) získávají kvasinky energii především respirací (Polakis *et al.,* 1965; Nevoigt & Stahl, 1997).

Zdrojem uhlíku je ovlivněna velikost i morfologie kolonií. Kmen PORT rostoucí na 3% (v/v) glycerolu (GM médium) vytváří mírně vrásčité kolonie, zatímco na 2% (w/v) glukóze (YD médium) tvoří kolonie zcela hladké. Na 0,1% (w/v) glukóze (YD01 médium) tvoří kolonie

vrásčité s hladkým okrajem. Tyto rozdíly jsou pravděpodobně výsledkem negativního vlivu glukózy na expresi genu *FLO11* (Kuchin *et al.*, 2002). Po čtyřech dnech růstu jsou kolonie rostoucí na YD médiu největší. Kolonie rostoucí na YD01 dosahují průměrně 70 % jejich velikosti a kolonie rostoucí na GM 40 % jejich velikosti. To odpovídá faktu, že kvasinky snáze zpracovávají glukózu než glycerol a na glukóze rostou rychleji (Gancedo, 1998).

Kmen *opi1* Δ tvoří kolonie hladké na všech médiích (GM, YD01, YD) a postrádá invazivní růst. To je způsobeno absencí proteinu Flo11p, protože exprese genu *FLO11* je závislá na přítomnosti Opi1p (Reynolds, 2006). Delece genu *OPI1* také zpomaluje růst na všech médiích v porovnání s kmenem PORT, nejspíše kvůli nadměrné expresi genů (především genu *INO1*) regulovaných pomocí Opi1p.

6.3 Vliv zdroje uhlíku na produkci Ino1p

Ve své práci jsem se zaměřila na sledování exprese genu *INO1* a produkci Ino1p, protože gen *INO1* je nejvíce regulovaným genem metabolismu fosfolipidů *S. cerevisiae* (Greenberg & Lopes, 1996; Carman & Henry, 1999). Množství proteinu Ino1p bylo sledováno pomocí fúze s fluorescenčním proteinem GFP.

Na různých zdrojích uhlíku byly zkoumány kmeny Ino1p-GFP a *opi1*Δ, Ino1p-GFP. Delece genu *OPI1* způsobuje nadměrnou expresi genu *INO1* (Greenberg *et al.*, 1982b), což bylo potvrzeno pomocí fluorescenční lupy, spektrofluorometru a imunodetekce. Rozdíl v produkci Ino1p mezi těmito kmeny je řádový.

U kmene Ino1p-GFP byl zaznamenán vliv zdroje uhlíku na produkci Ino1p pomocí imunodetekce. Nejvíce proteinu obsahovaly buňky rostoucí na GM, méně buňky rostoucí na YD01 a nejméně buňky rostoucí na YD. To odpovídá i naměřeným hodnotám pomocí spektrofluorometru. Rozdíly by mohla vysvětlovat odlišná fáze růstu (Jiranek *et al.*, 1998), ale pomocí imunodetekce bylo zjištěno, že produkce Ino1p se ve sledovaném čase nemění na žádném z médií. Odlišnosti v produkci Ino1p jsou tedy způsobeny zdrojem uhlíku. Výsledek, že růst na glukóze tlumí expresi *INO1* se shoduje s literaturou (Daran-Lapujade *et al.*, 2004; Moreno-García *et al.*, 2015). To pravděpodobně souvisí s tím, že růst kolonií na GM médiu podporuje tvorbu strukturované kolonie, pro niž je potřeba inositol kvůli syntéze GPI kotvy nezbytné pro Flo proteiny. Kolonie rostoucí na médiu s glycerolem pro získání energie využívají respiraci, potřebují více fosfolipidů na tvorbu membrán mitochondrií.

Z dat získaných pomocí spektrofluorometru a fluorescenční lupy také vyplývá, že u kolonií kmene *opi1* Δ , Ino1p-GFP rostoucích na GM médiu je produkce Ino1p nižší než u kolonií rostoucích na YD nebo YD01. Imunodetekce tento rozdíl nepotvrdila, což může být způsobeno příliš silným signálem. Avšak síla signálu degradačních produktů (samotné GFP) se u kolonií rostoucích na GM médiu oproti YD a YD01 liší. Slabší signál pro samotné GFP u kolonií

rostoucích na GM médiu může odpovídat nižší produkci Ino1p-GFP. Vzhledem k absenci Opi1p je produkce Ino1p neregulovaná a větší množství Ino1p na YD a YD01 médiu může odrážet rychlejší metabolismus a vyšší hladinu proteosyntézy na výhodnějším zdroji uhlíku.

6.4 Vliv 2-bromooktanové kys. a selenanu na morfologii kolonií kmene PORT

Pro pozorování změn v metabolismu fosfolipidů byla použita 2-bromooktanová kys. (BOA), která ovlivňuje β-oxidaci mastných kyselin (Kitamoto *et al.*, 1998). Změny v morfologii kolonií byly indukovány pomocí selenanu. Působení těchto dvou látek zvlášť i dohromady vedlo k zajímavým výsledkům.

Pro testování BOA za subletálních podmínek bylo nejprve nutné optimalizovat podmínky. Pro lepší rozpustnost BOA v růstovém médiu bylo příslušné množství rozpuštěno v malém množství ethanolu. Ethanol byl přidáván i do kontrolních médií bez BOA. Dále byl testován vliv koncentrace BOA a na základě těchto výsledků byla zvolena koncentrace 0,7 mM pro následující experimenty.

Na GM médiu BOA nejen zpomaluje růst kolonií, ale zároveň má vliv na morfologii kolonií, ty jsou v její přítomnosti méně strukturované. To dokazuje, že metabolismus lipidů souvisí s morfologií kolonií. Na YD médiu jsou kolonie hladké, a proto zde nemůže být vliv na morfologii výrazný, ale kolonie jsou prokazatelně menší v přítomnosti BOA. V literatuře zatím nebyly popsány účinky BOA na *S. cerevisiae.* U *C. antarctica* BOA také zpomaluje růst a navíc inhibuje syntézu extracelulárních glykolipidů, sloužících jako surfaktant (Kitamoto *et al.,* 1998). U bakterie *Pseudomonas aeruginosa* BOA také inhibuje produkci surfaktantu (rhamnolipidů) a tím narušuje i tvorbu biofilmu (Gutierrez *et al.,* 2013). Je možné, že i u *S. cerevisiae* dochází vlivem BOA k inhibici produkce extracelulárních glykolipidů potřebných pro tvorbu strukturované kolonie.

Selenan indukuje u kolonií vrásnění, jak již bylo dříve zjištěno v rámci Laboratoře biologie kvasinkových kolonií RNDr. Michaelou Schierovou, Ph.D. (nepublikovaná data). Na GM médiu jsou kolonie výrazně strukturované, ale i na YD médiu selenan způsobuje vroubkovanou strukturu kolonie. Selenan ovlivňuje i velikost kolonií. Na GM médiu jsou kolonie v přítomnosti selenanu větší. To je pravděpodobně způsobeno výraznou morfologií a vznikem volných prostor ve struktuře kolonie díky extracelulární matrix (Kuthan *et al.*, 2003; Šťovíček *et al.*, 2010). Na YD médiu jsou kolonie v prvních dnech růstu v přítomnosti selenanu menší, ale po sedmi dnech růstu už dosahují větších rozměrů než kolonie selenanem neovlivněné. Zde struktura kolonie způsobená selenanem není tak výrazná a větší velikost kolonie je způsobena spíše rychlejším růstem. Proč je však v prvních dnech růstu kolonie rostoucí na selenanu znevýhodněna, zatím není jasné.

Jakým mechanismem zasahuje selenan do tvorby strukturovaných kolonií, není známé. Použitá koncentrace je pravděpodobně příliš nízká na to, aby byly změny v morfologii výsledkem toxického působení selenanu nebo dalších látek, které vznikají jeho přeměnou (Tarze *et al.*, 2007). Možná, že toxicita selenanu ovlivňuje kolonii jen v prvních dnech růstu na YD médiu a způsobuje tím pomalejší růst. Selen také díky podobné velikosti a vlastnostem může vstupovat do metabolických drah síry, což může vést ke vzniku modifikovaných látek (např. selenomethionin) s novými vlastnostmi (Cherest *et al.*, 1997). Sloučeniny selenu také interagují s kovovými ionty a mohou tak ovlivňovat funkci proteinů včetně transkripčních faktorů (Björnstedt *et al.*, 1996; Larabee *et al.*, 2009).

Zajímavá je také kombinace BOA a selenanu. Zatímco na GM médiu BOA snižuje strukturovanost kolonie způsobenou selenanem, na YD médiu jsou kolonie na selenanu strukturované stejně v přítomnosti BOA i bez ní. Selenan také způsobuje intenzivnější invazivní růst, zatímco BOA nemá na invazivní růst vliv na žádném ze sledovaných médií.

6.5 Vliv 2-bromooktanové kys. a selenanu na morfologii kolonií kmenů TEF-INO1 a *ino1*Δ

Kmeny TEF-INO1 a *ino1* Δ byly vysety na GM médium a jejich morfologie byla porovnána s rodičovským kmenem PORT. U kmene TEF-INO1 nebyl pozorován vliv samotné BOA ani selenanu na morfologii, ale jejich kombinace (GM-Sei) způsobila mírně výraznější vrásčitost kolonií než u kmene PORT. Naopak u kmene *ino1* Δ byla pozorována méně výrazná vrásčitost na médiu GMi i GM-Sei v porovnání s kmenem PORT. Množství proteinu Ino1p má tedy vliv na morfologii kolonie, větší množství Ino1p částečně ruší efekt BOA.

6.6 Vliv 2-bromooktanové kys. a selenanu na produkci Ino1p

Dále byl sledován vliv BOA a selenanu na množství fúzního proteinu Ino1p-GFP pomocí fluorescenční lupy a imunodetekce. V přítomnosti BOA je protein Ino1p exprimován více (na GM i na YD). To může být ovlivněno narušením metabolismu mastných kyselin, který způsobí nedostatek fosfolipidů, na který buňka reaguje zvýšením exprese genů pro enzymy metabolismu fosfolipidů. Avšak při porovnání kolonií rostoucích v přítomnosti selenanu (média GM-Se/GM-Sei a YD-Se/YD-Sei) BOA tak významný rozdíl v produkci Ino1p nezpůsobuje. U GM média se to dá vysvětlit tím, že samotný selenan produkci Ino1p snižuje. Na YD médiu selenan na produkci Ino1p nemá významný vliv. Pro vysvětlení těchto pozorování je třeba provést další experimenty, které nám pomohou porozumět, jakým způsobem selenan zasahuje do metabolismu kvasinek.

Na GM médiu byla zvýšená exprese *INO1* v přítomnosti BOA potvrzena i pomocí northern analýzy, stejně tak i nevýznamný rozdíl mezi médii GM-Se a GM-Sei. Výsledky northern analýzy jsou však odlišné v souvislosti s působením selenanu. U kolonií rostoucích na GM-Se byla exprese *INO1* vyšší než u kolonií rostoucích na GM (exprese na médiích GMi a GM-Sei byl srovnatelný). Tento výsledek však může být způsoben odlišným stářím kolonií. Zatímco při imunodetekci byly testované kolonie staré 10 dní, na northern analýzu byla odebrána biomasa z kolonií starých 4-5 dní. Je pravděpodobné, že 10. den růstu kolonie rostoucí na GM-Se již dosáhly stacionární fáze růstu a exprese genu *INO1* byla potlačena (Jiranek *et al.*, 1998). Pro potvrzení této teorie by bylo vhodné doplnit imunodetekci u kolonií kmene Ino1p-GFP starých 4-5 dní.

6.7 Northern analýza

Z výsledků northern analýzy vyplývá mnoho zajímavých poznatků, které potvrzují či doplňují data získaná jinými metodami. Přesto z těchto výsledků nelze vyvozovat žádné pevné závěry, protože northern analýza byla provedena pouze jednou, a je potřeba experiment zopakovat, či výsledky potvrdit nebo vyvrátit jinou metodou. Přesto si však myslím, že tyto výsledky stojí za zmínku a zamyšlení.

U kmene PORT dochází vlivem selenanu k velmi výraznému zvýšení exprese genu *FL011*. BOA naopak snižuje expresi *FL011*. To odpovídá morfologii kolonií, čím více je gen *FL011* exprimován, tím vrásčitější jsou kolonie.

U kmene TEF-INO1 byla předpokládána zvýšená hladina exprese *INO1* a to se také potvrdilo. Díky většímu množství Ino1p byla zvýšena u tohoto kmene i exprese *OPI1*. Transkripční faktor Opi1p zřejmě ovlivňuje expresi *INO1* i s vloženým promotorem TEF, jelikož hladina mRNA *INO1* je u kmene *opi1* Δ mnohem vyšší než u kmene TEF-INO1. Pravděpodobně díky vyšší hladině mRNA *OPI1* a funkci Opi1p nejsou u tohoto kmene významné rozdíly mezi médii u genů regulovaných pomocí Opi1p (*OPI3, FAS2*). V porovnání s kmenem PORT selenan nezpůsobuje tak velký rozdíl v expresi *FLO11*. To je pravděpodobně tím, že u kolonií kmene TEF-INO1 rostoucích na médiích bez selenanu je vyšší exprese *FLO11* než u kmene PORT. To by se dalo ověřit přípravou kmene TEF-INO1, Flo11p-GFP.

U kmene *opi1* Δ chybí regulace exprese pomocí Opi1p, a to se projevuje velmi vysokou expresí genů *INO1* a *OPI3* a zvýšenou expresí genu *FAS2* srovnatelně v koloniích rostoucích na všech médiích. Jediná výrazná změna je v expresi *INO1* u kolonií rostoucích na GMi a GM-Sei. Zde selenan způsobuje zvýšení exprese i přesto, že je hladina mRNA *INO1* řádově vyšší než u kmene PORT. Selenan tedy ovlivňuje expresi *INO1* mechanismem nezávislým na Opi1p.

U kmene *ino1* Δ jsou rozdíly v expresi vybraných genů u kolonií rostoucích na různých médiích podobné jako u kmene PORT. Selenan zvyšuje expresi *FLO11* a BOA ji naopak snižuje. Ovšem velikost rozdílů příliš neodpovídá morfologii kolonií, které jsou vrásčité pouze na GM-Se a na ostatních médiích jsou hladké. Je možné, že množství proteinu Flo11p nekoreluje s množstvím mRNA *FLO11*. Absence genu *INO1* může způsobit změny v metabolismu vedoucí ke

kotranslační nebo posttranslační regulaci Flo11p. I když gen *INO1* pro buňku není esenciální, nepochybně jeho absence způsobuje změny v metabolismu. Zatímco u kmene PORT, TEF-INO1 i *opi1* Δ je exprese genů *OPI3* a *FAS2* regulována stejně, u kmene *ino1* Δ jsou mezi těmito geny zásadní rozdíly. U genu *FAS2* jsou nečekaně velké rozdíly v expresi, které korelují s expresí genu *FLO11*. Jaké principy a mechanismy regulace se zde uplatňují, zatím nedokáži posoudit. Obzvlášť kvůli výsledkům u kmene *ino1* Δ je potřeba experiment zopakovat nebo potvrdit jinými metodami.

6.8 Faktory ovlivňující výsledky

Velkým problémem při nastavování experimentů je výběr způsobu, jak porovnávat kolonie mezi sebou. Já nejčastěji volila jako srovnávací znak stejné stáří kolonií. Je však jasné, že stejně staré kolonie se nemusí nacházet ve stejné růstové fázi. Např. kolonie rostoucí na glukóze rostou mnohem rychleji než kolonie rostoucí na glycerolu. Při sběru biomasy na izolaci RNA pro northern analýzu jsem se pokusila odebírat kolonie o stejné velikosti. To se však špatně odhaduje a velikosti kolonií jsou stejné jen přibližně, navíc velikost kolonie nekoreluje s množstvím buněk v kolonii. Strukturovaná kolonie zabírající stejnou plochu jako hladká kolonie obsahuje mnohem méně buněk, protože jsou zde velké mezibuněčné prostory (Kuthan *et al.*, 2003; Šťovíček *et al.*, 2010). Další komplikací při experimentech je vliv hustoty výsevu na misce. Je možné biomasu zvážit a naředit na požadovanou koncentraci buněk. Výsevy těchto suspenzí však nemusí být vždy stejně husté, protože různé kmeny se mohou lišit velikostí buněk nebo životaschopností buněk. U přírodních kmenů také nastává komplikace v tom, že buňky tvoří shluky buněk držících pevně u sebe, které při výsevu vytvoří jen jednu kolonii.

Z výsledků všech experimentů vyplývá, že metabolismus fosfolipidů souvisí s tvorbou strukturované kolonie a změny v expresi enzymů katalyzujících syntézu fosfolipidů se odráží ve změnách morfologie kolonií. Selenan, který indukuje vrásčitost kolonií, způsobuje také změny v expresi genů souvisejících s metabolismem fosfolipidů. Naopak inhibitor β-oxidace mastných kyselin 2-bromooktanová kys. způsobuje také změny v morfologii kolonií. Je možné navázat experimenty, které by se zabývaly možností využít 2-bromooktanovou kys. k potlačení kvasinkové infekce. Strukturované kolonie jsou lépe chráněny proti vnějším podmínkám a lépe odolávají vůči působení inhibitorů. Narušení této struktury a zpomalení růstu kvasinek by mohlo být přínosem pro léčbu.

7 Souhrn

- Pro účely této práce byly připraveny kmeny *ino1*Δ, Ino1p-GFP, TEF-INO1 a *opi1*Δ, Ino1p-GFP odvozené od přírodního kmene *S. cerevisiae* PORT.
- Morfologie kolonií kmene PORT je ovlivněna zdrojem uhlíku. Na nefermentovatelných zdrojích uhlíku (3% v/v glycerol) jsou kolonie strukturovanější než na fermentovatelných zdrojích uhlíku (2% w/v glukóza), kde rostou kolonie hladké. Při nízké koncentraci fermentovatelného zdroje uhlíku (0,1% w/v glukóza) jsou kolonie lehce strukturované.
- Kmen *opi1*Δ tvoří kolonie hladké na všech zkoumaných zdrojích uhlíku (3% v/v glycerol, 2% a 0,1% w/v glukóza) a postrádá invazivní růst. Delece genu *OPI1* také zpomaluje růst na všech médiích v porovnání s kmenem PORT.
- Delece genu *OPI1* způsobuje nadměrnou expresi genu *INO1*, což bylo potvrzeno pomocí fluorescenční lupy, spektrofluorometru a imunodetekce. Rozdíl v produkci Ino1p mezi kmeny Ino1p-GFP a *opi1*Δ, Ino1p-GFP je řádový.
- U kmene Ino1p-GFP byl zaznamenán vliv zdroje uhlíku na produkci Ino1p pomocí imunodetekce. Nejvíce proteinu obsahovaly buňky rostoucí na 3% (v/v) glycerolu, méně buňky rostoucí na 0,1% (w/v) glukóze a nejméně buňky rostoucí na 2% (w/v) glukóze. To odpovídá i naměřeným hodnotám pomocí spektrofluorometru.
- Z dat získaných pomocí spektrofluorometru a fluorescenční lupy také vyplývá, že u kolonií kmene *opi1*Δ, Ino1p-GFP rostoucích na 3% (v/v) glycerolu je produkce Ino1p nižší než u kolonií rostoucích na 0,1% nebo 2% (w/v) glukóze. Imunodetekce tento rozdíl nepotvrdila, což může být způsobeno příliš silným signálem.
- Byly optimalizovány podmínky pro testování inhibitoru β-oxidace mastných kyselin
 2-bromooktanové kys. za subletálních podmínek.
- 2-bromooktanová kys. na médiích s 3% (v/v) glycerolem i 2% (w/v) glukózou zpomaluje růst kolonií kmene PORT a zvyšuje expresi genu *INO1*. Na glycerolovém médiu s inhibitorem jsou kolonie méně strukturované.
- Selenan indukuje u kolonií vrásnění. Na médiu s 3% (v/v) glycerolem jsou kolonie výrazně strukturované, na médiu s 2% (w/v) glukózou selenan způsobuje vroubkovanou strukturu kolonie. Kolonie rostoucí v přítomnosti selenanu jsou větší. Na médiu s 3% (v/v) glycerolem byla pozorována také zvýšená exprese genu *INO1* u kmene PORT, selenan má tedy vliv na metabolismus fosfolipidů.
- U kmene PORT dochází vlivem selenanu k velmi výraznému zvýšení exprese genu *FLO11.* 2-bromooktanová kys. naopak snižuje expresi *FLO11.* To odpovídá morfologii kolonií, čím více je gen *FLO11* exprimován, tím vrásčitější jsou kolonie.

- Na médiu s 3% (v/v) glycerolem 2-bromooktanová kys. snižuje strukturovanost kolonie kmene PORT způsobenou selenanem.
- Selenan způsobuje intenzivnější invazivní růst kmene PORT, zatímco 2bromooktanová kys. nemá na invazivní růst vliv na žádném ze sledovaných médií.
- U kmene TEF-INO1 působila 2-bromooktanová kys. a selenan na morfologii kolonií stejným způsobem jako u kmene PORT, ale kombinace obou látek způsobila mírně výraznější vrásčitost kolonií než u kmene PORT. Naopak u kolonií kmene *ino1*Δ rostoucích na stejném médiu byla pozorována méně výrazná vrásčitost v porovnání s kmenem PORT. Množství proteinu Ino1p má tedy vliv na morfologii kolonie.
- U kmene TEF-INO1, pravděpodobně díky zvýšené hladině mRNA *OPI1* a funkci Opi1p, nejsou významné rozdíly mezi pozorovanými médii u genů regulovaných pomocí Opi1p (*OPI3, FAS2*) v porovnání s kmenem PORT.
- U kmene *opi1*∆ chybí regulace exprese pomocí Opi1p, a to se projevuje velmi vysokou expresí genů *INO1* a *OPI3* a zvýšenou expresí genu *FAS2* srovnatelně v koloniích rostoucích na všech testovaných médiích. Pouze v přítomnosti selenanu i 2-bromooktanové kys. je zvýšená exprese genu *INO1* v porovnání s koloniemi rostoucími pouze v přítomnosti 2-bromooktanové kys. Selenan tedy ovlivňuje expresi *INO1* mechanismem nezávislým na Opi1p.
- Hladina mRNA *INO1* je u kmene $opi1\Delta$ mnohem vyšší než u kmene TEF-INO1.
- I když gen *INO1* pro buňku není esenciální, nepochybně jeho absence způsobuje změny v metabolismu. U kmene *ino1*Δ jsou geny *OPI3* a *FAS2* regulovány odlišně v porovnání s kmenem PORT.
- Je možné navázat experimenty testující působení 2-bromooktanové kys. jako možného léčiva proti kvasinkovým infekcím.

8 Použitá literatura

- Ahmed, S., Brickner, D. G., Light, W. H., Cajigas, I., McDonough *et al.* (2010). DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. *Nature Cell Biology*, *12* (2), 111–120.
- Alber, T., Kawasaki, G. (1982). Nucleotide sequence of the triose phosphate isomerase gene of *Saccharomyces* cerevisiae. Journal of Molecular and Applied Genetics, 1 (5), 419–434.
- Alcázar-Román, A. R., Tran, E. J., Guo, S., Wente, S. R. (2006). Inositol hexakisphosphate and Gle1 activate the DEADbox protein Dbp5 for nuclear mRNA export. *Nature Cell Biology*, 8 (7), 711–716.
- Ambroziak, J., Henry, S. A. (1994). *INO2* and *INO4* gene products, positive regulators of phospholipid biosynthesis in *Saccharomyces cerevisiae*, form a complex that binds to the *INO1* promoter. *The Journal of Biological Chemistry*, 269 (21), 15344–15349.
- Antonsson, B., Montessuit, S., Friedli, L., Payton, M. A., Paravicini, G. (1994). Protein Kinase C in Yeast. The Journal of Biological Chemistry, 269 (24), 16821–16828.
- Baillie, G. S., Douglas, L. J. (2000). Matrix polymers of *Candida* biofilms and their possible role in biofilm resistance to antifungal agents. *Journal of Antimicrobial Chemotherapy*, *46*, 397–403.
- Berridge, M. J. (2009). Inositol trisphosphate and calcium signalling mechanisms. *BBA Molecular Cell Research*, 1793 (6), 933–940.
- Berridge, M. J., Irvine, R. F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. *Nature*, *312* (22), 315–321.
- Biswas, S., Talukder, G., Sharma, A. (2000). Chromosome damage induced by selenium salts in human peripheral lymphocytes. *Toxicology in Vitro*, *14*, 405–408.
- Björnstedt, M., Odlander, B., Kuprin, S., Claesson, H.-E., & Holmgren, A. (1996). Selenite incubated with NADPH and mammalian thioredoxin reductase yields selenide, which inhibits lipoxygenase and changes the electron spin resonance spectrum of the active site iron. *Biochemistry*, 35 (26), 8511–8516.
- Brickner, D. G., Brickner, J. H. (2010). Cdk phosphorylation of a nucleoporin controls localization of active genes through the cell cycle. *Molecular Biology of the Cell*, *21*, 3421–3432.
- Brickner, D. G., Cajigas, I., Fondufe-Mittendorf, Y., Ahmed, S., Lee *et al.* (2007). H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. *PLoS Biology*, *5* (4), 704–716.
- Brickner, J. H., Walter, P. (2004). Gene recruitment of the activated *INO1* locus to the nuclear membrane. *PLoS Biology*, 2 (11), 1843–1853.
- Brückner, S., Mösch, H.-U. (2012). Choosing the right lifestyle: adhesion and development in *Saccharomyces cerevisiae*. *FEMS Microbiology Reviews*, *36*, 25–58.
- Bumgarner, S. L., Dowell, R. D., Grisafi, P., Gifford, D. K., Fink, G. R. (2009). Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. *PNAS*, *106* (43), 18321–18326.
- Cankorur-Cetinkaya, A., Dereli, E., Eraslan, S., Karabekmez, E., Dikicioglu, D., Kirdar, B. (2012). A novel strategy for selection and validation of reference genes in dynamic multidimensional experimental design in yeast. *PloS One*, *7*(6), e38351.
- Cao, Y., Cao, Y., Xu, Z., Ying, K., Li, Y. *et al.* (2005). cDNA microarray analysis of differential gene expression in *Candida albicans* biofilm exposed to farnesol. *Antimicrobial Agents and Chemotherapy*, 49 (2), 584–589.
- Carman, G. M., Henry, S. A. (1999). Phospholipid biosynthesis in the yeast *Saccharomyces cerevisiae* and interrelationship with other metabolic processes. *Progress in Lipid Research*, *38*, 361–399.

- Caro, L. H. P., Tettelin, H., Vossen, J. H., Ram, A. F. J., van den Ende, H., Klis, F. M. (1997). In silicio identification of plasma-membrane and cell wall proteins of *Saccharomyces cerevisiae*. *Yeast*, *13*, 1477–1489.
- Clark, L. C., Dalkin, B., Krongrad, A., Combs Jr, G. F., Turnbull, B. W. *et al.* (1998). Decreased incidence of prostate cancer with selenium supplementation: Results of a double-blind cancer prevention trial. *British Journal of Urology*, *81*, 730–734.
- Cox, J. S., Chapman, R. E., Walter, P. (1997). The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. *Molecular Biology of the Cell*, *8*, 1805–1814.
- Cox, J. S., Walter, P. (1996). A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. *Cell*, *87*, 391–404.
- Culbertson, M. R., Donahue, T. F., Henry, S. A. (1976). Control of inositol biosynthesis in *Saccharomyces cerevisiae*: Properties of a repressible enzyme system in extracts of wild-type (Ino⁺) cells. *Journal of Bacteriology*, *126* (1), 232–242.
- Culbertson, M. R., Henry, S. A. (1975). Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics, 80, 23-40.
- Čáp, M., Štěpánek, L., Harant, K., Váchová, L., Palková, Z. (2012). Cell differentiation within a yeast colony: Metabolic and regulatory parallels with a tumor-affected organism. *Molecular Cell*, 46, 436–448.
- Daran-Lapujade, P., Jansen, M. L. A., Daran, J.-M., van Gulik, W., de Winde, J. H., Pronk, J. T. (2004). Role of transcriptional regulation in controlling fluxes in central carbon metabolism of *Saccharomyces cerevisiae*. *The Journal of Biological Chemistry*, 279 (10), 9125–9138.
- Dean-Johnson, M., Henry, S. A. (1989). Biosynthesis of inositol in yeast. *The Journal of Biological Chemistry*, 264 (2), 1274–1283.
- Deranieh, R. M., He, Q., Caruso, J. A., Greenberg, M. L. (2013). Phosphorylation regulates myo-inositol-3-phosphate synthase. *The Journal of Biological Chemistry*, *288* (37), 26822–26833.
- Deranieh, R. M., Shi, Y., Tarsio, M., Chen, Y., Michael, J., *et al.* (2015). Perturbation of the vacuolar-ATPase: A novel consequence of inositol depletion. *The Journal of Biological Chemistry*, *290*, 27460–27472.
- Dilsiz, N., Celik, S., Yilmaz, Ö., Digrak, M. (1997). The effects of selenium, vitamin E and their combination on the composition of fatty acids and proteins in *Saccharomyces cerevisiae*. *Cell Biochemistry and Function*, *15*, 265–269.
- Divecha, N., Irvine, R. F. (1995). Phospholipid Signaling. Cell, 80, 269–278.
- Donahue, T. F., Henry, S. A. (1981). myo-inositol-1-phosphate synthase. *The Journal of Biological Chemistry*, 256 (13), 7077–7085.
- Erdman, S., Lin, L., Malczynski, M., Snyder, M. (1998). Pheromone-regulated genes required for yeast mating differentiation. *The Journal of Cell Biology*, 140 (3), 461–483.
- Ford, J., Odeyale, O., Shen, C.-H. (2008). Activator-dependent recruitment of SWI/SNF and INO80 during *INO1* activation. *Biochemical and Biophysical Research Communications*, 373, 602–606.
- Gancedo, J. M. (1998). Yeast carbon catabolite repression. *Microbiology and Molecular Biology Reviews*, 62 (2), 334–361.
- Gancedo, J. M. (2001). Control of pseudohyphae formation in *Saccharomyces cerevisiae*. *FEMS Microbiology Reviews*, 25, 107–123.
- Ganther, H. E. (1968). Selenotrisulfides. Formation by the reaction of thiols with selenious acid. *Biochemistry*, 7 (8), 2898–2905.

- Ganther, H. E. (1971). Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. *Biochemistry*, *10* (22), 4089–4098.
- Garlind, A., Cowburn, R. F., Forsell, C., Ravid, R., Winblad, B., Fowler, C. J. (1995). Diminished [³H]inositol(1,4,5)P₃ but not [³H]inositol(1,3,4,5)P₄ binding in Alzheimer's disease brain. *Brain Research*, *681*, 160–166.
- Gietz, R. D., Woods, R. A. (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. *Methods in Enzymology*, *350*, 87–96.
- Gimeno, C. J., Ljungdahl, P. O., Styles, C. A., Fink, G. R. (1992). Unipolar cell divisions in the yeast *S. cerevisiae* lead to filamentous growth: Regulation by starvation and RAS. *Cell*, *68*, 1077–1090.
- Greenberg, M. L., Goldwasser, P., Henry, S. A. (1982a). Characterization of a yeast regulatory mutant constitutive for synthesis of inositol-1-phosphate synthase. *Molecular and General Genetics*, *186*, 157–163.
- Greenberg, M. L., Klig, L. S., Letts, V. A., Loewy, B. S., Henry, S. A. (1983). Yeast mutant defective in phosphatidylcholine synthesis. *Journal of Bacteriology*, *153* (2), 791–799.
- Greenberg, M. L., Lopes, J. M. (1996). Genetic regulation of phospholipid biosynthesis in *Saccharomyces cerevisiae*. *Microbiological Reviews*, *60* (1), 1–20.
- Greenberg, M. L., Reiner, B., Henry, S. A. (1982b). Regulatory mutations of inositol biosynthesis in yeast: Isolation of inositol-excreting mutants. *Genetics*, 100, 19–33.
- Griac, P., Henry, S. A. (1999). The yeast inositol-sensitive upstream activating sequence, UAS_{INO}, responds to nitrogen availability. *Nucleic Acids Research*, 27 (9), 2043–2050.
- Groot, P. W. J. De, Hellingwerf, K. J., Klis, F. M. (2003). Genome-wide identification of fungal GPI proteins. *Yeast, 20*, 781–796.
- Guo, C., Hsia, S., Shih, M., Hsieh, F., Chen, P. (2015). Effects of selenium yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. *International Journal of Medical Sciences*, *12* (9), 748–758.
- Gutierrez, M., Choi, M. H., Tian, B., Xu, J., Rho, J. K. et al. (2013). Simultaneous inhibition of rhamnolipid and polyhydroxyalkanoic acid synthesis and biofilm formation in *Pseudomonas aeruginosa* by 2- bromoalkanoic acids: effect of inhibitor alkyl-chain-length. *PloS One*, 8 (9), e73986.
- Hamada, K., Fukuchi, S., Arisawa, M., Baba, M., Kitada, K. (1998). Screening for glycosylphosphatidylinositol (GPI)dependent cell wall proteins in *Saccharomyces cerevisiae*. *Molecular and General Genetics*, *258*, 53–59.
- Han, S., Binns, D. D., Chang, Y., Goodman, J. M. (2015). Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p^{∆Nterm} only in combination with Ldb16p. *BMC Cell Biology*, *16* (29), 1–13.
- Heinisch, J. J., Lorberg, A., Schmitz, H.-P., Jacoby, J. J. (1999). The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in *Saccharomyces cerevisiae*. *Molecular Microbiology*, 32 (4), 671–680.

Hiltunen, J. K., Filppula, S. A., Koivuranta, K. T., Siivari, K., Qin, Y.-M., Häyrinen, H. M. (1996). Peroxisomal β-oxidation and polyunsaturated fatty acids. *Anals New York Academy of Sciences*, *804* (1), 116-128.

- Hirsch, J. P., Henry, S. A. (1986). Expression of the *Saccharomyces cerevisiae* inositol-1-phosphate synthase (*INO1*) gene is regulated by factors that affect phospholipid synthesis. *Molecular and Cellular Biology*, 6 (10), 3320–3328.
- Howell, D. C. (2002). Statistical methods for psychology. Cengage Learning.
- Huijberts, G. N. M., de Rijk, T. C., de Waard, P., Eggink, G. (1994). ¹³C nuclear magnetic resonance studies of *Pseudomonas putida* fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. *Journal of Bacteriology*, 176 (6), 1661–1666.

- Huisman, G. W., de Leeuw, O., Eggink, G., Witholt, B. (1989). Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. *Applied an Environmental Microbiology*, 55 (8), 1949–1954.
- Cherest, H., Davidian, J.-C., Thomas, D., Benes, V., Ansorge, W., Surdin-Kerjan, Y. (1997). Molecular characterization of two high affinity sulfate transporters in *Saccharomyces cerevisiae*. *Genetics*, *145*, 627–635.
- Christiano, R., Nagaraj, N., Fröhlich, F., Walther, T. C. (2014). Global proteome turnover analyses of the yeasts *S. cerevisiae* and *S. pombe. Cell Reports*, *9*, 1959–1965.
- Ishigami, M., Nakagawa, Y., Hayakawa, M., Iimura, Y. (2004). *FLO11* is essential for flor formation caused by the C-terminal deletion of *NRG1* in *Saccharomyces cerevisiae*. *FEMS Microbiology Letters*, 237, 425–430.
- Jiranek, V., Graves, J. A., Henry, S. A. (1998). Pleiotropic effects of the *opi1* regulatory mutation of yeast: its effects on growth and on phospholipid and inositol metabolism. *Microbiology*, 144, 2739–2748.
- Ju, S., Shaltiel, G., Shamir, A., Agam, G., Greenberg, M. L. (2004). Human 1-D-myo-inositol-3-phosphate synthase is functional in yeast. *The Journal of Biological Chemistry*, 279 (21), 21759–21765.
- Karunanithi, S., Vadaie, N., Chavel, C. A., Birkaya, B., Joshi, J. *et al.* (2010). Shedding of the mucin-like flocculin Flo11p reveals a new aspect of fungal adhesion regulation. *Current Biology*, *20*, 1389–1395.
- Kice, J. L., Lee, T. W. S., Pan, S. (1980). Mechanism of the reaction of thiols with selenite. *Journal of American Chemical Society*, *102* (13), 4448–4455.
- Kieliszek, M., Blazejak, S., Bzducha-Wróbel, A., & Kurcz, A. (2016). Effects of selenium on morphological changes in *Candida utilis* ATCC 9950 yeast cells. *Biological Trace Element Research*, *169*, 387–393.
- Kitamoto, D., Yanagishita, H., Haraya, K., Kitamoto, H. K. (1995). Effect of cerulenin on the production of mannosylerythriol lipids as biosurfactants by *Candida antarctica*. *Biotechnology Letters*, *17* (1), 25–30.
- Kitamoto, D., Yanagishita, H., Haraya, K., Kitamoto, H. K. (1998). Contribution of a chain-shortening pathway to the biosynthesis of the fatty acids of mannosylerythritol lipid (biosurfactant) in the yeast *Candida antarctica*: Effect of β-oxidation inhibitors on biosurfactant synthesis. *Biotechnology Letters*, *20* (9), 813–818.
- Kitamura, N., Hashimoto, T., Nishino, N., Tanaka, C. (1989). Inositol 1,4,5-trisphosphate binding sites in the brain: Regional distribution, characterization, and alterations in brains of patients with Parkinson's disease. *Journal of Molecular Neuroscience*, 1, 181–187.
- Kodaki, T., Yamashita, S. (1987). Yeast phosphatidylethanolamine methylation pathway. *The Journal of Biological Chemistry*, *262* (32), 15428–15435.
- Kruskal, W. H., Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. *Journal of the American Statistical Association*, 47 (260), 583–621.
- Kryukov, G. V, Castellano, S., Novoselov, S. V., Lobanov, A. V, Zehtab, O. *et al.* (2003). Characterization of mammalian selenoproteomes. *Science*, *300*, 1439–1443.
- Kuchin, S., Vyas, V. K., Carlson, M. (2002). Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FL011, haploid invasive growth, and diploid pseudohyphal differentiation. *Molecular and Cellular Biology*, 22 (12), 3994–4000.
- Kunau, W.-H., Dommes, V., Schulz, H. (1995). β-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progress. *Progress in Lipid Research*, *34* (4), 267–342.
- Kuthan, M., Devaux, F., Janderová, B., Slaninová, I., Jacq, C., Palková, Z. (2003). Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. *Molecular Microbiology*, 47 (3), 745–754.

- Lambrechts, M. G., Bauer, F. F., Marmur, J., Pretorius, I. S. (1996). Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. *Proceedings of the National Academy of Sciences of the United States of America*, *93*, 8419–8424.
- Larabee, J. L., Hocker, J. R., Hanas, J. S. (2009). Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite. *Journal of Inorganic Biochemistry*, *103*, 419–426.
- Larabee, J. L., Hocker, J. R., Hanas, R. J., Kahn, F. M., Hanas, J. S. (2002). Inhibition of zinc finger protein-DNA interactions by sodium selenite. *Biochemical Pharmacology*, *64*, 1757–1765.
- Lazard, M., Blanquet, S., Fisicaro, P., Labarraque, G., Plateau, P. (2010). Uptake of selenite by *Saccharomyces cerevisiae* involves the high and low affinity orthophosphate transporters. *The Journal of Biological Chemistry*, *285* (42), 32029–32037.
- Lee, H., Choi, M. H., Kim, T., Yoon, S. C. (2001). Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in *Pseudomonas fluorescens* BM07 utilizing saccharides and its inhibition by 2bromooctanoic acid. *Applied an Environmental Microbiology*, 67 (11), 4963–4974.
- Levene, H. (1961). Robust tests for equality of variances. *Contributions to Probability and Statistics. Essays in Honor of Harold Hotelling*, 279–292.
- Li, F., Palecek, S. P. (2003). *EAP1*, a *Candida albicans* gene involved in binding human epithelial cells. *Eukaryotic Cell*, *2* (6), 1266–1273.
- Li, S. C., Diakov, T. T., Xu, T., Tarsio, M., Zhu, W., *et al.* (2014). The signaling lipid PI(3,5)P₂ stabilizes V₁-V₀ sector interactions and activates the V-ATPase. *Molecular Biology of the Cell*, *25* (8), 1251–1262.
- Light, W. H., Brickner, D. G., Brand, V. R., Brickner, J. H. (2010). Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and *INO1* transcriptional memory. *Molecular Cell*, *40*, 112–125.
- Liu, H., Styles, C. A., Fink, G. R. (1996). *Saccharomyces cerevisiae* S288C has a mutation in *FLO8*, a gene required for filamentous growth. *Genetics*, 144, 967–978.
- Lo, W. S., Dranginis, A. M. (1996). *FL011*, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. *Journal of Bacteriology*, *178* (24), 7144–7151.
- Lo, W. S., Dranginis, A. M. (1998). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by *Saccharomyces cerevisiae*. *Molecular Biology of the Cell*, 9, 161–171.
- Loewen, C. J. R., Gaspar, M. L., Jesch, S. A., Delon, C., Ktistakis *et al.* (2004). Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. *Science*, *304*, 1644–1647.
- Loewen, C. J. R., Roy, A., Levine, T. P. (2003). A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. *The EMBO Journal*, 22 (9), 2025–2035.
- Lund, M. K., Kress, T. L., Guthrie, C. (2008). Autoregulation of Npl3, a yeast SR protein, requires a novel downstream region and serine phosphorylation. *Molecular and Cellular Biology*, *28* (11), 3873–3881.
- Macbeth, M. R., Schubert, H. L., VanDemark, A. P., Lingam, A. T., Hill, C. P., Bass, B. L. (2005). Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. *Science*, *309*, 1534–1539.
- Madhani, H. D., Fink, G. R. (1997). Combinatorial control required for the specificity of yeast MAPK signaling. *Science*, 275, 1314–1317.
- Majumder, A. L., Chatterjee, A., Dastidar, K. G., Majee, M. (2003). Diversification and evolution of L-myo-inositol 1-phosphate synthase. *FEBS Letters*, 553, 3–10.
- Majumder, A. L., Johnson, M. D., Henry, S. A. (1997). 1L-myo-inositol-1-phosphate synthase. *Biochemica et Biophysica Acta*, *1348*, 245–256.

Martin, T. F. J. (2001). PI(4,5)P2 regulation of surface membrane traffic. Current Opinion in Cell Biology, 13, 493–499.

- Matsumoto, M., Nakagawa, T., Inoue, T., Nagata, E., Tanaka, K., *et al.* (1996). Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. *Nature*, *379*, 168–171.
- McGraw, P., Henry, S. A. (1989). Mutations in the *Saccharomyces cerevisiae opi3* gene: Effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis. *Genetics*, *122*, 317–330.
- Migaud, M. E., Frost, J. W. (1996). Elaboration of a general strategy for inhibition of myo-inositol 1-phosphate synthase: active site interactions of analogues possessing oxidized reaction centers. *Journal of American Chemical Society*, 118 (3), 495–501.
- Michell, R. H. (2007). Evolution of the diverse biological roles of inositols. Biochemical Society Symposia, 74, 223–246.
- Mille, C., Janbon, G., Delplace, F., Ibata-Ombetta, S., Gaillardin, C. *et al.* (2004). Inactivation of CaMIT1 inhibits *Candida albicans* phospholipomannan β-mannosylation, reduces virulence, and alters cell wall protein β-mannosylation. *The Journal of Biological Chemistry*, 279 (46), 47952–47960.
- Mohamed, A. H., Chirala, S. S., Mody, N. H., Huang, W.-Y., Wakil, S. J. (1988). Primary structure of the multifunctional α subunit protein of yeast fatty acid synthase derived from *FAS2* gene sequence. *The Journal of Biological Chemistry*, *263* (25), 12315–12325.
- Moreno-García, J., García-Martínez, T., Moreno, J., Mauricio, J. C. (2015). Proteins involved in flor yeast carbon metabolism under biofilm formation conditions. *Food Microbiology*, *46*, 25–33.
- Mori, K., Sant, A., Kohno, K., Normington, K., Gething, M.-J., Sambrook, J. F. (1992). A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast *KAR2* (BiP) gene by unfolded proteins. *The EMBO Journal*, *11* (7), 2583–2593.
- Murray, M., Greenberg, M. L. (2000). Expression of yeast *INM1* encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate. *Molecular Microbiology*, *36* (3), 651–661.
- Nevoigt, E., Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast *Saccharomyces cerevisiae*. *FEMS Microbiology Reviews*, *21*, 231–241.
- Nikawa, J.-I., Tsukagoshi, Y., Yamashita, S. (1991). Isolation and characterization of two distinct myo-inositol transporter genes of *Saccharomyces cerevisiae*. *The Journal of Biological Chemistry*, *266* (17), 11184–11191.
- Nunez, L. R., Jesch, S. a, Gaspar, M. L., Almaguer, C., Villa-Garcia, M. *et al.* (2008). Cell wall integrity MAPK pathway is essential for lipid homeostasis. *The Journal of Biological Chemistry*, 283 (49), 34204–17.
- O'Donnell, T., Rotzinger, S., Nakashima, T. T., Hanstock, C. C., Ulrich, M., Silverstone, P. H. (2000). Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. *Brain Research*, *880*, 84–91.
- Palková, Z., Váchová, L. (2006). Life within a community: benefit to yeast long-term survival. *FEMS Microbiology Reviews*, *30*, 806–824.
- Palmer, R. J., White, D. C. (1997). Developmental biology of biofilms: implications for treatment and control. *Trends in Microbiology*, *5* (11), 435–440.
- Pavlíčková, M. (2014). Pleiotropní účinky transkripčního faktoru Opi1 u *Saccharomyces cerevisiae*. Bakalářská práce, Univerzita Karlova, Praha.
- Pittet, M., Conzelmann, A. (2007). Biosynthesis and function of GPI proteins in the yeast *Saccharomyces cerevisiae*. *Biochimica et Biophysica Acta*, 1771 (3), 405–420.
- Polakis, E. S., Bartley, W., Meek, G. A. (1965). Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. *The Biochemical Journal*, 97 (1), 298–302.

Rainbow, C. (1966). Flocculation of brewer's yeast. Process Biochem., 1, 489-492.

- Rehm, B. H. A., Krüger, N., Steinbüchel, A. (1998). A new metabolic link between fatty acid *de novo* synthesis and polyhydroxyalkanoic acid synthesis. *The Journal of Biological Chemistry*, *273* (37), 24044–24051.
- Reynolds, T. B. (2006). The Opi1p transcription factor affects expression of *FL011*, mat formation, and invasive growth in *Saccharomyces cerevisiae*. *Eukaryotic Cell*, *5* (8), 1266–1275.
- Reynolds, T. B., Fink, G. R. (2001). Bakers' yeast, a model for fungal biofilm formation. Science, 291, 878-881.
- Roberts, R. L., Fink, G. R. (1994). Elements of a single MAP kinase cascade in *Saccharomyces cerevisiae* mediate two developmental programs in the same cell type: mating and invasive growth. *Genes & Development, 8,* 2974–2985.
- Robertson, L. S., Fink, G. R. (1998). The three yeast A kinases have specific signaling functions in pseudohyphal growth. *Proceedings of the National Academy of Sciences of the United States of America*, *95*, 13783–13787.
- Rogers, P. D., Barker, K. S. (2003). Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in *Candida albicans* clinical isolates. *Antimicrobial Agents and Chemotherapy*, 47 (4), 1220–1227.
- Rosseti, I. B., Rocha, J. B. T., Costa, M. S. (2015). Diphenyl diselenide (PhSe)₂ inhibits biofilm formation by *Candida albicans*, increasing both ROS production and membrane permeability. *Journal of Trace Elements in Medicine and Biology*, *29*, 289–295.
- Roy, A., Lu, C. F., Marykwas, D. L., Lipke, P. N., Kurjan, J. (1991). The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Molecular and Cellular Biology, 11 (8), 4196–4206.
- Rudge, S. A., Anderson, D. M., Emr, S. D. (2004). Vacuole size control: regulation of PtdIns(3,5)P₂ levels by the vacuoleassociated Vac14-Fig4 complex, a PtdIns(3,5)P₂-specific phosphatase. *Molecular Biology of the Cell*, 15, 24–36.
- Rupp, S., Summers, E., Lo, H., Madhani, H., Fink, G. (1999). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast *FLO11* gene. *The EMBO Journal*, *18* (5), 1257–1269.
- Santiago, T. C., Mamoun, C. Ben. (2003). Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p. *The Journal of Biological Chemistry*, 278 (40), 38723–38730.
- Santos, A. X. S., Riezman, H. (2012). Yeast as a model system for studying lipid homeostasis and function. *FEBS Letters*, 586, 2858–2867.
- Seko, Y., Imura, N. (1997). Active oxygen generation as a possible mechanism of selenium toxicity. *Biomedical and Environmental Sciences : BES, 10* (2-3), 333–339.
- Sethi, S., Brietzke, E. (2017). Recent advances in lipidomics: analytical and clinical perspectives. *Prostaglandins and Other Lipid Mediators*, 128-129, 8–16.
- Shamu, C. E., Walter, P. (1996). Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. *The EMBO Journal*, *15* (12), 3028–3039.
- Shapiro, S. S., Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). *Biometrika*, 52 (3), 591–611.
- Shetty, H. U., Schapiro, M. B., Holloway, H. W., Rapoport, S. I. (1995). Polyol profiles in Down syndrome. *The Journal of Clinical Investigation*, *95*, 542–546.
- Shi, Y., Azab, A. N., Thompson, M. N., Greenberg, M. L. (2006). Inositol phosphates and phosphoinositides in health and disease. *Biology of Inositols and Phosphoinositides*, 263–290.

- Shimon, H., Agam, G., Belmaker, R. H., Hyde, T. M., Kleinman, J. E. (1997). Reduced frontal cortex inositol levels in postmortem brain of suicide victims and patiens with bipolar disorder. *The American Journal of Psychiatry*, 154 (8), 1148–1150.
- Schrauzer, G. N. (2000). Selenomethionine: A review of its nutritional significance, metabolism and toxicity. *The Journal of Nutrition*, 130 (7), 1653–1656.
- Schrauzer, G. N. (2001). Nutritional selenium supplements: Product types, quality, and safety. *Journal of the American College of Nutrition*, *20* (1), 1–4.
- Schröder, M., Chang, J. S., Kaufman, R. J. (2000). The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast. *Genes & Development*, *14*, 2962–2975.
- Schüller, H. J., Hahn, A., Tröster, F., Schütz, A., Schweizer, E. (1992a). Coordinate genetic control of yeast fatty acid synthase genes *FAS1* and *FAS2* by an upstream activation site common to genes involved in membrane lipid biosynthesis. *The EMBO Journal*, 11 (1), 107–114.
- Schüller, H. J., Richter, K., Hoffmann, B., Ebbert, R., Schweizer, E. (1995). DNA binding site of the yeast heteromeric Ino2p/Ino4p basic helix-loop-helix transcription factor: structural requirements as defined by saturation mutagenesis. *FEBS Letters*, 370, 149–152.
- Schüller, H. J., Schorr, R., Hoffmann, B., Schweizer, E. (1992b). Regulatory gene *INO4* of yeast phospholipid biosynthesis is positively autoregulated and functions as a trans-activator of fatty acid synthase genes *FAS1* and *FAS2* from *Saccharomyces cerevisiae*. *Nucleic Acids Research*, 20 (22), 5955–5961.
- Sidrauski, C., Walter, P. (1997). The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. *Cell*, *90*, 1031–1039.
- Stein, A. J., Geiger, J. H. (2002). The crystal structure and mechanism of 1-L-myo-inositol-1-phosphate synthase. *The Journal of Biological Chemistry*, 277 (11), 9484–9491.
- Steiner, S., Philippsen, P. (1994). Sequence and promoter analysis of the highly expressed *TEF* gene of the filamentous fungus *Ashbya gossypii*. *Molecular and General Genetics*, *242* (3), 263–271.
- Stratford, M. (1989). Evidence for two mechanisms of flocculation in *Saccharomyces cerevisiae*. In *Yeast biochemistry*, 441–445.
- Stratford, M. (1994). Genetic aspects of yeast flocculation: in particular, the role of *FLO* genes in the flocculation of *Saccharomyces cerevisiae. Colloids and Surfaces B: Biointerfaces, 2,* 151–158.
- Strittmatter, A. W., Fischer, C., Kleinschmidt, M., Braus, G. H. (2006). FL011 mediated filamentous growth of the yeast Saccharomyces cerevisiae depends on the expression of the ribosomal RPS26 genes. Molecular & General Genetics, 276, 113–125.
- Summers, E. F., Letts, V. A., McGraw, P., Henry, S. A. (1988). *Saccharomyces cerevisiae cho2* mutants are deficient in phospholipid methylation and cross-pathway regulation of inositol synthesis. *Genetics*, *120*, 909–922.

Sundstrom, P. (2002). Adhesion in *Candida* spp. *Cellular Microbiology*, 4 (8), 461–469.

- Swaney, D. L., Beltrao, P., Starita, L., Guo, A., Rush, J. *et al.* (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. *Nature Methods*, *10*, 676–682.
- Šťovíček, V., Váchová, L., Kuthan, M., Palková, Z. (2010). General factors important for the formation of structured biofilm-like yeast colonies. *Fungal Genetics and Biology*, *47*, 1012–1022.
- Tarze, A., Dauplais, M., Grigoras, I., Lazard, M., Ha-Duong, N.-T. et al. (2007). Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae. The Journal of Biological Chemistry, 282 (12), 8759–8767.

- Tseng, S. S.-I., Weaver, P. L., Liu, Y., Hitomi, M., Tartakoff, A. M., Chang, T. (1998). Dbp5p, a cytosolic RNA helicase, is required for poly(A)⁺ RNA export. *The EMBO Journal*, *17* (9), 2651–2662.
- Vaden, D. L., Ding, D., Peterson, B., Greenberg, M. L. (2001). Lithium and valproate decrease inositol mass and increase expression of the yeast *INO1* and *INO2* genes for inositol biosynthesis. *The Journal of Biological Chemistry*, 276 (18), 15466–15471.
- Váchová, L., Kučerová, H., Devaux, F., Úlehlová, M., Palková, Z. (2009). Metabolic diversification of cells during the development of yeast colonies. *Environmental Biology*, *11* (2), 494–504.
- Váchová, L., Palková, Z. (2005). Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. *The Journal of Cell Biology*, *169* (5), 711–717.
- Vance, D., Goldberg, I., Mitsuhashi, O., Bloch, K. (1972). Inhibition of fatty acid synthetases by the antibiotic cerulenin. *Biochemical and Biophysical Research Communications*, *48* (3), 649–656.
- Voordeckers, K., de Maeyer, D., van der Zande, E., Vinces, M. D., Meert, W. et al. (2012). Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology. *Molecular Microbiology*, 86 (1), 225– 239.
- Voynov, V., Verstrepen, K. J., Jansen, A., Runner, V. M., Buratowski, S., Fink, G. R. (2006). Genes with internal repeats require the THO complex for transcription. *PNAS*, *103* (39), 14423–14428.
- Wallenberg, M., Misra, S., Björnstedt, M. (2014). Selenium cytotoxicity in cancer. *Basic and Clinical Pharmacology and Toxicology*, 114, 377–386.
- Warsh, J. J., Politsky, J. M., Li, P. P., Kish, S. J., Hornykiewicz, O. (1991). Reduced striatal [³H]inositol 1,4,5-trisphosphate binding in Huntington's disease. *Journal of Neurochemistry*, *56* (4), 1417–1422.
- Wickner, R. B., Ridley, S. P., Fried, H. M., Ball, S. G. (1982). Ribosomal protein L3 is involved in replication or maintenance of the killer double-stranded RNA genome of *Saccharomyces cerevisiae*. *Proceedings of the National Academy of Sciences of the United States of America*, 79, 4706–4708.
- Wolf, J. J., Dowell, R. D., Mahony, S., Rabani, M., Gifford, D. K., Fink, G. R. (2010). Feed-forward regulation of a cell fate determinant by an RNA-binding protein generates asymmetry in yeast. *Genetics*, *185*, 513–522.
- Wycherly, B. J., Moak, M. A., Christensen, M. J. (2004). High dietary intake of sodium selenite induces oxidative DNA damage in rat liver. *Nutrition and Cancer*, *48* (1), 78–83.
- Yang, G., Yin, S., Zhou, R., Gu, L., Yan, B. *et al.* (1989). Studies of safe maximal daily dietary Se-intake in a seleniferous area in China. Part II: Relation between Se-intake and the manifestation of clinical signs and certain biochemical alterations in blood and urine. *Journal of Trace Elements and Electrolytes in Health and Disease*, 3 (3), 123–130.
- York, J. D., Odom, A. R., Murphy, R., Ives, E. B., Wente, S. R. (1999). A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. *Science*, *285*, 96–100.
- York, S. J., Armbruster, B. N., Greenwell, P., Petes, T. D., York, J. D. (2005). Inositol diphosphate signaling regulates telomere length. *The Journal of Biological Chemistry*, *280* (6), 4264–4269.
- Zara, G., Goffrini, P., Lodi, T., Zara, S., Mannazzu, I., Budroni, M. (2012). FL011 expression and lipid biosynthesis are required for air-liquid biofilm formation in a Saccharomyces cerevisiae flor strain. FEMS Yeast Research, 12, 864–866.
- Zara, S., Bakalinsky, A. T., Zara, G., Pirino, G., Demontis, M. A., Budroni, M. (2005). *FL011*-based model for air-liquid interfacial biofilm formation by *Saccharomyces cerevisiae*. *Applied an Environmental Microbiology*, *71* (6), 2934–2939.