
MASTER THESIS

Bc. Jakub Náplava

Natural Language Correction

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: RNDr. Milan Straka, Ph.D.

Study programme: Informatics

Study branch: Artificial Intelligence

Prague 2017

I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of

this work as a school work pursuant to Section 60 subsection 1 of the Copyright

Act.

In date signature of the author

i

Title: Natural Language Correction

Author: Bc. Jakub Náplava

Department: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Milan Straka, Ph.D., Institute of Formal and Applied Lin-

guistics

Abstract:

The goal of this thesis is to explore the area of natural language correction and

to design and implement neural network models for a range of tasks ranging

from general grammar correction to the specific task of diacritization. The thesis

opens with a description of existing approaches to natural language correction.

Existing datasets are reviewed and two new datasets are introduced: a manually

annotated dataset for grammatical error correction based on CzeSL (Czech as

a Second Language) and an automatically created spelling correction dataset.

The main part of the thesis then presents design and implementation of three

models, and evaluates them on several natural language correction datasets.

In comparison to existing statistical systems, the proposed models learn all knowl-

edge from training data; therefore, they do not require an error model or a candi-

date generation mechanism to be manually set, neither they need any additional

language information such as a part of speech tags. Our models significantly out-

perform existing systems on the diacritization task. Considering the spelling and

basic grammar correction tasks for Czech, our models achieve the best results

for two out of the three datasets. Finally, considering the general grammatical

correction for English, our models achieve results which are slightly worse, but

still comparable to the previous state-of-the-art model.

Keywords: natural language correction, deep learning, neural networks

ii

I would like to express my deep gratitude to my supervisor, RNDr. Milan Straka,

Ph.D. for the patient guidance, numerous pieces of advice and corrections, with-

out which the thesis would not be possible.

I would also like to thank my family for their never ending support and un-

derstanding.

iii

Contents

1 Introduction 3

1.1 Goals . 4

1.2 Thesis structure . 4

2 Problem analysis 5

2.1 Natural language correction tasks 5

2.2 Existing tools . 6

2.3 Spelling correction . 7

2.3.1 Simple statistical spelling corrector 7

2.3.2 Korektor . 9

2.4 Grammatical error correction . 10

2.5 Diacritization . 11

2.6 Datasets . 12

2.6.1 Lang-8 Learner Corpora 12

2.6.2 NUS Corpus of Learner English 13

2.6.3 CzeSL . 13

2.6.4 Prague Dependency Treebank 14

2.6.5 SYN2010 . 14

2.7 Analysis summary . 14

3 Char2char model 15

3.1 Model architecture . 15

3.2 Model training and inferring . 16

3.3 Language model . 18

3.4 Residual connections . 21

4 Word2word model 23

4.1 Model architecture . 23

4.2 Character level word embeddings 24

4.2.1 C2W model . 24

4.2.2 CharCNN . 25

4.2.3 Charagram model . 26

4.3 Attention mechanism . 27

4.4 Error classifier . 28

4.5 Model training and decoding . 29

4.6 Error generation . 31

4.7 Model summary . 32

1

5 Translation model 33

5.1 Neural machine translation . 33

5.2 Model architecture . 34

5.3 Models summary . 36

6 Experiments 37

6.1 Tasks and data . 37

6.1.1 Diacritization . 37

6.1.2 I vs Y . 38

6.1.3 Czech spelling and basic grammar correction 38

6.1.4 English grammar correction 41

6.2 Evaluation metrics . 41

6.3 Language model . 42

6.4 Diacritization . 43

6.4.1 Char2char model . 43

6.4.2 Word2word model . 50

6.4.3 Translation model . 53

6.4.4 Results comparison . 54

6.4.5 Sample corrections . 55

6.5 I vs Y . 55

6.6 Czech spelling and basic grammar correction 57

6.6.1 Generating new training set 58

6.6.2 Basic experiments . 58

6.6.3 Incorporating language model 60

6.7 English grammar correction . 62

7 Our implementation 65

7.1 Training models . 65

7.2 Running models . 66

8 Conclusion 67

Bibliography 68

List of Figures 73

List of Tables 74

2

1. Introduction

In today’s society, people write numerous texts on a daily basis. There are emails

to your colleagues or text messages to your friends, sent using your smartphone

either as an SMS or more likely via social networks’ messengers. However, these

represent only a fraction of examples as there are countless other different types

of documents everyone needs to write from time to time. As a result of our lack

of time, patience and sometimes even knowledge to review and correct our texts,

these texts often contain multiple errors. The types of created errors range from

simple errors such as missing characters (accidently instead of accidentally) to

errors which are more complex as they usually depend on the word context (he

write instead of he writes) and occasionally require the entire word reorganization.

Two other uses of language correction are worth mentioning. First, there is

pre-processing texts for another task, which can be inter alia text translation and

text analysis. The issue here lies in the fact that such tasks may show disap-

pointing performance whilst running on uncorrected input texts as most systems

assume input texts to be correct. Second, there are post-processing results of

OCR (Optical Character Recognition) and speech-to-text tools. Both these tools

convert their input to textual output which however often contains multiple er-

rors.

The aim of natural language correction is to both detect and correct errors in

the input text. The major difficulty in this discipline stems from the existence of

multiple corrections for a single text. Imagine a simple sentence Do he go there?.

The most intuitive correction would be to change the first word to Does resulting

in a new sentence Does he go there?. However, if we know from the preceding part

of the text that there were two people, it is also possible to correct the sentence

as Do they go there?.

Natural language correction has been studied for a long time. In 1971, Ralph

Gorin created the first spell checker for general English texts. In the late 1970s,

spell checkers became widely available on mainframe computers, and in the early

1980s standalone spell-checking programs for personal computers appeared and

were also integrated into text editors and adopted for other languages in the sub-

sequent years. Later, first grammar checkers appeared. Today, there are spell-

and grammar-checkers widely available in text editors as well as standalone ap-

plications. Natural language correction tools which are currently implemented

use mainly statistical and rule-based approaches. However, in recent years, deep

neural networks have been achieving remarkable results in this area. Since 2014,

they have been utilized in natural text processing, achieving state-of-the-art re-

3

sults in machine translation, dependency parsing, named entity recognition, and

in many other text processing applications. These have been the main motivation

for us to further explore the usage of deep neural networks in the area of natural

language correction.

1.1 Goals

Inspired by the prevailing successes of deep neural networks, we decided to explore

in detail their capabilities in regards to natural language correction tasks.

The primary goal of the thesis is to design and implement architectures for

deep neural networks which would be suitable for different types of natural lan-

guage correction tasks. These implemented models will be then evaluated and

their performance compared to existing systems.

In order to accomplish our goals, the following tasks were performed:

• we acquired and created several datasets

• we designed several models for a range of tasks from general grammar cor-

rection to specific task of diacritization

• we performed experiments and compared our systems to existing ones

• we documented and released all software used for the experiments

All these tasks were performed exclusively by the thesis author.

1.2 Thesis structure

In the following chapter, we describe the most important tasks of natural lan-

guage correction including tasks focused solely on Czech. Thereafter, we describe

several approaches of tools which are currently used and cover utilized datasets.

In Chapter 3, 4 a 5 we discuss our three models. In Chapter 6, we perform sev-

eral experiments and present their results together with comparison to existing

systems. Chapter 7 contains a description of the implementation together with

a basic manual on how to re-run the experiments. Finally, Chapter 8 concludes

this thesis with a summary of achieved outcomes.

4

2. Problem analysis

In this chapter, we explore existing resources for natural language correction.

First of all, we describe the most important tasks of natural language correc-

tion. Then, we inspect approaches of several common tools that solve these tasks

nowadays. After that, we analyze papers containing new interesting approaches to

challenges in this field. Finally, we discuss existing language correction datasets.

2.1 Natural language correction tasks

Natural language correction is a task whose goal is to correct an erroneous text.

Consider for example the following sentence:

He come from Czech Republci .

There are three errors in the given example: subject-verb agreement error (He

come instead of He comes), article error (missing article the) and a misspelled

word Republic.

Given these errors, one can identify two main problems of natural language

correction: spell checking (spelling correction) and grammar checking (grammat-

ical error correction). Spell checking basically attempts to detect and provide

spelling suggestions for incorrectly spelled words, whereas grammar checking tries

to detect and correct grammatical errors in the text. In comparison, the gram-

mar checking task is obviously a substantially more difficult, because it includes

language errors such as wrong word order, verb tense errors or already mentioned

subject-verb agreement errors.

We also mention the task of diacritics generation (diacritization) for Czech

texts in this thesis. The Czech language contains several special letters that are

not contained in the standard ASCII table. These are composed of a standard

letter (e.g. a, e) with a diacritic sign (e.g. acute or caron). As mentioned

by Vrána [2002], Czechs often write without diacritics, which can be seen as

an ”intended creation” of errors. There are several reason for this phenomenon:

• Many Czechs use English keyboard, which does not contain characters with

diacritics.

• Smartphones (tablets) keyboards contain these characters but almost al-

ways in different keyboard layouts.

5

• Before UTF-8 encoding became widespread, there were encoding problems

when moving text between different platforms and many people still have

this in mind.

2.2 Existing tools

While writing on a computer, many people use word processors such as Microsoft

Office Word or LibreOffice Writer. These programs often have integrated spell

checkers and sometimes also basic grammar checkers. To warn users that a certain

word may be misspelled, these programs usually underline the word with red

colour and show candidate corrections when right clicked. When a grammatical

error is detected, the whole segment in question is underlined with green color

and sometimes also the grammar rule breach is reported. The error detection

module of LibreOffice Writer is shown in Figure 2.1.

Figure 2.1: LibreOffice Writer proposing correction on a sample sentence.

Using natural language correction tools integrated in word processors is a great

advantage while writing text, however for handling already written text it may

be better to use standalone applications. These applications are often of a much

smaller size, have command-line or web interface and sometimes also perform

better.

Probably the most used open-source spell checker is Hunspell.1 It is integrated

in a variaty of programs such as already mentioned Libre Office, Open Office,

Mozzila Thunderbird or Google Chrome. Hunspell is a C++ tool released under

GPL/LGPL/MPL tri-license. Amongst other spell checkers, it is definitely worth

1http://hunspell.github.io/

6

http://hunspell.github.io/

mentioning GNU Aspell2 and Korektor,3 which was a state-of-the-art spell checker

and diacritics generator for Czech texts in 2012 [Richter et al., 2012].

Grammar correction modules contained within current word processors are

mostly rule-based. They contain a set of grammar rules that are checked at

runtime. Although some grammar checkers claim to be using more advanced

approaches like machine learning, they still correct only a set of error types.

The development of a well performing general grammar checker is definitely at

the forefront of current research.

2.3 Spelling correction

In this section, we first describe a rather simple approach to spelling correction.

Subsequently, we extend its ideas and explain how a state-of-the art spelling

corrector for Czech language works.

2.3.1 Simple statistical spelling corrector

In 2007, Petr Norvig wrote an excellent blogpost How to Write a Spelling Cor-

rector.4 The motivation for it was a simple spell checker implemented in Google’s

search engine which was capable of detecting errors and offering most probable

replacements. Therefore, the goal of this task was to find the most probable

correction of a single word.

To formalize the task of finding most probable correction, it is useful to con-

sider it as a sequence decoding problem. In natural language processing (NLP),

this is often formulated in terms of noisy channel model.5 To understand ideas

behind this theory, imagine we have a transmitter sending a sequence of symbols

(in this case a single word) to a receiver. The transmission channel is, however,

imperfect and, thus, the transmitted sequence may be modified during the trans-

fer. This potentially distorted sequence is then received by the receiver, who

wants to decode the original message. To decode the message, the receiver may

use the knowledge of transmission channel properties, e.g. probabilities of specific

errors, and of the input data properties, e.g. single word occurrences.

Let w be a distorted received word. Then we’re looking for a word c, out of

all possible candidate corrections, that maximizes that c is a desired correction,

2http://aspell.net/
3http://ufal.mff.cuni.cz/korektor
4http://norvig.com/spell-correct.html
5https://en.wikipedia.org/wiki/Noisy_channel_model

7

http://aspell.net/
http://ufal.mff.cuni.cz/korektor
http://norvig.com/spell-correct.html
https://en.wikipedia.org/wiki/Noisy_channel_model

given the word w:

c = argmax
c∈candidates(w)

P (c|w)

Using the knowledge of Bayes’ Theorem, we can rewrite this as:

c = argmax
c∈candidates(w)

P (w|c) · P (c)

P (w)

Since P(w) is the same for each possible candidate word c, this can be further

simplified by omitting this probability:

c = argmax
c∈candidates(w)

P (w|c) · P (c)

We can identify four main components in the final expression:

1. Selection mechanism – We select a candidate correction with the highest

probability.

2. Candidate model – A list of all candidates that will be considered. It is

common to generate candidates that are valid words within certain edit

distance.6 Petr Norvig in his work uses the Damerau–Levenshtein distance,

wherein the set of allowed operations is character insertion, deletion, substi-

tution and transposition of two adjacent letters. The choice of this metric

was probably motivated by Damerau [1964]. In this work F. J. Damerau

stated that these four operations cover more than 80 percent of all human

misspellings.

3. Error model P (w|c) – A probabilistic model that estimates a noisy channel

transmission posterior probability for all possible values of w and c is ussualy

denoted as an error model. These probabilities should be estimated from

data, however, for simplicity, Petr Norvig uses edit distance to approximate

them. In this way, the fewer operations is required to transform the received

word w to candidate word c, the higher the probability P (w|c).

4. Language model P (c) – A probabilistic model that estimates a priori prob-

ability of input word c is called language model. In the blogpost, this

probability was estimated on the word level. Therefore, P (c) is estimated

as the number of occurrences of word c in some, ideally large, corpus divided

by a total number of words.

The accuracy of such simple spelling corrector was not as high as one would

want to, nevertheless, in the next section we show a way to make it better.

6edit distance – minimum number of operations required to transform one string into the

other

8

2.3.2 Korektor

Korektor is a statistical Czech spell checker, which started as a diploma thesis of

Michal Richter [Richter, 2010]. In 2012, Korektor was the state-of-the art tool

for Czech, both as the spell checker and the diacritics generator [Richter et al.,

2012].

Korektor is the spell checker which is significantly more sophisticated than

the previously discussed one, even though many concepts are still the same. The

great difference is that Korektor corrects whole sentences instead of single words.

This naturally brings several issues that need to be solved.

When we consider the noisy model approach, we can identify two features

influencing the result: error model and language model. However, sometimes we

would like to use more than just two features. Fortunately, there is a general-

ization of noisy channel approach called log-linear model. This method allows

using any number of weighted features. To formalize, let w∗
1...w

∗
n be an optimal

sequence of words, w
′
1...w

′
n be an input sequence of words, fN

j=1 set of feature

functions and αN
j=1 their weights. Then we can define log-linear model as follows:

(w∗
1...w

∗
n) = argmax

(w1...wn)

N∑
j=1

αj · fj(w1...wn, w
′

1...w
′

n)

Korektor utilizes 4 feature functions:

• Transmission channel feature – Based on error model probability P (w|c),
where w is the received and potentially distorted word and c is the original

word form. The probabilities are now assigned with respect to the solved

problem. For spelling correction task, specific typing errors are taken into

account. For diacritics generation, all words that could possibly come from

c by adding diacritics have uniform cost and all other an infinite cost.

• Word forms feature – Based on language model probability P (wi|wi−2, wi−1),

where wi is the current word and wi−2 and wi−1 are the previous ones.

• Morphological lemma7 feature – Based on language model probability P (li|li−2, li−1)

and emission model probability P (wi|li), where li stands for the current

word lemma and li−2 and li−1 for the previous ones.

• Morphological tag8 feature - Based on language model probability P (ti|ti−2, ti−1)

and emission model probability P (wi|ti), where ti stands for the current

word part of speech tag and ti−2 and ti−1 for the previous ones.

7lemma – canonical form, dictionary form, or citation form of a set of words
8part of speech – category of words that have a similar grammatical properties

9

The transmission channel feature for spelling correction task was estimated

from a manually created transcript of an audio book. All other feature functions

were estimated from a large text corpus.

Since Korektor corrects whole sentences, it is no longer desirable to generate

all possible sentences and re-rank them afterwards. Instead, Hidden Markov

model is built. The vertices in this model contain corrections up to predefined

edit distance. The transition costs are then composed of morphological lemma

feature, morphological tag feature and word forms feature. Emission probabilities

in each state are based on an error model. To find an optimal correction in the

created graph, authors utilize Viterbi algorithm [Forney, 1973].

2.4 Grammatical error correction

Since grammatical error correction (GEC) includes errors such as wrong word

order or missing article, the approach used for spelling correction can not be

directly applied. The reason is that the spelling correction solution assumes

that there are errors mainly in the words themselves. The operation of word

reorganization or word deletion is then an operation which is too unlikely and

thus never considered.

Early research in GEC aimed to solve single error types’ correction. An ex-

ample can be found in [Knight and Chander, 1994]. In this work, the authors

built a system for correcting articles on machine translated outputs. The task

of correcting articles can be seen as a classification task, because the goal is to

choose one article out of a fixed set.

The classification approach has been further improved in article correction

[Chodorow et al., 2007, Han et al., 2006], preposition correction [Xi et al., 2010]

and also verb correction [Rozovskaya et al., 2014b]. To train a classifier, most

of the works use features extracted from word context. These are typically word

n-grams or part of speech tags. To create a grammatical error correction system,

a set of these classifiers is used in a hybrid system.

In 2006, Brockett et al. [2006] showed that using statistical machine trans-

lation (SMT) for GEC task may be a good idea. He performed experiments,

in which he used the SMT system for correcting mass noun errors and reached

promising results. The obvious disadvantage of SMT is that it needs a lot of data.

Therefore, there were practically no SMT systems correcting multiple errors up

to 2011.

In 2011, Helping Our Own (HOO) shared task comprising on GEC was an-

nounced [Dale and Kilgarriff, 2010]. It came with an annotated corpus of English

10

as a second language learners and a separate test set. In next three years, HOO

2012 [Dale et al., 2012] and the CoNLL 2013 and 2014 [Ng et al., 2014] shared

tasks were organized, all focusing on GEC tasks and containing training as well

as test sets. This naturally attracted attention of many researchers.

State-of-the-art performance on these datasets was, up to 2016, gradually

outperformed both by classification approach [Dahlmeier et al., 2012, Rozovskaya

et al., 2014a], SMT approach [Felice et al., 2014, Grundkiewicz, 2014] and a

combination of them [Susanto, 2015].

In 2016, Yuan and Briscoe [2016] achieved new state-of-the-art results using

a neural machine machine translation system (NMT) that operated on the word

level. Because input texts of GEC consists of relatively many rare (out-of-

vocabulary) words, these were handled in a special way. Later, Xie et al. [2016]

showed that using NMT system that operates on the character level can both

solve the problem with out-of-vocabulary words and achieve new state-of-the-art

results. To the best of our knowledge, currently best system is SMT system of

Chollampatt et al. [2016] that incorporates two additional neural networks to

help SMT system generalize better.

2.5 Diacritization

Antońın Zr̊ustek in his thesis [Zr̊ustek, 2000] conducted statistical experiments on

two Czech corpora (ESO, DESAM). He found out that approximately 60 percent

of words in corpora have a unique diacritics assignment, i.e. when the diacrit-

ics is removed, there is only one existing word that can be created by adding

diacritics. He also discovered that around 20 percent of occurring words have

multiple diacritics variants. The rest 20 percent of words were not recognized by

morphological analyzer and were marked as foreign words.

Vrána [2002] points out that when we take into account word frequencies of

those corpora, we can conclude that about 70-80 percent of words have unique

diacritics assignment, 20-30 percent have multiple assignments and 0.05 percent

were not recognized. He also notes to keep this in mind when evaluating diacriti-

zation system performance. Accuracy of 96 percent basically means that a system

made an error at each sixth word with non-unique diacritics assignment.

Both Zr̊ustek [2000] and Vrána [2002] developed systems that use very similar

approach as Korektor, which (as mentioned in Section 2.3.2) is the state-of-the-

art tool for diacritization. I suspect that mainly the used language model is

the reason, why their results are not as good as those of Korektor.

11

2.6 Datasets

To train a natural language corrector, one needs to know typical errors that people

make. A language correction dataset should, therefore, consist of text pairs in

both corrected and original versions. Depending on the dataset, these pairs are

mostly sentence aligned or word aligned. Consequently, the majority of errors are

made on the sentence or word level, even if one can in certain scenarios imagine

also reordering of whole sentences.

Except for error corpus itself, many natural language correction approaches

require also large corpora of clean text to train a language model. Since error

datasets are usually of very limited size, other datasets are used in this place. As

we describe in Section 4.6, these datasets can be further used to create artificial

error data.

2.6.1 Lang-8 Learner Corpora

Lang-8 is social network intended for users trying to learn a new language. To

improve foreign language skills, users write texts (e.g. articles, reviews or current

news) in the language they are trying to learn and usually also rewrite the same

text in their native language. After doing so, other users, who try to learn

the opposite language, read the bilingual texts and optionally correct them. In

this way, this social network helps people learn a new language and also create

new relationships. Currently, there are over 750 000 registered members speaking

more than 90 languages.

In December 2010, Lang-8 released Lang-8 Learner Corpora.9 This dataset

contains 334 379 multilingual entries written by 59 455 active users in 80 lan-

guages. The most common languages were English (237 843 entries), Japanese

(185 991) and Mandarin (28 154).

In 2012 and 2013, Lang-8 additionally released Lang-8 Corpus of Learner

English, Lang-8 Corpus of Romanized Learner Japanese and Lang-8 Corpus of

Learner Japanese with newer data and in the English corpus also with tense/aspect

annotation.

This dataset is to the best of our knowledge the biggest English dataset for

grammar correction. However, due to the online user-generated entries, this

dataset contains multiple non-corrected sentences as well as entries with erro-

neous corrections.

9http://cl.naist.jp/nldata/lang-8/

12

http://cl.naist.jp/nldata/lang-8/

2.6.2 NUS Corpus of Learner English

NUS Corpus of Learner English (NUCLE) is a fully annotated corpus of learner

English publicly available for research purposes since June 2011 and described in

Dahlmeier et al. [2013]. It consists of 1414 essays written by non-native English

speakers at the National University of Singapore. The corpora is much smaller

than Lang-8, nevertheless, because the annotators were professional English in-

structors, it is much cleaner.

Error annotations are made on character level and for each grammatical error

instance contain start and end character offsets, error type and correction string.

These annotations are then together with original sentences saved in SGML for-

mat.

Documents 1 414

Sentences 59 871

Word tokens 1 220 257

Error annotations 46 597

of word tokens per sentence 20.38

of error annotations per 100 word tokens 3.82

Table 2.1: NUCLE corpus statistics.

As we can see in Table 2.1, the number of annotated grammatical errors is

very sparse. Dahlmeier et al. [2013] analyzed the corpora and revealed that over

57 percent of all sentences have zero errors, almost 21 percent have exactly one

error, circa 11 percent have exactly two errors, and only 11 percent of all sentences

have more than two errors. Authors also analyzed types of errors and found out

that the top five error categories (e.g. wrong collocation/idiom/preposition or

local redundancies) cover over 57 percent of all error annotations.

The corpora became widely known when the CoNLL 2013 and 2014 shared

tasks were published. NUCLE was stated to be official training data. To make

it easier for the participating teams, NUCLE was further preprocessed, which

included for example sentence and word segmentation and mapping of character

level error annotations to word level. Since NUCLE does does not contain test

set, another 50 essays were collected and annotated. These test essays are now

also freely available.

2.6.3 CzeSL

CzeSL (Czech as a Second Language) is a first learner corpus of Czech. The build-

ing process of the corpus is best described by Hana et al. [2014]. Currently,

13

the first phase of the building process is finished (May 2012). The corpus now

consists of transcribed texts of CzeSL (native Czech pupils) and ROMi (pupils

with Romani background), which all together make 2 million word tokens.

The texts and error annotations in the corpus are divided into four levels.

The first level L-1 are the raw transcripts of essays. Next level L0 is a tokenized

text. Level L1 contains text with word forms corrected in isolation. Finally,

level L2 handles all other types of errors and therefore, contains whole corrected

text. Out of 2 million word tokens that are present in the L-1 layer, 300 000 word

tokens were manually annotated on level L1 and L2.

2.6.4 Prague Dependency Treebank

Prague Dependency Treebank (PDT) is a collection of annotated articles from

Czech newspapers and journals. Annotations are made on three layers: morpho-

logical, analytical and tectogrammatical level. PDT3.0 [Bejček et al., 2013] is

an up to date version of this corpus. The full version of this corpus consists of

115 844 sentences with 1 957 247 tokens, which are annotated on the morpholog-

ical level. From that 87 913 sentences with 1 503 739 tokens are annotated also

on the analytical level and 49 431 sentences with 833 195 tokens are annotated

on all three levels. All distributions of this corpora contain an official train, dev

(d-test) and test (e-test) splits.

2.6.5 SYN2010

SYN2010 [Křen et al., 2010] is a huge collection of Czech texts. The texts come

from fiction literature (40 percent), technical literature (27 percent) and jour-

nalism (33 percent). There are 152 634 documents in the corpora consisting of

121 667 413 tokens and 8 172 649 sentences. The SYN2010 corpus is also lemma-

tized and morphologically tagged.

2.7 Analysis summary

In this chapter we discussed approaches to two main tasks in natural language

correction: spelling correction and grammatical error correction. The best sys-

tems on grammatical error correction task are both statistical machine translation

systems and neural machine translation systems. Therefore, one of our proposed

model is a neural machine translation system. Besides this model, we propose

two more, which may be suitable for another natural language correction tasks

such as spelling correction. These models are described in the following chapters.

14

3. Char2char model

When thinking about tasks such as diacritization, uppercasing text or adding

commas to a text, we realized that these tasks have something in common. We

can think of all these tasks as of mapping input sequence of symbols to the same

number of output labels. This is formally called sequence labeling problem and

is discussed in Graves [2012] or Nguyen and Guo [2007] .

It is rather simple to imagine the labels for the diacritization and text upper-

casing task, since the labels can be directly the correct symbols. For the adding

comma case, it is no longer possible, because when there is a comma, the output

sequence has naturally more characters. We can, nevertheless, define the task to

generate true, if there is a comma right after this character and false otherwise.

The model described in this chapter is tailored for these tasks. It benefits from

a simple symbol mapping, allowing such tasks to be trained relatively quickly and

on big enough corpora also surprisingly accurately.

3.1 Model architecture

The idea behind the model is rather simple. We decided to use recurrent neu-

ral network (RNN), which should for each provided sentence symbol output its

correct label. This proposal can be seen in Figure 3.1. It contains an already

unfolded RNN for input sentence ”Cau!” and correctly diacritized output ”Čau!”.

Figure 3.1: Char2char basic model

To formalize and extend the model, let us describe its components:

• Model inputs are individual characters, respectively a sequence of IDs with

each ID being an index to an input character vocabulary. The input and

output vocabulary contains a special token dedicated for unknown symbols.

15

• These characters are embedded, i.e. each character in the input sentence

represented by a one-hot row vector is multiplied by a trainable matrix

W i×d, where i is the size of the input alphabet and d is the embedding

dimensionality. The reason for using distributed representation [Bengio

et al., 2003] instead of one-hot-representation is that it allows the model

to group together characters that are similar for the task. For example in

the diacritization task, all non-letter symbols could be in a similar part of

space, because diacritics is never added to them.

• These embeddings are fed to RNN, which is in our case bidirectional [Graves

and Schmidhuber, 2005]. The bidirectional RNN consists of two unidirec-

tional RNNs, one reading the inputs in standard order (forward RNN) and

the other in reverse order (backward RNN). The output of bidirectional

RNN is then a sum of forward and backward RNN outputs. In this way,

bidirectional RNN is processing information from both preceding and fol-

lowing context.

• The model allows an arbitrary number of stacked bidirectional RNN layers.

• The output of the (possibly multilayer) bidirectional RNN is at each time

step reduced by a same fully connected layer to an o-dimensional vector,

where o is the size of the output alphabet. A non-linearity is then applied

to these reduced vectors.

• Finally, we use softmax layer to produce probability distribution over output

alphabet at each time step.

The described model with one RNN layer is illustrated in Figure 3.2.

3.2 Model training and inferring

We train the model by minimizing the negative log likelihood of the training data

using stochastic gradient with adaptive learning rates.

Once we train a model, we want to employ it for correcting text. In other

words, we are given an uncorrected sentence and we want to use model outputs

to find the most probable correction.

The first step in correcting is, obviously, feeding an input sentence c1...cN into

the model. The model then, for each input character ci, computes probability

distribution over all output characters pi = (pi1...piM). We can see that pi depends

only on values of c1...cN and is independent on other pj. Therefore, to get the most

16

Figure 3.2: Char2char model in detail

probable model correction, we can simply take maximum output probability value

for each input character. This process is described in Algorithm 1

Data: Input sentence consisting of individual characters c1, c2, . . . , cN

Result: Corrected sentence consisting of individual characters

o1, o2, . . . , oN

inp1, inp2, . . . , inpN = chars to input indices(c1, c2, . . . , cN)

p1, p2, . . . , pN = run model(inp1, inp2, . . . , inpN)

i = 1

while i ̸= N + 1 do
out indexi = argmax(pi)

oi = output index to char(out indexi)

i = i+ 1
end

return o1, o2, . . . , oN

Algorithm 1: Using char2char model for correcting a sentence

A corrected sentence found by Algorithm 1 is the most probable correction in

means of the model. Since the capacity and the learning capability of the model

is limited, it may not learn to correct everything perfectly. For this reason, we

decided to incorporate language model while inferring. As already mentioned in

Section 2.3 and Section 2.4, most of the currently implemented spelling and gram-

matical error correcting programs use language models to improve the quality of

their corrections. There is, therefore, great potential that the use of language

17

model may improve quality of our results as well.

3.3 Language model

A model that computes probabilistic distribution over the set of all possible sen-

tences of the given language is called a language model. The language model

assigns low probability to rare occurring sentences and higher probability to more

common sentences. From the natural language correction perspective, the sen-

tences with spelling or grammatical errors should have lower probability than

their corrected versions. The reason for this is the fact that the language models

are trained on clean corpora, which do usually consists of correct text with min-

imal number of errors. Because the nowadays language models operate on word

level, we often refer to them as word level language models.

There are basically two ways how to include these word level language model

into char2char model inference. Both options work with a beam of fixed size of

hypotheses. The hypothesis is in this context a tuple storing represented sequence

of characters and its probability. To understand both approaches, it is neccesary

to describe basic beam search first.

Extending notation from Section 3.2, let k denotes the beam size. Then the

basic beam search algorithm works as follows. In the beginning, the beam is

initialized with k most probable possibilities of the first character. In the next

step, all hypotheses are extended with k most probable possibilities of the sec-

ond character creating k2 hypotheses. These are than sorted according to their

probability and top k of them is kept for further iteration. The process runs till

we reach an end of sentence. Finally we have top k most probable corrections.

This beam search is more formally described in Algorithm 2.

18

Data: Input sentence consisting of individual characters c1, c2, . . . , cN

Result: k most probable corrections

inp1, inp2, . . . , inpN = chars to input indices(c1, c2, . . . , cN)

p1, p2, . . . , pN = run model(inp1, inp2, ...inpN)

hyps = []

top k indices = argsort(p1, highest first)[:k]

for j in top k indices do
hyps.append(Hypothesis(seq = output index to char(j),prob = p1[j])

end

i = 2

while i ̸= N + 1 do
top k indices = argsort(pi, highest first)[:k]

candidates = []

for hyp in hyps do

for j in top k indices do
candidate prob = hyp.prob · pi[j]
candidate seq = hyp.seq + output index to char(j)

candidates.append(Hypothesis(seq = candidate seq,prob =

candidate prob)

end

end

(2)

hyps = sorted(candidates,key = candidate.prob, highest first)[:k]

i = i+ 1
end

(1)

return hyps

Algorithm 2: Beam search for finding k best corrections using char2char model

It is obvious that the most probable correction the beam search finds is

the same correction as found by Algorithm 1. Nevertheless, there are two places

denoted as (1) and (2) in Algorithm 2 dedicated to two mentioned approaches

that incorporate language model.

The placeholder denoted as (1) is used by the first approach. It scores all

sequences represented by the final hypotheses with the language model. These

probabilities are then combined with stored hypotheses probabilities. The hy-

pothesis with highest combined score is then returned.

19

(1):

for hyp in hyps do
lm score = lm.score(hyp.seq)

hyp.prob = hyp.prob+ α · lm score

end

The second approach (2) incorporates language model each time a space in a

candidate is generated.

(2):

for candidate in candidates do

if candidate.seq[-1].isspace() then
lm score = lm.score(candidate.seq)

candidate.prob = candidate.prob+ α · lm score

end

end

Both approaches have their advantages and disadvantages. Incorporating lan-

guage model too often with great α may lead to results that are grammatically

correct, but do not correspond to input sentences. On the other hand, using

language model only on the final hypotheses may help to correct only several last

words. It is also not clear, whether using the second approach in cases where

different candidate hypotheses contain different number of words does not make

the beam search prefer sentences with less words to sentences with more words

or vica versa.

We aim to use this model for tasks that do not change the number of words.

We also believe that we can select α big enough to take into account the language

model probabilities, but simultaneously small enough to reflect char2char model

predictions. For this reasons, we decided to use the second approach and, thus,

use language model after each space in an output sequence.

So far we supposed that the language model is already constructed. There

are currently two approaches to building language models: statistical and neural

network based.

The statistical approach uses chain rule of probability and Markov assumption

to rewrite the probability of a whole sentence as a product of n-grams probabil-

ities. The maximal value of n utilized by the language model is often called

a rank of the language model. For a bigram language model (rank 2), the term

expressing the sentence probability can be rewritten as follows:

P (s) = P (w1, w2, ...wN) = P (w1) · P (w2|w1) · P (w3|w2) · ... · P (wN |wN−1)

The conditional probabilities present in the above equation are then esti-

20

mated from data using the maximum likelihood estimation and n-gram counts.

This approach would, however, assign zero probability to sentences with at least

one n-gram that was not present in the training corpus. For this reason, several

smoothing methods (e.g. Good-Turing discounting method or Kneser-Ney dis-

counting method) can be used to add some probability to unseen n-grams and

take off some amount of probability from n-grams present in the training corpus.

The neural based approach trains a network to predict next word in a sentence.

Mikolov et al. [2011] have shown that neural based language models outperform

count based language models. One of the current best models [Kim et al., 2015,

Jozefowicz et al., 2016] feeds word embeddings into reccurent neural network,

which is trained to predict the next word. The innovative approach of this work

is in construction of word embeddings. These are created from separate charac-

ters using convolutional neural network in combination with highway networks

[Srivastava et al., 2015].

Even though the performance of neural based language models is higher than

those of classic statistical language models, we decided to utilize statistical models

in our work. The statistical models have been utilized for longer time and, thus,

there exist tuned tools that are easy to train and infer. They can be more easily

integrated and are much faster to train. Finally, despite the fact that they perform

worse than neural based language models, they still achieve satisfactory results.

3.4 Residual connections

The proposed model allows an arbitrary number of stacked RNN layers. The model

with multiple layers allows each stacked layer to process more complex represen-

tation of current input. This naturally brings potential to improve accuracy of

the model.

As stated by Wu et al. [2016], simple stacking of more RNN layers works

only to a certain number of layers. Beyond this limit, the model becomes too

difficult to train, which is most likely caused by vanishing and exploding gradient

problems [Pascanu et al., 2013]. To improve the gradient flow, Wu et al. [2016]

incorporate residual connections to the model. To formalize this idea, let RNNi

be the i-th RNN layer in a stack and x0 = (inp1, inp2, . . . , inpN) input to the first

stacked RNN layer RNN0. The model we have proposed so far works as follows:

oi, ci = RNNi(xi)

xi+1 = oi

oi+1, ci+1 = RNNi+1(xi+1),

21

where oi is the output of i-th stacked RNN layer and ci is a sequence of its hidden

states. The model with residual connections between stacked RNN layers then

works as follows:

oi, ci = RNNi(xi)

xi+1 = oi + xi

oi+1, ci+1 = RNNi+1(xi+1)

The comparison of the classic stacked model and the stacked model with

residual connections can be seen in Figure 3.3.

Figure 3.3: The difference between classic stacked RNN and stacked RNN with

residual connections.

22

4. Word2word model

The first model we proposed was generating a label, typically a single character,

for each character in the input sequence. This limits the usage of the model to

only several tasks such as diacritization. The second model we propose is much

more universal. It can be used for all tasks char2char model is applicable to and

also for spelling correction and basic grammar correction.

When searching for errors in text, humans often work on a word level. They

do not inspect the sentence character by character, but instead take whole word

and check if it is correct given its context. This is the core idea behind word2word

model.

4.1 Model architecture

We slightly change the architecture of char2char model to fit our current needs.

The main computing component remains a multilayer recurrent neural network.

Since its main purpose is to correct errors, we call it a correcting module. The in-

puts of the model are changed from individual characters to whole words. In

a similar way, output vectors of the correcting module are projected to proba-

bilistic distribution over all output words instead of all output characters. Al-

though this may seem reasonable, there are two major issues in the proposed

model design.

The first one is the representation of whole words that are to be fed to the cor-

recting module. The reason, why the straightforward representation used in

char2char model is no longer possible, is that there is basically no upper limit

on the number of input words. The input words may contain spelling errors,

be multidigit numbers, dates, emoticons or web addresses. Thus, both one-hot

representation and distributed representation using a trainable matrix cannot be

used. Fortunately, there are several approaches that are capable of creating word

embedding even for these cases. We discuss them in Section 4.2.

Also the number of output words is too large; consequently, we cannot use

a vector for probabilistic distribution over them. Instead, we incorporate a charac-

ter decoder. The character decoder is basically a recurrent neural network, whose

goal is to map a fixed size vector to a target sequence of characters. The initial

state of the decoder is the output vector from the underlying correcting module.

The way decoder works depends on whether it is being trained or we infer with it.

During training at time t we feed the ground truth character yt−1 to the network

to predict yt, whereas at infer time, the most probable output yt−1 is usually

23

used. To start decoding, we feed a special start-of-sequence token and similarly

decoding is finished when the decoder outputs an end-of-sequence token.

The model visualization correcting the input sentence Goot luck :) is shown

in Figure 4.1. Note that for simplicity, the correcting module contains only one

bidirectional layer and the decoding mechanism is shown only for the first word.

Figure 4.1: Word2word model visualization on an erroneous sentence

4.2 Character level word embeddings

As mentioned in the previous section, we need to create word embeddings for a po-

tentially infinite number of words. Because there is no upper limit on the number

of words, we cannot use traditional approaches that create a vocabulary of words

and learn an embedding for each word separately. Instead, word embeddings are

created from the word parts, mostly its characters. There are currently three

main approaches to this issue and we discuss them here. It is worth noting that

all mentioned models are composed of trainable parts and are either initialized

randomly or pretrained on another task. If the trainable parts are initialized ran-

domly, it may take some time until the word embeddings start helping the model,

nevertheless, when trained, words that are similar in the task should be located

in the same part of the space.

4.2.1 C2W model

Probably the most straightforward approach that utilizes recurrent neural net-

works is C2W model proposed by Ling et al. [2015]. It consists of two parts:

24

character lookup table and a recurrent neural network. The first step in the com-

putation of a word embedding is to decompose the word into individual char-

acters. Each character is then embedded using trainable character lookup ta-

ble. Such embedded characters are then fed to a bidirectional recurrent neural

network composed of LSTM units [Hochreiter and Schmidhuber, 1997]. Finally,

the embedding of the word is obtained by combining the last forward and the last

backward outputs of the RNN. Whole process is presented in Figure 4.2. Note

that for greater clarity, the bidirectional recurrent network is shown in detail, i.e.

both forward and backward reccurent neural networks are shown.

Figure 4.2: C2W model for computing character level word embeddings

4.2.2 CharCNN

The second approach (Kim et al. [2015]) computes word embeddings by applying

a fixed set of convolution filters (kernels) to a sequence of embedded characters.

Depending on its width, each filter detects presence of some n-gram feature.

Since a result of the convolution is a vector whose size depends on the number of

input characters, a max pooling layer is used to generate a fixed size embedding.

In this way, each item of embedding vector determines the maximum presence of

some n-gram feature in the input word.

More formally, let α and β be two characters that are not present in any word

and let H = H1, H2, . . . , Hh be a fixed set of filters of possibly varying width.

A filter Hi with width wi is then of dimension Rd×wi , where d is a dimension

of character embeddings. These character embeddings are stored in a character

lookup table, which contains embedding for each character in the set of input

words as well as for special α and β symbols. The process of embedding compu-

25

tation for a single word w is then described in Algorithm 3.

Data: Input word consisting of individual characters w = c1, c2, . . . , cN

Result: Embedding of word w: e1, e2, . . . , eh

C = ce1, ce2, . . . , ceN+2 = embed characters(α, c1, c2, . . . , cN , β)

for i in range(h) + 1 do
features = tanh(apply convolution(C, hi, stride = 1)) + b

ei = max(features)

end

return e1, e2, . . . , eh

Algorithm 3: CharCNN algorithm for computing character level word embed-

dings

4.2.3 Charagram model

The last approach we describe is Charagram model proposed by Wieting et al.

[2016] and independently under different names also by Bojanowski et al. [2016]

and Kocmi and Bojar [2016]. In comparison to previous models, all this model

needs is one lookup table. This lookup table, however, does not store embeddings

only for individual characters, but for the most occurring character n-grams in-

stead. To compute an embedding of a word, we embed those character n-grams

of a word that are stored in the lookup table, sum these embeddings and finally

use a non-linearity (e.g. tanh or ReLU) on the result of the addition.1

The performance of this method clearly depends on the lookup table. There-

fore, it is an important question which character n-grams to store in it. In the orig-

inal paper, authors selected top k most occurring character n-grams for n=1,2,3,4.

They experimented with k ∈ {100, 1000, 50000} and claim that the best perfor-

mance on selected tasks (part-of-speech tagging and semantic similarity) was

achieved with the biggest k. Nevertheless, they also mention that for part-of-

speech tagging task selecting only 100 n-grams of each order yields surprisingly

good results.

The paper also contains comparison of the proposed model with C2W model

and CharCNN. The authors found out that Charagram model, which has the sim-

plest architecture, converges fastest to high performance.

1Note that some papers implement averaging instead of adding.

26

4.3 Attention mechanism

In the previous section we discussed multiple ways of computing word embedding

on a character level. These embeddings are fed into the correcting module, whose

goal is to produce outputs for the decoder. Each output is then processed by

the decoder and a correction is generated character by character. Since the gen-

erated words may be quite long and the only information the decoder works with

is the output vector of the recurrent neural network, the decoder might not learn

to generate all words, especially the longer ones, properly. The similar issue had

been solved in sequence-to-sequence models for machine translation task.

The goal of the machine translation task is to translate an input sentence

in one language to a sentence in another language. The neural based approach

utilizes sequence-to-sequence model [Sutskever et al., 2014, Cho et al., 2014],

which consists of an encoder and a decoder. The encoder feeds word IDs of

a sentence into a C2W model (see Section 4.2.1), which produces the sentence

embedding. This is then used by the decoder, which generates translation word

by word.2 Bahdanau et al. [2014] conjectured that the bottleneck of the sequence-

to-sequence model is the use of a fixed size encoder output vector and proposed

an extension to it. This extension allows the decoder to ”attend” to different parts

of the input sentence at each step of the output generation and use this additional

information while decoding. The decision what part of the input sentence to look

at is learnt and is based both on the input sentence and the currently generated

output.

Instead of formalizing the attention mechanism for sequence-to-sequence mod-

els, let us directly discuss its incorporation in our model. For spelling correction

task as well as diacritization and simpler grammar correction, the words gen-

erated by the model are quite similar to words that were fed to the model at

the corresponding places. While generating an output word, the decoder could,

therefore, benefit from knowing what characters were fed to the model. For this

reason, we incorporate the attention mechanism in our model.

Let wi = (wi1, wi2, . . . , wiN) be the i-th word of the input sentence and si,0 be

the i-th output of the correcting module of our model. The decoder we used so

far generated output based on only this vector si,0. The decoder with attention

mechanism utilizes at each step of generation also a context vector. To explain,

let us futher consider that the decoder just outputted yi,j−1 and its hidden state

is si,j−1. To generate next character, the decoder combines information both from

2Note that recently proposed model [Lee et al., 2016] operates both in the encoder and in

the decoder on a character level, but this makes the described problem even more difficult.

27

si,j−1, yi,j−1 and a computed context vector ci,j:

P (yj|yi,0, yi,1, ...yi,j−1, wi) = f(yi,j−1, si,j−1, ci,j)

The context vector ci,j basically tells the decoder to which parts of input to

”attend”. It depends on a sequence of annotations hi = (hi0, hi1, ...hiN) to which

an encoder maps the i-th word. To create these annotations, we have one more

recurrent neural network to which we feed wi and obtain hi as its outputs. Note

that when use C2W model for word embedding computation, we can utilize it

also for creating the annotations. The context vector ci,j is then computed as

a weighted sum of hi:

ci,j =
N∑
k=1

αijk · hi,k

The weight αijk of each annotation ci,k is computed as follows:

αijk = softmax(eijk) =
exp(eijk)

N∑
o=1

exp(eijo)

,

where eijk basically tells how relevant is the annotation hik for current state si,j−1.

It is computed using a feed forward neural network followed by a non-linearity

and linear projection to map it to a single number:

eijk = g(si,j−1, hik) = uT · tanh(V si,j−1 +Whik)

4.4 Error classifier

The proposed model is using decoder for each output of the correcting module.

This approach might have two disadvantages. Firstly, the decoder is learnt both

to correct words with errors and to copy words that do not contain errors. Doing

both simultaneously may be too difficult for the model. Secondly, the attention

mechanism proposed in the previous section slows down both training and infer-

ence. This also means that if we could sometimes omit the decoding process, we

could make the model faster.

To face these challenges, we come up with one more extension to the model.

On top of the correcting module, we stack an error classifier. Its goal is to

determine, whether the corresponding word contains a mistake and, thus, we

should use the decoder to correct it, or if there is no mistake and we can just

copy the input word to the output. The error classifier is a simple fully connected

neural network with two outputs and a softmax layer. It produces a probabilistic

distribution over an error existence in the input word.

28

With this extension, the decoder is learnt to only correct erroneous words,

which may result in more precise corrections. Also, if the input text contains

only a few errors, the model may run substantially faster. Finally, since the error

classifier outputs probabilities, we could provide the user with this additional

information, i.e. the user would know, how probable is that the specified word

contains error.

The usage of the error classifier has also its disadvantages. The major one

is that it makes the error classifier the performance bottleneck of the model.

If the error classifier misclassified word as correct, the decoder never corrects it.

Similarly, if the decoder misclassified word to contain error, the decoder will most

probably generate a wrong output, because it was trained to only correct errors.

Because it is unclear, whether the usage of the error classifier may actually

help the model perform better, we leave this extension optional and evaluate it

in the experiments.

4.5 Model training and decoding

We train the model by minimizing the negative log likelihood of the training data

using stochastic gradient with adaptive learning rates.

To infer with the model, we use a modified version of a beam search decoder.

The classical beam search decoder as described in Algorithm 4 works with one

encoder output vector from which it decodes whole correction (sentence). While

decoding, it may also use the attention mechanism. The beam search decoding

algorithm utilizes a set of hypotheses. A hypothesis in this context is a tuple

storing a represented character sequence, its probability and the hidden state of

the decoder after outputting last character from the represented sequence.

The encoder in word2word model is the correcting module. However, it does

not output a single vector, but multiple vectors. To solve this issue, we run the

beam search decoder multiple times. Firstly, we run the beam search decoder

with the first output vector of the correcting module and an empty set of initial

hypotheses. This gives us k most probable corrections hyps of the first word.

After this, the language model may be incorporated to modify the probability of

each correction. Afterwards, we run the beam search decoder with the second

output vector of the correcting module and provide also a set of initial hypotheses

hyps. This process is then iteratively applied on all correcting module output

vectors together with optional language model incorporation. In the end, we

have k most probable corrections of input sentence, from which we take the most

probable one. This process is more formally described in Algorithm 5.

29

Data: encoder output o = (o0, . . . , od), input annotations

h = (h1, . . . , hN), initial hypotheses hyps

Result: k most probable hypotheses

if hyps == None then
hyps = [Hypothesis(seq=[’GO’], prob = 1, state = o)]

end

results = []

i = 0

while i ̸= decoder max step and len(results) < k do
candidates = []

for hyp in hyps do
new state, output probs = decoder step(hyp.state, h, hyp.seq[−1])

top k indices = argsort(output probs, highest first)[:k]

for j in top k indices do
candidate prob = hyp.prob · output probs[j]
candidate seq = hyp.seq + output index to char(j)

candidates.append(Hypothesis(seq = candidate seq,prob =

candidate prob,state=new state)

end

end

hyps = []

for cand in sorted(candidates, key = candidate.prob, highest first) do

if cand.seq[−1] == ’EOS’ then
results.append(cand)

else
hyps.append(cand)

end

if len(hyps) == k or len(results) == k then
break;

end

end

i = i+ 1
end

if i == decoder max step then
results.extend(hyps)

end

return sorted(results, key = result.prob, highest first)[:k]

Algorithm 4: Beam search decoding algorithm

30

Data: Input sequence of words w = (w1, w2, . . . , wn)

Result: Most probable hypothesis

o1, o2, . . . , on = compute correcting module outputs(w)

hyps = beam search decoder(o1, annotations(w), None)

hyps =apply language model(hyps)

for i in range(n+ 1, start = 1) do
hyps = beam search decoder(oi, annotations(w), hyps)

hyps = apply language model(hyps)

end

return sorted(hyps, key=hyp.prob, highest first)[0]

Algorithm 5: Using word2word model for correcting a sentence

4.6 Error generation

The obvious usage of the proposed model is to correct errors. Nevertheless, in

some cases when there is for example not enough data to train the model properly,

we could benefit from being able to generate errors instead. The model that is

able to generate artificial errors may be used for instance to create bigger training

dataset from clean data. Such dataset can be then used either by the same or

more complex model to learn to correct errors better.

To train the model to generate errors, we first need to change the data.

The original input and gold data are swapped so that the input data are the

corrected sentences and the gold data contain errors. The model for the error

generation task also contains an error classifier. The training then works in a sim-

ilar way as described before.

The usage of the error classifier has two purposes. Firstly, because we assume

there is a few data, we want the decoder to learn only to produce errors. Secondly,

we want to be able to regulate the number of words with errors together with

their quality in the output. To clarify, think of what the error classifier is learnt in

the error generation task. It is learnt to tell the likelihood that the person would

type the particular word incorrectly. At infer time, we could use this information

and run the decoder only on words with high mistyping probability. It is also

worth mentioning that in comparison to correcting task, the fact that the decoder

did not learn to produce the gold data properly may not be that crucial.

31

4.7 Model summary

To summarize, the second proposed model is trying to mimic the way the people

correct errors. It looks on whole words and generates a correction for each input

word. To be able to feed whole words to the recurrent neural network, the char-

acter level word embeddings are created. We described three main approaches to

this task, however, we decided to implement only C2W model (see Section 4.2.1)

and Charagram model (see Section 4.2.3). The implementation of C2W model

was straightforward, because we could reuse the main part used by the attention

mechanism (see Section 4.3). The reason for preferring Charagram model over

CharCNN was that its authors claim that it is much faster to train and also its

results are comparable. To infer with the model, the beam search decoder (see

Algorithm 4 and Algorithm 5) is used.

Apart from the model standard usage, we also proposed a way to train

the model to produce errors in Section 4.6. This may have various purposes,

but we conjecture that it could be used to create bigger dataset for more com-

plex models. Even though all proposed models may be used for error generation,

we suppose that due to the existence of an error classifier (see Section 4.4), this

model is the right one if we want to generate the mistakes in words themselves.

The last thing to discuss is what tasks is the model capable of solving. It is

clear that all tasks performed by char2char model such as text diacritization or

text uppercasing can be done by this model as well. The model can also handle

spelling correction tasks, which have the same number of words both in the input

and the output sentence. This brings up the question whether the model can per-

form tasks that either swap, delete or create new words. It is clear that the dele-

tion operation is possible, because the decoder can simply generate an empty

word. The swap operation is also possible, but it seems intuitive to turn off the

attention mechanism if there are many of these operations. Finally, to generate

more words than there are in an input sentence, we can use a simple trick. Its

main idea is to concatenate some adjacent words with a special symbol (e.g. tab-

ulator). The decoder then for some input word outputs correction that is a string

with possibly multiple words separated with the special symbol. With this trick,

the model may theoretically learn to correct even the difficult grammar correction

errors. Practically, we suspect the main area of tasks the word2word model will

be used for contains spelling correction and simple grammar correction tasks.

32

5. Translation model

The last model we implemented is the most universal one. It does not require

the data to have any special properties such as the same number of characters or

words in both the input and the gold sentences. The model is capable of solving

all possible natural language correction tasks.

As described in Section 2.4, the current state-of-the-art results in grammatical

error correction are achieved both by statistical machine translation systems,

neural machine translation systems or with their combination. For this reason,

our third model is a neural based translation system. It adopts several features

from the former state-of-the-art model of Xie et al. [2016].

5.1 Neural machine translation

Since 2014, the neural based approach to machine translation have been utiliz-

ing sequence-to-sequence model [Sutskever et al., 2014, Cho et al., 2014], which

consists of an encoder and a decoder. The encoder is a bidirectional recurrent

network, whose goal is to map input sentence to a fixed d-dimensional vector.

This is then passed to the decoder, which is a recurrent network that generates

a translation. The obvious bottleneck of the model is the fact that the decoder

utilizes only one fixed size vector. Bahdanau et al. [2014] proposed an attention

mechanism (see Section 4.3), which allows the decoder to use additional informa-

tion from the input.

The encoder and the decoder originally operated on the word level, i.e. the

inputs and the outputs to the model were individual words, respectively their

indices. The indices are pointers to a fixed size vocabulary that contains certain

number (e.g. 100k) of most common words. The straightforward usage of such

model on natural language correction tasks may not work due to this fixed vo-

cabulary. The input words for natural language correction task usually contain

both spelling errors, dates, email addresses or different types of emoticons. Most

of these words is not saved in the vocabulary and, thus, are fed to the encoder as

out-of-vocabulary words. It is clear that the encoder may not perform satisfactory

when fed with many out-of-vocabulary words.

In 2016, Lee et al. [2016] used both character level encoder and decoder for

machine translation and Xie et al. [2016] for natural language correction. The is-

sue they both had to cope with was that the input is much longer when measured

in characters than when measured in words. It is worth noting that the sequence-

to-sequence model is quite deep and, thus, slow to train, even if fed with words.

33

The attention mechanism overhead is also not so small and its computational cost

grows quadratically with respect to the number of input annotations. Therefore,

when one suddenly starts operating on a character level, both the training pro-

cess and inferring process become slower. For this reason, authors incorporated

a mechanism that reduces the number of input annotations.

An encoder of Lee et al. [2016] applies a combination of convolutional layers,

max-pooling layers and highway networks on the input sentence, which results in

a shorter sequence. This sequence is then fed to a standard bidirectional recurrent

network which produces input annotations and a decoder initial state. An encoder

of Xie et al. [2016] is a pyramidal encoder proposed by Chan et al. [2015]. It is

composed of a stack of bidirectional layers, where each layer processes input of

half a size of the previous layer output. More formally, let x = (x1, x2, . . . , xn) be

input sequence of character IDs. The forward, backward and combined (output)

i-th layer encoder activations are computed as follows:

f i
t = GRU(f i

t−1, h
i−1
t)

bit = GRU(bit+1, h
i−1
t)

oit = f i
t + bit,

where GRU is the gated recurrent unit [Cho et al., 2014], h denotes input from

the previous layer, h0
t = xt and for i > 0 we have

hi
t = tanh(W i[oi−1

2t , oi−1
2t+1] + b)

with matrix W i reducing number of previous layer outputs by half.

5.2 Model architecture

Our implementation of neural machine translation system utilizes sequence-to-

sequence model with the attention mechanism. As discussed in the previous

section, because inputs may contain misspellings and other types of rare words,

we decided to operate on the character level instead of the word level. With this

decision, we had to also think over, whether to keep the standard encoder or

implement one of two improvements described in the previous section. Since Xie

et al. [2016] claim that their implementation is two times faster than the standard

encoder when using three pyramidal layers in the encoder and also achieves good

results on grammatical error correction tasks, we decided to implement their

encoder. To evaluate the performance boost, we also implemented a standard

multilayer encoder. Despite our decision, we think that the implementation of

the encoder of Lee et al. [2016] may be a good option to try in the future work.

34

To sum up, the model consists of the pyramidal encoder, which produces the

initial hidden state for the decoder and the input annotations (vector h). The de-

coder is a multilayer recurrent neural network that at each time step generates

next character based on both its hidden state and the computed attention vec-

tor. As illustrated in Figure 5.1, the attention vector computed from the previous

hidden state and the input annotations h is used twice at each time step, which

may help the decoder when copying characters.

Figure 5.1: Translation model visualization with two encoder stacked layers –

note that the attention is shown with a dashed line

We train the model by minimizing the negative log likelihood of the training

data using stochastic gradient with adaptive learning rates.

To infer with the model, we first run the encoder to compute the initial decoder

hidden state and input annotations. To decode, we utilize a beam search decoder,

which we provide with the decoder initial state, input annotations and an empty

set of initial hypothesis. The beam search algorithm works exactly as described

in Algorithm 4.

35

5.3 Models summary

So far, we proposed three models. They differ in their complexity and range

of tasks they are applicable to. The first model is designed for tasks that map

each input character into a label. An example of such task may be diacritiza-

tion or uppercasing task. The supposed usage of the second model is spelling

and basic grammar correction area. The model is trying to mimic people, who

when solving these tasks, usually look on whole words and check, whether they

are correct in their context. Finally the third model is the most general model

that is applicable to any task, for which we have a corpus of parallel data. One

might now wonder why should we have three models when the translation model

is capable of solving any task. This is theoretically true, nevertheless, the trans-

lation system is the most complex. It contains the most parameters and also its

attention mechanism is trained to align to specific segments of a whole sentence.

On the other hand, char2char model has no explicit attention mechanism and

word2words model learns to align only to characters in given words. For this rea-

son, we suppose the smaller models may be trained better to their tasks, which

we evaluate in the next chapter.

When we compare approach used by our models with those used by cur-

rent spelling correctors (see Section 2.3), we can notice one important difference.

The statistical spelling correctors usually consist of a mechanism that generates

corrections to consider and of an error model that assigns probabilities to them.

Both these modules are created independently. A candidate generation mecha-

nism proposes candidates, which are not beyond some edit distance, and an error

model is somehow computed from available data. However, even if the task is as

simple as diacritization, there may be too many edits that are needed to transform

the input word to a correct one; therefore, the correct word is not even proposed

by candidate generator. Also the way to estimate the error model is anything,

but easy. On the other hand, our models learn all mentioned components from

training data when trying to maximize negative log likelihood of the training

data. Moreover, our models are language independent in comparison to standard

spelling correctors. In other words, when we want to make a diacritization sys-

tem for instance for Arabic, all we need to do is to train the model with new

data. In traditional diacritization systems, both the candidate generation and

error model must be modified, which requires certain amount of non-trivial work.

On a theoretical level, all the advantages of neural based approach seem great.

Now it is time to find out, whether the proposed models can achieve comparable

performance with the traditional statistical systems.

36

6. Experiments

In this chapter we perform experiments and present their results. We start by

detailing chosen tasks and describing their data. Then we define evaluation met-

rics, perform experiments and discuss their results. Finally, for each task, we

compare achieved results with other tools.

6.1 Tasks and data

6.1.1 Diacritization

As already mentioned in Section 2.1, many Czech texts partially or even com-

pletely lack diacritics. This is a very motivating and, due to existence of large

and clean Czech corpora, also solvable task. The creation of a dataset naturally

brings up the question, whether input data for the diacritization should be com-

pletely without diacritics or whether diacritics should be occasionally preserved.

The diacritization of the text with occasionally preserved diacritics seems to be

an easier task, since we can always remove all diacritics and convert it to the text

without diacritics. This was together with the fact that even if a text has some

diacritics, it does not need to be correct, the reason, why we decided to keep all

training data completely without diacritics.

The corpora we utilized for this task are PDT3.0 (see Section 2.6.4) and

SYN2010 (see Section 2.6.5). PDT3.0 already contains train/dev/test sentence

split, which we preserved in our task, therefore, we evaluate all our experiments on

PDT3.0 test set with removed diacritics. For training purposes only, we utilized

also SYN2010 corpora, which is significantly bigger. Basic characteristics of both

datasets can be found in Table 6.1.

Name # sentences # words % word errors

PDT3.0 train set 90 828 1 535 826 42.5

PDT3.0 dev set 11 880 201 651 42.8

PDT3.0 test set 13 136 219 765 42.4

SYN2010 8 172 649 129 847 673 40.0

Table 6.1: Basic statistics of diacritization dataset

37

6.1.2 I vs Y

One of the most common errors in Czech texts is interchanging i and y. Even

though it is not very probable that a text would contain only these errors in

separate, i.e. no other error types would be present in the text, it could still be

useful to be able to correct such texts. To create dataset for this task, we can use

process similar to the creation of the diacritization dataset. Instead of replacing

all diacritized characters by their ASCII counterparts, all occurrences of letters

yYýÝ are replaced by letters iÍıÍ. The described process is applied to sentences

from PDT3.0 train/dev/test sets. The official PDT3.0 train/dev/test sentences

are then used as the gold data.

6.1.3 Czech spelling and basic grammar correction

The third group of experiments we conducted is devoted to the spelling and basic

grammar correction for Czech. The reason for choosing Czech is that there exist

two datasets we can directly work with: CzeSL (see Section 2.6.3) and Švejk,

which is a manual transcript of an audiobook performed by authors of Korektor

(see Section 2.3.2).

CzeSL

CzeSL contains 20 752, respectively 13 267 parallel pair of original and corrected

sentences annotated in two annotator rounds (A1 and A2). All sentences are word

tokenized. The variety of error types in the dataset is large. We want, however,

to handle only spelling and basic grammar error types in this task. For this

reason we postprocessed original CzeSL corpus and created new four datasets

with varying difficulty.

• czesl-sent2sent – Original data (sentence aligned).

• czesl-word2words – Subset of czesl-sent2sent. Each sentence is word aligned.

A gold word may be empty or contain tabulators to separate multiple logical

words.

• czesl-word2word – Subset of czesl-sent2sent. Each sentence is word aligned.

A gold word contains exactly one non-empty word.

• czesl-word2simword – Subset of czesl-sent2sent. Each sentence is word

aligned. A gold word contains exactly one non-empty word, which differs

from the input word by no more than 50 percent in means of edit distance.

38

All four datasets are in two versions preserving the annotator rounds. To en-

able comparison of results, we also split all four datasets into training, develop-

ment and testing sets. The development and testing input sentences were chosen

to be same for both annotators. Consequently, the evaluation script may choose

the gold correction which more resembles the system output. Note that for sim-

plicity reasons, we evaluate our models only on the first annotator round testing

set.

The basic statistics of the created datasets are presented in Table 6.2. To sum-

marize them, each dataset has more training sentences annotated in the first anno-

tator round (A1) than in the second annotator round (A2). In means of sentence

counts, czesl-word2simword is similar to czesl-word2word and czesl-word2words

is similar to czesl-sent2sent. Finally, all datasets contain quite a lot of word errors

and the highest error proportion is at czesl-word2words dataset.

Dataset train dev test % word errors

czesl-sent2sent (A1) 18 233 1 191 1 198 –

czesl-sent2sent (A2) 10 748 1 191 1 198 –

czesl-word2words (A1) 18 264 1 199 1 169 [20.2, 17.4, 16.9]

czesl-word2words (A2) 10 804 1 199 1 169 [19.4, 17.2, 17.1]

czesl-word2word (A1) 11 493 760 700 [12.4, 10.0, 11.5]

czesl-word2word (A2) 6 859 760 700 [12.0, 10.3, 11.6]

czesl-word2simword (A1) 10 390 688 622 [10.2, 9.9, 9.8]

czesl-word2simword (A2) 6 230 688 622 [9.9, 9.8, 9.5]

Table 6.2: Basic statistics of four new datasets derived from CzeSL – the last

column contains percentage of word errors in training, development and testing

set of particular dataset does not have values for czesl-sent2sent, because this

dataset is only sentence aligned.

Out of all four datasets, czesl-word2simword is the only dataset that may

contain spelling and basic grammatical errors and, therefore, we decided to utilize

it in our second experiments. The rest three datasets are devoted to grammatical

error correction and we leave them for future research.

Švejk

Švejk is a manual transcript of an audio book. It consists of approximately 1 000

sentences of both original and corrected texts. Because of its short length, we

decided to use sentences in Švejk only as a testing set. We preserved the way we

handled CzeSL and created four testing sets of varying difficulty: svejk-sent2sent

39

(982 sentences), svejk-word2words (982 sentences), svejk-word2word (964 sen-

tences), svejk-word2simword (964 sentences). Out of these four datasets, we used

svejk-word2simword in our second set of experiments. Nevertheless, the sentence

counts of the created datasets indicate that even the original text contains mostly

spelling errors but not grammatical errors. It is also worth mentioning that the

percentage of words with error is around 5 percent, which is significantly less than

in CzeSL.

Automatically generated spelling correction corpus for Czech (Czech-

SEC-AG)

Besides the texts themselves, Švejk authors also created a character error model.

This model contains probabilities of producing an error with respect to four char-

acter operations:

• substitution[x][y] – probability of typing x when y was intended

• swap[xy] – probability of typing yx when xy was intended

• insertion[x][p][s] – probability of erroneous insertion of x between p and s

• deletion[x][p] – probability of erroneous deletion of x after p

We utilized the error model to create new dataset with artificial errors. Despite

the fact that the described error model does not contain probabilities of changing

character casing, we estimated these probabilities and incorporated them while

generating the artificial errors. The new dataset is derived from PDT3.0 corpus

and we call it Czech-SEC-AG. While generating new dataset, we tried to keep

the percentage of words with errors similar to Švejk dataset. For training purposes

only, we also created errors on SYN2010 corpus with substantially higher error

percentage (approximately 20 percent).

Let us now summarize datasets that we use in the spelling and basic gram-

mar correction task. Firstly, we processed CzeSL corpus and created new four

datasets. These are available at http://hdl.handle.net/11234/1-2143. From

these datasets, we use czesl-word2simword in this thesis. Secondly, Švejk dataset

is used as a testing set. Thirdly, we created new dataset Czech-SEC-AG based

on the statistical error model. This dataset is together with Švejk available at

http://hdl.handle.net/11234/1-2144. Czech-SEC-AG is in the thesis utilized

for testing and SYN2010 with errors for training.

40

http://hdl.handle.net/11234/1-2143
http://hdl.handle.net/11234/1-2144

6.1.4 English grammar correction

The last set of experiments we conducted is devoted to grammatical error correc-

tion. Probably the most known task in this area is CoNLL 2014 shared task (see

Section 2.4), which we utilize. CoNLL 2014 shared task comes with preprocessed

NUCLE corpus (see Section 2.6.2), but since it is relatively small, most teams

train their models also on Lang8 corpus (see Section 2.6.1). To evaluate system

performance, CoNLL 2014 test set is used.

6.2 Evaluation metrics

To compare system performance, one needs to define evaluation metrics to use.

Let us first concentrate on tasks having the same number of spaces both in input

and gold sentences. This condition is satisfied in the diacritization, I vs Y and

the spelling correction tasks, since they correct errors in words only. The reason

why we require the same number of spaces instead of the same number of words

is that we would like to use the same metrics also for the grammar correction

task. The grammar correction system may naturally produce more (or less) words

than was in the input. Nevertheless, we can use the trick mentioned in word2word

model (see Section 4.7) and separate new words with tabulator instead of space.

Having this limitation in mind, we can split both input, output and gold sen-

tences on spaces and obtain input, output and gold lists of chunks. The evaluation

of the system is then performed on these chunks.

The most common metric is accuracy. Accuracy is defined as a number of

corresponding chunks that are same both in system and gold sentences, divided

by total number of chunks:

accuracy =

#(sentences)∑
s=1

#(sentences[s])∑
i=1

system[s][i] == gold[s][i]

number of all chunks

Note that for some task (e.g. diacritization), we could also measure accuracy

on single characters. However, we did not find this metric intuitive.

Accuracy is the sufficient metric as long as the number of chunks that should

be corrected is not much smaller than the number of chunks that should stay

unchanged. This can be clearly illustrated on the spelling correction task. Let’s

suppose that every 10-th word is misspelled and should be corrected. We train

a system with accuracy of 87 percent, which may seem quite good. Now consider

a completely useless system that just copies its input to the output. Such system

has accuracy of 90 percent. This is weird as the useless system has higher accuracy

than the system that tries to correct misspelled words. For this reason, it is better

41

to use other metrics for such unbalanced cases.

One of the most popular metrics capable of handling this issue is F1-score.

Let an edit be chunk with corresponding input chunk being different from it.

Then we have a set of system edits (fsystem) and a set of gold edits (fgold), i.e.

the set of chunks that the system changed and the set of chunks that should be

changed. Let us further denote fboth a set of edits that the system made correctly.

Then F1-score is defined as follows:

P =
|fboth|

|fsystem|
(precision)

R =
|fboth|
|fgold|

(recall)

F1 = 2 · P ·R
P +R

F1-score is the harmonic mean of precision and recall. However, in the natu-

ral language correction scenario, precision is often emphasized more than recall.

In other words, when for example a spelling corrector runs in production mode,

it is very important that the proposed corrections are accurate. Omitting some

corrections is usually not as bad as proposing a bad one. For this reason,

F0.5-score is often used:

F0.5 =
(1 + 0.52) · P ·R
0.52 · P +R

As we can see, F-score requires a set of system and gold edits. To make

the evaluation simpler, we required that the number of spaces in input and gold

sentences are the same. This is naturally often impractical; therefore, there are

more sophisticated methods that can extract these edit sets directly from sentence

pairs. Out of all these methods, we would like to mention MaxMatch algorithm

[Dahlmeier and Ng, 2012], which is used in CoNLL 2013 and 2014 shared tasks.

To sum up, we report F0.5-score for all evaluated tasks and for the diacritiza-

tion and the I vs Y task, we report accuracy as well.

6.3 Language model

While inferring, all three models have an option to incorporate a language model

(see Section 3.3, Section 4.5 and Section 5.2). To train the language model as

well as to run it, we used open-source KenLM toolkit.1 The language model was

trained on a concatenation of the following corpora:

• Czech part of W2C (http://hdl.handle.net/11858/00-097C-0000-0022-6133-9)

1https://github.com/kpu/kenlm

42

http://hdl.handle.net/11858/00-097C-0000-0022-6133-9
https://github.com/kpu/kenlm

• CZES corpus (http://hdl.handle.net/11858/00-097C-0000-0001-CCCF-C)

• articles from CWC2011 (http://hdl.handle.net/11858/00-097C-0000-0006-B847-6)

• SYN 2005 (http://hdl.handle.net/11858/00-097C-0000-0023-119E-8)

• SYN 2006 PUB (http://hdl.handle.net/11858/00-097C-0000-0023-1358-3)

• SYN 2009 PUB (http://hdl.handle.net/11858/00-097C-0000-0023-1359-1)

• SYN 2010 (http://hdl.handle.net/11858/00-097C-0000-0023-119F-6)

• SYN 2013 PUB (http://hdl.handle.net/11858/00-097C-0000-0023-3B09-4)

We trained two language models of rank 3 and 5. For training, only those

{2,3,4,5}-grams that occurred at least twice were considered.

It is worth noting that we also experimented with own implementation of neu-

ral based language model operating on individual characters, but its performance

was rather poor. Therefore, this is the only mention of it in the thesis.

6.4 Diacritization

The first solved task is the diacritization. For this task, we trained all three models

on SYN2010 corpus with removed diacritics. We discuss each model settings and

results in separate and in the end compare their results with currently existing

tools.

6.4.1 Char2char model

To train the char2char model, several hyperparameters must be set. For the initial

set of experiments, we decided to choose hyperparameters described in Table 6.3.

This table also contains domains of the chosen hyperpameters and the values we

experimented with.

Parameter name Domain Searched domain

RNN cell type choice LSTM, GRU

RNN cell dimension integer 25, 50, 75, 100, 150, 200, 300, 400

Character embedding dimension integer 25, 50, 100, 150, 200

Number of RNN layers integer 1, 2, 3

Learning rate float 10−1, 10−2, 10−3, 10−4, 10−5

Dropout keep probability float 0.3, 0.5, 0.8, 1.0

Table 6.3: Char2char model hyperparameters searched domains

43

http://hdl.handle.net/11858/00-097C-0000-0001-CCCF-C
http://hdl.handle.net/11858/00-097C-0000-0006-B847-6
http://hdl.handle.net/11858/00-097C-0000-0023-119E-8
http://hdl.handle.net/11858/00-097C-0000-0023-1358-3
http://hdl.handle.net/11858/00-097C-0000-0023-1359-1
http://hdl.handle.net/11858/00-097C-0000-0023-119F-6
http://hdl.handle.net/11858/00-097C-0000-0023-3B09-4

Out of all training hyperparameters, we need to explain how the dropout

technique [Srivastava et al., 2014] is used at the model. Dropout in general helps

to reduce overfitting of the model. While training, it zeros some outputs of the

particular layer. This should force the next layer not to depend only on cer-

tain features of the current layer and, thus, create more complex representation.

At infer time, the network is used standardly. For this reason, all weights are cor-

rected when the training is finished. In our experiments, we use dropout on both

character embeddings and each output of RNN layers. The values mentioned in

Table 6.3 then tell the probability that the particular field of a character embed-

ding or RNN layer output is kept.

We would ideally try each possible combination of the described hyperparam-

eters to find the best model. However, because there are 4 800 possible combi-

nations and it takes approximately two days to train even the smallest model

on CPU, we experimented with each hyperparameter separately, i.e. we fixed

all hyperparameters, but the selected one. With this approach, our experiments

show effects of the specified hyperparameters rather than the best possible hy-

perparameters.

All models were trained with Adam optimizer [Kingma and Ba, 2014] with

a batch size of 200 for approximately 3 days on a single CPU. Results of the ex-

periments are presented in Figure 6.1. We discuss each experiment now.

The first hyperparameter we experimented with is a dimension of RNN unit.

The basic intuition tells that a unit of greater dimensionality may capture more

features than a unit with lower dimensionality and, thus, reach better perfor-

mance. Because the amount of training data is relatively large, we could hope

that the size of RNN unit may be quite large even if it processes single character,

which itself may not provide much information. This hypothesis turned out to be

true, the bigger the RNN cell dimension, the higher the accuracy. The obvious

disadvantage of using model with bigger RNN dimension is the model memory

size and substantially longer training time (the training time is almost quadratic

with respect to RNN cell dimension).

The second hyperparameter is a number of RNN layers that are used in stack.

Similarly to the RNN unit dimension, the more layers the model has, the more

computing power it theoretically possess. It turned out that, in practice, this is

not that simple. We can see that the model with 3 layers has lower accuracy than

the model with 2 layers. We discuss the possible reason why this happens later.

The third hyperparameter is RNN cell type. The graph shows that LSTM

cell performs slightly better than GRU cell. Despite this fact, we used GRU cell

in all further experiments mainly because it is simpler and, thus, runs faster.

The fourth hyperparameter is learning rate. The experiment shows that

44

Figure 6.1: Results of basic experiments with char2char model on the diacritiza-

tion task

the bad choice of this hyperparameter may lead to catastrophic results. The learn-

ing rate between 10−4 and 10−3 seems to be a good choice for the task.

The fifth hyperparameter is a keep probability of dropout. The choice of this

hyperparameters does not seem to be that crucial as for example the learning

rate. Nevertheless, the good choice of this hyperparameter definitely improves

overall model performance.

The last hyperparameter we experimented with is a dimension of the character

embedding. It is important to note that all models used in this last experiment

had RNN units of size 100. Possibly due to this reason, the best accuracy is

achieved with character embedding of size 100. Nevertheless, the model exhibits

good performance even if the relatively small character embedding of size 50 is

used.

45

Incorporating language model

As described in Section 3.3, incorporation of a language model to decoding may

improve the diacritization accuracy. Therefore, we trained three char2char models

with 1,2 and 3 stacked layers and also trained the language model of rank 5 as

described in Section 6.3. The language model was then used when inferring with

char2char models. We examined the impact of a language model weight α and

a beam size on the diacritization accuracy. The results of the experiment are

visualized in Figure 6.2.

Figure 6.2: Char2char model diacritization – incorporating language model

The most important thing to notice is that the accuracy of all models greatly

improves when the language model is utilized. In comparison to version without

the language model, the best accuracy achieved by each model is higher by more

than 1 percent.

Secondly, there is a great difference in the chosen beam size. The beam size

of 2 achieves the worst results, the beam size of 4 achieves significantly better

results and both the beam size of 8 and the beam size of 16 lead to the highest

achieved accuracy.

Thirdly, the language model weight α is an important constant that needs to

be estimated as well. The value of this constant that seems reasonable for the

diacritization task is somewhere between 0.5 and 1.5.

Finally, even if the language model is incorporated, the model with 1 layer

still performs significantly worse than two other models.

Language model rank

The language model used in the previous section has rank 5. This means that

the language model was built from {1,2,3,4,5}-grams that occurred in the training

46

corpus. In other words, the language model was trained to consider context of

maximally 5 words. We were wondering, whether the usage of a less powerful

language model would lead to worse results and if so, how much worse would

they be.

To find out, we trained a language model with rank 3 and performed the sim-

ilar experiment as described in the previous section. The comparison of results

of both experiment is visualized in Figure 6.3. Note that the first row shows

the experiment with the language model of rank 5 and the second row shows

the results of the language model of rank 3.

Figure 6.3: Char2char model diacritization – comparison of two language models

with different rank.

The results of both experiments are visually almost identical. When inspecting

the results more carefully, we found out that the experiments with the weaker

language model achieved a slightly worse accuracy. Nevertheless, the accuracy

was for the most of measured points not worse than 0.05 percent. From this we

conclude that the language model rank does not have that important effect on

the accuracy, which may be still great even for a smaller language model.

Residual connections

In all previous experiments, the model with 2 layers always performed the best.

The reason why the model with more layers performed worse may be the vanishing

or the exploding gradient problem. As mentioned in Section 3.4, after a certain

number of stacked layers, the model becomes too deep and the backward gradient

47

becomes either too small or too large, which leads to poorly trained models.

To solve this issue, we suggested to add the residual connections to the model.

In this experiment, we evaluate, whether the model with residual connections

performs better even if it has more layers.

Because there is no sense in adding residual connections to the model with

one layer, we added them to models with 2, 3 and 4 layers. The training is then

performed as previously.

Figure 6.4: Char2char model diacritization – adding residual connections

The results of the experiment are presented in Figure 6.4. The first subplot

shows accuracy of the models when no language model is incorporated. The model

with 2 layers still performs best, but the differences between models are now

smaller than if no residual connections were used. The other three subplots then

show the effect of incorporating the language model. These graphs are much

more interesting. We can see that the accuracy increased at both model with 2

and 3 layers. Moreover, the achieved accuracy of the model with 3 layers and

the model with 4 layers is greater than the accuracy achieved by the model with 2

48

layers. This confirms the hypotheses that the residual connections allow training

of deeper models and, moreover, also slightly increase performance of current

models.

Intrinsic evaluation and other notes

When training models for longer time (approximately 7 days on CPU, 400k

batches), the accuracy sometimes suddenly dropped. Since we did not observe

this behaviour when the L2-loss was used as a regularization term in the cost

function, we suspect that the models may sometime learn too big weights that

may indicate model overfitting.

The beam search algorithm (see Algorithm 2) that is used for finding the

most probable diacritization is designed generally, so that it may be applied to

all tasks that char2char model is applicable to. For each input character, it takes

k-most probable model outputs and utilizes them to extend current beam of hy-

pothesis. It is clear that the algorithm does not have to use the model outputs

when the particular input character cannot be diacritized. After implementing

this modification to the beam search decoder, the achieved accuracy of all models

improved slightly by approximately 0.05 percent when the language model was

utilized. We inspected sentences, on which the new algorithm performs better,

and found out that the original beam search algorithm with the language model

occasionally rewrites the original character ’\’ to ’-’, ’-’ to ’,’ or whole word

1992 to 1997. The reason why this happens is the language model. Even though

char2char model outputs these wrong characters with low probability, the lan-

guage model assigns them later high probability, convincing the algorithm to use

the wrong ones.

The summarized results of all experiments are presented in Table 6.4. Note that

all hyperparameters including the language model weight α and the beam size

were chosen to maximize system performance on the development set.

System Precision Recall F0.5 score Accuracy

No language model 96.02 95.76 95.97 97.60

With language model of rank 3 98.57 98.46 98.55 99.11

With language model of rank 5 98.62 98.55 98.61 99.15

With residual connections 98.69 98.60 98.67 99.18

Modified beam search 98.87 98.60 98.82 99.25

Table 6.4: Comparison of different modifications to char2char model on the dia-

critization task.

When describing the architecture of char2char model (see Section 3.1), we

49

mentioned that the similar characters may be grouped in one part of the space

when embedded. To check whether this is actually true, we embedded all char-

acters from the training corpus using the trained model. To visualize these d-

dimensional vectors, we used t-distributed stochastic neighbor embedding [Maaten

and Hinton, 2008] to embed these vectors to 2D-space. To make the visualiza-

tion more illustrative, we further divided the characters into four groups: letters

to which the diacritics cannot be generated (e.g. b, H or W), letters to which

diacritics can be added (e.g. a, o, Y), digits and the last group (other) contain-

ing the rest of symbols. The visualization of the described embeddings split in

the groups is presented in Figure 6.5.

Figure 6.5: Char2char model embeddings for individual characters

As we can see in the visualization, the model learnt that all digits have roughly

the same meaning for the diacritization task and placed them to the similar part

of the space. It also seems important that letters that cannot be diacritized are

separated from letters to which the diacritization can be generated. The intuition

behind the placement of rest characters is unclear, which could be caused by

the too raw group division. Nevertheless, we can state that the initial hypothesis

was correct and the embeddings of the trained model are meaningful with respect

to given task.

6.4.2 Word2word model

The experiments conducted on char2char model gave us basic intuition on how

to set model parameters. Therefore, the first experiment we performed with

50

word2word model tries to adopt settings from char2char model. The model has 3

stacked layers, the dimension of word embeddings and also the size of RNN unit

in correcting module was set to 300. To compute the embeddings, we utilize C2W

model (see Section 4.2.1), which operates on embedded characters of dimension

150. The size of RNN unit in the decoder was also 300. All RNN units are GRU.

Dropout is used both on embedded characters and between correcting module

layers. Finally, Adam optimizer with a learning rate of 10−4 and a batch size of

50 was used to train the network.

We trained the model for 22 days (191k batches) on a single CPU. The positive

fact is that possibly due to the large training corpora, the model seemed to

be improving all the time. The accuracy of the model without the language

model incorporation is 97.08 percent. When the language model is incorporated,

the accuracy increases almost to 99 percent. The illustration of how a selected

beam size and a language model weight α affect the accuracy is presented in

Figure 6.6. Similarly to char2char model, the best accuracy is achieved with

the beam size of 8, the beam size of 16 and 4 shows satisfactory results and

the beam size of 2 performs the worst. The optimal α seems to be somewhere

between 0.5 a 1.0.

Figure 6.6: Word2word model diacritization – incorporating language model

Using error classifier

In Section 4.4 we proposed the extension to word2word model. Word2word model

with this extension corrects only those words that are flagged as wrong by the er-

ror classifier. To check, whether this extension may help the model perform better

in the diacritization task, we performed three experiments. The experiments have

51

two differences compared to the experiment conducted in the previous section.

Firstly, they utilize the error classifier. Secondly, each of them uses different size

of correcting module RNN size and C2W RNN size. The first experiment uses

correcting module with RNN size of 200 and C2W model with RNN size of 100,

the second experiment 300 and 150 and the third model 400 and 200, respectively.

Figure 6.7: Word2word model diacritization – using error classifier

Results of the experiments are presented in Figure 6.7. The first fact to note

is that similarly to char2char model, it is important to choose hyperparameters

(e.g. RNN size) carefully, because they substantially influence the performance.

In comparison to the version without the error classifier, the accuracy of the mod-

els without a language model increased. On the other hand, when the language

model is utilized, the accuracy increase is much smaller than we could have seen in

all previous experiments. To understand why this happens, it is useful to inspect

Table 6.5, which besides accuracy also shows precision, recall and F0.5 score of the

models. Note that to compare similar experiments, the table shows the results of

the second experiment with the error classifier, i.e. both experiments in the table

52

utilize RNN cells of the same size.

System Precision Recall F0.5 score Accuracy

Standard word2word without LM 95.12 94.88 95.08 97.08

Standard word2word with LM 98.31 98.43 98.33 98.98

Word2word with error cls. without LM 97.43 96.50 97.24 98.19

Word2word with error cls. with LM 98.52 97.33 98.28 98.70

Table 6.5: Test set performance comparison of different modifications to

word2word model on the diacritization task.

In Table 6.5 we can see that the error classifier on one hand increased the preci-

sion of the model above the precision of the standard model, however on the other

hand the recall remained smaller. The low recall indicates that the error classifier

failed to flag some words as wrong giving the language model no chance to in-

crease performance. Therefore, word2word model with the error classifier should

be preferred over the standard word2word model only in cases, when precision is

emphasized substantially more than recall. In all other cases, we suggest to use

standard word2word model instead.

6.4.3 Translation model

The translation model is the most complex model and, consequently, it takes

the longest time to train. Therefore, only one experiment with translation model

was conducted on the diacritization tasks. The experiment utilized pyramidal

encoder and multilayer decoder with 3 layers and GRU cells with size 200.

Dropout was used on the embedded inputs as well as between encoder layers

and between decoder layers for regularization purposes. Finally, Adam optimizer

with a learning rate 3 ·10−4 and a batch size of 100 was used to train the network.

The model was trained for approximately 2 weeks on a single GPU (NVIDIA

GeForce GTX 1080). When evaluating performance of the model, we found out

that the model sometimes does not output the same number of words as was in

the input. In most cases, it failed to generate the final dot. For this reason, all

model outputs were postprocessed and when there was a missing word, a random

non-sense word was generated.

The accuracy of translation model when used without a language model and

with the beam size of 16 is 93.51 percent. The graph showing the effect of

a selected beam size and a language model weight α on the accuracy of the model

with the language model is presented in Figure 6.8. We can see that the best

accuracy is achieved with the beam size of 16 and the language model weight 0.5.

53

Figure 6.8: Translation model diacritization – incorporating language model

6.4.4 Results comparison

We compare performance of our models with Korektor (see Section 2.3.2), CZA-

CCENT2, which is the diacritization tool developed at the Faculty of Informatics

at Masaryk University, Microsoft Office Word 2010 and ASpell.

The evaluation with Korektor and CZACCENT was simple, because both

these tools have command-line, respectively web interface, capable of generating

diacritics for the whole text at once. Therefore, these evaluations were performed

on the whole test set.

Microsoft Office Word 2010 correcting module and ASpell are primarily spell

checking tools that for each detected misspelling offer a list of possible corrections.

From these suggestions, we always chose the first one, which is supposed to be

the most probable. Since this process requires a non trivial amount of manual

effort, we corrected only the first 1000 sentences from PDT3.0 test set. Finally,

from the corrected sentences, we chose only those sentences that were created by

adding diacritics (746 for Microsoft Office Word and 636 for ASpell).

As we can see in Table 6.6, standard spelling correctors that are not tuned

on the diacritization task perform badly. The achieved accuracy of 89.10 percent

for Microsoft Office 2010, respectively 88.39 percent for ASpell is in comparison

with other tools simply poor. The diacritization tool CZACCENT achieves much

better results, but its performance is still rather weak when compared to Korektor.

Finally, two of our proposed models outperform all current diacritization tools.

The performance of the translation model is low when compared to other

2https://nlp.fi.muni.cz/cz_accent/

54

https://nlp.fi.muni.cz/cz_accent/

Tool Accuracy F0.5 score

Microsoft Office Word 2010 (*) 89.10 86.20

ASpell (*) 88.39 83.11

CZACCENT 96.07 94.33

Korektor 98.61 98.02

Char2char model 99.25 98.82

Word2word model 98.98 98.33

Translation model 95.51 91.47

Table 6.6: Diacritization result. Note that all measurements, but Microsoft Office

Word 2010 and Aspell, were measured on whole testing set.

tools and models. We suspect that the main reason for this is its complexness

and the design that allows it to be used for any grammatical error correction task.

Word2word model, despite being designed for more general tasks, achieves

98.98 percent in accuracy and 98.33 percent in F0.5 score beating the Korektor

performance by more than 0.3 percent.

The best performance is achieved by char2char model that surpasses Korektor

results by more than 0.6 percent in accuracy and by more than 0.8 percent in

F0.5 score. Out of all our three models, char2char model trains the fastest and

also its memory footprint is lowest. Consequently, using char2char model for

the diacritization task seems to be a an obvious choice.

6.4.5 Sample corrections

Several sentences corrected by our system and Korektor are shown in Table 6.7.

The sentences were chosen to show two main disadvantages of Korektor: a fixed

vocabulary and a fixed word context. On the other hand, our system is capable

of adding diacritics to rare words and considering whole left and right contexts

when generating diacritics.

Table 6.8 contains several sentences that were generated by our system and

considered wrong, even if they are valid Czech sentences. Note that the last pair

of sentences in the table shows an example of wrong gold sentence and correct

system output.

6.5 I vs Y

Similarly to the diacritization problem, all three models could be trained to per-

form this task. However, because we found char2char model performing best in

the diacritization task, we decided to train only the char2char model. The utilized

55

Correction

K V počátku rekonstrukce bydleli na tuchomericke faře .

O V počátku rekonstrukce bydleli na tuchoměřické faře .

K Ceny benzinu jsou v naš́ı zemi snad t́ım nejcitlivejsim indikátorem nálady lid́ı .

O Ceny benzinu jsou v naš́ı zemi snad t́ım nejcitlivěǰśım indikátorem nálady lid́ı .

K Ponechali jsme personálně zredukované ředitelstv́ı , vypustili středńı řidiči článek -

závody - a mı́rně jsme pośılili technicko - hospodářský úsek středisek .

O Ponechali jsme personálně zredukované ředitelstv́ı , vypustili středńı ř́ıd́ıćı článek -

závody - a mı́rně jsme pośılili technicko - hospodářský úsek středisek .

K Počet nových registraćı automobilu dosáhl v lednu 1.085 milion̊u .

O Počet nových registraćı automobil̊u dosáhl v lednu 1.085 milionu .

Table 6.7: Sample diacritization outputs proposed by our system (O) and Korek-

tor (K).

Correction

G (Vyšš́ı hmotnosti výrobk̊u na závadu nejsou .)

O (Vyšš́ı hmotnosti výrobku na závadu nejsou .)

G Sehnat pracovńıky , kteř́ı by se k tomuto majetku dokázali chovat jako ke svému ,

je velmi obt́ıžné , prohlašuj́ı .

O Sehnat pracovńıky , kteř́ı by se k tomuto majetku dokázali chovat jako ke svému ,

je velmi obt́ıžné , prohlašuji .

G Potvrdila to skutečnost , že hned při zahájeńı výroby byly kvalitativńı parametry

automobil̊u minimálně na úrovni japonských závod̊u .

O Potvrdila to skutečnost , že hned při zahájeńı výroby byly kvalitativńı parametry

automobilu minimálně na úrovni japonských závod̊u .

G A protože ji vznikla konkurence i v daľśıch obćıch , musela zkoušet nové cesty jak

si zákazńıky udržet .

O A protože j́ı vznikla konkurence i v daľśıch obćıch , musela zkoušet nové cesty jak

si zákazńıky udržet .

Table 6.8: Sample diacritization outputs that were consider wrong despite being

valid Czech sentences – Note that G stands for gold sentence and O for correction

produced by our system.

model has 2 stacked layers, the dimension of character embedding as well as the

dimension of GRU cells is 200. Dropout of keep rate 0.8 is used on the embedded

characters as well as between stacked layers. To train the model, Adam optimizer

with a learning rate 10−4 and a batch size 200 is used.

The trained model achieves accuracy of 99.58 percent. When the language

56

model of rank 5 is incorporated, this value increases up to 99.82. As we can see in

Table 6.9, our model surpasses Korektor performance by more than 0.2 percent

in accuracy and more than 0.6 percent in F0.5 score.

System Precision Recall F0.5 score Accuracy

Korektor 99.00 96.91 98.57 99.56

char2char 99.28 99.03 99.23 99.82

Table 6.9: I vs Y system comparison.

6.6 Czech spelling and basic grammar correc-

tion

Both word2word model and translation model may be trained to correct spelling

and basic grammatical errors. However, because translation model is computa-

tionally demanding and also did not reach comparable results in the diacritization

task, we decided to experiment only with word2word model in this task.

As described in Section 6.1.3, we acquired three datasets. The first (czesl-

word2simword) contains training, development and testing sets. Despite the fact

that we tried to make the training set as big as possible, it still contains substan-

tially less sentences than the training set for the diacritization task. Therefore, we

generated one more training corpus (czesl-word2simword-big) containing the sim-

ilar errors to those occurring in the czesl-word2simword training set. The con-

struction of this dataset is described in Section 6.6.1. The second utilized dataset

is Czech-SEC-AG, which also contains training, development and testing sets.

Since we implemented a script that is capable to generate spelling errors from

a character error model and a corpus of clean text, we are not limited by the size

of the training corpus. Therefore, for training purposes, we utilized SYN2010

with substantially more errors (approximately 20 percent) than in the testing

set. The last dataset is Švejk, which contains only test sentences.

Ideally, we would like to have one model that would perform satisfactory on

all test sets. However, each dataset has its own specific types of errors. There-

fore, we created one more training set (spelling-combined). This training set

is a mixture of all described training corpora. Namely, it contains the original

czesl-word2simword training set, 500 000 sentences from Czech-SEC-AG training

dataset and 500 000 sentences of newly created czesl-word2simword-big dataset.

In the next sections we discuss our experiment with respect to the given test

sets and in the end compare achieved results with Korektor and Microsoft Office

Word 2010.

57

6.6.1 Generating new training set

As described in Section 4.6, we can utilize word2word model to generate artificial

errors. Inspired by this idea, we trained word2word model on inverse dataset, i.e.

the input training sentences were gold training sentences of czesl-word2simword

and the gold training sentences were the input sentences of czesl-word2simword.

The trained model used the same hyperparameters as the standard models de-

scribed in the next section. The only difference to standard correcting models is

that this model uses error classifier to determine which words to decode. To cre-

ate errors with this model, the process described in the next paragraph is applied

on each input sentence.

First of all, certain number of input words to be damaged is chosen randomly

with fixed probability (30 percent). After this, we run the model on input sen-

tence and sort the error classifier word error probabilities. Finally, the decoder is

executed on the k word with highest error probability, where k is the precomputed

number of words to be damaged.

The described process was then applied on 1 000 000 sentences from SYN2010

corpus, which resulted in new dataset czesl-word2simword-big.

6.6.2 Basic experiments

All in all, we have four training and three testing sets. On each training set, we

trained one model. All models have the same architecture – 3 stacked layers, the

dimension of word embeddings and also the size of RNN unit in correcting module

was set to 300. To construct these embeddings, we utilized C2W model (see

Section 4.2.1), which operates on embedded characters of dimension 150. The size

of RNN unit in the decoder is also 300. All RNN units are GRU. Dropout of keep

rate 0.8 is used both on embedded characters and between correcting module

layers. To train the network, Adam optimizer with learning rate 10−4 and batch

size of 50 is used.

Apart from these four models, we trained two more models that utilize Chara-

gram model to create word embeddings (see Section 4.2.3). These models were

trained on Czech-SEC-AG and spelling-combined datasets with the same hyper-

parameters as the previous models. The n-gram dictionary of Charagram model

contained top 100 000 occurring {1,2,3,4}-grams.

Table 6.10 shows F0.5 score of all models without a language model incorpo-

ration with respect to three test sets. There are several things to mention:

• The model trained on czesl-word2simword-big training set achieves the high-

est F0.5 score on czesl-word2simword test set and similarly the models

58

Train \ Test czesl-word2simword Czech-SEC-AG Švejk

czesl-word2simword (C2W) 47.03 17.92 16.15

czesl-word2simword-big (C2W) 65.82 14.83 16.36

Czech-SEC-AG (Charagram) 42.42 82.30 54.28

Czech-SEC-AG (C2W) 40.11 78.72 54.14

spelling-combined (Charagram) 65.36 62.62 31.66

spelling-combined (C2W) 65.79 66.75 35.87

Table 6.10: Results of the spelling and basic grammar correction

trained on Czech-SEC-AG training sets performs the best on the Czech-

SEC-AG test set. The performance of these models rapidly decrease when

they are applied on two other datasets. We can see that both models that

were not trained on any part of Czech-SEC-AG dataset have very poor re-

sults on this dataset. This confirms our claim that there are differences in

error types in the datasets.

• The model trained on spelling-combined dataset achieves the second highest

score on czesl-word2simword and Czech-SEC-AG datasets. This indicates

that despite there are differences in the datasets, there is a chance that they

could be captured by a single model.

• Švejk dataset is most challenging for our models. The main reason is possi-

bly the fact that none of our datasets is capable of fully capturing the errors

present in the dataset.

• The model trained on czesl-word2simword-big performs substantially better

than the model which was trained on czesl-word2simword. In Section 4.6,

we stated that the bigger dataset should help mainly more complex mod-

els requiring more data. Nevertheless, the results indicate that the bigger

dataset, despite being less human-like, may help even the equally complex

model.

• From the presented results, it is difficult to say whether it is better to use

Charagram model or C2W model. Charagram model performs slightly bet-

ter for Czech-SEC-AG model, while C2W model works slightly better for

the model trained on spelling-combined dataset. Nevertheless, when in-

specting the training logs, we found out that Charagram model converges

much faster. On the other hand, because Charagram model contains rela-

tively large embedding matrix for most common n-grams, it requires more

memory.

59

6.6.3 Incorporating language model

We trained several models in the previous section. To fully reveal their potential,

we incorporate a language model while inferring. The language model is of rank

5 and was trained as described in Section 6.3. To incorporate the language

model, a language model weight α and a beam size has to be set. Similarly to the

diacritization task, we chose the values of language model weight α and beam size

that maximize the system performance with respect to one of two development

sets. In other words, we have two pairs of these constants for each model. One pair

maximizes its performance on the czesl-word2simword development set and the

second pair maximizes its performance on the Czech-SEC-AG development set.

The results of this process are presented in Table 6.11. Since the process requires

a non-trivial gridsearch, we did not run it for three models. We did not optimize

the models trained on czesl-word2simword and czesl-word2simword-big on Czech-

SEC-AG dataset (the version with no language model performed poorly) and we

also did not optimize the model with Charagram embeddings trained on the

spelling-combined training set set for any test sets (the version with no language

model was worse than the same model with C2W embeddings).

Train \ Test czesl-word2simword Czech-SEC-AG Švejk Constants

czesl-word2simword (C2W) 66.05 25.75 17.70 [0.75, 16]

czesl-word2simword-big (C2W) 72.16 34.03 26.52 [0.1, 16]

Czech-SEC-AG (Charagram) 50.16 77.94 47.34 [0.75, 16]

Czech-SEC-AG (Charagram) 47.99 89.20 58.65 [0.07, 16]

Czech-SEC-AG (C2W) 46.85 75.48 48.50 [0.75, 8]

Czech-SEC-AG (C2W) 45.10 86.86 58.61 [0.07, 16]

spelling-combined (C2W) 72.36 75.49 40.22 [0.25, 8]

spelling-combined (C2W) 71.02 78.37 42.75 [0.1, 16]

Table 6.11: Results (F0.5 score) of the spelling and basic grammar correction with

language model incorporation – Note that the last column shows the optimal

constants that maximize the system performance on the underlined dataset.

The results presented in Table 6.11 show several notable points:

• Incorporating the language model substantially increases performance of all

models.

• The model trained on the spelling-combined training set with Charagram

embeddings surpasses all other models on the czesl-word2simword testing

set. Namely, it outperforms both models that were trained solely on czesl-

word2simword or its derivative.

60

• The highest F0.5 score on the Czech-SEC-AG testing set was achieved by the

models that were trained on its training set. Nevertheless, the performance

of the model trained on the spelling-combined training set seems not to be

bad as well.

• When focusing on the Švejk testing set, the models for which the constants

were chosen to maximize their score on the Czech-SEC-AG testing set out-

perform the models for which the constants were chosen to maximize their

score on the czesl-word2simword. The performance gap is most evident on

models that were trained on the Czech-SEC-AG training set. This fact indi-

cates that the error types in the Švejk dataset substantially more resemble

the error types present in the Czech-SEC-AG dataset. When inspecting

Švejk dataset in detail, we found out that its gold sentences contain slang

terms and colloquialisms. This is in contrast to czesl-word2simword dataset,

which strictly corrects all these words. Therefore, the model trained on

the spelling-combined training set performs significantly worse on the Švejk

testing set than the model trained on Czech-SEC-AG training set.

Out of 5 models presented in Table 6.11, we further consider only two models -

spelling-combined (C2W) and Czech-SEC-AG (Charagram), which performed

best.

So far we were maximizing system performance with respect to one dataset.

However, when running a model in production mode, it would make sense to

maximize system performance with respect to all three testing sets. Supposing

the results on all three datasets are equally important, the constants should

maximize the sum of achieved scores on all three datasets.

When inspecting the performed measurements, we found out that maximiz-

ing the system performance on czesl-word2simword leads to higher score on this

dataset, however, the achieved score on two other datasets decreases. Similarly,

maximizing the model performance on Czech-SEC-AG leads to increase in perfor-

mance on this and also Švejk datasets, but to decrease in performance on czesl-

word2simword. Therefore, the constants selected for the final comparison are

the constants that maximize the system performance on Czech-SEC-AG dataset.

The comparison of our models and currently existing spelling models is presented

in Table 6.12.

As we can see in Table 6.12, no system achieves highest score on all three

datasets. Nevertheless, we can see that if our model is trained on particular

training set, it is capable of outperforming the statistical tools. In other words,

the model trained on the spelling-combined training set achieves the highest score

on both czesl-word2simword and Czech-SEC-AG datasets and the model trained

61

System \ Test czesl-word2simword Czech-SEC-AG Švejk

Microsoft Office Word 2010 60.68 – 49.05

Korektor 62.08 64.47 58.05

Czech-SEC-AG (C2W) 45.10 86.86 58.61

spelling-combined (C2W) 71.02 78.37 42.75

Table 6.12: Comparison of our model with currently existing spelling correctors

on the Czech-SEC-AG training set outperforms all other model on the Czech-

SEC-AG testing set. Moreover, this model shows slightly better performance

also on Švejk dataset, which is the training corpus for Korektor. We suspect that

to achieve higher score on Švejk dataset, we would have to tune our training sets

to contain more error types occurring in Švejk dataset.

Finally, we present several corrections of our system spelling-combined (C2W)

and compare them to corrections produced by Korektor. The first 5 sentences

in Table 6.13 show that our system is capable of correcting even quite complex

sentences, while last 2 sentences show that sometimes our system either does

not correct erroneous sentence or provides wrong correction. We suspect that

the main reason, why our system may sometimes struggle to recognize whether

an input word is wrong, is that in comparison to Korektor it does not posses

a dictionary. Therefore, extending character level word embeddings with at least

information, whether current word is in the dictionary, could substantially help

the model recognize misspelled words. Such extension is a proposal for future

work.

6.7 English grammar correction

The last set of experiments we conducted is devoted to grammatical error correc-

tion. Generally, we could use both word2word and translation model for these

experiments. However, since word2word model is designed for rather smaller

edits, we decided to use only translation model.

The design of translation model is very similar to those proposed by Xie et al.

[2016], who also experimented with CoNLL 2014 shared task. Therefore, we

decided to keep their hyperparameters for all training. The model uses pyrami-

dal encoder and multilayer decoder with 3 layers and GRU cells with size 400.

Dropout is used on the embedded inputs as well as in the encoder and in the de-

coder for regularization purposes. Finally, Adam optimizer with a learning rate

3 · 10−4 and a batch size of 100 is used to train the network.

To train models, we experimented with three training sets:

62

I Máma má heský oči .

K Máma má hezký oči .

O Máma má hezké oči .

I Ale v okamžiku jsem se rozhodnula , že muśım změnit sv̊uj život .

K Ale v okamžiku jsem se rozhodnula , že muśım změnit sv̊uj život .

O Ale v okamžiku jsem se rozhodla , že muśım změnit sv̊uj život .

I Moje dětstv́ı bylo nejobyčejneǰsi : plenky , dřevený a gumový hračky .

K Moje dětstv́ı bylo nejobyčejneǰsi : plenky , dřevěný a gumový hračky .

O Moje dětstv́ı bylo nejobyčejněǰśı : plenky , dřevěné a gumové hračky .

I kuře na kary je nejobĺıbeneǰśı a nejznamneǰśı j́ıdlo v Indiji .

K kuře na kari je nejobĺıbeněǰśı a nejznamneǰśı j́ıdlo v Indii .

O Kuře na kari je nejobĺıbeněǰśı a nejznámněǰśı j́ıdlo v Indii .

I V sále šuměly hlasi , parketi šustily od d́ıvč́ıh střev́ıčku , lustry se houpali , jak

horký vzduch stoupal vzh̊uru ke stropu , avšak ub́ıvaj́ıci sv́ıčky byli jako uslzené .

K V sále šuměly hlasy , parkety šustily od d́ıvč́ıho střev́ıčku , lustry se houpali , jak

horký vzduch stoupal vzh̊uru ke stropu , avšak ubývaj́ıćı sv́ıčky byli jako uslzené .

O V sále šuměly hlasy , parkety šustily od d́ıvč́ıch střev́ıčk̊u , lustry se houpaly , jak

horký vzduch stoupal vzh̊uru ke stropu , avšak ubývaj́ıćı sv́ıčky byly jako uslzené .

I Které přeměty tě bav́ı ?

K Které přemety tě bav́ı ?

O Které přeměty tě bav́ı ?

I A taky možná bude potřebovat mamka opčas s něč́ım pomoct , protože je těhotná

a opčas j́ı neńı dobře .

K A taky možná bude potřebovat mamka občas s něč́ım pomoct , protože je těhotná

a občas j́ı neńı dobře .

O A taky možná bude potřebovat mamka počas s něč́ım pomoct , protože je těhotná

a opčas j́ı neńı dobře .

Table 6.13: Sample corrections produced by Korektor (K) and our system (O)

on several input sentences (I)

• NUCLE corpus

• NUCLE corpus + Lang8 corpus

• NUCLE corpus + subset of Lang8 corpus sentences, where each input sen-

tence contains at least one error (approx. 430 000 sentences)

On each training set, we trained the model for circa 3 weeks (approx. 30

epochs for the model operating on the biggest training set) on NVIDIA GeForce

GTX 1080. After each epoch, all models (their respective weights) were saved.

63

Once the training was finished, out of all saved checkpoints of the particular

model, we chose the one with the highest F0.5 score on the development set.

The results of the trained models on the CoNLL 2014 testing set are presented

in Table 6.14. Note that a beam size of 64 was used when decoding.

Training set F0.5 score

NUCLE corpus 0.089

NUCLE + Lang8 0.126

NUCLE + Lang8 erroneous 0.185

Table 6.14: Translation model performance on CoNLL 2014 test set

Table 6.14 shows that using only original NUCLE corpus for training leads

to the worst results. When whole Lang8 corpus is added to NUCLE for training,

the overall F0.5 score increases, but not as much as if only erroneous sentences

from Lang8 are added. The model trained on NUCLE and subset of erroneous

sentences from Lang8 achieves highest performance. Unfortunately, the achieved

F0.5 score is lower than those achieved by Xie et al. [2016], who claim to achieve

19.81 F0.5 score with their model. The reason why our model achieved slightly

worse results may be either a little different attention mechanism used by Xie

et al. [2016] or different initial values used for the weights. We also think that

decaying the learning rate may improve results.

We also examined the corrections performed by our system. We found out that

the system prefers making rather smaller edits. The most common errors our sys-

tem correctly handles are: correcting word misspellings (indivdial → individual),

adding (removing) ”s” to the verb ending (he read → he reads), changing verb

into past tense, changing singular to plural form (structure → structures) and

article generation or deletion. The system occasionally performs bigger changes

like reorganization of multiple words, but these changes are quite rare and often

wrong.

When the language model of rank 5 trained on English GigaWord [Parker

et al., 2011] is incorporated, F0.5 score of 26.5 is achieved.

64

7. Our implementation

This chapter is both a user documentation and a description of attached file

contents. The attached file contains the text of this thesis in PDF format

(thesis.pdf), description of the attachment (README.md) and the folder (code)

with the source code for replicating and running our experiments. All scripts are

written in Python 2.7. To train and run models, TensorFlow1 0.12.1 is required.

Folder code consists of five subfolders: data, common, char2char, word2word

and translation. The subfolder data is intended for storing corpora. The sub-

folder common contains several scripts that are shared by all other folders. The rest

three subfolders store the source code that is needed to train and run the partic-

ular model.

7.1 Training models

Before training a model, a dataset must be prepared. A common dataset for any

natural correction task consists of six files containing: train set inputs, train set

targets, development set inputs, development set targets, test set inputs and test

set targets. Paths to these files are stored in a single configuration file, which on

each line contains the type of the set (e.g. train inputs) and its path. The of-

ficial diacritization dataset derived from PDT3.0 corpus is prepared in folder

data/diacritization. The configuration file storing the required information

is data/diacritization/configuration.txt.

After preparing the dataset configuration file, there are three available mod-

els to train. Note that each model requires the data to satisfy specific restric-

tions. For instance char2char model requires that both the input and target

sentence have the same length. To train the selected model, each model folder

contains the script train.py. Both char2char model and word2word model train

scripts contain an explicit argument (--dataset) to set the configuration file with

the dataset to be used. The script for translation model allows specifying only

train sets (as two first arguments) and the development and the testing set perfor-

mance must be controlled from outside. The train script of all three models then

contains another set of parameters that are used to specify the training settings.

These are for example the experiment name, the directory to save the experi-

ment checkpoints to or the model hyperparameters. To view the full list of these

parameters together with the default values, run the train script with option -h.

Let us give a practical example on how to train a simple diacritization sys-

1https://www.tensorflow.org/

65

https://www.tensorflow.org/

tem. We train char2char model with 2 layers for 5 epochs and keep the default

value of the rest of model hyperparameters. Because we train the diacritization

system, the name of the experiment is set to diacritization. The training

script automatically creates two new folders containing the current timestamp

in save/diacritization and logs/diacritization. The first folder stores

the model checkpoints together with some configuration files. The second folder

then contains logs generated for Tensorboard.2 The command to perform de-

scribed training is:

python char2char/train.py --dataset data/diacritization/configuration.txt

--num layers 2 --epochs 5 --exp name diacritization

7.2 Running models

Once a model is trained, it can be used for correcting text. For this purpose,

each model folder contains script infer.py. This script has three mandatory po-

sitional arguments: path to file with sentences to be corrected, path to file to store

corrected sentences and path to folder with the model checkpoints. The script

can also utilize a trained language model (see Section 6.3) using the following

arguments: --lm, which points to the language model binary file, --beam size

to specify the size of the used beam and --alpha to specify the language model

weight.

Each model folder includes a directory save, which contains the best perform-

ing models from Chapter 6. Namely, char2char/save contains the diacritization

and the I vs Y models, word2word/save contains two models for the spelling and

basic grammar correction and translation/save contains a model for the En-

glish grammatical correction task.

To give a practical example of how to run a trained model, we show a com-

mand for generating diacritics using char2char model. Let us suppose that

uncorrected.txt stores sentences without diacritics. The command that runs

the diacritization model to create diacritized sentences stored in corrected.txt

looks as follows:

python char2char/infer.py uncorrected.txt corrected.txt

char2char/save/c2c diacritization/2017-02-28 194903/

Note that because the size of the language models used in Chapter 6 is 5GB,

respectively 14GB, we do not include them in the attachment.

2https://www.tensorflow.org/get_started/summaries_and_tensorboard

66

https://www.tensorflow.org/get_started/summaries_and_tensorboard

8. Conclusion

This thesis examined the specific tasks of and current approaches to the natural

language correction. Inspired by the current accomplishments of deep neural

networks in areas such as machine translation or named entity recognition, we

proposed and implemented three models based on neural networks for various

natural language correction tasks ranging from general grammar correction to

the specific task of diacritization. Specifically, the trained models were evaluated

on the four chosen tasks: diacritization, I vs Y, spelling and basic grammar

correction, and general grammar correction. To evaluate the models in regards

to all tasks except for the general grammar correction, we acquired and created

several datasets. As even the current best systems do not achieve satisfactory

results in the general grammar correction task, we focused mainly on the first

three chosen tasks, for which a practical system may be used in practice.

The accuracy achieved in the diacritization and I vs Y task seems to be signif-

icantly higher than the accuracy of currently used statistical tools. The trained

models could therefore be used in production mode when most precise results

are desired. The models trained on the spelling and basic grammar correction

tasks outperform current spelling correctors if a dedicated model is used for each

dataset, with the best single model outperforming existing systems on two of

the three datasets. This indicates that these models could replace current sys-

tems, but may not always achieve the best performance. Finally, the results

achieved in the general grammar correction are slightly worse than those achieved

by the reference paper. This is likely caused by the minor differences in the model

architecture.

Our future work includes enhancing our models with several other features.

In order to make the current model for spelling and basic grammar correction

more accurate, the character level word embedding needs to be complemented by

a standard word embedding. Furthermore, residual connections could be imple-

mented in both word2word and translation model to allow a training of deeper

models. Finally, to allow usage of our models in production mode, inferring

process could be parallelized to make the decoding faster.

67

Bibliography

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine

translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473, 2014.

Eduard Bejček, Eva Hajičová, Jan Hajič, Pavĺına J́ınová, Václava Kettnerová,

Veronika Kolářová, Marie Mikulová, Jǐŕı Mı́rovský, Anna Nedoluzhko, Jarmila

Panevová, Lucie Poláková, Magda Ševč́ıková, Jan Štěpánek, and Šárka

Zikánová. Prague dependency treebank 3.0, 2013. URL http://hdl.handle.

net/11858/00-097C-0000-0023-1AAF-3. LINDAT/CLARIN digital library

at the Institute of Formal and Applied Linguistics, Charles University in

Prague.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A

neural probabilistic language model. Journal of machine learning research, 3

(Feb):1137–1155, 2003.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-

ing word vectors with subword information. arXiv preprint arXiv:1607.04606,

2016.

Chris Brockett, William B Dolan, and Michael Gamon. Correcting esl errors using

phrasal smt techniques. In Proceedings of the 21st International Conference

on Computational Linguistics and the 44th annual meeting of the Association

for Computational Linguistics, pages 249–256. Association for Computational

Linguistics, 2006.

William Chan, Navdeep Jaitly, Quoc V Le, and Oriol Vinyals. Listen, attend and

spell. arXiv preprint arXiv:1508.01211, 2015.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014.

Martin Chodorow, Joel R Tetreault, and Na-Rae Han. Detection of grammatical

errors involving prepositions. In Proceedings of the fourth ACL-SIGSEM work-

shop on prepositions, pages 25–30. Association for Computational Linguistics,

2007.

68

http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3
http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3

Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou Ng. Neural net-

work translation models for grammatical error correction. arXiv preprint

arXiv:1606.00189, 2016.

Daniel Dahlmeier and Hwee Tou Ng. Better evaluation for grammatical error cor-

rection. In Proceedings of the 2012 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technolo-

gies, pages 568–572. Association for Computational Linguistics, 2012.

Daniel Dahlmeier, Hwee Tou Ng, and Eric Jun Feng Ng. Nus at the hoo 2012

shared task. In Proceedings of the Seventh Workshop on Building Educational

Applications Using NLP, pages 216–224. Association for Computational Lin-

guistics, 2012.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu. Building a large annotated

corpus of learner english: The nus corpus of learner english. In Proceedings

of the Eighth Workshop on Innovative Use of NLP for Building Educational

Applications, pages 22–31, 2013.

Robert Dale and Adam Kilgarriff. Helping our own: Text massaging for compu-

tational linguistics as a new shared task. In Proceedings of the 6th International

Natural Language Generation Conference, pages 263–267. Association for Com-

putational Linguistics, 2010.

Robert Dale, Ilya Anisimoff, and George Narroway. Hoo 2012: A report on

the preposition and determiner error correction shared task. In Proceedings of

the Seventh Workshop on Building Educational Applications Using NLP, pages

54–62. Association for Computational Linguistics, 2012.

Fred J Damerau. A technique for computer detection and correction of spelling

errors. Communications of the ACM, 7(3):171–176, 1964.

Mariano Felice, Zheng Yuan, Øistein E Andersen, Helen Yannakoudakis, and

Ekaterina Kochmar. Grammatical error correction using hybrid systems and

type filtering. In CoNLL Shared Task, pages 15–24, 2014.

G David Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278,

1973.

Alex Graves. Supervised sequence labelling. In Supervised Sequence Labelling

with Recurrent Neural Networks, pages 5–13. Springer, 2012.

69

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with

bidirectional lstm and other neural network architectures. Neural Networks, 18

(5):602–610, 2005.

Marcin Junczys-Dowmunt Roman Grundkiewicz. The amu system in the conll-

2014 shared task: Grammatical error correction by data-intensive and feature-

rich statistical machine translation. CoNLL-2014, page 25, 2014.

Na-Rae Han, Martin Chodorow, and Claudia Leacock. Detecting errors in english

article usage by non-native speakers. Natural Language Engineering, 12(02):

115–129, 2006.

Jirka Hana, Alexandr Rosen, Barbora Štindlová, and Jan Štěpánek. Building a

learner corpus. Language resources and evaluation, 48(4):741–752, 2014.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.

Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410,

2016.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-

aware neural language models. arXiv preprint arXiv:1508.06615, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

Kevin Knight and Ishwar Chander. Automated postediting of documents. In

AAAI, volume 94, pages 779–784, 1994.

Tom Kocmi and Ondřej Bojar. Subgram: Extending skip-gram word represen-

tation with substrings. In International Conference on Text, Speech, and Dia-

logue, pages 182–189. Springer, 2016.

M Křen, T Bartoň, V Cvrček, M Hnátková, T Jeĺınek, J Kocek, R Novotná,

V Petkevič, P Procházka, V Schmiedtová, et al. Syn2010: žánrově vyváženỳ

korpus psané češtiny. Ústav Českého národńıho korpusu FF UK, Praha, 2010.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level

neural machine translation without explicit segmentation. arXiv preprint

arXiv:1610.03017, 2016.

70

Wang Ling, Tiago Lúıs, Lúıs Marujo, Ramón Fernandez Astudillo, Silvio Amir,

Chris Dyer, Alan W Black, and Isabel Trancoso. Finding function in form:

Compositional character models for open vocabulary word representation.

arXiv preprint arXiv:1508.02096, 2015.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

Tomáš Mikolov, Anoop Deoras, Stefan Kombrink, Lukáš Burget, and Jan

Černockỳ. Empirical evaluation and combination of advanced language mod-

eling techniques. In Twelfth Annual Conference of the International Speech

Communication Association, 2011.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy

Susanto, and Christopher Bryant. The conll-2014 shared task on grammatical

error correction. In CoNLL Shared Task, pages 1–14, 2014.

Nam Nguyen and Yunsong Guo. Comparisons of sequence labeling algorithms

and extensions. In Proceedings of the 24th international conference on Machine

learning, pages 681–688. ACM, 2007.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English

gigaword. Linguistic Data Consortium, 2011.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. ICML (3), 28:1310–1318, 2013.

Michal Richter. Pokročilý korektor češtiny. Master’s thesis, Charles University,

the Czech Republic, 2010.

Michal Richter, Pavel Straňák, and Alexandr Rosen. Korektor-a system for con-

textual spell-checking and diacritics completion. In COLING (Posters), pages

1019–1028, 2012.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons, Dan Roth, and Nizar Habash.

The illinois-columbia system in the conll-2014 shared task. In CoNLL Shared

Task, pages 34–42, 2014a.

Alla Rozovskaya, Dan Roth, and Vivek Srikumar. Correcting grammatical verb

errors. In EACL, pages 358–367, 2014b.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

71

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep

networks. In Advances in neural information processing systems, pages 2377–

2385, 2015.

Raymond Hendy Susanto. Systems Combination for Grammatical Error Correc-

tion. PhD thesis, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems,

pages 3104–3112, 2014.

Jakub Vrána. Obnoveńı diakritiky v českém textu. Master’s thesis, Charles

University, the Czech Republic, 2002.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Chara-

gram: Embedding words and sentences via character n-grams. arXiv preprint

arXiv:1607.02789, 2016.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,

et al. Google’s neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

Xiaoming Xi, Martin Chodorow, Michael Gamon, and Joel Tetreault. The utility

of article and preposition error correction systems for english language learners:

Feedback and assessment. Language Testing, 27(3):419–436, 2010.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y

Ng. Neural language correction with character-based attention. arXiv preprint

arXiv:1603.09727, 2016.

Zheng Yuan and Ted Briscoe. Grammatical error correction using neural machine

translation. In Proceedings of NAACL-HLT, pages 380–386, 2016.

Antońın Zr̊ustek. Doplňováńı diakritiky do českých text̊u s chyběj́ıćı diakritikou.

Master’s thesis, Masaryk University, the Czech Republic, 2000.

72

List of Figures

2.1 LibreOffice Writer proposing correction on a sample sentence. . . 6

3.1 Char2char basic model . 15

3.2 Char2char model in detail . 17

3.3 The difference between classic stacked RNN and stacked RNN with

residual connections. 22

4.1 Word2word model visualization on an erroneous sentence 24

4.2 C2W model for computing character level word embeddings . . . 25

5.1 Translation model visualization with two encoder stacked layers –

note that the attention is shown with a dashed line 35

6.1 Results of basic experiments with char2char model on the diacriti-

zation task . 45

6.2 Char2char model diacritization – incorporating language model . 46

6.3 Char2char model diacritization – comparison of two language mod-

els with different rank. 47

6.4 Char2char model diacritization – adding residual connections . . . 48

6.5 Char2char model embeddings for individual characters 50

6.6 Word2word model diacritization – incorporating language model . 51

6.7 Word2word model diacritization – using error classifier 52

6.8 Translation model diacritization – incorporating language model . 54

73

List of Tables

2.1 NUCLE corpus statistics. 13

6.1 Basic statistics of diacritization dataset 37

6.2 Basic statistics of four new datasets derived from CzeSL – the last

column contains percentage of word errors in training, development

and testing set of particular dataset does not have values for czesl-

sent2sent, because this dataset is only sentence aligned. 39

6.3 Char2char model hyperparameters searched domains 43

6.4 Comparison of different modifications to char2char model on the

diacritization task. 49

6.5 Test set performance comparison of different modifications to word2word

model on the diacritization task. 53

6.6 Diacritization result. Note that all measurements, but Microsoft

Office Word 2010 and Aspell, were measured on whole testing set. 55

6.7 Sample diacritization outputs proposed by our system (O) and

Korektor (K). 56

6.8 Sample diacritization outputs that were consider wrong despite

being valid Czech sentences – Note that G stands for gold sentence

and O for correction produced by our system. 56

6.9 I vs Y system comparison. 57

6.10 Results of the spelling and basic grammar correction 59

6.11 Results (F0.5 score) of the spelling and basic grammar correction

with language model incorporation – Note that the last column

shows the optimal constants that maximize the system perfor-

mance on the underlined dataset. 60

6.12 Comparison of our model with currently existing spelling correctors 62

6.13 Sample corrections produced by Korektor (K) and our system (O)

on several input sentences (I) . 63

6.14 Translation model performance on CoNLL 2014 test set 64

74

	Introduction
	Goals
	Thesis structure

	Problem analysis
	Natural language correction tasks
	Existing tools
	Spelling correction
	Simple statistical spelling corrector
	Korektor

	Grammatical error correction
	Diacritization
	Datasets
	Lang-8 Learner Corpora
	NUS Corpus of Learner English
	CzeSL
	Prague Dependency Treebank
	SYN2010

	Analysis summary

	Char2char model
	Model architecture
	Model training and inferring
	Language model
	Residual connections

	Word2word model
	Model architecture
	Character level word embeddings
	C2W model
	CharCNN
	Charagram model

	Attention mechanism
	Error classifier
	Model training and decoding
	Error generation
	Model summary

	Translation model
	Neural machine translation
	Model architecture
	Models summary

	Experiments
	Tasks and data
	Diacritization
	I vs Y
	Czech spelling and basic grammar correction
	English grammar correction

	Evaluation metrics
	Language model
	Diacritization
	Char2char model
	Word2word model
	Translation model
	Results comparison
	Sample corrections

	I vs Y
	Czech spelling and basic grammar correction
	Generating new training set
	Basic experiments
	Incorporating language model

	English grammar correction

	Our implementation
	Training models
	Running models

	Conclusion
	Bibliography
	List of Figures
	List of Tables

