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Introduction
We are using basic graph theory terminology. For an introduction to graph theory
see Diestel [2000]. Through this thesis we consider only unoriented graphs without
multiple edges and without loops.

We study the number of perfect matchings which is needed to cover a cubic
graph. We know that if a cubic graph contains a bridge then it cannot be covered
by any number of perfect matchings because each perfect matching has to contain
a bridge edge (we prove this fact in Lemma 1). On the other hand each edge of
a bridgeless cubic graph is contained in some perfect matching (see Lovász and
Plummer [2009]). Thus we can cover any such graph by O

(
m

)
perfect matchings.

Let us remind Vizing theorem which says that the edge chromatic number of cubic
graphs is either three or four. If we can color edges of G by three colors then we
can cover G by three perfect matchings (each matching corresponds to one color
class). The first conjecture states that something similar holds for all bridgeless
cubic graphs: more precisely that any bridgeless cubic graph can be covered by
a constant number of perfect matchings.

Conjecture 1 (Berge). Let G be a bridgeless cubic graph then there are five
perfect matchings M1, . . . , M5, which cover the graph G.

The second conjecture is based on coloring of cubic graphs, namely on frac-
tional edge-coloring of cubic bridgeless graphs. An a : b edge-coloring of a graph G
is a proper coloring of edges of G by a colors such that each edge is colored by
exactly b colors. We say that G has a fractional c edge-coloring if G has a proper
a : b coloring, where a

b
= c. It is known that there exists a fractional three edge-

coloring for every bridgeless cubic graph. The result follows from the Edmonds
perfect matching polytope (Edmonds [1965]). This three edge-coloring of a cubic
graph G can be viewed as a covering of G by perfect matchings, as each color
class forms one perfect matching. But this covering of G may require more than
a constant number of perfect matchings. The open question is whether we can
use only a constant number of perfect matchings, especially whether there exists
a 6:2 coloring of each bridgeless cubic graph.

Conjecture 2 (Berge–Fulkerson). Let G be a bridgeless cubic graph then there
exist six perfect matchings M1, . . . , M6 such that each edge is contained in exactly
two of them.

The conjecture was stated by Fulkerson [1971]. It is easy to see that Berge–
Fulkerson conjecture implies Berge conjecture.

Both conjectures trivially hold for a graph G which has a proper coloring of its
edges by three colors. Bridgeless cubic graphs which are not three edge-colorable
are called snarks. The class of snarks is very important as many conjectures
about properties of cubic graphs hold if and only if we can prove them for all
snarks. Thus this class is well known as a class of counterexamples for various
conjectures. Let us remark that the first known snark and also the smallest
snark is the Petersen graph which is famous for being a counterexample to many
conjectures.
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Previous work
As the conjecture was stated in 1971, there has already been a lot of work done.
First of all we mention two books containing an overview of conjectures about
properties of bridgeless cubic graphs and known results, namely books Zhang
[1997] and Zhang [2012]. Note that both of them are more focused on the related
problem of circuit covering.

Another overview was written by Fiol et al. [2017]. They mention known
results for perfect matching covering as well as known results for related circuit
covering. They also present various relations between these two problems. An
interested reader could also find a historical excursion of searching for different
snarks and infinite families of snark in their paper.

We give a brief overview of results about perfect matching coverings of cubic
bridgeless graphs. There are papers focusing on the relations between different
conjectures about properties of bridgeless cubic graphs. Mazzuoccolo [2011a]
shows that both conjectures are equivalent. Note that the fact that Conjecture 1
implies Conjecture 2 does not hold for a particular graph but for the whole class
of bridgeless cubic graphs. The proof uses the fact that if G is a counterexample
for Conjecture 2 then there exists another graph G′ which is a counterexample for
Conjecture 1. Thus showing that Conjecture 1 holds for some subclass of cubic
graphs does not imply that Conjecture 2 holds for the same class of cubic graphs.

Hao et al. [2009] show that a bridgeless cubic graph G satisfies Conjecture 2
if and only if G has two edge-disjoint matchings M1, M2 such that their union
is a two-regular subgraph and both G \ M1 and G \ M2 are three edge-colorable.
Here H is the graph obtained from H by removing all cycle components and
contracting each subdivided edge.

Note that Conjecture 2 is closely related to the circuit double cover conjec-
ture. In the terminology of circuit covering the word circuit stands for an even
subgraph. Thus it may be the case that one circuit consists of many cycles.

Conjecture 3 (Circuit double cover). Each cubic bridgeless graph has a collec-
tion of circuits such that each edge is contained in exactly two of them.

Conjecture 2 holds for a bridgeless cubic graph G if and only if it can be
covered by six circuits containing each edge precisely four times. Bermond et al.
[1983] prove that there exists a covering by circuits such that each edge is con-
tained in exactly four of them. On the other hand Fan and Raspaud [1994] show
that Conjecture 2 implies that every bridgeless cubic graph G has a three circuit
cover of length at most 22

15 |E(G)| and Jamshy and Tarsi [1992] prove that covering
graph by circuits of length at most 21

15 |E(G)| implies Conjecture 3.
Another important result was obtained by Kaiser et al. [2005], who studied

the number of edges covered by constant number of perfect matchings. Let mi

denote the fraction of graph covered by i perfect matchings. Using a technique
based on the Edmonds perfect matching polytope (Edmonds [1965]) they show
a tight upper bound on m2(G) ≤ 3

5 for all G. Their upper bound corresponds
to a fraction of edges of the Petersen graph covered by two perfect matchings.
Using the same technique they also show upper bounds on the fraction of edges
that can be covered by three or more perfect matchings. But these upper bounds
differ from the lower bounds obtained from the Petersen graph. Especially they
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showed that m3(G) ≤ 27
35 for all G and the best known lower bound on m3(G) is

4
5 obtained from the Petersen graph.

Based on this result Mazzuoccolo [2011b] proves that each bridgeless cubic
graph can be covered by O

(
log n

)
perfect matchings. This result is still the

best known upper bound on the number of perfect matchings in the covering.
Patel [2006] shows that Conjecture 2 implies the tightness of upper bounds on
mi obtained from the Petersen graph.

As we have already mentioned it suffices to show that the above conjectures
hold for snarks. There are some partial results for different classes of snarks.
Sun [2017] show that Conjecture 1 holds for all bridgeless cubic graphs that are
hypohamiltonian or that has a spanning subgraph which consists of two cycles.
Where hypohamiltonian graph is a graph G such that for each vertex v ∈ V (G)
there exists a cycle which contains all vertices of G except of v.

Another direction of research concerns cubic bridgeless graphs that cannot
be covered by less than five perfect matchings. Fouquet and Vanherpe [2009]
asked for an existence of three edge connected and cyclically four edge connected
cubic graphs that cannot be covered by four perfect matchings and that are
different from the Petersen graph. Where a graph is a cyclically k edge connected
if removing any subset of at most k−1 edges the remaining graph does not contain
two components containing a cycle. Hägglund [2016] finds an example of such
a graph on 34 vertices. Esperet and Mazzuoccolo [2014] improve this result by
showing that there exists an infinite subclass of snarks which cannot be covered
by four perfect matchings.

Finally, Abreu et al. [2016] introduce another class of snarks which they call
treelike snarks. Roughly speaking, a treelike snark is a Halin graph with cy-
cle vertices substituted by a modified Petersen graph, called Petersen fragment.
Abreu et al. [2016] show that for any treelike snark at least five perfect matchings
are needed to cover it. We complement their result by showing an upper bound
on the number of matchings needed to cover any treelike snark.

Our work
We show that there is a larger class of snarks based on Petersen fragments cycle.
Namely we allow to substitute the tree in treelike snarks by an arbitrary graph
GI in such a way that the resulting graph is bridgeless and cubic. We prove that
even those graphs cannot be colored by three colors.

The second chapter is focused on Conjecture 1. We show that if edges of GI
can be colored by three colors, then the whole graph can be covered by five perfect
matchings. Together with the lower bound due to Abreu et al. [2016] we get that
the number of perfect matchings needed to cover treelike snarks is exactly five.

In the third chapter we restrict our class of graphs even more, specifically
to have a coloring of edges of GI by three colors with one extra restriction on
colors. We prove that this restricted class admits Conjecture 2. Furthermore we
show that treelike snarks belong to this class of snarks and thus we get that also
Conjecture 2 holds for them.
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1. Petersen fragment based
snarks
In this chapter we define the studied class of graphs. We prove some auxiliary
lemmas about properties of perfect matchings on these graphs. First of all we
define the Petersen fragment. As the name suggests it is a graph, which can be
obtained from the Petersen graph. The following figures show how we modify the
Petersen graph to get Petersen fragment.

v4

v5

v8v7

v6

v1

v3

v0v2

v11

v1 v2 v3

v11

v4 v5

v6 v7 v8

v0

Figure 1.1: Transforming the Petersen graph into a Petersen fragment – step 1
First of all we redraw the Petersen graph in a way we use later for drawing Petersen
fragment. Then we delete the red dashed edge between vertices v0, v11.

v1 v2 v3

v4 v5

v6 v7 v8

v11v0

v1 v2 v3

v4 v5

v6 v7 v8

v11

Figure 1.2: Transforming the Petersen graph into a Petersen fragment – step 2
We delete the red vertex v0 but we preserve edges incident with this vertex (red dashed
edges). These edges are used to connect the Petersen fragment with the rest of the
graph. The next step is to subdivide the blue dotted edge by vertices v9, v10.

v1 v2 v3

v4 v5

v6 v7 v8

v11

v9

v10

v1 v2 v3

v4 v5

v6 v7 v8

v11

v9

v10

Figure 1.3: Transforming the Petersen graph into a Petersen fragment – step 3
We add new edges to vertices of degree two. Thus we get another three edges used
to connect Petersen fragment with the rest of the graph. Last figure represents the
subgraph we call Petersen fragment. As there is no possibility of confusion we often
use only a word fragment instead of Petersen fragment.
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Note that letters f, g usually denote Petersen fragments in this thesis. Edges
are usually denoted by e. We often need to refer to the edges connecting a
Petersen fragment with the rest of the graph. Thus we introduce the following
notation.

v1 v2 v3

v4 v5

v6 v7 v8

v11

v9

v10

e1

e2

e4

e5

e3

Figure 1.4: A Petersen fragment
Edges e1, e4 are edges of the outer
cycle, similarly e2, e5 are edges of
the inner cycle. The edge e3 is
called inside edge. We call the
edges e1, e2 left edges and e4, e5
right edges. The symbol ef

i denotes
the ei edge of fragment f . Edges
e1, . . . , e5 are called outside edges
and the set containing all outside
edges of a fragment f is denoted
by Of .

Now we can formally define treelike snarks and our generalization of this class
of graphs.

Definition 1 (Petersen fragment based snarks). Let GI be any graph, which
has k vertices of degree one and all other vertices are of degree three. Let ℓ be
an enumeration of vertices of degree one and ℓi be the (i + 1)-th vertex in this
enumeration. G is the graph consisting of Petersen fragments f0, . . . , fk−1 such
that

1. We connect all Petersen fragments to the cycle by unifying edges efi
4 =

e
f(i+1 mod k)
1 and efi

5 = e
f(i+1 mod k)
2 (see Figure 1.5).

2. For all i ∈ {0, 1, . . . , k − 1} we merge vertex ℓi with vertex vfi
10 in such a

way that the inside edge ef
3 is the edge connecting ℓi to the rest of GI.

We say that GI is an inside graph of G and G denotes the class of all graphs
described above that are also bridgeless (for examples of such graphs see Fig-
ure 1.6).

Definition 2 (Neighboring fragments). We say that fragments f , g are neigh-
boring (f on the left, g on the right) if and only if ef

1 = eg
4 and ef

2 = eg
5 (see

Figure 1.5).

Definition 3 (Left-nearest fragment). Let f be any fragment, we can order all
fragments of F\{f} according to their position on the cycle such that left-neighbor
of f is the first in this ordering and for each fragment g its successor in this
ordering is the fragment h such that h is the left-neighbor of g.

We say that g is the left-nearest fragment of f with a property P if g is the
first fragment with the property P in the ordering described above.

We define a right-nearest fragment with a property P in a similar manner.
The only difference is that g is the last fragment with the property P in the
ordering.
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Note that the left-neighboring fragment of f is exactly the counterclockwise
nearest fragment of f and its right-neighboring fragment is the clockwise nearest
fragment of f .

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

u6

u4

u1

u7

u2

u8

u5

u3

u9u10u11ef1 ef2

ef4 = eg1

ef5 = eg2

ef3

eg4eg5

eg3

Figure 1.5: Connecting neighboring fragments
We connect edges e1, e2 of a fragment g with edges e4, e5 of a fragment f . We say that
f and g are neighboring fragments f on the left and g on the right.

Definition 4 (Halin graph). Let T be a tree on at least four vertices which does
not contain vertices of degree two. A Halin graph is a planar graph which is
constructed by connecting leaves of T to a cycle.

Definition 5 (Treelike snarks, Abreu et al. [2016]). Let H be a Halin graph
consisting of a tree T with inner vertices of degree three and a cycle C. A treelike
snark is a graph G constructed as follows:

1. For each leaf ℓ we add a copy of the Petersen fragment and connect it to
the tree by its inside edge e3.

2. We fix a direction of a cycle C and for each Petersen fragment f and its
successor g we unify edges ef

1 = eg
4 and ef

2 = eg
5.

For examples of treelike snarks see Figure 1.6.

Observation 1. Let G be a treelike snark, then G belongs to G.

We define a class of graphs called snarks. Note that the definition of this class
differs through the literature. All definitions require that a snark is a graph which
is not three edge-colorable but sometimes more requirements on the connectivity
of these graphs or on the length of a minimal cycle appear in the literature.

Definition 6 (Snark). We say that a graph G is a snark if G is a cubic bridgeless
graph such that its edges cannot be colored by three colors.
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(a) (b)

(c) (d)

Figure 1.6: Examples of graphs from class G
Inside graphs are colored blue. The graph (a) is the Hägglund [2016] example of a
graph which cannot be cover by four perfect matchings. Graphs (a),(b) are treelike
snarks. Our class G contains also graphs (c),(d) as we allow the inside graph to be any
graph. Note that the inside graph does not have to be connected as it is shown on
example (d).

In the following theorems we use the folklore parity lemma.

Lemma 1 (Parity lemma). Let G be a cubic graph, F be an inclusion minimal
edge-cut in G and M be any perfect matching, then

|M ∩ F | mod 2 = |F | mod 2.

Proof. Let A be the set of vertices of a component of G \ F . Summing degrees
of vertices in A we get:

3 · |A| =
∑
a∈A

deg(a) = 2 · |{e | e = (u, v), u, v ∈ A}| + |F |.

Let G′ be a graph induced by M . Then V (G′) = V (G) and each vertex of G′ has
degree one. And summing degrees of vertices from the set A in the graph G′ we
get:

|A| =
∑
a∈A

degG′(a) = 2 · |{e | e = (u, v), u, v ∈ A}| + |M ∩ F |.
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Finally combining those equalities and counting modulo two give us:

|F | mod 2 = |A| mod 2 = |M ∩ F | mod 2.

We show that all graphs in G are snarks. As we define class G in such a way
that it contains only cubic bridgeless graphs it suffices to show that edges of any
graph from G cannot be colored by three colors.

Theorem 2. Let G be a graph from G then G is not three edge-colorable.

The proof is inspired by the proof of Proposition 3 from Abreu et al. [2016],
but we slightly modify it to show that all graphs in class G has edge chromatic
number bigger than three.

Proof. We prove the theorem by contradiction. Let us suppose that we have a
three edge-coloring c : E(G) → [3]. We show that for each fragment f both left
outside edges are of the same color.

We assume that c(ef
1) = i and c(ef

2) = j, where i ̸= j. Note that each color
class forms a perfect matching on G as c is the three edge-coloring and G is cubic.
Thus from Lemma 1 we know that one of the edges (v3, v9) and (v8, v11) has to
be colored by color i and one of them has to be colored by color j. Which is
a contradiction as this coloring can be modified to the coloring of the Petersen
graph (see construction of the Petersen fragment on Figures 1.1, 1.2 and 1.3).

We show that left outside edges of a fragment f are of the same color i. From
Lemma 1 we know that also edges (vf

3 , vf
9 ) and (vf

8 , vf
11) are of the same color j

(which may or may not be the same as i). Notice that also right outside edges
of the fragment f are colored by the same color k as these edges are left outside
edges of the right-neighboring fragment of f .

But this is a contradiction as color j has to be different from color k and we
have to color both edges (v9, v10) and (v10, v11) by the same color {1, 2, 3} \ {j, k}
(see Figure 1.7).

Notation. The set of all fragments of G ∈ G is denoted by F and the set of all
outside edges is denoted by OF = ⋃

f∈F Of .
Our construction of a graph covering by perfect matchings uses a three edge-

coloring of the inside graph. Based on this coloring we define a color of a fragment
to be inherited from the appropriate inside edge.

Definition 7 (Fragment color). For any graph G ∈ G and any three coloring of
edges of its inside graph we define a coloring of fragments c : F → [3] such that
for each fragment f : c(f) = i if and only if f is connected to the inside graph
GI by an edge of color i.

We define Fi to be the set of fragments colored by i. Similarly F ̸=i is a set of
fragments which are not colored by i.

Definition 8 (Matching based on color). Let G ∈ G be such that there exists a
three edge-coloring c of its inside graph. We say that a matching M is based on
a color i ∈ {1, 2, 3} iff M ∩ GI = {e | c(e) = i}.
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Figure 1.7: Proof of not three edge-colorability
We get that blue dashed edges are of the same color due to the edge-cut determined
by blue dashed circle. Similarly red dash-dotted edges are of the same color due to
the even edge-cut determined by red dash-dotted circle. We cannot color both green
dotted edges by the same color.

As our construction is based on expanding a matching on a subgraph to a
bigger subgraph we give conditions for a matching under which we can expand
it to a perfect matching on the whole graph. We also show that each perfect
matching satisfies these conditions.

Theorem 3. Let G ∈ G be a graph and M be a matching such that M ⊆ OF .
Then M can be extended to a perfect matching M ′ in such a way that M ′ ∩ OF =
M if and only if the following conditions hold:

1. M can be extended to the inside graph GI in such a way that for each
inner vertex v of GI there exists an incident edge, which is contained in the
extension of M .

2. For each fragment f , M contains an odd number of outside edges Of .

3. For each fragment f , if M contains both its right edges ef
4 , ef

5 then it also
contains the inside edge ef

3 .

Proof. First of all we prove that for any perfect matching M ′ and M = M ′ ∩ OF
the above conditions hold. The first condition holds because we can extend M
into the inside graph GI by edges M ′ ∩ GI . G is a cubic graph thus by Lemma 1
each perfect matching has an odd intersection with each inclusion-minimal odd
edge-cut in G. The outside edges of any fragment f form an edge-cut of size
five. Thus the matching M has to contain odd number of edges Of . If the last
condition is broken then the vertex v10 is not incident with any edge contained
in the matching M ′, which is a contradiction.
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It remains to show that we can define a perfect matching M ′ if all the condi-
tions hold for M . From condition 1 we know that M can be extended into the
inside graph GI . Now we show that we can extend M into each fragment in such
a way that M ′ is a perfect matching. From the last condition we know that we can
extend M into vertices v9, v10, v11 and edges incident to them. Thus we extend
M to v9, v10, v11 arbitrarily and count how many of edges ef

1 , ef
2 , (v3, v9), (v6, v11)

are contained in this extension of M (denote it by M ext). Notice that

|{((v3, v9), (v6, v11)} ∩ M ext| mod 2 ̸= |{ef
3 , ef

4 , ef
5} ∩ M | mod 2.

Thus from the second condition we know that there is even number of edges
ef

1 , ef
2 , (v3, v9), (v6, v11) contained in M ext. Figure 1.8 shows that if we choose any

even subset S ⊆ {v1, v3, v6, v8} then there exists a perfect matching on the graph
induced by the vertices {v1, . . . , v8} \ S.

Figure 1.8: Extensible matchings – proof
Red vertices are vertices of the set S. Red edges are edges we add into M to obtain a
matching containing all inner vertices of the fragment.

Previous theorem says that the fragments which inside edge is in M have the
same parity of right edges in M and left edges in M . On the other hand if an
inside edge of a fragment is not in M , then the parity of right edges in M differs
from the parity of right edges in M .

We define

P = (M ∩ OF) \ {ef
1 , ef

2 | ∀f (ef
1 ∈ M & ef

2 ∈ M)}.

Notice that P pairs fragments which tree edge is not in M . Suppose that P
pairs fragments f and g together in such a way that f has odd number of edges
from the right and g has odd number of edges from the left. Let I be the set
of fragments between f, g in the part of cycle which is on the right from f and
on the left from g (see Figure 1.9, where f = f6, g = f2 and I = {f1}). Then
I contains only fragments with the corresponding inside edge in M . Thus we
distinguish following 4 types of fragments.

Definition 9 (Types of fragments). For a graph G ∈ G and a perfect matching
M we define possible types of a fragment as follows. We say that a fragment f is

1. a left fragment iff ef
3 /∈ M and |M ∩ {ef

4 , ef
5}| = 1 (fragments f4, f6 in

Figure 1.9),
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2. a right fragment iff ef
3 /∈ M and |M ∩ {ef

1 , ef
2}| = 1 (fragments f2, f5 in

Figure 1.9),

3. an inner fragment iff ef
3 ∈ M and its left-neighbor is an inner fragment or

a left fragment (the fragment f1 in Figure 1.9),

4. an outer fragment iff ef
3 ∈ M and its left-neighbor is an outer fragment or

a right fragment (the fragment f3 in Figure 1.9),

Do not confuse the previous definition with the definition of a left-neighboring
fragment (see Definition 2).

f1

f2

f3f4

f5

f6

GI

Figure 1.9: Types of fragments
This example illustrates how we pair fragments with the inside edge which is not con-
tained in the matching M . Blue dashed edges are exactly edges which are contained in
the matching. In this case we set P to be the set of blue dashed cycle edges. We can
see two pairs of fragments, namely (f4, f5) and (f6, f2).

Lemma 4. Let G ∈ G be a graph and M be a perfect matching on G such that
there exists a fragment f such that its inside edge ef

3 is not contained in M . If f
is an inner fragment then an odd number of left outside edges of f is contained
in M and an odd number of right outside edges of f is contained in M .

Similarly if f is an outer fragment then an even number of its left outside
edges is in M and an even number of its right outside edges in contained in M .

Proof. We prove the lemma by induction on the distance of f from the left-nearest
left fragment, respectively left-nearest right fragment. Note that it suffices to
show that f has an odd, respectively even, number of left outside edges contained
in M as Lemma 1 gives us that it has also an odd, respectively even, number of
right outside edges contained in M .

If f is a right-neighbor of a left fragment g then from the definition f is an
inner fragment and |M ∩ {ef

1 , ef
2}| = |M ∩ {eg

4, eg
5}| = 1, where the last equality
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is given by the definition of a left fragment. On the other hand if f is a right-
neighbor of a right fragment g then from the definition f is an outer fragment.
We know that

|M ∩ {ef
1 , ef

2}| = |M ∩ {eg
4, eg

5}| = |M ∩ Og| − |M ∩ {eg
1, eg

2, eg
3}|.

From the parity lemma (Lemma 1) we know that |M ∩ Og| is odd and from the
definition of a right fragment |M ∩ {eg

1, eg
2, eg

3}| = |M ∩ {eg
1, eg

2}| is also odd. Thus
f has an even number of left outside edges in M .

If the distance of an inner fragment f from the left-nearest left fragment is
bigger, then f is a right-neighbor of another inner fragment g. By induction we
get that g has an odd number of right outside edges contained in M . Thus also
f has an odd number of left outside edges contained in M , as left outside edges
of f are exactly right outside edges of g. Similarly, if the distance of an outer
fragment f from the left-nearest right fragment is bigger then f is a right-neighbor
of another outer fragment g. By induction we get that f has an an even number
of left outside edges contained in M .

We defined types of fragments dependently on a perfect matching M . In the
following theorems we use it in the opposite way. We start by defining the type
of each fragment, then we define a perfect matching which corresponds to given
types. We show that given a matching on the inside graph there exist only two
possible choices of types of all fragments.

Lemma 5. Let G ∈ G be a graph and M be a matching on its inside graph GI
such that each inner vertex of GI is incident to an edge contained in M . Then
we can determine types of all fragments by choosing a type of one fragment f .

Proof. We gradually fix a type of each fragment according to a clockwise direction.
At the beginning we have already fixed the type of f . Let g1, g2, . . . gm be a
sequence of fragments in clockwise direction such that:

1. g1 = f ,

2. gi+1 is a right-neighbor of gi and

3. gm is a left-neighbor of f

Suppose that the last fixed fragment is a fragment gi then we fix the type of gi+1
to be:

1. an inner fragment iff e
gi+1
3 ∈ M and gi is inner or left, or

2. an outer fragment iff e
gi+1
3 ∈ M and gi is outer or right, or

3. a left fragment iff e
gi+1
3 /∈ M and gi is outer or right, or

4. a right fragment iff e
gi+1
3 /∈ M and gi is inner or left.

Note that we defined types correctly. The only case we need to consider is that
gm forces f to be a different type then the chosen one (otherwise the correctness
follows from Definition 9 and Lemma 4). Note that by the proof of Lemma 1
and by our assumptions on the matching M we know that there exists an even
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number of fragments such that their inside edge is not contained in M . Due to
our choice of types we alternate left and right fragments. In the sense that it is
never the case that the nearest fragments such that their inside edges are not in
M are both left or both right. Let gmin be a fragment with the minimal index
such that its inside edge is not contained in M and gmax be a fragment with the
maximal index such that its inside edge is not contained in M . We distinguish
two cases to show that gm never forces f to be a different type.

1. If f is an inner or right fragment then gmin is a right fragment, thus gmax is
a left fragment and gm is a left fragment or an inner fragment.

2. If f is an outer or left fragment then gmin is a left fragment, thus gmax is a
right fragment and gm is a right fragment or an outer fragment.

Thus it suffices to show that we cannot choose a type of gi differently for any i ∈
{2, . . . , m}. This follows from Lemma 4 and the definition of types of fragments.
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2. Covering graphs by perfect
matchings
In this chapter we show that G ∈ G can be covered by five perfect matchings if the
inside graph is three edge-colorable. Let us start by showing that this assumption
holds for treelike snark.

Lemma 6. Each tree T with inner vertices of degree three is three edge-colorable.

Proof. We choose any vertex as a root r and color edges greedily depending on
the distance from r (starting with coloring edges incident to r). Suppose that
we are coloring the edge e = (u, v), where u is closer to r than v. Inner vertices
of tree T are of degree three and at most two edges incident with u are already
colored. Also any edge incident to v is not colored yet because its distance from
r is higher than the distance of the edge e from r. Thus we can color the edge e
by some color i.

Theorem 7. Let G be a graph from G such that its inside graph GI has the edge-
chromatic number at most three. Then G can be covered by five perfect matchings.

First of all we define the intersection of perfect matchings and edges of the
inside graph. Then we extend these matchings into edges OF . Finally we define
the intersection of matchings with each fragment and show that we have five
perfect matchings covering the graph.

Proof. Let c : E(GI) → [3] be a three coloring of edges of GI , which exists due
to assumptions. We define intersections of M1, M2, . . . , M5 with edges of GI as
follows:

1. An edge e ∈ GI is contained in matchings M1 and M2 iff c(e) = 1,

2. Similarly e is in matchings M3 and M4 iff c(e) = 2 and

3. e ∈ M5 iff c(e) = 3.

As we have already mentioned we choose a type of each fragment and then
we define a matching such that its fragment types correspond to the chosen ones.
For the matching M1 we choose one of two possible choices of types of Petersen
fragments (see Lemma 5). Then M1 does not contain edges of the inner cycle. It
means that

(M1 ∩ OF) \ E(T ) =
{
ef

1 | f is inner or right
}

∪
{
ef

4 | f is inner or left
}

We define the matching M2 similarly but we change the choice of types of
Petersen fragments to the another one. It means that each right fragment in the
matching M1 is the left fragment in the matching M2 and vice versa. Similarly,
each fragment which is inner in M1 is outer in M2 and vice versa. M2 again does
not contain edges of the inner cycle.

Our definition of matchings M3, M4 is analogous. The only difference is that
they contain edges of the inner cycle instead of edges of the outer cycle. For the
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last matching M5 we can choose the types of fragments arbitrarily and define the
matching in such a way that it contains only the edges of the outer cycle.

We show that except of edges inside fragments we covered the graph by five
perfect matchings. If e is an edge of the inside graph then it is contained in the
perfect matching M2·c(e)−1. Observe that all edges of the outer cycle are contained
in exactly one of matchings M1, M2. Because any f ∈ F1 is an inner fragment
in the matching M1 iff it is an outer fragment in M2. Similarly, each fragment
f ∈ F ̸=1 is left in M1 if it is right in M2. The same holds for the inner cycle and
matchings M3, M4.

Matchings M1, M2, . . . , M5 satisfy assumptions of Theorem 3, thus we can
extend them into fragments in such a way that we get five perfect matchings. It
remains to show that we can extend them into each fragment in such a way that
they are not only perfect matchings but they also cover all edges of the fragment.

We consider three different cases dependency on the fragment color and type.

1. The fragment is not colored by color three.

2. The fragment is colored by color three and it is an outer fragment in match-
ing M5.

3. The fragment is colored by color three and it is an inner fragment in match-
ing M5.

These are the only cases we need to distinguish as fragments of color different
from three are covered already by matchings M1, . . . , M4. From our definition of
matchings M1, . . . , M4 we also do not have to distinguish whether the fragment is
left or right (inner or outer) in matchings M1, M2 as we can change this property
by renumbering these matchings. The same holds for matchings M3, M4. Due
to symmetry of Petersen fragment we also do not have to consider whether the
fragment is colored by color one or two. As we can swap edges of the inner cycle
with edges of the outer cycle due to a symmetry of the Petersen fragment. Thus
by renumbering of matchings and possible swapping of the edges of inner and
outer cycles we get one of the three cases showed in Figures 2.1, 2.2 and 2.3.
These figures also show how to extend the matchings into these fragments and
thus complete the proof.

Corollary. Treelike snarks satisfy Conjecture 1.

Proof. Follows directly from Lemma 6 and Theorem 7.
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Figure 2.1: A fragment of color one or two

2
5

3

5

3
2
5

34

21

4

1

24

31

5
1

4

5

34

21

1

4

2

3

5

Figure 2.2: An outer fragment of color three

2
5

3

5

3
5

2

43

2 1

4

1

42

3 1

5
1

4

43

21

1

5

4

2

3
5

5

Figure 2.3: An inner fragment of color three

Note that the proof of the Theorem 7 works also for some graphs G ∈ G
such that their inside graph cannot be colored by three colors. It suffices to find
matchings M1, . . . , M5 such that:
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1. Their union covers the inside graph GI .

2. For each i ∈ [5] and each inner vertex v of GI , Mi contains an edge incident
to v.

3. For each i ∈ {1, 2}, edges which are incident with leaves are contained in
M2i iff they are contained in M2i−1.

We can satisfy these conditions also in the case when the inside graph is a copy of
the cycle of Petersen fragment. Although due to Theorem 2 the edge chromatic
number of this graph is bigger then three.

Note that it is not sufficient to suppose that the inside graph has a covering
by five perfect matchings. For example if the graph contain a fragment which
is a right fragment in four matchings and an inner fragment in one matching
we cannot cover one of its right edges by any matching (see Figure 2.4). The
same holds in the case when a fragment is four times left and once inner. Then
one edge from (v3, v9), (v8, v11) cannot be covered by these matchings (see again
Figure 2.4). Let us call these fragments bad.

1 2 3

4 5

1
1

1

2 3

4 5

1

4 5

1 2 3
1

Figure 2.4: Uncoverable types of fragments – example
On the left picture we can see an example of a fragment which is for times a right
fragment (matchings 2,3,4,5) and once an inner fragment (the matching 1). On the
right picture there is an example of a fragment which is for times a left fragment
(matchings 2,3,4,5) and once an inner fragment (the matching 1). We cannot cover red
dashed edges.

Unfortunately, there could be a covering of an inside graph such that even
if we choose types of fragments arbitrarily for each matching, there exists a bad
fragment (see Figure 2.5).
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Figure 2.5: A bad covering of the inside graph
This is an example of a possible covering of the inside graph which cannot be extended
into the rest of the graph. No matter how we choose types of fragments one of the red
fragments is bad.

Remind that the best known upper bound on the number of perfect matchings
which cover each cubic graph is O(log n) . In case of graphs from class G we can
bound the number of perfect matchings by the number of matchings needed to
cover the inside graph.
Theorem 8. Let G ∈ G be such that GI can be covered by k ≥ 2 matchings
M1, . . . Mk. Then we can cover G by k + 2 perfect matchings.
Proof. We define matchings N1, . . . , Nk+2 such that:

∀i ∈ {1, . . . , k} Ni ∩ GI = Mi and

∀i ∈ {k + 1, k + 2} Ni ∩ GI = Mi mod k.

We choose types of fragments in matchings N1, N2, Nk+1, Nk+2 in the same
manner as in the proof of Theorem 7. It means that N1, Nk+1 contain edges of
the outer cycle and N2, Nk+2 contain edges of the inner cycle and we choose types
of fragments differently in matchings Ni, Ni+k. We can choose types of fragments
in matchings N3, . . . , Nk arbitrarily.

From the proof of Theorem 7 we know that we can cover the edges of fragments
such that their inside edge is not contained in both matchings M1, M2 (see Figures
2.1, 2.2 and 2.3). Thus the only case we have to consider is a fragment f such that
their inside edge is contained in both matchings M1, M2. We have to distinguish
following two cases:
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1. There exists a fragment g ̸= f such that ef
3 = eg

3. Then we can simply
remove this edge from matching M2 and we can cover f, g as we have already
shown.

2. The edge is incident with an inner vertex of GI . Because ⋃
i∈1,...,k Mi = GI

and inner vertices of GI are of degree three there exist two matchings Mi, Mj

which do not contain the edge ef
3 . Thus the fragment is two times left or

right. We also know that the fragment is twice inner and twice outer.
Figures 2.6, 2.7 and 2.8 show how we can extend matchings N1, . . . , Nk+2
to cover the whole fragment.

Note that in Figures 2.6, 2.7 we can suppose without loss of generality that
one of the matchings Ni, Nj does not contain edges of the outer cycle and one of
the matchings Ni, Nj does not contain edges of the inner cycle. In contrary to
the previous approach we do not choose which edges are contained in matchings
N3, . . . , Nk the same way for the whole graph, but we choose it for each pair of
neighboring fragments separately.

Let L ⊆ F be the set of fragments such that each f ∈ L is an inner or
outer fragment in matchings N1, N2, Nk+1, Nk+2 and it is twice left in matchings
N3, . . . Nk. Similarly let R ⊆ F denote the set of fragments such that each f ∈ R
is an inner or outer fragment in matchings N1, N2, Nk+1, Nk+2 and it is twice
right in matchings N3, . . . , Nk. And let if , jf be indices of two matchings from
N3, . . . , Nk in which the fragment f is twice left (respectively right).

For neighboring fragments f, g (f on the left, g on the right) we choose inter-
sections of their common edges with matchings {ef

4 , ef
5} ∩ Ni = {eg

1, eg
2} ∩ Ni for

all i ∈ {3, . . . , k} in the following way:

1. If f ∈ L and g /∈ R then matching Nif
contains the edge ef

5 of the inner
cycle and Njf

contains the edge ef
4 of the outer cycle.

2. If f /∈ L and g ∈ R then matching Nig contains the edge eg
2 of the inner

cycle and Njg contains the edge eg
1 of the outer cycle.

3. If f ∈ L and g ∈ R and if = ig, jf = jg then matching Nif
= Nig contains

the edge ef
2 of the inner cycle and Njf

= Njg contains the edge ef
1 of the

outer cycle.

4. If f ∈ L and g ∈ R and if = ig, jf ̸= jg then matching Nif
= Nig contains

the edge ef
2 of the inner cycle and matchings Njf

, Njg contain the edge ef
1

of the outer cycle.

5. If f ∈ L and g ∈ R and if ̸= ig, jf ̸= jg then matchings Nif
, Nig contain

the edge ef
2 of the inner cycle and Njf

, Njg contain the edge ef
1 of the outer

cycle.

Other intersections of matchings N3, . . . , Nk with outside edges of fragments are
chosen arbitrarily. We only preserve conditions given by types of fragments f, g
in these matchings (see Lemma 4 and Definition 9).

Note that this way we could get a matching Ni and a fragment f such that
f is an inner fragment in Ni and Ni contains the left inner and the right outer
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edge of f . This case is not described in Figure 2.3 as in this figure we assume
that matchings contain either edges of the outer cycle or edges of the inner cycle.
From Theorem 3 we know that we can extend Ni into a perfect matching even if
we use the outer edge on one side of a fragment and the inner edge on the another
one. Figure 2.9 shows that such fragments can be also covered by five perfect
matchings.
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Figure 2.6: A fragment which is two times left
Edges of the matching Nk+1 are labeled by a. Without loss of generality we suppose
that the matching Ni contains the edge e5 and Nj contains the edge e4 as we can always
choose them such that they do not contain the same right edge.
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Figure 2.7: A fragment which is two times right
Without loss of generality we suppose that matching Ni contains the edge e1 and Nj

contains the edge e2 as we can always choose them such that they do not contain the
same left edge.
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Figure 2.8: A fragment which is right in matching Ni and left in Nj

Edges of the matching Nk+1 are labeled by a. If the intersection of matchings Ni, Nj

with edges Of differs from the given examples we can change the intersection into one
of these two cases by swapping edges of the outer cycle with edges of the inner cycle
due to a symmetry of Petersen fragment.
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Figure 2.9: An inner fragment – swapping cycles
Matching Ni contain an edge of the inner cycle on one side of f and an edge of the
outer cycle on the another side of f .
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3. Berge–Fulkerson conjecture
and treelike snarks
We have already proved that any treelike snark can be covered by five perfect
matchings. In this chapter we improve this result. Namely we show that treelike
snarks admit Berge–Fulkerson conjecture (Conjecture 2).

Suppose that we define matchings M1, . . . , M6 in the same manner as before
in the proof of Theorem 7. We can compute that for each fragment f :

6∑
i=1

|Mi ∩ Of | = 8.

But this means that not all edges Of are covered twice, otherwise

6∑
i=1

|Mi ∩ Of | = 10.

Thus we need to modify our matchings. We know that all edges of the tree are
contained in exactly two perfect matchings M2i and M2i+1 according to their
color i. Moreover for each fragment f exactly one of its left edges and one of its
right edges are covered only once.

The first attempt to fix it is to add those edges into some matching. If we
do not add all these edges into one matching we change the parity of |Of ∩ M |
for some f . On the other hand if we add all those edges into one matching M
then we might violate the condition that both right edges can be in M only if M
contains the inner edge of a fragment f .

We overcame these problems by defining matchings M1 and M2 slightly dif-
ferently. More precisely the types of fragments in matchings M1, M2 are the same
and thus edges covered only once are on the same side of a fragment. Unfortu-
nately the graph could contain a combination of fragments we are not able to
cover by our construction.

We avoid having these bad fragments by using a special edge-coloring of the
inside graph GI . More precisely we find a coloring which does not use the same
color for neighboring fragments except for one color class. The following lemma
shows that for treelike snarks we can find this special coloring.

Lemma 9. Let G be a treelike snark. Then there exists a three edge-coloring c of
GI = T such that for all f, g neighboring fragments c(f) ̸= 1 implies c(f) ̸= c(g).

Proof. We prove the lemma by induction. Due to Abreu et al. [2016] we know
that treelike snarks can be created inductively. In each step we have two parts of
the resulting graph each having five half-edges (edges we have not specified both
of its end vertices yet). Two of those half edges are left edges of some fragment,
let us denote them by left edges. Two of them are right edges of some fragment
and we denote them by right edges. The last edge is called tree edge.

Given two parts of the resulting graph we unify the left edges of one part with
the right edges of the another one and connect both tree edges by a new vertex
and add a new tree edge. This operation is denoted by + in the following text. In
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t h e l ast st e p of t h e i n d u cti v e c o nstr u cti o n w e c o n n e ct t w o p arts of t h e r es ulti n g
gr a p h b y u nif yi n g all of t h eir o utsi d e e d g es (s e e Fi g ur e 3. 1).

G G

G

Fi g ur e 3. 1: I n d u cti v e c o nstr u cti o n of tr e eli k e s n ar ks
Fi g ur e o n t h e l eft s h o w s t h e o p er ati o n +. E d g e s a, b ar e l eft e d g e s of t h e l eft m o st

fr a g m e nt of G ′, si mil arl y d, e ar e ri g ht e d g e s of t h e ri g ht m o st fr a g m e nt G ′. B ot h t h e s e

fr a g m e nt s ar e c all e d e n d f r a g m e nt s of G ′.

We f oll o w t h e i n d u cti v e c o nstr u cti o n of G a n d c ol or t h e tr e e s u c h t h at e x c e pt of
t h e l ast st e p of t h e c o nstr u cti o n w e n e v er r e p e at c ol ors o n n ei g h b ori n g fr a g m e nts.
If o ur i nsi d e gr a p h c o nsists o nl y of o n e i n n er e d g e w e c a n us e a n y c ol or a n d w e
g et a pr o p er t hr e e c ol ori n g wit h o ut r e p e ati n g c ol ors o n n ei g h b ori n g fr a g m e nts.

L et G b e a gr a p h cr e at e d b y G ′+ G ′′, w e i x a c ol ori n g of G ′ gi v e n b y i n d u cti o n.
L et c ′′ : E (T (G ′′)) → [ 3] b e a c ol ori n g of tr e e e d g es of G ′′ b y t hr e e c ol ors w hi c h
is a g ai n gi v e n b y i n d u cti o n. We h a v e t o s atisf y t w o r estri cti o ns gi v e n b y t h e
c ol ori n g of G ′. T h e irst r estri cti o n is o n t h e c ol or of t h e tr e e e d g e of G ′′ a n d it is
gi v e n b y t h e c ol ori n g of t h e tr e e e d g e of G ′. A n ot h er r estri cti o n f oll o ws fr o m t h e
c ol or of t h e ri g ht m ost fr a g m e nt of G ′ w hi c h h as t o b e di f er e nt fr o m t h e c ol or of
t h e l eft m ost fr a g m e nt of G ′′.

L et e d e n ot e t h e tr e e e d g e of G ′′ a n d f d e n ot e t h e l eft m ost fr a g m e nt of G ′′.
T h er e ar e t w o c as es c ′′(e ) ≠ c ′′(f ) a n d c ′′(e ) = c ′′(f ) = i. I n t h e irst c as e w e
c h o os e a c ol or of e d g e e t o b e di f er e nt fr o m t h e c ol or of t h e tr e e e d g e of G ′. We
h a v e t w o p ossi bl e c h oi c es f or t h e c ol or of f t o b e di f er e nt fr o m c ′′(e ), t h us o n e of
t h e m di f ers fr o m t h e c ol or of t h e ri g ht m ost fr a g m e nt of G ′. I n t h e s e c o n d c as e
w e h a v e t w o r estri cti o ns o n t h e c ol or i. We c h o os e i t o b e t h e l ast n ot us e d c ol or.
T h us w e c a n p er m ut e c ol ors of c ′′ t o h a v e a pr o p er e d g e- c ol ori n g of G wit h o ut
r e p e ati n g c ol ors o n n ei g h b ori n g fr a g m e nts.

If G is cr e at e d b y t h e l ast st e p of t h e i n d u cti v e c o nstr u cti o n fr o m gr a p hs
G ′, G′′, t h e n w e h a v e alr e a d y pr es cri b e d o n e c ol or cl ass. N a m el y w e h a v e d et er-
mi n e d t h e c ol or a of t h e tr e e e d g e of G ′′ (s e e Fi g ur e 3. 1). L et us s u p p os e t h at at
m ost o n e e n d fr a g m e nt of G ′′ h as its c orr es p o n di n g e n d fr a g m e nt of G ′ c ol or e d b y
t h e s a m e c ol or or b ot h e n d fr a g m e nts of G ′′ ar e c ol or e d b y t h e s a m e c ol or. T h e n
t h er e is at m ost o n e c ol or cl ass c o nt ai ni n g n ei g h b ori n g fr a g m e nts.

O n t h e ot h er h a n d if e n d fr a g m e nts of G ′′ ar e c ol or e d b y di f er e nt c ol ors. We
k n o w t h at at l e ast o n e of t h e m is di f er e nt fr o m a . T h us if b ot h h a v e a n ei g h b or
of t h eir c ol or i n G ′ w e c a n s w a p c ol ors di f er e nt fr o m a . We a g ai n g et at m ost
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one color class containing neighboring fragments. In both cases we can assume
without loss of generality that these fragments are of color one.

Now we can prove that Conjecture 2 holds for treelike snarks.

Theorem 10. Let G ∈ G be a graph, c : E(GI) → [3] be a three edge-coloring of
its inside graph GI and M be a matching such that M = {e | c(e) = 1}. Let us
suppose that we can choose types of fragments in the matching M in such a way
that for all neighboring fragments f, g, where f is the left-neighbor of g, one of
the following holds:

1. c(f) = c(g) = 1 or

2. c(f) ̸= c(g) or

3. f is a left fragment.

Then there exist six perfect matchings, which cover each edge of G exactly twice.

The proof is similar to the proof of Theorem 7. We again start with matchings
on the inside graph and extend them into the rest of the graph G.

Proof. First of all we define intersections of matchings M1, . . . , M6 with the inside
graph GI as follows:

M1 ∩ GI = M2 ∩ GI = {e | c(e) = 1} ,

M3 ∩ GI = M4 ∩ GI = {e | c(e) = 2} ,

M5 ∩ GI = M6 ∩ GI = {e | c(e) = 3} .

In contrast with the proof of Theorem 7 we fix same types of fragments for
both matchings M1, M2. Types of fragments in matchings M3, . . . , M6 are chosen
similarly as before. Which means that the left fragment in the matching M3 is
the right fragment in the matching M4. The same holds for matchings M5, M6.

Matchings M1, M3, M4 use edges of the outer cycle to pair the fragments with
inside edge which is not contained in the given matching. Other matchings use the
edges of the inner cycle. More precisely if M ∈ {M1, M3, M4}, N ∈ {M2, M5, M6}
and f is any fragment then

1. ef
1 ∈ M if f is inner or right in the matching M ,

2. ef
4 ∈ M if f is inner or left in the matching M ,

3. ef
2 ∈ N if f is inner or right in the matching N ,

4. ef
5 ∈ N if f is inner or left in the matching N .

We can observe that matchings M3, . . . , M6 cover all edges of the outer cycle
and all edges of the inner cycle precisely once. Both right edges of a fragment f
are covered twice if f is inner or left in the matching M1. We have to add edges
covered only once into some matching.

Let f be any fragment colored by color k ∈ {1, 2, 3} such that its right edges
are covered once then there is a matching M in which f is an outer fragment.
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We add both right edges of the fragment f into M . For all fragments f and for
all i ∈ {1, . . . , 6} we do not change the parity of outside edges of f contained in
Mi, as we always add an even number of those edges into Mi. Matchings created
by our construction contain both right edges of some fragment f only if f is an
outer fragment. Thus if Mi contains both right edges it contains the inside edge,
too. Due to Lemma 3 we can extend matchings M1, . . . , M6 to perfect matchings.

The rest of the proof is a case analysis. We use the fact that f changes its type
in matchings M3, M4 (M5, M6), thus the type of f in those matchings depends
only on the color of f . Notice that intersections of matchings and outside edges
of the fragment f depends on:

1. c(f),

2. the type of f in matchings M1, M2 and

3. the type of its left-neighboring fragment g in M1, M2.

The type of g changes intersections of f with matchings only if g is right
or outer. In this case we add both left edges of f into a matching in which g
is an outer fragment. From Lemma 5 we know that the type of matching g is
determined by the color of g and the type of f .

We reduce the number of cases even more. We observe that fragments of
color two and three have similar intersections with matchings M1, . . . , M6. The
only difference is that a fragment of color three has swapped matchings M3, M4
for matchings M5, M6 relative to a fragment of color two. Figures 3.2, 3.3 and
3.4 show how to extend perfect matchings into different fragments of color one.
Figures 3.5, 3.6 and 3.7 show extensions of perfect matchings into fragments of
colors two and three and complete the proof. Note that from assumptions we
know that it is never the case that a fragment is left in M1 and its right-neighbor
is of the same color.

Corollary. Let G be a treelike snark then G satisfy Conjecture 2.

Proof. The corollary directly follows from Theorem 10 and Lemma 9.
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Figure 3.2: Conjecture 2 – an inner fragment
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Figure 3.3: Conjecture 2 – an outer fragment with the left-neighbor of color one
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Figure 3.4: Conjecture 2 – an outer fragment with the left-neighbor of color two
or three
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Figure 3.5: Conjecture 2 – a right fragment
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Figure 3.6: Conjecture 2 – a left fragment with the left-neighbor of color one
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Figure 3.7: Conjecture 2 – a left fragment with the left-neighbor of color two or
three
The color of the left-neighbor is different from the color of fragment, due to assumptions.
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Conclusion
We have shown that both Conjectures 1 and 2 hold for treelike snarks. Con-
jecture 1 holds even if we substitute the inside tree by any three edge-colorable
graph. A natural question is whether we can improve our result to hold for re-
maining graphs in G. Another natural question is whether we can weaken the
restrictions on the inside graph from Theorem 10 to proper three coloring of its
edges.

As we already mention Berge–Fulkerson conjecture (Conjecture 2) is closely
related to the well known circuit double cover conjecture (Conjecture 3). In
particular Berge–Fulkerson conjecture easily implies that there exists covering of
a bridgeless cubic graph by six even subgraphs such that each edge is in exactly
four of them. Furthermore Abreu et al. [2016] showed that treelike snarks have
cycle double cover consisting of five circuits. We can ask what can be proven
about these circuit coverings for other graphs in G.
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