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motivované situace:  Vznik dutiny,  růst  nádoru a  buněčnou migraci  v  chronickém
zánětu. První model ukazuje scénář formování duté struktury založený na směrovém
dělení  a  buněčné  migraci.  Druhý  model  se  zabývá  růstem  potomstva  mírně
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Introduction
Computer modeling of biological phenomena has gained widespread attention,

establishing  itself  as  an  acknowledged  companion  of  experimental  as  well  as
theoretical  research  efforts  of  biology.  In-silico  simulations  are  powerful  in
generating hypotheses that go beyond the extent of conceptual models widely used to
formulate biological understanding. In this thesis we provide a variant of hybrid cell-
based modeling approach to simulation of behavior and development of systems of
cells,  together  with  particular  biologically  motivated  models.  Our  model  shares
common  basic  properties  with  agent-based  systems.  It  further  involves
reaction-diffusion  environmental  modeling  based  on  discretization  of  continuous
equations. Chemical substances and receptor-ligand interactions are essential for the
system. Neither decision rules nor states of the agent cells are encodings of direct
phenomenological observations, as it is usual in agent-based methodology. Instead,
we accommodate simplistic yet flexible and versatile model originally inspired by a
very basic function of neuron. Neural cell has a body, dendrites, and axon. By means
of membrane-bound receptors the neuron collects chemical signals on its dendrites.
If the signal collected is strong enough, the neuron fires, which causes secretion of
neurotransmitters  at  the  end  of  the  axon.  These  neurotransmitters  can  bind  to
receptors of other neurons and the process may repeat. While the places of receiving
the signal and sending the signal are spatially separated in a neuron, in our agent cell
the receiving  locus  is  the  whole  cell  surface and the sending locus  is  the whole
membrane  as  well.  We  have  multiple  kinds  of  ligands  and  multiple  kinds  of
receptors.  The cell has states that are in one-to-one correspondence with receptor
kinds, generally with chemical substances. The cell decides which signal is seen most
by the receptors and this signal determines cell state. The state then drives “firing“,
which basically means secreting ligands,  adding receptors on the membrane,  and
other actions like migration and apoptosis. As we see, the agents are using kind of
rather low level rules. If willing to tell the agents to act according to some “if - then“
high level rules, one has to implement these in the low-level “language“. However,
doing this is our goal rather implicitly than explicitly. One of the strengths of agent-
based  modeling  is  emergence  [5].  When  providing  the  rules  and  simulating
interactions  of  multitude  of  agents,  unexpected  behaviors  often  occur,  hardly
guessable  based  on  the  sole  knowledge  of  the  axioms  without  executing  the
simulation. The type of emergent results depends on the kind of the primary encoded
rules.  If one encodes phenomenological rules, only the part of reality captured by the
rules of this kind will produce emergent results. If one focuses on the use of rules
embodied in transparent or transparently graspable properties like chemically-based
receptor-ligand interactions or ligand secretion, it  is expected that the results will
have that degree of closeness to reality that the transparent assumptions had. This
needn't mean that the results have to be biologically correct. But they are generally
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traceable  to  the  transparent  axioms,  simplifying  the  process  of  either  result
justification or error detection.

Our model is based on Digital Biological Cell approach  [1]. In a grid based
environment there are discrete cells generally occupying multiple sites, together with
reaction-diffusion  system of  chemical  substances.  Many of  the  reaction-diffusion
interactions are encapsulated in building blocks we call vaxes and vax equilibrium.
Generic mechanism for expressing most rules for the cells is called zygotic graph. As
we have stated beforehand, the cells may secrete ligands, add membrane receptors,
move,  and undergo apoptosis.  Cell  divisions  can  be driven by the zygotic  graph
rather indirectly, they have their own controlling mechanism. Scheme for simulating
advection in bounded surroundings of a moving cell is incorporated in the model. It
can be optionally used if constant flow velocities for the neighborhood are externally
provided. 

In  the  first  part  of  the  thesis,  model  of  these  above  outlined  properties  is
defined, conceptually building on [115]. We mostly use the term “model world“ for
it.  

We have implemented the model world in a software simulator called Virtual
Laboratory.  The  program  is  not  part  of  the  thesis,  however,  all  the  particular
simulations of biologically inspired situations described in the text have been created
in  this  software.  In  the  text,  we refer  the  simulations  as  models,  providing their
definitions in terms of the primitives of the model world.

The first of the particular models in the next part of the thesis regards lumen
formation. Lumen is a hollow cavity lined by collection of cells or being inside a
single  cell.  Lumina  or  luminal  tubes  are  parts  of  many  organs  including  blood
vessels, kidneys, or gut. There are several biologically observed mechanisms of how
lumen arises. One of them is cavitation of solid multicellular mass. In-silico models
capturing  this  kind  of  luminogenesis  usually  incorporate  polarization  within  an
individual  cell  and  apoptosis  as  key  elements  of  this  process.  We  propose  a
theoretical  scenario  where  none  of  these  processes  is  necessary.  In  our  model,
chemical precursor of lumen arises in terms of concentration gradients. Polarisation
then emerges on the level of multicellular structure. Directional growth together with
cell migration are the key drivers of cavitation.

Next model deals with cancer onset. We name it Diversified tumour Model. It
has  been  created  and  its  preliminary  version  delivered  within  the  project
ContraCancrum. In this joint interdisciplinary effort, predictive multi-level modeling
of  development  of  selected  particular  types  of  cancer  together  with  reactions  on
various treatment regimes was aimed  [46],  [47],  [48]. Primary motivation for the
Diversified tumour Model was non-imageable tumour growth in cancer onset. The
model  scenario  starts  from  a  single  cell  with  a  slight  damage  or  increased
susceptibility to oncogenic signaling. Progressive transformation in the progeny of
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the cell is analyzed under various parameter combinations. The model suggests that
gradual malignant transformation of a benign neoplasm on one side and fast onset of
a highly aggressive tumour without any detectable precursor on the other hand may
arise  as  consequences  of  various  intensities  of  enzymatic  activities  on  cell
membranes and in the environment surrounding the cells.

Finally,  difference  between  chronic  inflammation  and  a  physiological
inflammatory response is modelled in terms of properties of migratory cells of the
immune system. The model shows causal relationship between lack of membrane-
based enzymatic activity towards a chemoattractant on the migratory cells and the
chronic  inflammatory  behavior,  suggesting  this  as  an  explanatory  hypothesis  for
particular medical motivation.     

Structure of  the thesis.  In chapter  1,  brief  outline  of  main  cell-based modeling
methodologies is provided.  Chapter 2 contains the definition of the model world. We
specify  the  reaction-diffusion  component  with  regard  to  vax  equilibrium,  basic
properties  of  the  discrete  cells,  zygotic  graph,  cell  division  rules,  apoptosis,  and
properties  of  flowaround.  The  chapter  ends  with  the  description  of  the  overall
simulation algorithm, putting the individual components together. In chapter 3, the
model of lumen formation is provided. Chapter 4 contains the Model of Diversified
tumour,  in  chapter  5  the  model  of  cell  migration  in  chronic  and  physiological
inflammation is described. Chapter 6 contains concluding thoughts and remarks.

General description of an extension of the definition of the model world was
published in [1]. Preliminary version of the Diversified Tumour Model became part
of [114].
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1. Cell-based modeling approaches
In this  section we will  briefly introduce main cell-based methodologies  for

modeling multicellular systems. The main sources of information are [6],  [73], and
[76]. 

Modeling of multicellular systems can be basically divided into two groups.
Continuum approaches and cell-based approaches. In the first category, the system is
represented in terms of continuous variables and its dynamics is usually defined by
partial differential equations (PDE). The benefit of this approach is that the equations
bring insights into the relationships among the components of the system. Emergent
properties based on these components also arise. Disadvantage is that the discrete
nature of the cells is not captured. Additionally, expressing more complicated local
cell logic is clumsy.

In  the  cell-based  models,  cells  are  represented  as  discrete  entities.  Various
kinds of behaviors and interactions of the individual cells are conceived by model
definitions, leading to emergent properties when simulations are performed. 

Combination of these approaches is hybrid modeling, where reaction-diffusion
component is expressed in a form of PDE while cells are discrete. Hybrid modeling
has the ability to step quite naturally across several scales (molecular / chemical,
cellular,  various  temporal  scales)  while  incorporating  advantages  of  both  of  the
individual approaches.

Cell-based (or hybrid) approaches can be categorized as lattice-based or lattice-
free.

We  will  be  further  interested  in  four  main  kinds1 of  cell-based  models2:
Cellular automata (CA), agent-based models (ABM), cellular Potts model (CPM) as
an extension of CA, and lattice-free models. 

1.1 Cellular automata
In its basic definition [8], cellular automaton consists of a regular uniform grid

with a discrete variable at each site. State of the automaton is completely specified by
the values of the variables at every site. The automaton evolves in discrete steps.
Value of a variable in given step is determined by the values of the variables in its
neighborhood  in  the  previous  step.  By neighborhood  of  a  site  the  site  alone  is
understood,  plus  the  immediately  adjacent  sites.  The  update  of  all  sites  is
synchronous, i. e. the variables at each site are updated simultaneously, based on the
values of the variables in the neighborhood at the previous time step, according to a
finite set of local rules [8]. One way of utilizing CA for cell-based modeling is using
square (cubic) lattice with mutually exclusive space management, i. e. one site can be

1 Although not generally disjoint, these categories are widely used.
2 Including hybrid variants.
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occupied by at most one cell [9], [14]. If a site is occupied, its state is composed of
various properties of the cell, e. g. migration direction in terms of the grid topology
(left, right, top, …, standing still) or counters until performing specified action like
division  or  migration  direction  change  [9].  Another  variant  are  so  called  multi-
compartment CA [73], where multiple cells are generally contained in a single lattice
site. The sites have limited capacity for cells. When there are too many cells in a site,
some of them shall be moved to neighboring sites. Algorithms solving this problem
must  be  specified.  In  [10],  [11],  tumour  growth has  been  modelled  using  multi-
compartment CA. When going back to the mutually exclusive space management,
hexagonal lattices have been also used [12], [13]. 

1.2 Agent-based models
Agent-based modeling, sometimes also referred as individual-based modeling

[19], [20], is rather a paradigm than a notion being introduced by a formal definition.
Referring [15], in ABM a system is modelled as a collection of autonomous entities
making decisions, called agents. Each agent makes its individual assessment of the
situation and decides based on a rule set. Agents may be capable of evolving. ABM
paradigm describes a system from the perspective of its constituent units  [15]. As
mentioned  in  the  introductory  chapter,  the  main  benefit  of  ABM  is  generating
emergent results [16], [15], [5]. ABM and CA are similar in that the agents or cells
are  driven  by  the  rules  in  their  surroundings  or  environment  and  in  generating
emergent behaviors. Analysis of three ABM models with methodological elaboration
is provided in [16]. ABM has been used in a wide range of domains outside of cell
systems simulations, like social sciences, anthropology, or ecology [5], [20]. Various
ABM software platforms are currently available [5].  

1.3 Cellular Potts
Model definition. Cellular Potts model [42], [41] can be seen as a cellular automaton
where single cell generally occupies multiple lattice sites. Assuming a 2D lattice, let's

consider a spin σ(i, j) defined at each lattice site (i, j),  σ Î {1, ..., N}, where N is the
number of cells in the scenario. The  m-th cell is composed of all sites  (i, j) where
σ(i, j) = m. Every cell has an associated type τ(σ). We will define the total energy of
the system (Hamiltonian) H as

Here  J(τ,  τ') is  the  surface  energy  between  spins  of  type  τ,  τ'.  Further  δσ,σ'  is
Kronecker’s delta,  a(σ) is the area of cell  σ, Aτ is the target area for cells having
type τ,  λ  determines the strength of the area constraint. The first sum specifies the
total  surface  energy  of  “bonds”  among  cells.  As  we  see,  within  a  single  cell
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individual contributions are zero thus the surface energy of the inside of a cell is
zero.  J specifies the contact energy (per unit cell surface length) between various
types of cells. In the second term, it is supposed that each cell type has its natural
volume  (area)  Aτ.  If  a  volume  of  particular  cell  differs  from this  value,  this  is
connected with energy increase.

  In each time step a site (i, j) is randomly chosen for update. In the update, the
spin σ(i, j) is changed to spin σ' of a randomly chosen neighbor of the site (i, j). There
is  a  temperature  parameter  T ≥ 0.  The  change  is  accepted  with  the  following
probability: For T > 0,

For T = 0, P(σ(i, j) → σ'(i, j)) = { 0 if ΔH > 0, ½ if ΔH = 0, 1 if ΔH < 0 }. 
ΔH  is the energy gain caused by the change, k plays the role of Boltzmann constant.
Further, one monte carlo step (MCS) is defined as a chosen number of time steps.
The MCS is a usual time measure in the model.

CPM characteristics. An advantage of cellular Potts model is its simplicity. It is not
necessary to  supply the  position  and diffusion  of  cell  membrane in  terms  of  an
“artificial” dynamics. Relative contact energies and boundary curvature direct all the
motion. Also, CPM is flexible and readily extensible. With regard to the “hybrid”
direction, diffusion of chemicals is typically solved numerically on a grid matching
with that one of the CPM. The response of the model cells to the chemical gradients
is typically realized in a way that the cells  are more likely to extend (or retract)
pseudopods  in  the  direction  of  given  gradient  [17],  [18].  Extensions  making  it
possible  to  model  an  effect  of  cell  shape  [21],  persistent  cell  motion  [22],  or
anisotropic differential adhesion [23] have been realized. 

One  of  the  disadvantages  of  CPM  is  limited  speed  of  propagation  of
compression waves. If a cell aggregate is pushed on one side, it will be deformed
instead  of  moving as  a  whole.  Another  drawback  is  that  the  model  dynamics  is
nonlocal due to the volume constraint. Also, at nonzero temperatures, fragments of a
cell can detach. Under higher temperatures, clusters of such particles can form, being
longer lived than the small fragments. The clusters may grow to sizes comparable
with the original cell, so that they can’t be distinguished from the parent [41]. This is
another  case  of  nonlocality,  kind  of  an  “emergent”  one.  CPM is  not  particularly
suitable for modeling plant tissue dynamics [7]. The plant cells have cell wall which
maintains cell geometry and prevents cell motility, which is sort of incompatible with
the CPM paradigm. Nevertheless, by a hybrid approach these incompatibilities have
been tackled [24].
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CPM  with  it’s  simplicity  and  physical  transparency  is  popular  and  being
widely utilized in cell-based modeling. It has been used to model various phenomena
like blood vessel network formation  [25], vascular sprouting  [17], tumour growth
[27],  somite  formation  [26],  or  convergent  extension  [23].  Software  toolkits
implementing CPM are currently accessible [28], [29]. 

1.4 Lattice-free models
In the lattice-free models  the cells  can be generally placed at  any position,

without restrictions imposed by grid spacing. Cell positions are usually determined
based on equations of motion, where forces acting on the cells are incorporated. The
main benefit of the lattice-free models is the freedom to move a cell in any direction.
The disadvantage is that a special algorithmic care must be taken in order to handle
cell neighborhood. From the hybrid point of view, since chemical fields are usually
computed  on  regular  grids,  some  kind  of  interpolation  techniques  needs  to  be
employed  when  interaction  with  these  fields  is  determined.  If  a  cell  divides,
nonoverlapping placement of the daughters has to be computed. Also, in migration
there is  a risk of cell  collisions when the time step is  “too big”.  Some types  of
Lattice-free models can be identified:

     
Spherical and ellipsoidal cell-centered. In the spherical cell-centered models [19],
[30] the cells are represented as single points. Springs or energy potentials are used
to  maintain  minimum  predefined  distances  between  neighboring  cells.  The
ellipsoidal  models  [31],  [32] are  conceptually  similar  but  two  axes  of  different
lengths are used to form elliptical shape.

Cell centered with Voronoi tessellation. In these models, neighbors of a cell are
provided by Voronoi tessellation. In this way, the number of neighbors is obtained
together  with  border  length  between  two  adjacent  cells.  This  forms  a  base  for
computing  of  cell-cell  interactions.  These  models  have  been  used  in  modeling
colorectal cancer [33] or multicellular tumour spheroids [34].

IBCell and related models. In the immersed boundary cell model (IBCell)  [49],
[50] a  cell  is  modelled  in  a  rather  sophisticated  way,  as  a  body  containing
incompressible viscous fluid. The cell is bounded by elastic springs that define its
shape together with the fluid contents. Simulation of cell shape changes is mostly
based on appropriate spatio-temporal placing fluid sources and sinks on either side of
cell membrane, where the fluid flow influences the membrane. This makes it possible
to model cell geometrical adaptability. The elastic boundaries are discretized, points
at the boundaries may be treated as receptors mediating various kinds of interaction
of a cell with other cells or with the environment. In addition to modeling epithelial
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acini [49], [50], this approach has been used to model various cancer conditions [36],
[37].

1.5 Modeling techniques
Choices  of  rules  or  axioms  within  a  modeling  approach  strongly influence

characteristics of information that the following (emergent) results are bringing. In
this section we will provide short summarization of some common choices used in
literature in establishing rules axiomatizing basic cellular activities. Particularly, we
will be interested in division, migration, differentiation, and apoptosis together with
necrosis. Most of the information we provide is summed up in review [6].

Division. Cell division is often modeled as a probabilistic event. Cells can be set-up
to  divide  after  cell  cycle  time  [9],  [103],  [107].  This  time  can  be  obtained
experimentally [9], [107], [112] or assigned to each cell randomly based on normal
distribution [9], [107]. In the latter case different times are assigned to different cells,
the  daughter  cells  can  inherit  the  cell  cycle  time  of  the  mother  [107].  In  time
dependent  simulations  with  step  Δt probability  Pdiv in  particular  step  can  be
determined as Pdiv = Δt / tc where tc is the cell cycle time [14]. Division probability
can be also determined based on parameters like local nutrient concentration [11]. In
case of cellular Potts division may be triggered when a cell reaches certain size [27]
or volume-to surface ratio [110].

 Within a  division,  positions  of  daughter  cells  have  to  be  determined.  One
choice is to do this randomly, placing the daughters at the adjacent unoccupied sites
[35],  [9],  [100]. When all neighboring sites are already filled, contact inhibition is
commonly used to prevent cell division [98], [35], [107]. It may be desired to place
the daughter cells away from each other with a free site inbetween [14] or it can be
required that they are always adjacent to each other  [108]. Alternatively, different
probabilities to different available sites may be assigned. Another way is algorithmic
simulation of pushing an adjacent cell by a daughter outwards in a model tumour
until the edge of the conglomerate is reached where an empty space becomes filled
[105]. As an alternative, daughters can be piled at the same site inside the tumour and
replace a necrotic cell or fill a vacant place at the rim [11].

In CPM half of the lattice sites of the mother can become a new cell [97], [27].
In the lattice-free models the direction of the total  force the cell  experiences can
determine the division orientation [101].

Migration. In random movement the new location of the moving cell can be selected
randomly from one  of  the  neighboring  lattice  sites  [35],  [100],  [108].  If  all  the
adjacent sites are occupied, contact inhibition is used as in the case of division [35],
[100],  [108].  Another  mode  is  persistent  random walk  [9].  A cell  moves  in  one
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direction  for  some period  of  time  and  then  the  direction  is  changed.  If  the  cell
divides,  random movement  in  the  daughters  is  resumed after  the  division.  Upon
collision, the cells stop moving for some time and then the movement starts again
with new directions being randomly chosen. [9]

In directed movement, the best location among the neighboring sites can be
chosen based on factors like nutrient amounts, toxicity, and mechanical confinement
[106],  [113]. In the multi-compartment scenarios where multiple cells can reside in
one lattice site, probability of migration may increase with the number of cells in the
element  [11].  Chemotactic  displacement  of  a  cell  can  be  proportional  to  the
difference between newly bounded receptors in the front and the back of the cell
[104].  Migration  based  on  relative  concentrations  of  several  particular  chemical
species has also been used [109].

Random  and  directed  migration  can  be  combined  in  various  ways.  One
possibility is that a cell moves randomly until sufficient amount of a chemical is
detected. Than the migration mode is changed, the cell follows given concentration
gradient with the random compound substantially decreased [90].

In  the  lattice-free  models  cell  movements  are  usually  determined based on
equations of motion where forces affecting given cell are incorporated [19], [111].

Differentiation. When a cell differentiates, its type in the lattice site can be simply
changed. Rules for differentiation seem to be specific per concrete model. In  [35],
portion  of  mature  mesenchymal  stem  cells  differentiate  based  on  mechanical
stimulation and presence of vasculature, leading to three types of differentiated cells.
Combination of the mechanical stimulus intensity in terms of “low / medium / high”
with  indication  of  presence  or  absence  of  nearby  vasculature  determines  the
differentiated cell type. 

In [64] a cell assesses types and relative locations of components (extracellular
matrix,  free  space)  in  its  neighborhood  in  a  hexagonal  lattice.  Based  on  this
information type of the cell either changes or remains the same. Cell differentiation
and dedifferentiation is possible in this way.

Apoptosis and necrosis. When simulating apoptosis the cell of concern is usually
removed.  Given  place  remains  empty and  can  become  occupied  by another  cell
[102].  Apoptosis  may  be  triggered  when  a  (co)stimulus  that  caused  its  prior
differentiation to current type changes [35]. Another possibility is to apoptose when
(at  least  one)  cell  of  specified  type  is  present  in  the  neighborhood  [102].
Alternatively, apoptosis may occur when an area size the cell is in contact with the
substrate gets below a treshold value (anoikis)  [19],  [101]. A cell is usually made
necrotic when local concentration of oxygen or nutrients is under a treshold value
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[27], [107]. Necrotic cells in tumour simulations are typically not removed, left to be
participating in the composition of the neoplasm [99], [27].
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2. Model world and Virtual Laboratory
Virtual  Laboratory  is  a  software  simulation  environment  that  implements

model of cells together with (micro)environment they live in. The model uses Digital
Biological  Cell  approach  [1],  instantiating  many of  its  paradigms.  Generally,  our
hybrid agent-based model consists of two logical parts:  The environment and the
cells. The environment is formed by discrete 2D lattice where discretized system of
reaction-diffusion equations is being solved, describing spreading and other behavior
of chemical substances present in the environment. 

The cells are discrete entities occupying volume (space) in the environment.
They are impermeable for the chemical  substances.  In  agreement  with biological
intuition, boundary of a cell – which is part of the boundary of the environment – is
called a membrane.  Membrane of a cell  is its  main interface to interact with the
surroundings. By means of their membranes the cells can secrete chemicals to the
environment, sense their concentrations and cause their decay. Further, the cells can
sense  concentration  gradients  in  their  surroundings,  migrate,  divide  and die.  The
inner  decision  logic  of  the  cells  is  expressed  by zygotic  graph  [1].  In  the  next
paragraphs, detailed description of the cells and (our realization of) the zygotic graph
will follow.

2.1 Chemical substances and reactions
In our modeling approach chemical substances will play a role of one kind of

basic building blocks.  We are not interested apriori  in  what particular  real–world
chemical species these represent. Our chemicals are rather placeholders, variables
obeying kinetic and other rules within a model situation created in our model world.
Defining or seeking correspondences with real–world chemical species is left to the
modeller on the level of particular model situations. We will require that the system
of substances and reactions among them will have sufficient expressing power.  At
the same time, we wish that the system is not too complex so that it can be rather
easily understandable and usable to build constructions in connection with  other
parts of the model world. We also require reasonable level of chemical plausibility of
reaction kinetics.

2.1.1 Reaction scenario

Chemical  substances  and  vaxes.  Let  Aˇ = {A1, ..., An},  Vˇ = {V1, ..., Vn} and
Xˇ = {X1, ..., Xn} be  nonempty  mutually  disjoint  sets  of  chemical  species.  Let

Lv = Aˇ È Vˇ. We will call elements of Lv ligands3. A triple (Ai, Vi, Xi) will be called
the i-th vax, 1 ≤ i ≤ n. If i is not important for us or if it is obvious from the context,

3 At some places we will use this term in order to stress that given substance from  Lv binds to a
receptor.
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we will just use the term vax. Also, when Xi is not relevant for us, we will just be
saying that Ai and Vi, or Vi  and Ai, form a vax, or that they are complementary. For

each L Î Lv, by λ(L) we will denote substance  M Î Lv complementary to  L and by

χ(L) we will mean substance X Î Xˇ such that (L, M, X) or (M, L, X) form a vax. Let
Vaxes be the set of all vaxes (Ai, Vi, Xi), i = 1, .., n.

For each vax  (A, V, X) Î Vaxes,  let  there be a chemical reaction  A + V ↔ X.
Such reaction will be called vax reaction.

Membrane anchoring and receptors. Substances from Lv È Xˇ can be either freely
diffusible in the environment or anchored to cell membranes. If we want to explicitly
discern  among  individual  forms  regarding  membrane  anchoring  within  a  vax

(A, V, X) Î Vaxes, we will be using following notation:  Ap,  Vp,  Xp for free diffusible
forms, Am for A anchored in a membrane, Vm for V anchored in a membrane, XA for X
anchored via its A part and not by its V part, XV for X anchored by its V part and not
by its A part, and XAV for X anchored by its A part and V part. We state as a rule that
Am and Vm don't react together at the membrane of the same cell. Thus occurrence of
XAV means that X is anchored to different cells via A and V.

In  many  cases,  the  particular  form  of  a  substance  regarding  membrane
anchoring will not be important for us, or it will be of interest only at some places.
Thus we will often not be using the notation expressing the form, and specify it ad
hoc. 

In  terms  of  biological  context,  receptors  are  proteins  anchored  in  a  cell
membrane, capable to bind more or less specific substances from the outside of the
cell and provide the information that the substance is bound to the cell interior [2]4.

In  our  model  world,  by  receptor  we  will  refer  any  substance  S Î Lv È Xˇ in
membrane – anchored form. 

If  talking about  S as  about receptor,  we will  define kind of the receptor as

follows: If S Î Lv let kind of the receptor be S. If S Î Xˇ kind of the receptor will be

the substance L Î Lv which is the part of complex S anchoring it to a membrane. If L
is  not  unique  (i.  e.  in  case  S is  membrane-anchored by both its  parts),  regarded
membrane, and thus L, will be either specified or obvious from context. 

Alternatively,  we  will  express  receptor  kind  H Î Lv when  talking  of

S Î Lv È Xˇ as of receptor by saying that the receptor is formed by H.

Further, if there is receptor S and S Î Lv, we will say that it is unoccupied. If

S Î Xˇ, we will say that that it is occupied, or that it is occupied by λ(H), where H is
kind of S.

Decays. In  addition to  vax reactions  there  are  reactions  we will  collectively call
decays. These are spontaneous decay and membrane decays.

4 Chap. 1.
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Let  L Î Lv È Xˇ be a freely diffusible substance. Then let there be a reaction

L ® Z.  Here  Z Ï Lv È Xˇ is  a  (are)  symbolic  or  putative  product(s)  of  decay of
substance  L.  Z is unimportant for us, not being conceived by the model world. We
simply state that diffusible substances in a model situation can undergo decay. This
kind of reaction will be called spontaneous decay.  The adjective spontaneous in the
naming symbolizes the idea that the real world cause of the decay, whatever it is, is
not important for us. 

 The  other  type  of  decays  are  membrane decays.  These involve  substances
anchored to cell membranes. There are three kinds of membrane decays:

• Membrane enzymatic activity. It can be expressed as reaction X ® R, where

X Î Xˇ is occupied receptor formed by  R Î Lv.  We assume that the ligand
complementary  to  R is  not  membrane  bound,  i. e.  X is  regarded  to  be
anchored  in  a  cell  membrane  by  its  part  corresponding  to  R.  Membrane
enzymatic activity is a way how cells can remove free diffusible ligands from
their surroundings. Receptors are playing role of enzymes cleaving their (free
diffusible) substrates.

• Receptor internalization5. It behaves in the same way as spontaneous decay,
but the substance undergoing decay is membrane-anchored. Parameters (rate
constants)  of  individual  reactions  are  generally  different  from  their

spontaneous  decay  analogies.  If  receptor  X Î Xˇ undergoes  receptor
internalization, we don't distinguish whether it is bound to membrane by its

part belonging to A Î Aˇ or V Î Vˇ. Generally, receptor internalization causes
removal of ligands from cells' surroundings, cells are internalizing receptors
together with ligands bound on them.

• Raw receptor internalization5. Raw receptor internalization is an analogy of
receptor internalization but only substances from Lv forming the receptors are

internalized. If R Î Lv is an unoccupied receptor, the situation is the same as
in receptor internalization. If receptor S of kind R is occupied by (originally)
free ligand L, R is internalized and L “returns” to the free environment. If R is
bound to  receptor  R' belonging to  another  cell,  R and  R' are  internalized
individually,  each  according  to  its  own  parameter  (rate  constant)  of  raw
receptor internalization. Raw receptor internalization is a way how cells can
remove  receptors  from  their  membranes  without  altering  the  outer
environment. 

In  the  model  world,  receptor  internalization  and  raw receptor  internalization  are
mutually exclusive. Let's have a Boolean parameter UseReceptorInternalization. If it
is  true,  receptor internalization is to be used in particular model situation. If it  is
false,  raw receptor internalization is to be used in given model.

5 In  particular  models  presented  later  in  this  thesis,  receptor  internalization  and  raw  receptor
internalization are not being used.
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2.1.2 Reaction kinetics and vax equilibrium

Vax reaction kinetics. Regarding vax reactions, we will assume these to be reactions
where chemical bonds form and cease, obeying kinetic rules of covalent reactions[2].
As described in [2], such a reaction has a general form

where capital letters represent particular molecules or atoms and lowercase letters
represent the number of each in the reaction formula. For the rate of the forward
reaction Rateforward we have 

similarly for the rate of the reverse reaction Ratereverse we have 

where  kf is the rate constant of the forward reaction,  kr is the rate for the reverse
reaction, and [S] denotes concentration of substance S. 
At equilibrium the rate of the forward reaction equals that of the reverse reaction.
Then we can write

Let

Here Keq is the equilibrium constant, Kd is the dissociation constant. 

Vax  equilibrium. Let  (A, V, X) Î Vaxes  be  a  vax.  Assuming  the  vax  reaction
A + V ↔ X and equilibrium conditions, from (2.1) and (2.2) we have 

Let  now  [A0],  [V0],  [X0] be  arbitrary  concentrations  of  substances  A,  V,  X
respectively, let at least one of them be nonzero. Let kf > 0, kr  ≥ 0.6 If the system is
not  at  equilibrium,  we will  assume that  after  some time  the  equilibrium will  be
reached - we will be saying that the vax reaction passed, or shortly that the reaction
passed. We will denote the corresponding equilibrium concentrations [A1], [V1], [X1].

6 For kr = 0, Keq in (2.2) is undefined. We are further using Kd only.
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For substance L Î Lv, let TL denote the total concentration of substance L in reacted
and unreacted form with regard to the vax reaction L participates in. We will call TL

the r-concentration7 of L. If L is unimportant or obvious, we will use shortly the term
r-concentration. Due to mass conservation we have 

Since concentrations are nonnegative quantities, there must hold specially

By expressing [A1] from (2.4), [V1] from (2.5), and substituting to (2.3) we get 

This can be arranged as 

and viewed as a quadratic equation in variable [X1]. 
It is not difficult to see that discriminant of this equation is nonnegative8. We get

It can be shown that the root 

doesn't fulfill (2.6), except of the case when the roots coincide. As a solution we get
 

From (2.4) we have 

7 As a shortcut for raw concentration.
8 Cf. proof of claim  2.1.2.
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[V 0] + [X 0] = TV = [V 1] + [X1] .

[A0] + [X0] = T A = [A1] + [X1] ,

(2.5)

(2.4)

[X1] ≤ T A , T V . (2.6)

(T A− [X1])⋅(T V − [X1])

[X1]
= K d .

[X1]
2− [X 1](T A + T V + Kd) + T AT V = 0

[X1]1,2 =
T A + TV + K d ± √(T A + T V + K d)

2− 4T ATV

2
.

[X1]1 =
1
2

(T A + T V + K d + √ (T A + T V + K d)
2− 4T ATV )

[X1] = [X1]2 =
1
2

(T A + T V + Kd −√(T A + T V + Kd)
2− 4T ATV ) . (2.7)

[A1] = T A−[X1] =
1
2
(T A− TV − Kd +√ (T A + TV + Kd)

2− 4T AT V ) , (2.8)



analogically (2.5) gives

Basic properties of vax equilibrium. We will now reformulate our thoughts in a
slightly generalized way and make some simple practical observations.

Let L Î Lv, let's consider reaction 

From (2.4), (2.5)

Definition 2.1.1. Let

be functions of u and v. We assume u, v ≥ 0 and Kd ≥ 0 to be a parameter.

Obviously 

Claim 2.1.2. For u, v,  Kd Î ℝ ,  Kd ≥ 0, fxvax(u, v) is a real valued function.

Proof. It is immediately seen that for arbitrary a, b Î ℝ  there holds

Thus the expression  (u + v + Kd)2 – 4uv under the square root in  (2.11) is  always
nonnegative. □

From (2.7) it follows that at equilibrium there holds 

and from (2.8), (2.9) at equilibrium there is

when Kd in (2.11) is the dissociation constant of reaction (2.10). 
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[V 1] = T V−[X1] =
1
2

(T V − T A − K d + √(T A + TV + K d)
2− 4T ATV ) . (2.9)

L+λ(L)↔ χ (L) . (2.10)

T L = [L] + [ χ (L)] .

flvax (u , v) = u − fxvax(u , v) ,

fxvax (u , v ) =
1
2
(u + v + Kd−√(u + v + Kd)

2− 4uv ),

(2.12)

(2.11)

fxvax (u , v ) = fxvax(v , u) .

(a + b)2− 4 ab ≥ 0, (a + b)2− 4ab> 0 fora ≠ b .

[ χ (L)] = fxvax (T L , T λ(L)) , (2.13)

[L] = flvax (T L , T λ(L)) ,



Observation 2.1.3. For u, v, Kd ≥ 0

Observation 2.1.4. When Kd = 0, we have 

In terms of substance concentrations and (2.13), in this situation the ligand which is
present in lesser or equal total amount (reacted + unreacted form) than the other one
will totally enter the reacted form. The (eventual) excess of the total amount of the
other ligand will remain unreacted.

Observation  2.1.5.  Let's  regard  function  fxvax(u,  v)  from definition  2.1.1 to  be
function of u, v, and Kd. Let's denote it F,

Let c > 0 be arbitrary constant. Then

This means that if we want to scale concentrations in our vax reaction scenario, we
have to scale the dissociation constant as well. It is not surprising since based on
(2.3) Kd has a dimension of concentration. 

Proposition 2.1.6. Let u, v > 0 be fixed values. Let's consider F defined in (2.16) to
be function of Kd. Then F is decreasing on interval <0, +∞).

Proof. Let's first assume u ≠ v. We have

By the proof of claim 2.1.2 in our setting we see that the expression under the square
root in the denominator is always positive. Further,

Thus the fraction is greater than one and the derivative is negative.
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fxvax (u , v ) ≤ u , v . (2.14)

fxvax (u , v ) =
1
2

(u + v −|u−v|) = min(u , v) . (2.15)

F(u , v ,K d) =
1
2
(u + v + K d−√ (u + v + K d)

2− 4u v ) . (2.16)

F(c⋅u , c⋅v , c⋅K d) = c⋅F (u , v , Kd).

F ' (Kd) =
1
2 (1− u + v + Kd

√ (u + v + K d)
2− 4 uv ) .

√ (u + v + Kd)
2− 4uv < √(u + v + Kd)

2= |u+v+Kd |= u + v + K d .



Let now u = v. In this case 

First we show that for each K > 0,  F(0) > F(K): From (2.17) we see that  F(0) = u
and

is obviously positive.
Next, F is decreasing on (0, +∞), from (2.17): 

We have 

Thus we see that  the fraction in  (2.18) is  greater  than one and the derivative is
negative. □

Summing up in terms of equilibrium (r-)concentrations, for TL, Tλ(L) > 0,  Kd ≥ 0

(which we already knew from (2.6)),  the equality holds for  Kd = 0 (2.15), and the
sharp inequality is valid for Kd > 0. With increasing Kd the resulting concentration of
the product χ[(L)] decreases, leaving more reactants  L and  λ(L) in unreacted form.
For the practice of creating particular models we can perceive the zero dissociation
case as a kind of asymptotic scenario with regard to the dissociating reaction, an
easily understandable and usable building block.

Kinetics of decays. Spontaneous decay and membrane decays are based on reaction

of form S ® H, where S is a substance undergoing decay and H is a product of the
decay. Rate of given individual reaction Ratereac will be 

where kreac is the rate constant of the reaction, parameter from interval <0, 1).  When

kreac Î (0,  1) this  gives an exponential  decay of  S.  For  kreac = 0 the decay doesn't
occur. 

24

F(K d) = u +
Kd

2
− 1
2
(√ 4u Kd + Kd

2 ) . (2.17)

F(0) − F(K) =
1
2

(−K + √ 4u K + K2 )

F '(Kd) =
1
2(1− 2u + K d

√ 4u Kd + Kd
2) . (2.18)

2u + Kd = √ (2u+Kd)
2 = √ 4u2+4u K d+Kd

2 > √ 4u K d+K d
2 .

[ χ (L)] ≤ min(T L , T λ(L))

Ratereac = kreac⋅[S ] ,



For  spontaneous  decay of  freely  diffusible  substance  L,  we  have  reaction

L ® Z. Let ksd be the rate constant for the reaction. Each L Î Lv È Xˇ will have its
own rate constant.

Let (A, V, X) Î Vaxes. Let Ap,  Vp,  Am,  Vm,  XA,  XV,  XAV be forms of A,  V,  X with
regard to membrane anchoring as defined in paragraph Membrane anchoring and
receptors in section 2.1.1. 

Receptor  internalization for  Am is  seen  as  reaction  Am ® W, W Ï Lv È Xˇ,
having  rate  constant  kri

A.  Regarding  Vm,  we  will  understand  this  analogically  as

reaction  Vm ®  W with rate constant  kri
V.  For substance  X, we will have following

reactions: XA ® W, XV ® W, XAV ® W, all the three having the same rate constant kri
X. 

Membrane enzymatic  activity on  A is  a  reaction  XV ®  Vm,  let  it  have  rate

constant  kma
A. Membrane enzymatic activity on V is a reaction XA ® Am, let it have

rate constant kma
V.   

Let  krri
A,  krri

V be  parameters  of  raw  receptor  internalization of  A and  V
respectively,  both  being  from  interval  <0,  1).  There  will  be  following  set  of

reactions:  Am ® Z Ï Lv È Xˇ with rate constant  krri
A,  Vm ® Z with rate constant  krri

V,

XA ® Vp with rate constant krri
A, XV ® Ap with rate constant krri

V. Further there will be

reaction  XAV ® Z  with rate constant  min(krri
A, krri

V).  If  krri
A > krri

V then there will be

reaction  XAV ® Vm with  rate  constant  krri
A  - krri

V,  otherwise  there  will  be  reaction

XAV ® Am with rate constant krri
V  - krri

A.9 

Reaction time scales.  When comparing vax reactions and decays, we will suppose
vax reactions to be “much faster” than decays and diffusion as well, assuming that
equilibrium of a vax reaction is reached in negligible time. Based on this, we will not
be considering rate constants kf, kr in our model world, but only dissociation constant
Kd with  regard  to  corresponding  vax  reaction.  However,  for  membrane  –
environment interactions where a free diffusible ligand is bound to its receptor, we
will still allow the ligand to take part in diffusion and undergo spontaneous decay.
This  will  make  it  possible  for  our  cells  to  be  scanning  concentrations  in  their
surroundings without  influencing these processes,  and generally prevent  the  cells
from cumulating ligands on their receptors. 

Putting things together.  We will synthesize reaction types and kinetics as follows:
Let's denote the number of vaxes NumVaxes (= |Aˇ|). Each vax reaction will have its

own dissociation constant Kd
j, j Î {1, ..., NumVaxes}, Kd

j ≥ 0.  For each L Î Lv there
will be rate constant kma

L of membrane enzymatic activity on L, and parameter krri
L of

raw receptor internalization of  L if  UseReceptorInternalization is  false.  If receptor

9 Products Vm, Am of the last two reactions will be anchored to the membrane of the same cell as they
were when being part of XAV.
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internalization is being used, we will have its rate constant kri
S  for each S Î Lv È X.

Finally, we will have rate of spontaneous decay ksd
S
 for each S Î Lv È X.

2.2 Environment and discretization

2.2.1 Environment components

Lattice. As  we  have  outlined  in  the  beginning  of  the  chapter,  the  space  of  the
environment of the model world is formed by a 2D lattice. Panes of the lattice have
square shape and the lattice is uniform, i. e. all panes have the same size. We will
regard the length of the side of a pane to be unit of distance in the model world. The
lattice has rectangular shape with its dimensions as parameters. By position in the
lattice,  or  shortly  position,  we  will  mean  a  two-dimensional  vector  (i, j) with
nonnegative integer components. The components denote indices of a pane in the
lattice viewed as a matrix of panes where i denotes i-th column, j denotes j-th row,
with  both  numberings  starting  from  0.  For  a  pane  P,  LatticeIndices(P) denotes
position of  P in the lattice.  Let's consider panes not occupied by a cell  (cf.  next
paragraph).  We will think of such panes as being able to contain  substances from

Lv È X. Within a pane, concentration of every substance is regarded to be constant
over  the  area  of  the  pane.  After  we  derive  formulas  for  pane  –  membrane

interactions, we will consider for each vax (A, V, X) Î Vaxes the r-concentrations TA

and TV (cf. (2.4), (2.5)) to be held in panes  (being constant over the area of the pane),
where  individual  concentrations  of  A,  V and  X are  computed  from  TA and  TV if
(where) needed.

Cells in the lattice and membrane elements. Each cell in the model world has its
shape occupying one or more panes in the lattice. Shapes of cells cannot change,
however, cells can move. Formally, let Sh be a set of two-dimensional vectors with
integer nonnegative components, which will represent a shape of a cell for us. Let
Pos be  a  position  in  the  lattice.  Let  Oc  =  {P  |  P  is  a  pane  in  the  lattice,

LatticeIndices(P) = Z + Pos, Z Î Sh }.  Oc denotes a set of panes occupied by the
cell. According to intuition, for a cell we will allow only such positions Pos that all
its occupied panes are in the lattice. Also, a pane can be occupied by at most one cell,
i. e. sets Oc for all cells must be mutually disjoint. Shapes of cells are parameters in
particular models. 

The interior  of  a  cell  is  uninteresting for  us from the point  of  view of the
environment, there is no reaction-diffusion modeling there. 

We will  regard  the  boundary of  a  cell  to  form a  membrane.  Membrane  is
viewed as a set of membrane elements [1]. Membrane element consists of a border
segment of a pane that is occupied by the cell, where the segment is either part of a
side of the rectangle bounding the whole lattice, or it is part of boundary of another
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pane  that  is  not  occupied  by  the  same  cell.  Membrane  elements  can  contain
receptors.  We  understand  receptor  amounts  as  real  quantities.  We  will  define
membrane element as a triple (σ, ν, R), where σ is a segment fulfilling the conditions
given above, ν is a unit normal to σ pointing outwards from the cell of concern, and
R is a |Lv| dimensional vector of amounts of receptors of individual kinds10. Existing
membrane element in given time instant is uniquely determined by its segment and
normal. We will assume that the distribution of membrane element receptors of each
kind along the corresponding segment is uniform. In the following we will often use
the term 'membrane element' in sense of the corresponding segment. Also, by telling
that a pane is adjacent to a membrane element we will mean that the segment of the
element forms one of the sides of the pane.

Cells can secrete ligands over membrane elements to neighboring unoccupied
panes. 

Environment  boundary. Boundary  of  our  environment  consists  of  two  logical
partitions. The first are the four sides of the lattice rectangle minus their subsegments
being (currently) parts of cell membranes. Let's call this partition a lattice boundary.
The other partition are membrane elements facing the panes of the lattice unoccupied
by cells.

On the lattice boundary the model world will allow either (only) homogeneous
Dirichlet condition or (only) homogeneous Neumann condition for all substances in
particular  model.  All  of  the  models  presented  in  this  thesis  use  the  zero-flux
condition. We will further assume this one to hold without mentioning.

 Membranes of cells are regarded impermeable for all substances, so we have
the zero-flux condition on the boundary partition formed by membrane elements as a
baseline. However, this is generally altered by production of ligands by cells and by
membrane decays.  As we will describe in detail later, the influence of receptors on
the ligand composition of adjacent panes is reduced to membrane enzymatic activity
and receptor internalization. 

Time. We will call a time discretization quantum in our model world a step or a
simulation  step11.  The  simulation  step  is  regarded  to  last  for  unit  time.  We will
assume  that  arbitrary  vax  reaction  reaches  its  equilibrium  in  time  negligible  in
comparison with one step.  The same holds for a  vax reaction parallel  on pane –
membrane interface, that will be defined in the next paragraph.

10 Amount of receptors of particular kind is unterstood as the total  amount disregarding receptor
occupancy.
11 Simulation step corresponds to one step of the discrete simulation in the Virtual Laboratory.
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2.2.2 Membrane interactions

Pane – membrane interactions.  In this section we will define an analogy of vax
reaction on a free pane surrounded by one or more membrane elements. If substances

A, V, and X form a vax (A, V, X) Î Vaxes, we will distinguish whether A and V are in
membrane  anchored  form  or  in  a  free  diffusible  form,  as  we  did  in  paragraph
Membrane anchoring and receptors in section 2.1.1. Regarding the forms of product
X,  we will  only need three of them: Free, membrane-anchored by its  A part,  and
membrane-anchored  by  its  V part.  Thus  we  have  got  in  total  seven  kinds  of
substances.  (Cf.  Fig.  2.1.)  A straightforward  approach  to  build  our  interaction
scenario would be to construct an overall reaction scheme involving all individual
reactions, derive equations for equilibrium concentrations of individual substances
and solve this system of equations. However, we will introduce kind of simplified
setting which would be not  too difficult  to  understand,  follow our  purposes,  and
which would be readily usable as an intermediary building block in our model world.
Particularly we have following assumptions and requirements:

1. We will assume that A and V are not both present in a free diffusible form and
as receptor kinds (disregarding reacted and unreacted forms) simultaneously
in  our  pane  and  surrounding  membrane  elements.  At  least  one  of  these
substances is either only present as a receptor kind or it is only a free ligand
or it is not present in the pane and its adjacent membrane elements at all.12 We
will  see  that  using  this  assumption we don't  have  to  construct  a  complex
reaction scheme and we will  be able  to  employ vax reactions in a nearly
direct way.

2. If there are any occupied receptors of kind A or V before our reaction, we will
assume them as unoccupied, making their receptor kinds counterparts bound
in this way freely diffusible, capable to react with the freely diffusible  A,  V,
and X that have been in the pane before. Now we will assume a vax reaction
among  the  free  diffusible  substances,  where  the  (now  all  unoccupied)
receptors  play  a  role  of  passive  scanners  that  don't  alter  the  resulting
equilibrium concentrations of the free diffusible A, V and X.

3. The information about resulting receptor occupancy13 must be provided as
though the vax reaction in the pane and adjacent membrane elements passed
without limitations. 1. still holds but we will not assume 2 when evaluating
this information.

Generally, computation according to 3. will not provide equilibrium concentrations
of  A,  V,  and  X fulfilling  2.  When  computing  the  resulting  concentrations  in  our
scenario,  we will take free diffusible A, V, and X from a scheme obeying 2. and the

12 All  models  presented in  this  thesis  fulfill  this  assumption and we will  generally suppose  that
models obey this premise.
13 Amounts of occupied and unoccupied receptors of given kinds.
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rest  from  another  scheme  obeying  3.  In  the  model  world,  receptor  occupancy
provides  information  for  cells,  membrane  enzymatic  activity  and  receptor
internalization.  Environmental  A,  V,  and  X participate  in  spontaneous  decay and
diffusion, the first two can undergo membrane enzymatic activity and be targeted by
receptor  internalization.  Thus  the  only  points  we  have  to  resolve  are  membrane
enzymatic activity and receptor internalization.  This will  be done later.  Generally
spoken, our setting separates measurements from processes, so that measurements
don't influence processes. This will,  among others, allow cell membranes to form
relatively “nice” boundary conditions from the point of view of the environment. We
will now specify the scenario.

Let  (A, V, X)Î Vaxes.  Let's  consider  a  compartment  containing  solution  of
substances  with  uniform  concentrations,  bounded  by  a  membrane  containing
receptors  facing  the  compartment.  Let  Ap,  Vp,  Xp,  Am,  Vm,  XA,  XV   be  forms  of
substances  A, V,  X defined in  paragraph Kinetics  of  decays  in  section  2.1.2.  The
situation is sketched in Fig. 2.1. As we have by (2.7), after a vax reaction passed, the
product  concentration  depends  on  only  total  amounts  of  reactant  substances  in
reacted and unreacted form that entered the reaction. In analogy with (2.4), (2.5) we
will introduce TV

p as the total amount of V in reacted and unreacted form that is or
may become freely diffusible, as

Then we will denote TV
m the total amount of V that must be anchored in the

membrane, 

Analogically for A let
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TV
p

= [V p
] + [X p

] + [X A
] .

TV
m

= [V m
] + [XV

] .

T A
p

= [Ap
] + [X p

] + [X V
] ,

T A
m

= [Am
] + [X A

] .

Figure 2.1: Vax substances in pane – membrane interactions. 



 In  accord  with  section  2.1 let  [S1] denote  a  concentration  (amount)  of
substance  S after our reaction it is involved in passed.  Let us assume a pane not
occupied by a cell, surrounded by one or more membrane elements.

First,  we  will  describe  computation  of  resulting  concentrations  of  free
diffusible A, V and X when considering requirement 2. and disregarding requirement
3. In this case,  let  [Ap

ps],  [Vp
ps],  and  [Xp

ps] be the resulting concentrations of free
diffusible A, V, and X respectively14. We will define them as

Here  expressions  (2.19),  (2.20),  (2.21) are  analogies  of  (2.7),  (2.4),  and  (2.5)
respectively. If we assume that before applying this scheme  [XA] = [XV] = 0, i. e.
there are no membrane-bound products, there is  [Ap

ps]  ≡ [Ap
1],  [Vp

ps]  ≡ [Vp
1], and

[Xp
ps] ≡ [Xp

1], when only considering reaction Ap + Vp ↔ Xp, taking [Xp
1], [Ap

1], and
[Vp

1] from  (2.7),  (2.4),  and  (2.5) respectively.  We  will  call  this  method  of
determining free diffusible A, V and X pane separation.

Let  now  L Î Lv,  Λ = λ(L),  X = χ(L). We  will  describe  computation  of
occupancy of receptors formed by substance L, when considering requirement 3. and
disregarding requirement  2. Let  [XL

rd(L)] be the (resulting) occupancy of receptors
formed  by  L under  these  considerations15.  Let  n be  the  number  of  membrane
elements adjacent to to our pane. Let [iXL

rd(L)] be the occupancy of the i-th membrane
element, i = 1, .., n. We have

Let

Let's denote TL,rd(L) = TL
p + TL

m the total amount of L16 entering the reaction considered
by (2.23), let  TΛ,rd(L) = TΛ

p. Seeing substances as in unreacted forms only, before the
reaction,  we  are  considering  Λm not  to  participate  in  the  reaction,  as  though  its
amount was zero. Let

14 The subscript ps stands as a scortcut for pane separation indicating this computation method – cf.
end of paragraph.
15 Here  rd(L) in the subscript indicates this our method of computation -  reaction decoposition -
where occupancy of receptors formed by L is of interest.
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[V ps
p
] = T V

p − [X ps
p
] .

[A ps
p
] = T A

p − [X ps
p
] ,

[X ps
p
] = fxvax (T A

p , TV
p
) , (2.19)

(2.20)

(2.21)

[X rd(L)

L
] = ∑

i=1

n

[ X rd (L)

Li
] . (2.22)

[X rd(L)] = fxvax(T L
p
+ T L

m , T Λ
p
) . (2.23)



where  [Xp
rd(L)] is the concentration of diffusible  X after the reaction considered by

(2.23) passed. We assume that Λ reacts evenly with all L, regardless whether L is free
or  membrane  bound,  so  that  the  product  is  distributed  in  the  pane  and  in  the
individual membrane elements in the same rate as there was L16 before the reaction17.
Formally, we will put

Here iTL
m denotes the total amount of membrane-anchored L18 in the i-th membrane

element adjacent to the pane, 1TL
m+ 2TL

m+ ... + nTL
m = TL

m. If TL,rd(L) is zero, then all the
fractions  in  (2.25) are  regarded  to  be  zero.  Let  [Lm

rd(L)]  be  the  total  amount  of
unoccupied  receptors  formed  by  L after  reaction  regarded  by  (2.23) passed.  Let
accordingly [iLm

rd(L)] denote [Lm
rd(L)] restricted to the i-th membrane element. We will

put

We will  call  this  method  of  computing  [XL
rd(L)]  and [Lm

rd(L)]  (i.  e.  [XA
rd(A)],

[Am
rd(A)], [XV

rd(V)],  and [Vm
rd(V)]  when  considering  vax  (A, V, X))  a  reaction

decomposition. 
We can check quite easily that under assumption in 1. reaction decomposition

works  correctly:  For  simplicity  we  will  suppose  that  there  is  only  one  adjacent
membrane element to the pane, having index 1 say. For more elements the extension
is straightforward. 

Let's consider computation of  [XL
rd(L)]. If receptors formed by  L are missing,

there can be nothing bound on it  and  [1XL
rd(L)] should be zero. Indeed, if there is

[Lm] = [XL] = 0,  then  TL
m =  0,  which  means  that  1TL

m =  0.  According  to  the
computation scheme TL,rd(L) = TL

p. If TL,rd(L) is zero, then (2.25) is by definition zero for
all  i, thus  [1XL

rd(L)] = 0. If  TL,rd(L) is nonzero, then  [1XL
rd(L)] = 0 since  1TL

m = 0. Let's
now consider the case where receptors formed by Λ are missing. In this case Λ can be
present only in diffusible form and binds to  L which is in either form. But this is

16 In reacted and unreacted form.
17 It is easy to prove this intuitive assumption as a fact, for one membrane element starting with two
reactions: Lp + Λp ↔ Xp and Lm + Λp ↔ XL, supposing both have the same dissociation constant.
18 In reacted and unreacted form.
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[X rd(L)] = [X rd(L)
L

] + [X rd(L)
p

] , (2.24)

[X rd(L)

p
] = [X rd(L)]⋅

T L
p

T L ,rd(L)

,

[ X rd(L)

Li
] = [X rd(L)]⋅

T L
mi

T L, rd(L)

, i= 1, .. , n . (2.25)

[ Lrd( L)
mi

] = T L
mi − [ X rd(L)

Li
] , i= 1,.. , n .



exactly  how  our  computation  scheme  was  constructed,  when  we  took
TL,rd(L) = TL

p + TL
m,  TΛ,rd(L) = TΛ

p.  We  ignored  TΛ
m = [Λm] + [XΛ] and  now

[Λm] = [XΛ] = 0.  As a next case to check we make the assumption of L in free form
generally missing. Here membrane-anchored Λ has no counterpart to react with thus
there is only a reaction between free Λ and receptors formed by L there, meaning that
there is either no product (if L is missing at all or Λ is missing in free ligand form), or
the product is all anchored to membrane via its  L part. In our scenario, by setting
TΛ,rd(L) = TΛ

p we are only taking the free Λ. No free L means TL
p = 0 so TL,rd(L) = TL

m. We
have also TL

m1 = TL
m by our assumption. If TL,rd(L) = 0 then [1XL

rd(L)] = 0 since (2.25) is
by  definition  zero  for  all  i.  If   TL,rd(L) ≠ 0 then  1TL

m/TL,rd(L) = 1 giving
[1XL

rd(L)] = [XL
rd(L)]. The last case is the situation where  Λ in free form is generally

missing. In this case membrane-bound L has no counterpart to react with, so [1XL
rd(L)]

should  be  zero.  In  the  scheme  we  have  [Λp] = [Xp] = [XL]= 0,  thus  TΛ
p = 0,

followingly TΛ,rd(L) = 0.  By  (2.23) [Xrd(L)] = 0.  If  TL,rd(L) = 0 then  [1XL
rd(L)] = 0  by

definition. Otherwise, [1XL
rd(L)] = 0 since [Xrd(L)] = 0. 

Membrane – membrane interactions. In our environment two cells can touch each
other.  As  in  the  previous  paragraph,  let  substances  A,  V,  X  form  a  vax

(A, V, X) Î Vaxes. Let Me1, Me2 be two distinct membrane elements sharing the same
segment. In this case we will consider that the two cells containing these elements
touch each other by these elements. Let  A1,  V1 be substances  A and  V respectively,
anchored in Me1. Let similarly A2, V2 be substances A and V respectively, anchored in
Me2. Then there will be two vax reactions:  A1 + V2 ↔ X1,2 and A2 + V1 ↔ X2,1, both
with dissociation constant Kd of reaction A + V ↔ X. By means of vax reactions on
adjacent  membrane  elements  touching  cells  can  perceive  substances  bound  in
membranes of their neighbors. From the point of view of a cell scanning substances
in  its  surroundings,  it  is  insignificant  whether  a  substance  the  cell  feels  via  its
receptors'  occupancy  is  membrane-bound  (receptors  of  another  adjacent  cell)  or
freely diffusible (ligand). The cell just feels the “signal”.  

Discussion on design of pane-membrane interactions. When creating a model one
must deal with making simplifications and assumptions. This is of course true in
constructing our model world, which is sort of meta-model, a generic environment
for creating various particular models motivated by different theoretical or biological
impulses. Regarding the vax reactions, these play the role of a modeling tool for us,
kind of a building block. At the entry level, as described in section 2.1, they represent
particular parametrizable reaction scheme that can be easily understood. We want a
pane (generally) surrounded by membrane elements to be another building block, not
too  difficult  to  understand  and  quite  easily  usable  to  construct  other  entities.
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Although being built from simpler blocks, it should still be an expression unit with
not too complicated behavior. 

By means of receptors on membrane elements our cells (can) basically do two
things  on  substances  in  the  local  surrounding  environment:  Scan  their
concentrations19 and make them disappear. Also, the environmental substances can
disappear by spontaneous decay and they can be transported by diffusion. By means
of  pane  separation we make  the  membrane  a  “device”  that  neither  accumulates
ligands from the environment nor prevents them to participate in the environmental
processes,  as  anticipated.  If  there  are  no  membrane  enzymatic  activity  and  no
receptor  internalization,  the  process  of  concentration  scanning  by cells  (via  their
receptors) doesn't alter the vax reaction in the pane. 

If we think generally of a receptor–ligand interaction, we may consider freely
diffusible ligand molecules to react with20 membrane–anchored receptor molecules.
(See Fig.  2.2 (a).) If we add the ligand substance to a membrane in a membrane–
anchoring  form and assume that  this  form will  not  react  with  the  receptors,  the
original receptor–ligand interaction will remain unchanged. (Cf. Fig. 2.2 (b).) If we
return to our starting receptor–ligand scenario and add the receptor (kind) substance
in a free diffusing form, the ligand will be binding to both forms, as sketched in Fig.
2.2 (c). From the point of view of the original scenario, this setting may be viewed as
a kind of inhibition. If we want to decrease the amount of receptor-bound ligand, we
will add the receptor substance in a free form and it will attract part of the ligand, so
that the resulting receptor occupancy will decrease. 

19 Concentration scanning in this sense is rather getting signal by cells from the occupancies of their
receptors.  E.  g.  receptor  saturation  may occur,  where  the  real  outer  concetration  is  “beyond  the
measurable range”. Interpretation of the receptor signal, if needed, is up to particular model.
20 initially unoccupied
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Figure  2.2:  Supported  extensions  of   basic  receptor-ligand  interaction:  Basic
interaction  (a).  Adding   ligand  substance  in  receptor  form (b).  Adding  receptor
substance in ligand form (c).



There remains the general scenario where we add the receptor (kind) substance
in a free form and the ligand substance in a membrane-bound form, thus getting both
substances in both forms (scenario not shown). From the point of view of having
simple receptor-ligand interaction there doesn't seem to be enough straightforward
reasoning for such a scheme. By contrary, it looks to obfuscate this interaction and
make  things  rather  complicated.  When  constructing  our  model  world,  we  have
decided not to support this case.21 We have limited the space of combinations within
the conceptual unit of a pane surrounded by membrane elements, but left it relatively
transparent.

2.2.3 Diffusion-reaction scheme

In  our  model  world,  all  substances  (elements  of  Lv È Xˇ) have  the  same
diffusion coefficient D ≥ 0. When focusing on the interior of the environment, there
are three processes influencing concentrations of substances: vax reactions, diffusion
and spontaneous decay. From what was said before it is obvious that all chemical
interactions of a substance are defined on the substance alone or within the vax the
substance belongs to. We will thus concentrate on a single vax.

Let  (A, V, X) Î Vaxes. Let  ksd
A,  ksd

V and  ksd
X be rate constants of spontaneous

decay of A, V, and X respectively. As we know, equilibrium concentrations of the vax
components depend on r-concentrations  TA and  TV (cf.  (2.7),  (2.8),  (2.9)). We will
take the r-concentrations as basic notions, computing diffusion and decay for them.
When determining concentrations in the environment,  we will  consider following
couple of equations22,23:

where

Here TA = TA(x, t), TV = TV(x, t), where x represents space variables, t represents time,
Δ is Laplacian in space variables. Further,  αT(L, u, v) is the decay rate of  TL due to

21 In the Virtual Laboratory defining models that can lead to this scenario is not prevented by any
checks. It is left upon the modeller to ensure adherence to this premise within particular models, or to
have enough justification to break it, when accepting the setting of the model world.
22 Forming a base for discretization.
23 Boundary conditions for these equations will be given in the next paragraph. Initial conditions  are
not important for us here, we only assume that the initial  TA,  TV are nonnegative. Initial values of
r-concentrations TA and TV, seen as “concentraions of unreacted ligands”, are given in discrete form in
the environment at the level of particular models.
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∂T A

∂ t
= D ΔT A− αT(A , T A , T V) , (2.26)

∂T V

∂ t
= D ΔTV − α T(V , T V , T A) , (2.27)

α T (L , u , v ) = k sd
L
⋅ flvax(u ,v) + ksd

χ (L)
⋅ fxvax(u , v ) . (2.28)



spontaneous decays,  L Î Lv, if  TL = u and  Tλ(L) = v.  Functions flvax and  fxvax are
defined in (2.11), (2.12) respectively and we are considering dissociation constant Kd

of reaction L +  λ(L) ↔ χ(L) for them.  As we see, our scheme doesn't hold individual
vax-equilibrium concentrations of A, V, and X explicitly. When we want to determine
spontaneous decay of any of regarded substances, we compute the actual “input”
concentration “on the fly”. Results of spontaneous decays are composed back to the
(time) derivatives of the (cumulative) r-concentrations TA and TV. 

Membrane  decays  and  boundary  conditions. We  have  been  discussing  the
structure of boundary regarding our lattice in paragraph Environment boundary in
section  2.2.1. In order to formulate boundary conditions for  (2.26),  (2.27), we will
assume the environment boundary as a geometrical object, seeing receptor amounts
in (the original) membrane elements as concentrations24. Discrete pane – membrane
interactions we have established before will be then seen as part of discretization of
our boundary conditions, as we will describe later.

Let C be a cell, let M be part of its membrane facing the free environment. Let

(A, V, X) Î Vaxes,  let  TA,  TV be  the  diffusing  r-concentrations  regarded  in  (2.26),
(2.27). We will write the boundary conditions on the part of the boundary of our
environment corresponding to M as

where

Here x = (x1, x2) lays on M, ∂T A(x , t )/∂ ν  is spatial derivative of TA in direction of

the outer normal of  M at  x  with regard to  C in time  t.  P(C, A, t) is production of
substance  A by cell  C per  unit  membrane length  in  time  t.  Cell  productions  are
determined based on zygotic graph, as it will be described later. Further, kma

A is rate
constant  of  membrane  enzymatic  activity  on  A,  kri

X is  rate  constant  of  receptor
internalization  of  X.  For  the  second  relation  analogically.  Next, [XV] is  local
(membrane) concentration of receptors formed by substance  V that are regarded as

24 Regarding all receptors as being unoccupied.
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D⋅
∂T A (x , t)

∂ ν
= P(C , A , t)− (kma

A
+ kri

X
)⋅[XV

](T A ,T V ,[R
V
]) , (2.29)

D⋅
∂TV (x , t)

∂ ν
= P(C ,V , t)− (kma

V
+ kri

X
)⋅[X A

] (T A , T V ,[R
A
]) , (2.30)

[XV
](T A , TV , [R

V
]) = fxvax(T A , TV + [RV

])⋅
[RV

]

T V + [RV
]
,

[X A
](T A , TV ,[R

A
])= fxvax(T V , T A + [RA

])⋅
[RA

]

T A + [RA
]
.

(2.31)



occupied  by  A  for  the  purposes  of  determination  of  degradation / removal  at
membrane. I. e.  [XV] represents local concentration of  A regarded as bound to its
receptors  on  the  membrane,  a  quantity  forming  a  “base”  for  degradation  by
membrane enzymatic activity and for removal by receptor internalization. Next, [RV]
denotes membrane concentration of receptors formed by substance V. Function fxvax
is defined in (2.11). The fraction on the right in (2.31) is the ratio of product being
regarded in the bound receptor form. If the denominator were zero, we will regard
the fraction to be zero. For [XA] the situation is analogical.

Diffusion – reaction discretization. In order to discretize  (2.26) and  (2.27) in our

lattice, we will use finite volumes approach [3].  Let  L Î Lv. We can rewrite  (2.26),
(2.27) as 

where x represents the space variables, K is a control volume – a (unoccupied) pane
of our lattice; ν is the outer unit normal to ∂K . Let k be a constant time discretization
step. Writing  (2.32) at time  tn = nk,  n is a nonnegative integer, and discretizing the
time partial derivative by Euler explicit scheme we have a time discretized version
(approximation) of TL which fulfills:

Regarding  space  discretization,  we will  consider  cell-centered  discrete  unknowns
KTL

(n), where  K belongs to the unoccupied panes of our lattice. Let  EK be the set of
edges included in pane K. We can write the second integral from (2.33) as 

 We will approximate each flux from the sum

by finite difference approximation as 
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∂T L (x , t)

∂ t
− D⋅div (∇ T L) + αT (L,T L , T λ( L)) = 0,

∫
K

∂T L(x , t)

∂ t
dx − D ∫

∂K

∇ T L⋅ν ds +∫
K

αT (L ,T L ,T λ( L)) dx = 0, (2.32)

1
k∫

K

T L
(n+1)

(x )−T L
(n)

(x)dx−D∫
∂ K

∇ T L
(n)
⋅ν ds+∫

K

α T(L ,T L
(n), T λ( L)

(n)
)dx = 0. (2.33)

−D∫
∂ K

∇ T L
(n )
⋅ν ds=−D ∑

σ∈E K

∫
σ

∇ T L
(n)
⋅ν ds .

∫
σ

∇ T L
(n )
⋅ν ds

FL, K ,σ
(n)

= h⋅
T L

(n )Q − T L
(n)K

l
, (2.34)



where h is the length of segment σ and l is the distance between the centers of of the
two  adjacent  panes  K and  Q that  share  σ as  a  common  segment. As  space
discretization of (2.33) we have:

Since  the  panes  in  our  model  world  are  squares  with  unit  side  length,  we have
l = h = 1, k will correspond to one step, that is a unit time: k = 1. So we get explicit
formula for our discretized TL:

Let's express the difference KTL
(n+1) – KTL

(n) = δ(L, K, n). By (2.35) we have:

Discretization  of  boundary  conditions. As  described  in  paragraph  Environment
boundary in section  2.2.1, we can have either zero concentration condition or zero
flux condition on the lattice boundary. The latter condition is also a baseline for cell
membranes being part of the environment boundary, i. e. when membrane enzymatic
activity, receptor internalization and cell production are not considered.
     For the homogeneous Dirichlet and homogeneous Neumann conditions we will
assume as though there are fictive neighbors on the opposite sides of corresponding
edges of panes at the boundary. Concentration in the fictive neighbor will be zero for
the zero concentration boundary and it will be the same as in the regarded real pane
for  the  no-flux  condition.  Note  that  for  the  for  the  hom.  Neumann  condition
concentrations  at  the  fictive  neighbors  are  generally  not  unique  for  given fictive
pane,  but  they  are  unique  for  each  boundary  pane  edge,  i.  e.  for  each  “flux
implemented”. 

Let  K be  an  unoccupied  pane,  let  M(K) be  the  set  of  membrane  elements
adjacent to K, let M(K) ≠ Ø. Let's consider boundary conditions expressed by (2.29)
and  (2.30) at membrane elements of  M(K).  Taking our vax  (A, V, X), let  q[XV](n) be
discretized [XV] from (2.29), (2.31), at time tn = n, n is a nonnegative integer, and at

q Î M(K). We will compute q[XV](n),  for each q Î M(K) via  reaction decomposition.
(Cf. paragraph Pane – membrane interactions in section 2.2.2.) Let's consider (2.23).
We will put there L = V, Λ = A, TV

p = KTV
(n), TA

p = KTA
(n), 
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h2

k
( T L

(n+1)K − T L
(n )K )− D ∑

σ∈EK

F L, K , σ
(n)

+ h2⋅α T (L , T L
(n)K , T λ( L)

(n)K
)= 0.

T L
(n+1)K

= T L
(n)K

+ D ∑
σ∈E K

FL ,K ,σ
(n) − αT(L , T L

(n)K , T λ(L)
(n )K

) . (2.35)

δ (L, K , n) = D ∑
σ∈EK

FL, K , σ
(n) − α T(L , T L

(n )K , T λ(L)
(n)K

) . (2.36)

TV
m

= ∑
(σ , ν, R )∈M(K )

RV ,



where RV is the component of R corresponding to (receptor kind) V. By (2.25) we get
q[XV](n) for q as the i-th membrane element adjacent to K in chosen numbering.  For
q[XA](n) the situation is analogical. Let δb(L, K, n) be the change of KTL

(n), L Î Lv, (cf.
(2.35)) in the (n+1)th step due to boundary conditions on M(K). We have

Without loss of generality, there is

if L = V and

if  L = A.  In  (2.37),  P(C, L, n) is  production  of  substance  L by  cell  C per  unit
membrane length in the n-th step.

Conditions for parameter values. Now we will focus on constraints that will be laid
on the diffusion coefficient D, parameters of spontaneous decays and parameters of
decays relevant to boundary conditions at cell membranes. We can write Fick's first
law of diffusion [4] as

where J is diffusive flux, D is diffusion coefficient and C is concentration of of the
diffusing  substance.  The  expression  states  that  the  vector  of  diffusive  flux  has
direction that is opposite to the direction of concentration gradient that causes it and
that it is directly proportional to the magnitude of this gradient. In our discretization
we will require that within each step, every diffusive flux has the opposite direction
than the concentration gradient that is the cause of the flux at the beginning of the
step. Particularly, we will want that the flux goes from a pane with (initially) higher
concentration to a pane with (initially) lower concentration. Thus obviously D has to
be nonnegative, we have stated this at the beginning of this section. Further, we will
denote (the discretized) concentration of substance C in pane K at the beginning of a
step  C(K), let then  CD(K) be concentration of  C in  K at the end of the step, when
supposing that only diffusion among K and its neighbors took place in the step. Let's
consider pane K with its unoccupied neighbors Q1, ..., Qn, let n ≥ 1.  Let Q be one of
these neighbors such that C(Q) ≤ C(Qi),  i = 1, ..., n. Let further  C(Q) ≤ C(K). Then
we will require that  CD(Q) ≤ CD(K). Similarly, for an unoccupied neighbor  Q' of  K
such  that  C(Q') ≥ C(Qi),  i  =  1,  ...,  n, where C(Q') ≥ C(K), we  will  want  that
CD(Q') ≥ CD(K).  We see that in order to fulfill these conditions in general case there
has to be 
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δ b(L , K , n) = P(C , L, n +1) + δr (L , K , n) . (2.37)

δ r(L ,K ,n) = − (kma
V

+ kri
X
) ⋅ ∑

q∈M(K )

[X A
]
(n)q

(2.38)

δ r(L , K , n) = − (kma
A

+ kri
X
) ⋅ ∑

q∈M (K )

[XV
]
(n)q

(2.39)

J = −D∇C ,



(In the worst case, all the neighbors will have the same concentration.) We also see
that if some of the neighbors Q1,..., Qn were the fictive ones implementing either the
zero-concentration condition or the zero-flux condition, (2.40) would be (generally)
the same. Thus in our lattice we put requirement D ≤ 1/5.

Next,  we  require  that  after  all  processes  influencing  concentrations  in  an
unoccupied pane  K within a step are applied, the resulting concentration of every

substance will be nonnegative. Let (A, V, X) Î Vaxes be a vax.
 Let's first consider K not to be adjacent to cell membrane. When looking at

(2.28) and reminding (2.12), we see that for each L Î Lv

From (2.34) clearly

thus (2.35) gives

When assuming KTL
(n) ≥ 0, in order to have KTL

(n+1) ≥ 0 we get conditions for our vax

Let's now regard K to be adjacent to a membrane. When looking at (2.38) and

the paragraph above, considering computation of  m[XV](n) for  m Î M(K)  for our  K,
from  (2.23), (2.24), (2.22) (reaction decomposition), and (2.14) we have 

Thus from (2.37), (2.38) we can see that

since, as we will state later, cell productions are nonnegative. Because K is adjacent
to the boundary formed by a cell (membrane), there will be zero diffusive flux with
at least one neighbor of K. Let's look at (2.41), considering now our pane K there and
substance A in place of L. Let δin(KTA

(n)) be the change of KTA
(n) in the (n+1)th step due

to diffusion, spontaneous decay and the (potential) boundary conditions on the edges
of K being part of the lattice boundary. We have
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D ≤ 1
n+1

. (2.40)

α T (L ,T L ,T λ(L))≤ max(k sd
L , ksd

χ (L)
)⋅T L.

FL, K ,σ
(n) ≥ − T L

(n)K ,

T L
(n+1)K ≥ T L

(n)K (1− 4D − max(k sd
L , ksd

χ (L)
)) . (2.41)

max(ksd
V , k sd

X
) + 4D ≤ 1 .

max(ksd
A , k sd

X
) + 4D ≤ 1 ,

∑
m∈M(K)

[XV
]
(n)m ≤ T A

(n)K .

δ b(A , K ,n) ≥ − T A
(n )K

⋅(kma
A

+ kri
X
) , (2.42)



Adding (2.42) and (2.43), in analogy with (2.41) we can write:

getting condition

Analogically based on KTV
(n) we have

2.2.4 Cell movement

When introducing diffusion-reaction computation scheme, we were supposing
the  situation  boundary  geometry  to  be  unchanging  in  time.  However,  as  stated
beforehand, we wish our cells to be able to move. In this paragraph we will describe
how cell movement is included to the environment.

Every  cell  in  every  particular  model  has  a  speed,  zero  or  nonzero,  that
determines its movement. We regard cell speeds as real vectors. If a cell encounters
an obstacle, only such component of the speed will apply where given direction is
not blocked by the obstacle. An obstacle may be another cell or the lattice boundary.
The unit of speed in our model world is the length of pane side per step. We will only
allow cell speed magnitudes ≤ 1. For each cell we are tracking its real position, a grid
coordinate  is  the  largest  integer  ≤  real  coordinate.  According to  our  setting,  cell
location  grid  coordinate  can  change  at  most  by one  in  one  simulation  step25.  If
exactly one grid coordinate changed within a step, the cell will move by one pane in
the  lattice  in  corresponding  direction  within  that  step.  We  will  call  this  the
elementary movement.  If  both grid coordinates changed within one step,  we will
regard this as two consecutive elementary movements within the step. We will have

two basic approaches how to deal with r-concentrations  TL, L Î Lv, in the panes  in
the surroundings of a cell that has performed elementary movement:  Infilling and
flowaround. Whether the former or the latter is used for a cell in particular model is
being a parameter for given cell, unchanging in time. If a cell divides, this parameter
is inherited by the daughter cells.

Infilling. In infilling, we will only determine r-concentrations in the panes that were
occupied by the cell before the elementary movement and became free after it. Let's
call them receiving panes. Let C be a cell that performed elementary movement in an
arbitrary step of interest. Let Rec be a set of receiving panes of C for that elementary

25 If we don't consider divisions.
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movement.  Let  Ms be the set of membrane elements  m adjacent to panes in  Rec
before the elementary movement, where there was an unoccupied pane Qm forming

the other neighbor of m. Let L Î Lv. Then after the elementary movement there will

be the same r-concentration TL for all P Î Rec,

where HTL is TL in pane H before the elementary movement. If Ms is empty, we will
put TL = 0.

Flowaround. In flowaround, we will simulate advection in a virtual surroundings of
a cell  C that has performed elementary movement.  Roughly speaking, the virtual
surroundings  will  have  rectangular  shape  of  constant  size,  with  stationary  flow
velocities  provided  as  parameters,  having  these  zero  over  the  boundary  of  the
rectangle. Cell  C will be in the middle of the rectangle and there will be no other
cells there, despite there might be some in the real surroundings. It is also possible
that part of the virtual surroundings would be outside the environment grid. In places
of  the  “real”  objects  and  in  the  “outside”  zones,  we  will  set  “hypothetical”
concentrations of substances, based on known concentrations in the rest of the virtual
surroundings.  Then  we  will  simulate  advection.  After  advection  is  computed,
resulting  concentrations  will  be  “copied”  to  the  “real”  surroundings,  where
corresponding panes exist and are not occupied by any cell. Situation is sketched in
Fig. 2.4 (a).

Advection  in  flowaround. In  this  paragraph  we  will  provide  discrete  formula
describing advection for our flowaround. Let's start with linear transport equation
with velocities w:

where 

We will consider Ω to be an interior of a rectangle formed by union of nonempty set
of  panes,  seeing  the  panes  as  closed  squares.  Discretizing  by  finite  volumes,
proceeding in analogy with paragraph Diffusion – reaction discretization in section
2.2.3 and with introduction in [3], we have
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T L =
1
|Ms| ∑

m∈Ms

T L
Qm ,

∂u(x , t)
∂ t

+ div(w u)(x ,t ) = 0, x ∈ Ω, t > 0

u(x ,0) = u0(x) , x ∈ Ω ,

(2.44)

w ∈ C 1
(Ω̄ , Ω̄) , w = 0 on ∂ Ω, u0 ∈ L∞(Ω).

∫
K

∂u(x ,t )
∂t

dx + ∫
∂K

w (x ,t)u(x , t)⋅ν ds = 0, (2.45)



for each K belonging to the panes forming Ω̄ ; ν is the outer unit normal to ∂K .  
For k being a constant time discretization step, writing (2.45) at time tn = nk,  n is a
nonnegative integer,  and discretizing the time partial  derivative by Euler  explicit
scheme we have a time discretized version of u:

where EK is the set of edges included in pane K. For σ Î EK let 

Let uK
(n) be cell-centered discrete unknowns of space discretization, where K belongs

to the panes forming Ω̄ . We will discretize each term of the sum in (2.46) as

Here Q is a neighboring pane to K with common edge σ. So we have a discretization
scheme

for each pane K being part of Ω̄ and for each nonnegative integer n. Further, h is the
length of σ which is 1. We will rewrite (2.47) as

Relation  (2.48) will form a base for computation of advection within an algorithm
computing flowaround.

Flowaround algorithm. We will first introduce preliminary concepts. Let  C be a
cell.  Let  Sh(C) be shape of  C as introduced in paragraph  Cells in the lattice and
membrane elements in section 2.2.1. Let 
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k∫

K

u(n+1)
(x)− u(n)

(x )dx + ∑
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∫
σ

w(x , t n) u
(n )

( x)⋅ν ds= 0, (2.46)

wK , σ
(n)

=∫
σ

w(x , tn)⋅ν ds .

FK , σ
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FK , σ
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alo = min
(a ,b ) ∈ Sh(C)

a , ahi = max
(a ,b ) ∈ Sh (C)

a , blo = min
(a ,b ) ∈ Sh(C)

b , bhi = max
(a , b) ∈ Sh (C )

b .



Let Width(C) = ahi – alo, Height(C) = bhi – blo. We can see Width(C) and Height(C) as
width and height of the bounding rectangle26 of C. Let 

Let  GC be a rectangular lattice consisting of square panes of unit side length, with
width  WGC = Width(C) + 2a and  height  HGC = Height(C) + 2b,  where  a and  b are
nonnegative integers, parameters of (the flowaround of) cell C. Let's assume Sh0(C)
as the shape of C. Let C be placed at position27 Pos = (a, b) in GC. GC is thus a grid
having C “placed in its center“, more precisely, the center of the bounding rectangle
of C is in the center of GC. Let Pan(GC) be the set of all panes in GC. Let Ud be the set
of possible directions of unit movement,  Ud = {(0, 1), (1, 0), (0, -1), (-1, 0)}. Let
Edg(GC) be the set of all edges of all panes in GC. Let Ng(GC) = {(K, Q, σ) | K, Q are
neighboring panes in GC sharing common edge σ}. We will be denoting (K, Q, σ) as

K | σ Q.  Let  Nedg(GC)  =  {σ | $  K | σ Q Î Ng(GC)}.  Let  μ be  a  mapping

μ : Edg(GC)×U d → ℝ
2 ,  μ(σ, Sm) represents  flow  velocity  across  σ when  C

performs elementary movement in direction Sm. We will require that μ(σ, Sm) must

be orthogonal to σ. Also, for all σ Î Edg(GC) \ Nedg(GC) there must be μ(σ, Sm) = 0

for each Sm Î Ud. Mapping μ is a parameter of each cell for particular model in the
model  world.  The  triple  of  parameters  (a, b, μ) defines  flowaround  for  a  cell  in
concern. It is unchanging in time. As stated beforehand, if a cell divides (as it will be
described later), its definition of flowaround is inherited by daughters.    

Now we will define special kinds of panes in GC. Let's assume a, b ≥ 1, let  C

perform unit movement in GC in direction Sm Î Ud. Let M0
Sm be the set of panes in

GC occupied by C before the movement, let M1
Sm be the set of panes in GC occupied

by C after the movement. Let RecSm = M0
Sm \ M1

Sm. Rec is the set of  panes that have
been uncovered by the movement. In accord with paragraph Infilling we will refer
them as  receiving  panes.  Let  EmSm = M1

Sm \ M0
Sm.  These  are  the  panes  that  have

become covered by the cell, we will refer them as emitting panes.
Let  νK, σ denote outer unit normal of pane  K at (the interior of) its edge  σ. We will

pose constraints on μ, for each Sm Î Ud we will require:

1. K Î EmSm Þ  μ(σ, Sm)· νK, σ ≥ 0 for all σ Î EK. I. e. there can be only outfluxes
from emitting panes.

2. K Î RecSm Þ  μ(σ, Sm)· νK, σ ≤ 0 for all σ Î EK. I. e. there can be only influxes
to receiving panes.

3. K Î M0
Sm ∩ M1

Sm Þ  μ(σ, Sm) = 0 for all σ Î EK. I. e. there can be no flux from
or to panes that remain covered during the movement. 

26 The smallest (area) rectangle with horizontal and vertical sides containig given cell.
27 As described in paragraphs Lattice and Cells in the lattice and membrane elements in the first two
paragraphs of section 2.2.1.
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Sh0(C)= {(a− a lo , b − blo) | (a ,b) ∈ Sh(C)} .



4.  

Let's denote  G the environment lattice, let  C be located at position  PosG in  G. Let
PosGC be the position of C in GC. As stated before,  PosGC = (a, b). We will say that
panes  K in  G and  K' in  GC correspond  (or  that  they  are  corresponding),  if
LatticeIndicesG(K)  –  PosG  =  LatticeIndicesGC(K')  –  PosGC.  As  expected,
LatticeIndicesH(P) denotes indices of pane P in lattice H (cf. paragraph Cells in the

lattice  and  membrane  elements  in  section  2.2.1).  Let  K Î Pan(GC).  For  σ Î EK,

Sm Î Ud, let Ein(K, σ) = max(- μ(σ, Sm)· νK, σ, 0), Eout(K, σ) = max( μ(σ, Sm)· νK, σ, 0).
Let

Let Vm(K) = max(Vin(K), Vout(K)).
Let's suppose that in step  k C performs elementary movement from position

PosG in G in direction Sm Î Ud. We will simulate advection in panes of G that have
corresponding panes in GC, assuming as though C does elementary movement in GC

from PosGC in direction Sm, by following algorithm performed within step k:

1. For each pane K in G that is not occupied by a cell, considering the situation
before the elementary movement of C, if there is pane K' in GC corresponding
to K, set r-concentrations of all substances in K' as they are in K.

44

K ∈ EmSm
⇒ ∑

σ ∈ EK

μ(σ ,Sm) · νK ,σ ≤ 1 . (2.49)

Figure  2.3: Example of receiving and emitting panes.  Unit
movement in direction (x1, x2) = (-1, 0), situation before the
movement.

Vin(K )= ∑
σ∈EK

Ein (K ,σ) , Vout(K ) = ∑
σ∈EK

Eout (K ,σ ).



2. For  each  pane  K in  GC such  that  K Î RecSm set  r-concentrations  of  all
substances in K to 0.

3. Let Spec be a set of panes K in GC, such that when considering the situation
before the elementary movement, a pane corresponding to  K in  G does not
exist (it would be “out of G”), or it is occupied there by a cell other than C.
We will refer set Spec as special panes.

4. Perform  procedure SetupInitialConcentrations(Spec),  it  will  set  initial
concentrations of all substances in all panes in Spec. 

5. Determine number of internal steps n for computation of advection: 

6. i ← 0
7. Repeat n times
8.       Foreach (pane K in GC) 

9.             If (K Ï EmSm)

10.                   Foreach (L Î Lv) 

11.                         T L(i+1)
K ← T L(i)

K − 1
n ∑

σ∈E K

f K , σ ,  

fK, σ =  μ(σ, Sm)· νK, σ · (i)
KTL for μ(σ, Sm)· νK, σ ≥ 0, 

fK, σ =  μ(σ, Sm)· νK, σ · (i)
QTL for μ(σ, Sm)· νK, σ < 0, 

where  Q is  a  pane  such  that  K | σ Q Î Ng(GC).  By  (j)PTL we
understand r-concentration of  L in pane  P in the  j-th internal
step of our advection computation,  (0)

PTL is r-concentration of
L in  pane  P at  the  beginning  of  the  k-th  step  of  the  main
simulation.

12.                   EndForeach
13.             EndIf
14.       EndForeach
15.       i ← i + 1
16. EndRepeat

17. For  each  pane  K in  GC such  that  K Ï M1
Sm,  if  there  is  a  pane  K' in  G

corresponding to K that is not covered by a cell in G, considering the situation
after the elementary movement of C, set all r-concentrations in K' as they are

in K. We regard r-concentration of substance L in K to be (n)
KTL for all L Î Lv.

Procedure SetupInitialConcentrations(Spec)
1. Let  FreeC be  a  set  of  panes  in  G unoccupied  by  a  cell,  that  have

corresponding  panes  in  GC,  assuming  situation  before  the  elementary

movement of C. For each pane K Î Spec, for each substance L Î Lv we will
set r-concentration TL in K to the average value of TL computed over all panes
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n ← ⌈ max
K∈Pan(GC)

Vm (K )⌉ .



in FreeC. If FreeC is empty, r-concentrations of all substances in K will be set
to zero. 

2. We  will  perform  St iterations28 of  computation  of  discretized  diffusion

equation on panes in  Spec for r-concentration  TL of each substance  L Î Lv,
using values set in step 1. as initial condition. By computing the diffusion, we
get  approximation  of  Laplace  equation  on  panes  in  Spec.  Boundary

conditions will be following: For each pane  K Î Spec, for each  σ being an
edge of K such that σ is not part of any other pane from Spec:

◦ If there is a pane Q such that K | σ Q Î Ng(GC) and there is a pane Q' in G
corresponding to Q, where Q' is free before the elementary movement of
C, we will assume Dirichlet boundary condition on σ for r-concentration
of  each  substance  in  Lv,  taking  concentration  in  Q' as  boundary
concentration on σ.

◦ In all other cases (Q doesn't exist, it hasn't corresponding pane in G or the
corresponding pane is occupied before the elementary movement of  C),
there will be zero flow condition over σ as boundary condition.

Sample  situation  of  boundary  conditions  from  step  2.  of  procedure
SetupInitialConcentrations is  sketched in  Fig.  2.4.  Computation of step  2. of  the
procedure  will  be  done  as  following: Parameter  St is  an  internal  parameter
determined  as  St = n · max(WGC, HGC),  where  n is  the  number  of  steps  the  own
simulation of flows is  split  to,  determined in step  5.  of the algorithm.  Regarding

computation of diffusion, let  K,(m)TL be r-concentration of substance  L Î Lv  in pane

K Î Spec at the end of the m-th step of our computation, 1 ≤ m ≤ St, K,(0)TL denotes the
initial  r-concentration of  L in  K.  We will  employ  (2.35),  using  K, (m)TL in place of
KTL

(n), where n in the latter corresponds to m in the former, with D = 1/5 and αT ≡ 0.
Boundary conditions will be implemented by fictive neighbors. 

When  approximating  Laplace  equation  in  step  2.  of  procedure
SetupInitialConcentrations,  we are determining the number  St of  iterations of the
relaxation step so that it keeps computational costs low rather than it would regard
achieving reasonable convergence. Since elementary movement of a cell is only by
one pane, we anticipate that maximum advection velocities will be  ~ 1. Thus, if  n
from step 5. is small, the contents of only those panes in Spec that are close to the
“boundary” with regions of real panes will be generally transported by advection to
the  real  panes.  From  this  point  of  view,  we  may  see  procedure
SetupInitialConcentrations as setting average r-concentration to the panes of  Spec
and  “shifting”  this  average  in  the  panes  that  are  expected  to  influence
r-concentrations in nearby real panes towards r-concentrations in these real panes. 

28 More explanation regarding this parameter and related computation will follow.
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Within the flowaround algorithm, r-concentrations in panes are updated by the
expression in step 11. which corresponds to advection discretization (2.48). 

By splitting the computation into n iterations in step 7. and by choice of n in
step 5. we limit the total outflux from a pane and the total influx to a pane in single
iteration by 1, which is a volume of a pane. 

In the nested loops in step 7. and following, emitting panes are neglected from
r-concentration update.  In  (2.49) we limited total  outflux from emitting panes for
elementary cell movement by one. Since these panes get covered by the moving cell,
we only allow at most the whole contents of these panes to flow to neighboring
(nonemitting) panes. Due to  (2.49) we know that flow velocities from these panes
don't cause (require) splitting the computation into more than one step based on step
5. If the computation is split, we assume as though the cell in each iteration makes
an area of an emitting pane covered, where this area has the size corresponding to the
volume that has flown out from the pane.29 Thus we regard the r-concentration to be
unchanged by all iterations except of the last one. Since the r-concentration in the

29 Justifying  setup  of  outfluxes  where  this  size  is  different,  i.  e.  when  for  an  emitting  pane  K
Vout(K) < 1, is left to the modeller on the level of particular models.
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Figure  2.4: Example of virtual  surroundings of  a cell:  Alignment of environment
lattice and the lattice of the virtual surroundings (a). Boundary types for regions of
special  panes in  the virtual  surroundings in procedure  SetupInitialConcentrations
(b).



pane after it got covered is unimportant, we don't need to update the r-concentration
at all. Regarding receiving panes, due to setting r-concentrations in them to zero in
step 2. and by allowing no outfluxes there, we can interpret inflowing concentrations
as amounts that accumulate, while the cell gradually leaves the pane. At the end of
the flowaround computation, the “uncovered area” of the receiving pane equals to
one, so we can interpret the accumulated sum as r-concentration.

Discussion on Flowaround.  In our model world, we wish to have a possibility to
express (r-)concentration changes happening due to advection caused by movement
of  cells.  However,  we  consider  it  beyond  the  scope  of  our  work  to  implement
physically realistic dynamic computation of advection velocities. Instead, we decided
to use a model with stationary velocities in chosen surroundings of moving cells. We
didn't want to determine or automatically generate the velocity field for cells (cell
shapes) apriori from within the model world for particular models but we wanted this
to  be  provided  by  the  modeller,  so  that  a  wide  range  of  conditions  could  be
expressed. Our flowaround algorithm is defined in a way that it relevantly captures
advection in surroundings of a cell in situations where there are no obstacles there
and the surroundings is fully contained in the environment lattice. In this case, when
advection velocities provided by the modeller are realistic, we may expect realistic
results  as  well.  On  the  other  hand,  presence  of  obstacles  or  interference  with
environment boundary brings geometry that is unreflected by the advection model,
together with concentration substitutes in the special zones (panes), that generally
flow to the regular panes. Thus, for models with high density of cells, small sizes of
surroundings  for  flowaround or  usage  of  infilling  instead  may be  an  appropriate
choice. 

Generally, we didn't require divergence-free velocity field in  (2.44), although
this might seem appropriate for modeling of liquid environment around the cells. We
didn't want to restrict flexibility of the model world. 

2.2.5 Apoptosis

When a cell performs apoptosis, it disappears from the environment within a
single step. Panes that were occupied by the cell became free, we will want to set
r-concentrations of substances in these panes. This will be similar as in infilling. Let
C be a cell that undergoes apoptosis in particular step, let's consider  C just before
being removed from the environment in that step. Let  M be the set of membrane

elements of C. Let Nseg = {σ: There is (σ, ν, R) Î M, there is  unoccupied pane K

where σ is edge of K}. For σ Î Nseg let Kσ be the unoccupied pane where σ is an edge

of Kσ. For each substance L Î Lv,  let KTL be TL in pane K and 
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If Nseg is empty then let WL = 0. After C is removed from the environment lattice, in
each pane that became unoccupied, r-concentration of L will be set to WL.  

2.3 Cell logic
In the previous section we have described our model cell from the point of

view of the environment,  providing interaction interface between the cell  and its
outside. Now we will define the decision logic of a cell, together with a mechanism
that controls whether a cell will perform division. In our internal model of cell we are
not trying to mimic inner parts of biological cells and their interactions. Throughout
the section,  ways  how cell  membrane receptor  composition changes  will  be  also
described.

2.3.1 Cummulative state and concentration gradient

Cummulative state. Cummulative state represents an internal state of model cell.
Cummulative states correspond in one-to-one relationship to substances from the set

Lv. At each time instant (step) a cell is in exactly one cummulative state. Let L Î Lv.
We  will  say  that  a  cell  is  in  cummulative  state  on L,  or  shortly  that  it  is  in
cummulative state L, if, freely spoken, L is the most seen substance by the cell via its
receptors in given step. Formally, we will understand cummulative state as a map Ks

assigning to each cell  C and time  tn = n,  n Î {-1, 0, 1, ...}, a substance  L Î Lv as
follows: For tn = -1, Ks is provided as initial condition for all cells present in given
model situation in time 0. For tn  ≥ 0, let M be the set of all membrane elements of C

in time tn.. For  Me Î M let  SMe be the vector of  occupancies of individual kinds of
receptors on  Me, computed in the  (n+1)th step30 according to pane – membrane or
membrane – membrane interactions, depending on whether Me is adjacent to a free
pane or to a membrane element of another cell, respectively. If Me is adjacent to the
lattice boundary, SMe is zero. Let

be the vector of total occupancies of all kinds of receptors on the cell membrane. Let
KM ⊆ Lv be the set of substances for which corresponding components of SM attain

maximum  over  all  components  of  SM.  Let KM ⊆ Lv be  the  set  of  substances

complementary31 to those in KM .  We will first determine a candidate value of Ks  L'.

If KM contains exactly one element, then L' is this element. Otherwise, let L0 be the
value of  Ks  for  C in the previous simulation step or the one specified as an initial

condition, if current step is the first one. If  L0 Î KM then  L' = L0. Otherwise,  L' is

30 We regard steps to begin from 1, assuming the n-th step to “start” at time tn-1 and “end” at time tn,
providing output values that regard time tn . More details will follow in section 2.4.
31 In sense of vax reactions.
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arbitrarily chosen element of  KM.32 We will allow a change of value of  Ks from L0

only if the new signal is “strong enough” in comparison with the one telling C to stay
for L0: Let Ks change threshold be a positive parameter. Let SM(Z) denote component
of SM corresponding to the amount of occupied receptors formed by substance Z. If
SM(λ(L')) - SM( λ(L0)) ≥ Ks change threshold, we will put L = L', otherwise L = L0.33 

Concentration gradient. We want  our cells  to be able  to perceive concentration

gradients in their surroundings. Let L Î Lv be a substance. If cell  C wants to detect
concentration  gradient  GL of  L,  this  will  be  computed  as  follows:  If  C has  zero
amount of receptors on L, (i. e. if the total amount of receptors formed by λ(L) on the
membrane  of  C is  zero),  GL will  be  zero.  Otherwise:  Let  M be  the  set  of  all
membrane elements of C. We will put

 where W(σ, ν) is
• TL in the pane  K adjacent to segment  σ on its side in direction of  ν, if such

pane exists and is unoccupied34; otherwise it is 
• the amount of receptors formed by L on membrane element of another cell

adjacent to (σ, ν, R), if such membrane element exists, or
• zero otherwise. 

As  we  see,  GL takes  into  account  r-concentrations  or  amounts  of  kinds  of
receptors on adjacent membrane elements rather than values that would be measured
by  receptors of C. Although the second variant is more realistic, we would have to
pay attention  regarding  the  behavior  of  our  measurement  system.  Particularly,  if
receptors  get  (nearly)  saturated,  we  could  get  (nearly)  zero  measured  gradients
although the real gradients might have been “big“. When designing our model world,
we will favour the ease of creation of models when having “ready to use realistic
information“ regarding pericellular gradient, before the more realistic model of “not
always  working“  measurement  system  that  generally  needs  special  attention.
Similarly as in the case of vax reactions analogy on pane-membrane interface, the
by-cell perceived gradient is rather a building block for us, than a primary target of
exploration and detailed modeling. For getting the external gradient, we require that
the cell has nonzero amount of receptors that (can) sense given substance. Otherwise
we assume that the cell doesn't recognize the substance and our gradient is zero.

32  In the implementation in Virtual Laboratory, Ks in this case is the substance in KM with the lowest
index in internal ligand numbering.
33 Introducing  Ks change treshold (also) hinders random fluctuations of cummulative states in the
simulations in Virtual Laboratory if a cell sees multiple signals with nearly identical strengths. 
34 I. e. KTL

(n) from (2.35) in time n.
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From  (2.50) we  also  see  that  when  computing  GL we  are  not  taking  into
account particular shape of the cell. From the point of view of size and shape, we are
just assuming a very simple model of cell gradient sensing, which, however, works
well for regular cell shapes and uniform sizes.

In given time instant for a cell we are only interested in concentration gradient
of a substance the cell is in cummulative state on. Gradients of the other substances
are not important for us here.

2.3.2 Zygotic graph and cell division

Zygotic  graph. Now  we  are  ready  to  define  the  core  of  the  internal
functionality of our cells. It plays a conceptual role of DNA in the model world. It is
the  same  for  all  cells  in  given  particular  model  situation  and  can  be  seen  as  a
common program, where each cell generally executes different part of it; meaning of
the  program relates  to  the  whole  scenario  including cells,  environment  and their
interplay rather that to individual cell.

Let zygotic graph be a quadruple (GP, GR, GM, GA), where: 
GP  is oriented weighted graph whose vertices are elements of the set  Lv and

weights are nonnegative. An edge from vertex  A to vertex  B with weight  w means
that if a cell is in cummulative state on substance  A,  it  will secrete amount  w of
substance  B to  its  surroundings.  More  precisely  w is  divided  by the  number  of
membrane elements of the cell. For each membrane element, if it neighbors with an
unoccupied pane, this fraction of ligand  B will be secreted to the pane. Otherwise,
nothing will be done. We will call GP a production graph.

GR is  oriented  weighted  graph  with  vertices  being  elements  of  Lv and
nonnegative weights. An edge from A to  B with weight  w means that if a cell is in
cummulative state on substance A, it will add amount w of 35receptors formed by λ(B)
to its membrane. I. e. the cell is adding receptors by means of which substance B is
being perceived. The amount w is divided by the number of membrane elements of
the cell and this fraction is added to the amount of given receptors in each membrane
element. GR is called a receptor graph.

GM is a mapping from the set Lv to interval <-1, 1>. If a cell is in cummulative
state to substance A: 

Here  Spd is  the  cell  speed.  (Cf.  the  first  paragraph  in  section  2.2.4.)  GA is  the
concentration gradient perceived by the cell (cf. (2.50)), ║GA║ is the Euclidean norm
of  GA. Min gradient  > 0 is  a threshold parameter stating the minimum detectable

35 unoccupied
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gradient magnitude for a cell, it is the same for all cummulative states (substances
from Lv) and for all cells. In line with our naming so far we will call GM a movement
graph. We can still see it as a weighted graph where the only allowed kind of edges is
the one from a vertex to itself. 

GA is called an apoptotic graph, it is a mapping GA: Lv ® {0, 1}. If a cell is in
cummulative state  S and GA(S) = 1, the cell will perform apoptosis. (Cf. paragraph
2.2.5).

Cell Division. For a cell,  we will  now see its membrane as a compartment.  The
compartment will serve us as a base for determining, if the cell should divide. Let
Mo be the sum of amounts of all receptors in all membrane elements of the cell.  Let
Dt  be  a  positive  parameter,  let's  call  it  division  threshold.  If  Mo ≥ Dt in  given
simulation step, we will say that the cell wants to divide. If a cell wants to divide and
it is not a daughter cell of one that did divide in current step, we will try to find
locations for two daughter cells with regard to free place in the proximity of the cell
and respecting other constraints. If the locations are found, the cell will divide within
given simulation step. Both of the daughter cells will have the same shape as the
mother  cell.  Membrane  elements  in  the  daughters  will  contain  each  half  of  the
original  amount  of  receptors  of  each  kind  in  comparison  with  the  membrane
elements of the mother cell. 

Regarding the placement for daughter cells, the cell can choose a direction of
its division. When determining the places for the daughters, we are trying to find
locations that respect this direction as much as possible. We will introduce parameter
Division  direction,  that  can  have  following  values:  Parallel  to  gradient,
Perpendicular to gradient and Random. For the value Parallel to gradient,  we are
trying to follow the direction of the concentration gradient of the substance the cell is
in  cummulative  state  to,  if  the  magnitude  of  the  concentration  gradient  is
≥ Min gradient.  Otherwise,  the  division  direction  will  be  random.  For  the  value
Perpendicular  to  gradient the  situation  is  the  same,  but  the  preferred  division
direction is perpendicular to the concentration gradient.  For Random the direction is
randomly chosen.

After we got the actual desired division direction, we will use it as an input for
an algorithm that determines the locations for daughter cells. Detailed formalized
description  of  the  algorithm will  not  be  provided.  We will  sketch  the  main  idea
together with substantial features and omit details:

• We require that after the division:
◦ Both of the daughter cells may only occupy panes that were either empty

or occupied by the mother cell  before the division.  Basic assumptions
about the cells in the environment must hold, i. e. each of the daughter
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cells must be whole in the lattice and every pane in the lattice must be
occupied by at most one cell.

◦ Both daughter cells must be close to each other: Let  R be the bounding
rectangle36 of the mother cell in the environment lattice. Let R have width
w and height  h. Then the bounding rectangle of the pair of the daughter
cells Rd must have width at most 2w and height at most 2h.

◦ The daughter cells must be close to the original position of the mother
cell: Let P0 be the real location of the upper left corner of R, let P1 and P2

be  real  locations  of  the  upper  left  corners  of  the  lattice  bounding
rectangles of the daughter cells. Then P0 must lie on the segment P1P2.

• We will  proceed  as  follows:  Among  the  location  pairs  for  daughter  cells
fulfilling the above conditions we are first trying to find those that match
most  the  actual  desired  division  direction.  (There  can  be  more  pairs  of
locations with the same (best) direction match.) From the subset of location
pairs matching best the direction, we are searching one, where the original
location of the mother cell is closest to the center of the (daughter) locations
in the pair.  If  there exists  no location pair  fulfilling the conditions  in  the
previous points, the cell will not divide. In this case we will say that the cell
couldn't divide.

We may wish to modify the algorithm in order to force the daughter cells to touch
each other.  This is  useful  when we want  the cells  after  division to  be in mutual
contact by area (part of cell boundary) of defined size. We will introduce parameters:
Touching required, Min common elements, and Max common elements. The first one
has Boolean value, the others are nonnegative integers. When Touching required is
true, we restrict the set of possible locations of the daughter cells in the algorithm
only on those where the number of (pairs of) membrane elements by which the cells
touch each other is in range <Min common elements,  Max common elements>. This
may lead to (greater) deviation of the division direction from the required one, in
comparison with the case when we don't require touching of cells. If our restricted
set is empty, we will regard that the cell couldn't divide. 

When we have the locations for daughter cells, we will model the course of the
division in the environment in a following way: For our purpose we will temporarily
allow that cells can partially or wholly cover each other, i. e. there can be more cells
occupying one pane. 

• At the beginning, both daughter cells will be placed at the position of the
mother cell, fully covering each other. 

• Each of the daughters will migrate to its destination position. Both cells will
have internal speeds for this movement such that they will run their paths
during the same time. Both of the daughters will be running simultaneously,

36 The smallest (area) rectangle with horizontal and vertical sides containig regarded object(s).
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movement of each will  be a sequence of elementary movements from the
starting position to the destination one, forming a discretization of a segment
between these positions respecting the lattice. On their paths, the cells will go
“through” possible obstacles. For each elementary movement of each of the
daughters, either flowaround or infilling will be computed, depending on the
setup of the mother cell (that has been inherited to the daughters). This whole
movement of the daughters will be simulated within one step of the main
simulation.

2.3.3 Receptor treatment

Receptor normalization. If a cell wanted to divide in particular simulation step but
some of the conditions for division, as described in the previous paragraph, were not
fulfilled, then the cell couldn't divide. In this case we will generally restrict the total
amount  of  receptors  on  cell  membrane.  We will  introduce  parameter  Membrane
capacity37,  requiring  Dt  ≤  Membrane  capacity.  Assuming  Mo to  be  the  sum of
amounts of all receptors in all membrane elements of our cell, if  Mo >  Membrane
capacity we will change amounts of receptors in membrane elements so that after the
change there will be  Mo = Membrane capacity. Let  M be the set of all membrane

elements of the cell. For each membrane element (σ, ν, R) Î M we will change R to
R' putting 

Receptor decays. Under receptor decays we will understand receptor internalization
and raw receptor internalization,  defined in chapter  2.1.  We remind here that the
former and the latter  are  mutually exclusive on the level  of model  in the model
world.  Receptor  internalization  influences  membrane  receptor  composition  and
(r-)concentrations in the surroundings of a cell.  Raw receptor internalization only
alters membrane receptor composition. Membranes of our cells are homogeneous,
i. e. the amount of receptors of each kind in every membrane element of given cell is
the same. 

If  q = (σ, ν, R) is a membrane element, for  L Î Lv we will denote by  qL the
component of  R representing receptor amount of kind  L. Let's consider cell  C with
the set of its membrane elements M(C) in time n, where n is a nonnegative integer.
Let Λ = λ(L), let X = χ(L).  

In order to compute  receptor internalization of receptors formed by  L on the

membrane  of  C,  we  will  first  determine  quantity  0δri(q, L) for  each  q Î M(C),
distinguishing three cases:

37 This parameter doesn't mean a limit for the total amount of all receptors on cell membrane that
can't be exceeded in any case. E. g. receptor normalization is performed only on cells that didn't divide
in given step.
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(a) There exists an unoccupied pane K adjacent to q. Let q[XL](n) be the amount of
occupied  receptors  formed  by  L in  q in  time  n,  computed  by  reaction
decomposition in pane K and its adjacent membrane elements in computation
of  discretized  boundary conditions  in  step  n+1.  (We use  q[XV](n)  from the
paragraph  above  (2.37) for  L = V.)  Further,  let  q[Lm](n) be  the  amount  of
unoccupied receptors formed by L in  q in time n, computed by the reaction
decomposition. Thus there holds qL = q[XL](n) + q[Lm](n). Let

(b) There exists membrane element  q2 adjacent to  q. Let  [X2,1](n) denote amount
of substance X anchored in q by L and in q2 by Λ, in time n, computed by vax
reaction in step n+1, i. e. [X2,1](n) = fxvax(q2

Λ, qL).  (Cf. paragraph Membrane
– membrane interactions in section  2.2.2.) Denoting  [L1](n) the amount of  L
anchored  in  q in  time  n computed  by  the  vax  reaction,  that  is
[L1](n) = qL – [X2,1](n),  we lay

(c) q is  adjacent  neither  to  a  pane  nor  to  another  membrane  element.  (*)
We will put

We will now define the change δri(C, L) of  qL  due to receptor internalization in the

(n+1)th step, that will be the same for all q Î M(C), as 

We wanted to preserve membrane homogeneity, so we didn't use 0δri(q, L) directly in
membrane  elements,  since  in  cases  (a)  and  (b)  0δri(q, L) depends  on  receptor
occupation, that is generally different for every membrane element of C.

Regarding  raw receptor internalization, for each  q Î M(C) we will define the
change 0δrri(q, L) of qL due to raw receptor internalization in the (n+1)th step as 

Since we suppose the membrane of  C homogeneous, we can introduce the change
δrri(C, L) of qL due to raw receptor internalization in the (n+1)th step that will be the

same for all q Î M(C):

where q0
L is arbitrary membrane element of C.
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X
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]
(n)q − k ri

L
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element q2 adjacent to q .

δ ri(q , L)
0

= − k ri
X
⋅[X2,1](n )− k ri

L
⋅[L1](n) , if there ismembrane

δ ri(q , L)
0

= − kri
L
⋅qL , if (* ) holds.

δ ri(C , L) =
1

|M (C )| ∑
q '∈M

δri(q ' , L)
0 . (2.52)

δ rri(q , L)
0

= − krri
L
⋅qL .

δ rri(C , L) = − krri
L
⋅qL

0 , (2.53)



2.4 Simulation algorithm
In the sections above we have described individual components of the model

world including chemical reactions, properties of the environment, and behavior of
cells. Now we will put these parts together and formulate the algorithm expressing
the whole scenario. 

Let's call particular model in the model world a situation. Suppose that we have
a situation with width W and height H, understanding width and height as the number
of columns and rows of the environment lattice respectively. According to the last
paragraph  in  section  2.1.2 we  further  assume  that  there  is  number  of  vaxes
NumVaxes and we consider diffusion coefficient D in our situation.

Initial conditions. Concerning the environment, these are initial locations of cells

and values  of  r-concentrations  TA and  TV for  each  vax (A, V, X) Î Vaxes in  every
unoccupied  pane.  Specially,  if  TV is  zero  in  a  pane,  then  TA specifies  initial
concentration  of  A there  and  vice  versa.  For  every  cell  we  specify  its  initial
cummulative state and initial amounts of  38receptors of every kind. (In accord with
cell membrane homogeneity, each of this amounts is uniformly distributed in all the
membrane elements of the cell.)

Own algorithm. Let N be the number of simulation steps of our computation, let Lat
denote the environment lattice. Let KTA

(n), KTV
(n) denote values of TA, TV respectively in

pane K in time n, with KTA
(0), KTV

(0) being initial conditions, for vax (A, V, X) Î Vaxes.
Let Γ be the set of all cells in the situation. The algorithm will proceed as follows:

1. n ← 0
2. Repeat N times     
3.      Perform procedure ReactionDiffusion(n)     
4.      Foreach (C in Γ)
5.  Compute cummulative state Ks(C, n) of C and time n as described in 

paragraph  Cummulative  state  in  section  2.3.1.  When  determining
receptor  occupancy  at  membrane  elements  adjacent  to  free  panes,
r-concentrations  TA,  TV of  time  n will  be  used  for  each

(A, V, X) Î Vaxes.  Particularly,  in  each membrane element  Me of  C
adjacent to a free pane, K say, KTA

(n) and KTV
(n) will be used39 as inputs

regarding  K in  places  of  TL
p and  TΛ

p respectively  in  (2.23) when
occupancy  of  receptors  of  kind  A is  computed.  If  occupancy  of
receptors of kind V is desired, we will use KTV

(n), KTA
(n)  in places of TL

p 
and TΛ

p respectively in (2.23). 

38 unoccupied
39 Cf. procedure ReactionDiffusion.
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6.  Determine  gradient  GKs of  the  cummulative  state  substance  Ks,  
perceived by C, as described in paragraph Concentration gradient in 
section 2.3.1. Values TKs of time n will be used within computation.

7. Determine cell speed Spd of C using movement graph GM, based on 
Ks and GKs, as described in paragraph Zygotic graph in section 2.3.2.

8.      EndForeach
9.  Perform changes of amounts of receptors on cell membranes due to either

receptor internalization or raw receptor internalization in dependence on
parameter  UseReceptorInternalization. When  receptor  internalization  is
being computed, first determine contributions  δri(C, L)  defined in  (2.52)

for each cell  C Î Γ, and for each substance  L Î Lv. In panes adjacent to

membrane  elements  of  C,  use  r-concentrations  TL,  TL,  of  time  n for
computation,  where Λ = λ(L). After the contributions are computed, walk

through the cells and substances again and add precomputed  dri(C, L) to
amount  qL for  each  membrane  element  q of  C.  For  raw  receptor
internalization, we will update the receptor amounts directly, for each cell

C Î Γ, for each substance L Î Lv and for each membrane element q of C,
setting qL ← qL + δrri(C, L), where δrri(C, L) is defined in (2.53).

10.      Foreach (C in Γ)
11. Produce ligands by  C  to free panes adjacent to  C using production

graph  GP,  based  on  cummulative  state  Ks of  C,  as  described  in
paragraph Zygotic graph in section 2.3.240. R-concentrations TA, TV of
time  n+1  computed  in  step  3.  will  be  updated  for  regarded vaxes
(A, V, X). 

12.  Add receptors to membrane elements of  C using receptor graph  GR,
based  on  cummulative  state  Ks of  C,  as  described  in  paragraph
Zygotic graph in section 2.3.2.

13.      EndForeach
14.    For every cell  C in Γ, if  C should undergo apoptosis according to its

cummulative state  Ks and apoptotic graph  GA, perform apoptosis on
C  as  described  in  section  2.2.5 and  remove  C  from  Γ. 
r-concentrations of time n+1 are used to determine r-concentrations  
in the panes that became unoccupied.         

15.       Γ  ← Perform procedure Divisions(Γ)   
R-concentrations  of  time  n+1 are  being  updated  in  flowaround or  via
infilling  in  internal  movements  within  divisions,  as  described  in
paragraph Cell Division in section 2.3.2.

16.       Foreach (C in Γ)

40 Note that production of ligand L per each membrane element Me of C adjacent to a free pane is
P(C, L, n+1 ) for the quantity P used in (2.37).
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17.  Update real location of C based on its speed Spd and obstacles in its
surroundings,  as  described  in  the  first  paragraph  in  section  2.2.4.
Perform  elementary  movement(s)  of  C if  needed,  together  with
Infilling or Flowaround41, using or updating r-concentrations of time
n+1. 

18.      EndForeach
19.      n ← n + 1
20.  EndRepeat

Procedure ReactionDiffusion(n) //n is the zero based index of step
1. Foreach (pane K in Lat) 
2.      If (K is not occupied)
3.  i ← 1
4.  Repeat NumVaxes times
5.      A ← Ai,  V ← Vi

6.        T A
(n+1)K ← T A

(n )K
+ δ (A , K , n) + δ r(A , K , n),

7.                 TV
(n+1)K ← T V

(n )K
+ δ (V , K , n) + δr (V , K , n) .

δ(A, K, n)  expressed  in  (2.36) is  the  change  of  KTA
(n) due  to

reaction-diffusion,  δr(A, K, n)  defined in  (2.39) is  contribution of
membrane  enzymatic  activity  and  receptor  internalization  from
membrane elements adjacent to K42. Similarly for KTV

(n),  δr(V, K, n)
is defined in (2.38). 

8.      i ← i + 1
9.  EndRepeat
10.       EndIf 
11. EndForeach

Procedure Divisions(Γ)   // Γ is a set of cells

1. Γ1 ← Æ 
2. Foreach (C in Γ)
3.  Evaluate wants to divide flag of C as described in paragraph Cell division

in section 2.3.2.
4.  If (wants to divide flag is true in C)     
5.  If (conditions for division of C43 are fulfilled)
6.  Perform cell division for C43.

7.  Γ1 ← Γ1 È {Ca, Cb}, where Ca, Cb are daughter cells of C. 
8. Else

41 As described in the first paragraph of section 2.2.4.
42 Boundary conditions on lattice boundary and baseline zero flow over cell membranes is realized by
fictive neighbors.
43  As described in paragraph Cell division in section 2.3.2.
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9. Γ1 ←  Γ1 È {C} 
10. Perform receptor normalization for C if needed, as described 

in paragraph Receptor normalization in section 2.3.3.
11.  EndIf
12.  Else

13.                        Γ1 ←  Γ1 È {C} 
14.      EndIf
15. EndForeach
16. Return (Γ1)

Summary  of  the  algorithm.  In  each  iteration  corresponding  to  a  step,  we  first
compute reaction-diffusion in free panes, applying all the boundary conditions except
of  cell  productions.  We  also  still  remember  the  original  r-concentrations  for  all
ligands. These are used to compute cummulative states and gradients for cells, and
later for receptor internalization on membrane elements. After we have cummulative
states and gradients for cells, we are able to determine cell speeds. We proceed with
receptor decays. When computing receptor internalization, we use two stages. First,
differences  caused  by  receptor  internalization  are  determined  for  all  membrane
elements of all cells. Then these are applied in a separate pass. We are preserving
input information on adjacent membrane elements so that both in each adjacent pair
are updated correctly. Raw receptor internalization doesn't have this dependency, it
can be done inplace.
Next, production of ligands and receptors follows. Now we have all the information
necessary to decide, whether a cell wants to divide. We first perform apoptoses, then
divisions and finally cell movements. 

Generally, as we see, the cummulative state a cell enters in a step determines its
behavior “immediately” in given step. 
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3. Model of lumen formation

3.1 Biological background
Lumen is understood as the space in the interior of a hollow tubular structure

[67]. Important cell types exhibiting lumen formation are epithelial cells, including
endothelial  cells  especially.  Epithelial  tubes  are  important  part  of  many  organs
including kidneys  [56],  [58], gut  [57], or trachea  [58]. Epithelial tissues consist of
polarised  cells  whose  plasma membranes  are  divided  into  apical  and  basolateral
domains  [59].  While  some  epithelial  lumens  form  from  preexisting  polarised
epithelial structures, de novo lumen formation from nonpolarised cells is recognized
as an important driver of epithelial tissue morphogenesis, especially in formation of
small epithelial tubules  [60]. The lumen of all blood vessels in vertebrates is lined
and formed by endothelial cells  [61]. Unlike other epithelial cells, endothelial cells
form lumens as they invade tissues  [62].  Although most vertebrate vessels exhibit
specialized apical and basal domains, nonpolarised early vessels have been observed
[63]. 

As described in  [38], in angiogenesis, one way of lumen formation starts by
development of intracellular vacuoles in endothelial cells. The vacuoles enlarge and
coalesce. Union of adjacent cellular lumens in multiple cells leads to formation of a
continuous tube. Another way is forming intercellular lumen by creating a bud via
protrusion  and  migration  of  neighboring  endothelial  cells  in  newly  formed  or
established  vessels.  These  budding  cells  maintain  their  polarity  and  junctional
contacts. An intercellular lumen is already formed at the start of bud formation.

Generally,  tubes  can  be  also  formed  by  wrapping,  cavitation,  and  cell
hollowing [39]. In wrapping, part of epithelial sheet invaginates and curls, until the
edges of the invaginated region meet and seal. In this way, a tube is formed that
separates from the sheet and that is parallel to its plane. In cavitation, there is a solid
cylindrical multicellular mass first. The central cells are eliminated, converting the
object into a tube. In cell hollowing, there is a lumen formed within a cytoplasm of a
single cell, spanning the length of the cell.

Special  form of  cavitation  can  be  seen  in  lumen  onset  mediated  by  prior
formation of polarised transient epithelial structure called rosette  [43]. In a rosette
five or more cells interface at a central point. Further cell rearrangements lead to
organ development. In various contexts, rosettes open to form (micro)lumens in their
apical centers. Microlumens can connect and form continuous lumen [44]. 

3.1 Cell-based models of lumen formation 
One  kind  of  agent-based  models  of  lumen  formation  uses  axiomatic

algorithmic rules to define how cells interact with local components; the rules are
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partially  custom for  given  motivations,  comming  out  and adopting  basic  notions
from observations of these experimental in-vitro situations [64], [65], [45]. In [45], a
3D agent-based model of epithelial acinus formation is introduced. Lumen is formed
by  apoptotic  cavitation  and  maintained  by  keeping  equilibrium  between  cell
proliferation and apoptosis. Cell polarisation is preserving physiological epithelium
morphology. Apoptosis in the model is necessary and sufficient for initiating lumen
formation. 

Another approach is using cellular Potts [41], [42]. In [40], such kind of agent-
based computer  model  was  employed  when  studying  two mechanisms  of  lumen
formation: Vacuolation (1) and cell-cell repulsion of adjacent cells with cell shape
changes (2). In addition to vacuolation and cell – cell repulsion, the model simulates
cell motility and cell surface polarisation. As an underlying biological motivation,
angiogenesis is used, lumen development in an originally cavity-free branched sprout
is simulated. Within the model setting it is demonstrated that each of the principles
(1) and (2) can produce lumen on its own. Combination of both improves lumen
formation  with  regard  to  robustness  to  parameter  values.  Apical-basolateral  cell
surface polarisation is necessary for lumen formation.

Other strategies based on Mote Carlo approach  [52], more or less similar to
cellular Potts, are being used as well. In the context of modeling self-assembly of
cells  and  the  cellular  aggregate  fusion  process  for  predicting  and  optimizing
postprinting structure formation in organ bioprinting technology [66], coalescing and
forming of 3D bi-layered lumina is modelled in  [51]. Kinetic Mote Carlo approach
[52] is employed. Sorting of cells based on different adhesivities makes the core of
the  lumen  formation  and  coalescing  processes.  Initially,  there  are  conveniently
arranged sets of mutually touching spherical clusters in the simulation. The clusters
consist of two kinds of cells and hydrogel. As a result, luminal tubes are formed. The
cells have no special properties in addition to different adhesivities (like apoptosis or
polarisation),  the  process  is  kind  of  self-organization.  In  [53],  in-vitro  fusion  of
uniluminal vascular spheroids together with alike variant of Monte Carlo computer
model is described.

In [49], [50], IBCell model is employed to simulate 2D acinus formation. The
acinus model uses cell polarisation and apoptosis as key components of a cavitation
scenario. A cell has receptors on its membrane, sensing signals from extracellular
matrix and adjacent cells. Under wide range of tested parameter values the model
provides resulting monolayer of polarised cells surrounding hollow cavity. Apoptosis
is necessary for lumen formation.

3.2 Our lumen formation model
In  [54], experimental in-vitro scenario is described where beads coated with

endothelial cells from human umbilical vein were put to fibrin gel. Sprouting and cell
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migration  from the  beads  occurred  but  no  formation  of  patent  lumens  has  been
observed. When skin fibroblasts  were plated on the top of the gel,  tip cells  with
multicellular  lumens  behind  appeared,  where  the  lumens  were  not  formed  by
coalescing vacuoles. From this observation we make a hypothesis that the fibroblasts
may have secreted a substance to the environment, where nonzero concentration of
the substance was necessary for intercellular lumen formation in the setting. In [39]
similar consideration is made when a common pathway of tubulogenesis is being
proposed, starting with initial signal for polarisation for a cell or group of cells that
may  be  in  a  form of  a  uniformly  distributed  component  of  extracellular  matrix
surrounding the cells.

Situation setting. Our model will start with a single cell and uniform concentration
of one ligand in the surrounding environment. We will use two vaxes  (Ai, Vi, Xi),
i = 1, 2. Zygotic graph is as follows in Fig. 3.1.

We use square environment lattice with 160 ´ 160 panes. At the beginning, one cell
is placed in the center of the lattice, being in cummulative state on  A2 and having
total amount of receptors on A2 (i. e. formed by V2) equal to  2. Detail of the initial
cell is shown in Fig. 3.2.

Ligand A2 is initially uniformly distributed in the environment. Infilling is used
to resolve surrounding concentrations when cells move.

Important  parameters  of  the  situation  are  following:  Division  direction  =
Parallel to gradient,  ksd

A1 = 0.01,  ksd
X2 = 0.15.  Other spontaneous decays are zero.

For membrane enzymatic  activity  kma
A1 = kma

A2 = 0.25.  Other  membrane enzymatic
activities are irrelevant since, as it is seen from the receptor graph and initial cell
receptors, only receptors on A1 and A2 are possible in the scenario. Further, there is
D = 0.2 and Touching required = false, which means that there are no constraints on
the  numbers  of  touching  membrane  elements  after  cell  divisions.  Further,
Division threshold = 14, Membrane capacity = 14.1,  Min gradient = 0.001,  Ks
change threshold = 1E-6, Kd = 0 for each vax. Note that from the zygotic graph and
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Figure  3.1: Zygotic  graph for  model  of  lumen formation.  Colors  represent  given
ligands. Apoptosis is not used.
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initial conditions it follows that in our situation TA1 = [A1]. The simulation was run
for 900 steps.

Results. Development of the situation is coarsely sampled in Fig. 3.3 and Fig. 3.4. At
the beginning, the initial cell starts in cummulative state (CS) to A2. Reminding the
zygotic graph (Fig.  3.1), cells in  A2 are producing  A1 and adding receptors. During
some time this leads to divisions. Due to membrane enzymatic activity,  A2 is being
removed by the cells in their vicinity. Also, A2 is not being produced in any CS. Thus
concentration decrease of A2 (decrease of TA2) occurs in the area of the initial cluster
(Fig. 3.3 (c1); Fig. 3.4 (a1).)  Lack of A2 (TA2) in the area of the center of the cluster
causes that A1 is typically the most seen ligand there by the cells rather than A2. (Cf.
Fig.  3.3 (c3),  Fig.  3.4 (a3).)  In  CS to  A1,  this  ligand  is  being  produced,  but  no
receptors are being added. Thus the cells staying in CS to A1 don't divide,  divisions
occur  rather  on  the  rim of  the  cluster  where  the  influence  of  A2 is  greater.  The
gradient of A2 goes roughly radially from the center of the cluster to the outside. The
cells on the rim are dividing in direction parallel to this gradient. At the same time,
there is free space in direction outside from the cluster rather than inside it in the
local surroundings of these rim cells. Thus, after a division one daughter remains
roughly at the position of the mother while the other daughter is located in direction
outside  from  the  cluster  in  the  proximity  of  the  mother.  The  outer  daughter  is
dominantly influenced by A2 and tends towards another division. The inner daughter
is rather influenced by A1 and stays quiescent with regard to divisions. Production of
A1 in CS to A2 is by one order of magnitude more intensive than its production in CS
to A1. Thus there is concentration gradient mostly towards the cells on the rim which
are in CS to A2, leading to migration of the inner cells to the outer cells. Summed up,
the cells on the edge “proceed outwards“by directed divisions while the cells in the
inside move towards these edge cells from the inside, leaving the space there hollow.
This leads to formation of a ring of cells that further grows.
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Figure 3.2: Initial cell for model of lumen formation. The cell is in cummulative state
on A2 (denoted by the green color of the outer rim of the pie graph) and has total
amount 2 of receptors on A2. (Denoted by the green sector in the pie graph. The full
angle  corresponds to Division treshold which is 14 here.) Initial concetration of A2

in all  unoccupied panes is 2.
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Figure 3.3: Lumen formation – initial cluster. Cells and r-concentration of A2 (1).
Cells and (r-)concentration of A1 (2) . Cells colored by cummulative states (3).
Step 0 -  initial conditions (a). Step 150 (b). Step 300 (c).
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Figure  3.4:  Lumen formation – continuation,  cavity  emergence.  Cells  and
r-concs. of A2 (1). Cells and (r-)concs. of A1 (2). Cells colored by cum. states
(3). Step 450 (a). Step 600 (b). Step 750 (c). Step 900 (d).



Production  of  V2 in  CS  to  A1 causes  removal  of  (residual)  A2 inside  the  lumen.
Product X2 undergoes fast spontaneous decay. V2 is mostly produced by the cells on
the inner side of the ring, acting in their proximity and diffusing rather to the inside
than to the outside of the ring due to the natural barrier formed by the cells nearer to
(at)  the  outer  edge  of  the  ring.  V2 also  “remains“in  the  (inside)  location  of  its
production when the cells producing it progressively move away.

Two  seeds. We  are  further  interested  in  how  two  lumens  growing  in  mutual
proximity interact, especially whether coalescing occurs. We have taken a situation
with  the  height  being  twice  the  height  of  the  original  scenario,  having  initial
concentration of A2 set to 2 in all panes, keeping all the other parameters the same as
in the original setting but using two initial cells (each with properties as in Fig. 3.2)
instead  of  one,  located  at  the  vertical  axis  of  the  situation  rectangle,  and  being
symmetric around the situation center. We have been testing range of initial distances
between the cells from 4 (cells touching) to 84. Each time the scenario was run for
900 steps. Results for selected initial cell distances are shown in fig.  3.5. For cell
distances between 4 and 16, single lumen develops. The cells form one cluster during
first 300 steps, which is vertically elongated with increasing initial cell distance (data
not shown). Around step 450, small lumen is formed, preserving elongation in cases
of more distant initial cells. (Cf. Fig. 3.5 (b1).)  The lumen further grows, becoming
markedly more symmetric than the initial phase if elongation had occurred. (Cf. Fig.
3.5 (c1).)  

For distances of initial cells between 17 and 24 the situation is similar. Either
one cluster or two clusters containing roughly units of cells form and (nearly) merge
within first 300 steps (data not shown). In next 150 steps small elongated lumen
forms (cf. Fig. 3.5 (b2)), which further grows. Previous asymmetry is reduced but not
so much as in the previous cases (Fig. 3.5 (c2)).

If the distance between initial cells is further increased, being between 25 and
44, separate or nearly separate small lumens form from each initial cell during the
first 450 steps, as exemplified in Fig. 3.5 (b3). The small lumens further coalesce into
one vertically elongated, where the wall is typically thickened in the places of the
vertical center. This thickening remains or grows together with the lumen, generally
it is preserved (cf. Fig. 3.5 (c3)). In the growing system, in most cases when the two
lumens contacted and started coalescing,  the cells  in the area near to the contact
further redistributed only “partially“, this was leading to the irregular thickness of the
lumen wall.

When the initial cells are more distant from each other, in range between 45
and 80, initial lumens grow greater before the walls contact, which happens after step
450.
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Figure  3.5:  Lumen  formation  from  two  seeds;  cells  and  (r-)concs.  for  A1.
Step 0 (a). Step 450 (b). Step 900 (c). Distance of initial cells: 16 (1), 24 (2),
44 (3), 70 (4).



For  smaller  initial  cell  distances  the  lumens  coalesce  partially,  having
protrusions  from the  walls  into  the  inside.  Isolated  isles  of  cells  in  the  interior
sometimes appear as well, being located along the horizontal axis in the vertically
central  area  of  the  situation.  For  more  distant  initial  cells  the  lumens  are  fully
segregated, as demonstrated in Fig. 3.5 (c4).

We  see  that  putting  two  initial  cells  close  enough  to  each  other  leads  to
formation of a single lumen. When there are more initial cells in a line with distances
between neighbors sufficiently small, the situation is analogical, leading to formation
of a single tubular lumen (data not shown).

Larger  timescales. Biological  tubes  can  represent  a  transient  phase  of  organ
development. Simple columnar epithelium can give rise to complex architecture [55].
Our model exhibits kind of post-luminal pattern formation, although this was not an
intention during its design. When turning back to the original situation, as described
in paragraph Situation setting, the simulation was performed for 900 steps. If putting
the  initial  cell  to  larger  area  (containing  given  initial  concentration  of  A2 in  all
unoccupied panes), leaving enough space around the cell and letting the situation
evolve for longer  times,  around step 1200 the lumen wall  starts  having irregular
thickness. The outer edge of the growing ring has still roughly circular shape but the
inner  edge  becomes  slightly  lobular.  Further,  the  lobes  extend  in  the  area  of
attachment to the growing outer rim, which leaves cells in them as moving outwards.
Some of the lobes separate and form individual isles, others stay attached to the rim
and get  elongated.  In  this  way the  process  continues.  The  growing rim has  still
roughly the same thickness while leaving “excessive“ cells  in the lobes and isles
behind.

From the point of view of lumen formation this growth phase is uninteresting
for us. We didn't strive to “code” additional mechanism to the zygotic graph that
would stop the process of growing before the formation of lobes starts or that would
otherwise  fixate  the  luminal  structure,  although  this  might  be  interesting.  We
understand our model with its relatively simple zygotic graph as a standalone unit,
where only part of it is usable for lumen formation, without handling how to extract
this phase or switch the whole process to another “path“. We regard these questions
not to be in our current scope. 

3.3 Discussion
We have created model of lumen formation starting from a single individual

cell. 
In [40], cell polarisation is necessary for lumen development, in [45], [49], [50]

it  is  an important  component.  In our approach polarisation occurs as well  but  in
different senses. In the early phases, membrane enzymatic activity of the initial cell
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and  its  descendants  causes  polarisation  of  the  environment  with  regard  to
(r-)concentration of A2. A chemical precursor of the lumen arises. Inside is where A2

is in low (r-)concentration, outside is where it is abundant. Further on, the cells start
recognizing the inside, since the A2 signal is attenuated there and they can switch to
A1.  In  this  way  the  “chemical  polarisation”  is  transferred  to  a  “cell  system
polarisation” embodied by cummulative states – a cell in CS on A1 is “at the luminal
edge”, a cell in CS on A2 is at the “outer edge”.  

In,  [45],  [49],  [50],  apoptosis  causes  cavitation.  Our  model  achieves  and
maintains cavitation44 by means of cell rearrangements. In [51], cell rearrangements
based on different cell adhesivities are used without requiring an organized behavior
on the level of individual cell.  We employ chemotaxis as the underlying concept
behind rearrangements, which are necessary for formation and maintenance of the
cavity. 

From physical point of view our model doesn't provide means or conditions
regarding mechanical development and maintenance of the hollow structure, which is
naturally  supported  by  cell  lateral  adhesions  and  basal  anchoring.  Our  approach
seems to  be  suitable  for  a  gelous  environment  where  cells  can migrate  and stay
naturally at their locations without need for mechanical support. 

Generally, the model offers a hypothesis concerning the role of cell migration
in the early phases of lumen formation. We have shown a context where chemotaxis
is  sufficient  for  lumen  formation,  without  need  of  either  apoptosis  or  cell
polarisation.   

 

44 In given timescale, cf. paragraph Larger timescales in section 3.2.

69



4. Model of Diversified tumour
In this section we will describe a model that tries to enlighten the question of

onset  of  tumour  growth  starting  from an  almost  healthy  cell.  By  exploring  the
behavior of the progeny of such cell we will identify various growth phases of the
emerging in-silico neoplasm. Parametric analysis will be then carried out, offering
explanatory  hypotheses  for  existence  of  progressive  benign-to-malignant
transformations on one hand and for occurrence of aggressive phenotypes without
apparent observable precursors on the other hand. We call our model the Diversified
tumour Model (DTM), stressing relative diversity of cell  types and behaviors the
model exhibits with regard to simplicity of zygotic graph and initial conditions it is
based on.     

4.1 Introduction
Cancer  is  understood as  a  family of  diseases  characterized by uncontrolled

invasive cell growth. As initial cause of abnormal cancer growth genetic mutations
are being considered  [68]. However, changes in tissue microenvironment can also
initiate and drive cancer formation [69]. In [72], finer structuring into five partially
overlapping biological models of carcinogenesis is offered: (1) “Mutational” in sense
of  point  DNA  mutations  where  given  gene  product  directly  influences  cell
proliferation or other neoplastic phenotypes. (2) Genome instability, where mutations
in some genes severely weaken genome integrity protection mechanisms. Changes in
given  genes  substantially  increase  frequency  of  mutations  downstream.  (3)
Non-genotoxic  mechanisms  where  DNA is  not  changed  structurally  but  rather
functionally, including epigenetic modifications. (4) Somatic cellular selection that
concentrates on the role of micro and macro environment in selection of cells that
have gained some “advantage”.  (5) Tissue organization, focusing on the role of local
(micro)environment around the pre-cancerous cells and also incorporates theory of
microstatic fields that maintain normal cell behavior and tissue microarchitecture in
adult organism. 

There are six hallmarks of cancer introduced in [71]: Self-sufficiency in growth
signals, insensitivity to anti-growth signals, tissue invasion and metastasis, limitless
replicative potential, sustained angiogenesis and evading apoptosis.

In  this  section  we  will  be  only  interested  in  modeling  of  nonangiogenic
tumours. Basic cancerous growth is often simulated by avascular tumour spheroids.
With formation of three layered structure of the model tumour microenvironment –
proliferating outer rim, sublayer of quiescent cells, and necrotic core – these have
been  reproduced  by  practically  any  modeling  approach  [73],  [74].  There  are
diffusible nutrients present in the environment, being consumed by the growing cell
conglomerate. Due to nutrient depletion in the inner parts of the model neoplasm, the
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cells there are becoming quiescent (usually not dividing but alive) and necrotic. In
cell-based models the three kinds of states or cell types corresponding to the tumour
layers  are  often  incorporated  axiomatically  or  rather  explicitly  in  given  model
definition. 

Another  approach  to  biological  explanation  and  followingly  modeling  of
internal tumour structuring is the cancer stem cell (CSC) hypothesis [75], [68], [76].
tumour is viewed as a composition of two kinds of cells: CSCs and the rest. CSCs
have  unlimited  proliferation  capacity  while  the  other  cells  have  only  limited
replication potential. A CSC can divide either into two CSCs or into one CSC and
one differentiated cell. In  [77],  [78], tumour growth with CSCs has been modelled
using cellular Potts and cellular automata respectively. The models show that when
only  proliferative  cells  (CSCs)  are  present,  spherical  shapes  are  produced.  If
asymmetric CSC divisions are allowed, tumours with irregular borders arise. In the
latter case, the whole tumour turns out to be a composition of smaller rather spherical
conglomerates, where each arises from a single CSC. These conglomerates can be
viewed as “self-metastases”  [79],  [80].  When killing part  of the cells  in growing
neoplasm in  certain  time  in  [77],  as  a  model  of  therapy,  inner  properties  of  the
followingly repopulated tumour differ for the only-CSC and differentiating scenarios.
In the latter case, relatively few CSCs remaining after the therapy undergo “many”
divisions during the repopulation, leading to greater accumulation of mutations in
comparison with the former case where all cells divide evenly in the renewal of the
tumour.  The  differentiating  scenario  thus  leads  to  more  aggressive  regrown
phenotype after therapy than the only-CSC (undifferentiating) case.  

One  way  of  modeling  tumour  growth  onset  is  by  disruption  of  tissue
homeostasis  [76]. Another approach is focusing on mutations: In  [70] a 3D agent-
based stochastic model is used to simulate transformation of normal cells to tumour
cells within a growing conglomerate starting from one normal cell. The six hallmarks
of cancer stated in  [71] are incorporated in the scenario as phenotypical mutations,
which  occur  with  selected  probabilities  during  cell  divisions.  Other  kinds  of
probabilistic  events  like  competition  for  cell  survival  with  a  neighboring  cell  or
elimination of a cell due to mutation are also included. It has been observed within
the model that early-onset cancers proceed through a different sequence of mutations
than late-onset cancers.

4.2 Diversified tumour Model
Situation setting. We use two vaxes (Ai, Vi, Xi), i = 1, 2. The environment lattice is a

square  250 ´ 250 panes.  At  the  beginning  there  is  one  cell  in  the  middle  of  the
situation.  There is  a rectangular  area surrounding the initial  cell  containing  A1 in
concentration  3. In the rest of the situation the initial concentration of  A1 is zero.
Other substances don't participate in the situation in free diffusible form. The initial
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conditions regarding the starting cell and its proximity are shown in Fig.  4.1.  Pie
graphs,  if  displayed on cells  in  figures  (e.  g.  Fig  4.1 (b)),  will  have  the  general
semantics  as  follows:  Color  of  the  outer  annulus  is  the  color  representing  the
substance  the  cell  is  in  cummulative  state  on.  Full  angle  of  the  circle  inside
represents  membrane  capacity.  Individual  colored  sectors  stand  for  amounts  of
receptors  on  ligands  denoted  with  corresponding  colors.  If  there  is  an  arrow
emanating from the center of the pie graph, it represents gradient of the ligand the
cell is in CS on, perceived by the cell. In our DTM scenario,  A1 will be marked by
red color, A2 and V2 will be both marked by green color since conceptually they have
the same function.

 Zygotic graph follows in Fig. 4.2.  

We prescribe that if a cell divides, the daughters must be touching by exactly one
membrane  element.  I.  e.  we  have  Touching  required  =  true and   Min  common
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Figure 4.1: Initial cell and its proximity. The rectangle surrounding the initial cell
contains concentration 3 of A1 (red), it is horizontally asymmetric and vertically
symmetric around the cell (a). Initial setup (detail) of the starting cell (b): The
cell is in cummulative state on A1 (red annulus) and contains following amounts of
receptors: 40 on A1 (the small red sector), 100 on A2 (the smaller green sector)
and 240 on V2 (the larger green sector). The cell has no receptors on A2. Ligands
A2 and V2 are both marked with green color since semantically they play the same
role. Division treshold is 800 (the full circle of the pie graph).

Figure 4.2: Zygotic graph. GP = GM = GA = ∅ .
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elements  = Max common elements  = 1.  Regarding decays,  there is  ksd
A1 = 0.001,

kma
A1 = 0.3.  Further,  there  is  Division  direction  =  Parallel  to  gradient and

Min gradient = 0.001,  D = 0.2,  Division threshold = 800,  Membrane capacity =
801,  Ks  change  threshold  =  1E-5.  Kd =  0  for  both  vaxes. Infilling  is  used  for
treatment of surrounding concentrations in cell movements within internal simulation
of cell divisions.

As we can see from the scenario definition, the only diffusible ligand in the
situation  is  A1.  Thus there  is  TA1 = [A1].  Ligands  A2 and  V2 are  present  solely in
receptor form. They perform signaling between adjacent cells. Adjacency of daughter
cells  just after  division is forced.45 V1 is present in receptor form only,  mediating
perception of A1 by the cells. Conceptually, ligand A1 plays the role of a pathological
“oncogenic” signal, its initial concentration in the surroundings of the cell represents
exposition of the cell  to  that  signal.  Ligands  A2 and  V2 model (contact-mediated)
physiological signal, in corresponding cummulative states a cell “stays quiet”. The
initial cell is slightly “damaged”, or “little” sensitive to the pathological signal, by
means of the initial presence of receptors on A1. However, in CS on A1 the cell adds
receptors on  A1 (only). If the cell stays in this cummulative state long enough, this
will send the cell to division. It applies for the daughters as well. The situation is
schematically sketched in Fig. 4.3.  

Cell health and divisions. Let's assume that every cell divides whenever it wants to
divide. From whence it follows that at the end of computation of every step the total
amount of receptors is less than Membrane capacity. Let's further suppose that a cell
is always in CS on A1, including its progeny. If a cell divides, number of receptors on
every ligand is  halved in  the  daughters  while  Membrane capacity  (and  Division
threshold) are the same in the mother and in each daughter. Let [V2

m]0, [A2
m]0, be the

45 Adjacenecy in particular cell pairs is generally not preserved due to changes of cell amount and
locations caused by further divisions. 
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Figure 4.3: Staying in the cummulative state on A1 (red annulus) for the initial cell
throughout  multiple  steps  leads  to  adding  receptors  on  A1 (red  sector)  and
followingly to division. Relative amount of receptors on A1 increases, relative amount
of receptors on A2 and V2 (green sectors) decreases. Free diffusible A1 concentraions
are not shown.



initial amounts of receptors of the initial cell on A2, V2 respectively. We can easily see
that

where d is the number of divisions the cell has undergone and [V2
m] is the amount of

receptors on the cell in time of concern. For [A2
m] the situation is analogical. Further,

for a cell between any two divisions we have

where Dt is Division threshold, and [V1
m] is the amount of receptors on A1 in time of

interest. Summed up, we see that  [V2
m] and  [A2

m] on individual cell membrane are
decreasing exponentially with the number of divisions the cell went through while
[V1

m] is bounded between two (positive) constants. Let's now assume that the sum of
all receptors on a cell is Mc = Membrane capacity in discrete time n > 0. Let the cell
be in CS on A1 in the (n+1)th step and let receptor normalization occur. (I. e. the cell
couldn't divide.) According to (2.51) we have

where  [V2
m](n) is the amount of receptors on  A2 in discrete time  n and  δ(V1

m) is the
amount of receptors on A1 the cell adds to its membrane when being in CS on A1. For
receptors on V2 the situation is analogical. Obviously, 

Thus we see that if a cell remains in CS on A1 and it  wants to divide but can't, the
evolution of membrane receptor composition is structurally analogical to the case
when the cell is in CS on A1 and (its progeny) undergoes divisions. Since the fraction
in (4.1) is positive and less than one, amounts of receptors on A2 and V2 both decay
exponentially. At the same time, [V1

m] is bounded between two (positive) constants.
Since a cell in cummulative state on a ligand other than A1 is quiescent, we see that
the  structural  influence  of  staying  in  state  on  A1 is  “cummulative”,  being  only
interrupted  by  staying  in  other  cum.  states.  Stated  otherwise,  if  the  amount  of
receptors on  A2 and  V2 is understood as a degree of health of a cell, the cell has a
“memory for disruption”. If the process of losing this health is interrupted at some
time (by switching to another state), when it restores, it continues at the stage it was
before the interruption. For our particular setting, assuming cells can divide, time
between  two  divisions  (i.  e.  the  time  after  which  [V2

m], [A2
m]  are  halved,  when
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starting to count at a division) needed to be spent in CS on A1 is 20 steps. Halving
time for [V2

m], [A2
m] if receptor normalization is used is approx. 28 steps in CS on A1.

Physiology-reminiscent growth. The phases shortly after starting simulation of our
scenario are shown in Fig. 4.4.

After the division of the initial cell, its daughters are most influenced by ligand A1 in
the surroundings and remain in cummulative state on it. Due to membrane enzymatic
activity the ligand is being cleaved in the surroundings of the cells, its concentration
lowers most near the center of the two-cell conglomerate. Since the cells see no A1 by
the membrane elements they are touching each other and by contribution of given A1

concentration  lowering,  the  perceived  gradient  direction  in  the  cells  is  roughly
perpendicular to the axis of symmetry between them, heading away from the center
of mass of the conglomerate in each cell. The situation is shown in Fig. 4.4 (a). When
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Figure  4.4:  Physiology-reminiscent  growth.  White  arrows  denote  gradient  of
cummulative state perceived by individual cells, missing arrow means that gradient
magnitude is < Min gradient. (a): Step 40. Situation just before the second division.
(b):  Step 43.  Differentiation of  tip  cells  (denoted by circles) and quiescent  inner
cells. (c) Step 180: Correct differentiation to tip / quiescent cell stops working, all 4
marked  cells  will  divide.  (d):  Step  182:  End  of  physiology-reminiscent  growth.
Marked  cells  are  daughters  of  those  marked  in  case  (c).  Only  one  cell  in  each
quadruple gets quiescent. 



these two cells divide in the opposing directions described above, after a short time
the inner cells of the nascent “thread“ turn to CS on  A2 or  V2 (Fig.4.4 (b))  since
concentration  of  A1 in  their  surroundings  is  lowered,  each  of  them  feels  the
physiological signal (A2, V2) by two membrane elements and the membrane “area” of
each  of  these  cells  capable  of  feeling  A1 is  decreased  by  given  two  membrane
elements that are touching the neighbors. On the other hand the outer cells feel the
physiological signals only by one membrane element each, concentration of  A1 in
their  surroundings  is  higher  than  in  the  center  of  the  situation  and  only  one
membrane element in each outer cell  is “blocked” from feeling  A1 by touching a
neighbor  cell.  The  outer  cells  remain  in  CS on  A1.  This  kind  of  scenario  recurs
throughout several following divisions. Cells on the edges are remaining in CS on A1

while  the  inner  cells  are  getting  quiescent  some  time  after  division.
Phenomenologically, we can understand this as “differentiation”, where one daughter
remains a tip cell while the other becomes the “quiescent nondividing cell”. This can
be  regarded  as  kind  of  physiological  behavior  at  first  sight,  part  of  “normal
functionality of the tissue the cells originally belong to”.  However,  despite being
“morphologically correct”, internally, the sensitivity to physiological signals in the
cells  decreases  over  divisions.  In  Fig.4.4 (c)  the  penultimate cells  have too  little
receptors on A2 and V2 so that the A1 signal prevails in them and they go to division
before the  A1 signal would be “lowered enough“ by membrane enzymatic activity,
diffusion, and spontaneous decay, allowing them to switch to some of the quiescent
states. Both pairs of cells at each end divide, as it is seen in Fig. 4.4 (d). 

Pathological differentiated growth. As we can see in Fig. 4.4 (d), one cell in each
marked quadruple has become quiescent.

76

Figure  4.5: Pathological differentiated growth; step 270. Rim of dividing cells (in
cum. state on A1) forms, cells in the inside of the forming conglomerate differentiate
(a). Concentration of A1 is being reduced inside of the conglomerate in comparison
with its outer surroundings due to membrane enzymatic activity (b).



In this phase, differentiation to the quiescent states still occurs, but only in cells being
more surrounded by other cells than in the previous phase and with a delay after
division. A rim of growing cells forms, leaving quiescent differentiated cells behind.
The situation is shown in Fig.  4.5. Ligand  A1 is being progressively cleaved inside
the forming conglomerate. This leads to switching of the inner cells to CS on A2 or V2

some time after division, when concentration of  A1 becomes low enough. Further
progression of the growth with the rim fully surrounding the conglomerate is shown
in Fig. 4.6 (a).

Pathological undifferentiated growth. After some time the amount of receptors
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Figure  4.6:  Pathological  undifferentiated  growth  –  transition  and  progress.  Step
393: Pathological differentiated growth occurs,  cells  behind the growing rim are
differentiating (a). Step 480: Cells adjacent to the rim stop differentiating, staying in
CS on A1; they want to divide but due to lack of space they cannot (b). Step 580 (c),
step 700 (d): The coglomerate is growing on the rim. No new differentiation occurs,
the  previously  differentiated  quiescent  core  (cells  in  CS  on  A2 or  V2)  remains
conserved. 



on A2 (and V2) in the cells in CS on A1 on the rim and in its proximity goes below the
value of parameter Ks change threshold. If a cell wants to change the cummulative
state, this threshold is the smallest difference between the signal for the new CS and
for the current one (i. e. A1) that must be exceeded in order to perform the CS change.
Since the amount of receptors on A2 (and V2), that is the maximum possible strength
of the signal “generated” by these receptors, is under the threshold, even if the total
signal for staying in CS on A1 is zero, the cell is not able to change its cummulative
state. We will call such cells totally transformed. A totally transformed cell either
progressively goes to division producing totally transformed daughters or it has the
Couldn't  divide flag  set,  meaning  that  it  wants  to  divide  but  due  to  (spatial  or
geometrical)  constraints  it  cannot.  Totally  transformed  cells  are  not  able  to  hear
(process) any physiological signals from the environment.

Progress of our scenario is shown in Fig. 4.6. After a period of continuation of
the pathological differentiated growth (Fig. 4.6 (a)), totally transformed cells start to
occur and followingly all the cells in CS on  A1 become totally transformed. Small
layer of cells with  couldn't divide flag in CS on A1 not going to differentiation any
more forms (Fig. 4.6 (b)). Further on the layer grows in thickness by proliferation of
the rim cells (Fig. 4.6 (c), (d)).

Summary. By means of rather simple initial conditions and zygotic graph, together
with  appropriate  setting  of  situation  parameters,  we  have  constructed  model  of
progressively  transforming  tumour.  Starting  from a  single  partially  damaged  cell
getting an “oncogenic“, “stressing“ impulse, process of tumour growth started and
three  phases  have  been  observed:  Physiology-reminiscent  growth,  pathological
differentiated  growth  and  pathological  undifferentiated  growth.  We  can  see  this
process as a competition of two influences or other processes: The physiological one,
leading to formation of a “structured“ fibre in the first phase, and the pathological
one, leading to uncontrolled cell divisions, which has fully burst in the third phase in
totally transformed cells.  The second phase can be interpreted as an intermediate
stage.

4.3 Parametric analysis of DTM
We  will  examine  the  behavior  of  our  scenario  in  dependence  on  two

parameters:  ksd
A1 and kma

A1, also referring them as spontaneous decay and membrane
enzymatic activity respectively in this section, assuming A1 is always in concern. 
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Figure 4.7: DTM parametric analysis overview. Each scenario has been run for 700
steps. Situations containing cells in CS on A1 reached pathological undifferentiated
growth.  In  the  others,  growth  of  the  conglomerate  stopped  with  all  cells  being
quiescent.



For  ksd
A1 we  will  be  sampling  interval  <0,  0.023> with  constant  step  0.001.

Regarding kma
A1, we will examine values 0,3·2i, i = -8, -7,..., 0 and case kma

A1 = 0. All
the other parameters will be the same as in section 4.2, running each simulation for
700 steps. Overview of results is shown in Fig. 4.7.

Basic  findings. There  are  two  kinds  of  resulting  scenarios.  In  the  first  one
uncontrollably growing totally transformed cells arose. In the other, all cells became
quiescent  entering CS on  A2 or  V2,  growth of  the conglomerate  stopped.  We can
divide the sampled parameter space into three categories along the ksd

A1 axis (cf. Fig.
4.7):  For  “small“  values  in  interval  <0, 0.008> all  the  situations  are  of  the
uncontrollably growing kind regardless of the value of kma

A1. When the values of ksd
A1

are “large”, in interval <0.021, 0.23> (and greater, data not shown), stopping growth
is the case for every situation, for all values of  kma

A1. In the “middle”, for  ksd
A1 in

<0.009, 0.020>,  either  uncontrollably  dividing  or  stopping  growth  occurs  in
dependence on kma

A1. For intensive membrane enzymatic activity (kma
A1 = 0.3,  0.15),

stopping growth starts to occur for smaller values of spontaneous decay than for the
less intensive membrane enzymatic activities, where sometimes fluctuations between
final conglomerate types appear for constant kma

A1 with growing ksd
A1.

Based on these findings we conclude that spontaneous decay plays substantial
role in inducing the scenario where all cells become quiescent (after some time). For
sufficiently large values of ksd

A1 this type of situation occurs independently on kma
A1.

On the other hand, membrane enzymatic activity has only limited potential to create
growth-stopping scenario, unable to achieve this without synergy with spontaneous
decay.

Dedifferentiation. For  small  values  of  both  parameters,  roughly for  ksd
A1 < 0.06,

kma
A1 ≤ 4.69E-3,  the  quiescent  core in  the middle of  the  conglomerate  is  strongly

reduced  or  nearly  missing.  (Cf.  Fig.  4.7.)  Due  to  low  decay  and  cleavage,
concentration of A1 remains high in the center of the situation for a long time. Most
of the cells in the central area are strongly influenced by A1 for this long period and
never  switch  to  a  quiescent  state.  Some  cells  do  become  quiescent,  but  only
transiently, dedifferentiation occurs after a while: When such a cell first switches to
CS on A2 or  V2 it must be receiving sufficiently strong signal from its neighbors at
that moment. If the neighbors are staying in CS on  A1, after a while they want to
divide but they can't. Receptor normalization takes place in these cells, progressively
decreasing the amounts of  A2 and  V2 on their membranes. Thus the signal that the
receptors of given cells  are exerting on the quiescent cell is weakening. Since A1 is
still present in the microenvironment in considerable concentration, the quiescent cell
switches back to CS on A1. Staying there leads to receptor normalization after some
time,  continuing  transformation  of  the  switched-back  cell.  In  some  cases  this
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scenario occurs inductively for islands of cells  in CS on  A2 or  V2 surrounded by
couldn't-divide cells in CS on A1. The cells on the rim of the island dedifferentiate.
After some time the signal they are sending to their inner neighbors ceases due to
receptor normalization and followingly the inner neighbors dedifferentiate as well,
etc. Finally, the whole island disappears and all its original cells are turned to CS on
A1.  

Another  reason for  dedifferentiation,  not  necessarily observed for  values  of
ksd

A1  and kma
A1 as specified above, is cell translocation due to division. Let there be a

cell sending the “quiescing” signal to its adjacent neighbor. If the cell divides, none
of the daughters now touches the cell the mother was adjacent to. Thus the original
neighbor of the mother now gets less of the “quiescing signal” and dedifferentiates.

Transition  prefix. We  will  be  further  interested  in  conglomerate  size  in
uncontrollably growing scenarios just  before totally transformed cell(s)  appear,  in
dependency on  ksd

A1 and kma
A1. We will regard a cell to be totally transformed if it is in

CS on  A1 and  the  amount  of  receptors  on  V2 is  less  than  Ks  change  threshold.
Obviously for any totally transformed cell the amount of receptors on A2 is below the
threshold. as well since the amount of receptors on A2 on the initial cell is less than its
amount of receptors on V2 and this inequality is preserved throughout divisions and
in  receptor  normalization.  We  will  assume  that  in  the  uncontrollably  growing
scenario in any simulation step there is a cell C that has been uninterruptedly in CS
on A1 since the first step and receptor normalization never occurred in the history of
C. For our particular scenario setting we can compute in a straightforward way that
the last step before  C gets totally transformed is step 500 and  C went through 24
divisions. We have run the scenario for each parameter combination in our sampling
for 500 steps. Total numbers of cells in resulting conglomerates are shown in Fig.
4.8.

We will call the number of cells in a scenario just before the first occurrence of
a totally transformed cell a  transition prefix. From our data (Fig.  4.8) we see that
transition  prefix  is  basically  decreasing  with  increasing  spontaneous  decay.  Only
large values  of  membrane enzymatic  activity cause  transition prefix decrease  for
wider  range  of  values  of  ksd

A1. For  kma
A1 = 1.5E-1 there  is  a  relatively  patent

“jump“between  ksd
A1 = 0.03 and  ksd

A1 = 0.04,  similarly for  kma
A1 = 3.0E-1 there is  a

jump between ksd
A1 = 0.02 and ksd

A1 = 0.03. In both cases for the larger ksd
A1 there is a

linear  tip cell  growth with a single tip cell  in  the whole situation for some time
shortly after the scenario simulation starts. Further massive growth “begins” from
this single tip cell. For smaller  ksd

A1 two or more tip cells arise in the early stage,
performing linear “thread” growths for some time. Then the massive growth “starts“
from  these  multiple  “seeds”  in  parallel,  leading  to  greater  conglomerate  in
comparison with the first case at the time the simulation is stopped.
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 Majority  of  the  smallest  transition  prefixes  occur  roughly  for  ksd
A1 in

<0.018, 0.020>. In most of these situations there is a period where only one or two
tip cells are growing for longer time leaving quiescent strings behind. On the other
hand, in situations where the largest conglomerates form, a growing rim of rather
circular  shape  forms  shortly  after  the  beginning,  having proliferating  cells  along
whole its perimeter nearly all the time. 

Theoretically, there are two limiting growth modes (see. Fig. 4.9). Firstly, the
“linear“one with a single tip or stem cell, producing one further nondividing cell and
one stem cell that divides again, etc. This leads to linear dependency of the number
of cells on the (maximum) number of divisions in a history of a single cell. After n
divisions  of  the  “stem cell“  we  have  totally  n+1 cells.  In  the  other  mode  each
daughter further divides, and so forth. This leads to exponential dependency. After n
divisions in a history of one cell we have 2n cells in the whole conglomerate when
assuming that the time between two divisions is the same for every cell. 

In  our  scenarios,  some  of  them  approached  the  limit  linear  growth  quite
effectively. The smallest conglomerate had 50 cells, with the maximum number of
divisions in a history of a single cell 24. 
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Figure 4.8: Cell counts in step 500 for uncontrollably growing scenarios; ksd and kma
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parameter combinations.



The largest tumour in our 500 steps scenario had something less than 1000 cells,
making the  distinction  in  final  conglomerate  sizes  not  smaller  than  one  order  of
magnitude upon entering the uncontrollably dividing growth mode.

Detectability. There  are  grading  systems  for  various  kinds  of  cancer  including,
astrocytomas  [82], breast cancer  [81] or ovarian cancer  [83]. Generally, grades are
bound with degree of cell differentiation in the tumour. Lower grades mean well or
moderately  differentiated  cells,  higher  grades  mean  poorly  differentiated  or
undifferentiated  cells  [84].  If  there  is  evidence  of  more  than  one  grade  or
differentiation  in  a  tumour,  the  least  differentiated  is  regarded  as  the
histopathological grade. Increasing grades are connected with increasing malignancy.
Lower grade tumours grow slower, high grade tumours are strongly aggressive and
infiltrative.  While  some  kinds  of  high  grade  tumours  form  rapidly  as  de  novo
neoplasms without clinical or histological evidence of lower grade precursor lesions,
others develop progressively from lower grade tumours [85]. The theoretical limiting
growth  modes  (cf.  Fig.  4.9)  until  the  totally  transformed  cells  occur  offer  a
hypothesis for these two kinds of emergence of high grade tumours. We will assume
that totally transformed cells divide always into two further dividing daughters. In
the case of the linear growth mode (Fig. 4.9 (a)), this exponential growth starts from
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Figure  4.9: Transition prefix (Tp) under theoretical limiting growth modes. Linear
growth (a). Exponential growth (b).



two totally  transformed  cells.  There  is  a  precursor  “benign”  or  “less  malignant”
tumour containing number of cells linear with respect to the number of divisions a
totally transformed cell has undergone. On the other hand, the precursor of the totally
transformed tumour in the exponential growth mode (Fig.  4.9 (b)) has exponential
number of cells in dependency on the number of divisions in a single line. After the
total transformation occurs, the growth has the same character as it had before. The
linear transition prefix is “small” in comparison with the exponential one and in our
hypothesis we interpret this in terms of detectability: There are so little cells in the
precursor neoplasm that it is impossible or unlikely to be detected by (the state of the
art)  medical cancer diagnostic methods.  The smallest  detectable  size is  generated
nearly  exclusively  by  the  exponentially  growing  progeny  of  the  (two)  totally
transformed cells. Thus the detected tumour is a highly aggressive one, composed
almost  solely  of  the  totally  transformed  cells.  When  looking  at  the  exponential
transition prefix, neoplasm of this size is big enough to be detected. Even before total
transformation is reached,  the “benign“ or “moderately malign“ neoplasm can be
discovered by the diagnostic tools.    

We have demonstrated that  in  terms  of  DTM a good approximation  of  the
linear growth before reaching total transformation can be achieved. Further, within
the spatial constraints given by the model definition, faster growth modes, although
not  exponential,  are  possible.  Each  of  these  growth  kinds  is  a  consequence  of
different values of ksd

A1 and kma
A1, where all the other parameters are the same in both

“kinds“ of scenarios. More particularly, linear growth modes, modelling aggressive
tumours without apparent precursors, tend to occur in the areas of the space of these
parameters where changes or fluctuations between stopping and unstopping growth
occur.   

4.4 Discussion
In this chapter we have introduced Model of Diversified tumour. Starting from

uncomplicated  initial  conditions  and  having  simple  zygotic  graph,  together  with
appropriate setting of other model parameters we got a tumour with three distinct
growth  phases  generating  corresponding  parts  of  the  neoplasm:  Physiology-
reminiscent  growth,  pathological  differentiated  growth  and  pathological
undifferentiated  growth.  Unlike  classical  avascular  spheroid  models  generating
proliferating  outer  rim,  sublayer  of  quiescent  cells  and  necrotic  core  [73],  [74],
despite some similarities our growth phases rather resemble generation of structures
used in  histopathological  classification  of  tumour  grades  [84] based  basically  on
degree  of  differentiation.  Since  differentiation  is  realized  in  quite  a  simple  way,
morphologically  distinctive  structures  are  observed  in  physiology-reminiscent
growth  only.  Tissues  generated  by  pathological  differentiated  growth  and
pathological  undifferentiated growth are  distinguished based on cell  cummulative
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states, without obvious morphological distinctions. Another feature our model differs
in from classical avascular spheroid simulations, bound to the design of the model
world,  is  the  level  of  axiomatization.  More  precisely,  the  distinction  is  in  the
motivational level captured. In agent-based modeling, often entities closely related to
observed phenomena,  like  oxygen or  nutrient  concentration and depletion or  cell
necrosis,  are  axiomatized.  Other  kinds  of  such entities  are  conceptual  biological
explanations, theories, or hypotheses, as cancer stem cells  [77],  [78]. In DTM, we
have inherited the axiomatizing primitives as vaxes, spontaneous decay, membrane
enzymatic activity, cell division direction or cell touching after division. Rather than
attempting to implement the conceptual hypotheses to the particular DTM scenario
definition,  we only did basic  usage of the axiomatizing apparatus.  As results  we
obtained more  or  less  emergent  properties,  that  might  have  been tempting  to  be
axiomatized instead. Let’s take the notion of cancer stem cells. We did not put rules
encoding  symmetric  or  asymmetric  “stem  cell”  divisions  into  the  model.   This
concept,  realized  by  the  change  of  cummulative  state  of  one  daughter  while
preserving cummulative state of the other one, was present as a consequence of the
local interplay of the cells and the microenvironment in the tip cell thread forming
growth in the physiology-reminiscent phase. Then this concept was present in the
pathological differentiated growth, where a rim of dividing cells formed while the
inner daughters were switching to be quiescent. The microenvironment conditions
were  different  than  in  the  previous  case  and  so  was  the  resulting  morphology.
Further,  these  two  different  “CSC”  modalities  got  a  next  new  meaning  in  the
detectability hypothesis. The thread forming tip cell growth is basically responsible
for generating the linear transition prefix that we connect with de-novo formation of
aggressive neoplasms. On the other hand, the pathological differentiating modality is
responsible  for  large  less  aggressive  conglomerates  we  connect  with  highly
malignant tumour development from a lower less malignant grade. We got a two -
tiered conceptual structure as a result. If willing to use the notion of CSCs, these are
strongly  implicit  for  the  model,  appearing  and  disappearing  under  various  local
spatio – temporal conditions. However, “driving” them kind of indirectly to form
particular behavior in given conceptual tier  turns out to be matter of quantitative
parameter combinations, how it was disclosed by the parametric analysis. Instead of
coding  phenomenologically  bound  rules  or  concepts  axiomatically,  we  got  the
“formulation” of (un)expected higher level behaviors in terms of locations or regions
in the parameter space of our original axiomatization.

Focusing  now  on  the  other  particular  results,  we  have  observed
dedifferentiation in some parametrizations, identifying its two distinct local causes:
Receptor normalization in neighboring cells and loss of contact with an adjacent cell
due  to  its  division.  The  former  seems  to  be  bound to  low membrane  enzymatic
activity and low spontaneous decay acting simultaneously.
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Finally,  we  have  observed  that  spontaneous  decay  is  the  major  factor
influencing  the  overall  behavior  in  terms  of  appearance  or  preventing  the
uncontrollably dividing growth. Large spontaneous decays lead to stopping growth
while small spontaneous decays cause unstopping growth proceeding to occurrence
and  proliferation  of  totally  transformed  cells.  For  values  of  spontaneous  decay
inbetween,  both  types  of  growth  occur,  in  dependence  on  membrane  enzymatic
activity.  Connecting  our  observations  together,  the  general  role  of  membrane
enzymatic activity seems to be rather local and morphogenic, constituting tip cell
formation and thread growth under suitable conditions.
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5. Model of cell migration in chronic inflammation
In this chapter we will focus on the role of membrane enzymatic activity in

inflammatory response mediated by migrating cells. Taking rheumatoid arthritis as a
motivating source of biological information we will  construct a scenario showing
different properties of collection of migratory cells based on membrane-associated
chemoattractant cleavage. It will be demonstrated that membrane enzymatic activity
can transform group of individually responding chemotactic cells into an organized
community exhibiting response to inflammatory chemotactic cue that is adequate to
the intensity of the stimulus.  

5.1 Biological motivation
As a motivation for our model we took observations and results presented in

[86]. In this study the role of proteolytic enzyme dipeptidyl peptidase-IV (DPP-IV)
[87] in  a  free  soluble  form as  well  as  in  membrane-bound  form in  rheumatoid
arthritis (RA) has been assessed. Particularly, specimen of synovial fluid (SF)  [89]
from patients with RA and osteoarthritis (OA) have been comparatively analyzed.
While RA is a chronic inflammatory disease [88], OA possesses substantially lower
inflammatory component. In [86] it has been observed that activity of free diffusible
DPP-IV in SF does not substantially differ between OA and RA. However, there was
significantly  lower  activity  and  expression  of  the  membrane-bound  DPP-IV  in
synovial fluid mononuclear cells (FMNC) in RA than in OA. As further reviewed in
the study, stromal-cell derived factor-1α (SDF), chemokine and substrate of DPP-IV,
is  mostly  synthesized  and  secreted  into  synovial  environment  by  synoviocytes,
reaches higher concentrations in synovial fluid in RA than in OA, and FMNC contain
receptor  on  SDF.  Also,  abundant  presence  of  activated  immune  cells  containing
membrane-bound  DPP-IV has  been  observed  in  synovial  tissue,  associated  with
migratory phenotype and a tendency to infiltrate the rheumatoid synovium. 

5.2 Cell-based modeling of migration of immune cells 
In [90] agent-based model of migration of T cells and dendritic cells (DCs) in

lymph node was introduced. It was analyzed how antigen-specific T cells locate DCs.
In a 2D lattice-based model T cell occupies one pane while DC has action radius
over several panes. Random motion vs. chemotaxis are compared. Direction choices
in the random motion for both types of cells are influenced by short term persistence,
i.  e. by giving a (greater)  likelihood of preserving the motion direction from one
simulation step to the following. In the chemotaxis scenario, chemotactic navigation
complements random motion of T cells only in the vicinity of DCs. In this case every
DC has a prescribed stationary chemoattractant gradient in its local surroundings. If a
nearby T cell  feels  the  gradient,  it  gets  attracted.  Some time  after  starting  being
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attracted  the  T cell  cell  becomes  chemoattractant-insensitive,  turning  back  to
persistence  –  driven  random  motion.  This  period  (desensitization  time)  is  a
parameter. Further, resensitization period is also parametrically provided. Within the
rule set, binding of T cells and DCs after contact is also treated. As a result, in the
model  random  motion  turns  out  to  be  sufficient  for  effective  T cell  scanning.
Chemotaxis was causing crowding of T cells in DCs' vicinity, decreasing unique T
cell DC contacts, thus having inhibitory effect on the scanning process. 

On the other hand, later study [93] regarding the same biological motivation,
that uses cellular Potts model, concludes that chemoattraction of T cells enhances the
DC scanning efficiency. The reason for the distinctive results in comparison with the
prior work resides in different formalisms of the methods. In the cellular Potts model,
the space of interest in the model lymph node is fully filled with the cells. For each
T cell that has migrated to a DC another T cell had to “free the space”. Thus a DC
doesn't  get  blocked by the  T cells  that  have  migrated  to  its  vicinity.  Instead,  the
T cells  “regularly  compete”  for  that  space.  This  effect  is  strengthened  by
desensitization.  While  the  sensitive  “chemotacting”  T cells  opt  more  likely  to
proceed towards the DC, the desensitized ones do not. Consequently, the insensitive
cells are being effectively repelled from the DCs. Actually, microstreams of T cells
going to the DCs and away from them are observed, where pushing the insensitive
cells by the sensitive chemotacting ones also plays a role. In the agent-based model
formalism,  cells  can't  move  to  already  occupied  positions.  This  was  leading  to
chemotactic T cell crowding at the DCs in [90]. In the cellular Potts model, absence
of this requirement together with the model dynamics made it possible for cells to
escape from the chemokine attraction field.  

Another model involving cell  migration in lymph node is  provided in  [94].
Hybrid agent-based approach is used there and lymph node function in healthy and
infected states is addressed.

An agent-based model of clearance of early infection with fungal spores was
presented  in  [91].  The  model  is  implemented  in  agent-modeling  software  tool
NetLogo [92]. In a 2D grid there are migrating neutrophil agents striving to hunt and
phagocyte static conidial agents (fungal spores). In the model it has been observed
that  for  initial  random  distribution  of  conidia,  random  walk  with  short  term
persistence was more effective than without it. Chemoattraction where conidia were
sources  of  diffusing  chemoattractant  was  even  more  efficient.  If  neutrophils  that
phagocyte a conidium produce the chemoattractant, thus sending a “signal” to other
neutrophils, this leads to their accumulation in areas where conidia have been already
eliminated,  impairing  effectivity.  If  the  conidia  are  initially  located  in  clusters,
sending  the  chemotactic  signal  by  successful  neutrophils  is  a  better  strategy  in
comparison with random walk. There was an upper threshold parameter introduced
in  the  model,  turning  off  chemotaxis  when  exceeded.  For  high  values  of  this
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threshold,  the  attracted  neutrophils  migrate  and  reach  the  attracting  ones,  being
effective at the beginning of the search process, but not in the later phase, when the
conidia in the surroundings of the attractors are already removed. In this later phase,
lower thresholds are more effective.

5.3 Model of chemotaxis in chronic inflammation
Situation setting. The model uses two vaxes (Ai, Vi, Xi), i = 1, 2. Situation with

initial conditions is shown in Fig. 5.1.
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Figure  5.1:  Situation  disposition  and  initial  conditions.  (a):  Overall  view.
Environment geometries and initial cell locations in the left and right compartments
are the same. Thick line barriers are impermeable for ligands and form obstacles for
cells. Both of the topmost cells are identical. All cells in the left bottom cluster are
the same, all  cells in the right bottom cluster are the same. (b): Detail  of single
topmost cell: CS on A2  (green annulus), contains no receptors. (c): Detail of single
bottom cell in the left compartment: CS on A1 (red annulus), receptor amount: 233 on
A1 (red sector). (d): Detail of single bottom cell in the right compartment: CS on A1,
receptor amount: 0.25 on A1. The receptor amount is too smal to be visible on the pie
graph, Division treshold = 300.



The  environment  lattice  is  a  square  120 ´ 120 panes,  divided  vertically  into  two
halves by a barrier two panes thick, impermeable for cells and diffusible ligands.46

The  right  half  contains  model  of  chronic  inflammation,  the  left  half  models
physiological inflammatory response. The only difference between the halves is in
receptor amounts on A1 in the bottom cells. On the left side, the receptor amount in a
single cell is 233 while on the right it is 0.25, i. e. roughly three orders of magnitude
lower. Zygotic graph is as follows in Fig. 5.2.

Regarding decays, there is  kma
A1 = 0.3,  ksd

A1 = 0.0001. All the other decays are zero.
Concerning relevant parameter values, there is  D = 0.2,  Min gradient = 0.001,  Ks
change threshold = 1E-5, Division threshold = 300, and Membrane capacity = 301.
Kd = 0  for  each vax (reaction). Parameters  regarding divisions  are  not  important.
Since receptor graph is empty, cells in our scenario are not adding receptors and thus
they are not dividing. 

The two top cells in Fig. 5.1 serve as producing sources of A1, being in CS on
A2 in every step. The bottom cells in the left part have receptors on A1, thus feeling A1

and cleaving it by membrane enzymatic activity. The bottom right cells also feel A1

having receptors on it. However, due to small receptor amount local A1 removal due
to membrane enzymatic activity is negligible in comparison with the left scenario, if
concentration  of A1 is  sufficiently  high.  In  both  scenarios,  migration  towards  A1

source will occur. Character of the migration in each of the scenarios will be in the
focus of our interest. 

Flowaround setting. Before  stepping  further,  resolution  of  concentrations  in  the
surroundings of a migrating cell is to be defined. In our scenario, flowaround will be
used. As an underlying model for flowaround we consider 2D potential flow around

46 As we will see later, since flowaround is used in the model, part of the area of the barrier can be
internally regarded accessible for  diffusible ligands within the flowaround computation. However,
since the the barrier is “thick” and flowaround surroundings for each cell is “small”, altering ligand
concentrations on the other side of the barrier by flowaround of nearby migrating cells is not possible. 
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Figure 5.2: Zygotic graph. GR = GA = ∅.  Colors
(altrnatively) represent given ligands.
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a cylinder  [95],  [96]. For the time being we will assume that our cell has circular
shape, supposing first it is placed in uniform parallel flows. 

Let's consider a circle with radius r0 having its center located at the coordinate
system origin. Let U be a uniform flow in the x direction. As described in [95], the
complex potential w(z) for a flow around the circle is 

and for the components ux,  uy of the flow around the circle in the x and y direction
respectively there holds

where i is imaginary unit. From (5.1) and (5.2) we get 

where r2 = x2 + y2. Let's now consider that the cell moves along the x axis with the
same speed but in the opposite direction than U and there is no uniform flow in the
environment. To get the flow components p, q in the x and y directions respectively
around the moving cell, we have to subtract the original uniform flow U. Denoting V
the cell speed in our situation, V = −U,  and we have

Now we will wish to define flowaround for our discretized cell doing elementary
movement in a horizontal  direction,  utilizing  p and  q.  We are interested in flows
across selected vertical or horizontal segments in the (virtual) surroundings of the
cell. Flow Fab across horizontal segment (xa, yb), (xa + Δx, yb) will be computed as 

similarly flow Gkl across vertical segment (xk, yl), (xk, yl + Δy) will be obtained as
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We can simply check that

For  our  particular  cell  shape  we  take  r  =  2.  We will  consider  case  of  defining
flowaround  for  elementary  movement  to  the  left,  i.  e.  V =  -1.  The  situation  is
sketched in Fig. 5.3.
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∫ p (x , y )dy = V r 0
2
⋅

y

x2+ y2
,

Figure 5.3: Defining flowaround for elementary cell movement to the left. The cell is
shown at the starting position of the elementary movement. Flow field around the
circle  at  the  origin  with  horizontal  speed  -1  is  determined.  Flows  across  edges
marked by dots are then computed based on the flow field. Two edges forming cell
boundary and crossing y axis are treated in a separate way. Flows across the other
edges are regarded zero.

∫ q(x , y)dx = −V r 0
2
⋅

y

x2+ y2
.



Obviously from (5.3) in the flow field the flow across x axis is always zero, thus we
excluded edges on the x axis from marking in Fig. 5.3 apriori. For the marked edges
which intersect the circle, flow across the subsegment outside of the circle (only) is
computed in flowaround definition. Further, let  e be the upper edge crossing y axis
and being part of the cell boundary. According to how flowaround was introduced in
the model world,  there can be no flux from or to panes that remain covered during
cell  movement.  When  taking  the  right  half  of  e,  meaning  its  subsegment  with
positive  x coordinates,  since  flow  field  velocities  are  relatively  high  in  its
surroundings, we have decided to add the flow across this half-segment of  e to the
flow across the horizontal segment neighboring with e on the right in the flowaround
definition. This operation has been performed symmetrically for the left half of e and
the left horizontal neighbor of e. At the lower intersection of the cell boundary and
the y axis the situation is analogical.

For elementary movements of the cell in the other directions the situation is
analogous. Actually, due to symmetries of the flow field it is not difficult to realize
that flowarounds in these cases are appropriate rotations of the flowaround “grid“ for
the left elementary movement.

Results. The simulation has been run for 50000 steps. Migration of the cells to the
sources of A1 is shown in snapshot series in Figs. 5.4, 5.5, and 5.6.

93

Figure 5.4: Migration starting phase. Green - producing cells. (a): Step 5000. After
A1 reaches detectable concentration in the area of the cells closest to the source, they
start to migrate. This happens in the same time in both scenarios, migration patterns
are similar.  (b):  Step 10000.  In the  right  scenario,  more cells  started migration,
concentration  of  A1 in  the  area of  the  original  cluster  is  higher  than in  the  left
scenario with the high membrane enzyme (receptors on A1) concentration.
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Figure 5.5: Cell translocation phase. Green – producing cells. (a): Step 15000. (b):
Step 20000. (c) Step 25000. (d) Step 30000. (e) Step 35000. (f): Step 40000.



We  can  roughly  divide  the  scenario  development  into  three  phases:  Migration
starting phase, cell translocation phase and post-translocation phase. 

In the migration starting phase (Fig.  5.4) the first cells start movement after
sensing  A1 that  has  spread  from the  producing  cells.  For  some  limited  time,  A1

concentration in the surroundings of the migrating cells  is  relatively small,  lower
than  cell  receptor  amount  in  either  compartment.47 In  other  words,  in  both
compartments (all) receptors of the migratory cells are unsaturated, resulting in the
same rate of cleavage of A1 regarding pairs of corresponding cells per compartment.
However,  already in  step  5000 (see  Fig.  5.4 (a))  this  mode of  migration  doesn't
generally apply but due to its prior occurrence the situations look roughly similar.
Further on, in the left compartment the intensive cleavage of  A1 by the migrating
cells hinders its concentration increase in the area of the primary cluster. Thus most
of  the  cells  remain  on  their  original  locations.  On  the  contrary,  in  the  right
compartment A1 diffuses in higher concentrations to the region of the original cluster
and many cells are recruited for migration (Fig. 5.4 (b)). 

This trend continues and strengthens in the cell translocation phase (Fig. 5.5).
On the left sides, smaller amount of rather consecutively migrating cells occur. On
the right sides, all the cells move in a “cloud like” manner. After some time, all the
cells in the right compartment translocate to the area near the producing cell. In the
left compartment, only limited amount of cells translocate and many cells do not start
migration  at  all.  In  both  compartments,  as  the  migrating  cells  are  reaching  the
producing cell, the effective rate of production of A1 to the (distant) environment gets

47 For the surroundings of the cells remaining in the clusters this holds as well.
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Figure  5.6: Post-translocation phase. Producing cells are colored green. (a): Step
45000. (b) Step 50000.



lower. Firstly, membrane elements of a producing cell being adjacent to other cells
do  not  secrete  A1.  Secondly,  at  least  for  some  periods  the  producing  cells  get
surrounded by the attracting cells in a way that these form a barrier for diffusion,
separating  the  producing  cell  from  the  rest  of  the  environment.  In  the  left
compartment,  when the effective production is blocked in this way the migratory
cells remove A1 from the most of the environment (Fig. 5.5 (f)). Also, although less
migratory cells reach the producing one in the left compartment, they pack around
the  producing  cell  in  a  more  structured  way  than  in  the  other  compartment.
Substantial limitation of A1 secretion to the distant environment appears sooner in the
left compartment than in the right one. 

In  the  post-translocation  phase  (Fig.  5.6),  both  scenarios  reach  kind  of
quasi-stable state. In the right compartment, all of the migratory cells are in the area
near  to  the  producing  cell.  In  the  left  compartment,  there  is  a  shell  around  the
producing cell that has formed in the prior phase, hindering A1 to diffuse out up to
occasional short term spills when some of the cells in the shell move slightly. Then
there are several cells near to the shell that practically clear out such leakage of A1 if
it occurs.48 When cleaving A1, they are moving to places with its higher concentration
where it “hasn't yet been cleaved“, from the locations where A1 “has been removed”.
This boosts the uptake. Further, there are two cells left nonmoving “roughly in the
half of the way“, where A1 “has been cleared“ already at the end of the prior stage.

Flowaround simulation. In our model we have incorporated flowaround based on
potential flow around a moving circle. In the virtual surroundings of a cell where the
flowaround is defined (cf. Fig.  5.3), near to the axis parallel to the cell movement
flow components in front of the cell and at the back of the cell in the cell movement
direction are relatively “big“. Particularly, magnitude of flow velocities across the
marked edges adjacent to the x axis in Fig. 5.3 is more than 0.5. In front of the cell in
the movement direction, outflux from the panes at the border of the surroundings that
are adjacent to these edges is less than the influx since there is by definition zero flux
across their leading border-adjacent edges, instead of a positive value that gives the
underlying potential  flow field.  This  causes that  part  of  the inflowing substances
“accumulates“  in  these fields.  It  leads to  artificial  increase of concentration(s) in
these  panes.  Behind  the  cell  the  situation  is  symmetric,  artificial  concentration
decrease occurs in corresponding panes at the back of the moved cell. Followingly,
these concentration changes cause bias in the concentration gradient in the proximity
of  a  cell  that  performed  elementary  movement.  In  the  areas  where  the  ratio  of
original gradient magnitude to the substance concentration is low, this bias may be of
nonnegligible impact. We have thus decided to perform parallel simulations using

48 Residual concentration (after clearing) of A1 outside the shell is basically at values comparable with
the cell migration treshold (Min gradient). 
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infilling. Outcomes of the simulations (data not shown) were comparable with the
ones using flowaround, confirming our results.

5.4 Discussion
We  have  created  a  model  of  cellular  chemotactic  migratory  response  in

inflammatory  conditions  inspired  by  particular  findings  observed  in  rheumatoid
arthritis and osteoarthritis  [86]. Phenomenological results of our simulations align
with the following conceptual model: We consider that in an inflammatory scenario
there  is  a  (focal)  cue  recruiting  particular  migratory  component  of  the  immune
system.  In  the  physiological  conditions,  amount  of  the  cells  adequate  to  the  cue
intensity  will  migrate  to  the  place  of  the  cue  origin,  inducing  inflammation  of
intensity corresponding to the extent of the cause. In the chronic case, on the other
hand, even for a small  impulse the number of cells  comming is unproportionally
high, causing unadequate inflammatory reaction. In the result of [86] low amounts of
membrane-bound enzyme DPP-IV were correlated with the chronical inflammation
of  rheumatoid  arthritis  while  high  amounts  of  DPP-IV  did  correlate  with  less
inflammatory  osteoarthritis.  Our  in-silico  findings  suggest  following  hypothesis:
Low  or  negligible  concentrations  of  the  membrane-bound  enzyme  are  directly
responsible  for  the  chronic  inflammatory  conditions  causing  unadequately  high
concentrations  of  immune cells  in  the  locations  of  chemoattractant  sources.  Sole
increase of membrane concentrations of the enzyme leads to the decrease of amount
of these cells in the locations of the attractant origin, making the number of cells
adequate to the the strength of the chemoattracting signal.   

Fundamental  conceptual  difference  between  the  two  in-silico  situations  is
following: In the no-cleavage scenario, each migratory cell is a solitaire. When it
feels the chemoattractant, it follows its gradient regardless of what happens around,
up to being blocked by obstacles or other cells. On the other hand, mere increase of
membrane chemoattractant cleavage to reasonable level under otherwise the same
conditions seems to grant  kind of distributed intelligence to  the cells,  expressing
itself in following properties:
• Chemical localization. The cells that set off a journey to the chemoattractant

source  decrease  its  influence  on  the  cells  that  are  behind,  stopping  or
postponing their  migration if  the chemoattractant  concentration is  not  very
high. Viewed more globally, sufficient amount of the cells that migrated near
to  the  source  can  effectively  cause  decrease  of  the  chemoattractant
concentration in the more distant environment to the extent that recruitment of
other cells ends, terminating this phase of immune response. 

• Clearing. If production of the chemoattractant stops or if it has been blocked,
the cells in the closeness to the (former) cue source are able to effectively clear
residual  chemoattractant  gradients  (concentrations)  by  actively  moving
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towards local concentration maxima. In the same way occasional burst-like
spills  of  the  chemoattractant  are  reduced but  longer  term impulses  can  be
quickly followed.

• Reiteration. The process of migration seems to be leaving some residual cells
on the way in greater distance from the source, forming “further wave” of
cells with the potential expressed in the previous point.

• Migration structuring. Membrane enzymatic cleavage locally structures the
movement of the cells in presence of obstacles49. If we think of an individual
cell in an area with initially constant concentration of the chemoattractant, the
membrane cleavage forms a local “crater” in the concentration surface with
the cell in the middle. If there are two cells in this way, (close to each other,
say,)  their  craters  will  partially  merge,  leading  to  a  concentration  gradient
around each cell in the direction away from the center of mass of the cell pair.
Thus  the  cells  will  generally repel  each  other  on the  level  of  chemotaxis.
Similarly,  if  a  cell  is  close  to  a  (zero  flow)  boundary,  local  concentration
decrease  will  send  the  cell  away from the  boundary.  In  the  conditions  of
migration of multitude of cells this property will reduce collisions. For a single
cell in a narrow space, it will force it to migrate “in the middle“. 

As we have seen in [90],  [93] cell crowding in agent-based migration scenarios may
cause modeling and interpretational difficulties. In situations where the space is not
filled  with  the  cells  too  densely,  chemoattractant  membrane  enzymatic  cleavage
offers a way of partial implicit reduction of cell crowding, making this cleavage a
candidate for how this issue might have been tackled in corresponding biological
motivations.

49 Being either in form of the (other) cells in the migrating collection or in form of other objects.
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Conclusion
Particular models. We have created three models inspired by more or less concrete
biological motivations. 

In the lumen-formation model we have observed that cell migration together
with directional divisions may be sufficient to form intercellular lumen, without need
of either apoptosis or cellular polarisation. Additionally, lumen coalescing emerged
for sufficiently close seeds, demonstrating that an elongated tubular structure may be
generated by seeding individual cells “along the way“in appropriate intervals. 

In  the  Diversified  tumour  Model,  we  have  seen  distinct  growth  phases
connected to structuring analogical to histopathological tumour grading. Spontaneous
decay acts as an overall driver influencing whether the in-silico tumour growth will
stop or proceed to uncontrollable divisions. Membrane enzymatic activity looks to
control local morphogenesis. Dedifferentiation has been observed in some scenarios,
one of it's  causes seems to be linked with specific subarea of the space of these
parameters. The model offers a hypothesis for occurrence of observable progression
of malignancy from an originally benign tumour on one hand and for appearance of
aggressive neoplasms with no detectable precursor on the other hand as parametric
variants of a single scenario.  

In the third model we were focused on analyzing chemotaxis in chronic and
physiologically  relevant  inflammations.  Taking  clinically  observed  correlation
between  chronic  inflammatory  conditions  and  decreased  presence  of  a
chemoattractant-cleaving membrane-bound enzyme in migratory immune cells, our
simulations propose cause – consequence relationship to be behind. Particularly,  the
model suggests that adding appropriate amount of the membrane enzyme transforms
the chronic inflammatory behavior into a response adequate to the strength of an
inflammatory stimulus. It has been observed that local cell-cell and cell-boundary
microrepellence  structures  the  migrating  cell  community,  making  membrane
enzymatic activity a candidate for a way of natural reduction of cell crowding.

Modeling approach and methodological conclusion. We have described a generic
hybrid  cell-based  approach  for  simulating  behavior  of  systems  of  cells.  When
looking at various cell-based modeling methodologies via the optics of the agent-
based paradigm we can recognize two conceptual directions. In the first one, there is
a  kind of  high  freedom and variability in  means of  expressing rules  for  the  cell
agents. Examples of these approaches are generally cellular automata or agent-based
modeling. One can implement cell decision logic as though developing a program in
an  arbitrary  programming  language.  In  the  other  direction  there  is  a  concept  or
mechanism  ingrained  in  the  approach  specifying  or  limiting  how  things  are
expressed, unless substantial extension of the model alone is done. Representatives
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of these methodologies are  cellular  Potts  model  or  IBCell.  In the former,  energy
minimization principle drives the basic cell behavior.  If one wants to axiomatize or
implement  some  sort  of  cellular  behavior,  usually  a  new  term  is  added  to  the
expression for the total energy. In IBCell the fluid mechanics model outlines a way
of elementary articulation. 

Generally,  the conceptual  and expressive apparatus  of  a  modeling approach
with such an incorporated principle specifies kind of “language” or “grammar”, a
way  of  thinking  of  the  topics  of  interest,  formulating  hypotheses  and  obtaining
results. Physical, chemical or biological plausibility determines extent or scope of
relevancy of the results one gets. Transparency of capturing the underlying principles
in  given  “language”  per  se  increases  their  traceability  in  the  resulting  models,
simplifying assessment of the framework and particular outcomes not only from the
point of view of biological motivations.

In our approach we used chemical substances, vax reactions, and zygotic graph
as basic expression units. While playing the role of variables, the substances obey
elementary  chemical  rules  in  their  dynamics.  Upon  this,  vax  equilibrium  is
articulated  as  a  key  building  block  of  receptor-ligand  interactions,  acting  as  a
transparent expressive entity in the reaction-diffusion scenario as well. The zygotic
graph then captures the idea of a simplified genome, where the elementary behaviors
the cell can exhibit are encoded. More particularly, it specifies subsets of ”genes”
expressed in  parallel  in  specified intensities,  each  such pattern  realizing concrete
functionality a cell can perform or a “type“ a cell can instantiate. Cummulative states
then uniquely represent these patterns. Although simplified, we regard this concept to
exhibit low level of axiom “artificiality“ while being rather simple and transparent.
Its  conceptual  advantage is  that  interpretation of  particular  axiomatizations  offers
itself  in  terms  of  expression  intensities  of  individual  genes  or  productions  of
individual proteins. Although this “direct link” needn't capture the real biology, it
generates a hypothesis stating “how would the world look like if the gene / protein
scheme  was  that  simple”.  It  offers  the  first  step  of  approximation,  a  simplified
domain  for  model  tuning.  Generally,  partial  mismatch  with  real  genetics  and
proteomics may help to discern between what is the fabric and what is the fine tuning
in the real scenario. 

Usability  and  possibilities  of  our  approach  have  been  demonstrated  in  the
particular  models.  They  show  that  relatively  uncomplicated  zygotic  graphs  can
produce nontrivial organized behavior. This emphasizes system understanding of the
situation rather than direct gene-phenotype linking. The models suggest that physical
and chemical behaviors and consequences in a scenario play substantial conceptual
role in  its  functional  structure and variability.  As an example we take membrane
enzymatic activity.  It may be surely attributed to a gene encoding the enzyme of
interest or to the functionality of the part of the intracellular machinery responsible
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for  the  enzyme's  correct  synthesis  and  membrane  localization.  However,  an
important  part  of  the  picture  resides  in  the  spatio-temporal  dynamics  of  the
environment containing the enzyme's diffusive substrate when a cell or cells are only
seen as solid objects with the enzyme on their surfaces. Having this building block,
chemotaxis then adds another level of behaviors. In the immune response model,
properties of this character strongly participate. In the emergent results the zygotic
graph or “genetic” logic then only simply uses given behaviors in order to achieve its
goals. Translating this to the agent-based view, an emphasis on seeing the world from
the perspective of the agent remains in our approach. However, the rest of the world
is not or no longer viewed as a set of passive compounds in comparison with the
active agents. It is rather a functionally and conceptually rich site. The idea is that the
agents harness building blocks of the environment which are of a nature of system
dynamics rather than being only simple environmental constituents. When creating a
model, these system dynamics components may be used if known before in order to
build the scenario. However, they can be observed aposteriori as emergent results, as
it was in the chronic inflammation model. The specific expressive “language” of our
approach supports the idea of the environment as a key conceptual and functional
player in execution of the cell logic. 

Perspectives. The  greatest  problem  of  mathematical  and  computer  modeling  of
biological cell systems is a lack of directly testable hypotheses. Rather than apriori
extending our approach in various ways it seems to be beneficial to seek scenarios of
biological experimentation where the correspondence of conditions with the model
world is as strong as possible. Potential model extensions would then aim to increase
the compatibility in order to get close to generating hypotheses that could be suitable
for experimental verification. 

When  looking  at  our  concrete  models,  cell  migration  with  membrane
enzymatic activity can be a promising direction. The problem per se seems to offer
space for theoretical in-silico exploration. Also, in vitro experiments where migratory
cells are seeded on a flat surface look to be relevant and reachable. Generally, in-
vitro scenarios with defined geometry and 2D cell arrangements with only a thin
layer of medium are suitable candidates for our modeling analysis.

In the lumen formation model,  growth termination is currently not covered.
Analysis  of structure generation with different  2D patterns of seeding may bring
understanding of the model in greater scope.

In DTM, various models of physiological tissues can be made susceptible to
the cancerous  stimulus.  Analyzing scenario  progressions  and properties  in  a  way
similar to the current model could bring understanding to tissue morphologies and
dynamics under various grades in different types of cancers.
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List of Abbreviations
ABM: agent-based models

CA:  cellular automata

CPM: cellular Potts model

CS: cummulative state

CSC: cancer stem cell

DCs: dendritic cells

DPP-IV: dipeptidyl peptidase-IV

DTM: Diversifier tumour Model

FMNC: synovial fluid mononuclear cells

IBCell: immersed boundary cell model

MCS: monte carlo step

OA: osteoarthritis

PDE: partial differential equations

RA: rheumatoid arthritis

SDF: stromal-cell derived factor-1α

SF: synovial fluid
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