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Preface

This thesis concentrates on two phenomena connected with the accretion process onto the
black holes and neutron stars. The first Part deals with the twin peak high-frequency
quasiperiodic oscillations – the phenomenon observed in the last decade in low mass X-ray
binaries with neutron stars and, recently, also in four systems with acreting black holes. In
the second Part we concentrate on the interaction of fast moving matter with an ambient
dense radiation field. This process likely occurs at the initial stages of relativistic jets in
strong gravity of a central black hole. Several results have already been published: in
Horák et al. (2004) our results are discussed in the context of the observation data of the
source Sco X-1; the general approach to multiple scales was presented in Horák (2004).
Some other papers are in preparation: the epicyclic modes of the accretion torus are
derived in Abramowicz et al. (2005a), phase-plane topologies of the epicyclic resonances
are explored in Horák & Karas (2005a) and the possibility of the X-ray modulation through
the modulation of the accretion rate in the boundary layer of accreting neutron stars is
examined in Horák (2005a) and Abramowicz et al. (2005b). Several results of the second
Part are presented in Horák & Karas (2005b).
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ideas and pertinent comments on this work and my research. I wish to thank Marek
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Part I

The epicyclic resonance mechanism for twin-peak
oscillations: an axially symmetric scheme
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Introduction

The quasi-periodic oscillations (QPOs) have been reported in the light curves of more than
20 bright low-mass X ray-binaries (LMXBs). Most of them contain accreting neutron stars,
there are also several sources with accreting black holes (van der Klis 2000; McClintock
& Remillard 2003). It appears that that these oscillations originate in accretion disks,
however, the mechanism of signal modulation has not been discovered yet. Much attention
is attracted to the kilohertz QPOs because their frequencies are comparable with orbital
frequencies in the innermost parts of the accretion disks. The orbital frequency of a
particle orbiting the neutron star of mass M at the innermost stable circular orbit (ISCO)
is νISCO = 1580(1 + 0.75j) Hz × 1.4M�/M (Kluźniak et al. 1990).

Many models have been proposed to explain the excitation mechanism of QPOs and
subsequent modulation of the X-ray signal. Among suggested mechanisms are the model
of relativistic precession (Stella & Vietri 1999), the orbiting spot model (Schnittman &
Bertschinger 2004), the models, where QPOs are produced by the magnetically driven
resonance in a diamagnetic accretion disk (Lai 1999), the transition layer model (Titarchuk
2002) or an interesting idea of p-mode oscillations of a small accretion torus (Rezzolla et
al. 2003). Also in this context, Kato (2004) discussed the resonant interaction between
waves propagating in a warped disk, including their rigorous mathematical description.
Comprehensive reviews of possible models and a their detailed discussions in comparison
to observations are given by van der Klis (2000) and McClintock & Remillard (2003).
Recently, it has been suggested that the high frequency QPOs arise from a resonance
between two oscillation modes of the innermost part of the accretion disk (Kluźniak &
Abramowicz 2001; Abramowicz & Kluźniak 2001). Among the reasons to believe that
high frequency QPOs reflect a non-linear resonance between two oscillation modes of a
disk, probably occurring only in strong-field gravity, are the 3 : 2 ratio of the frequencies
of the twin QPOs in black holes (Abramowicz & Kluźniak 2001; McClintock & Remillard
2003), and the sub-harmonic frequency difference between the two QPOs observed in the
accreting 2.5 ms pulsar (Wijnands et al. 2003; Kluźniak et al. 2004; Lee et al. 2004). The
oscillations of the fluid in an accretion disk can be easily modeled by epicyclic oscillations
of a test particle on a circular orbit in equatorial plane.

In the first part of this work we study properties of nonlinear epicyclic oscillations in
the vicinity of a resonance. We show that the coupling of the two modes arises naturally
if we consider non-spherical but still axisymmetric gravitational field. In Chapter 1 we
introduce epicyclic approach according to Chandrasekhar (1960) and Binney & Tremaine
(1950). In addition, we calculate epicyclic frequencies for the gravitational field of a
Newtonian or pseudo-Newtonian star surrounded by a massive ring. Finally, based on
rather heuristic arguments we suggests that the periodic exchange of energy between the
radial and vertical oscillation modes is a general property of epicyclic resonance. Then,
in Chapter 2 we introduce the method of multiple scales according to Nayfeh & Mook
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(1979). Particularly, one can easily find so called solvability conditions that determine
slow behavior of amplitudes and phases of oscillations. That is why it seems to be very
useful in study of a weakly nonlinear system. Next, we point to its algorithmic nature that
allows us to find explicit form of the solvability conditions characteristic for all conservative
two-degree-of-freedom systems. In Chapter 3 the method of multiple time scales is applied
to epicyclic oscillations and properties of three epicyclic resonances, 1:2, 1:1 and 3:2 are
discussed. We also show different topologies of the phase-space in the way that closely
resembles the method of disturbing function familiar from the studies of the mean orbital
elements in celestial mechanics (Kozai 1962). This analogy is very illuminating because
it provides a systematic way of distinguishing topologically different systems. Finally, in
Chapter 4 we come back to our original motivation and apply the above-given theory in
the frame of the quasiperiodic oscillations.



Chapter 1

Epicyclic motion

The idea of epicyclic motion has a long-lasting history in astronomy. Indeed, elliptic
trajectories of planets around the Sun were modelled in this way by Appolonius at the
end of the third century B.C., as well as by Copernicus in the middle of the 16th century.
Interestingly enough, this simple concept meets useful applications also in the present-day
astrophysics, where it can be employed in order to grasp certain aspects of fluid oscillations
near an accreting body. In the next section we will summarize basic equations describing
the particle motion in terms of the epicyclic approximation. Then we embark on more
advanced and perhaps even suprising approach to epicyclic resonances via multiple-scales
formalism. Finally, we will discuss a general scheme of quasi-periodic oscillations, which
is build on the epicyclic approximation and prides itself as being independent of any
particular mechanism modulating the observed light signal – still to be discovered.

1.1 Linear epicyclic oscillations

Let us consider a motion of a test particle in an axially symmetric gravitational field of
a massive body. The gravitational field is described by the potential Φ(r, θ). We employ
spherical coordinates {r, φ, θ}. Furthermore, we suppose that the gravitational field is
symmetric with respect to the equatorial plane θ = π/2. These assumptions are sufficient
for the existence of circular orbits in the equatorial plane.

The Lagrangian of a test particle of unit mass orbiting the body reads

L = 1
2

(
ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ

)
− Φ(r, θ), (1.1)

where dots denote the derivatives with respect to time. The Lagrangian does not depend
on time and the azimuthal angle, therefore two quantities, energy and angular momentum,
are conserved along the particle trajectory,

E = 1
2

(
ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ

)
+ Φ(r, θ), (1.2)

` = r2φ̇ sin2 θ. (1.3)

The Euler-Lagrange equations for the system are

r̈ − r θ̇ +
∂Φ

∂r
− `2

r3 sin2 θ
= 0, (1.4)

r2θ̈ + 2r ṙ θ̇ +
∂Φ

∂θ
− `2 cos θ

r2 sin3 θ
= 0. (1.5)
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12 CHAPTER 1. EPICYCLIC MOTION

Introducing the effective potential

U(r, θ) ≡ Φ(r, θ) +
`2

2r2 sin2 θ
, (1.6)

the governing equations take the form

r̈ − rθ̇2 +
∂U
∂r

= 0, (1.7)

θ̈ + 2
ṙ θ̇

r
+

1

r2
∂U
∂θ

= 0, (1.8)

where partial derivatives are calculated keeping the angular momentum constant. With
the aid of definition (1.6) equation (1.2) becomes

E = 1
2

(
ṙ2 + r2θ̇2

)
+ U(r, θ). (1.9)

The simplest solution of equations (1.7) and (1.8) is an equatorial circular orbit given
by conditions r = r0 = const and θ = π/2. After substitution into governing equations
(1.7) and (1.8), we find (

∂U
∂r

)

0
= 0 and

(
∂U
∂θ

)

0
= 0, (1.10)

where subscript “0” refers to the point [r0, π/2]. Hence, for a given angular momentum `,
the radius of the circular orbit correspond to an extreme of the effective potential. The
stable and unstable orbits correspond to a maxima and minima of the effective potential.
The second condition is satisfied automatically by assumed reflection symmetry with re-
spect to the equatorial plane and the first one relates the angular momentum ` and the
angular velocity Ω of the particle with the radius r0,

`2 = r40Ω2 = r30

(
∂Φ

∂r

)

0
. (1.11)

The energy of the particle is given by E0 = U(r0, π/2) = U0.

An observer moving along a circular orbit measures radial, vertical and azimuthal
epicyclic oscillations of particles having the same angular momentum and slightly higher
energy. Suppose that the particle instantaneous position is at coordinates [r(t), θ(t), φ(t)]
and its angular momentum is `. We assume that r(t) and θ(t) are given by small deviations
from the circular orbit that corresponds to the same angular momentum,

r = r0(1 + δρ), θ = π/2 + δθ. (1.12)

By substitution into equations (1.7) and (1.8) and expanding all terms up to the linear or-
der in deviations δρ and δθ, we arrive at governing equations of two independent harmonic
oscillators

δρ̈ + ω2
rδρ = 0 and δθ̈ + ω2

θδθ = 0, (1.13)

where the radial and vertical epicyclic frequencies are given as

ω2
r =

(
∂2U
∂r2

)

0

, ω2
θ =

1

r20

(
∂2U
∂θ2

)

0

, (1.14)
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or in terms of the gravitational potential Φ(r, z),

ω2
r =

(
∂2Φ

∂r2

)

0

+
3

r0

(
∂Φ

∂r

)

0
, ω2

θ =
1

r20

(
∂2Φ

∂θ2

)

0

+
`2

2r20
. (1.15)

The solution of equations (1.13) are sinusoidal oscillations δρ(t) and δθ(t) in the radial
and vertical direction, respectively. Without loss of generality we can assume that δρ = 0
at the time t = 0. Denoting the phase difference between the two oscillations as ψ, the
solutions can be written as

δρ(t) = aρ cos(ωrt), δθ(t) = aθ cos(ωθt+ ψ). (1.16)

By substituting the expression for radial oscillations into equation (1.3) and expanding
all terms up to the linear order, we find that the particle oscillates also in the azimuthal
direction,

φ(t) = φ(0) + Ω0t−
2Ω0aρ

ωr
sinωrt. (1.17)

The frequency of the azimuthal epicyclic oscillations is always equal to the radial epicyclic
frequency. Hence, in the linear approximation, motion of the particles following nearly
circular orbits can be viewed as the motion along strictly circular orbits plus addition
motion on small epicycles in the equatorial plane and independent oscillations in the
vertical direction.

Equations (1.13) imply that the two epicyclic oscillators independently conserve energy.
Denote δEr and δEθ the energy of the radial and vertical oscillations, respectively. They
are given by

δEr = 1
2r

2
0

(
δρ̇2 + ω2

rδρ
2
)
, δEθ = 1

2r
2
0

(
δθ̇2 + ω2

θδθ
2
)
. (1.18)

Expanding equation (1.9) up to the quadratic order in deviations δρ and δθ, we find the
total energy of orbiting particle as

E = E0 + δE = E0 + δEr + δEθ, (1.19)

where E0 is the particle energy on the circular orbit of the same angular momentum and
δE is the total energy in the epicyclic oscillations of the particle. By inserting the solutions
(1.16) into equation (1.18) we find the epicyclic energy in the form

δE = r2
0ω

2
r

(
a2

ρ +
ω2

θ

ω2
r

a2
θ

)
. (1.20)

1.2 Epicyclic oscillations in selected systems

1.2.1 Keplerian ellipse

Consider the well-known case of nearly circular Keplerian orbits. The source of the gravi-
tational field is Newtonian spherically-symmetric star. The gravitational potential depen-
dends only on the radial coordinate and it follows from the Newton gravitational law

Φ(r) = −GM
r2

, (1.21)

where M is the mass of the star and G is the gravitational constant.
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The orbits corresponding to negative particle energy are ellipses, focuses of which
coincide with the center of the star. The orbital ellipse and its orientation in the space
are described by six parameters – orbital elements. The orbit itself is characterized by its
semi-major axis a and the eccentricity e. Its position with respect to the equatorial plane
is determined by two other parameters: the inclination i of the orbital plane with respect
to the equatorial plane and by the argument of pericenter w (sometimes denoted as ω)
that is an angle between the pericenter, where the closest approach of the particle to the
star occurs, and the ascending node, where the orbit crosses the equatorial plane. The
angle is measured in the orbital plane in the direction of orbital motion. The remaining
two orbital parameters, the longitude of ascending node and the time of pericenter passage
are not important for present discussion.

Let us consider particular orbit. Suppose that it has low eccentricity and inclination
with respect to the equatorial plane, i.e. e � 1 and i � 1. We introduce a cartesian
system {x, y, z} as follows: the origin coincides with the center of the star, the z-axis
is perpendicular to the equatorial plane, and the x-axis coincides with a nodal line (the
intersection of the orbital and the equatorial plane). Finally, the y-axis is chosen with
an appropriate orientation. Let us also introduce two azimuthal angles φ and ϕ that are
measured from the x-axis to the plane that contains orbiting particle and the z-axis. The
angle φ is measured in the equatorial plane and the angle ϕ is measured in the orbital
plane. For small inclinations the difference φ − ϕ is of order of i2 and up to the linear
order in i we can interchange them.

Simple geometrical arguments lead to the expression for the deviation δθ(φ) of the
orbit from the equatorial plane,

δθ(φ) ≈ z(φ)

r(φ)
= sinϕ sin i ≈ i sinφ. (1.22)

The ellipse polar equation gives the dependence r(φ),

r(φ) =
p

1 + e cos(ϕ + w)
≈ p [1 − e cos(φ + w)] , (1.23)

where p ≡ a(1 − e2) is the parameter of the ellipse.
On the other hand, using equations (1.11) and (1.14), we find that all three frequencies

Ω, ωr and ωθ are equal,

ωr = ωθ = Ω =

√
GM

r3
. (1.24)

Then, with the aid of equation (1.16)–(1.17) the expressions for the particle instanta-
neous position reads

φ(t) = φ̃+ Ωt− 2aρ sin(Ω0t), (1.25)

r(t) = r0 [1 + aρ cos(Ωt)] , (1.26)

δθ(t) = aθ cos(Ωt+ ψ), (1.27)

where φ̃ ≡ φ(0) is the azimuthal angle at the time t = 0.
Neglecting the oscillating term, we express Ωt from equation (1.25) and substitute it

into equations (1.26) and (1.27). Then, changing the independent variable from t to φ we
obtain expressions

r(φ) = r0
[
1 + aρ cos(φ− φ̃)

]
, (1.28)

δθ(φ) = aθ cos(φ− φ̃ + ψ) (1.29)
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that are correct up to the linear order in amplitudes aρ and aθ.
Comparing equation (1.23) with (1.28) and equation (1.22) with (1.29) we find

aρ = e, aθ = i, ψ = π/2 − w, r0 = a(1 − e2). (1.30)

Expressions (1.30) gives a physical meaning of quantities characterizing epicyclic oscilla-
tions: the relative amplitude of radial oscillations aρ and the amplitude of the vertical
oscillations aθ equal the eccentricity and the inclination of the elliptical orbit. The phase
difference is connected to the argument of pericenter.

1.2.2 Strong gravity

The strong gravitational fields close to black holes and very compact stars call for use
of general relativity. However, if we are interested only in qualitative properties of rela-
tivistic orbits, the effects of strong gravity can be modelled using the pseudo-Newtonian
gravitational potential firstly introduced by Paczyński & Wiita (1980),

Φ(r) = − GM

r −RS
, (1.31)

where RS ≡ 2GM/c2 is Schwarzschild gravitational radius of the source of gravity. In
general relativity mass of the central body itself provides natural length scale.

Substituting this potential into equations (1.11) and (1.14), we calculate the orbital
frequency and the radial and vertical epicyclic frequencies as (see Figure 1.1)

ω2
r =

GM(r − 3RS)

r(r −RS)3
, ω2

θ = Ω2
0 =

GM

r(r −RS)2
. (1.32)

The fact that vertical epicyclic frequency equals the orbital frequency is connected to the
spherical symmetry of the gravitational field: the orbits are planar because any of them
can be equally considered as equatorial. The radial epicyclic frequency is always smaller
than the latter two and it vanishes at radius r = 3RS. Bellow this radius we have ω2

r < 0 –
the radial epicyclic oscillations are not possible anymore and circular orbits are unstable.
We note that this radius agrees with the location of the marginally stable circular orbit
above Schwarzschild black hole.

1.2.3 Epicyclic frequencies close to a massive ring

As an example of a nonspherical gravitational field we consider a system that constitutes
of a star and a massive equatorial ring. Let the mass of the star be M and that of the ring
m. We assume that the ring radius is a. The axial and reflection symmetries of the system
assure the existence of equatorial circular orbits. The total gravitational field acting on
orbiting particles is given by a superposition of the spherically-symmetric potential of the
star Φs(r) and the axisymmetric potential Φr(r, θ) of the ring,

Φ(r, θ) = Φs(r) + Φr(r, θ). (1.33)

We employ the standard spherical coordinates {r, θ, φ} origin of which coincides with
the center of the star. The potential of the ring is given by

Φr(r, θ) = −
∫ 2π

0

Gλadφ

R(φ)
= −Gm

π

∫ π

0

dφ√
r2 + a2 − 2ar sin θ cosφ

, (1.34)
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Figure 1.1: Left: The radial and vertical epicyclic frequencies in the vicinity of a compact
relativistic object calculated using pseudo-Newtonian potential (solid lines). For reference,
a result of general relativistic calculations for Schwarzschild black hole of same mass is
also shown (dotted line). Right: The ratio of vertical and radial epicyclic frequencies. The
radius is in units of RS and frequencies are in units of c3/GM .

where λ = m/2πa is the length density of the ring mass and R(φ) is a distance between
the point, where the potential is calculated, and a point on the ring at azimuthal angle φ.
This integral can be expressed in terms of complete elliptical integral of the first kind K.
We obtain

Φr(r, θ) = −2Gm

π

K(k)

B1/2
, (1.35)

where B(r, θ) ≡ r2 + a2 + 2ar sin θ and k(r, θ) ≡ 4ar sin θ/B(r).

The total gravitational potential can be expressed in an uniform way as

Φ(r, z) = −GM
r̃

− 2Gm

π

K(k)

B1/2
, (1.36)

where we substitute r̃ = r or r̃ = r − RS in the case of a Newtonian or of a pseudo-
Newtonian star, respectively. The angular momentum of test particles orbiting the central
star along equatorial circular orbits can be calculated using equation (1.11). Substituting
the potential (1.36), we obtain

`(r) = GMr

[
r2

r̃2
+ µr

(r + a)E(k0) + (r − a)K(k0)

π(r2 − a2)

]
, (1.37)

where E is the complete elliptical integral of the second kind and k0 ≡ k(r, π/2). Finally,
we introduced the ratio of masses µ ≡ m/M . Figure 1.2 captures typical behavior of
angular momenta in both, the Newtonian and the pseudo-Newtonian case. According
to Rayleigh criteria the equatorial circular orbits are unstable in regions, where angular
momentum decreases. This occurs close to the ring, where the ring gravity causes radial
epicyclic oscillations unstable.

The orbital frequency follows from equation (1.11),

Ω2(r) =
GM

r3

[
r2

r̃2
+ µr

(r + a)E(k0) + (r − a)K(k0)

π(r2 − a2)

]
, (1.38)
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Figure 1.2: The angular momentum (thick line) of the test particle moving in the combined
gravitational field of the star and ring along the circular orbit. The left and right panel
correspond to the case of a Newtonian and pseudo-Newtonian central star, respectively.
The ratio of masses is µ = 0.1. The radial coordinate is rescalled by the radius a of the
ring. In the latter case we choose a = 9RS. The Keplerian angular momentum `K for
solely star gravitational field is also shown (thin line) for reference. Angular momentum is
rescaled by `K(a) in both cases. The circular orbits are unstable in regions where angular
momentum decreases according to Rayleigh criteria. The epicyclic approximation of a
particle motion is possible only in regions of stable circular orbits.

and the radial and vertical epicyclic frequencies can be calculated using equation (1.14).
We obtain

ω2
r(r) =

GM

r3

[
r2(3r̃ − 2r)

r̃3
+

2µ

π

(r − a)2K(k0) − a2E(k0)

r2(r − a)2(r + a)

]
, (1.39)

ω2
θ(r) =

GM

r3

[
r2

r̃2
+

2µ

π

E(k0)

(r − a)2(r + a)

]
. (1.40)

The epicyclic frequencies as functions of radius are plotted in Figure 1.3. The radial
epicyclic frequency is defined only in regions of stable circular orbit and it is smaller
between the ring and the central object than in absence of the ring because the radial
components of gravitational force of the ring and of the star act against. On the other
hand, the vertical epicyclic frequency greater than in the case without the ring because
the vertical components of the gravitational force acts together.

In close vicinity of the ring and the central object the vertical epicyclic frequency
diverges: circular orbits are stable when perturbed vertically, however they are unstable
with respect to radial perturbations.

The approach of epicyclic oscillations is also usefull for qualitative discussion of prop-
erties of orbit. The difference of a radial epicyclic frequency and the orbital frequency
gives us the angular velocity of pericenter shift and the difference of vertical epicyclic
and orbital frequency gives the frequency of nodal precession. The expressions (1.38),
(1.39) and (1.40) illustrate that the nodal precession is connected to a nonsphericity of
the gravitational field (the lowest-order term in the difference Ω − ωθ is proportional to
µ).
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Figure 1.3: The radial and vertical epicyclic frequencies (thick line) of a test particle
moving in the gravitational field of a star and ring. The left and right panel show the
case of a Newtonian and pseudo-Newtonian central star, respectively. The parameters are
chosen in the same way as in Figure 1.2. Epicyclic frequencies in absence of the ring are
also shown (thin line).

1.3 Nonlinear effects

The linear theory of epicyclic oscillations captures many essential features characteristic for
orbits that are not too different from circular, like pericenter advance and nodal precession.
It is valid as long as the deviations δr and δθ from the circular orbits are small and the
nonlinear terms in equations of motion can be neglected. However in some, rather specific
cases the nonlinear dynamics should not be ignored at all. In those cases, the epicyclic
oscillations are strongly influenced by nonlinear terms.

The equations governing orbital motion, (1.7) and (1.8), can be expressed in the par-
ticular form with the linear terms on the left-hand side and the nonlinear on the other
one,

δρ̈ + ω2
rδρ = (1 + δρ)δθ̇ −

[
1

1 + δρ

∂U
∂r

− ω2
rδρ

]
, (1.41)

δθ̈ + ω2
θδθ = 2

δρ̇δθ̇

1 + δρ
−
[

1

(1 + δρ)2
∂U
∂θ

− ω2
θδθ

]
. (1.42)

A suggestive example of nonlinear behavior of orbiting particles has been given by
Kluźniak & Abramowicz (2002). Let us take the nonlinear equations of motion and start
with purely radial epicyclic oscillations. If the amplitude aρ is small, the oscillations
have the sinusoidal form δρ(t) = aρ cos(ωrt) in accordance with the linear theory. In the
equation for vertical oscillations we keep also the nonlinear term proportional to δρδθ
that appears in the Taylor expansion of the right hand side. Then the equation governing
vertical oscillations becomes

δθ̈ + ω2
θ [1 + κaρ cos(ωrt)] δθ = 0, (1.43)

where κ arises as a coefficient of the Taylor expansion. Equation (1.43) is the famous
Mathieu equation for which it is known that the solution δθ = 0 is unstable if the frequen-
cies ωr and ωθ satisfy ωr/ωθ ≈ n/2 with n = 1, 2, 3... (Landau & Lifshitz 1969; Nayfeh &
Mook 1979). In that case, referred to as the parameteric resonance, the amplitude of verti-
cal oscillations exponentially grows on the time scale proportional to (κaρ)n. Suppose that
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there is a particular radius where the ratio of epicyclic frequencies equals 1:2. According to
the Mathieu equation a small vertical perturbation of the orbit in vertical direction (that
is always present) would lead to exponential grow of the amplitude of vertical oscillations.

However, what provides the energy for the exponential grow? In fact, the energy
source are radial oscillations, the energy of which is transfered into the vertical mode by
parametric resonance. In this example, we did not consider any influence of the vertical
oscillations on the radial ones.

Actually, one can consider directly opposite mechanism. If, vice versa, we start with
small vertical excursion from the equatorial plane, the oscillations of the particle are given
as δθ = aθ cos(ωθt). The Taylor expansion of the nonlinearities in equation (1.42) contains
the term proportional to δθ2. Keeping this term on the right-hand side, we get

δρ̈ + ω2
θδρ = λa2

θ cos2(ωθt) = 1
2λa

2
θ [1 + cos(2ωθt)] . (1.44)

This equations describes a driven harmonic oscillator, natural frequency of which is ωr and
the frequency of forcing is 2ωθ. The resonant condition gives us the same resonance as
Mathieu equation however in this case the radial mode of oscillations is resonantly excited
by the vertical one.

Because the epicyclic oscillator described by equations (1.41) and (1.42) conserves
energy, the grows of energy of one mode must be accompanied by the energy loss of the
other mode. Hence, we expect that close to the radii where the two epicyclic frequencies
are in a ratio of small integers the periodic exchange of energy between the two modes of
oscillations occurs.

We note that this behavior is characteristic for systems with internal or autopara-

metric resonance. One particular example of such system is a spring pendulum whose
eigenfrequencies are in rational ratio.

Regarding the results of section 1.2.1, the internal resonance in epicyclic oscillators
has an interesting consequences. Since the amplitude of the radial and vertical epicyclic
oscillations are connected to the eccentricity and inclination of the particle orbit. we
expect that close to radii, where the epicyclic frequencies are in rational ratios, periodic
exchange of energy between radial and vertical epicyclic oscillations may occur. The orbit
of particles switches between highly-inclined and nearly-circular to highly-eccentric and
nearly equatorial.

t has been shown by Abramowicz et al. (2003), Rebusco (2004) that, the nonlinear
coupling between the radial and vertical epicyclic oscillations may lead to the epicyclic
resonance occurring close to the radii where the two epicyclic frequencies are comersuable.
In the two papers, the two modes were coupled by introducing additional nonlinear force
acting on the particle whose form was chosen ad-hoc and whose strength was parame-
terized by a single parameter α. Natural consequence of nonlinear coupling is that the
observed frequencies of oscillations are shifted with respect to the epicyclic frequencies.
The frequency shift depends on the strength of the coupling and on the amplitudes of
oscillations. By setting various initial amplitudes or the strength of the coupling, the
authors were able to fit the correlation between the two kilohertz frequencies observed in
Sco X-1.

In what follows, we study properties of orbital motion in general axisymmetric gravi-
tational field in the case when internal (“epicyclic”) resonance occurs. This part of work
was strongly influenced by earlier results of Rebusco (2004), who considered orbital mo-
tion in Schwarzschild space-time with additional ad-hoc coupling of vertical and radial
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oscillations and inferred many interesting properties of nonlinear oscillations of such sys-
tem. Namely, she derived corrections of the observed frequencies to eigenfrequencies of
the system and found spectrum of possible resonances. In this work the coupling appears
naturally by assuming non-spherical (but still axisymmetric) gravitational field. We fur-
ther generalize her approach to the case of the energy exchange that is charactiristic for
internal resonance. The nonlinear dynamics of the epicyclic oscillator will be treated in
framework of multiple-time scales (Nayfeh & Mook 1979) that is introduced in the next
section. The theory will be immediately illustrated by examples of epicyclic resonances
in the gravitational field of the both the Newtonian and pseudo-Newtonian star and the
massive disk.



Chapter 2

Multiple scales

2.1 Nonlinear oscillations

Let us consider the case of small but finite oscillations of a single-degree-of-freedom system
with quadratic nonlinearity governed by equation

ẍ+ ω2x = αω2x2. (2.1)

The strength of the nonlinearity is parameterized by constant α. If one neglect the right-
hand side of equation (2.1) one obtains governing equation of the corresponding linear
system. It plays a key role in the analysis of weakly nonlinear systems. Basically the
response of the nonlinear system can be found by perturbing the response of the corre-
sponding linear system. Hence, we seek a perturbation expansion of the form

x(t, ε) = εx1(t) + ε2x2(t) + ε3x3(t) + O(ε4), (2.2)

The expansion parameter ε expresses the order of amplitude of oscillations. The main
advantage of this approach is that, although the original equation is nonlinear, we solve
linear equations in each step. For a practical purpose we require this expansion to be
uniformly convergent for all times of interest. In that case the higher-order terms are
small compared to lower-order terms and a sufficient approximation is reached concern-
ing a finite number of terms. The expansion (2.2) can represent a periodic solution as
well as an unbounded solution with exponential grow. The uniformity of the expansion
means that the higher-order terms provide only small correctins to the lower-order ones.
Mathematically, this requirement is equivalent to the condition

lim
t→∞

xk+1(t)

xk(t)
<∞, k ∈ N . (2.3)

We substitute expansion (2.2) into governing equation (2.1) and, since xk is indepen-
dent of ε, we equate coefficients of corresponding powers of ε on both sides. This leads to
the following system of equations

ẍ1 + ω2x1 = 0, (2.4)

ẍ2 + ω2x2 = αω2x2
1, (2.5)

ẍ3 + ω2x3 = 2αω2x1x2. (2.6)

The general solution of equation (2.4) can be written in the form x1(t) = Aeiωt +cc, where
cc denotes complex conjugation. The complex constant A contains information about the

21
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initial amplitude and phase of oscillations. Substituting this solution into equation (2.5)
we find linear equation for the first approximation x2(t)

ẍ2 + ω2x2 = αω2
(
A2e2iωt + |A|2

)
+ cc. (2.7)

A general solution consists of the solution of the homogeneous equation and a particular
solution,

x2(t) = A2e
iωt − α

(
1

3
A2

1e
2iωt − |A1|2

)
+ cc, (2.8)

where A1 denotes a constant A in the solution of equation (2.4). Therefore, the solution
of governing equation up to the second order is given by

x(t) =
(
εA1 + ε2A2

)
eiωt − α

(
1

3
A2

1e
2iωt − |A1|2

)
+ cc. (2.9)

In fact, there are two possible ways to satisfying general initial conditions x(0) = εx0 and
ẋ(0) = εẋ0 imposed on equation (2.1). The first one is to compare them with the general
solution (2.9) and find constants A1, A2. This procedure should be repeated in each
order of approximation, which involves a tedious algebra especially in higher orders. The
second, equivalent and apparently much easier way is to include only particular solutions
to the higher approximations and treat the constant A as a function of ε with expansion
A = A1 + εA2 + . . .. Then, given initial conditions are satisfied by expanding the solution
for x1 via ε and choosing the coefficients An appropriately.

According to this discussion we express the solution of equation (2.7) as

x2(t) = −α
(

1

3
A2e2iωt − |A|2

)
+ cc. (2.10)

Substituting x1 and x2 into (2.6) we obtain

ẍ3 + ω2x3 =
2α2ω2

3

(
5A|A|2eiωt −A3e3iωt

)
+ cc. (2.11)

Since the right-hand side of this equation contains the term proportional to e iωt, any
solution must contain a secular term proportional to teiωt, which becomes unbounded as
t → ∞. This fact has nothing to do with true physical behavior of the system for large
times. The reason is purely mathematical: starting from time when (ωt) ∼ 1/(εα), the
higher-order approximation x3, which contains the secular term, does not provide only a
small correction to x1 and x2, and the expansion (2.2) becomes singular. Physically, the
presence of the secular term in the third order reflects very general feature of nonlinear
oscillations – dependence of the observed frequency on the actual amplitude. For larger
amplitudes the actual frequency of oscillations differs from the eigenfrequency ω and the
higher-order terms in the expansion (2.2) – always oscillating with an integer multiples of
ω – must quickly increase as time grows.

2.2 The method of multiple scales

Is it possible to find an expansion representing a solution of equation (2.1) which is uni-
formly valid even for larger time than ∼ ε−1? The answer is positive, if one considers
more general form of the expansion than equation (2.2). In the method of multiple scales
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(Nayfeh & Mook 1979) more general dependence of coefficients xi on the time is reached
by introducing several time scales Tµ, instead of a single physical time t. The time scales
are introduced as

Tµ ≡ εµt, µ = 0, 1, 2 . . . (2.12)

and they are treated as independent. It follows that instead of the single time derivative
we have an expansion of partial derivatives with respect to Tµ

d

dt
= D0 + εD1 + ε2D2 + ε3D3 + O(ε4), (2.13)

d2

dt2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + 2ε3(D0D3 +D1D2) + O(ε4), (2.14)

where Dµ = ∂/∂Tµ.
We assume that the solution can be represented by an expansion having the form

x(t, ε) = εx1(Tµ) + ε2x2(Tµ) + ε3x3(Tµ) + O(ε4). (2.15)

The number of time scales is always the same as the order at which the expansion is
truncated. We carry out the expansion to the third order and thus first three scales T0,
T1 and T2 are sufficient.

Substituting equations (2.14) and (2.15) into the governing equation (2.1) and equating
the coefficients of ε, ε2 and ε3 to zero we obtain

(D2
0 + ω2)x1 = 0, (2.16)

(D2
0 + ω2)x2 = −2D0D1x1 + αω2x2

1, (2.17)

(D2
0 + ω2)x3 = −2D0D1x2 −D2

1x1 − 2D0D2x1 + αω2x1x2. (2.18)

Note that although these equations are more complicated than (2.4)–(2.6), they are still
linear and can be solved successively. The solution of equation (2.16) is the same as the
solution of the corresponding linear system, the only difference is that constant A now
generally depends on other scales

x1 = A(T1, T2)eiωT0 + cc. (2.19)

Substituting x1 into equation (2.17) we obtain

(D2
0 + ω2)x2 = −2iω(D1A)eiωT0 + αω2

(
A2e2iωT0 + |A|2

)
+ cc. (2.20)

The first term on the right-hand side implies the presence of a secular term in the second-
order approximation which causes non-uniformity of the expansion (2.15). However, in
case of the method of multiple scales these terms can be eliminated by imposing additional
conditions on the function A(Tµ). These conditions are sometimes called conditions of
solvability or conditions of consistency. In fact, the reason why the same number of scales
as the order of approximation is needed is that one secular term gets eliminated in each
order, and therefore the function A(Tµ) is specified by the same number of solvability
conditions as the number of its variables.

The secular term is eliminated if we require D1A = 0. Hence, in further discussion we
assume that A is a function of T2 only. A particular solution of equation (2.20) is

x2(t) = −α
(

1

3
A2(T2)e2iωT0 − |A(T2)|2

)
+ cc. (2.21)
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Figure 2.1: Oscillations of a system with quadratic nonlinearity are governed by equation
(2.1). We compare results of the multiple scales method (solid curve), a simple straight-
forward expansion method (dashed curve) and the direct numerical integration of the
governing equation (points). The initial condition is x(0) = 0.1, ẋ(0) = 0 and the strength
of nonlinearity is α = 3. The horizontal dotted line shows the shifted “equilibrium posi-
tion” and the vertical one denotes the value (ωt) = (εα)−1 at which the straightforward
expansion becomes nonuniform. The solution corresponding to the linear system is also
shown (dotted curve).

Using the condition D1A = 0 equation (2.18) takes much simpler form

(D2
0 + ω2)x3 = −

(
2iωD2A+

10α2ω2

3
A|A|2

)
eiωT0 − 2α2ω2

3
A3e3iωT0 + cc. (2.22)

The secular term is eliminated equating the terms in the bracket to zero

2iωD2A+
10α2ω2

3
A|A|2 = 0. (2.23)

This additional condition fully determines (excepting initial conditions) time behavior of
function A(T2). Let us write it in the polar form A = 1

2 ãe
iφ and then separate real and

imaginary parts. We obtain

D2ã = 0 and D2φ = −5α2

12
ωã2. (2.24)

The solutions of these equations are

ã = ã0 and φ = − 5

12
α2ã2

0ωT2 + φ0, (2.25)
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where ã0 and φ0 are constants which are determined from the initial conditions.
It follows from equation (2.19) that A(T2) slowly modulates the amplitude and the

phase of oscillations. Since ã is constant, the amplitude is constant all the time. Since φ
depends on T2 = ε2t linearly, also the observed frequency of the oscillations is constant,
but not equal to the eigenfrequency ω.

Substituting equations (2.25) and (2.21) into (2.15), we obtain solution of equation
(2.1) up to the second order

x(t) = a0 cos(ω?t+ φ0) − α

6
a2

0 cos[2(ω?t+ φ0)] +
α

2
a2

0 + O(a3
0), (2.26)

where a0 = εã0 � 1 and ω? is the observed frequency of oscillation given by

ω? = ω

(
1 − 5α2

12
a2

0

)
. (2.27)

The leading term of the expansion (2.26) describes oscillations with frequency close
to eigenfrequency of the system. Both, the amplitude and the frequency are constant
in time, but they are not independent (as in the linear approximation). The frequency
correction given by equation (2.27) is proportional to the square of the amplitude. This
fact is sometimes called the amplitude-frequency interaction and – as was mentioned above
– it causes the non-uniformity of the expansion (2.2) (see Figure 2.1).

The second term oscillates with twice as large frequency and provides the second-order
correction to the leading term. The presence of higher harmonics in the power-spectra of
oscillations strongly points to the nonlinear nature of the phenomenon.

Finally, the third term describes constant shift from the equilibrium position and is
related to the asymmetry of the potential energy about the point x = 0. In the linear
analysis, this effect is not present because the potential energy depends on x2, and therefore
it is symmetric with respect to the point x = 0. Hence, this drift is the third characteristic
feature of nonlinear oscillations.

2.3 A conservative two-degrees-of-freedom system

So far, we have studied oscillations of a one-degree-of-freedom system. However if the
system contains two or more degrees of freedom additional phenomena called internal

resonances may occur. In this section we carry out a multiple-scales expansion of a
general conservative system having two degrees of freedom, the coordinate perturbations
δρ and δθ. The oscillations are described by two coupled differential equations of a very
general form

δ̈ρ + ω2
r δρ = fρ(δρ, δθ, ˙δρ, δ̇θ), (2.28)

δ̈θ + ω2
θ δθ = fθ(δρ, δθ, ˙δρ, δ̇θ). (2.29)

We suppose that the functions fρ and fθ are nonlinear, i.e., their Taylor expansions start
with the second order. Further assumption is that these functions are invariant under
reflection of time (i.e., the Taylor expansion does not contain odd powers of time derivatives
of δρ and δθ). Later, we show that the energy is conserved in the system that satisfies
this condition. Many authors studied such systems with a particular form of functions fρ

and fθ (see Nayfeh & Mook 1979 and references therein), also equations (1.41) and (1.42)
governing the epicyclic oscillations represents one example.
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The expansion is similar to that of the one-degree-of freedom system in many respects.
We seek the solutions of equations (2.28) and (2.29) in the form of the series

δρ(t, ε) =
4∑

n=1

εnρn(Tµ), δθ(t, ε) =
4∑

n=1

εnθn(Tµ), (2.30)

where Tµ = εµt are independent time scales. We will finish the discussion in the fourth
order, hence the first four scales (µ = 0, 1, 2, 3) are sufficient, however, it is possible to
proceed to higher orders in a similar way. Then, we expand the time derivatives according
to equations (2.13) and (2.14) and we equate terms of the same order in ε on both sides
of expanded equations.

2.3.1 First order

In the first order we obtain equations corresponding to the independent harmonic oscilla-
tors,

(D2
0 + ω2

r )ρ1 = 0, (D2
0 + ω2

θ)θ1 = 0. (2.31)

The solutions can be expressed in the form

ρ1 = Âρ + Â−ρ, θ1 = Âθ + Â−θ, (2.32)

where we introduce the notation Âx ≡ Axe
iωxT0 , Â−x = A∗

xe
−iωxT0 , and x = ρ or θ,

respectively. The complex amplitudes Ax generally depend on the slower time-scales T1,
T2, T3.

2.3.2 Second order

In the second order, the terms proportional to ε2 in the expanded left-hand side of gov-
erning equations (2.28) or (2.29) are

[
δ̈x + ω2

xx
]
2

= (D2
0 + ω2

x)x2 + 2iωxD1Âx − 2iωxD1Â−x, (2.33)

On the right-hand side there are second-order terms of the Taylor expansion of the non-
linearity fx(δρ, δθ, ˙δρ, δ̇θ), with ρ1, θ1, D0ρ1 and D0θ1 in the place of δρ, δθ, δ̇ρ and δ̇θ,
respectively. The second-order terms on the right-hand sides can be expressed as linear
combinations of quadratic terms constructed from Â±ρ and Â±θ. This can be written as

[
fx(δρ, δθ, ˙δρ, δ̇θ)

]
2

=
∑

|α|=2

C(x)
α Âα1

−ρÂ
α2

ρ Âα3

−θÂ
α4

θ , (2.34)

where α = (α1, . . . , α4) and |α| = α1 + . . . + α4. The constants C
(x)
α are given by angular

frequencies of ωx and by coefficients of the Taylor expansion of the functions fx. The coef-
ficients to which terms with a time derivative contributes, are generally complex because
derivating the first order solutions with respect to T0 is equivalent to multiplying them
by coefficient iωx, However, if we suppose that the Taylor expansion does not contain odd

powers of time derivatives, all of the coefficients C
(x)
α must be real.

Equating right-hand sides of equations (2.33) and (2.34) we find

(D2
0 + ω2

x)x2 = −2iωxD1Âx + 2iωxD1Â−x +
∑

|α|=2

C(x)
α Âα1

−ρÂ
α2

ρ Âα3

−θÂ
α4

θ . (2.35)
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ωθ : ωr Secular terms

Outside −2iωrD1Âρ

resonance −2iωθD1Âθ

1 : 2 −2iωrD1Âρ, K1001Â−ρÂθ

−2iωθD1Âθ, Λ0200Â
2
ρ

2 : 1 −2iωrD1Âρ, K0002Â
2
θ

−2iωθD1Âθ, Λ0110ÂρÂ−θ

Table 2.1: Possible resonances and secular terms in the second order of approximation.

For a simpler notation, we introduce Λα ≡ C
(ρ)
α and Kα ≡ C

(θ)
α . The first record is related

to the case when the system is far from any listed resonance. In this case only regular
secular terms are present. The first and the second row in the record of each resonance is
related to the equation for the radial and vertical oscillations, respectively.

The right-hand side of equation (2.35) contains one secular term 2iωxD1Â−x independently
of the eigenfrequencies ωr and ωθ. However, in some particular cases, additional secular
terms appear. For example, when ωr ≈ 2ωθ the terms proportional to Â2

θ in the ρ-equation
(x → ρ) and ÂρÂ−θ in the θ-equation (x → θ) become secular and they should be also
included to the solvability conditions. The analogical situation happens when ωr ≈ ωθ/2.
These cases, referred to as internal resonances, show qualitatively different behavior. The
terms that become secular only for a particular combination of frequencies ωr and ωθ will
be referred to as resonant terms contrary to the regular secular terms that appear always.
Possible resonances in the second order of approximation and secular terms in equation
(2.35) are listed in Table 2.1. At this moment, we assume that the system is far from any
resonance. The regular secular terms vanishes if we set

D1Ax = 0. (2.36)

The frequencies and the amplitudes are constant and the behavior of the system is almost
the same as in the linear approximation. The only difference is the presence of the higher
harmonics oscillating with the frequencies 2ωr, 2ωθ and |ωr ± ωθ|. They are given by a
particular solution of equation (2.35) without the secular term and they can be expressed
as a linear combination

x2 =
∑

|α|=2

Q(x)
α Âα1

−ρÂ
α2

ρ Âα3

−θÂ
α4

θ . (2.37)

Under the assumption of a time-reflection invariance, all constants Q
(x)
α are real and their

relation to C
(x)
α becomes obvious, by substituting x2 into equation (2.35). We find

Q
(x)
klmn =

C
(x)
klmn

ω2
x − [(k − l)ωr + (m− n)ωθ]2

. (2.38)
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ωθ : ωr Secular terms

Outside 2iωrD2Âρ, K1200|Aρ|2Âρ, K0111|A2
θ|Âρ

resonance 2iωθD2Âθ, Λ1101|Aρ|2Âθ, Λ0012|A2
θ|Âθ

1 : 3 2iωrD2Âρ, K1200|Aρ|2Âρ, K0111|A2
θ|Âρ, K0030Â

3
θ

2iωθD2Âθ, Λ1101|Aρ|2Âθ, Λ0012|A2
θ|Âθ, Λ0120ÂρÂ

2
−θ

1 : 1 2iωrD2Âρ, K1200|Aρ|2Âρ, K0111|A2
θ|Âρ, K1110|Aρ|2Âθ,

K0012|Aθ|2Âθ, K0210Â
2
ρÂ−θ, K1002Â−ρÂ

2
θ

2iωθD2Âθ, Λ1101|Aρ|2Âθ, Λ0012|A2
θ|Âθ, Λ2100|Aρ|2Âρ,

Λ0021|Aθ|2Âθ, Λ1002Â−ρÂ
2
θ, Λ0210Â

2
ρÂ−θ

3 : 1 2iωrD2Âρ, K1200|Aρ|2Âρ, K0111|A2
θ|Âρ, K2001Â

2
−ρÂθ

2iωθD2Âθ, Λ1101|Aρ|2Âθ, Λ0012|A2
θ|Âθ, Λ0300Â

3
ρ

Table 2.2: Possible resonances in the third order of approximation.

2.3.3 Third order

When we proceed to the higher order, the discussion is analogical in many respects. The
terms proportional to ε3, which appear on the left-hand side of the governing equations,
are given by [

δ̈x + ω2
xx
]
3

= (D2
0 + ω2

x)x3 + 2iωxD2Âx − 2iωxD2Â−x. (2.39)

The terms containing D1x1 and D1x2 vanish in consequence of the solvability condition
(2.36). The right-hand side contains cubic terms of the Taylor expansion combined using
first-order approximations ρ1, θ1 and quadratic terms combined using one first-order – ρ1

or θ1 – and one second-order quantity – ρ2 or θ2. Since the second-order terms are linear
combinations of Â±ρ and Â±θ, the expanded equations in the third order takes the form

(D2
0 + ω2

x)x3 = −2iωxD2Âx + 2iωxD2Â−x +
∑

|α|=3

C(x)
α Âα1

−ρÂ
α2

ρ Âα3

−θÂ
α4

θ , (2.40)

where all constants C
(x)
α are real.

The secular terms together with possible resonances are summarized in Table 2.2. Far
from any resonance, we eliminate only the regular secular terms. Multiplying by e−iωxt,
the solvability conditions become

D2Aρ = − i

2ωr

[
K1200|Aρ|2 + K0111|Aθ|2

]
Aρ, (2.41)

D2Aθ = − i

2ωθ

[
Λ1101|Aρ|2 + Λ0012|Aθ|2

]
Aθ. (2.42)

A particular solution of equation (2.40) is given by linear combination of cubic terms
constructed from Â±ρ and Â±θ

x3 =
∑

|α|=3

Q(3,x)
α Âα1

−ρÂ
α2

ρ Âα3

−θÂ
α4

θ , (2.43)
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ωθ : ωr Secular terms

Outside 2iωrD3Âρ

resonance 2iωθD3Âθ

1 : 4 2iωrD3Âρ, K0004Â
4
θ

2iωθD3Âθ, Λ0103ÂρÂ
3
θ

2 : 3 2iωrD3Âρ, K0130ÂρÂ
3
−θ

2iωθD3Âθ, Λ0220Â
2
ρÂ

2
−θ

3 : 2 2iωrD3Âρ, K2002Â
2
−ρÂ

2
θ

2iωθD3Âθ, Λ0310Â
3
ρÂ−θ

4 : 1 2iωrD3Âρ, K0301Â
3
ρÂθ

2iωθD3Âθ, Λ0400A
4
ρ

Table 2.3: Possible resonances in the fourth order of approximation.

with real coefficients Q
(3,x)
α .

2.3.4 Fourth order

The terms proportional to ε4 in the expanded left-hand side of the equations (2.28) and
(2.29) are [

δ̈x + ω2
xx
]
4

= (D2
0 + ω2

x)x3 + 2D3D0x1 + 2D0D2x2. (2.44)

The operator D0D2 acts on x2 given by equation (2.37). The result is given by solvability
conditions (2.41), (2.42) and can be written in the form

2D0D2x2 = ω2
x

∑

|α|=4

J (x)
α Âα1

−ρÂ
α2

ρ Âα3

−θÂ
α4

θ , (2.45)

where constants J
(x)
α are real because both D0 and D2 produce one imaginary unit. The

right-hand side is expanded similarly. Finally, we arrive at the expanded governing equa-
tion in the form

(D2
0 + ω2

x)x4 = −2iωxD3Âx + 2iωxD3Â−x +
∑

|α|=4

C(x)
α Âα1

−ρÂ
α2

ρ Âα3

−θÂ
α4

θ , (2.46)

with real constants C
(x)
α . On the right-hand side there is only one regular secular term

−2iωxD3Âx independently of ωr and ωθ, the sum contains only resonant terms. These
terms and solvability conditions are listed in the table 2.3.

2.3.5 Secular terms

A simplicity of multiple scales and algorithmic nature of this method allowed us to predict
a general form of secular conditions in a general conservative system with two degrees of
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freedom. The conditions arise from elimination of terms that are secular in fastest variable
T0. These terms are eliminated because otherwise the expansions of solutions become
nonuniform. In the expansion few secular terms appear regularly, independently of the
actual ratio of system eigenfrequencies. Such terms are referred to as regular secular terms.
In addition, if eigenfrequencies are close to a fraction of small integers, other nonlinear
terms mixing the two oscillations become secular. These terms and the situation when
this occurs are referred to as nearly secular terms and the internal resonance, respectively.

One particular feature of an internal resonance k:l is that kωr and lωθ need not to be
infinitesimally close as would be expected from other resonances that are studied by means
of linear analysis. Let us consider, for example, an internal resonance 1 : 2. The resonance
occurs when ωθ ≈ 2ωr. Eliminating secular terms, we obtain solvability conditions (see
table 2.1)

−2iωrD1Âρ + K1001Â−ρÂθ = 0, −2iωθD1Âθ + Λ0200Â
2
ρ = 0. (2.47)

The first term in each equation is regular and the second one is resonant. The solvability
conditions give us the long term behavior of the amplitudes and phases of oscillations.
These are included in the complex amplitudes Aρ and Aθ. Suppose now that the system
departs from the exact ratio by small (first-order) deviation ωθ = 2ωr + εσ, where σ is
detuning parameter describing vicinity of the resonance. The terms proportional to Â−ρÂθ

and Â2
ρ remain still secular in the variable T0 because

Â−rÂθ = A∗
ρAθe

i(ωθ−ωr)T0 = A∗
ρAθe

i(ωr+εσ)T0 = A∗
ρAθe

iσT1eiωrT0 (2.48)

Analogical situation occur in the θ-equation in the case of the secular term Â2
ρ.



Chapter 3

Epicyclic resonances

3.1 The nonlinearities in governing equations

In this chapter we study nonlinear oscillations and internal resonances of epicyclic oscil-
lators governed by equations (1.41) and (1.42). It represents one particular example of a
general conservative system of two degrees of freedom described by equations (2.28) and
(2.29) that has been studied in section 2.3. The nonlinear functions on the right-hand
sides take the form

fρ(δρ, δθ, δρ̇, δθ̇) = (1 + δρ)δθ̇ −
[

1

1 + δρ

∂U
∂r

− ω2
rδρ

]
, (3.1)

fθ(δρ, δθ, δρ̇, δθ̇) = 2
δρ̇δθ̇

1 + δρ
−
[

1

(1 + δρ)2
∂U
∂θ

− ω2
θδθ

]
. (3.2)

The derivatives of the effective potential are evaluated at the actual position of particles.
Note also that linear terms in expanded potential derivatives gives epicyclic frequencies,
therefore, the first nonzero terms in expansion of the square brackets are quadratic.

We expand the effective potential derivatives into the Taylor series about a circular
orbit, for which δρ = δθ ≡ 0. For simpler notation, we denote derivatives of the potential
at the circular orbits as

uij ≡
(
∂i+jU
∂ri∂θj

)

[r0,π/2]

. (3.3)

We consider only the case of the potentials symmetric with respect to the equatorial plane.
This implies condition ui(2k+1) = 0, where k ∈ N .

The Taylor expansion of functions fρ and fθ up to the fourth order provides many
nonlinear terms,

fρ = − 1
2r0u30 δρ

2 + δθ̇2 − u12

2r0
δθ2 − 1

6r
2
0u40 δρ

3 + δρ δθ̇2 + 1
2u22 δρ δθ

2

− 1
24r

3
0u50 δρ

4 − 1
4r0u30 δρ

2 δθ2 − u14

24r0
δθ4, (3.4)

fθ =

(
2ω2

θ − u12

r0

)
δρ δθ − 2δρ̇ δθ̇ −

(
1
2u22 + 3ω2

θ − 2u12

r0

)
δρ2δθ + 2 δρ δρ̇ δθ̇,

−2 δρ2δρ̇ δθ̇ +

(
4ω2

θ + u22 −
3u12

r0
− 1

6
r0u32

)
δρ3δθ

+

(
u04

3r20
− u14

6r0

)
δρ δθ3. (3.5)

31
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3.2 The multiple-scales expansion

We introduce small perturbation parameter ε expressing the strength of the oscillations.
Hence, we assume that δρ ∼ δθ ∼ ε. We seek the solutions of nonlinear governing equa-
tions in the form (2.30). We should also substitute expansions (2.13) and (2.14) of the time
derivatives. This involves simple but considerably lengthy algebra. We used Mathematica

for this purpose. Here we briefly summarize several results important for further discus-
sion. We closely follow the general calculations of section 2.3. We compare coefficients of
same powers of ε on both sides of expanded governing equations. We obtain equations for
functions ρi(Tj) and θi(Tj) that can be solved successively – lower order solutions appear
on the right-hand sides of higher order equations as in a general case discussed in section
2.3. In each order of approximation we rearrange the equations for radial and vertical
oscillations to “canonical” forms,

(D2
0 + ω2

r )ρn =
∑

i+j+k+l=n

KijklÂ
i
−ρÂ

j
ρ Â

k
−θÂ

l
θ, (3.6)

(D2
0 + ω2

θ)θn =
∑

i+j+k+l=n

ΛijklÂ
i
−ρÂ

j
ρ Â

k
−θÂ

l
θ, (3.7)

where n is the order of approximation. This way we identify constants Kijkl and Λijkl.

3.2.1 Possible resonances

The studied gravitational potential is symmetric with respect to the equatorial plane.
Therefore, the Taylor expansions (3.4) and (3.5) do not contain terms that arise from odd
derivatives of the effective potential with respect to θ. Contrary to the general case, the
right hand sides of equations (3.6) and (3.7) do not contain all the terms and the system
shows only few resonances. The only resonances that appear in the system with such
additional symmetry are

1 : 2, 1 : 1, 3 : 2 and 1 : 4, (3.8)

The first three were already identified by Rebusco (2004). where the numbers refer to
ratio ωθ : ωr. The remaining resonances do not appear because corresponding coefficients
Kijkl and Λijkl vanish.

3.2.2 Solvability conditions

1:2 resonance. The solvability conditions take the form (compare with table 2.1)

D1Âρ = − i

2ωr
K0002Â

2
θ, (3.9)

D1Âθ = − i

2ωθ
Λ0110Âρ Â−θ, . (3.10)

The coefficients of the resonant terms are given by

K0002 = −ω2
θ −

u12

2r0
, Λ0110 = −2ω2

θ − u12

r0
. (3.11)

Clearly, the coefficients of resonant terms satisfy 2K0002 = Λ0110. We find similar relations
also in the cases of other resonances. The reason for this relation will be apparent in the
next section.
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1:1 resonance. When the system is far from the 1:2 resonance, the solvability conditions
of the first order D1Âρ = D1Âθ = 0 imply that the complex amplitudes Âρ and Âθ depend
only on the second time-scale T2. The 1:1 resonance is the only one epicyclic resonance of
the system with reflection symmetry in the third order of approximation. Dependence on
T2 implies slower behavior. The solvability conditions are (see Table 2.1)

D2Âρ = − i

2ωr

[
K1200 |Aρ|2 Âρ + K0111 |Aθ|2 Âρ + K1002Â−ρ Â

2
θ

]
, (3.12)

D2Âθ = − i

2ωθ

[
Λ1101 |Aρ|2 Âθ + Λ0012 |Aθ|2 Âθ + Λ0210Â

2
ρÂ−θ

]
(3.13)

and the coefficients of the secular terms are given by

K1200 = r20

(
5u2

30

6ωθ
− 1

2u40

)
, (3.14)

K0111 = 1
3

(
−10ω2

θ + 2
u2

12

r20ω
2
θ

− 3u22 − 6 r0u30 + u12

[
8

r0
+

3u30

ω2
θ

])
, (3.15)

K1002 = 1
6

(
−6ω2

θ +
6u2

12

r20ω
2
θ

− 3u22 − 2 r0u30 −
u12 u30

ω2
θ

)
, (3.16)

Λ0012 = −u04

2r20
− 7u12

6 r0
+

5u2
12

6 r20ω
2
θ

+ 10
3 ω

2
θ , (3.17)

Λ0210 = K1002, (3.18)

Λ1101 = K0111. (3.19)

In evaluation we use the fact that ωr ≈ ωθ.

3:2 resonance. when |ωθ −ωr| � ε, the elimination of regular secular terms in the third
order gives (compare with Table 2.2)

D2Âρ = − i

2ωr

[
K1200 |Aρ|2 Âρ + K0111 |Aθ|2 Âρ

]
, (3.20)

D2Âθ = − i

2ωθ

[
Λ1101 |Aρ|2 Âθ + Λ0012 |Aθ|2 Âθ

]
. (3.21)

with the coefficients given as

K1200 = r20

(
15u2

30

8ωθ
− 1

2u40

)
, (3.22)

K0111 = 1
4

(
−15ω2

θ +
9u12

4 r20ω
2
θ

− 4u22 − 18 r0u30 + 9u12

[
1

r0
+
u30

ω2
θ

])
, (3.23)

Λ0012 = −u04

2r20
+

135

64

u2
12

r20ω
2
θ

− 153

16

u12

r0
+

135

16
ω2

θ , (3.24)

Λ1101 = K0111, (3.25)

where we used the fact that 3ωr ≈ 2ωθ.
The elimination of the resonant terms in the forth order gives the solvability condition

of the form (compare with table 2.3)

D3Âρ = − i

2ωr
K2002Â

2
−ρÂ

2
θ, D3Âθ = − i

2ωθ
Λ0310Â

3
ρÂ−θ, (3.26)
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where the resonant coefficients are given by

K2002 = − 15
16 ω

2
θ + 27

32

u12

r0
+ 135

64

u2
12

r20ω
2
θ

− 243
128

u3
12

r30ω
4
θ

− 9
8 u22 + 27

16

u12 u22

r0ω2
θ

− 27
16 r0u30 + 81

64

u2
12 u30

r0ω4
θ

− 9
16

r0u22 u30

ω2
θ

− 81
256

r20u302

ω2
θ

− 81
512

r0u12 u
2
30

ω4
θ

− 1
4 r0u30 − 9

64 r
2
0u40 − 9

128

r0u12 u40

ω2
θ

(3.27)

Λ0310 = 2
3K2002 (3.28)

3.2.3 Spherically-symmetric gravitational potential

Let us consider the case when the gravitational potential is function of r only, Φ(r, θ) ≡
Φ(r). The trajectories of the orbiting particles are strictly planar and the epicyclic reso-
nances do not appear. This fact can be recovered also in our calculations. The coefficients
in the solvability conditions are

K0111 = Λ1101 = −4 r0Φ
(3)
0 + 36

Φ′
0

r0
, (3.29)

K1200 = 1
2

(
r0Φ

(4)
0 + 40 Φ

(3)
0

)
+ 5

6r
3
0

Φ(3)

Φ′
0

+ 90
Φ′

0

r0
, (3.30)

Λ0012 = 12
Φ′

r0
(3.31)

K1002 = Λ0210 = 0 (3.32)

in the case of 1:1 epicyclic resonance and

K0111 = Λ1101 = −9 r0Φ
(3)
0 + 96

Φ′
0

r0
, (3.33)

K1200 = 1
2

(
r0Φ

(4)
0 + 90 Φ

(3)
0

)
+ 15

8 r
3
0

Φ(3)

Φ′
0

+ 240
Φ′

0

r0
, (3.34)

Λ0012 = 32
Φ′

0

r0
(3.35)

K2002 = Λ0310 = 0 (3.36)

in the case of 3:2 epicyclic resonance. All resonant terms vanishes. Hence, there are no

epicyclic resonances in the strictly spherically symmetric gravitational potential. In the
next sections we consider fully general case of the axisymmetric gravitational field.

3.3 The 1:2 resonance

In this section, we study properties of the epicyclic motion when internal resonance 1:2
between vertical and radial epicyclic modes occurs. Through the section we suppose that
the eigenfrequencies are nearly commersuable, i.e. ωr ≈ 2ωθ. This resonance appears in
the second order, where only quadratic terms of the expansion contributes. The quadratic
nonlinearity is sufficient to wake up this resonance. We note that this resonance appears in
the fourth order again. However, the fourth order would provide only negligible corrections
to the results of second order alone. Hence, we consider only two time scales, the fast one
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T0 (that is identical with the physical time t) and the slow one T1. Our discussion is similar
to that of Nayfeh & Mook (1979) in the case of the system with quadratic nonlinearity.

The solvability conditions are given by equations (3.9) and (3.10). From equation
(3.11) we observe that coefficients K0002 and Λ0110 satisfy

Λ0110 = 2K0002 ≡ ω2
θβ. (3.37)

By substituting expressions for Â±ρ and Â±θ and deviding equations by the term eiωrT0

and eiωθT0 , respectively we obtain differential equations that describes long-term behavior
of complex amplitudes Aρ(T1) and Aθ(T1),

D1Aρ = − 1
8 iβωθ A

2
θe

−i(ωr−2ωθ)T0 = − 1
8 iβωθ A

2
θ e

−iσ̃ωθT1 (3.38)

D1Aρ = − 1
2 iβωθ AρA

?
θe

i(ωr−2ωθ)T0 = − 1
2 iβωθ AρA

?
θ e

iσ̃ωθT1 , (3.39)

where we introduced detuning parameter by

σ ≡ 1 − 2ωθ

ωr
, σ = εσ̃. (3.40)

We assume that σ = O(ε) and σ̃ = O(1).
The complex amplitudes can be rewritten in polar forms, Aρ = 1

2 ãρe
iφρ and Aθ =

1
2 ãθe

iφθ . Again, the symbol x̃ refers to the fact that x̃ = O(1). The actual amplitudes of
oscillations are given as aρ = εãρ and aθ = εãθ, respectively.

Separating real and imaginary parts of the equations we get four differential equations

ȧr = 1
16βωθ a

2
θ sin γ, (3.41)

ȧθ = − 1
4βωθ aρaθ sin γ, (3.42)

φ̇ρ = − 1
16βωθ

a2
θ

aρ
cos γ, (3.43)

φ̇θ = − 1
4βωθ aρ cos γ, (3.44)

where γ(t) ≡ −σωθt− φρ + 2φθ is called phase function. Its time derivative follows from
equations (3.43) and (3.44),

γ̇ = −σωθ −
βωθ

2aρ

(
a2

ρ − 1
8a

2
θ

)
cos γ. (3.45)

Equations (3.41) and (3.42) together with equation (3.45) governs the long-term be-
havior of amplitudes and phases of oscillations. They are nonlinear first-order differential
equations for variables aρ(t), aθ(t) and γ(t). However, the number of dynamical equations
that must be solved can be further reduced if we introduce the integrals of motion.

3.3.1 Integrals of motion

Equations (3.41) and (3.42) imply the relation

d

dt

(
a2

ρ + 1
4a

2
θ

)
= 0, (3.46)

and thus we introduce
E ≡ a2

ρ + 1
4a

2
θ = const. (3.47)
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The constant E is obviously connected with the energy of epicyclic oscillations. One can
verify using equation (1.20) that δE = rω2

rE (here r is the radius of the circular orbit of
the same angular momentum).

To satisfy equation (3.47) manifestly, we introduce following parameterization of the
amplitudes

a2
ρ = ξ2E , a2

θ = 4(1 − ξ2)E . (3.48)

This way the two equations (3.41) and (3.42) are replaced by a single equation for ξ(t)
and the system of evolution equation becomes

ξ̇ = 1
4βωθ

(
1 − ξ2

)
E1/2 sinγ, (3.49)

ξγ̇ = −σωθξ + 1
4βωθ

(
1 − 3ξ2

)
E1/2 cos γ. (3.50)

The second integral of motion is found in the following way. Relation dγ/dξ = γ̇/ξ̇ implies
that

ξ
(
ξ̇dγ − γ̇dξ

)
= 0. (3.51)

By substituting from equations (3.49) and (3.50), we get

1
4βξ(1 − ξ2)E1/2dγ + σξdξ − 1

4β(1 − 3ξ2) cos γdξ = 0 (3.52)

that can be integrated to the form

d
[
σ̄ξ2 − ξ(1 − ξ2) cos γ

]
= 0, (3.53)

where σ̄ ≡ 2σ/βE1/2. This equation implies existence of another integral of motion,

F ≡ σ̄ξ2 − ξ(1 − ξ2) cos γ. (3.54)

3.3.2 Stationary solutions and phase-plane topologies

The solutions of equations (3.49) and (3.50) correspond to trajectories in the (γ, ξ)-plane.
This plane is also referred to as the phase plane. The stationary solutions are critical
points of dynamical equations (3.49) and (3.50). They corresponds to oscillations with
constant amplitudes and phase difference given by phase function γ. Setting ξ̇ = γ̇ = 0
we get algebraic equations that determines position of critical points in the (ξ, γ)-plane,

(1 − ξ2) sin γ = 0, 2σ̄ξ + (1 − 3ξ2) cos γ = 0. (3.55)

Obviously, the former equation is satisfied only if γ = kπ. In that case cos γ = ±1 and
the latter equation implies

3ξ2 ∓ 2σ̄ξ − 1 = 0. (3.56)

The sign refers to that of cos γ. The positive solutions are

ξ0,π = 2
6

(
±σ̄2 +

√
σ̄ + 3

)
, (3.57)

where ξ0 or ξπ is a ξ-coordinate of the critical point for γ = 0 or π, respectively. The next
condition is ξ < 1 that further limit the range of detuning parameter σ̄. Imposing it on
solutions (3.57) we find

0 < ξ0 < 1, when σ̄ > −1, (3.58)

0 < ξπ < 0, when σ̄ < +1. (3.59)
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Figure 3.1: The position of the stationary points ξ0 and ξπ in dependence on the detuning
parameter σ̄ and the classification of possible phase-plane topologies according to number
and position of critical points. Figure shows regions with three different topology types:
B, C and D. The phase-plane of the type A corresponds to the limit |σ̄| → ∞.

Positions of critical points are shown in Figure 3.1. According to the number of critical
points in the (γ, ξ)-plane we can distinguish several types of topologies. The phase plane of
type A does not contain any critical point. In the case of the 1:2 resonance this correspond
to the limit case |σ̄| → ∞. For σ̄ the absolute value of which is in the range 1 ≤ |σ̄| <∞,
the phase-plane topology is of type B. The corresponding phase planes contain one critical
point at γ = 0 (for σ̄ positive) or γ = π (for σ̄ negative). The phase-plane has topology
of type C with two critical points at γ = 0 and γ = π if 0 < |σ̄| < 1. The last type D
corresponds to the perfect resonance occurring when σ̄ = 0.

Nature of critical points can be inferred from the eigenvalues of the linearized system
of dynamical equations. The eigenvalues λ are solutions of equation

(
∂ξ̇

∂ξ
− λ

)(
∂γ̇

∂γ
− λ

)
− ∂ξ̇

∂γ

∂γ̇

∂ξ
= 0, (3.60)

where the partial derivatives are evaluated in the critical point. Because sin γ = 0 there,
the derivatives ∂ξ̇/∂ξ and ∂γ̇/∂γ vanishes. The remainder leads to equation that is same
for both cases, γ = 0 and γ = π,

λ2 = −Eβ2ω2
θ

16

(1 − ξ2)(1 + 3ξ2)

ξ2
. (3.61)

The right-hand side is always negative for all ξ of interest implying that critical points are
always centers.

The oscillations of the epicyclic oscillator considered here is described by three vari-
ables. These are the amplitudes aρ and aθ of the radial and vertical epicyclic oscillations
and the phase function γ, that relates phases of oscillations. In the last sections we find
two integral of motion E and F . Therefore, dynamics of the system is given by single
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Figure 3.2: The four possible topologies of the (γ, ξ) plane for different values of detuning
parameter. Top: the phase-plane of type B for σ̄ = −1.5 (left panel) and 1.5 (the right
panel). Middle: topology of type C for σ̄ = −0.5 and 0.5. Bottom left: phase-plane of
type A (for σ̄ = −50). Bottom right: the case of perfect resonance (σ̄ = 0) corresponds
to the type D.
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equation of motion, that determines time behavior of function ξ(t). Later on, we derive
this equation. For present moment, we ignore time dependence by considering projections
of solutions into the (γ, ξ)-plane.

For a fixed energy E of oscillations, the system follows curves of constant F . Then the
projections of solutions into the (γ, ξ)-plane are given by equation

F(γ, ξ) = const. (3.62)

The possible topologies of the (γ, ξ)-plane in dependence on detuning parameter σ̄ are
shown in Figure 3.2. The variable ξ expresses the fraction of the total energy of epicyclic
oscillations contained by the radial mode. In all resonant topologies (except that of type
A) ξ is a subject to periodic variations. This clearly reflects the periodic exchange of the
energy between the two modes of oscillations.

3.3.3 Time behavior

The equation describing time behavior of the system can be found as follows. The square
of equation (3.49) gives

16

Eβ2ω2
θ

ξ̇2 =
(
1 − ξ2

)2
(1 − cos2 γ). (3.63)

Isolating cos γ from equation (3.54), we get cos γ = (σ̄ξ2 −F)/[ξ(1 − ξ)]. Further substi-
tution gives

4

Eβ2ω2
θ

u̇2 = u(1 − u)2 − (σ̄u+ F)2 , (3.64)

where we introduced function u(t) = ξ2(t). The right-hand side can be regarded as a
difference of two functions, F 2(u)−G2(u), where F (u) ≡ (1−u)u1/2 and G(u) ≡ σ̄u−F .
is a linear functions. The reality of u̇ requires F 2(u) > G2. This gives us range of allowed
values of u. Functions ±F (u) and G(u) are plotted in Figure 3.3. Functions ±F (u) forms a
closed convex curve and functions G(u) are always linear. Therefore, there are maximally
two turning points u1 and u2 where F (u) = ±F2(u) and hence the time derivative u̇
vanishes. As time goes, u(t) oscillates between u1 and u2 and the energy flows from one
mode of oscillations to other one.

The time period of the energy exchange is given by integral

T =
2

βωθE1/2

∫ u2

u1

du√
u(1 − u)2 − (σ̄u−F)2

. (3.65)

The square-root in the denominator of the integrant is a cubic function in variable u,
hence it is possible to express the integral in terms of Jacobi elliptic integrals. Another
possibility is that function G(u) only touch one of the functions ±F (u). This situation
corresponds to a stationary point. It follows that the integral (3.65) diverges in that case.

3.4 The 1:1 resonance

Discussion of the system behavior in the case of 1:1 epicyclic resonance will be similar
to that of the 1:2 resonance in many respects. In that case, the fact that solvability
conditions depend on the single parameter β allowed us to make a complete and fully
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Figure 3.3: Functions ±F (u) and G(u) that appear on the right-hand side of equation of
motion (3.64). The functions F (u) and −F (u) delimites closed convex area and G(u) is
a linear function. Hence, there are generally two points where the function G crosses one
of the functions ±F (u). These correspond to the turning points where u̇ vanishes. For
reference, function G(u) is plotted for two different values of σ̄ and F : G1(u) correspond
to the trajectory passing point [0, 0.2] in the (γ, ξ)-plane with σ̄ = −0.5 and G2(u) is for
a trajectory going through point [0, 0.4] in the (γ, ξ)-plane with σ̄ = −1.5.

general discussion of all possible topologies of the (γ, ξ)-plane. In the case of the 1:1
resonance the situation are a bit more complicated and similar discussion will be done
only for the particular example of resonant orbits in the gravitational field of a Newtonian
star and a massive disk.

The solvability conditions for 1:1 resonance have been derived in section 3.1. They are
given by equations (3.12) and (3.13). By substituting of Â±ρ and Â±θ and deviding the
terms eiωrT0 and eiωθT0 in equations (3.12) and (3.13), respectively, we get the equations
for complex amplitudes in the form

2iωrD2Aρ = K1200 |Aρ|2Aρ + K0111 |Aθ|2Aθ + K1002A
?
ρA

2
θe

−2iσωθT0 , (3.66)

2iωθD2Aθ = Λ1101 |Aρ|2Aρ + Λ0012 |Aθ|2Aθ + Λ0210A
2
ρA

?
θe

2iσωθT0 , (3.67)

where we introduced the detuning parameter as

σ ≡ ωr

ωθ
− 1, σ = σ̃ε2 (3.68)

and we assume σ̃ = O(1). The 1:1 resonance allowes much smaller range of detuning
parameter than the resonance 1:2 that was easier to tune.

Expressing complex amplitudes in the polar forms, Aρ = 1
2 ãρe

iφρ and Aθ = 1
2 ãθe

iφθ ,
and separating the real and imaginary parts we get

D2ãρ =
K1002

8ωr
ãρã

2
θ sin 2γ, (3.69)
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D2ãθ = −Λ0210

8ωθ
ã2

ρãθ sin 2γ, (3.70)

D2φρ = −K1200

8ωr
ã2

ρ −
K0111

8ωρ
ã2

θ −
K1002

8ωr
ã2

θ cos 2γ, (3.71)

D2φθ = −Λ1101

8ωθ
ã2

ρ −
Λ0012

8ωθ
ã2

θ −
Λ0210

8ωθ
ã2

ρ cos 2γ, (3.72)

where we introduced the phase function γ ≡ −σωθ −φρ −φθ. The two amplitudes and the
phase function are three variables characterizing oscillations of the system. Introducing
the physical time t, the differential equations describing their evolution reads

ȧρ = ωθβaρa
2
θ sin 2γ, (3.73)

ȧθ = −ωθβa
2
ρaθ sin 2γ, (3.74)

γ̇ = ωθ

[
−σ + µra

2
ρ + µθa

2
θ + β

(
a2

θ − a2
ρ

)
cos 2γ

]
, (3.75)

where the dimensionless parameters β, µr and µθ are introduced by

β ≡ K1002

8ωθ
=

Λ0210

8ωθ
, µr ≡ K1200 − Λ1101

8ωθ
, µθ ≡ K0111 − Λ0012

8ωθ
. (3.76)

3.4.1 Integrals of motion

As in the case of the 1:2 resonance, there are two integrals of motion. Also the way how
to find them is very similar. Multiplying equation (3.73) by aρ and equation (3.73) by aθ

and integrating, we find that the sum

E ≡ a2
ρ + a2

θ (3.77)

is conserved during oscillations. The constant E is proportional to the energy of epicyclic
oscillations as it follows from equation (1.20) and it will be referred to as energy.

Next, we introduce a parameterization of the amplitudes by function ξ(t) using rela-
tions

a2
ρ = ξ2E , a2

θ = (1 − ξ2)E . (3.78)

With the aid of the energy conservation the equations (3.73)–(3.75) are reduced to the
two differential equations

ξ̇ = ωθβEξ
(
1 − ξ2

)
sin 2γ (3.79)

γ̇ = −ωθσ + ωθE
[
µrξ

2 + µθ

(
1 − ξ2

)
+ β

(
1 − 2ξ2

)
cos 2γ

]
(3.80)

The other integral of motion can be found in the exactly same way as in the case of
1:2 resonance. By substituting equations (3.79) and (3.80) into the relation

γ̇ξdξ − ξξ̇dγ = 0 (3.81)

and after soma algebra, we get

d
[
−σ̄ξ2 + 1

2µrξ
4 + 1

2µθξ
2
(
2 − ξ2

)
+ βξ2

(
1 − ξ2

)
cos 2γ

]
= 0, (3.82)

where σ̄ ≡ σ/E . Hence, the quantity

F ≡ ξ2
[
σ̄ + 1

2µrξ
2 + 1

2µθ

(
2 − ξ2

)
+ β

(
1 − ξ2

)
cos 2γ

]
(3.83)

is another integral of motion.
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3.4.2 Stationary solutions and phase-plane topologies

Stationary points are given by condition γ̇ = ξ̇ = 0. From equation (3.79), we deduce that
these point appears at γ = kπ/2, where k is an integer. This is remarkable difference from
the case of 1:2 resonance: the phase plane is periodic in γ-direction with period π, contrary
to the 2π-periodicity of the phase plane in the case of the 1:2 resonance. Substituting the
cos γ = ±1 into equation (3.80) we get a quadratic equation for ξ with solutions (the upper
and lower sign refers to the odd and even values of k, respectively)

ξ2 =
σ̄ − µθ ∓ β

µr − µθ ∓ 2β
. (3.84)

In further discussion we separate two cases according to the signum of the denominator
D ≡ µr − µθ ∓ 2β > 0. If D > 0 we find that corresponding critical points exists for σ̄ in
the range

µθ ± β < σ̄ < µr ∓ β. (3.85)

On the other hand, for D < 0 the critical points appear only if σ̄ satisfies

µr ∓ β < σ̄ < µθ ± β. (3.86)

Next, we linearize equations (3.79) and (3.80) in the vicinity of critical points. The
toology of the (γ, ξ) plane can be deduced from the eigenvalues λ of the linearized system.
These are roots of a characteristic polynomial

(
∂ξ̇

∂ξ
− λ

)(
∂γ̇

∂γ
− λ

)
− ∂ξ̇

∂γ

∂γ̇

∂ξ
= 0. (3.87)

The partial derivatives are evaluated at critical points. As in the case of the 1:2 resonance,
we find that ∂ξ̇/∂ξ = ∂γ̇∂γ = 0 because they are proportional to sin 2γ that vanishes for
γ = kπ/2. The remaining two derivatives gives

∂ξ

∂γ
= ±2ωθβEξ

(
1 − ξ2

)
,

∂γ

∂ξ
= 2ωθEξD. (3.88)

Hence, equation (3.87) takes the form

λ2 = ±4βω2
θE2ξ2

(
1 − ξ2

)
D. (3.89)

The (γ, ξ)-plane contain critical points of both types, centers and saddles. If D > 0 critical
points at γ = kπ are saddles and that at γ = (2k + 1)π/2 between them are centers. In
the opposite case D < 0, the situation is exactly opposite: centers are at γ = (2k + 1)π/2
and saddles at γ = kπ. Particular examples of phase planes are given in the next section.

3.4.3 1:1 epicyclic resonance close to a massive ring

Let us illustrate the above-given theory on the practical example of orbits in gravitational
field of the Newtonian star surrounded by the massive ring. In the case considered here,
the ratio of masses of the ring and the star is set to the value µ = 0.1.

The epicyclic frequencies were already calculated in section 1.2.3. Using these results
we determine detuning parameter according to equation (3.68). Using equations (3.14)–
(3.19) we find the parameters µr, µθ and β. These are shown in Figure 3.4 as functions



3.4. The 1:1 resonance 43

-0.4

-0.2

 0

 0.8  1  1.2  1.4  1.6

σ

r / a

-2.5

-2

-1.5

-1

-0.5

 0

 0.8  1  1.2  1.4  1.6

β

r / a

 0

 2

 4

 6

 8

 10

 0.8  1  1.2  1.4  1.6

µ r

r / a

-10

-8

-6

-4

-2

 0

 0.8  1  1.2  1.4  1.6

µ θ

r / a

Figure 3.4: Detuning parameter σ (left), parameters µr, µθ (middle) and parameter β
(right) as functions of radial coordinate for the 1:1 epicyclic resonance in the gravitational
field of a Newtonian star surrounded by a massive ring. The ratio of masses is µ = 0.1
and the ring is at the radius r = a. The branches on curves where our theory is relevant
are denoted by thick black line.

of the radial coordinate. The perturbation approach used here is limited by requirement
on the amplitudes of oscillations, aρ ∼ aθ ∼ ε � 1. That means that both, the energy
and the detuning parameter must satisfy E ∼ σ ∼ ε2 � 1. In figures the thick black line
denotes regions where σ < 0.2.

For a given radius r, equation (3.86) gives us the range of energies for which the
(γ, ξ)-plane contains critical points. Applying this condition we found that three different
topologies of (γ, ξ)-plane occurs. These are referred to as types A, B, C. While the phase-
planes of the type A do not contain any critical point, the critical points of both the saddle
and central topology appear in phase-planes of type C. Finally, B is a “transient” type
that contains only critical points with central topology. The top panel of Figure 3.5 shows
regions of different phase-plane topology in the (r, E) plane. Clearly the phase planes
of a type A occurs for epicyclic oscillations of small energy at all radii. This is because
the epicyclic frequencies are quite different from each other and thus the oscillations with
small energy are almost uncoupled. On the other hand, with higher energy of oscillations,
the frequency of oscillations are shifted toward the exact 1:1 ratio by nonlinear effects
(amplitude-frequency interaction) and the two oscillation modes become coupled much
strongly.

Particular examples of the phase plane topology at different radii and for different
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Figure 3.5: The 1:1 epicyclic resonance in gravitational field of a Newtonian star and
massive ring. The ring is at radius r = a and this distance also provides a natural length-
scale of the problem. The ratio of masses is µ = 0.1. The top panel shows regions of
different phase-plane topology in the (r, E)-plane. We distinguish three types (A,B,C) of
the topology. The middle-left panel shows a phase plane of type A that does not contain
critical points. An example of the type-B topology is given in the middle-right panel.
Finally, the bottom row shows two phase-planes of the type-C topology.
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energies of oscillations are shown in the middle and bottom panels of Figure 3.5

3.5 The 3:2 resonance

Finally, we consider 3:2 epicyclic resonance. The solvability conditions involves that of
both the third and the fourth orders. Hence the complex amplitudes Aρ and Aθ are
functions of both time scales T3 and T4. Also, the detuning parameter should be introduced
as

σ ≡ 3
ωr

ωθ
− 2 = ε2σ̃2 + ε3σ̃3. (3.90)

The solvability conditions takes the form

2iωrD3Aρ = K2002(A?
ρ)2A2

θ e
i(σ̃2T2+σ̃3T3), (3.91)

2iωθD3Aθ = Λ0310A
3
ρA

?
θ e

i(σ̃2T2+σ̃3T3), (3.92)

2iωrD2Aρ =
[
K1200 |Aρ|2 + K0111 |Aθ|2

]
Aρ, (3.93)

2iωθD2Aθ =
[
Λ1101 |Aρ|2 + Λ0012 |Aθ|2

]
Aθ. (3.94)

By substituting polar form of complex amplitudes Aρ and Aθ and separating real and
imaginary parts of the equations we get eight equations governing long-term behavior of
phases and amplitudes.

D2ãρ = 0, (3.95)

D2ãθ = 0, (3.96)

D3ãρ =
K2002

16ωr
ã2

ρã
2
θ sin γ, (3.97)

D3ãθ = −Λ0310

16ωθ
ã3

ρãθ sin γ, (3.98)

D2φρ = − 1

8ωr

[
K1200ã

2
ρ + K0111ã

2
θ

]
, (3.99)

D2φθ = − 1

8ωθ

[
Λ1101ã

2
ρ + Λ0012ã

2
θ

]
, (3.100)

D3φρ = −K2002

16ωr
ãρãθ

2 cos γ, (3.101)

D3φθ = −Λ0310

16ωθ
ã3

ρ cos γ, (3.102)

where the phase function was introduces as γ(T2, T3) ≡ −σ2T2 − σ3T3 − 3φρ + 2φθ. The
amplitudes ãρ and ãθ of oscillations change slowly, because they depend only on the third
time-scale T3. Phases φr and φθ of oscillations are modified on both time scales T2 and T3.
The equations of the second and third order can be further merged introducing the single
physical time t. Time derivatives are then given by d/dt = ε2D2 + ε3D3. Oscillations
of the system are determined by both amplitudes and by the phase functions. They are
governed by equations

ȧr = 1
24βωra

2
ra

2
θ sin γ, (3.103)

ȧθ = − 1
16βωθa

3
raθ sin γ, (3.104)

γ̇ = −σωθ +
ωθ

4

[
µra

2
r + µθa

2
θ +

ar

2

(
αa2

θ − βa2
r

)
cos γ

]
, (3.105)
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where we introduced µr, µθ and β by equations

Λ0310 = 2
3K2002 = βω2

θ , K1200 − Λ1101 = ω2
rµr, K0111 − Λ0012 = ω2

θµθ. (3.106)

3.5.1 Integrals of motion

Equations (3.103) and (3.104) imply that the following quantity is conserved,

E = a2
ρ + 9

4a
2
θ = const. (3.107)

where constant E is proportional to the total energy in epicyclic oscillations δE.
The equations (3.103) and (3.104) can be replaced by single equation when following

parameterization is introduced

a2
ρ = ξ2E , a2

θ = 4
9

(
1 − ξ2

)
E . (3.108)

Then, the oscillations are governed by two equations for ξ(t) and γ(t),

ξ̇ = 1
16βωθξ

2
(

1 − ξ2
)
E3/2 sin γ, (3.109)

γ̇ = −σωθ + 1
4ωθE

[
µrξ

2 + 4
9µθ

(
1 − ξ2

)
+ 1

4βξ
(

3 − 5ξ2
)
E1/2 cos γ

]
. (3.110)

The second integral of motion can be found in the exactly same way as in the case of 1:2
and 1:1 resonances. We obtain

F ≡ 8
(

1 − ξ2
)
σ + E

[
µrξ

4 − 4
9µθ

(
1 − ξ2

)2
]

+ βE3/2ξ3
(

1 − ξ2
)

cos γ. (3.111)

3.5.2 Stationary points and phase-plane topology

Stationary points are given by condition ξ̇ = γ̇ = 0. According to equation (3.109) the
γ-coordinate of these points satisfy sin γ = 0 and therefore γ = kπ with k of integer value.
Substituting γ̇ = 0 and cos γ = ±1 into equation (3.110), we get

−4σ +
[
µrξ

2 + 4
9µθ(1 − ξ2)

]
E ± βξ

(
3 − 5ξ2

)
E3/2 = 0 (3.112)

that is a cubic equation, the solution of which gives us ξ-coordinate of a stationary point.
Equation (3.112) calls for a numerical solution. However, in the case of small oscillations
for which E � 1, its solution can be roughly approximated kepping only terms that are
linear in E . Then the problem is reduced to solution of a simple quadratic equation. We
obtain

ξ2 =
9σ̄ − µθ
9
4µr − µθ

, (3.113)

where we defined σ̄ ≡ σ/E . The first correction to this solution is of order of E 1/2.
Deviation between ξ-coordinates of stationary points at odd and even multiples of π is of
the same order.

Depending on the sign of the denominator D ≡ 9
4µr − µθ, the solution (3.113) lies in

the allowed range if 1
4µr < σ̄ < 1

9µθ or 1
9µθ < σ̄ < 1

4µr in the case of D negative or
positive, respectively. This can be expressed in terms of energy E : for a given detuning
parameter σ stationary points appear in the (γ, ξ) plane if energy of oscillations E satisfies

9
σ

µθ
< E < 4

σ

µr
or 4

σ

µr
< E < 9

σ

µθ
(3.114)
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Figure 3.6: The functions ±F (u) = ±(1 − u)u3/2 and the quadratic function G(u) which
second powers are first and second terms on the right-hand side of equation (3.118). The
behavior of the system corresponds to u in the interval [u1, u2] (denoted by the two dotted
vertical lines) where the condition |F (u)| ≥ |G(u)| is satisfied.

when D is positive or negative, respectively.

Examination of phase-plane topology in a vicinity of critical points leads to equation

(
∂ξ̇

∂ξ
− λ

)(
∂γ̇

∂γ
− λ

)
− ∂ξ̇

∂γ

∂γ̇

∂ξ
= 0. (3.115)

for eigenvalues λ of the system of linearized equations (3.109) and ((3.110). Evaluating
partial derivatives in a critical point and keeping only the terms of lowest order in E 3/2,
we obtain

λ = ∓ 1
72ω

2
θξ

2
(

1 − ξ2
)
DE5/2. (3.116)

Hence the situation is exactly same as in the case of the 1:1 resonance: critical points of
central topology alternate that of saddle topology. An example of a phase-plane of epicyclic
oscillations in a particular gravitational field will be presented in the next chapter.

3.5.3 Time dependence

The equation describing an evolution of ξ(t) can be derived as follows. Square of equation
(3.109) gives

ξ̇2 = 1
162β

2ω2
θξ

4
(

1 − ξ2
)2

E3
(
1 − cos2 γ

)
, (3.117)

Then, isolating cos γ from equation (3.111) and substituting into equation (3.117) we find
the equation in the form

Ku̇2 = F 2(u) −G2(u), (3.118)
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Figure 3.7: The 3:2 inner epicyclic resonances in the gravitational field of a pseudo-
Newtonian star and a massive ring. The ratio of masses is µ = 0.1. The top-left panel
shows regions of different phase-plane topology in the (r, E)-plane. According to number
of critical points we distinguish three types (A,B,C) of the phase-plane topology. The top-
right panel shows phase plane of type C that contain two critical points (for −π ≤ γ < π).
The bottom-left panel captures the phase-plane of type B that contains only one critical
point at γ = 0. The bottom-right panel shows the situation far from the resonance radii.
In that case the phase-plane has A-type topology. The parameters of the phase-planes
are: r = 0.6a, E = 0.02 (type A), r = 0.647a, E = 0.02 (type B) and r = 0.55a, E = 0.05
(type C).

where we introduced new variable u(t) ≡ ξ2 and the constant K and functions F (u) and
G(u) are define as

K ≡ 1

E3/2

(
8

ωθβ

)2

, (3.119)

F (u) ≡ u3/2(1 − u) (3.120)

G(u) ≡ 1

βE3/2

[
F − 8σ(1 − u) − µrEu2 + 4

9µθE(1 − u)2
]
. (3.121)

The motion is allowed only for u̇2 positive, the condition ±F (u) = G(u) gives us the two
limit values u1 and u2, between which u oscillates. The functions ±F (u) and G(u) are
plotted together in Figure 3.6. Obviously, the equation of motion describes flow of energy
between the radial and vertical mode of epicyclic oscillations.
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The period of the energy exchange can be find by integration of the equation (3.118)

T =
16

βωθ
E−3/2

∫ u2

u1

du√
F 2(u) −G2(u)

. (3.122)

The integral on the right-hand side can be estimated in the following way. Since P5 ≡
F 2(u) − G2(u) is a polynomial of the fifth order in u having two roots u1 and u2 in the
interval [0, 1], we can write it as −(u− u1)(u− u2)P3(u), where P3(u) is a polynomial of
the third order positive in the interval [0, 1]. Using the mean-value theorem we get

∫ u2

u1

du√
−(u− u1)(u− u2)P3(u)

=
1

p

∫ u2

u1

du√
−(u− u1)(u− u2)

=
π

p
, (3.123)

where p > 0 is a value of P3 for some u in the interval [u1, u2]. Since P5 ∼ F 2 ∼ 0.01 and
(u2 − u1)2 ∼ 0.01 typically, the values of P3(u) are of order of unity, and therefore p ∼ 1.
The period of the energy exchange can be roughly approximated by

T ∼ 16π

βωθ
E−3/2. (3.124)

However, near stationary points (u2 − u1)2 approaches to zero and the period of energy
exchange becomes much longer.

3.5.4 The 3:2 epicyclic resonance close to a massive ring

Again, we illustrate our results on the simple case. The gravitational field is generated by
a pseudo-Newtonian star and a massive ring. We chose the ratio of masses µ = 0.1 and
the radius of the disk a = 9RS, where RS is Schwarzschild radius of the star. The epicyclic
frequencies have been studied in section 1.2.3. The resonant condition ωθ/ωr = 3/2 is
satisfied on three different radii, two of them lie between the star and the ring and one
behind the ring. The resonances at first two radii will be referred to as the inner epicyclic
resonance and the third one as the outer. Here, we consider only the inner resonances.

Using the epicyclic frequencies we calculated the detuning parameter σ and the pa-
rameters µr, µθ and β as functions of r. For a fixed radius inequalities (3.114) give us
the possible range of the energy of oscillations for which the phase-planes contains critical
points. The result is shown in Figure 3.7. The regions of different phase-plane topologies
in the (r, E)-plane are shown in the top-left panel. We employ the same classification of
phase planes as in the case of the 1:1 resonance. The other panels show examples of phase
planes for different values of the radius r and the energy E .



Chapter 4

A model for QPO sources

In Chapter 3 we discussed properties of nonlinear epicyclic resonance in the orbital motion
of a test particle. In that case the coupling was provided by non-spherical gravitational
potential. We suppose that similar phenomenon may occur also in the accretion flow.
In fact, accretion flow surrounding neutron stars and galactic black holes may exhibit
global epicyclic motion too. Several authors studied oscillations of the fluid in the vicinity
of compact objects under different simplifications. For example, Blaes (1985) gives all
possible modes (e.g. eigenfrequencies and eigenfunctions) of slender-torus oscillations. In
this approach the size of the stationary torus is small enough that pressure and density can
be approximated by a quadratic function in the whole torus. Blaes (1985) considered the
Newtonian gravitational field. Recently, Kluźniak & Abramowicz (2002) reconsidered the
problem in general relativity and pointed to the existence of particular modes when the
torus moves rigidly in vertical and horizontal direction across its equilibrium position in
the equatorial plane (see also Abramowicz et al. 2005a for more detailed calculations). The
eigenfrequencies of these modes are equal to the vertical and radial epicyclic frequencies,
ωθ and ωr. Similar results are valid also for radial oscillations. The presence of rigid modes
in torus oscillations has been found also in recent numerical simulations (e.g. Lee et al.
2004;Rubio-Herrera & Lee 2005). We expect that the resulting X-ray signal is affected by
global oscillations of the accretion flow more strongly than by internal modes. A possible
modulation mechanism will be described in Section 4.4.

The global modes of the torus oscillations may be coupled. However, in this case the
coupling is rather due to the pressure of the fluid (Abramowicz et al. 2005a). The exact
prescription of the coupling calls for the nonlinear theory of torus oscillations. However
some, rather qualitatively, results can be derived without specification of the coupling by
use of arguments based on the general approach described in Chapters 2 and 3.

For our purpose it is sufficient to assume that the torus epicyclic oscillations are gov-
erned by very general governing equations

δ̈ρ + ω2
r δρ = ω2

r fρ(δρ, δθ, ˙δρ, δ̇θ), (4.1)

δ̈θ + ω2
θ δθ = ω2

θ fθ(δρ, δθ, ˙δρ, δ̇θ), (4.2)

where δρ and δθ are radial and vertical epicyclic deviations (note that they are functions
of time only because of axisymmetry and global character of the modes). The only re-
quirement posed on general functions fρ and fθ is that the two equations 4.1 and 4.2 are
invariant with respect to reflection of time, i.e., the Taylor expansion of functions fρ and
fθ does not contain odd powers of the time derivatives of δρ and δθ.
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Figure 4.1: Comparison between an analytical constraint (4.7) and the corresponding
numerical solution of the system studied by Abramowicz et al. (2003). Each point corre-
sponds to the amplitudes of the oscillations at a particular time. On the other hand, from
the discussion of equation (4.7) we know that these points must lie on an ellipse, whose
shape is determined by the multiple-scales method.

As it was shown in chapter 2, the multiple-scales expansion carried out for the system
described by very general equations in the vicinity of the ωθ : ωr ≈ 3 : 2 internal resonance
leads to the solvability conditions for the amplitudes and phases of oscillations of the form

ȧρ =
αωr

16
a2

ρ a
2
θ sin γ, (4.3)

ȧθ = −βωθ

16
a3

ρ aθ sin γ, (4.4)

φ̇ρ = −ωr

2

[
κr a

2
ρ + κθ a

2
θ

]
− αωr

16
aρ a

2
θ cos γ, (4.5)

φ̇θ = −ωθ

2

[
λr a

2
ρ + λθ a

2
θ

]
− βωθ

16
a3

ρ cos γ, (4.6)

where γ ≡ 2φθ − 3φρ − σt and σ = 3ωr − 2ωθ are the phase function and the detuning
parameter, and α, β, κr, κθ, λr and λθ are now real dimensionless constants depending
on the coupling of the radial and vertical epicyclic modes. As it was shown in Chapter 3
the equations (4.3) and (4.4) imply that the total energy of these oscillations

E = a2
ρ +

αωr

βωθ
a2

θ (4.7)

is conserved. Therefore, we can parameterize the amplitudes by single variable ξ(t) =
aρ/E1/2. In order to verify accuracy of our work, we checked that the numerical solution
of a special form (Abramowicz et al. 2003) of the system of equations (4.1)–(4.2) does
indeed closely follow the ellipse of equation. (4.7). This is shown in Figure 4.1. Therefore
we can be confident that the above-described analytical method gives credible results.
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Figure 4.2: Example of the (γ, ξ) for the system close to the 3:2 resonance. It corresponds
to the type C according to the classification introduced in Chapter 3. The epicyclic
oscillations are coupled by nonlinear functions fρ and fθ [see equation (4.1) and (4.2)].
These functions give us values of the constants α, β, κr, κθ. λr and λθ. The solid red
line is separatrix dividing the librating and circulating trajectories The blue dotted line
connects points where γ̇ = 0.The example is for values α = β = κr = λθ = 1, κθ = λθ = 2,
E = 0.1 and σ = −0.165.

4.1 Frequencies of resonant oscillations

Equations (4.5) and (4.6) give the shift of actual (observed) frequencies of oscillations ω∗
r

and ω∗
θ with respect to the eigenfrequencies ωr and ωθ,

ω∗
r = ωr + φ̇r, ω∗

θ = ωθ + φ̇θ. (4.8)

Equations (4.8) together with equations (4.5) and (4.6) imply important relation between
observed frequencies and the phase function

2ω∗
θ − 3ω∗

r = 2ωθ − 3ωr + (2φ̇θ − 3φ̇r) = −σ + (2φ̇θ − 3φ̇r) = γ̇. (4.9)

Hence, the observed frequencies are in exact 3:2 ratio if (and only if) the time-derivative
of the phase function vanishes. Trivial implication of this relation is that the frequencies
of stationary resonant oscillations with constant amplitudes are in exact 3:2 ratio even if
the eigenfrequencies depart from it. This is very interesting and very general feature of
nonlinear internal resonance. Moreover, in the case of nonstationary oscillations equation
(4.9) discriminates between librating and circulating trajectories in the (γ, ξ)-plane (see
Figure 4.2). Because circulating trajectories orbits in full range of γ (here −π ≤ γ < π),
they do not contain any turning point, where γ̇ = 0. It follows from equation (4.9) that
the ratio of the observed frequencies of the oscillations are always above or below 3/2 if the
evolution of the system follows circulating trajectories. (Whether above or below depends
on properties of the system through the constants α, β, κr, κθ, λr and λθ). On the other
hand, there are two points on the librating trajectories, where γ̇ = 0. Hence, the ratio of
observed frequencies from a system that follows librating trajectory oscillates about 3:2.
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Figure 4.3: Time evolution of amplitudes (top panel) and the epicyclic frequencies (ver-
tical in the middle, radial at bottom) of high-frequency QPOs. The two epicyclic modes
are interpreted as radial/vertical oscillations of the accreting fluid. The variation of the
oscillation amplitudes is not arbitrary in the adopted resonance model: instead, a relation
between the amplitudes and frequencies is naturally predicted.

4.2 Low-frequency modulation of high-frequency QPOs

The general solution of equations (4.3)–(4.6) corresponds to the periodic exchange of en-
ergy between the two oscillators. The amplitudes and frequencies of oscillations fluctuate,
maintaining the energy conservation. The approximation (3.124) for the period of energy
exchange is valid also in the case of general coupling,

T ∼ 16π

βωθ
E−3/2. (4.10)

We note, however, that its validity ceases for trajectories in the vicinity of the stationary
points where period becomes much greater.

It is evident from equations (4.3), (4.4), (4.7), and (4.10), that the amplitudes and
frequencies of high-frequency QPOs are modulated at the frequency ν3 ≡ 1/T , which is
related to the amplitudes of the original high-frequency QPOs. In the general discussion
with unspecified coupling, our model has six free parameters. These corresponds to (a
combination of) the lowest order expansion coefficients in the Taylor series of the functions
fρ and fθ in equations (4.1) and (4.2). Hence, we cannot predict unique behavior. However,
it is remarkable that a modulation of frequencies and amplitudes follows naturally from
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the assumptions made. Because the oscillators are non-linear, their frequency varies with
amplitude. Because the two oscillators are coupled in a system with constant energy,
the amplitudes of the oscillators are anticorrelated. Because the two oscillators are in
resonance, their frequencies are correlated.

It is not lost on us that similar correlations — discussed by Yu et al. (2001) — hold
also on long timescales. For example, van der Klis et al. (1997) show that as the kHz
frequencies increase, the ratio of power in the upper to lower kHz QPOs decreases (up
to a point). Our Figure 4.3 demonstrates this to be the case also here. We note that
in previous work, a particular relation was found to hold between the two frequencies
of the system, in agreement with that observed in long-term variations of the twin kHz
QPO frequencies in Sco X-1 (Abramowicz et al. 2003; Rebusco 2004). Here, we consider
variations on shorter timescales.

4.3 High and low frequency QPOs in Sco X-1

Except the kHz QPOs also low frequency (below about 50 Hz) QPOs are exhibited by
LMXBs. They are observed with variety amplitudes and coherence and their properties
are often correlated with the spectral state of the source (van der Klis 2000). Here we
examine the possibility of connection between kHz QPOs and so called Normal-Branch
oscillations (NBOs) observed from Z-sources along the normal track in the color-color
digram (Swank 2004). Recently, Yu et al. (2001) find that the both kHz QPOs and the
ratio of lower to upper kHz QPO amplitude are anticorrelated to variations in the X-ray
flux on the time-scale of normal-branch oscillations in the source Sco X-1.

As we mentioned above [see equation (4.10)], the timescale of modulation in our model
is directly related to energy E , We identify the corrected frequencies of our model, i.e., ν ∗

r =
2πω∗

r and ν∗θ = 2πω∗
θ , with the twin kHz QPO frequencies νlower and νupper, respectively.

We adjusted the energy E to obtain a modulation at the NBO frequency of Sco X-1,
ν3 ≈ 6 Hz.

Figure 4.3 (top panel) exhibits the time variation of the “radial” and “vertical” am-
plitudes of oscillations. In the lower panels we show the correlation between the two
kHz frequencies found in our solution. By the assumption of nearly 3:2 resonance, the
two frequencies of actual oscillations satisfy relation ν ∗upper ≈ 1.5ν∗lower. Notice a perfect
correlation between the variation of the lower amplitude and the variation of the upper
frequency ν∗upper. This we interpret as the same correlation that was found by Yu et al.
(2001); compare their Figure 2. The magnitude of frequency variation agrees to within a
factor of 3 with the data: it is 20 Hz for νupper = 1.1 kHz in the data, and about 7 parts
in 1000 in our calculation.

We have found that a non-linear resonance in a system simulating an accretion disk,
invoked previously to explain the appearance of two frequencies in approximately 3:2
ratio in black-hole and neutron-star X-ray data, results in a periodic time variation of the
frequencies.

The Fourier transform of the frequency-modulated and amplitude-modulated periodic
signal would result in several sidebands, in practice leading to an increase in width of the
(noisy) signal. If the observed radiation flux were modulated with the squared modulus
of the amplitudes aρ and aθ, its Fourier transform would exhibit a (weak) component at
low frequency of the modulation apparent in Figure 4.3, in addition to the high-frequency
signal with its sidebands. In this exploratory work, we are not attempting to model the
full power spectrum of QPO sources and, as yet, we have made no attempt to translate the
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amplitudes of motion in the model into modulations of the X-ray flux. Strictly speaking,
our toy-model gives a coherent signal rather than a QPO, and no details of the excitation
or damping were modelled.

It has been suggested that the high-frequency QPOs vary on a timescale of seconds in
some sources, notably in Sco X-1 (Yu et al. 2001) and in the black hole candidate XTE
J1550-564 (Yu et al. 2002). The low-frequency modulation occurs at ≈ 6 Hz in both
sources. In the above described calculation we were able to reproduce this variation for
Sco X-1, including the anti-correlation between the amplitude of the lower peak and the
frequency of the upper one. A similar approach is possible also in case of XTE J1550-564,
although the black hole candidates typically exhibit lower frequencies compared to those
in neutron stars, and particularly to those in Sco X-1. This means that if the 6 Hz QPO
seen by Yu et al. (2002) corresponds to the modulation discussed in our model, then the
ratio νlower/ν3 has to be set differently (about 30 in XTE 1550-564 with νlower = 184 Hz).
And this in turn implies E is different in both systems.

If the correspondence of our results with the observed modulation of kHz QPO prop-
erties on the 6 Hz NBO timescale is not accidental, for the first time we would have a
physical explanation for the presence of the rather low frequency QPO in what is otherwise
a domain of rapid variability. The larger point is that non-linear resonance (most likely
between modes of oscillation possible only in strong gravity) holds promise for explain-
ing not only the highest frequencies observed in accreting neutron stars and black holes,
but also the mysterious phenomenology of low frequency features in the power density
spectrum, without invoking additional mechanisms.

4.4 A possible mechanism for X-ray modulation

In the case of the neutron-stars sources, the modulation of the X-ray radiation may origi-
nate in the modulation of the local accretion rate (Kluźniak & Abramowicz 2004).

In LMXBs that are not pulsars, the magnetic field of the neutron star is sufficiently
weak, allowing the accretion disk to extend down to ISCO. The strongest X-ray radia-
tion then originates in the boundary layer, where accreted material hits the star surface.
Depending on the star radius R?, the amount of energy released in the boundary layer
exceeds that radiated by the whole disk. It gives about 69% of the total luminosity if
R? = 3RS, or even 86% if R? = 1.5RS.

In this context, Paczyński (1987) pointed out that a variability of X-ray luminosity
of accreting neutron stars may be governed by physical properties of the accretion flow
close to ISCO. In Einstein gravity, the inner edge of the pressure supported thick accretion
disks is slightly below ISCO (Abramowicz 1985). The material is accreted from the disk
through a narrow potential nozzle onto the neutron star. Obviously, if the innermost part
of the disk is not stationary but is a subject to some oscillations then the fine structure of
the flow at the inner disk edge is significantly changed. This strongly affects the accretion
rate through the nozzle and the resulting X-ray luminosity of the boundary layer. This
scenario is in agreement with the recent observations of Gilfanov et al. (2003) and more
recently Revnivtsev & Gilfanov (2005) that strongly point to the fact that neutron-star
QPOs are modulated in the boundary layer.

In sections 4.4.1 and 4.4.2 we briefly summarize equations important for the disk
structure close to the ISCO and reproduce the calculations of the accretion rate through
the inner edge of the stationary disk. Then in section 4.4.3 we calculate the accretion rate
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from the disk that is subject to nonstationary axisymmetric perturbations. We derive a
simple formula for the accretion rate modulation of a vertically oscillating disk.

4.4.1 Disk structure close to ISCO

We consider an axisymmetric thick disk made of a perfect fluid surrounding a neutron star
of mass M . The dynamics of the fluid is governed by Euler equation, poloidal component
of which takes the form

∂v

∂t
+ v · ∇ v − `2

r2
er +

∇p
ρ

−∇Φ = 0, (4.11)

where the bold-face letters refer to the poloidal part of the vectors, a ≡ (ar, az), Φ is a
gravitational potential, r denotes radial coordinate (we employ the cylindrical coordinates
{r, φ, z}, with the origin coinciding with the center of the star) and p, ρ and ` are the pres-
sure, density and the angular momentum of the orbiting flow respectively (in general all
dependent on r and z). The azimuthal component of the Euler equation gives conservation
of angular momentum,

∂`

∂t
+ v · ∇` = 0. (4.12)

We assume that the angular momentum is constant in the whole volume of the disk,
`(r, z) = `0, and that the fluid obeys the polytropic equation of state, P = Kρ1+1/n,
where K and n are polytropic constant and polytropic index, respectively. In addition, we
assume that the poloidal velocity v = (vr, vz) can be derived from the potential χ. Hence,
equation (4.12) is satisfied automatically and equation (4.11) can be further integrated to
Bernoulli equation,

∂χ

∂t
+
v2

2
+ h + U = const ≡ US. (4.13)

Here we introduced the poloidal-velocity potential by v = ∇χ, the enthalpy of the fluid
h ≡ ∫ p

0 dp/ρ = nKρ1/n and the effective potential U = Φ(r, z) + `20/2r
2.

As a model of a strong gravitational field of the star, we use the pseudo-Newtonian
potential Φ(r) = −GM/(R − RS), where R ≡

√
r2 + z2 and RS is Schwarzschild radius.

It was introduced by Paczyński & Wiita (1980) and allows us to model general relativistic
effects using Newtonian calculations with remarkable simplicity. Particularly, it gives a
correct position of the marginally stable orbit at r = rISCO = 3RS and well reproduces the
Keplerian angular momentum of test particles orbiting the star, `K =

√
GMr3/(r − RS).

The angular momentum is not a monotonic function of r, as it is in Newtonian gravity
(RS → 0). Instead, it has a minimum at the marginally stable orbit.

The structure of the stationary disk is shown in Figure 4.4. The inner edge is at radius
r = rin, where the angular momentum of the flow equals the Keplerian value, `0 = `(rin).
The Lagrange point is at coordinates [rin, 0]. The equipotential surface corresponding to
the value UR that crosses itself at the Lagrange point is called Roche lobe. The equilibrium
configuration exists only if the surface of the torus is inside the Roche lobe, e.g. when
Us ≤ UR. (Boyer 1965; Abramowicz et al. 1978)

Otherwise, the dynamical equilibrium is impossible and the overflowed matter will be
accreted through the potential nozzle onto the star.
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Figure 4.4: Accretion from a thick stationary accretion disk. The position of the disk
inner edge and the shape of the equipotentials are determined by the distribution of the
fluid angular momentum. Here we consider the simplest case of the constant distribution,
`(r, z) = `0. The plot shows projections of the equipotential surfaces to the poloidal plane
(solid lines) and the distribution of the fluid (shaded region). The matter that overflows
the Roche lobe (the equipotential surface that crosses itself) is accreted onto the neutron
star.

4.4.2 Stationary flow

The stationary accretion rate for Roche overflow was first calculated by Koz lowski et al.
(1978), who used Einstein’s theory. Here we closely follow the Newtonian calculations of
Abramowicz (1985). We consider a small overflow, so that all quantities can be expanded
to the second order in the vicinity of the Lagrange point L. Particularly, the vertical
profile of enthalpy can be expressed as

h(rin, z) = h? − 1

2
κ2z2, κ2 ≡ −

(
∂2h

∂z2

)

L

, (4.14)

where h? ≡ h(rin, 0) denotes a maximal value of the enthalpy on the cylinder r = rin.
The linear order does not contribute because the flow is symmetric with respect to the
equatorial plane. The thickness of the inner edge is H =

√
2h?/κ. Close to r = rin the

accretion flow becomes transonic. After Abramowicz (1985), we assume that the radial
velocity of the flow equals to the local sound speed and that the vertical component of the
velocity is negligible compared to the radial one. This significantly simplifies the solution
because it allows us to express the poloidal velocity using the enthalpy,

v =

√
h

n
er. (4.15)

The local mass flux through the nozzle is ṁ = ρvr = ρcs = hn+1/2/Kn(1 + n)nn1/2

and the integration over the cylinder r = rin gives the total mass flux in therms of the
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central enthalpy h?

Ṁ =

∫ 2π

0
r1 dφ

∫ H

−H
ṁdz

= (2π)3/2 rin
n1/2

[
1

K(n+ 1)

]n Γ(n+ 3/2)

Γ(n+ 2)

(h?)n+1

κ
, (4.16)

where Γ(x) is the Euler gamma function.

In the Bernoulli equation (4.13) we keep the term v2/2 and neglect only the time
derivative because of stationarity of the flow. We obtain

v2

2
+ h+ U =

(
1 +

1

2n

)
h + U = US. (4.17)

The parameter κ that determines the shape of the enthalpy profile can be expressed using
a derivative of the effective potential. That introduces the vertical epicyclic frequency ωz

to the problem. From equation (4.17) we obtain

κ2 =

(
n

n+ 1/2

)
ω2

z , ωz =

(
∂2U
∂z2

)

L

. (4.18)

By substituting the equations (4.17) and (4.18) and introducing ∆U ≡ U0 −US we finally
recover the result obtained by Abramowicz (1985),

Ṁ = A(n)
rin
ωz

∆Un+1, (4.19)

A(n) ≡ (2π)3/2
[

1

K(n+ 1)

]n [ 1

n+ 1/2

]n+1/2 Γ(n+ 3/2)

Γ(n+ 2)
. (4.20)

4.4.3 A perturbed flow

Now, we suppose that the disk is disturbed and oscillates. In that case, the accretion
flow will not be stationary anymore and in order to described the flow we must use the
Bernoulli equation (4.13) in the full form. The presence of the “non-stationary” term
∂χ/∂t breaks however the correspondence between the enthalpy and the effective potential.
The equipotential surfaces and the surfaces of constant enthalpy will not coincide anymore.
If the oscillations are a small perturbation, we can expand the Bernoulli equation in the
vicinity of the stationary flow considered above.

We suppose that the velocity potential can be expressed as

χ(r, t) = χ(0)(r) + εχ(1)(r, t), (4.21)

where the subscript “(0)” refers to the stationary flow and the dimensionless parameter ε
characterizes strength of the perturbation. We assume ε � 1. Then, using the definition
v(r, t) = ∇χ(r, t) we find

v2 = v2
(0) + 2εv(0) · v(1) + ε2v2

(1)

= c2s + 2εcs
∂χ(1)

∂r
+ ε2

[(
∂χ(1)

∂r

)2

+

(
∂χ(1)

∂z

)2
]
. (4.22)
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The perturbation affects also the enthalpy. The new value can be approximated by an
expansion via the parameter ε

h = h(0) + εh(1) + ε2h(2) + O(ε3). (4.23)

By substituting into the Bernoulli equation (4.13) and equating coefficients of same powers
of ε, we get

h(1) = −∂χ(1)

∂t
−
(
h̄

n

)1/2
∂χ(1)

∂r
, (4.24)

h(2) = −1

2

[(
∂χ(1)

∂r

)2

+

(
∂χ(1)

∂z

)2
]
. (4.25)

This way all thermodynamic quantities are expressed using the poloidal-velocity potential.

In the following, we model vertical disk oscillations by a simple ansatz for the poloidal-
velocity potential.

χ(1) = zvz cosωt, (4.26)

where ω is the frequency of the oscillations. As we show elsewhere (Abramowicz et al.
2005a) this is one of the possible modes that may be present in a slender-torus oscillations.
Calculating the velocity perturbation, we find

v(1) = vzez cosωt . (4.27)

Hence, εvz = const can be interpreted as the amplitude of the vertical velocity. Equations
(4.24) and (4.25) give

h(1) = zvzω sinωt, h(2) = −1

2
v2
z cos2 ωt. (4.28)

The vertical profile of the enthalpy at r = rin reads

h(rin, z, t) = h? − κ2z2 + εzvzω sinωt− 1
2ε

2v2
z cos2 ωt+ O(ε3) (4.29)

that is quadratic in the variable z. The position of the enthalpy maximum on the cylinder
r = rin is shifted from z = 0 to height δz(t) given as

δz(t) = δZ sinωt, δZ = ε
ωvz

κ2
. (4.30)

We can interpret δZ as the amplitude of the oscillations. Also the value of enthalpy in
the maximum differs from the stationary case by

δh? ≡ h(rin, δz) − h? 1

2
κ2

[
δz2 − κ2

ω2
(δZ2 − δz2)

]
+ O(ε3). (4.31)

According to equation (4.16) the actual accretion rate depends on the maximal en-
thalpy as Ṁ ∝ (h?)n+1. This relation can be applied also in the case of vertical oscil-
lations because the z-dependence of enthalpy on the cylinder r = rin remains quadratic
also in this case and the oscillations do not contribute to the radial velocity of accreted
matter. Hence, using equations (4.14), (4.18) and (4.31) and assuming that the frequency
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Figure 4.5: Left: The vertical profiles of the enthalpy h(rin, z) on the cylinder r = rin
during vertical disk oscillations (thin lines). The amplitude of oscillations is δZ = 0.2H
and we chose the polytropic index of the fluid n = 1.5. The figure captures profiles with
the enthalpy maxima at δz = 0, 0.1H and 0.2H. The enthalpy profile for the unperturbed
stationary disk is also shown (thick line). Right: The modulated accretion rate from the
oscillating disk (thin solid line). The accretion rate for the stationary disk is plotted by
thick line. Time is rescaled by the period of oscillations. For reference we plot also the
phase of disk oscillations (dotted line) The accretion rate is modulated with twice the
frequency of oscillations.

of oscillations equals to the local vertical epicyclic frequency, ω = ωz, we arrive at our
final result

δṀ

Ṁ(0)

= (n + 1)
δh?

h?

2 − p

2 − 2p

[
(1 + p)

δz2

H2
− p

δZ2

H2

]
, (4.32)

where δM ≡ Ṁ − Ṁ(0) and p ≡ n/(n+ 1/2).
Figure 4.5 shows the result. The enthalpy profiles h(rin, z) are shown for several values

of δz in the left panel. The amplitude of oscillations is δZ/H = 0.3. The right panel shows
the modulation of the accretion rate from the oscillating disk. The time is rescaled by the
oscillation period, T = 2π/ωz. Finally, the time-averaged accretion rate is given by

〈δṀ 〉
Ṁ(0)

= 1
4(2 − p)

δZ2

H2
(4.33)

that is positive for reasonable values of n.
In this note we studied the accretion rate from a non-stationary pressure supported

accretion disk that undergoes the vertical axisymmetric oscillations. The oscillations were
modelled by a simple ansatz for the perturbation of poloidal-velocity field. We believe,
however, that several features would be present also in more sophisticated (perhaps numer-
ical) solutions: (1) the first correction to the stationary accretion rate is of the quadratic
order in both the actual perturbation δz and the amplitude δZ. This is probably because
of the symmetry of the stationary flow with respect to the equatorial plane. Hence, the
frequency of the modulation must be twice the oscillation frequency. (2) The accretion
rate is maximal when the disk reaches the maximal amplitude δz = δZ. (3) The aver-
aged accretion rate from the periodically perturbed flow is greater than the that of the
stationary flow.



Summary and further prospects

In the first part of this work we studied the mechanism of epicyclic resonances in the
orbital motion in a general axisymmetric gravitational field. For this purpose we adopted
the method of multiple scales, sometimes used in different fields of nonlinear physics. The
resonance occurs at radii where the epicyclic frequencies are in a ratio of small integers.
In particular, we discussed properties of the 1:2, 1:1 and 3:2 resonances in a very general
manner (Chapter 3). In the same chapter we also demonstrated that this mechanism
does not operate in spherically symmetric gravitational fields, because all resonant terms
vanishes in those cases. Instead, the radial and vertical epicyclic modes have to be coupled
by an additional nonlinear force. We assumed the Newtonian (or the pseudo-Newtonian)
model of the central gravitational field with additional gravitational field of a ring as an
example. We remind that, while the 1:1 epicyclic resonance likely operates in the vicinity
of Newtonian objects where the two epicyclic frequencies are very close, the 3:2 resonance
is more prominent in vicinity of very compact relativistic objects (in this work modeled
in terms of pseudo-Newtonian potential).

In our scenario, amplitudes and phases of the oscillations are mutually connected
and they follow trajectories in the phase plane with distinct topologies. Our approach
also allows to find regions of different phase-plane topology in the (r, E)-plane. We note
a remarkable similarity of our phase-planes with results of Kozai (1962) who studied
resonances in orbit averaged gravitational potentials as well. In some sense these two
analyses may be complementary: Our approach is restricted to small eccentricities and
inclinations of orbits however it allows large perturbations of spherical gravitational field
(it works also in the gravitational field that are highly non-spherical).

The assumption of small epicyclic oscillations is valid in the case of accretion flows.
Assuming that the radial and vertical modes are coupled we found that both oscillation
frequencies are periodically modulated. We found that this third frequency is inversely
proportional to the energy of oscillations. In this context, we pointed to possible connection
between the high-frequency and low-frequency QPOs in Sco X-1. Dependending on the
phase plane topology and on the initial conditions the ratio of the observed frequencies
fluctuates about 3:2 ratio (in the case of librating trajectories) or about a slightly different
value (in the case of circulating trajectories).

Finally we remind that we assumed that the nonlinear coupling of the two modes
conserves the total energy of epicyclic oscillations. As a next step one intend answer what
is the source of the energy.
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Part II

Polarization from inverse Compton scattering
in relativistic outflows
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Introduction

The presence of a dense radiation field is one of the key factors limiting the pre-acceleration
of relativistic jets and outflows the innermost regions of active galactic nuclei (AGN) and
galactic X-ray binaries often referred as microquasars. The Lorentz factors of the bulk
motion Γ ∼ 10 observed in AGN and relatively smaller values Γ ∼ 3 observed in the
galactic microquasars well agree with models of radiation drag suggested by many authors
(e.g. Abramowicz et al. 1990; Phinney 1982; O’Dell 1981). The interaction of the jet
with surrounding radiation as an acceleration mechanism to relativistic speeds has been
originally proposed by O’Dell (1981). This issue has been further reconsidered by Phinney
(1982) who has shown that the net effect is deceleration rather then acceleration due to
the extended distribution of photon fields from an accretion disk. It has been pointed
out that if the jet originates in the vicinity of the central black hole it must pass through
dense radiation fields from the central region and be subject to the radiative deceleration
through the inverse Compton scattering (Sikora et al. 1996a,b). We note that there is an
evidence that jet is formed at the distance between 30–100 Schwarzschild radii from the
central black hole in the galaxy M87 (Junor et al. 1999). The effects of strong gravity are
significant in this region

In many models the Compton scattering is replaced by the Thomson scattering – its
classical (non-quantum) analog – for which the cross-section formula does not depend on
the energy of incident photons in the electron rest frame, which allows simple analytical
calculations. However several authors calculated effects of radiation drag in full Klein-
Nishina regime (Luo & Protheroe 1999; Renaud & Henri 1998; Keane et al. 2001). The
approximation of the scattering in the Thomson regime seems quite accurate in case of
AGN jets where the incident radiation field in the innermost regions is dominated by
optical and UV, however it ceases in case of microquasars where the radiation fields are
dominated by X-rays. It has been suggested that this difference leads to substantially
smaller terminal speed of microquasar jets (Renaud & Henri 1998).

The Compton drag has an important impact on the radiation field. Photons scattered
by fast moving electrons are beamed to substantially higher energies reaching X-ray in case
of AGNs and γ-ray in case of microquasars. The most of them emerge in the cone with
the opening angle proportional to 1/Γ2 along the bulk motion of the jet. It follows that
the Compton up-scattered radiation is an important component of radiation of blazars
whose jets are observed almost along the axis of symmetry (Urry & Padovani 1995). The
inverse Compton scattering of ambient seed photons by fast moving electrons has been
recognized as a prospective source of large degree of linear polarization in different classes
of objects. This mechanism likely contributes to polarization of originally unpolarized soft
radiation up-scattered in blazar jets (Begelman & Sikora 1987), fast winds from accretion
discs (Beloborodov 1998) and in gamma-ray bursts (see Shaviv & Dar 1995a,b; Lazzati
et al. 2004; Levinson & Eichler 2004). Optical polarization of ∼ 5% was reported in a
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microquasar LS 5039 (Combi et al. 2004), but X-ray polarimetry is still a challenge on
technological side, where it requires new generation polarimeters in the focal plane of
large area optics (e.g. Costa et al. 2001). It has been noticed that the potential role of
polarization is rather important because it can provide additional information with respect
to traditional spectroscopy and help to discriminate between different geometries and
physical states of sources where accretion processes are accompanied by a rapid ejection.
The polarization vector is parallel transported along light rays in strong gravitational fields
(Misner, et al. 1973). Therefore, the polarimetry of scattered radiation provides a useful
probe into the physics of jets (jet geometry, distribution of particle energies, acceleration
mechanism) as well as into the strong gravitational field of the central compact object.

In this part we study linear polarization due to scattering on electron electron clouds.
We take into account the radiation drag and the gravitational pull exerted on them in
the system consisting of a black hole and thin accretion disk. In Chapter 5 the Stokes
paramater describing polarization of radiation are introduced according to standard text
books of Rybicky & Lightman (1979), Chandrasekhar (1960) and Sobolev (1963). We
calculate the polarization arising from the Thomson scattering on a electron cloud at
rest. We show that the Stokes parameters can be expressed using the stress-energy tensor
of the incident radiation field. In Chapter 6 we carry out the Lorentz boost and this
way we calculate the polarization from Thomson scattering on moving clouds. We show
that the in dependence on the cloud velocity resulting linear polarization can be parallel
or perpendicular to the projection of cloud velocity onto the observing plane. We also
consider scattering on hot clouds with an additional random velocity of the electrons. In
that case we show that the electron random motion has depolarizating influence on the
scattered radiation. In Chapter 7 the theory is illustrated with the astrophysically relevant
example of radiation driven electron clouds in the accreting black hole system. We assume
that the spacetime is described by Schwarzschild metric. The cloud motion is included
in a self-consistent manner: the clouds move under combined influence of gravitational
and radiation fields. The source of radiation field is a standard thin accretion disk and
the photons follow rays, which are bent by the black hole gravity. A conceptually similar
are the Monte-Carlo simulations of Melia & Königl (1989) who studied simultaneously
radiative deceleration of jets and spectral properties of the scattered radiation. However
their calculations do not include neither polarization of scattered photons nor general
relativistic effects.

We restrict the cloud motion to the axis of symmetry and show possible trajectories in
the distance–velocity plane for both, cold and hot clouds. Finally we give several examples
of polarization and intensity light curves. These include also contributions of higher order
images by photons that encircle the black hole. The detailed calculations of the light rays
are presented in the two appendices.



Chapter 5

Polarization and Stokes
parameters

5.1 Stokes parameters

First, let us consider a plane monochromatic electromagnetic wave. The time behavior of

electric field can be written as ~E(t, ~r) = <[E0e
i(~k·~r−ωt)]~n, where E0 is a complex amplitude,

< denotes real part, ω is a wave angular frequency and the unit vector ~n is perpendicular to
the wave-vector ~k. These two vectors define the polarization plane. The most general plane
wave is obtained by a superposition of two waves polarized in perpendicular directions ~eX

and ~eY
~E(t, 0) = <

[
(E0X~eX +E0Y ~eY ) e−iωt

]
= <

[
~E0e

−iωt
]
, (5.1)

where we assumed that the waves propagates in the z-direction and we evaluated the
electric field at the origin. The vectors {~eX , ~eY , ~eZ} form the polarization basis. The
complex amplitudes E0x and E0y can be expressed as E0x = Exe

iφx and E0y = Eye
iφy

respectively, where all quantities on the right-hand sides are real – Ei and φi denote
“initial” amplitudes and phases respectively (i = x, y). Hence, the equation (5.1) can be
rewritten as

~E(t) = ~eXEX cos(ωt− φX) + ~eY EY cos(ωt− φY ). (5.2)

Obviously, the end-point of the vector ~E(t) moves along a closed curve in the (X,Y ) plane
with a period T = 2π/ω. In fact this curve is a rotated ellipse as it is apparent from the
following procedure: denote {X ′, Y ′} the reference which axes coincide with the principal
axes of the ellipse traced by the vector ~E(t). This frame is rotated with respect to the
frame {X,Y } by an angle χ. If the curve is an ellipse, then the components E ′

X and E′
Y

of the vector ~E(t) in the rotated frame must satisfy equations

E′
X = E cos β cos [ω(t− t0)] , E′

Y = E sinβ sin [ω(t− t0)] , (5.3)

where β is the circularity parameter of the ellipse, β = π/4 correspond to the circle of a
radius E , β = 0 occurs when the ellipse collapses to a line. Applying the rotation through
the angle −χ, we express equation (5.3) in the frame {X,Y } using

(
EX

EY

)
=

(
cosχ − sinχ
sinχ cosχ

)(
E′

X

E′
Y

)
. (5.4)
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Figure 5.1: Left: The polarization ellipse. Right: Linear-polarization states described by
combinations of Stokes Q and U -parameters in the singular cases when one of the Stokes
parameter equals zero. The orientation of the polarization plane is deduced directly from
the equations (5.8) and (5.7).

Expanding the the right-hand side and comparing EX and EY with components of the
vector ~E(t) in equation (5.2), we obtain parameters E , β and χ expressed using EX , EY

φX and φY . A convenient way is to express them using the Stokes parameters that are
defined as:

I ≡ E2
X + E2

Y = E2, (5.5)

Q ≡ E2
X − E2

Y = E2 cos 2β cos 2χ, (5.6)

U ≡ 2EXEY cos(φY − φX) = E2 cos 2β sin 2β, (5.7)

V ≡ 2EXEY sin(φY − φX) = E2 sin 2β (5.8)

The parameter I is clearly the intensity of the radiation field since it is equal to the
amount of energy carried by the wave per time unit. Also other Stokes parameters have
clear geometric meaning: V is a circularity parameter, because it is proportional to sin 2β.
The wave is circularly or linearly polarized when V = I or V = 0 respectively. Two other
Stokes parameters are connected with the polarization angle χ (the angle of a rotation of
the polarization ellipse). Dividing the equations (5.8) and (5.7), we find that

tan 2χ =
U

Q
. (5.9)

The orientation of a polarization plane (assuming linear polarization) for the singular cases
when one of the Stokes Q and U -parameters is zero are shown in the right panel of Figure
5.1.

Let us consider a counter-clockwise rotation in the (X,Y )-plane about the Z-axis
through an angle ϕ by which the polarization basis {~eX , ~eY , ~eZ} becomes a new one,
{~e′X , ~e′Y , ~e′Z}. Obviously, the intensity I and the circulation V are invariants, because they
do not depend on the angle χ (see the equations (5.6) and (5.8)). The transformation of
the two remaining parameters can be found substituting χ→ χ−ϕ in the equations (5.7)



5.1. Stokes parameters 69

and (5.8). Hence, we obtain

(
Q′

U ′

)
=

(
cos 2ϕ sin 2ϕ
− sin 2ϕ cos 2ϕ

)(
Q
U

)
. (5.10)

It follows that also the sum Q2 + U2 is invariant.

Finally it can be easily shown that only three parameters are needed to describe po-
larization state of the completely polarized radiation: e.g. the polarization angle χ, the
circularity of the polarization ellipse β and the intensity I. The four Stokes parameters
are not independent, they satisfy the relation

I2 = Q2 + U2 + V 2, (5.11)

that easily follows from the equations (5.6)–(5.8).

So far, we have concerned only on the monochromatic waves. But in practice, even
in the case of approximately monochromatic light the amplitudes and the phases must be
regarded as a liable to incessant variations. These irregular changes may occurs millions
of times a second (however, for a completely polarized wave these changes are such that
the ratio of the amplitudes in two perpendicular directions and the phase difference should
remain absolute constants) Measurements of electromagnetic waves that takes place on
much longer time-scales therefore often invokes averaging over time and bandpass. Hence,
for a quasi-monochromatic radiation, we define the Stokes parameters by averaging

I ≡
〈
E2

X + E2
Y

〉
= 〈E2〉, (5.12)

Q ≡
〈
E2

X − E2
Y

〉
= I cos 2β cos 2χ, (5.13)

U ≡ 2 〈EXEY 〉 cos(φY − φX) = I cos 2β sin 2β, (5.14)

V ≡ 2 〈EXEY 〉 sin(φY − φX) = I sin 2β (5.15)

Constancy of the amplitude ratio and the phase difference assures that the shape and the
orientation of the polarization ellipse is constant through all variations. The equations
(5.9) and (5.10) remain valid also in this case.

All four Stokes parameters are independent in the case of a quasi-monochromatic wave.
However, they satisfy the relation that is generalization of equation (5.11) and follows from
the Schwarz inequality for mean values (Rybicky & Lightman 1979)

I2 ≥ Q2 + U2 + V 2. (5.16)

The proof can be found in standard textbooks (e.g. Chandrasekhar 1960 or Rybicky &
Lightman 1979). The relation (5.16) allows to define the degree of polarization or the
polarization magnitude of the light as

Π ≡
√
Q2 + U2 + V 2

I
. (5.17)

We have Π = 1 for a completely polarized light and Π = 0 for an unpolarized or a natural

light for which U = Q = V = 0.

A very important property of the Stokes parameters is their additivity for a com-
bination of incoherent streams of radiation. Consider a ray that is mixture of several
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independent streams of elliptically polarized light. The total Stokes parameters of the
mixture are given as

I =
∑

j

I(j), Q =
∑

j

Q(j), U =
∑

j

U (j), V =
∑

j

V (j), (5.18)

where I(j), Q(j), U (j) and V (j) are Stokes parameters of the streams. The words “in-
coherent” and “independent” mean that the component streams that form the mixture
have no permanent phase relations between themselves. We do not expect the light from
astronomical sources to be completely polarized because it generally comes from different
parts of the source with different intensity and polarization angle.

The additivity of the Stokes parameters has several important consequences. Firstly,
any partially polarized beam of radiation can be regarded as a mixture of the natu-
ral and completely polarized beams. Let (I,Q,U, V ) be the Stokes parameters of the
beam, then the Stokes parameters of the natural and completely polarized beams are
(I −

√
Q2 + U2 + V 2, 0, 0, 0) and (

√
Q2 + U2 + V 2, Q, U, V ) respectively. Secondly, the

completely unpolarized beam of radiation with the intensity I can be regarded as a su-
perposition of two completely linearly polarized beams in two perpendicular directions.
Consider a polarization basis {~eX , ~eY , ~eZ}. The Stokes parameters of that two components
are (I/2, I/2, 0, 0) and (I/2,−I/2, 0, 0).

5.2 Thomson scattering

Let us consider the plane monochromatic electromagnetic wave propagating in the direc-
tion of a basis vector ~eX . The scatterer is a free electron located in the origin of the basis
{~eX , ~eY , ~eZ}, we assume that the observer is situated along the vector ~eZ . The physics
behind the Thomson scattering is very simple; The wave interacts with the electron and
causes its oscillations in the direction of the electric vector ~E(t). Observed is then a
scattered radiation is a dipole radiation due to electron oscillations. Let the wave be com-
pletely polarized in the y-direction. Then, according to the dipole formula, the electron
will radiate with the intensity proportional to sin2 ψ, where ψ is the angle between the
direction of polarization of the incident wave and the direction of observation (ψ = π/2
in our case). The “scattered” radiation is completely polarized in the y-direction. On
the other hand, if the incident wave is polarized in the z-direction then the wave causes
electron oscillations in the direction of observation and according to the dipole formula
(now ψ = 0) and no radiation is emitted toward the observer.

The Thomson scattering is an important source of polarized radiation. If the incident
radiation of the intensity I is unpolarized, then it can be imagined as a mixture of two
components of the same intensity I/2 completely polarized in the direction X and Y
respectively. However, only the the component polarized in the X-direction contributes
to the signal radiated into the Y -direction and the observer receive radiation completely
polarized in the direction Y .

The above-given considerations can be easily formalized and further generalized. Let
us consider the scattering of the incident unpolarized beam of radiation on the small
optically thin electron cloud. For present we do not consider individual motion of electrons,
hence, we can assume that the electrons are at rest with respect to the observer. The
electron density in the cloud is ne and the volume of the cloud is V . The direction of
the incident radiation beam ~ni and the direction of observation ~eZ make an angle ω. The
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angle ω and the plane which contains the directions of the incident and the scattered
light will be referred to as the scattering angle and the scattering plane respectively.
The other vectors of the polarization basis ~eX and ~eY are chosen in the scattering plane
and perpendicularly to it respectively. The incident beam is regarded as a mixture of
two perpendicularly polarized components of the same intensity Ii/2 labeled as a and b.
The a-component is completely polarized in the scattering plane and the b-component
is polarized perpendicularly to it (e.g. b is polarized in the direction of the vector ~eY ).
Thomson differential cross-section for a completely polarized incident radiation can be
expressed according to the dipole formula

(
dσ

dΩ

)

pol
= r2e sin2 ψ, re ≡

e2

mc2
=

√
3σT

8π
, (5.19)

where re is the electron classical radius and σ is the Thomson total cross-section as will
be shown below. The components a and b are scattered with angles ψa = ω and ψb =
π/2 independently on the scattering angle ω. Hence for the intensities of the scattered
components on the cloud we get

Ia = 1
2nr

2
eRIi sin2 ψa = AIi cos2 ω, (5.20)

Ib = 1
2nr

2
eRIi sin2 ψb = AIi, (5.21)

where R is the size of the cloud, A ≡ 3τ/16π and τ ≡ neσTR is the Thomson optical
depth of the cloud. As the scattered radiation (if any) is always completely polarized in
the direction of the original radiation, the Stokes parameters Qa and Qb with respect to
the observer polarization basis {~eX , ~eY , ~eZ} can be written as Qa = −Ia and Qb = Ib
because the a and b components of the incident radiation was polarized in the directions
~eX and ~eY respectively. The other parameters are zero. Due to the additivity of the Stokes
parameters (5.18), the resulting polarization is given as

I = A(1 + cos2 ω)Ii, Q = −AIi sin2 ω, U = 0, V = 0. (5.22)

From this we recover the well-know result that the polarization magnitude from the single
scattering of a single beam of radiation is

Π =
|Q|
I

=
sin2 ω

1 + cos2 ω
. (5.23)

Let us consider now a more general case where the scattering plane is not aligned with
the basis vector ~eX . Then the Q and U parameters given by equation (5.22) are valid
in the basis {~e′X , ~e′Y , ~e′Z} that arises from the observer polarization basis {~eX , ~eY , ~eZ} by
a rotation about the vector ~eZ so that the scattering plane and the vector ~e′X become
aligned. Let us denote the angle of the rotation η and the Stokes parameters with respect
to the rotated polarization basis Q′ and U ′. The parameters Q′ and U ′ are given by the
equation (5.22) and the angle η is measured from the vector ~eX to the rotated vector ~e′X .
Using the transformation rule (5.10), we find that

Q = Q′ cos 2η, U = Q′ sin 2η. (5.24)

Hence, the nonzero stokes parameters from the single scattering of the incident unpolarized
radiation beam of the intensity Ii are given as

I = AIi(1 + cos2 ω), Q = −AIi cos 2η sin2 ω, U = −AIi sin 2η sin2 ω (5.25)
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The scattering takes place in the plane that forms an angle η with the vector ~eX . Angles
η and ω can be expressed using direction cosines, which are defined here as components
of the direction vector ~ni of the incident radiation beam,

nX
i = cos η sinω, nY

i = sin η sinω, nZ
i = cosω. (5.26)

We obtain

I = A
(

1 + nZ
i n

Z
i

)
Ii Q = A

(
nY

i n
Y
i − nX

i n
X
i

)
Ii, U = −2AnX

i n
Y
i Ii. (5.27)

even for one particular source The form of the Stokes parameters in equation (5.27) is
useful, as it allows us to formally integrate partial contributions over incident directions in
a general radiation field. Let the radiation field is described by the frequency-integrated
intensity I(~n). Then the Stokes parameters from the Thomson scattering is given by the
integration over the direction of incident radiation ~ni. This way we find

I = A
(
ε+ ℘ZZ

)
, (5.28)

Q = A
(
℘Y Y − ℘XX

)
, (5.29)

U = −2A℘XY , (5.30)

for the total Stokes parameters of scattered light. Where

ε ≡
∫

4π
Ii(~ni) dΩ, ℘ij ≡

∫

4π
ni

in
j
i Ii(~ni) dΩ (5.31)

are the radiation energy density and the radiation pressure tensor of the incident radiation
field.

The relationship between the Stokes parameters of the scattered radiation and the
moments of incident radiation intensity given by equations can be found in Sobolev (1963).
It represents a starting point of the presented work. It was derived under the assumption
that the scatterer is at rest with respect to the observer polarization basis. In the next
chapter we further generalize it to the case of a general motion by means of the special
relativity. This approach also allows us to give an analogical expressions in the situations
when the scatterer contains warm electrons with their own individual motion.



Chapter 6

Scattering on moving clouds

Incident photons of ambient unpolarized radiation become highly polarized when scattered
by relativistically moving electrons. The total polarization is obtained by integrating over
all directions of incident photons and all scattering electrons in the observation volume. In
this section we generalize our considerations to the case of the on-axis motion of a scatterer
in an axially symmetric radiation field with an arbitrary velocity. The both cases when the
scatterer is a cold electron cloud and when it is a cloud with random electron velocities are
considered. The simplicity of derived equations between frequency-integrated quantities
allows us to include the effects arising from the geometry of an incident radiation field
without any approximation.

We denote spatial three-vectors by an arrow and the corresponding four-vectors by
boldface letters. Hereafter we will simply use four-vector notation. For example, indices
of four-vectors with respect to a local-frame basis are manipulated by flat-spacetime metric
ηαβ = diag(−1, 1, 1, 1). We also use the geometrical units where G = c = 1 for simplicity.
However, we will keep c and G in several cases where dimensions of the quantities are
important.

6.1 Polarization and laboratory reference frames

Let us consider a simple case when the incident radiation field is axially symmetric in the
laboratory frame (LF) (et, ex, ey, ez) and the scattering medium is a swarm of electrons,
which can be assigned a unique velocity. We orient the vector ez along the symmetry
axis, two other spatial vectors ex and ey lie in a plane containing the electron velocity
and are perpendicular to ez. Further, we assume that the electrons are moving along the
symmetry axis with four-velocity u = ut

et + uz
ez with components ut = γ and uz = γβ

(γ is Lorentz factor, β is velocity in LF divided by the speed of light). Later on we carry
out a Lorentz boost to co-moving frame (CF) of the scatterer, (ēt, ēx, ēy, ēz), which is
equipped with time-like four-vector ēt = u and three space-like four-vectors ēx = ex,
ēy ≡ ey. Spatial part of ēz is oriented in the direction of relative velocity of both frames.

In order to describe propagation of scattered photons, we define four-vectors n ≡ p/pt

(with respect to LF) and n̄ ≡ p/p̄t (with respect to CF), where p is the photon four-
momentum (a null four-vector). Due to the axial symmetry we can assume ny = n̄y = 0.

In addition to the above-defined reference frames LF and CF, we introduce two ‘polar-
ization’ frames that are spacetime generalizations of the polarization basis introduced in
the previous section: the laboratory polarization frame (LPF) with basis (et, eX , eY , eZ),
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Figure 6.1: Definition of angles and the polarization basis. Left: co-moving polarization
frame (CPF) The direction to the observer is along the Z̄-axis. The direction of the
incident photon ~ni is described by the angles ϕ and ϑ. Right: The laboratory frame
(LF) and the laboratory polarization frame (LPF). The direction toward the observer is
along the Z-axis. The axis of symmetry is identical with the z-axis. The two frames are
transformed by rotation about the y-axis through the angle θ. The definitions of co-moving
frames CF and CPF are analogical.

and the co-moving polarization frame (CPF) with the basis (ēt, ēX , ēY , ēZ). LPF is de-
fined in such a way that eZ is the three-space projection of the propagation four-vector
n, eX lies in the (ex, ez)-plane, and eY is identical with the LF tetrad vector ey. CPF
is defined analogically and denoted by bars over variables. Note that because of the con-
dition ny = n̄y = 0 the y-axes are the same in all reference frames. Our definition of the
reference frames is apparent from Figure 6.1.

6.2 Stokes parameters of the scattered radiation

We start by calculating the polarization of the scattered radiation in CPF. For this purpose
we use the equations (5.28)–(5.30). The radiation energy density ε and the radiation
pressure tensor ℘ij find their relativistic analogs in the stress-energy tensor defined as

T̄ µν ≡
∫

4π
n̄µ

i n̄
ν
i Īi(n̄i) dΩ, (6.1)

where n̄i is the propagation vector of the incident radiation and Īi(n̄) is its frequency-
integrated intensity. In CPF we have

T̄ tt = ε̄, T̄ ij = ℘̄ij. (6.2)

Hence with aid of this equation the equations (5.28)–(5.30) become

Ī = A
(
T̄ tt + T̄ZZ

)
, (6.3)
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Q̄ = A
(
T̄ Y Y − T̄XX

)
, (6.4)

Ū = −2AT̄XY , (6.5)

We remind, that the incident radiation field was assumed axially symmetric in the CF,
therefore the only nonzero components in this frame are T̄ tt, T̄ tz, T̄ zz, T xx, T yy. These
are further constrained by symmetry, T xx = T yy = (T tt − T zz)/2, and related to the
components in CPF by rotation about ȳ-axis by angle ϑ̄:

T̄ZZ = T̄ xx sin2 ϑ̄+ T̄ zz cos2 ϑ̄, (6.6)

T̄XX = T̄ xx cos2 ϑ̄+ T̄ zz sin2 ϑ̄, (6.7)

T̄ Y Y = T̄ yy, (6.8)

T̄XY = 0 (6.9)

By substituting into the equations (6.3)–(6.5) we find that

Ī = 1
2A
[(

3T̄ tt − T̄ zz
)
−
(
T̄ tt − 3T̄ zz

)
cos2 ϑ̄

]
, (6.10)

Q̄ = 1
2A
(
T̄ tt − 3T̄ zz

)
sin2 ϑ̄. (6.11)

Due to the axial symmetry the remaining Stokes parameter Ū vanishes. The Stokes
parameters are related to CPF. As a consequence the scattered radiation is partially
polarized either in the (x̄, z̄)-plane or perpendicularly to it (see equation (5.9) and the
following discussion). The former and the latter case will be referred as longitudinal or
transversal polarization, respectively.

The degree of polarization can be calculated directly from the definition (5.17)

Π(θ̄) =
|Q̄|
Ī

=
|Πm| sin2 ϑ̄

1 − Πm cos2 ϑ̄
, Πm ≡ T̄ tt − 3T̄ zz

3T̄ tt − T̄ zz
. (6.12)

The meaning of the quantity Πm is evident: the absolute value |Πm| is the maximum
degree of polarization of the scattered light observed under the suitable angle and the sign
of Πm determines the sign of Q̄-parameter. The radiation scattered along the z-axis, for
which ϑ̄ = 0, is completely unpolarized. As ϑ̄ grows the polarization degree increases to
its maximal magnitude |Πm|, which occurs for ϑ̄ = π/2. This states a well-known fact
that the polarization is maximal for the radiation scattered perpendicularly to axis of
symmetry in the CF.

In order to determine the polarization magnitude as seen by an observer in LF we carry
out the Lorentz boost. Non-zero coefficients of Lorentz transformation are Λt

t = Λz
z = γ,

Λt
z = Λz

t = −γβ and Λx
x = Λy

y = 1. The angle of observation ϑ̄ is transformed according
to:

sin ϑ̄ = D sinϑ, cos ϑ̄ = D(cosϑ− β), (6.13)

where D ≡ γ−1(1 − β cos θ)−1 is Doppler factor (c.f. Rybicky & Lightman 1979). All
Stokes parameters are transformed from the CPF to PF in the same way as the radiation
intensity because the boost retains the four-vector ey unchanged (Cocke & Holm 1972).
Therefore we find

I = D4Ī and Q = D4Q̄. (6.14)

It follows that the polarization magnitude Πm is Lorenz invariant. Performing the Lorentz
transformation (6.14) and expressing all quantities in LF we find explicit formulae for the



76 CHAPTER 6. SCATTERING ON MOVING CLOUDS

Stokes parameters of the scattered radiation,

Q = 1
2AD6γ2

[
(1 − 3β2)T tt + 4βT tz − (3 − β2)T zz

]
sin2 ϑ, (6.15)

I = AD4γ2
[
(1 + β2)

(
T tt + T zz

)
− 4βT tz

]
+Q. (6.16)

6.3 Change of the polarization direction

The aim of this section is to connect, in a self-consistent manner, the properties of particle
motion through the ambient radiation field with Stokes parameters of scattered light. In
order to prepare for this discussion it is useful to introduce two critical velocities of the
particle motion.

Firstly, of particular interest is the velocity at which the polarization of scattered radia-
tion vanishes (Beloborodov 1998). The condition for velocity follows from the requirement

T̄ tt − 3T̄ zz = 0. (6.17)

Performing the Lorentz boost to LF we obtain

(
1 − 3β2

)
T tt + 4βT tz +

(
β2 − 3

)
T zz = 0. (6.18)

This is a quadratic equation for β, which has two roots,

β1,2 = a±
√
a2 + b , (6.19)

where

a ≡ 2T tz

3T tt − T zz
, b ≡ T tt − 3T zz

3T tt − T zz
. (6.20)

Clearly, equation (6.17) can be satisfied independently of the direction of observation. For
β → β1,2 the polarization changes from longitudinal to transversal.

Next, we introduce the saturation velocity β0 (Sikora & Wilson 1981). As was shown
by various authors under different approximations about the particle cross-section and the
form of gravitational field (see e.g. Abramowicz et al. 1990; Vokrouhlický & Karas 1991;
Melia & Königl 1989; Fukue & Hachiya 1999; Keane et al. 2001), the saturation velocity
plays an important role in the dynamics of relativistic jets: particles moving at velocity
smaller/greater than the saturation velocity gain/lose their momentum at the expense of
the radiation field. In absence of other acceleration mechanisms and neglecting inertia of
particles, the effect of radiation pressure eventually leads to β → β0 as terminal speed of
the particle motion.

The saturation velocity is determined by the requirement of the vanishing radiation
flux in CF, i.e.

T̄ tz = 0. (6.21)

This gives another quadratic equation,

(
1 + β2

)
T tz − β

(
T tt + T zz

)
= 0, (6.22)

with the solution

β0 =
1 −

√
1 − σ2

σ
, (6.23)
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Figure 6.2: Left: the magnitude of transversal polarization Π(ϑ̄; γ) due to up-scattering
by a relativistic electron as a function of the observing angle in the local co-moving frame.
The case of locally isotropic ambient radiation field is shown for three different values of
Lorentz factor γ. In the inset the emission diagram shows the corresponding lab-frame
polarization. The lobes become gradually flattened toward the front direction of motion
as γ increases. Right: Contours of Π(ϑ, β) = const are shown superposed on the density
plot of I(ϑ, β). Levels of shading give the intensity (in arbitrary units) and illustrate
the progressive beaming towards ϑ = 0 direction in the ultra-relativistic limit. On the
other hand, given a value of β, the polarization degree Π(ϑ;β) as function of ϑ reaches
maximum at a non-zero angle, always off axis (dashed line). This corresponds to a well-
known fact that polarization is maximum for the radiation scattered perpendicularly to
axis of symmetry in the CF.

where σ ≡ 2T tz/(T tt +T tz). We ignore the second solution, as it has no physical meaning.
Let us illustrate the theory proposed above by two examples. We first assume the

incident radiation field to be purely isotropic in the laboratory frame, i.e.

Tαβ = diag
(
ε, 1

3 ε,
1
3 ε,

1
3 ε
)
, (6.24)

with ε≡T tt being energy density of radiation. Evaluating the stress-energy tensor in CF
we find Πm = −β2. Substituting into the equation (6.12) we obtain polarization degree

Π(ϑ̄, β) =
β2 sin2 ϑ̄

1 + β2 cos2 ϑ̄
. (6.25)

Lorentz transformation to LF gives

Π(ϑ, β) =
β2 sin2 ϑ

(2γ2 − 1) (1 − β cosϑ)2 − β2 sin2 ϑ
. (6.26)

Since Πm ≤ 0, the scattered radiation is polarized transversely. The critical velocities are
β0 = β1 = β2 = 0 in this case.

Figure 6.2 shows the dependence of Π on the observing angle according to equa-
tion (6.25). It can be seen (in the left panel) that the resulting curves closely resem-
ble the numerical result of Lazzati et al. (2004; cp. their Figure 1) who employ specific
(frequency-dependent) quantities. In particular, the curves are identical for γ � 1 and
they approach the ultra-relativistic limit Π = (1 − cos2 ϑ̄)/(1 + cos2 ϑ̄) of Shaviv & Dar
(1995a). This limit corresponds to the case of a head-on collision, when all photons are
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impinging at incident angles ϑ̄i → π because of aberration in CF (this result can be also
directly obtained from equation (5.23) in the limit ω → π).

For moderate Lorentz factors there is some difference between our profile of Π(ϑ̄)
and the corresponding numerical values plotted in Lazzati et al. (2004). For example,
checking the γ = 2 curve, we notice that relative difference amounts to roughly 13%.
This apparent discrepancy is explained by realizing that our eq. (6.25) has been derived
in terms of frequency integrated quantities (which are magnified by a factor of D4 by the
transformation from CF to LF, as mention above). On the other hand, Lazzati et al.
employ specific quantities. We can reproduce their values if we limit the frequency range
to some finite interval 〈νmin, νmax〉 in our calculation, although then we lose some photons
– those which are up-scattered to frequency higher than D+νmax or, vice-versa, down-
scattered to frequency lower than D−νmin, where D± ≡ (1±β)1/2(1∓β)−1/2. In order to
demonstrate clearly the relationship between both approaches, let us also consider, for a
moment, the case of frequency dependent specific intensity Iiν of incident light. We restrict
the range in such a way that non-zero Iiν = const is for νmin ≤ ν ≤ νmax, otherwise Iiν = 0.
We calculated numerically the corresponding frequency-dependent Stokes parameters and
polarization Πν of scattered radiation. It was shown that the scattered intensity is non-
zero in the mentioned range D−νmin ≤ ν ≤ D+νmax. We also find that Πν is constant
and identical with Lazzati et al. profile for D+νmin ≤ ν ≤ D−νmax. Within this range
the directional distribution of the incident radiation in the electron CF is not affected
by existence of two cut-off frequencies νmin and νmax. However, outside this range the
polarization depends on frequency. The resulting polarization degree comes out greater
than the value shown by Lazzati et al. in the entire interval 〈D−νmax,D+νmax〉. In the
end, by integrating the polarization over frequency we recover exactly the value predicted
by equation (6.25).

Next, we consider the simplest case of an anisotropic incident radiation field. The
radiation field is axially symmetric with respect to the direction of the particle motion.
We assume that the intensity of incident radiation is nonzero in the cone of the opening
angle α and it is zero everywhere else. Finally we explore effects of a mixture of both,
the isotropic and the anisotropic component. The stress-energy tensor of the anisotropic
component can be calculated according to definition (6.1). We obtain

T tt
a = 2πI (1 − cosα) , (6.27)

T tz
a = πI sin2 α, (6.28)

T zz
a = 2

3πI
(
1 − cos3 α

)
. (6.29)

There are two other nonzero components, T xx
a = T yy

a , which can be evaluated from the
condition T σ

aσ = 0. The stress-energy tensor of the mixture of the isotropic and anisotropic
components is given by the a sum of the stress tensors of the two components.

We first calculate the polarization for a given velocity β of the scatterer. The incident
radiation field is parameterized by the angle α. Figure 6.4 shows the effect of vanishing
and changing polarization which occurs at particular values of β(α). The Left panel shows
the case of purely anisotropic radiation field and the Right one shows shows the case of
the mixture of both components. The intensity of the isotropic component is smaller than
that of the anisotropic by a factor 10−3. Clearly, the isotropic component is important
only at small values of the angle α, for which the energy density of both components are
comparable. Note also, that the polarization of the scattered radiation is transversal when
the scatterer is accelerated or decelerated by the radiation field and it is longitudinal when
the velocity of the scatterer is saturated by the radiation field.
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et al. (2004) in this frequency range. However integrating the polarization over the whole
range we obtain value 0.75 given by the equation (6.25).
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angular radius α; see equations (6.27)–(6.29). Two branches of critical velocity are shown,
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Despite of its simplicity, this model gives interesting consequences. Consider the case
when the source of incident radiation field is a compact relativistic star. The star of
radius R? appears to the static observer (i.e. the particle) located at radial coordinate r
as a bright disc of angular radius α, where

sinα(r) =
R̃

r

ξ(r)1/2

ξ(R̃)1/2
(6.30)

and R̃ ≡ max{ 3
2RS, R?} (Synge 1967), where RS ≡ 2GMc−2=̇1.5 × 105(M/M�)cm is the

Schwarzschild radius and M is the mass of the star. RS is the Schwarzschild gravitational
radius. Due to the light bending the solid angle subtended by a compact star on the sky is
larger than the Euclidean (flat space) estimate. The stellar radiation field provide physical
realization of the anisotropic component of radiation field with the intensity

I(r) =
ξ(R?)2

ξ(r)2
I?(R?), (6.31)

where ξ(r) is the redshift function (see Appendix A for its definition) and we neglect effects
of a limb darkening for simplicity. Both, the angular radius of the star α and the intensity
of the radiation field are functions of radial distance r, which together with velocity β of
the scatterer are considered as the only independent variables in the problem.

In addition, there are two possibilities for the origin of the other, isotropic component
of the radiation field. This component can be produced either independently on the stellar
radiation (i.e. the case of background radiation) or its origin could be connected with the
stellar radiation (i.e. the case of scattered or reprocessed radiation – perhaps by clumps
accreted onto the star). The both contributions are linked to each other and their energy
density decreases at identical rate with the distance in that case. In the former case, we
set the redshifted intensity of the isotropic component to be a fixed ratio λI of the stellar
intensity, on the other hand we set the radiation energy density of the isotropic component
to be a fixed ratio λε of the stelar radiation energy density in the latter case.

Polarization is non-zero provided that particle velocity is not equal to β1,2(r) and,
indeed, Π can reach large values. This is shown in Figure 6.5, where we plot the extremal
value of polarization degree Πm(β, ζ) in the plane of particle velocity β versus radial
distance r and where we assume constant ratio of the redshifted intensities of the stellar
and background radiation field. We use a dimensionless parameter ζ ≡ 1 − R?/r. Each
panel captures the whole range of radii from r = R? (ζ = 0) to r → ∞ (ζ = 1). Πm(β, ζ)
is equal to the extreme value of the polarization degree measured along a suitably chosen
observing angle ϑ. The curve of zero polarization is also plotted: notice that this is
independent of ϑ, as discussed above. In this figure the primary unpolarized light was
assumed to be a mixture of stellar and ambient contributions (the latter component was
assumed to be distributed isotropically in the lab frame). The saturation curve β0(ζ) is
also shown. It is worth noticing that, for some values of the model parameters, β0(ζ)
crosses the contour of Π = 0 twice. Therefore, a hypothetical particle which moves or
oscillates along the saturation curve would exhibit polarization that sweeps its direction
by 90 degrees.

In the case of the fixed ratio of energy densities of the two components, we again
constructed graphs of Πm(β, ζ) and found a similar structure of contours at small radii
as those shown in Fig. 6.5, including the double-valued function β1,2(ζ). However, the
saturation velocity β0(ζ) does not fall to zero at r → ∞ and, instead, it generally reaches
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substantially higher values that depend on the λε. Moreover, the saddle point (where the
curve of constant maximal polarization self-crosses) is shifted to higher r and eventually
vanishes, which is seen in Figure 6.5.

Polarization of the scattered light obviously depends on the electron motion and in our
model it can be calculated together with radiation and gravitational acceleration in a very
simple way, since both, electron dynamics in the ambient radiation field and the polariza-
tion properties of the scattered radiation can be easily found from the stress energy tensor
of the incident radiation. Simultaneous examination of the particle dynamics together
with the polarization of the scattered radiation in the radiation field of the relativistic star
is a matter of the paper of Horák & Karas (2005b).

6.4 Polarization from hot electron clouds

So far, we ignored inner structure of the scatterer. We considered a cloud composed of
cold electrons uniformly moving with bulk velocity. The next natural step is to include s
more realistic case of the isotropic distribution of directions of electron individual motion
as considered by many authors studying the radiative acceleration processes (Sikora et al.
1996a,b; Renaud & Henri 1998) or inverse Compton scattering on the relativistic electrons
(Begelman & Sikora 1987).

Hence, the aim of this section is to average the equations (6.3)–(6.5) over the isotropic
electron distribution. We assume that the electron distribution function n(~βe) does not
depend on the direction of the individual electron velocity ~βe in a cloud co-moving frame
(hereafter CCF), n(~βe) = nef(γe), where γe ≡ (1 − β2

e )−1/2. For a given direction of
observation, the total Stokes parameters are found by the following procedure: (i) For an
electron that moves with velocity

~βe = βe(sin θe cosφe, sin θe sinφe, cos θe), (6.32)

we find a Lorentz transform Λα
β(φe, θe) according to which the radiation stress-energy

tensor T µν is transformed from CCF to the electron co-moving frame (hereafter ECF). (ii)
The local Stokes parameters Ie, Qe, Ue, are evaluated using the stress-energy with aid of
the equations (6.3)–(6.5), respectively. Then (iii) the Stokes parameters are transformed
back to the CCF. Finally (iv), the Stokes parameters are averaged over directions of
electron velocity βe - i.e. over the angles θe and φe.

6.4.1 The Lorentz transform

First, let us consider the case of zero azimuthal angle φe. The orthonormal polarization
tetrads {e(t), e(X), e(Y ), e(Z)} and {ẽ(t), ẽ(X), ẽ(Y ), ẽ(Z)} of the CCF and ECF1 can be
invariantly expressed using the three four-vectors given in the spacetime: the electron four-
velocity ue, the bulk four-velocity u of the electron cloud and the photon four-momentum
p, of the scattered radiation. The time-like basis four-vectors e(t) and ẽ(t) are identical
with the four-velocities u and ue respectively.

Let us introduce the four-vectors e(Z) and ẽ(Z) as normalized projections of the photon
four-momentum p onto the three-space perpendicular to u and ue, respectively. The
projections can be found using the projection tensors hαβ and hαβ

e defined as

hαβ ≡ gαβ + uαuβ, hαβ
e ≡ gαβ + uα

e u
β
e , (6.33)

1Note that these two frames have the same time-like four-vectors.
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in the space-time with signature +2. The projections give

eα(Z) ≡ uα − pα

ν
, ẽα(Z) ≡ uα

e − pα

ν̃
, (6.34)

where ν = −uαpα and ν̃ = −uα
e pα are frequencies of the scattered photon measured in

the CCF and ECF respectively. The spatial parts of the four-vectors e(Z) and ẽ(Z) point
along the direction of photon propagation in each reference frame.

The third basis four-vectors e(X) and ẽ(X) can be chosen as normalized projections
of the other four-velocity, ue and u (respectively), onto the two-space perpendicular to
the two already defined four-vectors of the tetrads. The projector onto the two-space
perpendicular to e(t) and e(Z)

Pαβ ≡ gαβ + uαuβ − eα(Z)e
β
(Z). (6.35)

The projection gives

eα(X) = C

[
ũα − 1

De
uα +

1 −Deγe

De

pα

ν

]
, (6.36)

where De and γe are respectively Doppler and Lorentz factors of the electron that can be
invariantly defined as

De ≡
ν

ν̃
=
pαu

α

pαuα
e

, γe ≡ −uαu
α
e (6.37)

and C is a normalization constant given by

C =
De√

2Deγe −D2
e − 1

. (6.38)

Analogical considerations lead to the expression for ẽ(X)

eα(X) = C

[
ũα − 1

De
uα + (De − γe)

pα

ν

]
. (6.39)

The three-vectors of relative velocities of the electron with respect to the CCF and

vice-versa are βi
e ≡ u(i) − u

(i)
e /γ and β̃i ≡ u

(i)
e − u(i)/γ respectively. They both lie in the

X − Z plane of both systems. This result is consistent with our initial assumption that
φe = 0. Note also, that there is a simple relation between the four-vectors e(X) and ẽ(X):

eα(X) − ẽα(X) = − 1

C

pα

ν
(6.40)

Finally, the last four-vectors in the tetrads, eα
(Y ) and ẽα(Y ) are perpendicular to that

already defined. Because all of them were introduced as linear combinations of the four-
velocities ue, u and the photon four-momentum p, the both four-vectors, eα

(Y ) and ẽα(Y )
are perpendicular to them and therefore we can set

eα(Y ) ≡ ẽα(Y ). (6.41)

Having constructed orthonormal tetrads, we can proceed to the Lorentz transform,
that is treated as a coordinate transform from CCF to ECF

Λµν(0, θe) ≡ gρσ ẽ
ρ
(µ)e

σ
(ν). (6.42)
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When evaluating the transformation coefficients we use the products between the four-
vectors ue, u and p given by equation (6.37) and well-known normalization conditions for
photon four-momentum and four-velocities of particles.

After a considerable algebra we find

Λα
β(0, θe) =




γe − 1
C 0 1

De
− γe

−De

C 1 0 De

C
0 0 1 0

γe −De − 1
C 0 1

De
+ De − γe


 . (6.43)

Let us express the Doppler factor as De = γ−1
e (1 − βe cos θe)

−1 Then we find that C =
1/(γeβe sin θe) and the Lorentz transform takes the form

Λα
β(0, θe) =




γe −γeβe sin θe 0 −γeβe cos θe
−k 1 0 k
0 0 1 0
l −γeβe sin θe 0 m


 . (6.44)

where for simplicity we defined

k = γDeβe sin θe, l = γ2
eβeDe(βe − cos θe), m = De − γeβe cos θe. (6.45)

The more general case when the projection of the electron velocity to the (X,Y ) plane and
the X-axis make nonzero angle φe is realized by a composition of the Lorentz transform
(6.44) with the rotation about Z-axis through the angle φe. The components of the stress-
energy tensor are first transformed by the rotation matrix

RZ(φe) =




1 0 0 0
0 cosφe sinφe 0
0 − sinφe cosφe 0
0 0 0 1


 (6.46)

and then tranformed by the Lorentz transform (6.44). Finally, the total Lorentz transform
(that includes the rotation) is given by

Λα
β(φe, θe) =




γe −γeβe sin θe cosφe −γeβe sin θe sinφe −γeβe cos θe
−k cosφe sinφe k
0 − sinφe cosφe 0
l −γeβe sin θe cosφe −γeβe sin θe sinφe m


 . (6.47)

Let use derive the backward Lorentz transform for the Stokes parameters of the scat-
tered radiation in this subsection. The calculations are done for a completely polarized
radiation only, but the results are valid also for the partially polarized radiation because
the degree of polarization is Lorentz invariant. (Cocke & Holm 1972).

Transformation rules of the Stokes parameters will be derived from the transformation
properties of the electromagnetic tensor F µν . Consider monochromatic plane wave in
vacuum described by an electromagnetic four-potential

Aµ = Aµ
0 exp(ikσ

0 xσ), (6.48)

where Aµ
0 is a constant amplitude of the wave and kµ

0 is a wave four-vector. This potential
satisfies the wave equation ∇2Aµ = 0 and Lorentz calibration condition ∇σA

σ = 0 when
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kµ
0 is a null four-vector perpendicular to the amplitude Aµ

0 . In units where G = c = h = 1
the wave-four-vector is simply related to the photon four-momentum by kµ

0 = 2πpµ
0 .

The electric field E measured in a particular reference frame can be derived from the
antisymmetric tensor F µν ≡ ∇µAν −∇νAµ. For the plane monochromatic wave it has a
form

F µν = iF µν
0 exp(ikσ

0xσ), (6.49)

where the amplitude F µν
0 is given as

F µν
0 = kµ

0A
ν
0 − kν

0A
µ
0 . (6.50)

Consider a particular reference frame (e.g. CCF). The frequency and the propagation
three-vector of the wave are given by the tetrad components of the photon four-momentum
p0

ν0 = −p(t)
0 , ni

0 ≡ p
(i)
0

p
(t)
0

= δi
Z . (6.51)

The frequency is projection of the wave four-vector on to observer four-velocity, two other
independent components of give us the unit three-vector ni

0 along the wave propagation.

The electric field measured by the observer is E i = F (t)(i) = u(ρ)F
(ρ)(i). The energy

density carried by the electric field is proportional to the square of magnitude of the
electric intensity

|E|2 = EiE∗
i = gαβF

αρ
0 F βσ∗

0 uρuσ = (uρk
ρ
0)2A0αA

α∗
0 = (2πν0)2|A0|2, (6.52)

where the stars denotes complex conjugation.

Since the magnetic component of the wave carries the same amount of energy as the
electric one, the radiation intensity can be expressed as

Iν(ni) = 4π2ε0ν
2
0 |A0|2δ(ν − ν0)δ(ni − ni

0), (6.53)

where ε0 is a vacuum permittivity. We added two delta-functions on the right-hand side
because radiation intensity is expressed per unit frequency and solid angle and the plane
monochromatic wave has sharp frequency and direction of propagation. Using equations
(6.51) we can express them as a single delta-function in the photon four-momentum p0

δ(ν − ν0)δ(ni − ni
0) = νδ(pα − pα

0 ). (6.54)

Finally, substituting it into equation (6.53) we find

Iν(ni)

ν3
= 4π2ε0|A0|2δ(pα − pα

0 ) ≡ invariant, (6.55)

because the term on the right-hand side does not depend on choice of the particular
reference frame.

The two other nonzero Stokes parameter Q and U of the linearly polarized wave depend
on the polarization basis. Consider first the case φe = 0. The polarization bases in both
reference frames are introduced by the equations (6.34), (6.36), (6.39) and (6.41), The X
and Y -components of the amplitudes of the electric intensity measured in CCF are

Ea
0 = e(t)α e

(a)
β Fαβ

0 = −uαk
α
0 e

(a)
β Aβ

0 + uαA
α
0 e

(a)
β kβ

0 = 2πν0A
(a)
0 , (6.56)
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where a = X,Y . The second term vanishes because e(a) are perpendicular to the wave
vector. Similarly, an observer in ECF measures

Ẽa
0 = 2πν̃0Ã

(a)
0 = 2πν̃0A

(a)
0 . (6.57)

The last equality is valid because e
(a) equals to ẽ

(a) (for a = Y ) or they differs by multiple
of the wave vector (for a = X – see equation (6.40)), which gives zero in the scalar product
k0αA

α
0 = 0 from the Lorentz calibration condition.

Hence in both reference frames, the two Stokes parameters can be expressed as

Qν

ν3
=

Q̃ν̃

ν̃3
= 4π2

[∣∣∣A(X)
0

∣∣∣
2
−
∣∣∣A(Y )

0

∣∣∣
2
]
δ(pα − pα

0 ), (6.58)

Uν

ν3
=

Ũν̃

ν̃3
= 8π2<

[
A

(X)
0 A

(Y )∗
0

]
δ(pα − pα

0 ), (6.59)

where the delta-functions were expressed in the invariant way using the equation (6.54).
Finally, three frequency-integrated Stokes parameters characterizing linear polarization

are transformed between ECF and CCF according to

I = D4
e Ĩ , Q = D4

e Q̃, U = D4
e Ũ , (6.60)

The transformation (6.60) is valid if (and only if) the Y -axis of CCF is aligned with the
Y -axis of ECF, e.g. when φe = 0. The more general case of the nonzero angle φe is treated
by composition of the transformations (6.60) with the rotation through the angle −φe.

2

The transformations of the Stokes parameters under the rotation are given by equation
(5.10). Therefore, in fully general case we find

I = D4
e Ĩ , Q = D4

e

(
Q̃ cos 2φe − Ũ sin 2φe

)
, U = D4

e

(
Q̃ sin 2φe + Ũ cos 2φe

)
, (6.61)

The equations (6.61) are valid if the source as a whole moves with respect to the
observer. In our case, however the source is rather stationary and at rest in a sense that
it contains warm electrons with fast individual motions in random direction, however a
direction of an electron motion is frequently changed so that the photons are essentially
radiated from the constant place. In a former case the transformation contains also a
contribution of the aberration effect. The Stokes parameters are expressed per time of
observation dt in CCF and per time of emission dt̃ in ECF. These two time intervals are
related by dt̃ = γdt if the source is stationary as a whole and radiates essentially from the
same point or by dt̃ = γ(1 − β cos θ)dt if the source is in a bulk motion and its distance
from the observer is changing as ct(1 − β cos θ). For this reason one should complete the
Lorentz transform by an extra factor (1−β cos θe) = 1/(γDe) (see also Begelman & Sikora
1987,Blumenthal & Gould 1970 and Rybicky & Lightman 1979 sec. 4.8). We obtain

I =
D3

e

γe
Ĩ , Q =

D3
e

γe

(
Q̃ cos 2φe − Ũ sin 2φe

)
, U =

D3
e

γe

(
Q̃ sin 2φe + Ũ cos 2φe

)
. (6.62)

The transformations are derived for the plane monochromatic completely polarized
wave, however it can be easily shown (Cocke & Holm 1972) that our results remain valid
also for a general radiation field with partial polarization. It also follows from equation
(6.62), that the degree of polarization of a linearly polarized wave Π = (Q2 + V 2)1/2/I is
invariant under Lorentz transformations.

2We consider the backward transformation of the Stokes parameters from ECF to CF contrary to the
transformation of the four-vectors considered before.
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6.4.2 The Stokes parameters of the scattered radiation

The Stokes parameters of the scattered radiation with respect to the co-moving frame of
an electron swarm with an uniform velocity are given by the equations (6.3)–(6.5). The
components of the stress-energy tensor of an incident radiation in the ECF are

T̃αβ ≡ Λα
ρ (φe, θe)Λ

β
σ(φe, θe)T

ρσ, (6.63)

where Λβ
σ(φe, θe) are coefficients of the Lorentz transform given by equation (6.47) (from

this point we use a shorter notation without arguments) and T ρσ are components of the
radiation stress-energy tensor in CCF.

Let us denote δĨe, δQ̃e and δŨe contributions to the total Stokes parameters of the
scattered radiation from electrons with Lorentz factor γe and direction of velocity given
by angles φel and θe. After substitution into the equations (6.3)–(6.5), we find

δĨe = Af(γe)
(

Λt
ρΛt

σ + ΛZ
ρ ΛZ

σ

)
T ρσ, (6.64)

δQ̃e = Af(γe)
(

ΛY
ρ ΛY

σ − ΛX
ρ ΛX

σ

)
T ρσ, (6.65)

δŨe = −Af(γe)
(

ΛX
ρ ΛY

σ + ΛY
ρ ΛX

σ

)
T ρσ. (6.66)

Transforming the Stokes parameters according to equation (6.62) we obtain

δXe = Af(γe) Ξ(X)
ρσ T ρσ (6.67)

where X = I,Q,U stands for any Stokes parameter and we defined

Ξ(I)
ρσ ≡ D3

e

γe

(
Λt

ρΛt
σ + ΛZ

ρ ΛZ
σ

)
, (6.68)

Ξ(Q)
ρσ ≡ D3

e

γe

[(
ΛY

ρ ΛY
σ − ΛX

ρ ΛX
σ

)
cos 2φe −

(
ΛX

ρ ΛY
σ + ΛY

ρ ΛX
σ

)
sin 2φe

]
, (6.69)

Ξ(U)
ρσ ≡ D3

e

γe

[(
ΛX

ρ ΛY
σ − ΛY

ρ ΛX
σ

)
sin 2φe +

(
ΛY

ρ ΛY
σ + ΛX

ρ ΛX
σ

)
cos 2φe

]
(6.70)

6.4.3 Integration over the electron distributions

The intensity of the total radiation scattered by the electron cloud is given by integration
over the electron distribution in CCF. The total intensity given by the integral

X =

∫

γe

∫

4π
δXedΩ dγe = AT ρσ

∫

γe

∫

4π
f(γe) Ξ(X)

ρσ dΩ dγe (6.71)

Performing the integration over the full solid angle in the case of intensity X = I, we
obtain

∫

γe

∫

4π
f(γe) Ξ(I)

ρσ dΩ dγe =




1 + A 0 0 −A
0 B 0 0
0 0 B 0

−A 0 0 1 + A− 2B


 , (6.72)

where we defined

A ≡
〈

4
3γ

2
eβ

2
e

〉
, B ≡ 1 −

〈
ln[γe(1 + βe)]

βeγ2
e

〉
, (6.73)
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where 〈x 〉 ≡ ∫
x f(γe)dγe denotes averaging over the electron Lorentz factor. According

to the equation (6.72) the total intensity can be expressed as

I = A
[
(1 + A)

(
T tt + TZZ

)
+ B

(
T tt − 3TZZ

)
− 2AT tZ

]
. (6.74)

Performing the integration over the solid angle in the case of the two remaining Stokes
parameters we find

∫

γe

∫

4π
f(γe) Ξ(Q)

ρσ dΩ dγe =




0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0


 , (6.75)

∫

γe

∫

4π
f(γe) Ξ(U)

ρσ dΩ dγe =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 . (6.76)

Hence, the Stokes Q and U parameters are the same as if the cloud is composed of cold
electrons,

Q = A
(
T̄ Y Y − T̄XX

)
, (6.77)

U = −2AT̄XY . (6.78)

The equations (6.74), (6.77) and (6.78) are analogous to the equations (6.3)–(6.5). Hence,
the discussion of the polarization properties of the radiation scattered by cold cloud carried
in section 6.3 is valid also in the case of warm cloud.

6.4.4 The monoenergetic electron distribution

The monoenergetic electron distribution is a rather simple example. However it keeps
essential property of the problem: the random direction of electron motion in the blob
comoving frame. For its simplicity, it can be a useful probe to more complicated physics.

Let the electron distribution function in the blob comoving frame be ne(γe) = neδ(γe−
γ̄e), where ne is electron number density and γ̄e is mean random Lorentz factor of electrons.
The expressions for u and v are then

u = 4
3(γ̄2

e − 1), v = 1 −
ln
[
γ̄e +

√
γ̄2

e − 1
]

γ̄e

√
γ̄2

e − 1
. (6.79)

Consider a narrow beam of radiation that propagates in the direction ~n in the blob
comoving frame. This three-vector and the direction towards the observer ~eZ make an
angle ϑ. Therefore, the integrated intensity of the incident radiation is by I i(~k) = I0δ(~k−
~n). Due to the symmetry of the problem, we can restrict our discussion to the plane
determined by vectors ~k and ~n. Without loss of any generality we can set nY = 0. Then
two other components are nX = sinϑ and nZ = cosϑ. The stress-energy tensor of the
incident radiation can be found by integration over the full solid angle.

T tt = ε, T tZ = εnZ , TZZ = εnZnZ , TXX = εnXnX , (6.80)
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Figure 6.6: Left: the normalized scattered intensity i ≡ I/(τI0) as a function of the
scattering angle ϑ between the direction n of the scattering radiation and the direction
of observation. The scatterer is the electron cloud. Different curves are for different
values of the electron Lorentz factor measured in the blob reference frame. The case of
cold electron corresponds to γ̄e = 1. Right: the magnitude of transversal polarization
Π as a function of the scattering angle for several values of the electron Lorentz factor.
The depolarization effect of the electron motions and the shift of the angle of maximal
polarization are apparent.

where ε = I0/c is the energy density of the radiation field. Substituting it into equation
(6.74) we find the intensity of scattered radiation in the form

I

τI0
=

3

16π

[
(1 + u− 3v) cos2 ϑ− 2u cos ϑ+ (1 + u+ v)

]
. (6.81)

If the scatterer contains cold electrons, then both, u and v are zero and the angular
dependence of the scattered intensity reduces to I ∝ 1+cos2 ϑ, the same dependence as for
Thomson scattering on a single electron. The scattering on the cold electrons is symmetric
with respect to the plane perpendicular to the direction of the incident radiation beam.
On the other hand, in case of ultrarelativistic electrons with γ̄e � 1 we have u ≈ 4/3γ̄2

e

and v ≈ 1 and equation (6.81) gives the angular dependence I ∝ γ̄2
e (1 − cosϑ)2 which is

highly asymmetric. The most of the radiation is scattered in the backward direction. This
fact has an important consequence regarding the dynamics of the Thomson scattering.
The scattered radiation transport momentum from the electrons in backward direction
and therefore the incident radiation has stronger impact on the dynamics the scatterer if
it contains hot electrons. This effect is called Compton rocket and it was firstly studied
by O’Dell (1981) and than reconsidered by Phinney (1982). The left panel of Figure 6.6
shows the angular dependences of the scattered intensity for different values of γ̄e.

As it was shown in the previous section, the remaining Stokes parameters are not
affected by electron motions. Therefore, we get the same result for the parameter Q as in
the case of blob containing cold electrons,

Q

τI0
= − 3

16π
sin2 ϑ. (6.82)

Since it is negative for any value of ϑ, the polarization of scattered radiation is always
perpendicular to the plane of incident and scattered beams. The polarization magnitude
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is given by the ratio |Q|/I, because other stokes parameters are zero in the considered
configuration. We find

Π =
1 − cos2 ϑ

(1 + u− 3v) cos2 ϑ− 2u cosϑ+ (1 + u + v)
. (6.83)

The angular dependence of the polarization magnitude is shown in the right panel of
Figure 6.6. In the case of cold electrons, equation (6.83) is identical with the well
known expression for polarization of radiation scattered on the single electron, Π =
(1 − cos2 ϑ)/(1 + cos2 ϑ) giving the maximal value of unity for completely polarized radi-
ation, when ϑm,cold = π/2. On the other hand, if the scatterer contains “warm” electrons
with relativistic energies, the polarization of scattered radiation is reduced by a factor
∼ γ̄−2

e . The maximal polarization occurs closer to the direction of incident radiation,
because of the the asymmetric profile I(ϑ) of the scattered intensity. Simple algebra gives
the angle ϑm of maximal polarization

cosϑm =
1

u

[
1 + u− v −

√
(1 − v)(1 + 2u− v)

]
. (6.84)

With aid of equations (6.79), one can check that ϑm → π/2 when γ̄e → 1 . On the other
hand, ϑm approaches zero in the case of highly relativistic electrons with γ̄e � 1. However,
polarization is strongly reduced in that case.



Chapter 7

Radiatively driven clouds above
an accretion disk

We consider radiation field and electron clouds near a static spherically symmetric black
hole surrounded by an accretion disk.

7.1 Gravitational field

Let us consider the gravitational field to be described by the Schwarzschild space-time (we
neglect the disk contribution to the gravitational field). The metric expressed in spherical
coordinates {t, r, θ, φ} is (i.e. Chandrasekhar 1992)

ds2 = −ξdt2 + ξ−1dr2 + r2(dθ2 + sin2 θdφ2), (7.1)

where ξ(r) ≡ 1 − RS/r is the redshift function in terms of gravitational Schwarzschild
radius RS (see Appendix A for the definition of the redshift function).

We adopt the Schwarzschild metric for simplicity: it allows us to complete the cal-
culation of the particle motion in radiation and gravitational fields, and the resulting
polarization in a self-consistent manner. The approach is however sufficiently general and
it can be applied also in other situations. In this work we assume M = const.

The adopted spherical coordinates are non-singular everywhere above horizon, r = RS,
and the space-time is asymptotically flat far from the black hole, i.e. for r → ∞. Hence
the metric (7.1) is suitable for our purposes and it entirely describes the gravitational field
of a non-rotating and electrically neutral black hole above its horizon.

We assume that the accretion disk lies in the equatorial plane θ = π/2. In addition
we restrict the motion of the cloud to the disk axis, which is given by θ = 0. The radial
coordinate along this axis (the height above the disk) will be referred to as z (i.e. when
we use the letter z instead of the letter r, we implicitly assume the condition θ = 0)

Each point of the spacetime is equipped by a local orthonormal tetrad with respect
to which four-vectors and four-tensors will be expressed. At points that don’t lie on the
symmetry axis we use the tertad (e(t), e(r), e(θ), e(φ)), with non-vanishing components

e
(t)
t = −ξ1/2, e(r)r = ξ−1/2, e

(θ)
θ = r, e(φ)

α = r sin θ. (7.2)

On the other hand, points on the symmetry axis are equipped with “cartesian” tetrad
(e(t), e(x), e(y), e(z)) with non-vanishing components

e
(t)
t = −ξ1/2, e(z)

z = ξ−1/2, e(x)
x = e(y)

y = r (7.3)
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Tetrad components of four-vectors are denoted with bracketed indices and are raised and
lowered using the Minkowski metric tensor ηαβ.

7.2 Disk radiation field

In order to find the disk radiation field, we first determine the radial profile of its surface
temperature. For this purpose, we adopt the standard Shakura & Sunyaev (1973) disk
model where the accretion disk is assumed to be optically thick and geometrically thin.
The disk effective temperature Td is given by an equilibrium between viscous heating and
radiative cooling

σSBTd(r)4 =
3GMṀ

8πr3

(
1 −

√
rin
r

)
, (7.4)

where σSB is Stephan-Boltzmann constant, Ṁ is the accretion rate and rin is the inner
disk radius.

Assuming that at a given radius the disk is a blackbody radiator, the surface specific
intensity measured in the reference frame that co-rotates with the disk is given by the
Planck function Id(ν, r) = Bν(Teff). The frequency-integrated surface intensity is then

Id(r) =

∫

ν
Bν [Td(r)]dν =

1

π
σSBT

4
d . (7.5)

Using this equation and equation (7.4) we find

Id(r) =
3GMṀ

8π2r3

(
1 −

√
rin
r

)
. (7.6)

Now, let us introduce the normalization of disk luminosity by the Eddington parameter

Λ ≡ L

LEdd
=

σTṀ

8πmpcrin
, (7.7)

where L = GMṀ/2rin is the disk luminosity and LEdd = 4πcGMm/σT is the Eddington
luminosity of the central object (m denotes the mass of the particle providing inertia of
accelerated medium in this work we assume m = me). Hence, we can express the intensity
Id as

Id(r) =
mc3

σTRS
ΛId?, Id? =

6rin
r3

(
1 −

√
rin
r

)
, (7.8)

where Id? is the normalized disk intensity. It depends only on the relative spatial variations
of the surface intensity and not on its absolute value. This approach allows us to easily
discuss effects of radiation field strength.

Particles move in the accretion disk along a circular orbit in the equatorial plane. A
four-velocity of a particle can be expressed as uµ

d = (ut
d, 0, 0, u

φ
d), where

ut
d =

dt

ds
, uφ

d =
dφ

ds
=

dt

ds

dφ

dt
= ut

dωd. (7.9)

The velocity components ut
d and uφ

d are not independent because the four-velocity is

normalized by the condition gαβu
α
du

β
d = −1. Hence, the circular orbit is completely
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determined by the angular orbital frequency ωd measured by a distant observer. The
radial component of the geodesic equation leads to equation

Γr
tt + ω2

dΓr
φφ = 0, (7.10)

with the solution

ω2
d = − gtt,r

gφφ,r
=
RS

2r3
. (7.11)

The normalization condition for the four-velocity uα
d implies

ut
d =

(
1 − 3RS

2rd

)−1/2

. (7.12)

Light rays are null geodesics. Denoting the photon four-momentum as pα, following
quantities are conserved along a particular ray: the photon energy E, the photon angular
momentum L and the redshifted intensity Ĩ given (respectively) by

E ≡ −pt = const, L ≡ pφ = const, Ĩ ≡ I

(pαuα)4 = const, (7.13)

where I is the intensity measured by an observer with four-velocity uα.
Let us consider a particular light ray. The four-velocity of the stationary observer lo-

cated on the axis at the height z can be expressed as uα
o = ξ−1/2(z)δα

t . In the local reference
frame of the observer we introduce local orthonormal tetrad according to the definition
(7.3). Then we can define photon propagation four-vector n(i) with spacetime components
n(α) ≡ p(α)/p(t). Note, that its spatial components satisfy the relation n(i)n(i) = 1 and,
therefore, they can be expressed using directional cosines

n(x) = cosϕ sinϑ, n(y) = sinϕ sinϑ, n(z) = cosϑ, (7.14)

The intensity Id(rd) emitted by the disk at the radius rd measured in the co-rotating
reference frame and the intensity I(ϑ, z) received by the stationary observer on the axis
at height z are related by

I(ϑ, z) =
(pαuα)4o
(pαuα)4d

Id, (7.15)

where the subscripts “o” or “d” denotes evaluation of the bracket in the observer or disk
co-rotating reference frame respectively. Using the expressions (7.13) and noting that
L = 0 for rays that goes through the axis, we find

(pαuα)o = −Eξ−1/2(z), (pαuα)d = −E
(

1 − 3RS

2rd

)−1/2

. (7.16)

The intensity of radiation intercepted by the observer is

I(ϑ, z) =
1

ξ2(z)

(
1 − 3RS

2rd

)2

Id(rd). (7.17)

The tetrad components of the stress-energy tensor as measured by the observer can be
calculated according to definition

T (α)(β)(z) =

∫

4π
I(ϑ, z)n(α)n(β)dΩ, (7.18)
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Figure 7.1: Geometry of the disk radiation field. The angle of observation ϑ is given by
the radial coordinate in the disk rd and the height z above the disk.

where dΩ = sinϑdϑdϕ is element of solid angle. Due to the axial symmetry of the
problem, the intensity does not depend on the angle ϕ and only three components of the
stress-energy tensor are independent,

T (t)(t) = 2π

∫ 1

−1
I(µ, z)dµ, T (t)(z) = 2π

∫ 1

−1
I(µ, z)µdµ, T (z)(z) = 2π

∫ 1

−1
I(µ, z)µ2dµ,

(7.19)
where we introduced an usual substitution in the viewing angle µ ≡ cosϑ and per-
formed the trivial integration over the angle ϕ. The two other non-vanishing components,
T (x)(x) = T (y)(y) can be found from condition T (t)(t) = T (x)(x) + T (y)(y) + T (z)(z).

The cosine of the viewing angle µ is connected with the radius of the emission rd

and with the height z of the observer above the disk. The relation is given by the shape
of the light ray (see Figure 7.1). In the absence of the gravitational field, light rays are
straight lines and the relation between ϑ, rd and z becomes a simple trigonometric formula.
However, if the light rays are bent by gravity an integration of the geodesic equation is
necessary. In presented calculations we traced the photon-path in backward direction –
from observer position to the disk. We numerically integrated the geodesic equation (A.9)
with the initial conditions chosen according to equation (A.13) that relates the angle ϑ
with the impact parameter of the ray. Finally, we found the viewing angle ϑ as a function
of the radius rd of the emission point and the observer position z.

Once the function µ(rd, z) is specified, we can replace the integration over the viewing
angle by the integration over the disk radius. We find

T (α)(β) =
mc3

σTRS
ΛT

(α)(β)
? , (7.20)

where we introduced the normalized stress-tensor T
(α)(β)
? components given by integrals

T
(t)(t)
? =

2π

ξ2(z)

∫ rout

rin

(
1 − 3RS

2rd

)2

Id?(rd)
∂µ

∂rd
drd, (7.21)
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Figure 7.2: Normalized components of the radiation stress-energy tensor on the symmetry
axis as calculated using the equations (7.21)–(7.23). The source of radiation is a standard
Shakura & Sunyaev (1973) accretion disk surrounding Schwarzschild black hole. The inner
disk radius corresponds to the innermost stable circular orbit, rin = 3RS and the outer
disk radius is at rout = 103RS. We show the dependence on the ξ ≡ 1 −RS/z, because it
captures the whole range of the z-axis and enlarges the area where effects of strong gravity
are important. The locations of the photon-sphere and the radius of the innermost stable
circular orbit are also shown. The dimensional values of the stress-energy tensor can be
calculated using equation (7.20).

T
(t)(z)
? =

2π

ξ2(z)

∫ rout

rin

(
1 − 3RS

2rd

)2

Id?(rd)µ(rd, z)
∂µ

∂rd
drd, (7.22)

T
(z)(z)
? =

2π

ξ2(z)

∫ rout

rin

(
1 − 3RS

2rd

)2

Id?(rd)µ2(rd, z)
∂µ

∂rd
drd. (7.23)

The normalized components of the stress-energy tensor calculated according to equa-
tions (7.21)–(7.23) are shown in the Figure 7.2. We assume that the position of the disk
inner radius is determined predominantly by general-relativistic effects and therefore it
coincides with the radius of the innermost stable circular orbit, rin = rISCO = 3RS. We
chose the value rout = 103RS for the outer radius of the disk. Although the disk model
chosen here is rather specific, the resulting radiation field shown in Figure 7.2 reflects
several important features that are general and can be expected in the radiation of other
different and probably more relevant disk models.

• The stress-energy tensor vanishes as z → ∞ (ξ → 1) because the angular size of the
disk as observed by distant observers decreases to zero.

• The tz-component measured by a stationary observer changes its sign for a certain
value of z. Far from the disk it must be positive because the disk behaves like a
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point source at large distances. On the other hand, since the disk is located outside
the photon-sphere corresponding to the radius r = rph, a stationary observer located
inside receives only photons falling into the black hole. Therefore the T (t)(z) must
be negative in this region and the change of the sign must occur above the photon-
sphere.

• All three components diverge as z → RS (ξ → 0). In fact, there are two effects acting
against each other: the gravitational bending of light-rays reduces a solid angle that
the disk occupy on the observer’s local sky by factor ∝ ξ(z). On the other hand,
the gravitational redshift increases the radiation intensity by factor ∝ ξ−2(z). Close
to the horizon the accretion disk appears as a point-like source giving the energy
density ∝ ξ−1(z).

7.3 Dynamics of electron clouds

In this section we consider a dynamics of an electron cloud under combined influence
of the radiation and gravitational fields described in previous sections. We assume that
the cloud motion is restricted to the z axis. Let us denote V the volume of the cloud
measured in its co-moving frame and ne density of the electrons in the cloud. We further
assume that the electrons have random directions of velocity in the cloud co-moving frame.
Later on we restrict ourselves to the mono-energetic electron distribution, that allows easy
calculations, however the governing equations will be derived in full generality.

Let uα be the cloud four-velocity. Then the cloud four-momentum is given as pα =
meneγ̄eu

αV , where γ̄e is the mean Lorentz factor of the electron (i.e. mean energy of the
electron in units of electron rest energy mec

2) in the cloud co-moving frame. The equation
of motion reads

Fα =
Dpα

Ds
= meneV

(
uα dγ̄e

ds
+ γ̄ea

α
)
, (7.24)

where D/Ds denotes covariant derivative with respect to the proper time s and aα is the
cloud four-acceleration. A total four-force acting on the cloud F α affects both, the cloud
“microphysics” – the distribution of the electron energies – as well as the dynamics of the
cloud as a whole (the first and the second term in the bracket respectively).

In the curved spacetime, the four-acceleration aα is given by

aα ≡ Duα

Ds
=

duα

ds
+ Γα

µνu
µuν . (7.25)

The nonzero components of the four-velocity take simple form when evaluated in the local
orthonormal tetrad of a stationary observer. In that case, we found u(t) = γ and u(z) = γβ,
where γ and β are Lorentz factor and three-velocity of the cloud measured by the observer.
Then the nonzero components of the four-velocity measured by the distant observer can
be expressed as

ut = γξ−1/2, ur = γβξ1/2. (7.26)

Substituting them into equation (7.25) we find

at =
γ2β

ξ

(
ξ1/2 dβ

ds
+
RS

2z2

)
, az = γ2

(
γξ1/2 dβ

ds
+
RS

2z2

)
. (7.27)
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and when these expressions are further substituted to the equation of motion (7.24) we
obtain

F (t)

meneγ̄eV
=

γ

γ̄e

dγ̄e

ds
+ γ3β

dβ

ds
+
γ2β

ξ1/2

RS

2z2
, (7.28)

F (z)

meneγ̄eV
=

γβ

γ̄e

dγ̄e

ds
+ γ3 dβ

ds
+

γ2

ξ1/2

RS

2z2
. (7.29)

Finally, after some algebra, the dynamic equations take the form

dγ̄e

ds
=

F (t) − βF (z)

meneV
, (7.30)

γ
dβ

ds
=

F (z) − βF (t)

meneV
− RS

2z2ξ1/2
. (7.31)

Equation (7.30) expresses the change of the mean electron energy of the cloud when exter-
nal force is applied. Clearly, the electron energies remain unchanged if the gravitational
field acts on the cloud only. The equation (7.31) describes the dynamics of the cloud
as a whole. We note that the equations (7.30) and (7.30) were derived with an implicit
assumption that the particle distribution remains isotropic. Neglecting the electron indi-
vidual motion the equation (7.31) becomes identical with equation (3.12)1 of Abramowicz
et al. (1990).

The electrons in the cloud interact with the radiation field via Thomson scattering.
Let us consider first scattering on a single electron. Coherence of scattering and front-
to-back symmetry of the corresponding differential-cross-section formula implies that the
radiation field that interacts with electron lose all its momentum and keep all its energy as
measured in the electron rest frame. Therefore, the rate of four-momentum that electron
gains in its rest frame can be expressed as dp̃e

t/dse = 0 and dp̃i
e/dse = σTT̃

ti, where se
is the electron proper time the tildes denotes evaluation in the electron rest frame. These
expression can be invariantly expressed using the electron four-velocity uα

e as

dpα
e

dse
= −σT (Tαρueρ + T ρσueρueσu

α
e ) . (7.32)

(Phinney 1982, see) Let the electron four-velocity in the cloud rest frame be

uα
e = (γe, γeβe cosϕeϑe, γeβe sinϕe sinϑe, γeβe cosϑe) , (7.33)

where ϕe and ϑe are directional angles of the electron three-velocity. Total rate of the
four-momentum transfered to the whole cloud from the radiation field can be found by
integration over the isotropic electron distribution, e.g. averaging equation (7.32) over
angles ϕe and ϑe and over the electron Lorentz factor γe. We find (compare with equations
(4) and (5) of Phinney (1982) and equations (5) and (6) of Cheng & Odell (1981))

〈f̃ (t)〉 = −σTAT̃ (t)(t), 〈f̃ (i)〉 = σTCT (t)(i), C ≡ 1 + 2
3〈γ2

eβ
2
e 〉, (7.34)

where tilde refers to quantities measured in the cloud co-moving frame and A was previ-
ously introduced in equation (6.73). Covariant expression of the equations (7.34) can be
found in the following way. Denote uα the cloud four-velocity. Then ũ(α) = δα

t in the cloud

1with substituted expression (3.11)
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co-moving frame and components of the radiation stress-energy tensor can be invariantly
expressed as T̃ (t)(i) = −ũσT̃

(σ)(i) and T̃ (t)(t) = uρuσT
(ρ)(σ). The covariant expression can

be looked for in the form
〈fα〉 = −σTCuσT

σα +Kuα. (7.35)

where K is an undetermined constant. Evaluating the time component of equation (7.35)
in the cloud co-moving frame and comparing it with equation (7.34), we find that

〈f̃ (t)〉 = σTCT̃ (t)(t) +K = −σTAT̃ (t)(t), (7.36)

from which we conclude that K = −σT(A + C)T ρσuρuσ. Therefore, the equations (7.34)
take a form

〈fα〉 = −σT

[
CTαβuβ − (A + C)T ρσuρuσu

α
]
, (7.37)

that is manifestly covariant.
Total four-force acting on the cloud can be found by multiplying the mean force acting

on a single electron by the total number of electrons in the cloud

Fα = neV 〈fα〉 = −σTneV
[
CTαβuβ − (A + C)T ρσuρuσu

α
]

(7.38)

Evaluating the equation in the local orthonormal tetrad of a stationary observer on the
symmetry axis, we find

F (t) − βF (t) = σTneγVA
[
T (t)(t) − 2βT (t)(z),+β2T (z)(z)

]
, (7.39)

F (z) − βF (t) = σTneγV C
[
(1 + β2)T (t)(z) −

(
T (t)(t) + T (z)(z)

)
β
]
, (7.40)

By substitution equations (7.39) and (7.40) into the equations of motion (7.30) and
(7.31), we find

dγ̄e

ds
= −γAσT

me

[
T (t)(t) − 2βT (t)(z) + β2T (z)(z)

]
, (7.41)

dβ

ds
= C σT

meγ̄e

[
(1 + β2)T (t)(z) −

(
T (t)(t) + T (z)(z)

)
β
]
− RS

2γz2ξ1/2
. (7.42)

Finally, introducing the dimensionless normalized components of the radiation stress-
energy tensor according to equation (7.20) we arrive at the result

dγ̄e

ds
= −γAΛ

[
T

(t)(t)
? − 2βT

(t)(z)
? + β2T

(z)(z)
?

]
, (7.43)

dβ

ds
=

1

γ̄e
CΛ
[
(1 + β2)T

(t)(z)
? −

(
T

(t)(t)
? + T

(z)(z)
?

)
β
]
− RS

2γz2ξ1/2
, (7.44)

where we assume that the proper time s is expressed in convenient units RS/c = 2GM/c3.
The equations (7.43) and (7.44) should be completed by

dt

ds
= γξ−1/2RS, (7.45)

dr

ds
= γβξ1/2RS. (7.46)

Let us make few comments about equations (7.43) and (7.44): (i) The first one describes
the evolution of the electron distribution in the cloud co-moving frame. Note, that the
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right-hand side of this equation is always negative for any radiation field because the
terms in the square bracket are proportional to the radiation energy density measured
in the cloud co-moving frame. Therefore the averaged electron Lorentz factor γ̄e will be
decreasing function of the proper time and the electrons will cool. We note, however, that
a qualitatively different behavior is obtained by including the pressure of the electron gas
that has been neglected for simplicity (Phinney 1982).

Except the Compton cooling there can be other important processes that influence
the electron distribution: synchrotron losses, injection of highly energetic particles, etc.
For an extensive discussion we refer the reader to the papers of Sikora et al. (1996a,b).
These processes can be easily taken into account by adding another terms to right-hand
side of equation (7.43). This approach, however considerably enlarges a number of free
parameters of the model.

The dynamics of the cloud as a whole is governed by equation (7.44). The right-
hand side contains contributions of both, the radiation (first term) and the gravitational
(the second term) field. The relative importance of them is expressed by the Eddington
parameter Λ. The gravitational field always accelerates the cloud toward the black hole.
On the other hand, the effect of radiation field depends on the cloud height z above the
accretion disk, on the mean Lorentz factor γ̄e of electrons in the cloud co-moving reference
frame and also on the cloud velocity β because of the relativistic aberration.

In the case of cold clouds (A = 0, C = 1) an appropriate tool in discussion of particle
dynamics is the saturation velocity introduced by many authors (see e.g. Sikora & Wilson
1981; Abramowicz et al. 1990; Vokrouhlický & Karas 1991; Melia & Königl 1989; Keane
et al. 2001).

First, let us consider the limit Λ → ∞. In this case we neglect the contribution of the
gravity on the right-hand side of the equation (7.44). The condition dβ/ds = 0 gives a
quadratic equation with the solution

βsat(z;∞) ≡ β0 = σ −
√
σ2 − 1 , σ ≡ T

(t)(t)
? + T

(t)(z)
?

2T
(t)(z)
?

, (7.47)

that is the equilibrium velocity given by equation (6.23).
Now, consider the case of general Λ. We denote F(z, β,Λ) the right-hand side of

equation (7.44). It is not difficult to show that for a given z, F is a monotonic function of
β ∈ [−1, 1] even for fully general radiation field: condition ∂F/∂β = 0 leads to the cubic
equation

β3 − 3β + 2σ = 0, (7.48)

the solution β = β
1/3
0 + β

−1/3
0 of which lies always outside the range [−1, 1]. Hence, for

a given height z above the disk the sign of ∂F/∂β is fixed independently on β. The
monotony of the right-hand side implies that the equation (7.44) can be expressed as

dβ

ds
= − [β − βsat(z)]H(z, β,Λ), (7.49)

where H(z, β,Λ) is a positive function and βsat(z) is the saturation velocity. Therefore,
the electron cloud is accelerated and decelerated when β > βsat and β < βsat, respectively.

For the cold clouds the equations (7.44)–(7.46) allow a finite set of topologically dif-
ferent solutions. These can be classified into different categories (Vokrouhlický & Karas
1991; see also Abramowicz et al. 1990 and Keane et al. 2001) according to the behavior of
the saturation velocity in (ξ, β)-plane.
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Figure 7.3: Possible trajectories of a cold (γ̄e ≡ 1) electron cloud for Λ = 0 where the
radiation field is dynamically unimportant. Trajectories are given by equation (7.50). The
red curve separates the trajectories that reach infinity from those falling to the black hole.

As shown by Abramowicz et al. (1990), the situation Λ = 0 corresponds to the sat-
uration velocity βsat(z) = −1. The motion of the cloud is determined by gravity only,
while the radiation field is dynamically unimportant. The trajectories β(ξ) of a cloud are
well-known trajectories of freely-falling particles that can be analytically expressed as

β(ξ) = ±
√

1 − ξ(1 − β∞) , β(ξ) = ±
√

1 − ξ

ξm
. (7.50)

The first equation correspond to escaping (the positive sign) and freely-falling (the negative
sign) trajectories which velocity at infinity (ξ = 1) is β∞. The second one describes
trajectories of particels initial velocity of which is not high enough to escape from the
black-hole gravitational field. Such trajectories contain turning point at ξ = ξm. The
positive and negative sign is for approaching and receiving part of a trajectory, respectively.
It follows, that cloud escapes from gravitational field only if its initial velocity and ξ-
coordinate satisfy condition β0 >

√
1 − ξ0. Possible trajectories in the case of Λ = 0 are

shown in Figure 7.3.
When the normalized disk luminosity Λ is nonzero, it is practically impossible to find

an analytic solution and we must carry out a numerical integration of equations (7.44)-
(7.46). We used a standard Runge-Kutta integrator with an adaptive step (Press 2002).
Figure 7.4. captures possible trajectories of the cold electron cloud in the case when the
normalized disk luminosity reaches its critical value Λ = Λcrit. The saturation velocity
vanishes as z goes to infinity (ξ → 1) in this case. The only qualitative difference from
the case Λ = 0 involves only infalling trajectories with velocity at infinity β∞ smaller than
βsat(∞). Particles moving along these trajectories are first decelerated until they reach
the saturation velocity. Following acceleration toward the black is stronger than in the
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Figure 7.4: The same as in Figure 7.3, but for the radiation field with the normalized
luminosity Λ = Λcrit. The red solid line separates region of trajectories that escapes to
infinity. The blue dotted line corresponds to the saturation velocity βsat(ξ) that vanishes
in infinity for the critical value of the Λ-parameter. Trajectories are slightly distorted with
respect to the β = 0 line by the weak influence of gravity. Only the infalling particles are
significantly affected.

case Λ = 0 due to the contribution of radiation field.

Different topology of the phase plane occur, when Λ > Λcrit. There is an equilibrium
point z = zeq where the saturation velocity βsat(z) changes its sign. The same behavior
was reported by Abramowicz et al. (1990) in the case of the radiation field of a bright
star. However, there is an important difference: while the saturation velocity changes its
sign from positive to negative as ξ grows in their case, the change is from negative to
positive in our case. This remarkably changes the topology of trajectories in the (ξ, β)
plane: the equilibrium point [ξeq, 0] is of the saddle type in the case of the disk radiation
field contrary to the case of the stellar radiation field where the equilibrium point is of
the nodal type. The two examples are given in figures 7.5 and 7.6. They show situation,
when Λ = 10 and Λ = 100, respectively.

So far, our discussion involved trajectories of cold clouds with γ̄e ≡ 1. How the elec-
tron random motion affects the motion of whole cloud? First, we assume that the electron
distribution is constant in time e.g. that there is an additional mechanism injecting ener-
getic particles i.e. dγ̄e/ds = 0. Then, exploring equation (7.44), we find that the equation
takes the same form as in the case the of the cold cloud (C = γ̄e = 1) if the normalized
luminosity is rescalled as

Λ → Λ′ ≡ C
γ̄e

Λ. (7.51)

Warm clouds will move identically as the cold ones in the radiation field luminosity of
which is greater by factor C/γ̄e. Hence, the motion of the warm cloud, which electrons
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Figure 7.5: The same as in the figure 7.3, but for the radiation field with the normalized
luminosity Λ = 10. The critical point of the saddle topology appears at a place where the
saturation velocity (blue dotted line) crosses the β = 0 line. Again, the thick red curve
refers to the separation of trajectories that reach the infinity.
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Figure 7.6: The same as in the figure 7.3, but for the radiation field with the normalized
luminosity Λ = 100. The velocity of the cloud quickly adhere to the saturation curve
βsat(ξ) provided that the dynamics is governed predominantly by the radiation field. Then
the motion follows the curve adjacent to but slightly different from the saturation velocity.



7.4. Polarization along cloud trajectories 103

-1

-0.5

 0

 0.5

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1

∞rISCOrph

β

ξ

Λ = 10Λ = 27.5

Figure 7.7: Trajectories of a warm electron cloud (red curves). Possible trajectories of
a cold cloud are also shown for reference (black curves). The initial conditions for the
trajectories are chosen such that they corresponds to some trajectory of the cold cloud.
The initial electron Lorentz factor is (γ̄e)0 = 4 and the normalized luminosity of the disk
radiation field is Λ = 10.

cool according to equation (7.43) is identical with the motion of a cold cloud composed
in the radiation field which luminosity decreases with time. This approach allows us
to qualitatively understand behavior of trajectories in Figure 7.7. The initial conditions
for the trajectories of warm cloud are chosen in the way that they corresponds to some
trajectory of the cold cloud in the “background” of the figure. The initial mean Lorentz
factor is (γ̄e)0 = 4 and the normalized luminosity of the disk radiation field is Λ = 10.
Therefore, at the beginning the cloud will feel a radiation field of a luminosity Λ ′ =
(11/4)Λ = 27.5. Corresponding saturation velocity is also shown in the figure. Clearly,
the most affected are the trajectories starting at large distances where the radiation field
is not strong enough to the electrons in the cloud. On the other hand, trajectories that
start in the close vicinity of the black holes are similar to that of the cold clouds because
the electrons become cold immediately. An interesting behavior show the trajectories
that start between the two critical points. The clouds following these trajectories are
first accelerated toward positive velocities, however, as they are cooled, the acceleration
effect of the radiation field is reduced and the gravity becomes important. The cloud is
eventually decelerated and attracted by the gravitational field toward the black hole.

7.4 Polarization along cloud trajectories

Different categories of particle motion provide a natural framework also for the discussion
of the resulting polarization. By coupling the equations of particle motion with the polar-
ization equations of Chapter 6 we obtain the Stokes parameters of the scattered light along
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Figure 7.8: Three critical velocities of a cloud motion. The two curves β1(ξ) and β2(ξ) are
velocities at which the polarization of the scattered radiation changes its orientation from
the longitudinal to the transversal and vice versa (the region of a longitudinal polarization
is dashed). The saturation velocities important for the cloud dynamics are also shown for
several values of the normalized luminosity Λ.

each particle trajectory. As we showed in the Chapter 6 the relativistic aberration effect
strongly affects observed polarization of the Thomson scattered radiation. In a general
axisymmetric radiation field there are two velocities, β1 and β2, where the polarization
changes sign and the orientation of the polarization vector changes from transversal to
longitudinal and vice versa. We also showed that these changes are independent of the
angle of observation. The two velocities can be immediately calculated from the three
independent components of the stress-energy tensor according to equation (6.19). Critical
velocities β1 and β2 depend only on ratios of the tensor components. Hence, the change
of polarization effect is given by the geometry of the radiation field and it is independent
of the total luminosity (e.g. it does not depend on Λ-factor). However the dynamics of
the clouds is very sensitive to it.

Figure 7.8 shows velocities that are essential in our model. The two curves β1(ξ) and
β2(ξ) delimit the region of the longitudinal polarization form the region of the transver-
sal polarization. We also show the saturation velocities βsat(ξ,Λ) for various values of
the normalized luminosity. At high Λ the saturation velocity crosses the region of the
longitudinal polarization. The trajectories of the cloud are strongly attracted toward the
saturation curve in that case. Hence, we expected that the early change of the polarization
sign is a frequent phenomenon in the observed polarization along these trajectories. On
the other hand, at low luminosity the saturation velocity lies in the region of the transver-
sal polarization. The trajectories, however are not attracted to the saturation curves so
intensively.

Local polarization radiated by the cloud along the three selected trajectories is shown in
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Figure 7.9: The local polarization along three different cloud trajectories. Top row: the
velocity of a cold (the blue curve) and warm (the red curve) electron cloud. The initial
electron Lorentz factor of the warm cloud is γ̄e0 = 3. Each trajectory starts from the
photon-sphere z = 1.5 RS and it proceeds towards infinity. Three cases are shown for
different values of the initial velocity: β0 = 0.6 (left panel), β0 = 0.8 (middle panel)
and β0 = 0.9 (right panel). Middle row: the polarization magnitude Π(ξ) along the
trajectory of the warm cloud corresponding to the above-given solutions. All curves have
a common zero point where they cross each other. The sign of Π distinguishes the case
of transversal polarization from the longitudinal one. The polarization is shown for three
different inclinations: i = 15 (solid line), 30 (dashed line) and 45 deg (dotted line). Bottom
row: the same as in the middle row but for the cold cloud.

Figure 7.9. We calculated polarization of the light scattered into three different directions.
The luminosity of the incident radiation field is rather moderate, Λ = 2. The top panels
show the trajectory of initially cold (γ̄e = 1) and warm (γ̄e = 3) cloud. The initial radius
corresponds to the photon-sphere in all cases and the initial velocity is β = 0.6 (left panels),
0.8 (middle panels) and 0.9 (right panels) and is the same for both trajectories. In the
middle and the bottom panels we show a local polarization radiated at angles ϑ = 15, 45
and 90 deg. The middle panels shows polarization from the warm cloud an the bottom
panel that from the cold cloud. The local polarization is calculated from the Stokes
parameters given by the equations (6.16) and (6.16) or (6.74) and (6.77). Clearly, the
change of the polarization angle occurs independently of the angle of observation. Note
also that the radiation scattered by a hot cloud is strongly depolarized by an electron
chaotic motion (the maximal value of the polarization magnitude is reduced by a factor
∼ 5).
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On the other hand, figure 7.10 shows the trajectory of the cloud in an intensive incident
radiation field with Λ = 100. The initial conditions are ξ0 = 0.55 (z = 2.22 RS) and
β0 = 0.99. The cloud is first strongly decelerated to the saturation velocity and further
accelerated to the terminal velocity β∞ ∼ 0.8. The mean Lorentz factor was initially set
to the value (γ̄e0 = 3. The top-left panel shows the trajectory of the cloud in the (ξ, β)-
plane. The trajectory of a cold cloud is also shown for comparison. The radiation cooling
of electrons is shown in the top-right panel where the dependence of the electron mean
Lorentz factor on the ξ-coordinate is shown. Clearly, the cloud becomes cold already in
the initial deceleration phase and that is why the following acceleration is same as in the
case of the cold cloud. This is apparent in the bottom two panels showing the polarization:
starting from ξ = 0.6, the polarization curves become practically identical.

7.5 Intensity and polarization light curves

The self-consistency of the model allows us to calculate a temporal evolution of the inten-
sity and the polarization of a scattered radiation as seen by an observer in infinity. The
observed signal will be affected by both the special and general relativistic effects. An
example of the first one are aberration and beaming effects that must be present because
the source (an electron cloud) moves with a velocity comparable to the speed of light. A
prominent example of the general relativistic effects are gravitation redshift and contri-
bution of a higher-order images in the observed radiation. Hence identifying these effects
could help in determination of the parameters of the central black hole.

The light curves presented in this section were calculated using the approximation
of a source at low inclination that is introduced in the appendix B. We also refer the
reader there for the expressions of local emission angles and time delays along direct and
retro-lensed rays.

The geometry considered in calculations is shown in Figure B.1. Clouds move along the
direction that makes an angle i with the line of sight. We consider contribution of three
images to the observed radiation: one direct image and two retro-lensed images whose
rays make a single round about the black hole (by the angle Φ = 2π ± i; corresponding
images are referred to as + and −). The observed polarization and intensity for a cloud
moving with velocity β at hight z above the accretion disk can be computed as follows.
Let I(z, ϑ)loc and Π(z, ϑ)loc be a local intensity and polarization of a scattered radiation
measured measured at the point of emission by a local stationary observer. The local
emission angle ϑ is given by equation (B.8) for the direct ray and by the equation (B.30)
for the retro-rays. Both, the polarization magnitude and the direction of polarization
vector is conserved along rays in the Schwarzschild spacetime. Hence Πobs = Πloc. The
intensity measured by the distant observer at rest is equal to the redshifted intensity,
Iobs = Ĩ = ξ2(z)I(z). The source occupies on the observer’s sky small solid angle ∆Ωd

when projected by direct rays and ∆Ω± when projected by retro-rays. At low inclination
∆Ωd approaches the value ∆Ω0 in the flat spacetime in the absence of the gravitational
field. However, ∆Ω± could be considerably different from it due to strong lensing effect
that provides gravitational (de)magnification. For this purpose we multiply the intensity
of the retro-lensed images by gravitational gain factor M±(i, z) introduced by equation
(B.35). Hence, the resulting intensity from the retro-lensed images has a meaning of the
intensity per a direct-image solid angle ∆Ωd. Finally we consider mutual time delays
between different images. The solution of the equations of motion (7.43)–(7.46) provides
the cloud trajectory z(t) as a function of the coordinate time t that coalesces with the
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Figure 7.10: The local polarization along trajectory of the strongly decelerated clouds by
an intensive radiation field. As in Figure 7.9 we show the trajectories of both, cold and
warm clouds. The initial conditions are ξ = 0.55 and β0 = 0.99. The initial electron
Lorentz factor in the warm cloud is γ̄e0 = 3. Top-left: The trajectories of the clouds (the
notation is the same as in Figure 7.9). Top-right the radiative cooling of electrons of the
warm cloud. Bottom-left and Bottom-right: the polarization of the radiation scattered by
the cold and warm cloud respectively.

proper time of the distant static observer. The photon traveling time along direct rays is
given by the equation (B.6) and by equation (B.29) for retro-rays.

We can distinguish three cases depending on the normalized luminosity of the incident
radiation field: (i) the case of a dynamically unimportant radiation field with Λ � 1, (ii)
the case Λ ∼ 1 and (iii) the case Λ � 1, where the dynamic of a scatterer is strongly
affected by the radiation field. The intensity light-curves are shown with a normalization
by the initial intensity from direct image. This allows to compare relative importance of
retro-lensed images in the result radiation as well as the temporal evolution of the intensity
and polarization, however it complicates comparison of intensity between different light-
curves. For this purpose, we remind that the exact value of the observed intensity can be
recovered from equation (6.16) if the scatterer is a cold cloud or using the equations (6.74)
and Lorentz transforms (6.14). Above given if the the scatterer contains hot electrons.
However, for a raw comparisons the following scaling-law is sufficient if the electron Lorentz
factor is not much greater than unity

Iobs ∝ ξ2γ2D4Λε? . (7.52)

Here ε? is a normalized energy density of the incident radiation field (e.g. the tt-component
of the normalized stress energy tensor). The time is given in the light crossing time, that
is a natural unit in the system. The time span of the plots can be therefore rescaled
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according to

t ' 1.5
RS

c
= 1.5 × 10−4 M

10M�
[sec], (7.53)

i.e. proportionally to the central mass.

7.5.1 Dynamically unimportant radiation field (Λ � 1)

The solution of the equations of motion (7.43)–(7.46) is given analytically by the equation
(7.50). The mean electron Lorentz factor γ̄e is constant. There is no difference between
trajectories of cold and warm clouds. Figures 7.11 and 7.12 shows a temporal evolution
of the observed polarization and intensity for three values of inclination i = 1, 5 and
30 deg. The scatterer is cold electron cloud moving along the trajectory with β∞ = 0.
The initial conditions are ξ0 = 0.5 and ξ0 = 0.95 in the case of inward and outward motion
respectively.

In the case of the inward motion the observed intensity first slightly increases and then
sharply decreases. The increase is connected with the increasing energy density of the
incident radiation field (see Figure 7.2) the decrease is because of the gravitational redshift
and relativistic beaming effect, since the cloud gradually reaches relativistic velocities. The
same effects act together in the retro-lensed image, because the source is moving in the
direction of observation in that case. The large intensity of retro-lensed images is also
contributed by the gravitation lensing maximum of which occurs at z = 2.36 RS (see
Figure B.4). However this effect strongly reduces the retro-lensed intensity as the source
approach the photon-sphere. The time delay between the two retro-lensed images and
different intensities becomes apparent at higher inclinations (middle and bottom panels
of Figure 7.11). The polarization light-curves show change from the transversal to the
longitudinal orientation. The same effect can be seen in the retro-lensed polarization with
some time delay. With increasing inclination polarization of the direct image increases,
however, the polarization of retro-lensed images practically remains the same. The reason
is that the while the local emission angle for the direct ray increases, the emission angle
of the retro-lensed rays is always close to the viewing angle of the photon-sphere. Finally,
the duration of the direct light curve is approximately two-times greater than the duration
of the retro-lensed curves because of the aberration effect.

The light curves corresponding to the outward motion (7.12) show gradual decrease of
the observed intensity in both direct and retro-lensed images. The reason is a decrease of
the energy density of the incident radiation field along the trajectory and the gravitational
deceleration of the cloud that reduces the relativistic beaming effect. In the case of the
retro-lensed images the intensity is reduced mainly by the decrease of the gain-factor.
The retro-lensed intensity is negligible compared to the direct one even under a favorable
conditions of very low inclination i = 1 deg. The polarization light curves show two
changes of the polarization orientation: from the transversal to the longitudinal and then
back to the transversal.

7.5.2 Incident radiation field of a moderate luminosity (Λ = 2)

Figures 7.13 and 7.14 show the observed intensity and polarization light curves from the
cold and warm clouds moving in the radiative field of a moderate normalized luminosity
Λ = 2. The initial conditions are z0 = rph (ξ0 = 0.33) and β0 = 0.8. The initial electron
Lorentz factor of the warm cloud is γ̄e0 = 3. The trajectories have two parts: the cloud
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initially moves towards infinity, then in turns back and falls into the black hole. This is
easily seen in the shape of the intensity light curve from the direct image. The start is
similar to the intensity curves in Figure 7.12 (fast drop in the intensity). The cloud is
decelerated from the initial relativistic velocity and the radiation from it is de-beamed.
Then the intensity is nearly saturated for some time as the cloud passes through the
turning point. The following phase is similar to the light curves in Figure 7.11. The cloud
is accelerated by gravity toward the black hole. The onset in the retro-lensed light curves
is different in the initial stage from that in Figure 7.12 because the cloud motion starts
on the photon-sphere where the gain-factor vanishes. Note also that the initial drop in
the observed intensity is greater in the case of the warm cloud. The reason is in the the
radiative cooling of electrons: beaming by single electrons in the cloud initially remarkably
contributes to the observed intensity.

The polarization light curve from the cold cloud demonstrates rich phenomenology.
The observed polarization changes its orientation three-times as it passes through different
regions in the (ξ, β)-plane. The polarization changes find their counterparts in the light
curves by the retro-lensed images. In the case of the warm cloud, the polarization is
initially smaller by a factor of ≈ 10 than that from the cold cloud. However, as the
electrons cool down, it takes similar values. The “saddle” in the double-peak shape of the
light curves appears when the cloud velocity approaches to the critical velocity β1(ξ).

7.5.3 Super-critical radiation field (Λ = 100)

Finally, we consider the case of fast ejection in a very intensive radiation field. We note
that this configuration produces the most energetic radiation and therefore it could be
easy to observe. However, for γ � 1 the scattered photons are boosted in the direction of
motion and therefore most of the photons are radiated only to a narrow range of inclina-
tions. Only few photons are scattered backwards, and therefore the direct image greatly
dominates the signal received by an observer. The temporal behavior of the observed
intensity and polarization is shown in Figure 7.15 (the case of a cold cloud) and in Figure
7.16 (for the case of an initially warm cloud). The initial electron Lorentz factor of the
warm cloud is γ̄e0 = 3. We show only the most intensive part of the light curves. We
assume that the cloud has been pre-accelerated to large initial speed β0 = 0.999 (the
corresponding Lorentz factor is γ0

.
= 32. at the radius z0 = 2.22 RS. The light curves

capture the subsequent phase of gravitational and radiative deceleration. The scattered
light contributes significantly to the total signal only for a short initial phase (peaks occur
in the intensity curves).The local maxima of the observed intensity and polarization can
be understood in terms of a relativistic beaming effect: most of radiation from the cloud is
emitted in a cone with the opening angle ∼ 1/γ about the direction of motion. For small
inclinations (i ≤ 1/γ0 deg) the observer was initially located outside this cone but, as time
proceeds, the electron cloud decelerates, the cone opens and the observer receives more
radiation. The maximum observed polarization occurs with a certain delay (proportional
to M) after the peak of radiation flux. This is because of the not perfect correlation be-
tween the angles of maximal scattered intensity and polarization shown for a very simple
case of the isotropic incident radiation in Figure 6.2. Subsequent decay of the signal is
connected with a diminishing scattering power of the cloud and the overall dilution of the
radiation field. We selected large initial velocity in this example, otherwise the effects of
aberration and the Doppler boosting would be less prominent, time-scales longer and the
effect of lagged maxima of the intensity and polarization would dissappear.
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Figure 7.11: Temporal evolution of the observed intensity (left) and polarization (right)
of the radiation scattered on the freely-falling cold electron cloud. (the cloud is moving
towards the black hole). The initial electron mean Lorentz factor is γ̄e = 3. Top row:
Observed intensity and polarization for the inclination i = 1 deg of the cloud motion with
respect to the line of sight. The contributions of the retro-lensed images + and – are also
shown. Middle and bottom rows: the same for the inclinations i = 5 deg and i = 30 deg
respectively.
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Figure 7.12: The same as in Figure 7.11 but for the outward motion. The contribution
of the retro-lensed images to the total intensity is negligible even in a favorable condition
of very low inclination. The polarization curves show two changes of the polarization
orientation from the transversal to longitudinal and then back to the transversal.
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Figure 7.13: The case of a moderately luminous incident radiation field Λ = 2. The
intensity and polarization light curves are for inclinations i = 1 (top panels), 5 (middle
panels) and 30 deg (bottom panels). The scatterer is a cold electron cloud whose motion
starts with the initial condition z0 = rph and β0 = 0.8. The meaning of symbols is the
same as in Figure 7.11.
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Figure 7.14: The same as in Figure 7.13 but for initially warm cloud with the initial
electron Lorentz factor γ̄e0 = 3.
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Figure 7.15: The observed intensity (left) and polarization (right) light curve from the
cold electron cloud. Cloud is strongly decelerated by the intensive external radiation field
with Λ = 100. The inclination of the cloud motion to the line of sight is i = 30 deg. The
initial condition for the cloud motion is β0 = 0.999 and z0 = 2.22 RS. Notice the time
lag between the intensity and polarization maxima. The polarization light curve clearly
shows the change of the polarization orientation.
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Figure 7.16: The same as in Figure 7.15 but for the warm electron cloud. The initial
electron Lorentz factor is γ̄e0 = 3.



Summary and further prospects

The aim of this work was to study dynamics of relativistic jets and the polarization
properties of Compton-scattered radiation arising in strong gravity in the vicinity of a
black hole. Especially, we paid attention to the geometry of the ambient radiation field
interacting with a stream of electrons and to general relativistic effects (e.g. light-bending
of light rays, gravitational redshift and rotation of the polarization vector) but we neglect
the magnetic field.

Dynamics of a cloud and properties of the scattered radiation were studied simultane-
ously, in a self-consistent manner: the particles in the cloud move under combined influence
of the radiation force arising from the Compton scattering and the gravity of the central
black hole. The trajectories of the cloud were used for calculations of integrated intensity
and polarization of scattered radiation. We note that this approach considerably restricts
the number of free parameters of the model and allows to discuss temporal properties of
the scattered radiation. The intensity and polarization light-curves were studied in details
in section 7.5.

We have found analytical expressions for three non-zero Stokes parameters I, Q, U
of radiation arising from the Compton scattering on a cold electron cloud. The incident
radiation field is specified by stress-energy tensor and the Compton scattering is treated in
the Thomson approximation. Then, we considered one of the natural configurations: The
source of incident radiation was assumed a standard Shakura & Sunyaev (1973) accretion
disk surrounding a Schwarzschild black-hole that provides a gravitational field. Another
configuration, where the source of both radiation and gravitational fields is a compact
relativistic star was discussed elsewhere (Horák & Karas 2005b). The incident photons
follow null geodesics from the disk to an electron cloud. Their paths were calculated
numerically by integrating geodesic equation.

The geometry of the radiation field determines the saturation velocity β0(r), at which
the dynamical effect of the radiation on the cloud changes from acceleration (β < β0(r))
to deceleration (β > β0(r)), and two other critical velocities, β1(r) and β2(r) important
for the polarization properties of the scattered radiation. When the electron cloud reaches
one of these velocities, the polarization of scattered radiation is zero, independently of
the direction of observation. Moreover, the polarization changes its direction when the
velocity of the electrons β goes across β1 or β2. When β1 < β < β2 the polarization of
the scattered radiation is longitudinal (the polarization vector is in the plane determined
by direction of the electron motion and direction of observation – the polarization vector
is parallel to the projection of the electron velocity onto the polarization plane) otherwise
the polarization is transversal (the polarization vector is perpendicular to that plane).

The above results suggest that the polarization properties of the Compton-scattered
radiation are sensitive to the geometry of the ambient radiation and – through relativistic
aberration – to the velocity of the scattering medium. Regarding this point, the further
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improvements follow four logical directions:

1. Geometry of the ambient radiation field. We intend to proceed to more realistic
geometry of the ambient radiation field relevant in the sources where Compton scat-
tering plays an important role. The prominent set-up is a system with a rotating
black hole surrounded by a slim accretion disk.

2. Frequency resolution. So far we determine the polarization properties in terms of
frequency-integrated quantities. However, our discussion can be rewritten for specific
(per energy bin) quantities. The spectral properties of the scattered radiation are
very sensitive to the micro-physics of the jet (including a particle distribution and
a magnetic field) which is matter of the next point. We note that present results
remains valid also for specific quantities if the power-law spectrum with the spectral
index s = 1 is considered.

3. Jet structure and “micro-physics”. In presented work we assume that the electron
distribution in the cooled cloud is kept isotropic by some additional processes, how-
ever, we ignore the influence of this process to the energy of electrons (we consider
only Compton cooling). The next step is to include detailed description of other pro-
cesses (i.e. synchrotron cooling) that affect the particle distribution as considered by
many authors studying the radiative acceleration mechanism.

4. Radiative transfer. There is a growing evidence that relativistic jets are optically
thick at the initial stage. The finite optical depth of the scattering material requires
simultaneous solving of the radiative transfer equation. Recently we have shown
that the Compton drag of the continuous jet of finite optical depth naturally leads
to the creation of the transverse velocity profile (Horák 2002). The fastest material
forming the jet “spine” moves along the axis and slower boundary layer.



Appendix A

Light rays in Schwarzschild
spacetime

The geometry of a spacetime surrounding static or slowly rotating black holes and rela-
tivistic stars is described by the Schwarzschild line element

ds2 = −ξ(r)dt2 +
1

ξ(r)
dr2 + r2(dθ2 + sin2 θdφ), (A.1)

expressed using the spherical coordinates (t, r, θ, φ), where ξ(r) ≡ 1 − RS/r is a redshift
function. It approaches to one when r → ∞ providing that t is time measured by distant
and static observers and it diverges when r → RS where the event horizon is located.
Because the Schwarzschild spacetime is static and axially symmetric (i.e. the metric
coefficients in equation (A.1) does not depend explicitly on time t and azimuthal coordinate
φ), there are two Killing vectors, ηα ≡ δα

t and ζα ≡ δα
φ along which the geometry does not

change.
Photons and freely falling particles follow geodesic lines. Because of spherical symme-

try these geodesics are planar. The plane of the ray is determined by the initial particle
four-momentum and the center of the star (the photon path remain planar because of the
reflection symmetry of the spacetime with respect to that plane). Without loss of any
generality we restrict our discussion to the particles moving in the equatorial plane, where
θ = π/2. In that case, the four-momentum of the particle pα ≡ dxα/ds has three nonzero
components, pt, pφ and pr, where s is an affine parameter. The first two are connected
with two integrals of motion,

E ≡ −pαη
α = −pt and L ≡ pαζ

α = pφ (A.2)

that follows from the symmetry of the spacetime and are conserved along geodesics The
quantities E, L will be referred to as the particle energy and angular momentum respec-
tively.

The third, radial component of the particle four-momentum is not independent because
the four-momentum is normalized to zero or to the particle rest mass m in the case of
motion of photons or of particles with nonzero rest mass, respectively. The normalization
condition reads

m = pαpα = −E
2

ξ
+

(pr)2

ξ
+
L2

r2
. (A.3)

Changing the parameterization of the particle trajectory from the affine parameter s
to the coordinate φ, we can express the radial component of the particle four-momentum
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as

pr =
dr

ds
= pφ dr

dφ
=
L

r2
dr

dφ
(A.4)

By substituting it into equation (A.3) we get

1

r2

(
dr

dφ

)2

= r2
(
E

L

)2

− ξ +mξ
r2

L2
. (A.5)

for a particle of non-zero rest mass and

1

r2

(
dr

dφ

)2

=
r2

B2
− ξ (A.6)

for a particle with zero rest-mass. Trajectories of freely falling particles with non-zero rest
mass are completely determined by two independent parameters, the energy and angular
momentum. On the other hand, only one parameter, the ratio of the energy and the
angular momentum, B ≡ L/E is needed to specify trajectory of a particle with zero rest
mass. The parameter B has analogical meaning as an impact parameter defined used in
the scattering problems of classical physics. Equation (A.6) takes a simple form by the
substitution u ≡ RS/r. Then we get

(
du

dφ

)2

=
1

b2
− u2(1 − u), (A.7)

where b ≡ B/RS.
The expression U ≡ u2(1 − u) in this equation plays a role of the effective potential

(Misner, et al. 1973). It reaches its maximal value Umax = 4/27 at the point u = 2/3.
The photons with the impact parameter smaller than the critical value bc = 3

√
3/2 are

captured by the black hole. The photons with impact parameter greater than bc escape
to infinity being deflected. The point of closest approach u0 (the pericenter) is given by
the condition du/dφ = 0 and it is the only real root of the cubic equation

u3 − u2 +
1

b2
= 0, (A.8)

that satisfy 0 < u0 < 2/3.
The equation (A.7) is a good starting point for further analytic approximations (as

will be derived in the appendix B), it fails, however, in numerical calculations because it
gives imaginary numbers for du/dφ for a negative right-hand side. More suitable for the
purpose of the numerical integration is equation

d2u

dφ2
+ u− u2 = 0. (A.9)

that follows from equation (A.7) if one applies the derivative with respect to φ.

Increment of polar angle. Consider two distinct points A and B at radii rA = RS/uA

and rB = RS/uB connected by the ray with the impact parameter b. Assume that uB <
uA. The total increment of the polar angle ΦAB along the ray is given by integral

ΦAB = |φB − φA| =

∫ uB

uA

du

[1/b2 − u2(1 − u)]1/2
. (A.10)
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Time delay. Similarly, the photon traveling time or time delay between the points A
and B can be expressed as the integral

tAB =

∫ uB

uA

pt

pφ

dφ

du
du =

1

b

∫ uB

uA

du

u2(1 − u) [1/b2 − u2(1 − u)]1/2
(A.11)

Integrals in equations (A.10) and (A.11) can be expressed using elliptic integrals (Dar-
win 1959, 1961) or hyper-elliptic integrals (Čadež & Kostić 2005) respectively. In several
limit cases, they can be approximated by elementary functions (e.g. Bozza 2002; Bozza &
Mancini 2004; Chandrasekhar 1992 and the appendix B of this work).

Local emission angles. We define the local emission angle as the angle between a ray
and the radial direction. Consider particular ray passing through a point S. The local
emission angle can be deduced from the components of photon four-momentum p(α) with
respect to a local orthonormal tetrad (e(t), e(r), e(θ), e(φ)) of a static observer at the point
S. First, let us define a four-vector n(α) ≡ p(α)/p(t). Obviously, n(t) = 1 and, since p(α) is
a null four-vector, the spatial components satisfy n(i)n(i) = 1. It is natural to interpret the

four-vector n(α) as the photon propagation vector which spatial components points along
the direction of the ray. In the case of equatorial ray these can be written as n(r) = cosϑ,
n(φ) = sinϑ and n(θ) = 0. Hence the angle ϑ will be referred to as the local emission angle.

Expressing the photon four-momentum using the dimensionless impact parameter b
we found

sinϑ =
p(φ)

p(t)
= bu

√
1 − u (A.12)

In the numerical ray-tracing the initial conditions are often chosen in terms of the
local emission angle (we trace the photon emitted in the particular direction in the local
reference frame). Therefore, it is useful to express the initial condition for equation (A.9).
Let the source is at the radius r. Substituting the impact parameter into the photon
four-momentum, we find the propagation vector in the form n(r) = cosϑ = b(du/dφ) and
n(φ) = sinϑ = buξ. Therefore, we obtain

u0 =
1

r
,

(
du

dφ

)

0

=
1

r
ξ1/2(r) cot ϑ . (A.13)



Appendix B

A source at low inclination

An interesting consequence of the gravitational bending of light-rays is the fact that a
source and an observer can be connected by more than one ray. Consider situation in
Figure B.1. The direction to the source and direction to the distant observer makes the
angle i. Later on, the inclination i will play the role of the independent parameter that
many expressions will be expanded according to, therefore we require i � 1. Practical
estimations of accuracy and the strength of this requirement will be given. The observer
is located on a sphere of the radius D � 1. The source is located at the radius r. As
distinct from the classical retro-lensing problem, we concern a more general case when the
source is everywhere above the photon orbit, r ≥ rph. Furtermore, it is assumed that the
source is a point-like particle, i.e. its angular radius is small compared to the inclination.
Then, in principle, three different rays connects it with the observer: slightly deflected
direct ray Rd and two retro-rays R± that are highly deflected by black hole gravity and
represents purely general-relativistic effect. In principle, there is infinite number of other
rays that encircles the black hole more than once. These rays, however, give negligible
contributions to the total flux measured by the observer in comparison to the rays R± (the
contributions of these higher-order rays are smaller by the factor e−2πn .

= (1.9 × 10−3)n,
where n is number of revolutions – the order of the ray).

All three rays can be treated analytically as approximations to on the two exact ana-
lytical solution which are a radial ray and the light circle at rph. The total increment of
the polar angle for the direct ray is Φd = i. In the next section we show that it is pro-
portional to the ratio of impact parameter and source position B/r. We obtain B/r = 0
for the radial rays. Therefore, all quantities we are interested in will be calculated as
expansions in that ratio about the value B/r = 0 that corresponds to the radial ray. The
retro-rays R+ and R− have their pericenters very close to the photon orbit at rph. Also
their dimensionless impact parameters are very close to the critical value bc = 3

√
3/2. We

carry out the expansions in the difference β ≡ b− bc in the section B.2.

B.1 Slightly deflected direct rays

Consider light rays radiated by a source at radius r = 1/u outward the black hole almost
radially. The impact parameter of the ray B is small compared to the radial coordinate r
along the whole ray. Let us define small parameter ε ≡ B/r = bu. Then introducing the
substitution x ≡ ũ/u, in the integration variable, the expression for the increment of the
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Figure B.1: Source at low inclination.

polar angle (A.10) becomes

Φd = ε

∫ 1

0

dx√
1 − ε2x2(1 − ux)

. (B.1)

Expanding the integrand to the second order in ε we get

Φd = ε

∫ 1

0

[
1 + 1

2ε
2x2(1 − ux)

]
dx + O(ε5). (B.2)

The increment of polar angle Φd along the ray equals the inclination i of the source with
respect to the observer. Integration over x gives

i = ε+
(

1
6 − 1

8 u
)
ε3 + O(ε5). (B.3)

In order to express the impact parameter B as a function of the inclination of the source,
we invert equation (B.3). This is not difficult for small i. We obtain

B = r
(
i− 1

6 i
3
)

+ 1
8 RSi

3 + O(i5). (B.4)

The term in the bracket is expanded r sin i up to the third order in i, This term will be
present in the expansion carried out for a straight ray. The second term represents the
contribution of gravitational light bending. For a given inclination and distance of the
source the impact parameter is greater because the gravity bends light rays toward the
black hole. This effect is of the third order.

The time delay is given by the integral

Td =

∫ 1

uo/u

dx

ux2(1 − ux)
√

1 − ε2x2(1 − ux)
(B.5)

We expand the square-root up to the fourth order in ε and integrate. Keeping only the
terms that are not negligible when uo � 1, we get

Td = Trad + 1
2b

2u+ 1
8b

4u3
(

1 − 3
4u
)
, (B.6)

where

Trad =
1

uo
− 1

u
− ln

(1 − u)uo

u
(B.7)
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Figure B.2: Highly deflected ray.

is the time delay between radii of source and observer along a radial ray.
The local emission angle can be calculated using the expression (A.12)

sinϑ =

√

1 − RS

r

[
i−

(
1

3
+
RS

4r

)
i3

2

]
+ O(i5) (B.8)

B.2 Highly deflected retro-rays

Let us consider the ray in the Figure B.2. The ray is radiated by the source toward
the black hole and the radial coordinate first decreases along the ray until it reaches the
pericenter, the point of the closest approach behind the hole at radius r0. At this point
the gravitational bending is strongest. Then, the ray proceeds to higher radii until it
reaches a distant observer at r → ∞. The pericenter lies very close to the photon-sphere,
r0 ∼ 3/2RS. In order to use single valued functions of r or u respectively, the two parts,
approaching (a) and receiving (r) of the ray will be studied separately.

First, let us consider the approaching part of the ray. The cubic function in the
square-roots in equations (A.10) and (A.11) can be expressed using its roots. Obviously,
the pericenter is one of the roots. Hence we can write

1

b2
− u2(1 − u) = (u− u0)(u− u1)(u− u2), (B.9)

where u0 = RS/r0 and we suppose the ordering u1 < 1 < u0 ≤ 2/3 ≤ u2. The both
equalities are valid in the case of critical orbits. The two other roots u1 and u2 can be
found equating coefficient of the same powers of u in the equation (B.9). We obtain

u1,2 = 1
2

(
1 − u0 ∓

√
1 − 3u2

0 + 2u0

)
(B.10)

Let us expand the roots u0, u1 and u2 via the difference of u0 from 2/3. Denoting this
difference as ε/2 we get

u0 = 2
3 − 1

2ε, u1 = − 1
3 + O(ε2) and u2 = 2

3 + 1
2ε+ O(ε2). (B.11)

With the aid of these approximations and introducing additional substitution

τ ≡ u0 − u = 2
3 − u+ 1

2ε, (B.12)
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equation (B.9) can be rewritten as

1

b2
− u2(1 − u) = τ(τ + ε)(1 − τ) (B.13)

Using the substitution (B.12), the total increment of the polar angle on the approaching
part can be expressed as

Φa =

∫ 2/3−u

0

dτ√
τ(τ + ε)(1 − τ)

(B.14)

The integral on the right hand side is symmetric elliptic integral of the first kind. Its
approximated value in the case when ε � 1 can be found in the following way (compare
with Carlson & Gustafson 1994). Denote the integrand as f(τ). It can be approximated
by the sum fest(τ) = fi(τ) + fo(τ) − fm(τ), where fi(τ) is an approximation in the inner
region where τ can be neglected compared to 1, fo(τ) is an approximation in an outer
region where ε can be neglected compared to τ and fm is approximation in the overlap
region where both, ε and t can be neglected compared to 1. We have

fi(τ) =
1√

τ(τ + ε)
, fo(τ) =

1

τ
√

1 − τ
and fm(τ) =

1

τ
(B.15)

Then

Φa ≈
∫ 2/3−u

0
[fi(τ) + fo(τ) − fm(τ)] dτ = − ln

[
ε

16

√
3 +

√
3u+ 1√

3 −
√

3u+ 1

]
(B.16)

The error of this approximation can be estimated by finding upper and lower bounds for
difference of integrand and its approximated value, f(τ) − fest(τ). Doing this we found

(Error of the approximation) ∼ ε ln ε. (B.17)

The angular increment Φr along the receiving part of the ray can be calculated in the
similar way. By substituting u = 0 into equation (B.16) we find that

Φr = − ln

[
ε

16

√
3 + 1√
3 − 1

]
(B.18)

The total angular increment Φ along the whole ray is sum of the angular increments of
the approaching and the receiving parts

Φ = Φa + Φr = ln

[
ε2

256

√
3 + 1√
3 − 1

√
3 +

√
3u+ 1√

3 −
√

3u+ 1

]
(B.19)

The impact parameter of the ray orbits is slightly greater then the critical value bc =
3
√

3/2. The deviation β can be expressed using ε as

β ≡ b− bc =
34
√

3

26
ε2. (B.20)

Expressing ε using β and substituting into equation (B.19), we find

Φ = Φa + Φr = ln

[
4β

64
√

3

√
3 + 1√
3 − 1

√
3 +

√
3u + 1√

3 −
√

3u + 1

]
. (B.21)
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The angular increments along the retro-rays R± are connected to the inclination i by the
relation Φ± = 2π± i. Substituting it into equation (B.21) and isolating impact parameter
β we get

β± =
64
√

3

4

√
3 − 1√
3 + 1

√
3 −

√
3u + 1√

3 +
√

3u + 1
e−2π∓i, (B.22)

where the upper and lower sign is for the retro-ray R+ and R− respectively.
Our calculation of the time delay is similar to that of angular increments in many

respects. As in that case we split up the ray into the approaching and receiving parts.
Then we express the cubic argument of the square root in the integral (A.11) by its roots.
Finally, we express the roots as small deviations from the values corresponding to the
critical orbit. The time delay along the approaching part is expressed as

Ta =

∫ 2/3−u

0

dτ

(2/3 − τ)2(τ + 1/3)
√
τ(τ + ε)(1 − τ)

(B.23)

Again, we approximate the integrand by the sum fest(τ) = fi(τ) + fo(τ) − fm(τ), where
fi(τ), fo(τ) and fm(τ) are approximations in the inner, outer and overlap regions respec-
tively given by

fi =
27

4
√
τ(τ + ε)

, f0 =
1

(2/3 − τ)2(τ + 1/3)τ
√

1 − τ
, fm =

27

4τ
(B.24)

The approximated integrand can be transformed by substitutions to the rational function
and analytically integrated. After considerable algebra we obtain

Ta =
3
√

3

2
(Φa − 1) +

√
1 + 3u

u
− ln

[
(9 − 5

√
3)(

√
1 + 3u + 1 + u)

(9 + 5
√

3)(
√

1 + 3u− 1 − u)

]
. (B.25)

The time delay for the receiving part of the ray is deduced from this equation by
replacement u→ uo, where uo ≡ RS/D and D is distance of the black hole and observer.
Assuming that uo is negligible compared to one, we get

Tb =
3
√

3

2
(Φb − 1) +

1

uo
− ln

[
uo

4

]
− ln

[
9 − 5

√
3

9 + 5
√

3

]
. (B.26)

Summing the equations (B.25) and (B.26) we get the expression for the time delay along
the whole ray

T =
3
√

3

2
Φ +

1

uo
− ln

[
uo

4

]
+

√
1 + 3u

u
− ln

[√
1 + 3u+ 1 + u√
1 + 3u− 1 − u

]
+ C, (B.27)

where

C ≡ 3
√

3

2
− 2 ln

[
9 − 5

√
3

9 + 5
√

3

]
.
= 10.5 (B.28)

Hence, the time delay along the retro-rays R+ and R− is given by

T =
3
√

3

2
(2π ± i) +

1

uo
− ln

[
uo

4

]
+

√
1 + 3u

u
− ln

[√
1 + 3u+ 1 + u√
1 + 3u− 1 − u

]
+C. (B.29)

Finally, the local emission angle for the retro-rays can be approximated by the viewing
angle of the photon-sphere. Substituting the critical value of the impact parameter bc =
3
√

3/2 into the expression (A.12), we obtain

sinϑ =
3
√

3

2

RS

r
ξ1/2(r) . (B.30)
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Figure B.3: Solid angles used in calculation of the gravitational gain factor.

B.3 Magnification by gravitational lensing

In previous sections we give approximated expressions for the impact parameter that
determines position of the source on a local sky of a distant observer and the time delay
connected to the time of receiving of the the photons radiated by the source. It follows
that the gravitational bending of light rays could have an important effect on a appearance
of the source and therefore amount of the radiation received from it and possibly other
physical properties of the source measured by observer (i.e. polarization).

Let us introduce two angles ϑo and ϕo that parameterize the apparent position of the
source on the observer local sky. (see Figure B.3). The polar angle ϑo is connected with
the impact parameter b of the incoming rays by the equation (A.12) which far from the
hole takes the form

ϑo ' sinϑo = buo(1 − uo) ' B

D
, (B.31)

where we used uo = RS/D and b = B/RS. The element of the solid angle can be expressed
as

dΩo = sinϑodϑodϕo =
1

D2
B dB dϕo. (B.32)

In absence of the gravitational field the same solid-angle can be expressed as

dΩ̃o = sin ϑ̃odϑ̃odϕo =
r2

D2
sin i di dϕo. (B.33)

The magnification or gain factor is defined as the ratio of the elements of the solid
angle with and without presence of gravitational field

M ≡
∣∣∣∣
dΩo

dΩ̃o

∣∣∣∣ =
1

r2

∣∣∣∣∣
B

sin i d i
dB

∣∣∣∣∣ (B.34)

The effect of the gravitational magnification is negligible for direct rays where the
gain factor is very close to 1 (first correction is proportional to i2RS/r). However it is
of great importance for retro-rays, where the gravitational lensing substantially magnifies
the radiation flux received by distant observer.

The dependences of the impact parameter B = bRS on the inclination of the source
for the retro-rays R± are given by equation (B.22). By substituting into equation (B.34)
and noting that B ∼ Bc = 3

√
3/2, we get
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Figure B.4: Left: Gain factors M+ and M− for two retro-rays R+ and R− as functions
of ξ = 1 − u. The photon orbit and infinity correspond to ξ = 3/2 and ξ = 1 respectively.
The inclination of the source is 2 degrees. Points denote result of numerical calculation.
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.
= 2.3622RS. Right: Dependence of the gain-factors
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M±(u, i) = 2 × 36(2 −
√

3)u2

√
3 −

√
1 + 3u√

3 +
√

1 + 3u

e−2π∓i

| sin i| . (B.35)

The gain-factor as a function of radial coordinate ξ = 1 − u and inclination i of
the source is shown in Figure B.4. In the case of ξ-dependence we show also the result
of numerical calculations. These was obtained by numerical integration of the geodesic
equation. The gain factors were found by dividing the small areas delimited by two nearby
geodesics. Clearly the ray R+ that corresponds to the higher polar-angle increment gives
smaller magnification then R−. Exploring the equation we see that the contribution of
higher-order retro-rays Tn± to the resulting image can be neglected, because correspond-
ing gain-factors Mn± are smaller then M± by a factor e−2(n−1)π. The gain-factor has
maximum at the point ξ = 0.5767 that corresponds to the radius r

.
= 2.3622RS.
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