
Charles University in Prague

Faculty of Mathematics and Physics

Department of Probability and Mathematical

Statistics

Doctoral Thesis

Mgr. Pavel Ranocha

Stationary distribution of time series

Supervisor:

Prof. RNDr. Jǐŕı Anděl, DrSc.
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Disertačńı práce
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1 Introduction

Suppose that {Xt} is a strictly stationary time series. We wish to evaluate
its stationary distribution, say Q. This is quite complicated problem if an
analytic solution in closed form is desired. If {Xt} is an ergodic Markov
chain, then Q satisfies an integral equation

p(A) =

∫

R
P(A|x)Q(dx) (1.1)

for arbitrary Borel set A.
Explicit solution of equation (1.1) is known only in few cases. The most

trivial of them is a linear AR(1) model

Xt = ρXt−1 + ηt,

ρ ∈ (−1, 1), driven by Gaussian white noise ηt
iid∼ N(0, σ2) since we can write

Xt = ηt + ρηt−1 + ρ2ηt−2 + · · ·
and the distribution of the expression on the right hand side is again normal
with zero mean and variance σ2/(1− ρ2). Similar arguments can be used for
AR models of higher order.

If the exact solution of this problem is not known, we construct at least
some approximation of the stationary distribution. In Section 2, we describe
and study two procedures which can be used for class of linear models. In
Section 3, one of them is generalized to multidimensional time series.

In Section 4, we deal with two nonlinear models where an exact stationary
distribution has been found – the absolute autoregression AAR(1) given by

Xt = a|Xt−1|+ ηt,

a ∈ (−1, 1), with innovations ηt having Gaussian, Cauchy, Laplace and dis-
crete rectangular distributions, and the threshold autoregression TAR(1)

Xt =

{
αXt−1 + ηt if Xt−1 ≥ 0

βXt−1 + ηt if Xt−1 < 0

where the noise process ηt has Laplace distribution.

New results in this thesis include

• assertions on the speed of convergence of algorithm of Anděl and Hrach
for innovations with uniform and general distribution – Proposition 2.6
and Theorem 2.10
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• relaxing the assumptions of Haiman’s procedure, in particular finitness
of support of density of innovations and its differentiability – Theorems
2.13, 2.14 and 2.16

• extension of Haiman’s procedure to general causal linear process and
ARMA processes – Theorem 2.20

• assertions on the properties of convolution – Theorems 2.25, 2.27, 2.30

• extension of algorithm of Anděl and Hrach to multidimensional AR(1)
model – Section 3

• derivation of explicit closed form of stationary density of AAR(1) pro-
cess for several types of distribution (normal, Cauchy, discrete uniform
and Laplace) – Section 4.2

• approximation of stationary density of AAR(1) process driven by sym-
metric distribution – Thorem 4.6

• illustrative examples
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2 One-dimensional linear processes

In this section we study the class of linear models. Even in this relatively
simple case, it is not easy to find a closed form of stationary density given
the distribution of the innovations.

First we focus on the AR(1) model. We describe two algoritms (proposed
by Anděl and Hrach [4] and Haiman [12]) which yield a sequence of densities
converging to the desired stationary density. We also prove assertions on
the speed of convergence and illustrate the described methods on several
examples. In the second part of the section we extend these algorithms
to models AR(2) (Anděl and Hrach) and a general causal linear process
(Haiman), respectivelly.

2.1 Model AR(1)

Let {Xt}t∈Z be a stationary AR(1) process defined by

Xt = ρXt−1 + ηt, (2.1)

where ρ ∈ (−1, 1) and {ηt}t∈Z are i.i.d. random variables with finite second
moment. We can rewrite (2.1) into the form

Xt = ηt + ρηt−1 + ρ2ηt−2 + · · · . (2.2)

The series on the right hand side obviously converges in the quadratic mean
and the proces {Xt} is strictly stationary. In [4], it was proved that the
stationary distribution of such process is continuous (see also [10]). Under
an additional assumption of absolute continuity of the white noise ηt, the
proof is very simple.

Using (2.2) we can write Xt = ηt +Zt where Zt = ρηt−1 + ρ2ηt−2 + · · · . If
ηt has a density, then since ηt and Zt are independent, their sum Xt has an
absolutely continuous distribution (see [20], p. 196).

One of the first attempts to find a connection between the distributions
of Xt and ηt in a non-normal case was published in [8]. For some special
distributions of ηt (continuous and discrete rectangular distributions, Laplace
distribution) the stationary distribution of Xt is calculated in [2]. It is also
known that if ηt has a stable distribution of exponent θ (0 < θ ≤ 2), then
Xt also has a stable distribution of the same exponent (see e.g. [22], p. 208,
Ex. 11).

2.1.1 Algorithm of Anděl and Hrach

First we recall well known equations for the stationary density of Xt and a
formula for the corresponding characteristic function.
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Theorem 2.1. Let ηt have a density f . Then the stationary density h of Xt

satisfies the integral equation

h(x) =

∫

R
f(x− ρu)h(u) du. (2.3)

Proof. See [4], Theorem 1.5.

Theorem 2.2. Let ψ(t) be the characteristic function of ηt and let λ(t) be
the characteristic function of Xt. Then

λ(t) =
∞∏
n=0

ψ(ρnt).

Proof. See [4], Theorem 1.6.

Now we review an algorithm proposed by Anděl and Hrach [4] which
approximates the solution of equation (2.3). Let h0 be an arbitrary density.
For n ≥ 1 define

hn(x) =

∫

R
f(x− ρu)hn−1(u) du. (2.4)

It is obvious that every function hn is a density.

Theorem 2.3. Let h0 be a density. Define hn by (2.4). Assume that there
exists an integer m ≥ 0 such that

∫

R
|ψ(t)ψ(ρt) · · ·ψ(ρmt)| dt <∞. (2.5)

Then hn(x)→ h(x) for every x as n→∞.

Proof. See [4], Theorem 2.1.

In some special cases it was proved that the procedure converges geomet-
rically fast (see [4] and [18]).

Proposition 2.4. Let {Xt} be the AR(1) process (2.1), let ηt have expo-
nential distribution with expectation equal to 1, ρ ∈ (0, 1). Choose h0(x) =
f(x) = exp(−x). Then, for hn(x) defined by (2.4), we have hn(x) → h(x)
and

|hn+1(x)− hn(x)| ≤ 1

4
ρn−3

for every n ≥ 3.

Proof. See [4], p. 314–315.
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Remark 2.5. Let the assumptions of the previous Proposition hold. Define

∆n+1 = sup
x
|hn+1(x)− hn(x)|.

It was also proved (see [4]) that

∆2 ≤ π − 2 arctg(ρ2/
√

1− ρ4)

2π
√

1− ρ4

and

∆3 ≤ − 2ρ ln ρ

π(1− ρ4)
.

Proposition 2.6. Let {Xt} be the AR(1) process (2.1) with ηt uniformly
distributed on interval [0, 1], ρ ∈ (−1, 1), ρ 6= 0. Choose h0(x) = f(x) =
χ[0,1](x). Then, for hn(x) defined by (2.4), we have hn(x)→ h(x),

|hn+1(x)− hn(x)| ≤ 3

π
|ρ|n−2

and

|hn(x)− h(x)| ≤ 3

π(1− |ρ|) |ρ|
n−2

for every n ≥ 2.

Proof. Clearly,

ψ(t) = Eeitη1 =
eit − 1

it
=

i(1− eit)

t
, t 6= 0.

Since for t 6= 0

|ψ(t)| =
√
ψ(t)ψ(t) =

√
i(1− eit)

t
· −i(1− e−it)

t

=

√
2(1− cos t)

|t| ≤
{

2
|t| for |t| ≥ 2

1 for |t| < 2,
(2.6)

we have ∫

R
|ψ(t)ψ(ρt)| dt ≤

∫ 2

−2

dt+ 2

∫ ∞
2

4

|ρ|t2 dt <∞,

the assumption (2.5) is fulfilled for m = 1 and Theorem 2.3 implies hn(x)→
h(x).
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Let λn be the characteristic function corresponding to hn. Using (2.4) we
obtain

λn(t) =

∫

R
eitxhn(x) dx =

∫

R
eitx

[∫

R
f(x− ρu)hn−1(u) du

]
dx

=

∫

R
hn−1(u)

[∫

R
eitxf(x− ρu) dx

]
du

=

∫

R
hn−1(u)

[∫

R
eitρu+ityf(y) dy

]
du

= ψ(t)

∫

R
eitρuhn−1(u) du = ψ(t)λn−1(ρt).

Thus

λn(t) = ψ(t)ψ(ρt)ψ(ρ2t) · · ·ψ(ρn−1t)λ0(ρnt) =
n∏
j=0

ψ(ρjt). (2.7)

Let n ≥ 2. Then |λn(t)| ≤ ψ(t)ψ(ρt) ∈ L1(R) and we can use inverse formula

hn(x) =
1

2π

∫

R
e−itxλn(t) dt. (2.8)

Hence

|hn+1(x)− hn(x)| =
∣∣∣∣

1

2π

∫ ∞
−∞

e−itxλn+1(t) dt− 1

2π

∫ ∞
−∞

e−itxλn(t) dt

∣∣∣∣

=
1

2π

∣∣∣∣
∫ ∞
−∞

e−itx[λn+1(t)− λn(t)] dt

∣∣∣∣

≤ 1

2π

∫

R
|λn+1(t)− λn(t)| dt (2.9)

and from (2.7) and (2.9) we get

|hn+1(x)− hn(x)| ≤ 1

2π

∫

R

∣∣∣∣∣

[
n∏
j=0

ψ(ρjt)

]
[ψ(ρn+1t)− 1]

∣∣∣∣∣ dt

≤ 1

2π

∫

R
|ψ(t)| · |ψ(ρt)| · |ψ(ρ2t)| · |ψ(ρn+1t)− 1| dt.

(2.10)

for any x ∈ R. Further, for t 6= 0,

|ψ(ρn+1t)− 1| =
√

i(1− eiρn+1t)− ρn+1t

ρn+1t
· −i(1− e−iρn+1t)− ρn+1t

ρn+1t

=

√
[cos(ρn+1t)− 1]2 + [sin(ρn+1t)− ρn+1t]2

|ρn+1t| . (2.11)
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We will show that g(x) = x−4 [(cosx− 1)2 + (sin x− x)2] ≤ 1/4 for any
x 6= 0. It suffices to prove that 1/4 − g(x) > 0 for any x > 0 since g(x)
is an even function. First, define l(x) = x2 + 2(cos x − 1). We can see that
l(0) = 0 and l′(x) = 2(x− sinx) > 0 for any x > 0. Thus, l(x) is increasing
and therefore positive on (0,∞). Obviously

1

4
− g(x) =

x4 − 8 + 8 cos x+ 8x sinx− 4x2

4x4
=:

k(x)

4x4
.

Then, k(0) = 0 and k′(x) = x[4x2 +8(cosx−1)] = 4x · l(x) > 0 for x positive,
which implies k(x) > 0 for x > 0. Hence, g(x) < 1/4 for any x 6= 0. Using
this result in (2.11), we get

|ψ(ρn+1t)− 1| ≤ |ρn+1t|/2. (2.12)

Substitution of (2.6) and (2.12) to (2.10) yields

|hn+1(x)− hn(x)| ≤ 1

π

∫ 2

0

|ρn+1|t
2

dt+
1

π

∫ ∞
2

8

|ρ3|t3 ·
|ρn+1|t

2
dt

=
|ρ|n+1

π
+

2|ρ|n−2

π
≤ 3

π
|ρ|n−2.

Moreover,

|hn(x)− h(x)| ≤
∞∑

k=n

|hk+1(x)− hk(x)| ≤ 3

π

∞∑

k=n

|ρ|k−2 =
3

π(1− |ρ|) |ρ|
n−2.

Now we will show that under some rather mild conditions on the density
f , the sequence hn converges to the stationary density h uniformly w.r.t. x
and geometrically fast. First, we state some preliminary results.

Definition 2.7. Let I ⊂ R be an interval. We say that function f : I → R
is absolutely continuous on I, if f is absolutely continuous on every closed
subinterval J ⊂ I.

Definition 2.8. Let S be a system of functions f ∈ L1(R) for which there
exist numbers −∞ = a−1 < a0 < a1 < · · · < ar < ar+1 = ∞, r ∈ N, such
that

(i) function f is absolutely continuous on (aj−1, aj), j = 0, . . . , r + 1;

(ii) f ′ ∈ L1(R).
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Then S is called a system of piecewise smooth functions.

Theorem 2.9. Let f ∈ S. Let f̂(t) denote the characteristic function cor-
responding to f . Then there exists number b > 0 such that

|f̂(t)| ≤ b

1 + |t| , t ∈ R.

Proof. See Appendix, Theorem 2.29.

Now we are ready to prove the main result.

Theorem 2.10. Let {Xt} be the AR(1) process given by (2.1) with ρ 6= 0
and η1 such that E |η1| < ∞. Further, let the density f of η1 be piecewise
smooth. Then hn(x)→ h(x) uniformly as n→∞ and for n ≥ 2

|hn(x)− h(x)| ≤ K
ln |ρ|

(ρ2 − 1)(1− |ρ|) |ρ|
n

for every x ∈ R and some K ∈ R, independent of ρ.

Proof. Since f is piecewise smooth, Theorem 2.9 yields

|ψ(ρkt)| ≤ b

1 + |ρkt| (2.13)

for every k = 0, 1, 2, . . . and some b ∈ R. The condition (2.5) is fulfilled for
m = 1 since

∫

R
|ψ(t)ψ(ρt)| dt ≤

∫

R

b2

(1 + |t|)(1 + |ρt|) dt <∞

and therefore hn(x) → h(x) pointwise as n → ∞. Similarly to (2.10), for
n ≥ 2 we have

|hn+1(x)− hn(x)| ≤ 1

2π

∫

R
|ψ(t)| · |ψ(ρt)| · |ψ(ρ2t)| · |ψ(ρn+1t)− 1| dt. (2.14)

Further, ∣∣∣∣
∂

∂t
[eitxf(x)]

∣∣∣∣ = |x|f(x) ∈ L1(R)

(because of finitness of the first absolute moment of η1). Therefore ψ(t) =∫
eitxf(x) dx is differentiable and thus Lipschitz with some constant, say

L. This implies that |ψ(t) − 1| is Lipschitz with the same constant since∣∣|x| − |y|
∣∣ ≤ |x− y| for any x, y. Using this fact at point 0, we get

|ψ(ρn+1t)− 1| ≤ L|ρn+1t|. (2.15)
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Combination of (2.14), (2.13) and (2.15) gives

|hn+1(x)− hn(x)| ≤ 1

2π

∫

R

b

1 + |t| ·
b

1 + |ρt| ·
b

1 + |ρ2t| · L|ρ
n+1t| dt

=
b3L|ρ|n+1

2π

∫

R

|t|
(1 + |t|)(1 + |ρt|)(1 + |ρ2t|) dt

=
b3L|ρ|n+1

2π
· 2ln ρ2(1− |ρ|) + ln |ρ|(ρ2 − 1)

2(ρ2 − ρ4) + |ρ|(ρ4 − 1)

=
b3L|ρ|n+1

π
· ln |ρ|
|ρ|(ρ2 − 1)

.

Thus, the sequence {hn} has a limit h and

|hn(x)− h(x)| ≤
∞∑

k=n

|hk(x)− hk+1(x)| ≤ b3L

π
· ln |ρ|

(ρ2 − 1)(1− |ρ|) · |ρ|
n.

Choosing K = b3L/π completes the proof.

2.1.2 Haiman’s procedure

Consider again an AR(1) process (2.1) with ρ ∈ (0, 1). Suppose that ηt have
a density f(x) with respect to Lebesgue measure and its support spt f =
cl{x : f(x) > 0} is a compact subset of the interval [0, 1]. Further, assume
that the derivative f ′(x) exists for every x ∈ [0, 1] and supx∈(0,1) |f ′(x)| ≤ D
for some constant D ∈ R.

It is obvious that the stationary distribution of {Xt} defined by (2.1) is
the same as that of the random variable

∑∞
i=1 ηiρ

i−1. Consider the sequence
of partial sums Yn = η1 + ρη2 + · · · ρnηn+1, n ≥ 1. Let hn(u) denote the
density of Yn and define h0(u) = f(u). Haiman [12] proved the following
theorem.

Theorem 2.11. Under the above assumptions, the stationary distribution of
{Xt, t ∈ Z} has a density h(x) with spth ⊆ [0, 1/(1− ρ)] such that h ∈ C∞.
Furthermore, we have, for n ≥ 1,

sup
0≤x≤1/(1−ρ)

|hn(x)− h(x)| ≤ Dρn+1

1− ρ . (2.16)

Remark 2.12. The author introduced factor 2 on the right hand side of the
last inequality, which is not necessary.
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This theorem gives not only the convergence of sequence hn(x) to the
stationary density h(x), but the speed of convergence, which is geometrical,
as well. On the other hand, its assumptions are quite strong and most of
widely used distributions do not satisfy them.

However, in the following we relax some assumptions mentioned above,
in particular the finitness of the support of density f and its differentiability.
Moreover, we improve the boundary on the right hand side of (2.16). First,
we deal with the support and positivity of parameter ρ.

Theorem 2.13. Let {Xt} be the AR(1) process (2.1), ρ ∈ (−1, 1). Let η1

have a density f(x) such that E |η1| < ∞. Assume that the derivative f ′(x)
exists for every x ∈ R and supx |f ′(x)| ≤ D for some constant D ∈ R. Then
the stationary distribution of {Xt} has a density h(x) ∈ C∞ and for n ≥ 1
we have

sup
x∈R
|hn(x)− h(x)| ≤ D|ρ|n+1 E |η1|

1− |ρ| .

Proof. Stronger assertion will be proved later, see Theorem 2.20. We only
need to mention that the first important step of the proof is the change of
integration and derivative in

d

du
h1(u) =

d

du

∫
f(u− x)

1

|ρ|f
(
x

ρ

)
dx (2.17)

and

d

du
hn(u) =

d

du

∫
hn−1(u− x)

1

|ρ|f
(
x

ρ

)
dx, n ≥ 2. (2.18)

In the next step we will deal with the assumption of differentiability of
the density f . It allows to change the order of integration and derivative in
(2.17) and (2.18). However, to be allowed to do that, it suffices to assume
that hm(x) is differentiable on R for some m ≥ 0 (and thus for every k > m)
and the assertions of Theorem 2.13 will hold for every n ≥ m (the rest of the
proof remains the same).

Theorem 2.14. Let {Xt} be the AR(1) process (2.1), ρ ∈ (−1, 1). Let η1

have a density f(x) such that E |η1| <∞. Assume that there exists an integer
m ≥ 0 such that η1 + ρη2 + · · · + ρmηm+1 has a density hm(x) differentiable
on R, supx |h′m(x)| ≤ D for some constant D ∈ R. Then the stationary
distribution of {Xt} has a density h(x) ∈ C∞ and for n ≥ m we have

sup
x∈R
|hn(x)− h(x)| ≤ D|ρ|n+1 E |η1|

1− |ρ| .
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Consider the case of uniformly distributed innovations, i.e. ηt
iid∼ U([0, 1]).

Their density f(x) = χ[0,1](x) is not differentiable at points 0 and 1 and
thus the assumptions of Theorem 2.13 are not fulfilled. However, after some
algebra, it is possible to show that

h1(x; ρ) =





x/ρ x ∈ [0, ρ],

1 x ∈ [ρ, 1],

(1 + ρ− x)/ρ x ∈ [1, 1 + ρ],

0 otherwise

and

h2(x; ρ) =





x2/(2ρ3), x ∈ [0, ρ2],

(2x− ρ2)/(2ρ), x ∈ [ρ2, ρ],

(2ρ2x+ 2ρx− x2 − ρ2 − ρ4)/(2ρ3), x ∈ [ρ, ρ+ ρ2],

1, x ∈ [ρ+ ρ2, 1],

(2x− x2 − 1 + 2ρ3)/(2ρ3), x ∈ [1, 1 + ρ2],

(2ρ+ 2 + ρ2 − 2x)/(2ρ), x ∈ [1 + ρ2, 1 + ρ],

(2ρ+ 3ρ2 + 2ρ3 − 2ρx+ 1

− 2x+ ρ4 − 2ρ2x+ x2)/(2ρ3), x ∈ [1 + ρ, 1 + ρ+ ρ2],

0 otherwise

for ρ such that ρ+ ρ2 ≤ 1 and

h2(x; ρ) =





(x2)/(2ρ3), x ∈ [0, ρ2],

(2x− ρ2)/(2ρ), x ∈ [ρ2, ρ],

(2ρ2x+ 2ρx− x2 − ρ2 − ρ4)/(2ρ3), x ∈ [ρ, 1],

(2ρ2x+ 2ρx+ 2x− 2x2

− ρ4 − ρ2 − 1)/(2ρ3), x ∈ [1, ρ+ ρ2],

(2x− x2 − 1 + 2ρ3)/(2ρ3), x ∈ [ρ+ ρ2, 1 + ρ2],

(2ρ+ 2 + ρ2 − 2x)/(2ρ), x ∈ [1 + ρ2, 1 + ρ],

(2ρ+ 3ρ2 + 2ρ3 − 2ρx+ 1

− 2x+ ρ4 − 2ρ2x+ x2)/(2ρ3), x ∈ [1 + ρ, 1 + ρ+ ρ2],

0 otherwise

for ρ such that ρ+ ρ2 > 1.
Thus, h2(x) is a (continuously) differentiable function for every x ∈ R,

supx∈R |h′2(x)| ≤ ρ−1 and the assumptions of Theorem 2.14 hold for m = 2.
Figure 1 shows densities h1 and h2 for ρ = 0.7.
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Figure 1: Densities h1(x; ρ) (solid) and h2(x; ρ) (dashed) for ρ = 0.7

Notice that h1 and h2 are densities of η1 + ρη2 and η1 + ρη2 + ρ2η3, re-
spectively, and thus, they are convolutions of two and three densities, respec-
tively. Density h0 is discontinuous, h1 is continuous, but not differentiable,
h2 is continuously differentiable. This suggests that the convolution has a
“smoothing effect”. In the Appendix we study the behaviour of convolution
and derive conditions under which convolution of n densities is (n− 2)-times
continuously differentiable and the (n− 2)th derivative is bounded (see also
[5]). In such case, assumptions of Theorem 2.14 are satisfied for m equal to
(at most) two, since h2 is the convolution of three densities.

Theorem 2.15. Let n ≥ 3 and let f1, . . . , fn be piecewise smooth densities
(see Definition 2.8). Then f1 ∗ · · · ∗ fn ∈ Cn−2(R) and

∣∣∣∣
dn−2

dxn−2
(f1 ∗ · · · ∗ fn)(x)

∣∣∣∣ ≤ D

for some D ∈ R and every x ∈ R.

Proof. See Appendix, Theorem 2.30.

Obviously, if a density f of random variable η1 is piecewise smooth, then
the density of ρkη1, k = 1, 2, . . ., is piecewise smooth as well. According to
Theorem 2.15, the density h2 of η1 +ρη2 +ρ2η3 is a continuously differentiable
function with bounded derivative.

Theorem 2.16. Let {Xt} be the AR(1) process (2.1), ρ ∈ (−1, 1). Let η1

have a piecewise smooth density f(x) such that E |η1| <∞. Let hn denote the

14



density of the random variable η1 + ρη2 + · · ·+ ρnηn+1. Then the stationary
distribution of {Xt} has a density h(x) ∈ C∞ and for n ≥ 2 we have

sup
x∈R
|hn(x)− h(x)| ≤ D|ρ|n+1 E |η1|

1− |ρ| ,

where D = supx |h′2(x)|.
Proof. The assertion follows from Theorems 2.14 and 2.15.

2.2 Model AR(2)

The iterative method for calculating stationary density (Theorem 2.3) can
be generalized to autoregressive process of higher order (see [4]). Here we
present a derivation for AR(2) model.

Let {Xt}t∈Z be a stationary AR(2) process defined by

Xt = ρ1Xt−1 + ρ2Xt−2 + ηt, (2.19)

where {ηt} are i.i.d. random variables with denisty f and finite second mo-
ment. Let ψ be the characteristic function of ηt and

F =

(
ρ1 ρ2

1 0

)
.

It is known that

Xt =
∞∑
j=0

ajηt−j,

where aj denotes the (1,1)-element of the matrix F j (see [13], p. 57). It
follows from the assumption of stationarity that all eigenvalues of F lie inside
the unit circle and thus the series (2.19) converges in the quadratic mean. If
we define c = (1, 0)> then

aj = c>F jc = c>
(
F>
)j
c

and the characteristic function λ of Xt is given by

λ(t) =
∞∏
j=0

ψ(taj) =
∞∏
j=0

ψ
(
tc>

(
F>
)j
c
)
. (2.20)

Since we assumed that ηt have a density, it follows from (2.19) that the
random vector (Xt, Xt−1)> has a joint denisty, say q(x, y). The stationary
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density of {Xt} is h(x) =
∫
q(x, y) dy. Since {Xt} is stationary, the vector

(Xt−1, Xt−2)> has also density q. The joint denisty of (Xt, Xt−1, Xt−2)> is the
product of the conditional density of Xt given (Xt−1, Xt−2)> and the joint
density of (Xt−1, Xt−2)>, i.e. q(xt−1, xt−2)f(xt− ρ1xt−1− ρ2xt−2). This leads
to the integral equation

q(xt, xt−1) =

∫
q(xt−1, xt−2)f(xt − ρ1xt−1 − ρ2xt−2) dxt−2. (2.21)

Let q0(y, z) be an arbitrary joint density. Formula (2.21) suggests that a
method for calculating q can be based on the recurrent relation

qn(x, y) =

∫
qn−1(y, z)f(x− ρ1y − ρ2z) dz, n = 1, 2, . . . (2.22)

It was proved that under some conditions concerning ψ and F the functions
qn converge to q pointwise.

Theorem 2.17. Let λn be the characteristic function corresponding to qn.
Then for arbitrary t = (t1, t2)> we have λn(t)→ λ(t).

Proof. Using (2.22) we get

λn(t1, t2) =

∫∫
eit1x+it2xqn(x, y) dx dy

=

∫∫∫
eit1x+it2yqn−1(y, z)f(x− ρ1y − ρ2z) dz dx dy

=

∫∫∫
eit1(w+ρ1y+ρ2z)+it2yqn−1(y, z)f(w) dz dw dy

=

∫∫
ei(t1ρ1+t2)y+it1ρ2zqn−1(y, z) dy dz

∫
eit1wf(w) dw

= λn−1(t1ρ1 + t2, t1ρ2)ψ(t1)

= λn−1(F>t)ψ(c>t).

This gives

λn(t) = ψ(c>t)ψ(c>F>t) · · ·ψ
(
c>
(
F>
)n−1

t
)
λ0

((
F>
)n
t
)
.

Since F n → 0 as n → ∞, we have λ0

(
(F n)>t

) → 1 and from (2.20) it
follows that λn(t)→ λ(t).

Theorem 2.18. Let q0 be a density. Assume that there exists an integer
m ≥ 0 such that∫∫ ∣∣ψ(c>t)ψ(c>F>t) · · ·ψ (c> (F>)m t)

∣∣ dt1 dt2 <∞.

Then qn(x, y)→ q(x, y) for all (x, y) as n→∞.
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Proof. For n ≥ m we have

|λn(t1, t2)| ≤
∣∣ψ(c>t)ψ(c>F>t) · · ·ψ (c> (F>)m t)

∣∣

and thus ∫∫
|λn(t1, t2)| dt1 dt2 <∞.

Then qn(x, y) is continuous and

qn(x, y) =
1

(2π)2

∫∫

R2

e−i(xt1+yt2)λn(t1, t2) dt1 dt2

(c.f. [11], formula 7.12). Theorem 2.17 and Lebesgue theorem imply

lim
n→∞

1

(2π)2

∫∫

R2

e−i(xt1+yt2)λn(t1, t2) dt1 dt2 = q(x, y).

Example 2.19. Consider the AR(2) model (2.19) with ρ1 = 0.7, ρ2 = −0.1
and ηt ∼ Exp(1). We choose

q0(x, y) =

{
exp{−x− y} if x ≥ 0, y ≥ 0,

0 otherwise,

and compute joint densities qi(x, y), i = 1, 2, 3, according to (2.22). Graphs
of these functions can be found in Figures 2, 3 and 4.

Fig. 2 Fig. 3
Function q1(x, y) Function q2(x, y)
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Fig. 4
Function q3(x, y)

2.3 General linear process

Now we extend Haiman’s approach to general causal linear processes. Let
{Xt}t∈Z be stationary process defined by

Xt =
∞∑
j=0

cjηt−j, t ∈ Z, (2.23)

where {ηt}t∈Z are i.i.d. random variables with denisty f and finite second
moment. Constants cj ∈ R are assumed to satisfy conditions

∑∞
j=0 |cj| <∞,

c0 = 1 and infinitely many of them are nonzero. Then we know that the sum
on the right hand side of (2.23) converges almost surely.

Obviously, the stationary distribution of (2.23) is the same as that of the
random variable

∑∞
j=0 cjηj. Consider the sequence of partial sums

Yn = c0η0 + · · ·+ cnηn.

Let hn(u) denote the density of Yn and define h0 = f .

Theorem 2.20. Let {Xt} be a linear process defined by (2.23). Let η1 have a
piecewise smooth density f(x). Let ν be the smallest integer such that among
the coefficients c0, c1, . . . , cν there are three nonzero. Then the stationary
distribution of {Xt} has a density h ∈ C∞ and for n ≥ ν we have

sup
x∈R
|hn(x)− h(x)| ≤ D E |η1|

∞∑

k=n

|ck+1|,

where D = supx |h′ν(x)| <∞.
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Proof. Density hν is the convolution of three densities which are all piecewise
smooth. Therefore it is continuously differentiable and |h′ν(x)| ≤ D for some
D ∈ R and every x ∈ R according to Theorem 2.15.

If cν+1 6= 0, we get
∣∣∣∣

d

du
hν+1(u)

∣∣∣∣ =

∣∣∣∣
d

du

∫
hν(u− x)

1

|cν+1|f
(

x

cν+1

)
dx

∣∣∣∣

≤
∫ ∣∣∣∣

d

du
hν(u− x)

∣∣∣∣
1

|cν+1|f
(

x

cν+1

)
dx ≤ D. (2.24)

If cν+1 = 0, then hν+1 = hν and |h′ν+1(x)| = |h′ν(x)| ≤ D. Thus, |h′ν+1(x)| ≤
D for every cν+1. Similarly, by complete induction, |h′k(x)| ≤ D for every
k ≥ ν + 1.

Choose n ≥ ν. Assume that cn+1 6= 0. We have

hn+1(u) =

∫
hn(y) · 1

|cn+1|f
(
u− y
cn+1

)
dy. (2.25)

Mean value theorem gives

hn(y) = hn(u) + (y − u)
d

du
hn[u+ θu(y − u)] (2.26)

for some θu ∈ [0, 1]. Substituting (2.26) into (2.25), we get

hn+1(u) = hn(u)

∫
1

|cn+1|f
(
u− y
cn+1

)
dy

+

∫
y − u
|cn+1| · f

(
u− y
cn+1

)
d

du
hn[u+ θu(y − u)] dy

= hn(u) +

∫
y − u
|cn+1| · f

(
u− y
cn+1

)
d

du
hn[u+ θu(y − u)] dy. (2.27)

Thus, we have

|hn+1(u)− hn(u)| =
∣∣∣∣
∫

y − u
|cn+1|f

(
u− y
cn+1

)
d

du
hn[u+ θu(y − u)] dy

∣∣∣∣

≤ D

∫ ∣∣∣∣
y − u
cn+1

∣∣∣∣ · f
(
u− y
cn+1

)
dy

= D|cn+1|
∫
|z|f(z) dz = D|cn+1|E |η1|.

If cn+1 = 0 then hn+1 = hn and therefore

|hn+1(u)− hn(u)| ≤ D|cn+1|E |η1|
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for every cn+1. This implies that the sequence {hn} is Cauchy with respect
to supremum norm and thus, it has a limit h. Finally,

|hn(x)− h(x)| ≤
∞∑

k=n

|hk(x)− hk+1(x)| ≤ D E |η1|
∞∑

k=n

|ck+1|.

Special case of linear process is an ARMA(p, q) process. It is defined by
equation

Xt + ϕ1Xt−1 + · · ·+ ϕpXt−p = ηt + ϑ1ηt−1 + · · ·+ ϑqηt−q,

where the polynomials A(λ) = λp + ϕ1λ
p−1 + · · · + ϕp and B(λ) = λq +

ϑ1λ
q−1 + · · ·+ϑq have no common roots. Assume that that the roots of A(λ)

lie inside the unit circle. Then the process {Xt} is stationary and expressible
as a linear causal process (2.23). We also know that the coefficients cj decay
exponentially, say |cj| ≤ K|γ|j, where K > 0 and γ ∈ (−1, 1) are some real
constants.

If the density of η1 is piecewise smooth, we can apply Theorem 2.20 and
we get

sup
x∈R
|hn(x)− h(x)| ≤ DK E |η1|

1− |γ| |γ|
n+1.

Again, we showed that the densities hn converge to the stationary density h
uniformly and geometrically fast.

2.4 Appendix – Properties of convolution

2.4.1 Criterion for differentiability of characteristic functions

Let f be the density of a distribution with respect to Lebesgue measure.
Then the characteristic function f̂ corresponding to this density is defined
by

f̂(t) =

∫ ∞
−∞

eitxf(x) dx, t ∈ R.
Let h = f ∗ g be the convolution of densities f and g. It is well known that

ĥ(t) = f̂(t)ĝ(t), t ∈ R. (2.28)

If density f is continuous and its characteristic function f̂ absolutely inte-
grable (f̂ ∈ L1(R)), then according to characteristic function’s inverse theo-
rem

f(x) =
1

2π

∫ ∞
−∞

e−itxf̂(t) dt, x ∈ R. (2.29)

Let Ck(R) denote the set of functions with continuous kth derivative.
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Lemma 2.21. Let the density f be continuous, k ∈ N, a ∈ R and

|f̂(t)| ≤ a

(1 + |t|)k+2
, t ∈ R.

Then f ∈ Ck(R) and |f (k)(x)| ≤ D for some D ∈ R and every x ∈ R.

Proof. It is obvious that f̂ ∈ L1(R). Define

h(t) =
a|t|k

(1 + |t|)k+2
, t ∈ R.

Then h ∈ L1(R) and

∣∣∣∣
∂k

∂xk

[
e−itxf̂(t)

]∣∣∣∣ = |(−it)ke−itxf̂(t)| = |t|k · |f̂(t)| ≤ h(t)

for every x ∈ R and t ∈ R. From (2.29), we get f ∈ Ck(R). Moreover,

|f (k)(x)| ≤ 1

2π

∫

R

∣∣∣∣
∂k

∂xk

[
e−itxf̂(t)

]∣∣∣∣ dt ≤ 1

2π

∫

R
h(t) dt.

Choosing D = ‖h‖1/(2π) completes the proof.

2.4.2 Continuity of convolution

Lemma 2.22. Let ϕ : R→ R be a function such that

(i) ϕ is continuous on R,

(ii) there exists a > 1 such that ϕ(x) = 0 for x /∈ (−a+ 1, a− 1).

Then

lim
s→0

∫ ∞
−∞
|ϕ(s+ t)− ϕ(t)| dt = 0. (2.30)

Proof. Define ωs(t) = |ϕ(s + t) − ϕ(t)|, s, t ∈ R. Let ε > 0. Since function
ϕ is uniformly continuous on R, there exists δ ∈ (0, 1) such that for every
s ∈ (−δ, δ) and every t ∈ R we have ωs(t) ≤ ε. Since δ ∈ (0, 1), ωs(x) = 0
for |x| ≥ a. Therefore

∫ ∞
−∞

ωs(t)dt =

∫ a

−a
ωs(t)dt ≤ 2aε.
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Lemma 2.23. Let f : R→ R be an absolutely integrable function and ε > 0.
Then there exists a function ϕ satisfying conditions (i) and (ii) in Lemma
2.22 such that ∫ ∞

−∞
|f(t)− ϕ(t)| dt ≤ ε. (2.31)

Proof. See [21], Theorem 3.14.

Lemma 2.24. Let f : R→ R be an absolutely integrable function. Then

lim
s→0

∫ ∞
−∞
|f(s+ t)− f(t)| dt = 0. (2.32)

Proof. Fix ε > 0 and choose ϕ by Lemma 2.23. Then
∫ ∞
−∞
|f(s+ t)− ϕ(s+ t)| dt ≤ ε, s ∈ R, (2.33)

holds. It follows from (2.30) that there exists δ > 0 such that
∫ ∞
−∞
|ϕ(s+ t)− ϕ(t)| dt ≤ ε (2.34)

whenever |s| < δ. From the triangle inequality, (2.31), (2.33) and (2.34), we
get the inequality

∫ ∞
−∞
|f(s+ t)− f(t)| dt ≤

∫ ∞
−∞
|f(s+ t)− ϕ(s+ t)| dt

+

∫ ∞
−∞
|ϕ(s+ t)− ϕ(t)| dt

+

∫ ∞
−∞
|f(t)− ϕ(t)| dt ≤ 3ε

for every s ∈ (−δ, δ).
Theorem 2.25. Let f and g be densities such that for some c > 0, |g(x)| ≤ c
almost everywhere. Then density h = f ∗ g is uniformly continuous on R.

Proof. Let x, x1 ∈ R. Then

|h(x1)− h(x)| ≤
∣∣∣∣
∫ ∞
−∞

[f(x1 − y)− f(x− y)]g(y) dy

∣∣∣∣

≤ c

∫ ∞
−∞
|f(x1 − y)− f(x− y)| dy

= c

∫ ∞
−∞
|f(x1 − x+ t)− f(t)| dt.

The assertion follows from Lemma 2.24.
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Now we prove that previous theorem is optimal in some sense. Let R∗
denote the extended real line. Let g : R → R∗ be a measurable function.
Define

‖g‖∞ = inf{c ∈ [0,∞); |g| ≤ c a.e.}
(cf. 3.7 in [21]), so that ‖g‖∞ is the essential supremum of function |g|.

For a measurable function g satisfying the condition ‖g‖∞ < ∞, the
mapping

Φ : h 7→
∫ ∞
−∞

hg, h ∈ L1(R)

is a linear functional on L1(R) with ‖Φ‖ = ‖g‖∞ (see 6.16 in [21]).
Further, we remember a version of Banach-Steinhaus Theorem.

Theorem 2.26 (Banach-Steinhaus). Let X be a Banach space. Let Φn,
n ∈ N, be continuous linear functionals on X and let

sup{|Φn(x)|;n ∈ N} <∞
for every x ∈ X. Then

sup{‖Φn‖;n ∈ N} <∞.
So a pointwise bounded sequence of functionals is uniformly bounded as well,
cf. [21], Theorem 5.8.

For f : R→ R∗ and x ∈ R define the function fx by

fx(y) = f(x− y), y ∈ R.
Let f and g be measurable functions. Denote

M(f, g) = {x ∈ R; fx · g ∈ L1(R)}.
For x ∈M(f, g), define function k(x) by

k(x) =

∫ ∞
−∞

f(x− y)g(y) dy.

It is known that for f , g ∈ L1(R), the set R \M(f, g) has zero measure and
k, as an element of L1(R), is equal to convolution f ∗ g (see [21], Theorem
8.14).

Theorem 2.27. Let g be a measurable function on R. Then the following
conditions are equivalent.

(i) For every function f ∈ L1(R), we have M(f, g) = R.
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(ii) There exists x ∈ R such that x ∈M(f, g) whenever f ∈ L1(R).

(iii) ‖g‖∞ <∞.

(iv) Function k is uniformly continuous for every f ∈ L1(R).

Proof. Implications (i) ⇒ (ii) and (iv) ⇒ (i) are obvious. Implication (iii)
⇒ (iv) follows from Theorem 2.25. Therefore, it suffices to prove (ii)⇒ (iii).
Let (ii) hold. Then fx · g ∈ L1(R) for every function f ∈ L1(R), and thus
h · g ∈ L1(R) for every h ∈ L1(R). Define gn = max{−n,min{g, n}}, n ∈ N.
Then ‖gn‖∞ ≤ n and the norm of the linear functional

Φn : h 7→
∫ ∞
−∞

hgn, h ∈ L1(R),

is equal to ‖gn‖∞. Note that |gn| ↗ |g| for n → ∞ and thus, according to
Lebesgue’s monotone convergence theorem,

∫ ∞
−∞
|hgn| →

∫ ∞
−∞
|hg| ∈ R

for every h ∈ L1(R). Hence, the sequence
{∫∞
−∞ |hgn|

}
is bounded for

every L1(R) and by Banach-Steinhaus Theorem there exists c ∈ R such
that ‖gn‖∞ ≤ c for every n. Thus, ‖g‖∞ ≤ c < ∞, which completes the
proof.

2.4.3 Boundedness of convolution

Now we deal with boundedness of convolution of two unbounded densities.
First, define

fn(x) =
1

2
n
2 Γ
(
n
2

)xn2−1e−
x
2 , x > 0, (2.35)

and fn(x) = 0 otherwise. It is known that fn(x) is a density of χ2
n distri-

bution. Density f1(x) is not bounded, but f2 = f1 ∗ f1 is a non-continuous
bounded density. Thus, it is an example of the situation when the convolu-
tion of two unbounded densities is bounded.

Now we show that the convolution of two unbounded densities can be an
unbounded function. First we derive an auxiliary result. For t ∈ (0, 1) define
u(s) = ln

(
s+
√
s2 + t

)
. Then u′(s) = 1

/√
s2 + t and for t ∈ (0, 1) we have

∫ √1−t

0

ds√
s2 + t

= ln
(
1 +
√

1− t)− ln
√
t.
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Further, define function

f(x) =
1

4
√
|x| for x ∈ (−1, 0) ∪ (0, 1) (2.36)

and f(x) = 0 otherwise. Function f is a density. Choose x ∈ (0, 1). Then

(f ∗ f)(x) =
1

16

∫ 1

x−1

dy√
|x− y|

√
|y| ≥

1

16

∫ 0

x−1

dy√
|x− y|

√
|y|

=
1

16

∫ 1−x

0

2√
|x+ y|

dy

2
√
|y| =

1

8

∫ √1−x

0

ds√
s2 + x

=
1

8

[
ln
(
1 +
√

1− x)− ln
√
x
] ≥ 1

16
ln

1

x
.

Hence it follows that f ∗ f is not a bounded function.
It seems that the main difference between density f1 from (2.35) and

density f from (2.36) is the fact that f1 has “one-sided singularity” while f
has “two-sided singularity”. Instead of density f , consider density g(x) = 1

2
√
x

for x ∈ (0, 1), g(x) = 0 otherwise. We get

(g ∗ g)(x) =





π
4

for x ∈ (0, 1),

1
2

arcsin 1√
x
− 1

2
arcsin

√
x−1
x

for x ∈ (1, 2),

0 otherwise.

Function g ∗ g is bounded. Its graph is introduced in Figure 5.

2.4.4 Smoothness of convolution

Lemma 2.28. Let f : (α, β) → R be absolutely continuous function on
(α, β), −∞ ≤ α < β ≤ ∞ and f ′ ∈ L1

(
(α, β)

)
. Then f is bounded on

(α, β). If β < ∞, then f(β−) exists and the function f̃ defined by f̃ = f
on (α, β) and f̃(β) = f(β−) is absolutely continuous on (α, β]. Similarly for
α > −∞.

Proof. It is known that f ′(x) exists for almost every x ∈ (α, β). Let γ ∈
(α, β). Then for every x ∈ (α, β) we have

|f(x)| − |f(γ)| ≤ |f(x)− f(γ)| =
∣∣∣∣
∫ x

γ

f ′
∣∣∣∣ ≤

∫ x

γ

|f ′| ≤
∫ β

α

|f ′| <∞.

(Equality |f(x) − f(γ)| =
∣∣∣
∫ x
γ
f ′
∣∣∣ follows from [21], Theorem 7.18.) We can

see that f is bounded on (α, β). Let α < x < y < β. Then

|f(y)− f(x)| ≤
∫ y

x

|f ′|.
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Figure 5: Graph of function g ∗ g

Since measure µ defined by µ(A) =
∫
A
|f ′| for a Borel set A ⊂ (α, β) is

absolutely continuous with respect to Lebesgue measure, for every ε > 0
there exists δ > 0 such that

∫
A
|f ′| ≤ ε whenever A is a set with Lebesgue

measure less than δ. In particular, for every ε > 0 there exists δ > 0 such
that |f(y)− f(x)| ≤ ε for any x, y ∈ (α, β), |x− y| < δ. Thus, function f is
uniformly continuous on interval (α, β). Hence f(β−) exists if β <∞.

Let β <∞, γ ∈ (α, β) and x ∈ [γ, β). Theorem 7.18 in [21] yields

f(x)− f(γ) =

∫ x

γ

f ′,

because f is absolutely continuous on [γ, x]. Since f(β−) exists and

lim
x→β−

∫ x

γ

f ′ =
∫ β

γ

f ′,

(recall that f ′ ∈ L1(R)), we have f̃(x) − f̃(γ) =
∫ x
γ
f ′ for any x ∈ [γ, β].

According to [21], Theorem 7.18, f̃ is absolutely continuous on [γ, β] and
therefore on (α, β]. Similarly for α > −∞.

Theorem 2.29. Let f be a piecewise smooth function. Let f̂(t) denote the
characteristic function corresponding to f . Then there exists number b > 0
such that

|f̂(t)| ≤ b

1 + |t| , t ∈ R.
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Proof. Let a−1, a0, . . . , ar+1 have the same meaning as in Definition 2.8.
Lemma 2.28 implies the existence of a number M such that |f | ≤ M on
R. Let j ∈ {1, . . . , r} and t 6= 0. For absolutely continuous functions we can
use integration by parts. We get
∫ aj

aj−1

eitxf(x) dx = − i

t
eitajf(aj−) +

i

t
eitaj−1f(aj−1+) +

i

t

∫ aj

aj−1

eitxf ′(x) dx.

If we define d = 2M + ‖f ′‖1, we get
∣∣∣∣∣
∫ aj

aj−1

eitxf(x) dx

∣∣∣∣∣ ≤
d

|t| . (2.37)

Similarly, for α < a0, we get
∣∣∣∣
∫ a0

α

eitxf(x) dx

∣∣∣∣ ≤
d

|t|
and therefore ∣∣∣∣

∫ a0

−∞
eitxf(x) dx

∣∣∣∣ ≤
d

|t| (2.38)

since the integrand belongs to L1(R). Similarly,
∣∣∣∣
∫ ∞
ar

eitxf(x) dx

∣∣∣∣ ≤
d

|t| . (2.39)

It follows from (2.37), (2.38) and (2.39) that for t 6= 0

|f̂(t)| =
∣∣∣∣
∫ ∞
−∞

eitxf(x) dx

∣∣∣∣

≤
∣∣∣∣
∫ a0

−∞
eitxf(x) dx

∣∣∣∣+
r∑
j=1

∣∣∣∣∣
∫ aj

aj−1

eitxf(x) dx

∣∣∣∣∣+

∣∣∣∣
∫ ∞
ar

eitxf(x) dx

∣∣∣∣

≤ (r + 2)d

|t| .

Thus, we have

|f̂(t)| ≤ 2d(r + 2)

1 + |t|
for |t| ≥ 1 and

|f̂(t)| ≤ ‖f‖1 ≤ 2

1 + |t|‖f‖1

for |t| < 1. Now it suffices to choose b = 2[(r + 2)d+ ‖f‖1].
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Theorem 2.30. Let n ≥ 3 and let f1, . . . , fn be piecewise smooth densities
(see Definition 2.8). Then f1 ∗ · · · ∗ fn ∈ Cn−2(R) and

∣∣∣∣
dn−2

dxn−2
(f1 ∗ · · · ∗ fn)(x)

∣∣∣∣ ≤ D

for some D ∈ R and every x ∈ R.

Proof. According to Theorem 2.9 there exist bj ∈ R such that

|f̂j(t)| ≤ bj
1 + |t| , t ∈ R, j = 1, . . . , n.

If we take

a =
n∏
j=1

bj, f = f1 ∗ · · · ∗ fn,

then density f is continuous according to Theorem 2.25 and from (2.28) we
get

|f̂(t)| =
∣∣∣∣∣
n∏
j=1

f̂j(t)

∣∣∣∣∣ ≤
a

(1 + |t|)n , t ∈ R.

The assertion now follows from Lemma 2.21.

28



3 Multidimensional AR(1) model

In this section we extend the algorithm of Anděl and Hrach to multidimen-
sional case. Let {ηt} be p-dimensional i.i.d. random vectors with a density
f . Consider a p-dimensional stationary AR(1) process {X t} defined by

X t = BX t−1 + ηt

where B is a regular p× p matrix such that the equation Det(Ix−B) = 0
has all roots inside the unit circle. (Symbol I denotes the eigenmatrix.)

Theorem 3.1. The process {X t} has a stationary density h which satisfies
equation

h(z) =

∫
h(w)f(z −Bw) dw. (3.1)

Proof. Existence of the density h can be proved analogously as in the one-
dimensional case (see p. 5). If X t−1 has a density h then the density of
BX t−1 is

g(y) =
∣∣DetB−1

∣∣h(B−1y).

For sake of completeness remember that if ξ1 and ξ2 are two independent
random vectors with densities p1 and p2, respectivelly, then Z = ξ1 + ξ2 has
the density

q(z) =

∫
p1(z − u)p2(u) du.

Since X t has also the density h, combining the results above we get

h(z) =
∣∣DetB−1

∣∣
∫
h[B−1(z − u)]f(u) du.

Substitution w = B−1(z − u) yields formula (3.1).

Theorem 3.2. Let ψ(t) = E eit>ηt be the characteristic function of the ran-
dom vector ηt. Then the characteristic function λ(t) of the vector X t is

λ(t) =
∞∏

k=0

ψ
((
B>
)k
t
)
. (3.2)

Proof. Define
X t,n = ηt +Bηt−1 + · · ·+Bnηt−n.

It is known that X t,n →X t in the quadratic mean as n→∞. Thus X t,n →
X t in distribution and the characteristic functions of vectors X t,n converge
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pointwise to the characteristic function of the vector X t. It is easy to check
that the characteristic function of X t,n is ψ(t)ψ

(
B>t

) · · ·ψ ((B>)n t) and
thus the characteristic function λ(t) of the vector X t is

λ(t) =
∞∏

k=0

ψ
((
B>
)k
t
)
.

Let h0(z) be a density. Define a sequence {hn(z)} by

hn(z) =

∫
hn−1(w)f(z −Bw) dw, n ≥ 1. (3.3)

It is clear that each function hn is a density.

Theorem 3.3. Let λn be the characteristic function corresponding to hn.
Then λn(t)→ λ(t) for all t.

Proof. For n ≥ 1, we have

λn(t) =

∫
eit>zhn(z) dz

=

∫
eit>z

[∫
hn−1(w)f(z −Bw) dw

]
dz

=

∫
hn−1(w)

∫ [
eit>zf(z −Bw) dz

]
dw

=

∫
eit>Bwhn−1(w)

[∫
eit>uf(u) du

]
dw

= ψ(t)

∫
eit>Bwhn−1(w) dw

= ψ(t)λn−1(B>t).

Thus,

λn(t) = ψ(t)ψ(B>t) · · ·ψ
((
B>
)n−1

t
)
λ0

((
B>
)n
t
)
.

Since
(
B>
)n → 0 as n→∞, we obtain λ0

((
B>
)n
t
)→ 1 and λn(t)→ λ(t)

for all t.

Theorem 3.4. Let h0(z) be a density. Define hn(z) by formula (3.3). If
there exists an integer m ≥ 0 such that

∫ ∣∣ψ(t)ψ
(
B>t

) · · ·ψ ((B>)m t)
∣∣ dt <∞

then hn(z)→ h(z) as n→∞ for all z.
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Proof. If n > m then

|λn(t)| ≤
∣∣ψ(t)ψ

(
B>t

) · · ·ψ ((B>)m t)
∣∣

and thus
∫ |λn(t)| dt <∞. Then hn(z) is bounded, continuous, and

hn(z) =
1

(2π)p

∫
e−it>zλn(t) dt

(see [11], formula 7.12). Lebesgue’s dominated convergence theorem yields
limn→∞ hn(z) = h(z) for arbitrary z.
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4 Some nonlinear models

In this chapter we first describe a procedure which can be used to approxi-
mate stationary density of a nonlinear autoregressive process of first order.
Then we study two models for which an explicit form of stationary distribu-
tion was found.

4.1 Approximation of stationary density in nonlinear
autoregressive processes of first order

Let the process {Xt} follow general autoregression of first order

Xt = λ(Xt−1) + ηt, t ∈ N,

where {ηt} are i.i.d. random variables with known density f with respect to
Lebesgue measure, zero mean and finite positive variance σ2. The model is
assumed to be stationary. We do not have any further restrictions on function
λ.

If an analytic solution of this problem is not known, we try to find a
numerical approximation. Several methods have been proposed, see e.g. [14]
or [16]. We describe an algorithm based on Chapman-Kolmogorov relation
(for details see [22], p. 152). Its basic idea is to evaluate the sequence of
conditional densities which converge to the desired stationary density.

Let h(xt+m|xt) denote the conditional density, which we assume to exist,
of Xt+m given Xt = xt. Chapman-Kolmogorov relation states that

h(xt+m|xt) =

∫

R
h(xt+m|xt+1)h(xt+1|xt) dxt+1.

Let F be the distribution function of η1. In the first step we calculate the
initial density h(xt+1|xt). We compute the corresponding conditional distri-
bution function

H(xt+1|xt) = P(Xt+1 ≤ xt+1|Xt = xt) = P(λ(xt) + ηt+1 ≤ xt+1)

= F (xt+1 − λ(xt)).

Further,

h(xt+1|xt) =
∂

∂xt+1

H(xt+1|xt) = f(xt+1 − λ(xt)) (4.1)

and

h(xt+m|xt) =

∫

R
h(xt+m|xt+1)f(xt+1 − λ(xt)) dxt+1. (4.2)
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Iterating the last equality, we obtain

h(xt+2|xt) =

∫

R
f(xt+2 − λ(xt+1))f(xt+1 − λ(xt)) dxt+1

h(xt+3|xt) =

∫∫

R2

f(xt+3 − λ(xt+2))f(xt+2 − λ(xt+1))×

× f(xt+1 − λ(xt)) dxt+2 dxt+1

...

h(xt+m|xt) =

∫
· · ·
∫

Rm−1

f(xt+m − λ(xt+m−1))× · · ·×

× f(xt+1 − λ(xt)) dxt+m−1 · · · dxt+1. (4.3)

Starting with (4.1), we evaluate h(xt+m|xt), m = 2, 3, . . ., from (4.2) or
(4.3) using numerical integration. By stationarity, the sequence h(xt+m|xt)
converges to the stationary density as m→∞ for every x0 (see [22], p. 153).

It is possible to reduce the computation time as follows. Note that (4.2)
still holds if we replace its left hand side by h(xt+2m|xt), the integrand by
h(xt+2m|xt+m)h(xt+m|xt) and dxt+1 by dxt+m, i.e.

h(xt+2m|xt) =

∫

R
h(xt+2m|xt+m)h(xt+m|xt) dxt+m.

Thus, instead of obtaining iterates h(xt+m|xt), m = 1, 2, . . ., we get a se-
quence h(xt+2m |xt), m = 0, 1, 2, . . ., which increases the speed of convergence
significantly.

Remark 4.1. The method may also be extended to cope with higher-order
dependence, i.e.

Xt = λ∗(Xt−1, . . . , Xt−m) + ηt.

Example 4.2 (Absolute autoregression). As an illustration of the me-
thod described above, we compare an approximate stationary density ob-
tained by this algorithm with the exact density h of the AAR(1) process
{Xt} given by

Xt =
1

2
|Xt−1|+ ηt,

where ηt
iid∼ N(0, 1). In (4.5) we show that

h(x) =

√
3

2π
exp{−3x2/8}Φ(x/2).
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Chapman-Kolmogorov method yields the following results. Conditional den-
sities hj = h(xj|x0 = 1), j = 1, 2, 3, and the exact stationary density are
shown in Figure 6. We can see that the convergence is quite fast since the
curves illustrating h2, h3 and h almost coincide. In Table 1 we find maximum
differences between densities hj and the exact density h. Table 2 summarizes
approximate and exact moments of {Xt}.

0.1

0.2

0.3

0.4

–4 –2 2 4

x

Figure 6: Conditional densities h1 (solid), h2 (dashed), h3 (dotted) and sta-
tionary density h (solid thick)

Table 1: Maximum differences between hj and h.

j 1 2 3
maxx |hj(x)− h(x)| 0.02513 0.00272 0.00075

In the next example we study the case when the exact form of stationary
density is unknown.

Example 4.3 (Threshold autoregression). Let {Xt}t≥0 be generated by
a TAR(1) model

Xt =

{
1 + 0.6Xt−1 + ηt if Xt−1 ≤ 0

−1 + 0.4Xt−1 + ηt if Xt−1 > 0
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Table 2: Conditional and exact moments of {Xt}.
k 1 2 3 4

E(Xk
1 |X0 = 1) 0.500 1.250 1.625 4.560

E(Xk
2 |X0 = 1) 0.448 1.312 1.618 5.150

E(Xk
3 |X0 = 1) 0.457 1.328 1.670 5.280
EXk

t 0.461 1.333 1.689 5.333

where the noise process ηt has standard normal distribution (see [22], p. 100).
Approximate densities h1, . . . , h4 and corresponding moments are shown in
Figure 2 and Table 3, respectively. We can see that the convergence is much
slower than in the previous example.

0
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0.2

0.3

0.4

–4 –2 2 4

x

Figure 7: Densities h1 (dashed), h2 (solid), h3 (dashed thick) and h4 (solid
thick)

4.2 Absolute autoregression

Consider the model of absolute autoregression of first order AAR(1) given
by

Xt = a|Xt−1|+ ηt (4.4)
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Table 3: Conditional moments of {Xt}.
k 1 2 3 4

E(Xk
1 |X0 = 1) −0.600 1.360 −2.016 5.290

E(Xk
2 |X0 = 1) 0.058 1.390 0.171 5.507

E(Xk
3 |X0 = 1) −0.112 1.410 −0.399 5.630

E(Xk
4 |X0 = 1) −0.070 1.402 −0.260 5.582

where a ∈ (−1, 1) and ηt is a strict white noise. Anděl et al. [6] proved that
for a ∈ (−1, 0) and for ηt ∼ N(0, 1) the stationary density of (4.4) is

h(x) =

√
2(1− a2)

π
exp{−(1− a2)x2/2}Φ(ax) (4.5)

where Φ is the distribution function of N(0, 1). The expectation is given by

EXt =

∫

R
x

√
2(1− a2)

π
exp

{
−(1− a2)x2

2

}∫ ax

−∞

1√
2π

exp

{
−y

2

2

}
dy dx

=

√
1− a2

π

∫

R
exp

{
−y

2

2

} −1

1− a2

∫ − 1
2

(1−a2)(y/a)2

−∞
ez dz dy

=

√
2

π
· a√

1− a2
. (4.6)

Before computing the variance varXt we prove an auxiliary lemma.

Lemma 4.4. Let f be an arbitrary density symmetric around zero. Let F
be a distribution function of an arbitrary symmetric distribution. Then

∫

R
f(y)F (y) dy =

1

2
.

Proof. Since f(−x) = f(x) and F (−x) = 1− F (x) for every x, we have

∫

R
f(y)F (y) dy =

∫ 0

−∞
f(y)F (y) dy +

∫ ∞
0

f(y)F (y) dy

=

∫ ∞
0

f(z)[1− F (z)] dz +

∫ ∞
0

f(z)F (z) dz

=

∫ ∞
0

f(z) dz =
1

2
.
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Now, we can calculate the second moment

EX2
t =

∫

R
x2h(x) dx

=

√
1− a2

π

∫

R
e−

y2

2

∫ y
a

−∞
x2 exp

{
−1

2
(1− a2)x2

}
dx dy. (4.7)

First, we evaluate the inner integral

∫ y
a

−∞
x2 exp

{
−1

2
(1− a2)x2

}
dx =

[
−x exp

{−1
2
(1− a2)x2

}

1− a2

] y
a

−∞
+

+

∫ y
a

−∞

exp
{−1

2
(1− a2)x2

}

1− a2
dx

=
−y exp

{−1
2
(1− a2)(y/a)2

}

a(1− a2)
+

+

√
2π

(1− a2)3/2
Φ
(y
a

√
1− a2

)
.

Substitution back to (4.7) yields

EX2
t =
−√1− a2

πa

∫

R
ye−

y2

2a2 dy +

√
2√

π(1− a2)

∫

R
e−

y2

2 Φ
(y
a

√
1− a2

)
dy.

The first integral is zero since the integrand is an odd function. The second
integral is equal to

√
π/2 according to Lemma 4.4. Thus EX2

t = (1− a2)−1

and

varXt = EX2
t − (EXt)

2 =
π − 2a2

π(1− a2)
. (4.8)

By similar means, it was derived that the correlation coefficient between
Xt and Xt−1 is

ρ(a) =
|a|π + 2a2

√
1− a2 − 2a2 − 2|a| arctg

√
a−2 − 1

π − 2a2
(4.9)

(see [5], Theorem 4.3).
Let C(α, β) be the Cauchy distribution with the density

f(x) =
1

π

β

β2 + (x− α)2
.
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Consider the model (4.4) with a ∈ (−1, 0) and ηt ∼ C(0, 1). Define A =
|a|/(1−|a|). Anděl and Bartoň [3] proved that Xt in (4.4) has the stationary
density

h(x) =
2A

π2

{
(1 + A)π

2A[(1 + A)2 + x2]
−

−x ln[A−2(1 + x2)] + (A2 − 1 + x2) arctg x

4A2x2 + (1− A2 + x2)2

}
. (4.10)

Note that the distribution with density h does not have its first moment
finite.

Chan and Tong [9] and Tong [22] (p. 141) simplified the methods used
for derivation of (4.5) and (4.10). Their procedure can be summarized as
follows. Let ηt in (4.4) have a symmetric density f . Let g be the stationary
density of the AR(1) process ξt given by

ξt = aξt−1 + ηt. (4.11)

The stationary density h of Xt in (4.4) clearly satisfies

h(y) =

∫

R
h(x)f(y − a|x|) dx

=

∫ ∞
0

h(x)f(y − ax) dx+

∫ 0

−∞
h(x)f(y + ax) dx. (4.12)

By symmetry of f , we also have

h(−y) =

∫ ∞
0

h(x)f(y + ax) dx+

∫ 0

−∞
h(x)f(y − ax) dx. (4.13)

Let h′(y) = 1
2
[h(y) + h(−y)]. Then from (4.12) and (4.13), we get

h′(y) =
1

2

∫

R
h(x)f(y − ax) dx+

1

2

∫

R
h(x)f(y + ax) dx

=
1

2

∫

R
h(x)f(y − ax) dx+

1

2

∫

R
h(−x)f(y − ax) dx

=

∫

R
h′(x)f(y − ax) dx (4.14)

which is the integral equation for the stationary density of ξt in (4.11) and
thus g = h′. Now, from (4.12),

h(y) =

∫ ∞
0

h(x)f(y − ax) dx+

∫ ∞
0

h(−x)f(y − ax) dx

= 2

∫ ∞
0

g(x)f(y − ax) dx. (4.15)
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Remark 4.5. The authors overlooked that the factor 2 must be introduced in
the last formula.

Note that if we have a guess that a function h could be a stationary
density of Xt then it is easy to verify it from (4.4).

4.2.1 Normal distribution

We mentioned above that formulae (4.5), (4.6), (4.8) and (4.9) were derived
under the assumptions that ηt ∼ N(0, 1) and a ∈ (−1, 0). We generalize the
results to a ∈ (−1, 1).

If ηt ∼ N(0, 1) then ξt in (4.11) has the distribution N(0, 1
1−a2 ). From

(4.15) we get that the stationary density h of Xt is

h(y) = 2

∫ ∞
0

√
1− a2

2π
exp{−(1− a2)x2/2} 1√

2π
exp{−(y − ax)2/2} dx.

Direct integration leads to

h(y) =

√
1− a2

π
exp

{
−1

2
y2(1− a2)

}∫ ∞
0

exp

{
−1

2
(x− ay)2

}
dx

=

√
2(1− a2)

π
exp

{
−1

2
y2(1− a2)

}
Φ(ay).

We can see that (4.5), (4.6), (4.8) and (4.9) are valid for a ∈ (−1, 1).
The density h is plotted in Fig. 8 (for a = −0.8) and in Fig. 9 (for

a = 0.8). Expectation EXt and variance varXt as functions of a given by
(4.6) and (4.8) are introduced in Fig. 10 and Fig. 11, respectively. In Fig. 12
we can see ρ(a), which is defined by (4.9).
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Function h for a = −0.8 Function h for a = 0.8
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Correlation coefficient ρ(a)

Let p1(xs, xs−1) denote the joint stationary density of (Xs, Xs−1) and let
q1(xs|xs−1) denote the conditional density of Xs given Xs−1 = xs−1. Then

q1(xs|xs−1) =
∂

∂xs
P(Xs ≤ xs|Xs−1 = xs−1)

=
∂

∂xs
P(a|Xs−1|+ ηs ≤ xs|Xs−1 = xs−1)

=
∂

∂xs
P(ηs ≤ xs − a|xs−1|)

=
1√
2π

exp

{
−1

2
(xs − a|xs−1|)2

}

and

p1(xs, xs−1) = h(xs−1) · q1(xs|xs−1)

=

√
1− a2

π
exp

{
−1

2
[(1− a2)x2

s−1 + (xs − a|xs−1|)2]

}
Φ(axs−1).

40



The joint stationary density of (Xs, Xs−2) is

p2(xs, xs−2) =

∫

R
q1(xs|xs−1)q1(xs−1|xs−2)h(xs−2) dxs−1

=

√
1− a2

2π3
exp

{
−1− a2

2
x2
s−2

}
Φ(axs−2) exp

{
−x

2
s + x2

s−2

2

}

×
∫

R
exp

{
−1

2

[
(1 + a2)x2

s−1−

− 2a(xs|xs−1|+ xs−1|xs−2|)
]}

dxs−1. (4.16)

We split the last integral into two parts,
∫
R =

∫ 0

−∞+
∫∞

0
= I1 + I2. Then

I1 =

∫ 0

−∞
exp

{
−1

2
[(1 + a2)x2

s−1 + 2axs−1(xs − |xs−2|)]
}

dxs−1

= exp

{
a2

2(1 + a2)
(xs − |xs−2|)2

}
×

×
∫ 0

−∞
exp

{
−1

2

[√
1 + a2xs−1 +

a√
1 + a2

(xs − |xs−2|)
]2
}

dxs−1

= exp

{
a2

2(1 + a2)
(xs − |xs−2|)2

}
×

×
∫ a√

1+a2
(xs−|xs−2|)

−∞

1√
1 + a2

exp

{
−1

2
y2

}
dy

=

√
2π

1 + a2
exp

{
a2

2(1 + a2)
(xs − |xs−2|)2

}
Φ

(
a√

1 + a2
(xs − |xs−2|)

)

(4.17)

and similarly

I2 =

∫ ∞
0

exp

{
−1

2
[(1 + a2)x2

s−1 − 2axs−1(xs + |xs−2|)]
}

dxs−1

=

√
2π

1 + a2
exp

{
a2

2(1 + a2)
(xs − |xs−2|)2

}
Φ

(
a√

1 + a2
(xs − |xs−2|)

)
.

(4.18)
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Substituting (4.17) and (4.18) into (4.16), we get

p2(xs, xs−2) =
1

π

√
1− a2

1 + a2
exp

{
−1− a2

2
x2
s−2

}
Φ(axs−2)

×
(

exp

{
−x

2
s − 2a2xs|xs−2|+ x2

s−2

2(1 + a2)

}
Φ

[
a(xs + |xs−2|)√

1 + a2

]

+ exp

{
−x

2
s + 2a2xs|xs−2|+ x2

s−2

2(1 + a2)

}
Φ

[
a(xs − |xs−2|)√

1 + a2

])
.

The functions p1 and p2 for a = 0.8 are introduced in Fig. 13 and Fig. 14,
respectively.

-2

0

2
-2

0

2

0

0.05

0.1

-2

0

2

-2

0

2
-2

0

2

0
0.025
0.05

0.075
0.1

-2

0

2

Fig. 13 Fig. 14
Function p1(xs, xs−1) Function p2(xs, xs−2)

4.2.2 Cauchy distribution

If ηt ∼ C(0, 1) then the stationary distribution of the process ξt = aξt−1 + ηt
with |a| < 1 is C(0, Q) where Q = 1/(1− |a|). The corresponding density is

g(x) =
1

π

Q

Q2 + x2
.

The stationary density of Xt can be calculated from (4.15). We obtain

h(y) =
2Q

π2

∫ ∞
0

1

Q2 + x2

1

1 + (y − ax)2
dx.

Again define A = |a|/(1 − |a|). Let a ∈ (−1, 1). After some computations
we get

h(y) =
2A

π2

{
(1 + A)π

2A[(1 + A)2 + y2]
+

+
y ln[A−2(1 + y2)] + (A2 − 1 + y2) arctg y

4A2y2 + (1− A2 + y2)2

}
. (4.19)
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The density h for a = −0.8 defined by (4.10) is plotted in Fig. 15. If a = 0.8
then h is defined by (4.19) and its graph can be found in Fig. 16.
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4.2.3 Discrete uniform distribution

Assume that a = 1
2n

and

ηt =
2i− 1

2n
b with probability

1

2n

for i = −n + 1, . . . , n where b > 0 and n = 1, 2, . . . . Then the uniform
distribution U(−b, b) is the stationary distribution of the process ξt in (4.11)
(see [1] and [2]). Let χB be the characteristic function of the set B and let
δc(x) be the Dirac δ-function, i.e.

δc(x) =

{
∞ for x = c

0 otherwise

and
∫
R δc(x) dx = 1. The distribution of ηt can be described by the general-

ized density

f(x) =
1

2n

n∑
i=−n+1

δ 2i−1
2n

b(x),

A random variable with the density f is discrete and it reaches values 2i−1
2n
b,

i = −n + 1, . . . , n, each with probability 1
2n

. A straightforward calculation
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gives

h(y) =
1

b

∫ ∞
0

χ[−b,b](x)
n∑

i=−n+1

1

2n
δ 2i−1

2n
b

(
y − 1

2n
x

)
dx

=
1

b

n∑
i=−n+1

∫ y

y− b
2n

δ 2i−1
2n

b(z) dz

=
1

b

n∑
i=−n+1

χ[ 2i−1
2n

b, i
n
b](y)

It is easy to verify that h is really the stationary density of the AAR process
(4.4). Further we obtain

EXt =
1

b

n∑
i=−n+1

∫ i
n
b

2i−1
2n

b

x dx =
b

8n2

n∑
i=−n+1

(4i− 1) =
b

4n
,

EX2
t =

1

b

n∑
i=−n+1

∫ i
n
b

2i−1
2n

b

x2 dx =
b2

24n3

n∑
i=−n+1

(12i2 − 6i+ 1) =
b2

3

and

varXt = EX2
t − (EXt)

2 =
b2(16n2 − 3)

48n2
.

Since

Xt =
1

2n
|Xt−1|+ ηt and E ηt = 0,

we have

EXtXt−1 =
1

2n
E |Xt−1|Xt−1

= − 1

2n

∫ 0

−∞
x2h(x) dx+

1

2n

∫ ∞
0

x2h(x) dx

= − 1

2bn

0∑
i=−n+1

∫ i
n
b

2i−1
2n

b

x2 dx+
1

2bn

n∑
i=1

∫ i
n
b

2i−1
2n

b

x2 dx

= − b2

48n4

0∑
i=−n+1

(12i2 − 6i+ 1) +
b2

48n4

n∑
i=1

(12i2 − 6i+ 1)

=
b2

8n2

and thus

ρ = corr(Xt, Xt−1) =
EXtXt−1 − (EXt)

2

varXt

=
3

16n2 − 3
.

44



A simple case arises for n = 1 when we have the process Xt = 1
2
|Xt−1|+ηt

where

ηt =

{
− b

2
with probability 1

2
,

b
2

with probability 1
2
.

The stationary density of Xt is

h(y) =
1

b

{
χ[− b

2
,0](y) + χ[ b

2
,b](y)

}

and ρ = 3/13 = 0.231.
Now, we consider the case a = 1

2n+1
and

ηt =
2i

2n+ 1
b with probability

1

2n+ 1

for i = −n, . . . , n where b > 0 and n = 1, 2, . . . . The stationary distribution
of the process ξt in (4.11) is again the uniform distribution U(−b, b) (see [1]
and [2]). The generalized density of ηt is

f(x) =
1

2n+ 1

n∑
i=−n

δ 2i
2n+1

b(x)

and direct integration gives

h(y) =
1

b

∫ ∞
0

χ[−b,b](x)
1

2n+ 1

n∑
i=−n

δ 2i
2n+1

b

(
y − 1

2n+ 1
x

)
dx

=
1

b

n∑
i=−n

∫ y

y− b
2n+1

δ 2i
2n+1

b(z) dz

=
1

b

n∑
i=−n

χ[ 2i
2n+1

b, 2i+1
2n+1

b](y).

It can be verified that h is the stationary density of the process {Xt} in
(4.4). Further we obtain

EXt =
1

b

n∑
i=−n

∫ 2i+1
2n+1

b

2i
2n+1

b

x dx =
b

2(2n+ 1)2

n∑
i=−n

(4i+ 1) =
b

2(2n+ 1)
,

EX2
t =

1

b

n∑
i=−n

∫ 2i+1
2n+1

b

2i
2n+1

b

x2 dx =
b2

3(2n+ 1)3

n∑
i=−n

(12i2 + 6i+ 1) =
b2

3
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and

varXt = b2 16n2 + 16n+ 1

12(2n+ 1)2
.

Finally,

EXtXt−1 = E |Xt−1|Xt−1

= − 1

b(2n+ 1)

−1∑
i=−n

∫ 2i+1
2n+1

b

2i
2n+1

b

x2 dx+
1

b(2n+ 1)

n∑
i=0

∫ 2i+1
2n+1

b

2i
2n+1

b

x2 dx

= − b2

3(2n+ 1)4

−1∑
i=−n

(12i2 + 6i+ 1) +
b2

3(2n+ 1)4

n∑
i=0

(12i2 + 6i+ 1)

= b2 6n2 + 6n+ 1

3(2n+ 1)4

and

corr(Xt, Xt−1) =
EXtXt−1 − (EXt)

2

varXt

=
12n2 + 12n+ 1

(2n+ 1)2(16n2 + 16n+ 1)
.

4.2.4 Laplace distribution

Laplace distribution La(b) has the density

p(x) =
1

2b
exp

{
−|x|
b

}

where b > 0 is a parameter. Assume that a ∈ (−1, 1) and that {Zt} are
i.i.d. La(b) random variables. Let the strict white noise be defined by

ηt =

{
0 with probability a2,

Zt with probability 1− a2.

Then ξt = aξt−1 + ηt has the stationary density p(x) (see [1] and [2]) and

h(y) = 2

∫ ∞
0

p(x)[a2δ0(y − ax) + (1− a2)p(y − ax)] dx.

Assume that a ∈ (0, 1). If y < 0 then

∫ ∞
0

p(x)δ0(y − ax) dx = 0
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and

h(y) =
2(1− a2)

4b2

∫ ∞
0

exp

{
−1

b
[x(1 + a)− y]

}
dx =

1− a
2b

exp
{y
b

}
.

For y > 0 we have

2a2

∫ ∞
0

p(x)δ0(y − ax) dx = 2a

∫ y

−∞
p

(
y − z
a

)
δ0(z) dz = 2a · p

(y
a

)

=
a

b
exp

{
− y

ab

}
(4.20)

and

2(1− a2)

∫ ∞
0

p(x)p(y − ax) dx =
1− a2

2b2

(
e−y/b

∫ y
a

0

exp

{
−1− a

b
x

}
dx+

+ ey/b
∫ ∞
y
a

exp

{
−1 + a

b
x

}
dx

)

=
1− a2

2b

[
1

1− a
(
e−y/b − e−y/(ab)

)
+

+
1

1 + a
e−y/(ab)

]
. (4.21)

Summing (4.20) and (4.21) we get

h(y) =
1 + a

2b
e−y/b +

1

2b
e−y/(ab)[−(1 + a) + (1− a) + 2a] =

1 + a

2b
e−y/b.

Similar calculations can be done if a ∈ (−1, 0). Finally, we obtain that for
a ∈ (−1, 1) the stationary density of the process {Xt} is given by

h(y) =





1 + a

2b
exp

{
−y
b

}
for y > 0,

1− a
2b

exp
{y
b

}
for y < 0.

It can be easily shown that the moments of the stationary distribution are

EXt = ab, EX2
t = 2b2, varXt = b2(2− a2).

Further,
EXtXt−1 = aE |Xt−1|Xt−1 = 2a2b2

and the correlation ρ between Xt and Xt−1 is

ρ =
EXtXt−1 − (EXt)

2

varXt

=
a2

2− a2
.
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4.2.5 Approximation of stationary density

Consider again the AAR(1) process (4.4) with innovations ηt having sym-
metric density. Above we studied several cases where we were able to derive
the exact form of its stationary distribution. Using formula (4.15) simplified
the problem – we searched for the stationary density in a linear AR(1) model
instead of the original nonlinear AAR(1).

If we are not able to compute the density g of the AR(1) process (4.11), we
construct at least some numerical approximation. In section 3, we described
two approaches to such problem. In the following theorem we show that if we
replace the unknown density g by a sequence gn obtained by either algorithm
of Anděl and Hrach or Haiman’s procedure, we get a sequence of densities
which converges to the stationary density of the AAR(1) process uniformly
and geometrically fast.

Theorem 4.6. Let {Xt} be the AAR(1) process (4.4) and {ξt} the AR(1)
process (4.11). Let the innovations ηt have density f which is symmetric
around zero, piecewise smooth and E |ηt| <∞. Let the sequence of densitites
gn be defined by (2.4), i.e. g0 = f and

gn(x) =

∫

R
f(x− au)gn−1(u) du, n ≥ 1. (4.22)

Further, define

hn(y) = 2

∫ ∞
0

gn(x)f(y − ax) dx, n ≥ 0. (4.23)

Then {hn} converges to the stationary density h of {Xt} uniformly and there
exists C ∈ R such that

|hn(y)− h(y)| ≤ C|a|n
for n ≥ 2.

Proof. According to Theorem 2.10 there exists M ∈ R such that

|gn(x)− g(x)| ≤M |a|n, n ≥ 2.

Then (4.23) and (4.15) imply

|hn(y)− h(y)| = 2

∣∣∣∣
∫ ∞

0

[gn(x)− g(x)]f(y − ax) dx

∣∣∣∣

≤ 2

∫ ∞
0

|gn(x)− g(x)|f(y − ax) dx

≤ 2M |a|n
∫ ∞

0

f(y − ax) dx

≤ 2M |a|n−1.
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Choosing C = 2M/|a| completes the proof.

Remark 4.7. We can achieve very similar result by applying Haiman’s pro-
cedure.

Example 4.8 (Laplace distribution). Let {Xt} follow the AAR(1) model
(4.4) with a = 1/2 and innovations ηt having Laplace distribution La(1),
i.e. f(x) = 1

2
e−|x|, x ∈ R. We compute first four members of sequences gn

and hn using (4.22) and (4.23), respectively. We get

g0(x) =
1

2
e−|x|,

g1(x) =
1

3
(2e−|x| − e−2|x|),

g2(x) =
2

45
(16e−|x| − 10e−2|x| + e−4|x|),

g3(x) =
4

2835
(512e−|x| − 336e−2|x| + 42e−4|x| − e−8|x|)

and

h0(x) =

{
1
3
ex x < 0

e−x − 2
3
e−2x x ≥ 0,

h1(x) =

{
14
45

ex x < 0
2
45

(25e−x − 20e−2x + 2e−4x) x ≥ 0,

h2(x) =

{
124
405

ex x < 0
4

2835
(807e−x − 672e−2x + 84e−4x − 2e−8x) x ≥ 0,

h3(x) =





31496
103275

ex x < 0
8

722925
(103513e−x − 87040e−2x + 11424e−4x−
−340e−8x + 2e−16x) x ≥ 0.

Densities gn and hn, n = 0, . . . , 3, are shown in Figures 17 and 18, respec-
tively. We can see that the actual speed of convergence is very high since the
densities h2 and h3 almost coincide (the maximum difference between them
is approximately 0.0012).

4.3 Threshold autoregression

In [15], Loges studied the model of threshold autoregression of first order
driven by innovations with Laplace distribution. He derived explicit (but
not closed) form of stationary marginal density.

First, we state some preliminary results concerning linear AR(1) model
driven by Laplace noise.
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Figure 17: Densities g0 (dashed), g1 (solid), g2 (dashed thick) and g3 (solid
thick)

4.3.1 Auxiliary results for AR(1) model with Laplace innovations

Consider model
Xt = αXt−1 + ηt, (4.24)

where |α| < 1 and ηt are i.i.d. random variables with Laplace distribution,
i.e. the density of ηt is given by (1/2λ) exp{−|x|/λ}, λ > 0. Without loss of
generality we can assume that λ = 1 [since we can rescale equation (4.24)].
All moment of Xt can be given in closed form.

Proposition 4.9. Let ϕα(t) be the characteristic function corresponding to
the stationary marginal density fα(x) of Xt. Then

ϕα(t) =

( ∞∏
j=0

(1 + α2jt2)

)−1

, t ∈ R, (4.25)

and

EX2p+1 = 0 and EX2p = (2p)! ·
(

p∏
j=1

(1− α2j)

)−1

, p ∈ N. (4.26)

The density fα is an even function and fα ∈ C∞(R).
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Proof. Let ψ denote the characteristic function of ηt. Then according to
Theorem 2.2

ϕα(t) =
∞∏
j=0

ψ(αjt) =

( ∞∏
j=0

(1 + α2jt2)

)−1

.

Since Xt−1 and ηt are independent, the function ϕα satisfies equality

ϕα(t) = ϕα(αt)ψ(t) =
ϕα(αt)

1 + t2
. (4.27)

To prove (4.26), we derive power series expansion of ϕα. Let

ϕα(t) =
∞∑

k=0

γk(α) · tk. (4.28)

With (4.27) rewritten as

(1 + t2)ϕα(t) = ϕα(αt)

the r.h.s. equals to
∞∑

k=0

αkγk(α)tk
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whereas the l.h.s. is

γ0(α) + γ1(α)t+
∞∑

k=2

[γk(α) + γk−2(α)]tk.

Comparing the coefficients gives γ1(α) = 0 and γk(α) = (αk − 1)−1γk−2(α),
k ≥ 2. The condition ϕα(0) = 1 implies γ0(α) = 1. Thus

γ2k+1(α) = 0 and γ2k(α) =

(
k∏
j=1

(α2j − 1)

)−1

, k ∈ N.

It is known that ϕ
(k)
α (0) = ik EXk and obviously ϕ

(k)
α (0) = k!γk(α). Hence

EXk =
k!

ik
γk(α), k ∈ N,

and (4.26) is proved.
The symmetry of fα follows from the fact that the convolution of two

symmetric densities is symmetric. Lemma 2.21 and (4.25) yields fα ∈ C∞(R).

4.3.2 TAR(1) model with positive parameters

Now, consider the threshold TAR(1) process defined by

Xt = τ(Xt−1) + ηt (4.29)

where

τ(x) =

{
αx if x ≥ 0

βx if x < 0.

In this section we discuss the case 0 < α < 1 and 0 < β < 1. It is known (see
e.g. [17]) that under these conditions the stationary marginal distribution of
Xt exists and is unique.

Let Pτ denote so called Perron-Frobenius operator associated with the
map τ . It describes the transformation of a probability density under the
action of τ , i.e. if a r.v. X has a density f , then τ(X) has a density Pτf .

Proposition 4.10. Let f be an arbitrary density, α, β > 0. Then

Pτf(x) =
1

β
f

(
x

β

)
χ(−∞,0) +

1

α
f
(x
α

)
χ[0,∞). (4.30)
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Proof. Since α, β > 0, we have

P(τ(X) ≤ x) = P(τ(X) ≤ x,X ≥ 0) + P(τ(X) ≤ x,X < 0)

= P
(
X ≤ x

α
,X ≥ 0

)
+ P

(
X ≤ x

β
,X < 0

)

=

{
P
(
X ≤ x

α

)
if x ≥ 0

P
(
X ≤ x

β

)
if x < 0.

Differentiating with respect to x yields (4.30).

Instead of working with densities, it is more convenient to deal with char-
acteristic functions. Let F denote the Fourier transform, F−1 the inverse
Fourier transform and P = Pτ the Perron-Frobenius operator.

Define the operator H on the space of characteristic functions by H =
F ◦P ◦F−1. It describes the transformation of characteristic function under
the action of τ .

In the following we deal with four types of functions. For any γ > 0,
define

k1[γ](t) =
1

1 + γ2t2
, k2[γ](t) =

t

1 + γ2t2
,

j+[γ](t) =
1 + iγt

1 + γ2t2
, j−[γ](t) =

1− iγt

1 + γ2t2
.

Proposition 4.11. For all γ > 0,

H(k1[γ]) =
1

2
(k1[αγ] + k1[βγ] + iαγk2[αγ]− iβγk2[βγ]) (4.31)

and

H(k2[γ]) =
1

2

(
αk2[αγ] + βk2[βγ] +

i

γ
k1[βγ]− i

γ
k1[αγ]

)
. (4.32)

Proof. It is easy to show that

F−1(k1[γ]) =
1

2γ
e−|x|/γ.

According to Proposition 4.10,

P
(

1

2γ
e−|x|/γ

)
=

1

2βγ
e−|x|/(βγ)χ(−∞,0) +

1

2αγ
e−|x|/(αγ)χ[0,∞).
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Finally,

H(k1[γ]) =
1

2βγ

∫ 0

−∞
exp

{
itx+

x

βγ

}
dx+

1

2αγ

∫ ∞
0

exp

{
itx− x

αγ

}
dx

=
1

2

(
1− itβγ

1 + t2β2γ2
+

1 + itαγ

1 + t2α2γ2

)
.

Formula (4.32) may be proved in the same manner.

Proposition 4.12. For all γ > 0,

H(j+[γ]) = j+[αγ] and H(j−[γ]) = j−[βγ].

Proof. Obviously

j+[γ] = k1[γ] + iγk2[γ], j−[γ] = k1[γ]− iγk2[γ]

and

k1[γ] =
1

2
(j+[γ] + j−[γ]), k2[γ] =

1

2iγ
(j+[γ]− j−[γ]).

The assertion now follows from linearity of the operator H and Proposition
4.11.

Now we define operator G which transforms the characteristic function of
Xt−1 to the characteristic function of Xt. Let

G(ϕ)(t) = H(ϕ)(t) · 1

1 + t2
.

Proposition 4.13. For all γ > 0 such that αγ 6= 1 and βγ 6= 1,

G(j+[γ]) =
(αγ)2

(αγ)2 − 1
j+[αγ] +

1

2(1− αγ)
j+[1] +

1

2(1 + αγ)
j−[1] (4.33)

and

G(j−[γ]) =
(βγ)2

(βγ)2 − 1
j−[βγ] +

1

2(1 + βγ)
j+[1] +

1

2(1− βγ)
j−[1]. (4.34)

Proof. By definition of G and Proposition 4.12,

G(j+[γ])(t) =
1 + iαγt

1 + α2γ2t2
· 1

1 + t2
.
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Partial fraction expansion yields

G(j+[γ])(t) =
(αγ)2

(αγ2)− 1

1 + iαγt

1 + (αγ)2t2
+

1

1− (αγ)2

1 + iαγt

1 + t2

=
(αγ)2

(αγ2)− 1
j+[αγ] +

1

1− (αγ)2
(k1[1] + iαγk2[1]).

Substitute

k1[1] =
1

2
(j+[1] + j−[1]) and k2[1] =

1

2i
(j+[1]− j−[1])

to get (4.33). Formula (4.34) results from similar calculations.

Proposition 4.14. Let µ+
q = j+[αq] and µ−q = j−[βq], q ∈ N0. Then for

every 0 ≤ α, β < 1 and q ∈ N0 we have

G(µ+
q ) = c1(α, q)µ+

q+1 + c2(α, q)µ+
0 + c3(α, q)µ−0 (4.35)

and
G(µ−q ) = c1(β, q)µ−q+1 + c3(β, q)µ+

0 + c2(β, q)µ−0 (4.36)

where

c1(λ, q) =
λ2q+2

λ2q+2 − 1
, c2(λ, q) =

1

2(1− λq+1)
, c3(λ, q) =

1

2(1 + λq+1)
.

Proof. A direct consequence of Proposition 4.13.

Obviously, any fixed point ϕ of the operator G satisfying ϕ(0) = 1 is the
characteristic function of the stationary distribution of the TAR(1) process
(4.29). By uniqueness of this distribution, it suffices to solve equation Gϕ =
ϕ. Observe that the operator G maps the linear hull of {µ+

q , µ
−
q , q ∈ N0} onto

itself. Therefore we search for ϕ in the form
∑∞

q=0(h+
q µ

+
q +h−q µ

−
q ), where h±q ,

q ∈ N0, are unknown real constants (depending on parameters α and β).

Theorem 4.15. The characteristic function ϕ = ϕα,β of the stationary dis-
tribution of the TAR(1) proces (4.29) is given by

ϕ = h+
0 (α, β)

( ∞∑
q=0

d1(α, q)µ+
q + d2(α, β)

∞∑
q=0

d1(β, q)µ−q

)
(4.37)

where

d1(λ, 0) = 1, d1(λ, q) =

q−1∏
j=0

c1(λ, j) for q ≥ 1, 0 ≤ λ < 1,
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d2(α, β) =
1−∑∞q=0 c2(α, q)d1(α, q)∑∞

q=0 c3(β, q)d1(β, q)

and

h+
0 := h+

0 (α, β) =

{ ∞∑
q=0

d1(α, q) + d2(α, β)
∞∑
q=0

d1(β, q)

}−1

. (4.38)

Proof. Set
∞∑
q=0

(h+
q µ

+
q + h−q µ

−
q )

and substitute it into Gϕ = ϕ. Linearity of G and Proposition 4.14 give

∞∑
q=0

(h+
q µ

+
q + h−q µ

−
q ) =

∞∑
q=0

h+
q (c1(α, q)µ+

q+1 + c2(α, q)µ+
0 + c3(α, q)µ−0 )

+
∞∑
q=0

h−q (c1(β, q)µ−q+1 + c3(β, q)µ+
0 + c2(β, q)µ−0 )

Comparing the coefficients at µ±q , q ∈ N0, yields

h+
q = c1(α, q − 1)h+

q−1, q ≥ 1, (4.39)

h−q = c1(β, q − 1)h−q−1, q ≥ 1, (4.40)

h+
0 =

∞∑
q=0

[c2(α, q)h+
q + c3(β, q)h−q ] (4.41)

and

h−0 =
∞∑
q=0

[c3(α, q)h+
q + c2(β, q)h−q ]. (4.42)

From the systems (4.39) and (4.40) we obtain

h+
q = d1(α, q)h+

0 , h−q = d1(β, q)h−0 , q ≥ 1. (4.43)

Inserting (4.43) into (4.41) gives the relation

h−0 = d2(α, β)h+
0

and thus, (4.37) is proved. The condition ϕ(0) = 1 implies (4.38). The
convergence of all infinite series is assured by the fact that

d1(λ, q) = (−1)qλq(q+1)

{
q∏
j=1

(1− λ2j)

}−1

= O(λq(q−1)) as q →∞.
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The next goal is to express all constants from Theorem 4.15 in simpler
form. First, we need an auxiliary assertion.

Lemma 4.16. For every 0 ≤ α < 1, d2(α, α) = 1.

Proof. By definition, d2(α, α) = 1 iff

∞∑
q=0

(1− α2q+2)−1d1(α, q) = 1.

Further,
d1(α, q)

d1(α, q + 1)
=

1

c1(α, q)
=
α2q+2 − 1

α2q+2
,

i.e.
(1− α2q+2)−1d1(α, q) = −α−2q−2d1(α, q + 1).

Therefore it suffices to prove

−
∞∑
q=0

α−2q−2d1(α, q + 1) = 1.

Since d1(α, q) = (1− α−2q−2)d1(α, q + 1), we have

∞∑
q=0

d1(α, q) =
∞∑
q=0

d1(α, q + 1)−
∞∑
q=0

α−2q−2d1(α, q + 1).

Hence

−
∞∑
q=0

α−2q−2d1(α, q + 1) =
∞∑
q=0

d1(α, q)−
∞∑
q=0

d1(α, q + 1) = d1(α, 0) = 1.

Now we define functions g and gi, i = 1, 2, 3, which will be used to
reformulate Theorem 4.15. Let

g1(λ) =
∞∑
q=0

d1(λ, q), g2(λ) = 1−
∞∑
q=0

c2(λ, q)d1(λ, q) =
∞∑
q=0

c3(λ, q)d1(λ, q),

(the last equality follows from Lemma 4.16),

g3(λ) = g1(λ)/g2(λ), g(α, β) =
1

g3(α) + g3(β)
.
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It is easy to show that

h+
0 (α, β) = g(α, β)

g3(α)

g1(α)

and

h+
0 (α, β)d2(α, β) = g(α, β)

g3(β)

g1(β)
.

Remark 4.17. It was proved that functions gi, i = 1, 2, 3, can be rewritten in
the form

g1(λ) =
∞∏
j=1

(1− λ2j) =
∞∑

j=−∞
(−1)jλ(3j−1)j,

g2(λ) =
1

2

∞∏
j=1

(1− λ2j−1)

and

g3(λ) = 2
∞∏
j=1

1− λ2j

1− λ2j−1
= 2

∞∑
j=0

λj(j+1)/2,

see [15], Proposition 9 and Corollary 6.

Now we are ready to state simpler version of Theorem 4.15.

Theorem 4.18. The stationary characteristic function ϕα,β can be written
in the form

ϕα,β(t) = g(α, β)

[
g3(α)

g1(α)

∞∑
q=0

d1(α, q)µ+
q (t) +

g3(β)

g1(β)

∞∑
q=0

d1(β, q)µ−q (t)

]
.

(4.44)

Proof. Direct consequence of Theorem 4.15 and calculations above.

Theorem 4.18 also allows to derive another form of the characteristic func-
tion ϕα(t) of the linear AR(1) process (4.24) and corresponding stationary
density fα.

Theorem 4.19. Characteristic funtion ϕα is given by

ϕα(t) =
1

g1(α)

∞∑
q=0

d1(α, q)

1 + α2qt2
.
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Proof. The AR(1) process (4.24) is the special case of the TAR(1) process
(4.29) when α = β. Hence (4.44) implies

ϕα = ϕα,α = g(α, α)
g3(α)

g1(α)

[ ∞∑
q=0

d1(α, q)(µ+
q + µ−q )

]

=
1

g1(α)

∞∑
q=0

d1(α, q)

1 + α2qt2
.

Theorem 4.20. The stationary marginal density fα of the AR(1) process
(4.24) is given by

fα(x) =
1

2g1(α)

∞∑
q=0

d1(α, q)α−qe−α
−q |x|.

Proof. Follows immediately from Theorem 4.19 since

F−1

(
1

1 + α2qt2

)
=

1

2
α−qe−α

−q |x|.

Remark 4.21. Some properties of functions fα and fα,β can be found in [15],
Lemma 4 and Corollary 5.

Theorem 4.22. The stationary marginal density fα,β of the TAR(1) process
(4.29) is given by

fα,β(x) = 2g(α, β)[g3(α)fα(x)χ[0,∞) + g3(β)fβ(x)χ(−∞,0)].

Proof. Follows from Theorems 4.18 and 4.20 since

F−1(µ+
q )(x) = α−qe−α

−q |x|χ[0,∞)

and
F−1(µ−q )(x) = β−qe−β

−q |x|χ(−∞,0).

Theorem 4.23. The moments of the stationary TAR(1) process (4.29) are
given by

EXp = p! · g(α, β)

(
g3(α)

g1(α)

∞∑
q=0

d1(α, q)αpq + (−1)p
g3(β)

g1(β)

∞∑
q=0

d1(β, q)βpq

)
.

(4.45)
for every p ∈ N.
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Proof. According to Theorem 4.22,

EXp = 2g(α, β)

(
g3(α)

∫ ∞
0

xpfα(x) dx+ g3(β)

∫ 0

−∞
xpfβ(x) dx

)
,

where fα and fβ are defined in Theorem 4.20. Since

∫ ∞
0

xpe−α
−qx dx = αpq+q

∫ ∞
0

ype−y dy = αpq+qp!

we have

∫ ∞
0

xpfα(x) dx =
1

2g1(α)

∞∑
q=0

d1(α, q)α−q
∫ ∞

0

xpe−α
−q |x| dx

=
p!

2g1(α)

∞∑
q=0

d1(α, q)αpq

and similarly

∫ 0

−∞
xpfβ(x) dx =

p!(−1)p

2g1(β)

∞∑
q=0

d1(β, q)βpq.

Remark 4.24. The moments of the TAR(1) process can be also expressed in
the form

EX2p−1 = 2g(α, β)(2p− 1)!



{

p∏
j=1

(1− α2j−1)

}−1

−
{

p∏
j=1

(1− β2j−1)

}−1

 ,

EX2p = g(α, β)(2p)!


g3(α)

{
p∏
j=1

(1− α2j)

}−1

+ g3(β)

{
p∏
j=1

(1− β2j)

}−1



for every p ∈ N, see [15], Theorem 4.

The stationary densities fα and fα,β for various values of parameters are
shown in Figures 19 and 20. Corresponding moments are summarized in
Tables 4 and 5.
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Figure 19: Density fα,β(x) for α = 0.5 and β = 0.1 (dashed), 0.5 (solid) and
0.85 (solid thick)

Table 4: Moments of the TAR process with α = 0.5

β = 0.1 β = 0.5 β = 0.85
EXt 0.324 0.000 −0.969
EX2

t 2.407 2.667 5.659
EX3

t 2.567 0.000 −18.683
EX4

t 30.164 34.133 130.878

4.3.3 Model with parameters with opposite signs

Now we very briefly state the results for the case 0 < α < 1, β < 0. The
methods of calculation are very similar to those desrcibed above.

To keep the notation simple, we introduce the following constants and
functions (in addition to those already defined). Let

µα,0 = j+[1], µα,q = j+[αq], q ∈ N,

να,β,0 = j−[1], να,β,q = j+[|β|αq−1], q ∈ N,

c4(α, β, q) =
α2qβ2

α2qβ2 − 1
, q ∈ N0,
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Figure 20: Density fα,β(x) for α = 0.25 and β = 0.9 (dashed), 0.8 (solid)
and 0.7 (solid thick)

Table 5: Moments of the TAR process with α = 0.25

β = 0.9 β = 0.8 β = 0.7
EXt −1.673 −0.918 −0.578
EX2

t 8.475 4.471 3.267
EX3

t −41.187 −13.357 −6.449
EX4

t 283.796 85.276 48.674

c5(α, β, q) =
1

2(1− |β|αq) , q ∈ N0,

d3(α, β, 0) = 1, d3(α, β, q) =

q−1∏
j=0

c4(α, β, j), q ∈ N.

Further, let

g5(α, β) =
∞∑
q=0

d3(α, β, q),

g6(α, β) =
∞∑
q=0

c5(α, β, q)d3(α, β, q),
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g7(α, β, p) = |β|p
∞∑
q=1

d3(α, β, q)α(q−1)p, p ∈ N,

g8(α, β) =
g2(α)

g6(α, β)
,

g9(α, β) = [g3(α)g6(α, β) + g5(α, β)]−1

and finally
h(α, β) = [g1(α) + g5(α, β)g8(α, β)]−1.

Theorem 4.25. The characteristic function ϕ = ϕα,β of the stationary dis-
tribution of the TAR(1) process (4.29) with 0 < α < 1 and β < 0 is given
by

ϕ = h(α, β)

( ∞∑
q=0

d1(α, q)µα,q + g8(α, β)
∞∑
q=0

d3(α, β, q)να,β,q

)
.

Theorem 4.26. The stationary marginal density fα,β of the TAR(1) proces
(4.29) with 0 < α < 1 and β < 0 has the form

fα,β(x) = h(α, β)g8(α, β)exχ(−∞,0)(x)

+ h(α, β) [r1(x, α) + g8(α, β)r2(x, α, β)]χ[0,∞)(x)

where

r1(x, α) =
∞∑
q=0

d1(α, q)α−qe−α
−qx

and

r2(x, α, β) = |β|−1

∞∑
q=1

d3(α, β, q)α1−qe−α
1−q |β|−1x.

Theorem 4.27. The moments of the TAR(1) process (4.29) with 0 < α < 1
and β < 0 are given by

EX2p−1 = (2p− 1)!g9(α, β)

[
2g6(α, β)∏p

j=1(1− α2j−1)
− 1 + g7(α, β, 2p− 1)

]

EX2p = (2p)!g9(α, β)

[
g3(α)g6(α, β)∏p
j=1(1− α2j)

+ 1 + g7(α, β, 2p)

]

for every p ∈ N.

Densities fα,β for various values of parameters are plotted in Figure 21.
Corresponding moments are shown in Table 6.
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Figure 21: Density fα,β(x) for α = 0.5 and β = −0.75 (dashed), −3 (solid)
and −10 (solid thick)

Table 6: Moments of the TAR process with α = 0.5

β = −0.75 β = −3 β = −10
EXt 0.711 1.479 3.392
EX2

t 2.904 7.595 45.635
EX3

t 5.939 49.428 1131.065
EX4

t 39.013 534.891 41936.726

4.3.4 Model with parameters with opposite signs and the same
absolute value

Consider now TAR(1) model (4.29) with 0 < α < 1 and β = −α which is
in fact the AAR(1) model (4.4) with positive parameter a. In such case the
results from the previous section simplify significantly.

Theorem 4.28. The characteristic function ϕ of the stationary distribution
of the TAR(1) process (4.29) with 0 < α < 1 and β = −α is given by

ϕ(t) = − 2i

g3(α)

t

1 + t2
+

1

g1(α)

∞∑
q=0

d1(α, q)µα,q(t).
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Theorem 4.29. The stationary marginal density f of the TAR(1) proces
(4.29) with 0 < α < 1 and β = −α has the form

f(x) =
ex

g3(α)
χ(−∞,0)(x) +

(∑∞
q=0 d1(α, q)α−qe−α

−qx

g1(α)
− e−x

g3(α)

)
χ[0,∞)(x).

Theorem 4.30. The moments of the TAR(1) process (4.29) with 0 < α < 1
and β = −α are given by

EX2p−1 =
2(2p− 1)!

g3(α)



{

p∏
j=1

(1− α2j−1)

}−1

− 1




EX2p = (2p)!

{
p∏
j=1

(1− α2j)

}−1

for every p ∈ N.

Densities f for various values of parameter α are plotted in Figure 22.
Corresponding moments are shown in Table 7.
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Figure 22: Density f(x) for α = 0.25 (dashed), 0.5 (solid) and 0.75 (solid
thick), β = −α.
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Table 7: Moments of the TAR process with β = −α
α = 0.25 α = 0.5 α = 0.75

EXt 0.263 0.609 1.239
EX2

t 2.133 2.667 4.571
EX3

t 1.680 4.699 14.661
EX4

t 25.700 34.133 80.248

Example 4.31 (Absolute autoregression with Laplace innovations,
continued). In Example 4.8 (p. 49) we constructed an approximation of
the stationary density of the AR(1) and AAR(1) processes driven by Laplace
innovations. We compared densities g3 and h3 with the explicit results ob-
tained by the methods described above. We received almost exact match,
the maximum difference is about 0.0016 and 0.0004, respectively. In Figures
23 and 24, exact stationary densities of AR(1) and AAR(1) processes are
plotted. Curves illustrating approximate densities g3 and h3, respectively,
would be virtually identical.
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Figure 23: Sstationary density of AR(1) process for α = 0.5
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Figure 24: Stationary density of AAR(1) process for α = 0.5
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