Somatomotorická a somatosenzorická modulace bolesti v obraze fMR a EEG

MUDr. Jiří Vrána
Dizertační práce byla vypacována v Ústavu normální, patologické a klinické fyziologie 3. lékařské fakulty University Karlovy v Praze v rámci postgraduálního doktorského studia biomedicíny, studijní program Neurovědy.

Předkladatel: MUDr. Jiří Vrána

Školitel: prof. PhDr. Andrej Stančák, CSc.
Ústav normální, patologické a klinické fyziologie
3. LF UK
Ke Karlovu 4
121 16 Praha 2

Oponenti:

Autoreferát byl rozeslán dne:

Obhajoba dizertační práce se koná dne:

Předseda oborové rady oboru Neurovědy:
prof. MUDr. Karel Šonka, DrSc.
OBSAH

OBSAH .. II

1 ÚVOD .. 1

2 METODICKÉ A TEORETICKÉ ZÁKLADY ... 1

3 CÍLE, PROBLÉMY A HYPOTÉZY ... 2

3.1 Experiment 1 a 2 .. 2

3.2 Experiment 3 ... 3

4 METODIKA .. 4

4.1 Experiment 1 ... 4

4.2 Experiment 2 ... 6

4.3 Experiment 3 ... 7

5 VÝSLEDKY .. 10

5.1 Experiment 1 – Analýza zdrojů EEG při bolesti provázené stejnostrannou
a nestejnostrannou izometrickou svalovou kontrakcí .. 10

5.2 Experiment 2 – FMR při bolesti provázené stejnostrannou a nestejnostrannou
izometrickou svalovou kontrakcí .. 13

5.3 Experiment 3 – fMR při současné bolestivé a nebolestivé stimulaci 18

6 DISKUZE ... 23

6.1 Experiment 1 ... 23

6.2 Experiment 2 ... 24

6.3 Experiment 3 ... 25

6.4 Závěrečná diskuze .. 26

7 ZÁVĚRY .. 28

8 GRANTOVÁ PODPORA ... 29

9 PUBLIKACE A ČINNOST AUTORA .. 29

9.1 Impaktované publikace ... 29

9.2 Abstrakta .. 29

10 SEZNAM ZKRATKEK .. 33

Zkratky experimentálních podmínek ... 34

Experiment 1 a 2 .. 34

Experiment 3 ... 34

11 LITERATURA ... 35
1 ÚVOD

Bolest, subjektivní informace o ohrožení organizmu, je základním předpokladem přežití všech druhů savců a je nevyhnutelně přítomná v životě každého člověka. Jako velmi starý mechanizmus využívá velké množství podkorových i korových struktur a jeho výzkum podává cenné informace o mechanizmech mnoha obecnějších mimovědomých i vědomých dějů.

V některých případech mohou poruchy systémů přenosu a zpracování bolesti vést k chronickým bolestivým stavům, které svůj obranný význam ztrácí. Lidstvo proto stále hledá metody umožňující kontrolu bolesti. Metody farmakologické a chirurgické jsou v poslední době stále více doplňovány o metody elektrofyziologické (transkutánní elektrická nervová stimulace, míšní stimulace a korová a hluboká mozková stimulace). Mechanizmus jejich účinku není dosud jednoznačně vysvětlen.

Cílem práce je přispět k vysvětlení mechanizmů modulace bolesti aktivitou motorického systému a somatosenzorickým drážděním pomocí funkčního zobrazování, především funkční magnetickou rezonancí a zdrojovou analýzou evokovaných potenciálů.

2 MÉTODOLOGICKÉ A TEORETICKÉ ZÁKLADY

Funkční magnetická rezonace (fMR) a analýza evokovaných potenciálů jsou ve studiu bolesti zavedené metody dávající konzistentní výsledky. Kombinace jejich výsledků zvýší validitu studie a zlepší získanou časovou a prostorovou informaci. FMR pracuje na základě měření zpožděné a sumované lokální hemodynamické reakce na zvýšený energetický nárok pracující nervové tkáně. Umožňuje kvantitativní hodnocení intenzity odpovědi v malém okrsku mozkové tkáně. EEG je sumovaná elektrická aktivita vstupů synchronizovaných neuronů snímaná z povrchu skalpu. Evokované potenciály vypovídají o intenzitě nebo rozsahu a přesné časové souslednosti aktivace jednotlivých neuronálních populací. Použitím metod lokalizace zdrojů evokovaných potenciálů určíme i hrubé umístění generátorů v kůře.
Vnímání bolesti je ovlivněno mnoha faktory (Melzack et al., 2006) zahrnujícími mj. tělesnou činnost, jiné podněty vstupující do CNS nebo psychický stav. Zpracování bolesti lze schematicky rozdělit do tří os: 1) senzoricko-diskriminativní, reprezentovanou primární a sekundární somatosenzorickou oblastí (SI, SII) a inzoulou reagujícími diferencované na zvyšování intenzity bolesti; 2) afektivně-motivační, zahňující oblast cingulárního haloku, část inzulární kůry a podkorové struktury, odrážející změnu vnitřního stavu organismu v odpovědi na bolest a zároveň vybírající odpověď na bolestivou situaci a konečně 3) kognitivně-evaluativní osa se podílí na vědomém zpracování a uchování paměťové stopy a tyto procesy probíhají především v prefrontální a zadní parietální kůře. Efektorové mechanismy zpětně modulující přenos bolesti z nižších etáží vedou zpět do míchy přes kmenové struktury. Analýza elektroencefalografických záznamů je citlivá především na rané projevy v SI, SII a cingulární kůře, fMR zobrazuje časové a prostorově zhalazenou aktivitu všech aktivních oblastí.

3 CÍLE, PROBLÉMY A HYPOTÉZY

3.1 EXPERIMENT 1 A 2

Předcházející práce ukazují vliv pohybu na bolestivou stimulaci a používají většinou pouze elektro- nebo magnetoencefalografii. Zobrazovací studie korových korelátů pohybového hradlovacího řízení nebyly podle našich znalostí zatím provedeny. Starší studie se nejvíce zabývají modulací bolestivé percepce pohybem. Zkoumají korovou lokalizaci hradlování, jeho časový vývoj, závislost na druhu pohybu nebo místo stimulace. Hradlování bolestivých podnětů bylo zkoumáno méně (Kakigi a Shibasaki, 1992; Kakigi et al., 1993; Nakata et al., 2004), opět pouze elektro- a magnetoencefalograficky. Je známo, že pohyb v blízkosti místa stimulace snižuje amplitudu somatosenzorických evokovaných potenciálů (Giblin, 1964; Broughton et al., 1965; Rushton et al., 1981; Cohen a Starr, 1987; Valeriani et al., 1999a), subjektivní intenzitu bolesti (Milne et al., 1988; Feine et al., 1990) i amplitudu evokovaných potenciálů vyvolaných bolestivou stimulací (Kakigi a Shibasaki, 1992; Kakigi et al., 1993; Nakata et al., 2004). Mechanizmus tohoto jevu je závislý na interakci Aβ a C vstupů v zadním rohu míšním (Melzack a Wall, 1965), ale i na supraspinálních vlivech z motorických oblastí (Cheron a Borenstein, 1992; Kanda et al., 2003; Johnson et al., 2006). Supraspinální vlivy se používají při terapii bolesti např. stimulací motorické kůry.
(Tsubokawa et al., 1991; Garcia-Larrea et al., 1999; Nguyen et al., 2000). Propojení systémů bolesti a motoriky dokazují také změny excitability motorické kůry při chronické bolesti (Hamzei et al., 2002; Juottonen et al., 2002; Schwenkreis et al., 2003; Eisenberg et al., 2005). Modulace je odlišná pro dynamický pohyb a izometrickou kontrakci (Huttunen a Homberg, 1991; Gantchev et al., 1994; Morita et al., 1998; Klostermann et al., 2001), což souvisí s odlišnou aktivací motorických struktur (Dettmers et al., 1996; Thickbroom et al., 1998; Thickbroom et al., 1999). Supraspinální struktury mohou vykazovat ipsilaterální analgetický vliv (Kakigi et al., 1993; Kosek et al., 1996), kde lze předpokládat méně specifický a čistě centrifugální mechanizmus. Abychom mohli tyto možnosti odlišit, je potřeba porovnat korové mechanizmy doprovázející hradlování při svalové kontrakci bolestivě stimulované a nestimulované ruky. Pro snadnou standardizovatelnost během měření pomocí dvou metod jsme zvolili izometrickou svalovou kontrakci a to v blízkosti bolestivé elektrické intraepidermální stimulace pravé ruky a na kontralateralní ruce. Dále jsme se pokusili využít vzájemné se doplňujících metod fMR a EEG.

3.2 EXPERIMENT 3

Podobně jako pohyb ovlivňuje bolest i stimulace silných Aβ vláken (Pantaleo et al., 1986; Kakigi a Shibasaki, 1992; Hashimoto et al., 1995; Kakigi a Watanabe, 1996; Ward et al., 1996; Kosek a Lundberg, 2003). Jako metoda transkutální elektrické stimulace nebo elektroakupunktury se používá k úlevě od akutní i chronické bolesti (Sluka a Walsh, 2003). Ovlivňuje prahy bolesti (Francini et al., 1981; Marchand et al., 1991) i bolestivé vyvolané evokované potenciály (Chapman et al., 1983; Kakigi a Watanabe, 1996; Hoshiyama a Kakigi, 2000; Ellrich a Lamp, 2005). Předpokládaný mechanizmus účinku periferní elektrostimulace zahrnuje kromě zadních rohů a jader zadních provazců (Urasaki et al., 1998; Garcia-Larrea et al., 2000) též humorální vlivy kmene (Kalra et al., 2001), které jsou modulovány korovými procesy (Petrovic et al., 2004). Pro, naší proceduře mechanizm blízkou, terapeutickou stimulaci zadních provazců je přítomnost supraspinálních mechanizmů dobře doložena (Bantli et al., 1975; Lindblom a Meyerson, 1975; Oakley a Prager, 2002), podobně jako u stimulace ganglion trigeminale (Willoch et al., 2003) nebo elektroakupunktury (přehled viz Lewith et al., 2005). Souběh bolestivé a nebolestivé stimulace moduluje percepci nebolestivých stimulů (Apkarian et al., 1994; Bolanowski et al., 2001). Oblasti zpracovávající bolestivé a nebolestivé podněty se navzájemně překrývají (Coghill et al.,
1994; Davis et al., 1998; Gelnar et al., 1999; Ibinson et al., 2004). Lze tedy očekávat výrazné změny korové aktivace během bolesti doprovázené periferní elektrickou nervovou stimulací (PNS).

4 METODIKA

4.1 EXPERIMENT 1

Studie se zúčastnilo 12 zdravých mužů, ověřených praváků ve věkovo- vém rozmezí 20–26 let (průměr 22 let, SD 1,8). Před pokusem byli se- známeni s jeho průběhem a podepsali informovaný souhlas podle Hel- sinské deklarace a schválený Etickou komisí 3. LF UK.

Bolestivá elektrická intraepidermální stimulace (Becker et al., 2000) byla prováděna tenkou tupou jehlou z nemagnetické oceli zavedenou do malé epidermální kapsy na bříšku distálního článku ukazováku proti katodě na proximálním článku ukazováku (Obr. 1B–C). Pulzy genero- vané bateriovým stimulátorem v 1,8–2,2s intervalech trvaly 0,2 ms, am-plituda byla nastavena o 20% intervalu individuální práh bolesti – práh tolerance bolesti nad práh bolesti. Pokusné osoby popisovaly charakter pulsu jako bodavou bolest nebo nepříjemné klepnutí, a byly schopny ho snášet po celou dobu pokusu. Izometrická kontrakce svalů pravé i levé ruky použitá v Experimentu 1 spočívala ve stisknutí palce proti ukazo- váku pravé nebo levé ruky. Byla standardizována upevněním gumového kroužku na ukazovák (Obr. 1B), vyžadujícím při stisku sílu cca 5 N.

Osoby seděly se zavřenýma očima v pohodlném křesle (Obr. 1D). Mě-ření se stejně jako ve fMR Experimentu 2 skládalo z pěti sekci, mezi kte- rými byla krátká přestávka. V každé sekci se střídalo po 48 s pět období klidu a pět období aktivace, celý blok trval 480 s (Obr. 1A). Měření začí- nalo klidem. Během každé sekce proběhly v pseudonáhodném pořadí všechny podmínky (v rámci celého experimentu balancovaně): 1) sa- motná bolestivá intraepidermální stimulace pravé ruky (S), 2) samotná kontrakce svalů pravé ruky (P), 3) samotná kontrakce svalů levé ruky (L), 4) kombinovaná stimulace pravé ruky a kontrakce pravé ruky (SP), 5) kombinovaná stimulace pravé ruky a kontrakce levé ruky (SL). Po- kyny pro začátek a konec svalové kontrakce byly podávány slovně po- mocí interkomu.

EEG bylo měřeno 120kanálovým zesilovačem BrainScope (M&I Praha, Česká republika). Skalpové EEG bylo monopolárně snímano 111 chlori- dostříbnými elektrodami z celého povrchu skalpu. Polohu elektrod jsme digitalizovali přístrojem Isotrak II (Polhemus Navigation Inc., Colches-
ter, USA). Impedance elektrod vůči referenční elektrodě na čele byla nižší než 10 kΩ. Filtrovaný signál (pásmová propust 0,015-200 Hz) byl vzorkován s frekvencí 1024 Hz.

V bipolární montáži byl snímán vertikální a horizontální elektrookulogram z pravého oka a povrchový elektromyogram ze svalů thenaru (*m. opponens pollicis* – MOR, MOL) a *m. interosseus dorsalis I* (MIR, MIL, poslední písmeno zkratky vyjadřuje pravou nebo levou stranu).

Získali jsme individuální zdrojové průběhy od všech osob ve zdrojích lokalizovaných podle *grand average* dat pro jednotlivé podmínky. Nejprve jsme získali rozdílové zdrojové průběhy mezi kombinovanými podmínkami a samotnou stimulací i mezi nimi navzájem (*SP – S, SL – S, a SP – SL*). Neparametrickou BCa metodou (Efron a Tibshirani, 1993) spočtené 95% konfidenční intervaly individuálních rozdílových průběhů pro jednotlivá porovnání podmínek posloužily k určení časových úseků, ve kterých se jednotlivé podmínky lišily (konfidenční interval neobsahoval nulu).

Elektromyogramy ze svalů podílejících se na izometrické kontrakci jsme porovnali mezi podmínkami, abychom vyloučili nestejnou sílu kontrakce při současně bolestivé stimulaci. Zprůměrováno směrodatné odchylky EMG v 1,75s úsecích ze 4 svodů (2 z pravé a 2 z levé ruky) pro jednotlivé osoby byly porovnány mezi podmínkami *P vs. SP, L vs. SL* a mezi podmínkami s kontrakcí pravé a levé ruky pomocí analýzy variance pro opakovaná měření a pomocí *post hoc* testů.

K Experimentu 1 a 2 jsme na odlišném vzorku 12 osob (medián věku 24 let, rozmezí 21–47 let) změřili subjektivní hodnocení intenzity bolesti. V 15 bločích délky cca 30 s jsme podávali stejné bolestivé podněty jako v Experimentu 1. Ve třetině bloků prováděl proband standardizovanou
izometrickou kontrakci svalů pravé ruky a ve třetině kontrakci svalů levé ruky. Po každém bloku ohodnotil proband bolestivost elektrického podnětu na vizuální analogové škále délky 15 cm označené na koncích „nebolí“ a „maximální představitelná bolest“. Normalizovaná individuální data byla analyzována pomocí analýzy rozptylu (ANOVA) pro opakovaná měření.

4.2 EXPERIMENT 2

Studie se celkem zúčastnilo 13 osob ve věkovém rozmezí 20–26 let (průměr 22 let, SD 1,8). Kromě jedné osoby šlo o totožné probandy, kteří se zúčastnili Experimentu 1. Před pokusem byly vyloučeny kontraindikace MR. Společně pro Experiment 1 i 2 byli všichni seznámeni s průběhem pokusu, podepsali informovaný souhlas a byla ověřena pravorukost.

Paradigma, bolestivá stimulace i izometrická svalová kontrakce byly použity stejně jako v Experimentu 1 (Obr. 1). Pokusná osoba ležela bez pohybu se zavřenýma očima v tunelu magnetu 1.5T přístroje Siemens Magnetom Vision (Siemens, Erlangen, Německo). S použitím objemové hlavové cívy jsme u každé osoby nasnímali funkční data v několika sekcích a následně anatomický scan s vysokým rozlišením. Anatomický obraz sloužil pro lokalizaci získaných fMR aktivací a pro lokalizaci dipolů v analýze evokovaných potenciálů.

Pro fMR jsme použili gradientní echoplanární sekvenci (EPI) s parametry: TR 6 s, TE 60 ms, *flip angle* 90°, zorné pole 19,2×19,2 cm², velikost matice 64×64, rozlišení v rovině 3×3 mm², 40 axiálních řezů po 3 mm, tloušťka řezu 3 mm, velikost voxelu 3×3×3 mm³. Parametry *fast low-angle shot* (FLASH) sekvence pro změření anatomického obrazu s vysokým rozlišením byly následující: TR 25 ms, TE 6 ms, *flip angle* 20°, zorné pole 25,6×25,6 cm², velikost matice 256×256 pixelů, 180 sagitálních řezů, tloušťka řezu 1 mm, velikost voxelu 1×1×1 mm³. V každé z pěti sekcí bylo nasnímáno 82 EPI objemů, klid se s aktivačními podmínkami střídal po 8 objemech (5 cyklů klid-aktivace v jedné sekci). První dva objemy nebyly analyzovány pro nestacionárnost MR signálu.

Analýza probíhala pomocí softwarového balíku SPM2 (University College London). Provedli jsme automatické odstranění pohybových artefaktů (realignment), a odstranění nelineárních efektů pohybu (unwarping). Data byla automaticky koregistrována k prvnímu objemu pomocí afinní transformace. Funkční i anatomické obrazy byly normalizovány pomocí afíních a nelineárních transformací k templátu

Upravená funkční data vstoupila do obecného lineárního modelu v programu SPM2. Pomocí box-car funkce konvolvované s předpokládanou funkcí hemodynamické odpovědi jsme modelovali jednotlivé stimulační podmínky v jednotlivých sekcích. Časové filtrování odstraňující pomalé fyziologické oscilace nebylo použito. Kontrasty z analýzy pevných efektů vstoupily do skupinové analýzy smíšených efektů (ANOVA) ve druhém stupni. Odhadli jsme skupinové efekty kontrastů jednotlivých podmínek a pozitivní (resp. negativní) interakce byla definována jako aktivace během kombinované podmínky vyšší (resp. nižší) než lineární kombinace samotné bolestivé stimulace a svalové kontrakce příslušné ruky. Pro prahování výsledních statistických parametrických map z analýzy druhého stupně jsme použili hodnotu p < 0,001, bez korekce na opakovaná měření s prostorovým prahem 10 souvislých voxelů. Prahované mapy byly přeloženy přes průměrný anatomický obraz mozku a anatomická lokalizace aktivačních shluků byla upřesněna podle cytoarchitektonických map a atlasu Talairacha a Tournoux (1988). Doplněk k SPM2 (ANATOMY toolbox, Eickhoff et al., 2005) jsme použili pro kvantifikaci BOLD efektu v jednotlivých podmínkách ve vybraných oblastech zájmu, jež vykázaly statisticky významnou interakci.

K upřesnění vztahů mezi jednotlivými oblastmi vykazujícími interakci při kontrakci svalů právě ruky, která vykazovala komplexnější změny, jsme kvantifikovali funkční konektivitu. Vypočítáli jsme korelační matici mezi intenzitou aktivace v oblastech, které vykázaly na hladině p < 0,001, prostorové kritérium k > 10 voxelů, signifikantní pozitivní nebo negativní interakci. Toto jsme provedli pro data ze tří podmínek: S, P a SP a výsledky vyjádřili v grafické formě jako funkční mapu konektivity. Vzhledem k použité metodě skupinové korelační analýzy nevyjadřují korelace kauzálně propojení mezi oblastmi.

4.3 Experiment 3

Studie se celkem zúčastnilo 12 zdravých mužů, ověřených praváků ve věkovém rozmezí 20–46 let (medián 25 let, průměr 27 let, SD 7,14 roku). Po krátkém rozhovoru, zaměřeném na neurologické potíže a kontraindi-
kace MR vyšetření, byli všichni seznámeni s průběhem pokusu a podepsali informovaný souhlas.

Druhým typem podnětu vExperimentu 3 byla vysokofrekvenční mediánová stimulace na pravém zápěstí. Použili jsme bateriový stimulátor, ke kterému byly dlouhým vedením připojeny zlacené stříbrné kališkové elektrody (katoda proximálně), upevněné s použitím vodivé pasty (Nhon Kohden). Krátké (0,2 ms) pulzy s frekvencí 100 Hz měly intenzitu (vrcholový proud) nastavenou do horní poloviny intervalu práh citlivosti – motorický práh, které byly změřeny před vlastním pokusem (pro 1Hz pulzy). Tato intenzita nevyvolávala nepříjemné počítky. Vyvolané parazestie byly lokalizovány na thenaru pod termodou tepelného stimulátoru. U některých osob parazestie vyzařovaly i do 1.-3. prstu ruky.

Měření se skládalo ze tří sekcí, mezi nimiž byla krátká přestávka (cca 5 min). V každé sekci se střídalo 12 období klidu a aktivace po 36 s, celý blok tak trval 864 s. Měření začínalo obdobím klidu. Během každé sekce proběhly v pseudonáhodném pořadí (čtyřikrát opakovány) tyto podmínky: 1) samotná bolestivá tepelná stimulace pravého thenaru (T), 2) samotná elektrická mediánová stimulace (E), 3) kombinovaná bolestivá a nebolestivá stimulace (I).

Měřicí procedura byla podobná jako u Experimentu 1: TR 4,5 s, TE 54 ms, flip angle 90°, zorné pole 19,2×19,2 cm², velikost matice 64×64, rozlišení v rovině 3×3 mm², 40 axiálních řezů po 3 mm, tloušťka řezu 3 mm, velikost voxelu 3×3×3 mm³. Parametry fast low-angle shot (FLASH) sekvence pro získání anatomického obrazu s vysokým rozlišením byly stejné jako u Experimentu 2.

Každá ze tří sekcí zahrnovala 192 EPI objemů, k lid se s aktivací podmínkami střídalo po 8 objemech. První dva objemy nebyly analyzoány.

Zpracování dat bylo provedeno analogicky Experimentu 2. Parametr gausovského kernelu pro hlazení (FWHM) byl 10 mm. Dolní propust ča-
Somatomotorická a somatosenzorická modulace bolesti v obraze fMR a EEG

sověho filtru, odstraňujícího pomalé fyziologické kolísání signálu, byla nastavena na 256 s, přibližně čtyřnásobek délky periody klid-aktivace.

Analogicky Experimentu 2 jsme v analýze prvního stupně pro každou osobu vypočetli mapy kontrastů pro jednotlivé podmínky \((E, T, I)\) modelované box-car funkcemi konvolvovanými s HRF a sečtené přes sekce. Tyto kontrasty vstoupily do analýzy variance ve druhém stupni. Výsledné statistické mapy skupinových efektů jednotlivých kontrastů \((E, T, I)\) byly prahovány hodnotou \(p < 0.0001\) bez korekce na opakovaná měření s prostorovým prahem 10 souvislých voxelů. Interakce podmínek pozitivní \((E + T < 2 \cdot I)\) a negativní \((E + T > 2 \cdot I)\) byly prahovány hodnotou \(p < 0.001\) bez korekce na opakovaná měření s prostorovým prahem 10 souvislých voxelů. Prahané mapy byly přeloženy přes zprůměrované normalizované individuální anatomické obrazy mozku. K určení anatomické lokalizace aktivačních shluků jsme opět použili cytoarchitektonické mapy a atlas Talairacha a Tournoux (1988). Kvantifikace průměrné změny BOLD signálu v oblastech signifikantní interakce jsme vyhodnotili opět pomocí ANATOMY toolbox.

Abychom mohli zhodnotit analgetický účinek periferní nervové stimulace na tepelnou bolest v našem paradigmatu, provedli jsme doplňující experiment na dalších 9 dobrovolnících s odpovídajících stimulačních parametrů jako ve fMR studii. Blok stimulace trval 30 s a každá z podmínek \((E, T, I)\) byla zopakována pětkrát v pseudonáhodném pořadí. Osoby hodnotily intenzitu a nepříjemnost bolesti na 10cm vizuální analogové škále po každém bloku s bolestivou stimulací. Výsledky byly zhodnoceny analýzou variance pro opakovaná měření v programu Statistica (StatSoft Inc. Tulsa, USA).
5 VÝSLEDKY

5.1 EXPERIMENT 1 – ANALÝZA ZDROJŮ EEG PŘI BOLESTI PROVÁZENÉ STEJNOSTRANNOU A NESTEJNOSTRANNOU IZOMETRICKOU SVALOVOU KONTRAKCI

Nalezli jsme 6 zdrojů evokovaného potenciálu vyvolaného bolestivými stimuly. Obr. 2 ukazuje polohu zdrojů a zdrojové průběhy grand average modelu. Dva zdroje byly umístěny v primární somatosenzorické kůře kontralaterálně ke stimulované ruce. Přední zdroj (řezní SI; talairachovské koordináty v mm [-44, -33, 51], BA 2) vrcholil 75 ms po stimulusu a zadní zdroj (řezní SI, [-43, -35, 38], v hloubi postcentrální rýhy) měl vrchol ve 105 ms. Dva regionální zdroje ležely v pravé a levé parasylovijské kůře, odpovídající SII (SIIı, [-44, -12, 17], vrchol při 84 ms; SIIı, [51, -15, 16], vrchol ve 130 ms). Regionální zdroje modelují aktivitu z relativně široké oblasti (Scherg, 1992). Jeden ekvivalentní zdrojový dipól s vrcholy ve 175 a 255 ms se lokalizoval do cingulárního sulku v oblasti zadní části přední cingulární kůry případně ve střední cingulární kůry (dále zkracován ACC, [4, -19, 48], BA 24/6). Konečne se jeden zdroj s vrcholovou latencí 163 ms lokalizoval do prekuny, případně zadní cingulární kůry (PCC, [9, -59, 20], BA 23/31).

Průměrné zdrojové průběhy s vyznačenými intervaly statisticky signifikantních rozdílů mezi podmínkami (deviace 95% konfidenčního intervalu od nuly) ukazuje pro pravou (A) a levou (B) ruku Obr. 3. Kontrakce svalů ipsilaterální (pravé) ruky byla provázena statisticky signifikantním poklesem amplitudy zdrojových dipólů v předním (82–103 ms) i zadním (94–128 ms) SI zdroji. Při použití plochy pod křivkou jako měřítka amplitudy zdroje, reprezentovaly tyto poklesy 71 % a 68 % amplitudy v podmínce S v předním respektive zadním SI zdroji. Ipsilaterální svalová kontrakce byla navíc asociována se signifikantním nárůstem aktivity zdrojů v SIIı (144–163 ms; 133 % S) a PCC (157–172 ms; 131 % S).

Kontrakce svalů kontralaterální (levé) ruky způsobila pokles amplitudy v obou SII zdrojích (SIIı: 66–115 ms; 76 % S; SIIıı: 109–170 ms; 72 % S), v předním SI zdroji (92–105 ms; 73 % S) i v zadním SI zdroji (105–122 ms; 70 % S) a navíc v pozdní komponentě dipólů v ACC (240–281 ms; 78 % S).

V testu hodnotícím rozdíl mezi efektem kontrakce svalů pravé ruky oproti kontrakci ruky levé na PSEP (pain-SEP) jsme bootstrap analýzou hodnotili rozdílové zdrojové průběhy SP – SL. Přední zdroj v SI byl významně menší během ipsilaterální než během kontralaterální svalové
Somatomotorická a somatosenzorická modulace bolesti v obraze fMR a EEG kontrakce (51–73 ms). Amplitudy zdrojů SIIa a SIIb byly významně menší během kontralaterální kontrakce oproti ipsilateralní (76–113 ms a 144–177 ms v SIIa; 108–151 ms v SIIb). Podobně byly vrcholové amplitudy předního (222–271 ms) a zadního cingulárního zdrojového dipólu (148–174 ms) menší během kontralaterálního svalového stihu.

Abychom zhodnotili vliv ipsi- a kontralaterální svalové kontrakce na subjektivní hodnocení intenzity bolesti, provedli jsme další sérii experimentů. ANOVA pro opakovaná měření ukázala na individuálně normalizovaných datech rozdíly mezi třemi podmínkami (F(2,22) = 4,65, p = 0,02, Greenhouse-Geisserovo ε = 0,69, p = 0,04). Post-hoc testy jednoduchých efektů odhalily menší pocíťovanou intenzitu bolesti během SP (skóre VAS 7,4 ± 3,45, průměr ± SD) než během S (skóre 8,24 ± 2,94; F(1,11) = 6,15, p = 0,03). Kontrasty mezi S a SL (skóre 7,83 ± 3,13; F(1,11) = 3,88, p = 0,07) a mezi SL a SP (F(1,11) = 2,48, p = 0,14) nebyly statisticky signifikantní. Vzhledem k subjektivní povaze dat hodnotíme nižší hodnoty VAS během SL jako neprokázaný trend.

Průměrná směrodatná odchylka EMG v kontrahovaných svalech se nelišila mezi podmínkami bez bolestivé stimulace a s bolestivou stimulací pro pravou ruku (F(1, 11) = 0,83, p = 0,38) ani pro levou ruku (F(1, 11) = 0,80, p = 0,39). Rozdíl síly kontrakce jsme neprokázali ani mezi kontrakcí pravé a levé ruky (F(1, 11) = 2,69, p = 0,13). Síla svalové kontrakce se tedy nelišila mezi podmínkami.

A: Průběh sekce:

<table>
<thead>
<tr>
<th>El. stim.</th>
<th>24 podnětů; 200 μs; 1,8 - 2,2 s</th>
<th>čas</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

EMG:

MIR
MOR
MIL
MOL

48 s 5 sekcí x 5 bloků **B C D**

Obr. 1: Schéma Experimentu 1.

A. Průběh jedné sekce a znázornění bolestivé elektrické stimulace a změřeného EMG z pravé a levé ruky. B. Pohled na stimulační elektrody, gumový kroužek a EMG snímací elektrody na pravé ruce. C. Detail umístění stimulační jelehové elektrody. D. Celkový pohled na 111 snímacích elektrod na hlavě pokusné osoby.
Obr. 2: Experiment 1 – Poloha zdrojů, zdrojové průběhy a reziduální variance.
A: Poloha zdrojů v modelu ve schematizované hlavě. B: horní část: global field power (plná čára) a reziduální variance (přerušovaná čára); dolní část: zdrojové průběhy ve zdrojích označených čísly odpovídajícími části A.

Obr. 3: Experiment 1 – Průměrné zdrojové průběhy.
Průměrné zdrojové průběhy v jednotlivých zdrojích při kontrakci svalů pravé (A) a levé (B) ruky. Čísla odpovídají Obr. 2. Obdélníky vyznačují úseky s významným rozdílem mezi průběhem při samotné bolestivé stimulaci a stimulaci provázané kontrakcí. Prázdný obdélník znamená pokles, plný nárůst aktivity.
5.2 EXPERIMENT 2 – FMR PŘI BOLESTI PROVÁZENÉ STEJNOSTRANNOU A NESTEJNOSTRANNOU IZOMETRICKOU SVALOVOU KONTRAKCÍ

Nalezené aktivace během bolestivé stimulace (S) odpovídaly obvyklým pozorováním. Jsou vyobrazeny jako červené shluky na Obr. 4 – Obr. 7. Během izometrické svalové kontrakce pravé ruky (P, viz Obr. 4 a Obr. 5, modré shluky) a levé ruky (L, viz Obr. 6 a Obr. 7, modré shluky) byly aktivní též obvyklé motorické a premotorické oblasti.

Současná bolestivá stimulace a kontrakce svalů pravé a levé ruky (SP, SL) vyvolala aktivitu v oblastech aktivovaných jednotlivými podmínkami.

Výsledky analyzy interakcí mezi jednotlivými podmínkami – oblasti reagující silnější (pozitivní interakce) nebo slabší (negativní interakce) aktivací na kombinovanou podmínku ve srovnání s lineární kombinací aktivací v podmínkách jednoduchých – jsou shrnuty v Tab. 1 a na Obr. 4 a Obr. 5 (zelené shluky) pro svalovou kontrakci pravé ruky a v Tab. 2 a na Obr. 6 a Obr. 7 (opět zelené shluky) pro kontrakci levé ruky.

Pozitivní interakci při kontrakci svalů pravé ruky (Tab. 1, Obr. 4, zelené shluky) jsme nalezli kontralaterálně v SI/MI a premotorické kůře (BA 6/4/3b/1/2), dále v levém i pravém parietálním operkulu/SII, oblast OP1 (Eickhoff et al., 2006), levém frontálním operkulu (BA 6/44), levé SMA a střední/zadní cingulární kůře (s přesahem do lobulus paracentralis, BA 5/31), v pravé střední/zadní cingulární kůře (BA 31) a pravé hemiféře mozečku.

Oblasti negativní interakce při kontrakci svalů pravé ruky (Tab. 1, Obr. 5, zelené shluky) se objevily v pravém mediálním temporálním pólů (BA 38), v levé mediální orbitofrontální kůře (BA 11), dále v levé rostrální/subgenuální cingulární kůře (BA 32, rACC) a v zadní části levé přední cingulární kůry (pACC, BA 24), a v levém laterálním kmeni v oblasti pedunculi cerebri a v předním kmeni v levém pedunculus cerebri na úrovni pontomesencefálického přechodu. Lokalizace posledně zmíněných aktivace je zatížena susceptibilními artefakty.

Pro levostrannou svalovou kontrakci jsme prokázali pozitivní interakci (Tab. 2 a na Obr. 6, zelené shluky) v levém parietotemporálním operkulu/SII (OP1), v bilaterální okcipitální vizuální kůře (fissura calcarina a BA 17), levém putamen a v pravé střední dorzální inzule. Kromě aktivace pravostranné vizuální kůry byly všechny pozitivní interakční efekty kontrakce svalů levé ruky způsobeny deaktivacemi příslušných oblastí během S a L.
K negativní interakci při svalové kontrakci kontralaterální ruky (Tab. 2, a Obr. 7, zelené shluky) došlo pouze v levém g. *frontalis superior* (BA 8).

Výsledky analýzy funkční konektivity pro interakce při svalové kontrakci pravé ruky jsou shrnuty na Obr. 8. Souběžnou bolestivou stimulací se stejnostrannou svalovou aktivitou se obraz korelací pozměnil následovně: SI korelovala s kontralaterální BA 31 místo SMA, obě SII ztratily svou provázanost, kontralaterální BA 31 byla svázaná s ipsilaterální BA 31 a ta s kontralaterální SMA, s ipsilaterální SII a kmenem. Kontralaterální BA 31 negativně korelovala s rostálním ACC a ta spolu se zadní částí ACC korelovala s temporálním pólem. Mediální motorické oblasti (SMA, bilaterální BA 31) a kontralaterální SI/MI korelovaly s aktivací mozeku (CRBL).

Tab. 1: Experiment 2 – výsledky, pozitivní (P+) a negativní (P−) interakce při izometrické svalové kontrakci pravé ruky.

<table>
<thead>
<tr>
<th>Poloha (BA)</th>
<th>[x, y, z]</th>
<th>Z</th>
<th>k*</th>
</tr>
</thead>
<tbody>
<tr>
<td>P*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>levá senzorimotorická kúra SI (6/4/3b/1/2)</td>
<td>[-44, -15, 52]</td>
<td>5.08</td>
<td>1635</td>
</tr>
<tr>
<td>pravé parietaální operkulum/SII – OP1 lob. pariet. inf. (40)</td>
<td>[51, -26, 25]</td>
<td>4.75</td>
<td>324</td>
</tr>
<tr>
<td>levé parietaální operkulum/SII – OP1 (40/43)</td>
<td>[-57, -23, 16]</td>
<td>4.63</td>
<td>350</td>
</tr>
<tr>
<td>pravá MCC/PCC, sulcus cinguli, hloubka (31)</td>
<td>[16, -23, 45]</td>
<td>3.91</td>
<td>43</td>
</tr>
<tr>
<td>pravá hemisféra mozeku</td>
<td>[20, -57, -11]</td>
<td>3.88</td>
<td>183</td>
</tr>
<tr>
<td>levé frontální operkulum (6/44)</td>
<td>[-53, 4, 5]</td>
<td>3.82</td>
<td>82</td>
</tr>
<tr>
<td>levá MCC/PCC/lobus paracentralis (5/31)</td>
<td>[-10, -21, 43]</td>
<td>3.51</td>
<td>37</td>
</tr>
<tr>
<td>levá SMA (6)</td>
<td>[-2, -7, 52]</td>
<td>3.37</td>
<td>18</td>
</tr>
<tr>
<td>pravý mediální temporální pól (38)</td>
<td>[34, 4, -30]</td>
<td>3.91</td>
<td>61</td>
</tr>
<tr>
<td>levá MOFC, gyrus rectus (11)</td>
<td>[-6, 42, -17]</td>
<td>3.44</td>
<td>38</td>
</tr>
<tr>
<td>levá rACC/sACC (32)</td>
<td>[-16, 44, -4]</td>
<td>3.43</td>
<td>28</td>
</tr>
<tr>
<td>levý ventrální kmen, pontomesencefaliční přechod</td>
<td>[-4, -10, -15]</td>
<td>3.43</td>
<td>12</td>
</tr>
<tr>
<td>levá pACC (24)</td>
<td>[-12, 33, 89]</td>
<td>3.25</td>
<td>14</td>
</tr>
<tr>
<td>levý dozolaterální mesencefalón, pedunculus cerebelli</td>
<td>[-16, -24, -17]</td>
<td>3.34</td>
<td>16</td>
</tr>
</tbody>
</table>

Uveden anatomický popis, odpovídající maximu shluku, v závorce oblast podle Brodmanna, lokalizace ve stereotaktickém prostoru [x, y, z], hodnota Z-statistiky na úrovni voxelu (Z, p < 0,001) a velikost shluku k* (>10). OP1 = operkulární oblast, SMA = suplementární motorická oblast, MCC/PCC = střední/zadní cingulární kúra, MOFC = mediální orbitofrontální kúra, rACC/sACC = rostální/subgenualní cingulární kúra, pACC = zadní část přední cingulární kúry.

Tab. 2: Experiment 2 – výsledky, pozitivní (L+) a negativní (L−) interakce při izometrické kontrakci svalů levé ruky.

<table>
<thead>
<tr>
<th>Poloha (BA)</th>
<th>[x, y, z]</th>
<th>Z</th>
<th>k*</th>
</tr>
</thead>
<tbody>
<tr>
<td>L*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>levé parietotemporální operkulum/SII</td>
<td>[-59, -23, 16]</td>
<td>3.76</td>
<td>96</td>
</tr>
<tr>
<td>Levá okcipitální kúra, sulcus calcarinus, hloubka</td>
<td>[-32, -58, 7]</td>
<td>3.67</td>
<td>152</td>
</tr>
<tr>
<td>pravá primární zraková kúra (17)</td>
<td>[8, -69, 13]</td>
<td>3.58</td>
<td>39</td>
</tr>
<tr>
<td>levé putamen</td>
<td>[-22, -1, 17]</td>
<td>3.47</td>
<td>38</td>
</tr>
<tr>
<td>pravá primární zraková kúra (17)</td>
<td>[22, -75, 11]</td>
<td>3.33</td>
<td>16</td>
</tr>
<tr>
<td>pravá střední dorzální inzula</td>
<td>[38, 8, 5]</td>
<td>3.25</td>
<td>12</td>
</tr>
<tr>
<td>L*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF, levý gyrus frontalis superior (8)</td>
<td>[-20, 26, 58]</td>
<td>3.57</td>
<td>11</td>
</tr>
</tbody>
</table>

Vysvětlení viz Tab. 1, FEF = frontální okohybné pole.
Obr. 4: Experiment 2 – výsledky, efekt kontrakce svalů pravé ruky na bolestivou stimulaci, pozitivní interakce.

SPM-t mapy prahované na $p < 0.001$, prostorový práh 10 voxelů, zobrazené na průměrných T1 anatomických obrazech při bolestivé stimulaci (čevená barva) a kontrakci pravé ruky (modrá barva). Zelenou barvou jsou zobrazeny voxely se signifikantní pozitivní interakcí. R značí pravou stranu. Poloha jednotlivých trojic řezů je dána stereotaktickými souřadnicemi jejich průsečíků.

Obr. 5: Experiment 2 – výsledky, efekt kontrakce svalů pravé ruky na bolestivou stimulaci, negativní interakce.

Obecné vysvětlivky viz Obr. 4. Signifikantní aktivace při bolestivé stimulaci (čevená barva) a kontrakci pravé ruky (modrá barva). Zelenou barvou jsou zobrazeny voxely se signifikantní negativní interakcí.
Obr. 6: Experiment 2 – výsledky, efekt kontrakce svalů levé ruky na bolestivou stimulaci, pozitivní interakce.
Obecné vysvětlivky viz Obr. 4. Signifikantní aktivace při bolestivé stimulaci (červená barva) a kontrakci levé ruky (modrá barva). Zelenou barvou jsou zobrazeny voxely se signifikantní pozitivní interakcí.

Obr. 7: Experiment 2 – výsledky, efekt kontrakce svalů levé ruky na bolestivou stimulaci, negativní interakce.
Obecné vysvětlivky viz Obr. 4. Signifikantní aktivace při bolestivé stimulaci (červená barva) a kontrakci levé ruky (modrá barva). Zelenou barvou jsou zobrazeny voxely se signifikantní negativní interakcí.
Somatomotorická a somatosenzorická modulace bolesti v obraze fMR a EEG

Obr. 8: Experiment 2 – funkční konektivita mezi oblastmi vykazujícími pozitivní nebo negativní interakci při stejnostranné svalové kontrakci.

Jednotlivé oblasti vykazující pozitivní interakci (červeným písmem) a negativní interakci (modrým písmem) jsou spojeny podle výsledku korelační analýzy (n = 13) červenými (pozitivní korelace) nebo modrými šipkami (negativní korelace). Plné šipky značí statistickou významnost na hladině významnosti p < 0,05 a přerušované šipky označené dvěma hvězdičkami významnost na hladině p < 0,01. Popisky oblastí jsou pro přehlednost schematicky umístěny podle vztahu ke střední čáře a své rostrokaudální polohy. SI/MI = primární senzorimotorická oblast, SII = sekundární somatosenzorická oblast, FrOp = frontální operkulum (BA 44), CRBL = mozeček, SMA = suplementární motorická oblast, pACC = zadní část přední cingulární kůry, rACC = rostrální část přední cingulární kůry, MOFC = mediální orbitofrontální kůra, BSlat = laterální oblast mozkového kmene, BSant = přední oblast mozkového kmene, TempPole = temporální pól.
5.3 EXPERIMENT 3 – FMR PŘI SOUČASNÉ BOLESTIVÉ A NEBOLESTIVÉ STIMULACI

Oblasti signifikantní aktivace a deaktivace (p < 0,0001, k > 10 voxelů) ve skupinové analýze pro zkoumané kontrasty s použitím jednocestné analýzy variance jsou zobrazeny na Obr. 9 a Obr. 10. Oblasti vykazující signifikantní (p < 0,001, k > 10 voxelů) pozitivní nebo negativní interakci při kombinované stimulaci jsou v Tab. 3 a Tab. 4 a na Obr. 11.

Elektrická stimulace (Obr. 9, modré shluky) aktivovala oblasti v kontralaterální senzorimotorické a parietální kůře a levé laterální orbitofrontální kůře (LOFC, BA 10, Obr. 9). Aktivace vyvolané bolesti jsme nalezli ve většině oblastí „pain matrix“ (Obr. 9, červené shluky) i v jiných oblastech. Při souběžné elektrické mediánové a bolestivé tepelné stimulaci (Obr. 9, žluté shluky) byly aktivace lokalizovány v podobných oblastech jako při samotné bolestivé stimulaci. Některé oblasti byly specificky aktivovány kombinovanou stimulací a naopak aktivita některých oblastí byla potlačena. Tyto rozdíly jsou statisticky hodnoceny interakčními kontrasty.

Ve všech experimentálních podmínkách jsme pozorovali deaktivaci (negativní BOLD odpověď) pravé (ipsilateralní) primární senzorimotorické kůry. Během kombinované stimulace byla navíc deaktivována pravostranná mediální orbitofrontální kůra (MOFC).

Kontrast pozitivní interakce mezi elektrickou mediánovou stimulací a tepelnou bolestí ukazuje voxely vykazující signifikantně větší BOLD signál během kombinované stimulace než během samotných podmínek E a T (Tab. 3 a Obr. 11a–g, červené shluky). Pozitivní interakce byla nalezena v následujících strukturách: i) velký shluk v levé parasyślijské oblasti s maximem v globus pallidum (vybíhající do zadní inzuly a ventrobazálního thalamu), ve střední a přední dorzální inzule, v parietotemorálním operkulu/SII (oblast OP1), v levém mediálním thalamu a levém g. temporalis superior (BA 22). ii) Další velký shluk v pravé operkulozinulární oblasti s lokálním maximem ve střední dorzální inzule přesahující do putamen, dále v centrální oblasti inzuly, ve ventrální inzulární kůře sousedící s amygdalou a v pravém frontálním operkulu (BA 44). iii) Dva shluky v pravé laterální orbitofrontální kůře (LOFC) odpovídající BA 11/47 a BA 10/11. iv) Shluk ve ventrálním mediálním kmeni na úrovni pontomesencefalického přechodu. v) Shluk v levém lobulus parietalis inferior a g. supramarginalis (zadní parietální kůra – PPC, BA 29/40), vi) shluky v hloubce levého a pravého g. temporalis inferior, vii) shluk v hloubce levého sulcus centralis (SI,
Somatomotorická a somatosenzorická modulace bolesti v obraze fMR a EEG

BA 3a), viii) shluk ve vermis cerebella, ix) shluk v levé střední cingulární kůře (BA 24/33; Vogt, 2005) a pravé střední cingulární kůře (BA 24) a konečně x) shluk v pravém g. postcentralis v blízkosti sulcus Sylvii odpovídající SII (BA 43). Kvantitativní vyhodnocení procentuálních změn BOLD signálu ve vybraných shlucích vykazujících statisticky významnou interakci ukázala převažující monotónní nárůst BOLD odpovědi mezi mediánovou, bolestivou a kombinovanou stimulací.

Oblasti negativní interakce mezi elektrickou mediánovou stimulací a tepelnou bolestí, reprezentující voxely se signifikantně nižším BOLD signálem během kombinované stimulace než během samotných podmínek E a T, jsou na Obr. 11a–g (modré shluky) a vypsány v Tab. 4. Aktivační shluky jsme nalezeny v následujících oblastech: i) v pravé mediální orbitofrontální kůře v g. rectus v sousedství subgenualní cingulární kůry (BA 11/32) a v polární oblasti pravého g. frontalis medialis (BA 10). ii) V levém g. rectus s přesahem dorzálně na hranici subgenualní cingulární kůry a laterálně do g. orbitalis posterior (BA 11/32). iii) Malý shluk v g. occipitalis medius (BA 19). Oblasti negativní interakce vykazovaly převážně deaktivaci během souběžné stimulace a variabilní aktivaci a deaktivaci během E a T.

Podle doplňující studie byla průměrná subjektivní intenzita bolesti 5,57 ± 0,92 během tepelné bolesti a 5,75 ± 0,80 během kombinované stimulace (F(1,8) = 0,26, p = 0,63). Nepříjemnost tepelné bolestivé stimulace byla v těchto podmínkách 4,96 ± 0,90 respektive 5,00 ± 0,91 (F(1,8) = 0,02, p = 0,90). Intenzita ani subjektivní nepříjemnost nebyly ovlivněny stimulací nervus medianus.
Tab. 3: Experiment 3 – výsledky, pozitivní interakce během kombinované stimulace.

<table>
<thead>
<tr>
<th>Poloha (BA)</th>
<th>([x, y, z])</th>
<th>(Z)</th>
<th>(k_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>levé putamen/ zadní inzula</td>
<td>[-24, -13, 10]</td>
<td>4,91</td>
<td>2209</td>
</tr>
<tr>
<td>levá střední/přední dorzální inzula</td>
<td>[-38, 10, 9]</td>
<td>4,56</td>
<td></td>
</tr>
<tr>
<td>levé parietotemporální operkulum/SII – OP1/3 (40/42)</td>
<td>[-50, -15, 17]</td>
<td>4,41</td>
<td></td>
</tr>
<tr>
<td>levá přední inzula</td>
<td>[-32, 20, 10]</td>
<td>3,87</td>
<td></td>
</tr>
<tr>
<td>levý thalamus, dorzomediální a centromediální jádro</td>
<td>[-4, -17, 5]</td>
<td>3,54</td>
<td></td>
</tr>
<tr>
<td>levý gyrus temporalis superior (22)</td>
<td>[-55, 2, 4]</td>
<td>3,48</td>
<td></td>
</tr>
<tr>
<td>levá střední dorzální inzula</td>
<td>[-46, -1, 9]</td>
<td>3,43</td>
<td></td>
</tr>
<tr>
<td>pravá střední inzula</td>
<td>[40, 6, 9]</td>
<td>4,73</td>
<td>665</td>
</tr>
<tr>
<td>pravá MOFC, gyrus rectus, subgenuální cingulární kúra (11/32)</td>
<td>[12, 32, -15]</td>
<td>3,81</td>
<td>224</td>
</tr>
<tr>
<td>levá MOFC, g. rectus/orbit. post., subgen. cingulární kúra (11/32)</td>
<td>[-12, 23, -13]</td>
<td>3,44</td>
<td>48</td>
</tr>
<tr>
<td>pravá VLPFC, gyrus frontalis superior (10)</td>
<td>[12, 56, -1]</td>
<td>3,38</td>
<td>18</td>
</tr>
<tr>
<td>pravý gyrus occipitalis medius (19)</td>
<td>[36, -84, 32]</td>
<td>3,33</td>
<td>12</td>
</tr>
<tr>
<td>levá MOFC, gyrus frontalis medialis/gyrus rectus (10)</td>
<td>[-6, 50, -11]</td>
<td>3,17</td>
<td>13</td>
</tr>
</tbody>
</table>

Hodnoty \(x\), \(y\) a \(z\) odpovídají Talairachovským souřadnicím maxima shluku v mm. Čísla v kulatých závorkách u anatomických popisů určují odhadnuté Brodmannovy oblasti. \(Z\)-skóre a \(k_0\) počet voxelů v shluku (není-li uveden, jedná se o podshluk). Prahováno bez korekce na hladině \(p < 0,001\) a \(k_0 > 10\). OP = operkulární oblast, LOFC = laterální orbitofrontální kúra, PPC = zadní parietální kúra, SI = primární senzorická kúra.

Tab. 4: Experiment 3 – výsledky, negativní interakce během kombinované stimulace.

<table>
<thead>
<tr>
<th>Poloha (BA)</th>
<th>([x, y, z])</th>
<th>(Z)</th>
<th>(k_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pravá LOFC, gyrus frontalis inferior, pars orbitalis (11/47)</td>
<td>[46, 36, -14]</td>
<td>3,88</td>
<td>67</td>
</tr>
<tr>
<td>pravé ventrálně mediální pontomezencefalický přechod</td>
<td>[0, -22, -16]</td>
<td>3,73</td>
<td>34</td>
</tr>
<tr>
<td>levá PPC, lobulus parietalis inferior/gyrus supramarginalis (39/40)</td>
<td>[-48, -52, 39]</td>
<td>3,69</td>
<td>115</td>
</tr>
<tr>
<td>levý sulcus temporalis inferior – hlouba</td>
<td>[-36, -60, 9]</td>
<td>3,63</td>
<td>16</td>
</tr>
<tr>
<td>levý sulcus centralis – hlouba, SI (3a)</td>
<td>[-24, -31, 48]</td>
<td>3,50</td>
<td>31</td>
</tr>
<tr>
<td>pravá LOFC, gyrus orbitalis lateralis (10/11)</td>
<td>[34, 56, -15]</td>
<td>3,50</td>
<td>17</td>
</tr>
<tr>
<td>pravý gyrus temporalis inferior, hlouba</td>
<td>[44, -43, -5]</td>
<td>3,45</td>
<td>12</td>
</tr>
<tr>
<td>Mozeček, vermis</td>
<td>[0, -45, -3]</td>
<td>3,41</td>
<td>28</td>
</tr>
<tr>
<td>levá střední cingulární kúra (24/33)</td>
<td>[-4, 7, 33]</td>
<td>3,40</td>
<td>24</td>
</tr>
<tr>
<td>pravá MOFC, gyrus frontalis superior (11/32)</td>
<td>[12, 32, -15]</td>
<td>3,81</td>
<td>224</td>
</tr>
<tr>
<td>pravá VLPFC, gyrus frontalis superior (10)</td>
<td>[12, 56, -1]</td>
<td>3,38</td>
<td>18</td>
</tr>
<tr>
<td>pravý gyrus occipitalis medius (19)</td>
<td>[36, -84, 32]</td>
<td>3,33</td>
<td>12</td>
</tr>
<tr>
<td>levá MOFC, gyrus frontalis medialis/gyrus rectus (10)</td>
<td>[-6, 50, -11]</td>
<td>3,17</td>
<td>13</td>
</tr>
</tbody>
</table>

Vysvětlení viz Tab. 3.
Somatomotorická a somatosenzorická modulace bolesti v obraze fMR a EEG

Obr. 9: Experiment 3 – výsledky, jednoduché kontrasty, pozitivní BOLD.
SPM-t mapy prahované na p < 0,0001, prostorový práh 10 voxelů, zobrazené na průměrných T1 anatomických obrazech při nebolestivé pravostranné mediánové stimulaci (E, modrá barva), při bolestivé tepelné stimulaci (T, červená) a kombinované stimulaci (I, žlutá). R značí pravou stranu, L levou. Poloha jednotlivých řezů (x, y, z) je dána talairachovskými stereotaktickými souřadnicemi.

Obr. 10: Experiment 3 – výsledky, jednoduché kontrasty, negativní BOLD.
Popis viz Obr. 9
Obr. 11: Experiment 3 – výsledky, interakční kontrasty.

SPM-t mapy prahované na p<0,001, prostorový práh 10 voxelů. Shluky vykazující pozitivní (červená barva) a negativní (modrá) interakci mezi mediánovou a bolestivou tepelnou stimulací. Panely a–f zobrazují sagitální, frontální a axiální řezy ve vzestupném uspořádání podle talairachovských souřadnic (x, y, z). Panel g ukazuje výřez centrováný na maximum shluku ve kmeni. R = vpravo, L = vlevo.
6 DISKUZE

6.1 EXPERIMENT 1

Elektroencefalografické změny při stejnostranné svalové kontrakci ve zdrojích raných komponent evokovaných potenciálů (SI) souhlasí s předchozími studiemi s nebolestivou stimulací (Huttunen a Homberg, 1991; Forss a Jousmäki, 1998), pouze se na pozdějších nástupu změn projevilo pomalejší vedení pro bolest specifickými Aδ vlákn. C-vláknová aktivita nebyla v naší studii pozorována. Stejnostranná kontrakce vedla v kontralaterální (levé) SII ke zvýšení evokované aktivity, což může souviset s přesunem pozornosti na níž je aktivita SII citlivá. Podle výsledků fMR studie (Experiment 2) ovšem převládá na pozornosti nezávislý vliv. Stejnostranná kontrakce posílí aktivitu dále v zadním cingulárním (prekuneálním) zdroji, v latenci podobně jako v SII. Kratší latence v zadním oproti přednímu cingulárnímu zdroji byla již pozorována (Bromm, 2004) a zapojení zadní cingulární kůry do modulace bolesti pohybem podporují i výsledky fMR části studie, kde byla výrazně modulována oblast BA 31, součást sítě „default mode“.

Při kontralaterální svalové kontrakci byl nejčasnější pokles zdrojové aktivity pozorován v obou SII, následovaný poklesem v levé SI a přední cingulární kůře, což naznačuje odlišnou lokalizaci korového hradlování v SII při nestejnostranné kontrakci oproti hradlování v SI při kontrakci stejnostranné. Oboustranné receptivní pole SII neuronů se projevilo jako i v jiných studiích bilaterální modulací. Navíc je předpokládá, že se v naší studii projevuje vliv nedominance levé ruky, jejíž kontrakce má odlišný vliv na ipsilaterální motorickou kůru oproti ruce dominantní (Kobayashi et al., 2003). Pozorované efekty izometrické svalové kontrakce se liší od účinků dynamického pohybu (Nakata et al., 2004), především v SII. Ovšem pro metodické rozdíly není možné přímé srovnání těchto studií.

Výsledky této studie doplňují pozorování časové posloupnosti aktovací SII a SI při bolesti o modulaci pohybu a ukazují, že aktivace motorické kůry může modulovat nociceptivní podněty na různých úrovnicí korového zpracování v závislosti na lateralitě motorického vstupu. Dále nově popisuje modulaci zdroje v zadní cingulární kůře pohybu.
6.2 EXPERIMENT 2

Aktivita vyvolaná jednoduchou bolestivou a motorickou stimulací odpovídá známému rozložení oblastí „pain matrix“ a motorického systému. K nejvýraznějšímu změnám ve zpracování bolestivé informace při ipsilateralní (pravostranné) kontrakci, kterou doprovází efekt úlevy od bolesti, dochází přímým centrifugálním mechanizmem v laterálním senzoricko-diskriminačním systému, a dále v systému limbickém a antinocicepčním. Souběžná nestejnostranná kontrakce má převážně nespecifický disktrakční vliv.

Vlivem ipsilateralní bolestivé stimulace se změnil vzorec aktivace a konektivita v motorickém systému. Zesilila se aktivace SI/MI, premotorická kontrola kontrakce (do níž se zapojilo i frontální operkulum, BA 44) se svým těžištěm pravděpodobně přesunula z SMAr (příp. pre-SMA) do BA 31. SMA byla ovšem při stejnostranné kontrakci také více aktivní, snad jako projev změněné motorické představy pohybu. Obě posledně jmenované mediální struktury vytvořily silnou vazbu s mozečkem. Izometrická motorická aktivita byla tedy narušena souběžnou bolestivou stimulací a bylo nutno zapojit více kontrolních struktur do jejího řízení.

Diskriminační senzorické korelaty percepce (vnímání intenzity stimulu) se příliš nezměnily. Modulační vliv pohybu na SI/MI byl dán spíše přímou motorickou interferencí (levostranná interakce SI/MI nemodulovala). Interakce v bilaterálním parietálním operkulum se nalézá mimo somatotopickou reprezentaci ruky v SII. V kontralateralní SII byla interakce nalezena při kontrakci stejnostranné i nestejnostrané ruky a pro obě strany stimulace byl vzor aktivace kontralateralní SII stejný. Je tedy možné předpokládat, že jde o pozornostně nezávislý projev senzorikomotorické integrace. Interakce (nalezená pouze při stejnostranné kontrakci) v ipsilateralní SII se zdá být závislá na vymízení deaktivace BA 31, ke kterému došlo pouze při stejnostranné kontrakci. V této souvislosti lze také předpokládat vliv dominance ruky na lateralitu zpracování bolesti při pohybu. Ani údaje z EEG a MEG studií, týkající se vlivu izometrické kontrakce na bolestivou a nebolestivou stimulaci v SII, nejsou jednoznačné, a proto bez dalšího studia je zatím otázka modulace SII pohyblem nedořešena.

Jako zásadní se pro modulaci bolesti pohyblem jeví oblast BA 31 s prokázanými motorickými, senzorickými i kognitivními (pozornostními a paměťovými) funkcemi a navzájem propojující somatosenzorické oblasti, cingulární afektivní oblasti, SMA a kmen. Patří do souboru ob-
prožívání.

vostranné (Simpson náchodchů, 2001), dobře korespondující s poklesem subjektivního prožívání. Tento vzorec rostrálních mediálních deaktivací při levovstranné kontrakci chyběl, což dobře vysvětluje nedostatečný vliv na subjektivní prožívání a spolu s modulací nespecifické inzulární oblasti a okcipitální kůry ukazuje na převažující pozornostní modulaci (distrakci).

Spojitost korového hradlování s úzkostí a jeho centrální původ naznačují i nižší hradlování u pacientů s obsesivně-komplulkzívní poruchou (Rossi et al., 2005). Poruchy senzorimotorické integrace jsou časté u mnoha chronických onemocnění (Abbruzzese a Berardelli, 2003), to do budoucnosti naznačuje možné klinické využití kombinované fMR a EEG analýzy a ukazuje další možné směry výzkumu.

6.3 Experiment 3

Při bolesti a mediánové stimulaci jsme nalezli obvyklé lokality aktivace. Již v rané fázi akutního působení PNS při tonické tepelné bolesti jsme pozorovali modulaci oblastí různých bolest zpracujících oblastí, ovšem s neprůkazným vlivem na subjektivní vnímání bolesti. Navíc jsme potvrdili předchozí pozorování inhibice ipsilateralní motorické kůry bolestí (Valeriani et al., 1999b), dokonce i mediánovou stimulaci. Změny ve zpracování bolestivého podnětu vyvolané periferní nervovou stimulací se v diskriminačním systému (SI, SII, zadní inzula, PPC) zdají být směsí více než aditivní aktivace díky současnému zpracování soumístných multimodálních stimulů bez výrazných pozornostních vlivů. Navíc je snížena aktivace VLPFC, specifická pro allodynii a hyperalgézii vyvolanou tepelnou bolestivou stimulací. Působení PNS je srovnatelné s krátkodobou terapeutickou stimulací ganglion trigeminale (Willoch et al., 2003), pouze mediánová PNS moduluje laterální systém více bilaterálně. V mediálním systému (mediální thalamus, cingulární, orbitofrontální a přední inzulární oblasti propojené s kmenem) nalézáme kombinaci nárůstu v přední inzule, středním motorickém cingulu a pokles
v emočně-vegetativní subgenuální přední cingulární kůře spolu s emočně-kognitivní mediální orbitofrontální kůrou (Rolls, 2004), což ukazuje na diferencovanou modulaci emočního doprovodu bolesti zahrnující vegetativní odpověď, snížení úzkosti, integraci s tělesným obrazem a odhad odměnné hodnoty. Kognitivně-evaluativní subsystém (LOFC) vykazuje znaky aktivity podobné jako při analgézii způsobené očekáváním nebo placebem (Petrovic a Ingvar, 2002; Lorenz et al., 2003; Wager et al., 2004), jehož příspěvek k rané modulaci bolestivé percepce PNS nelze vyloučit. Tyto změny jsou převáděny na kmenový antinociceptivní systém, který zpětně ovlivňuje přenos bolesti.

Modulační působení PNS vykazuje silnou podobu s působením terapeutické stimulace míchy a motorické kůry (Garcia-Larrea et al., 1999; Garcia-Larrea et al., 2000), s nimiž sdílí podobné mechanizmy modifikující prefrontální hodnocení bolesti a aktivaci kmenových struktur.

6.4 ZÁVĚREČNÁ DISKUZE

V předkládané studii jsme se pokusili osvětlit korové procesy doprovázející modulaci bolesti současnou mediánovou stimulací nebo svalovou kontrakcí. Původní zájem o korové korelaty míšního hradlování bolesti pohybem v obrazu EEG a fMR rozšířený dále o neurofyziologii modulační elektrostimulace přinesly nové poznatky o zapojení především afektivně-motivačních, kognitivních a antinociceptivních oblastí. Pozorovali jsme dobrou shodu obou použitých metod pro lokalizaci a identifikaci základních složek systému zpracování bolesti (SI, SII, cingulární kůra). Výsledky je nutné interpretovat se zohledněním odlišné časové základny metod fMR a EEG.

Oproti variabilní modulaci primární somatosenzorické oblasti jsme při obou typech modulace bolesti nalezli navzájem podobné změny v oblasti sekundární somatosenzorické kůry. Pro modulaci pohybem jsou tyto změny závislé na straně působení modulující kontrakce. Tepelná bolestivá stimulace navíc aktivovala bilaterální inzulární kůru a tato oblast byla modulována PNS. Vzhledem k multimodálním vstupům a složitým interakcím (např. s pozorností) je SII žádoucím cílem dalšího studia. Podobnou slibnou roli pro algeziologický výzkum ukazuje mozeček, modulovaný v obou paradigmách.

Multimodální vstupy interagují také v oblasti středního až zadního cingula (v případě modulace pohybem) a v přední až střední cingulární kůře v případě PNS. Pohybem ovlivněná oblast BA 31 souvisí se systémem oblastí „default mode“ a komunikuje s rostrální cingulární kůrou.
Deaktivace rostrální cingulární kůry spolu s deaktivací mediální prefrontální kůry (v obou paradigmatech) vypovídá o snížení prožívané úzkosti a vysvětluje změnu subjektivního prožívání bolesti při stejnostranné kontrakci.

Jako výstupní systém ovlivnění bolestivého přenosu při PNS jsme identifikovali kmenové oblasti předního pontomezencefalického přechodu a aktivitu kmeny jsme pozorovali pravděpodobně i v případě souběžné svalové kontrakce. Vnitřní antinocicepční systém je aktivován již samotnou bolestí, ovšem z našich dat vyplývá, že souběžná svalová kontrakce i PNS jeho aktivitu posiluje.

Ačkoli práce byla zaměřena prvotně na teoretické aspekty modulace bolesti, nabízejí se i možnosti klinického využítí našich výsledků jako reference například při hodnocení důsledků pohybových deficitů u bolestivých stavů a obecnější posuzování poruch senzorimotorické integrace. Dále doplňujeme prozatím nedostatečné informace o centrálních mechanizmech terapeutického účinku periferní elektrické stimulace. Je možné předpokládat, že v současnosti používané invazivní a finančně náročné metody modulace bolesti implantovanými elektrickými stimulátory mohou být doplněny periferní nervovou stimulací, kterou bude možno optimalizovat za pomoci zobrazovacích metod.
ZÁVĚRY

- Izometrická svalová kontrakce moduluje při bolesti struktury laterálního systému (SI, SII) i mediálního systému (cingulární kůra) — Experiment 1.
- Stejnostranná svalová kontrakce má vliv na aktivitu kontralaterální SI, bilaterální SII a cingulární kůry a nestejnostranná kontrakce na aktivitu SI, SII a střední cingulární kůry — Experiment 1.
- Nalezli jsme rozdíl ve funkčním zapojení SI a SII během souběžné stejnostranné [modulace SI (90–120 ms) předchází SII (143–163 ms)] a nestejnostranné kontrakce [SII (66–115 ms) předchází SI (92–105 ms)] — Experiment 1.
- Subjektivní pocit bolestivosti byl snížen nestejnostrannou svalovou kontrakcí, nestejnostrannou nikoli — Experiment 1.
- Stejnostranná svalová kontrakce prováděná při bolesti vede k modulaci senzorických (SI, SII), afektivních (cingulární a orbitofrontální kůra) i kognitivních oblastí (prefrontální kůra), ale také premotorických a motorických oblastí; výrazná je negativní modulace afektivních mediálních prefrontálních struktur — Experiment 2.
- Nestejnostranná svalová kontrakce moduluje kontralaterální SII a putamen, ipsilaterální přední inzulu a okcipitální vizuální kůru — Experiment 2.
- Nalezli jsme modulaci bolestivé percepce v rané fázi akutní PNS v senzorickém (SII), afektivním (ACC, MOFC), kognitivním (VLPFC) i antinocicepčním systému — Experiment 3.
- Modulace bolesti pohybem i periferní nervovou stimulací vykazuje podobné rysy, především deaktivaci mediální prefrontální kůry — Experiment 2 a 3.
8 GRANTOVÁ PODPORA

9 PUBLIKACE A ČINNOST AUTORA

9.1 IMPAKTOVANÉ PUBLIKACE

9.2 ABSTRAKTA

Vrána J., Rachmanová R., Svoboda, J., Stančák A.: Presence of event-related cortical desynchronization during painful stimulation with or without muscle contraction

Poláček, H., Vrána, J., Stančák, A.: Effect of heat pain stimulation of ipsi- and contralateral leg on tibial nerve cortical evoked potentials. 35th Annual Meeting of...

10 SEZNAM ZKRATEK

ACC – anterior cingulate cortex, přední cingulární kůra
ANOVA – analysis of variance
Aβ – myelinizovaná nervová vlákna průměru 5–12 μm
Aδ – myelinizovaná nervová vlákna průměru 2–5 μm
BA – Brodmann area, Brodmannova oblast
BCa – bias-corrected accelerated boostrap confidence interval calculation method, neparametrická metoda výpočtu konfidenčních intervalů
BESA – Brain Electrical Source Analysis, metoda i software pro zdrojovou analýzu skalpového EEG
BOLD – blood oxygenation-level dependent(signal), (signál) závislý na oxygenaci krve
CNS – centrální nervový systém
CRBL – cerebellum, mozeček
EEG – elektroencefalograf, elektroencefalogram, elektroencefalografie
EMG – elektromyogram
EPI – echo planar imaging, echoplanární zobrazení, fMRI sekvence
FEF – frontal eye field, frontální okohybné pole
FLASH – fast low-angle shot, MR sekvence
fMR – functional magnetic resonance, funkční magnetická rezonance, někdy též fMR
FWHM – full width at half maximum, šířka v polovině výšky, parametr gaussovského kernelu
kΩ – kiloohm
LOFC – laterální orbitofrontální kůra
MCC – midcingulate cortex, střední cingulární kůra
MEG – magnetoencefalografie
MI – primární motorická oblast
MIL – levý m. interosseus primus
MIR – pravý m. interosseus primus
MNI – Montreal Neurological Institute
MOFC – mediální orbitofrontální kůra
MOL – levý m.opponens pollicis
MOR – pravý m.opponens pollicis
MR – magnetická rezonance
OP1–4 – opercular area (1–4), operkulární oblast (1–4)
pACC – anterior cingulate cortex, posterior part, zadní část přední cingulární kůry
PCC – posterior cingulate cortex, zadní cingulární kůra
PNS – periferní nervová stimulace
PPC – posterior parietal cortex, zadní parietální kůra
PSEP – pain somatosensory-evoked potentials, somatosenzorické evokované potenciály vyvolané bolestivou stimulací
R – right, pravá strana
rACC – anterior cingulate cortex, rostral part, rostrální část přední cingulární kůry
sACC – anterior cingulate cortex, subgenual part, subgenuální část přední cingulární kůry
SD – standard deviation, směrodatná odchylka
SI – primární somatosenzorická oblast
SI/MI – primární senzimotorická oblast
SII – sekundární somatosenzorická oblast
SMA – suplementární motorická oblast
SMAr – rostrální část suplementární motorické oblasti
SPM – statistical parametric mapping, statistické parametrické mapování
TE – echo time, parametr magnetické rezonance
TR – repetition time, parametr magnetické rezonance
VAS – visual analogue scale, vizuální analogová škála

ZKRATKY EXPERIMENTÁLNÍCH PODMÍNEK

Experiment 1 a 2
S – elektrická bolestivá stimulace
P – kontrakce pravé ruky
L – kontrakce levé ruky
SP – elektrická bolestivá stimulace a kontrakce pravé ruky
SL – elektrická bolestivá stimulace a kontrakce levé ruky

Experiment 3
E – elektrická mediánová stimulace
T – bolestivá tepelná stimulace
I – kombinovaná stimulace (interakční podmínka)
11 LITERATURA

Becker DE, Haley DW, Urena VM, Yingling CD. Pain measurement with evoked potentials: combination of subjective ratings, randomized intensities, and long interstimulus intervals produces a P300-like confound. Pain 2000;84:37-47.

