
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Jǐŕı Hörner

Map-merging for multi-robot system

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the bachelor thesis: RNDr. David Obdržálek, Ph.D.

Study programme: Computer Science

Study branch: General Computer Science

Prague 2016

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of the
Copyright Act.

In date signature of the author

i

Title: Map-merging for multi-robot system

Author: Jǐŕı Hörner

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. David Obdržálek, Ph.D., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract: A set of robots mapping an area can potentially combine their informa-
tion to produce a distributed map more efficiently and reliably than a single robot
alone. Multi-robot swarm coordination depends on a consistent, reliable map of
the environment. Map-merging algorithms are therefore key komponents for such
systems. In this work I present a novel algorithm for merging two-dimensinal
maps created by different robots independently without initial knowledge of rela-
tive poses of robots. The algorithm is inspired by computer vision image stitching
techniques for creating photo panoramas. Presented algorithm relies only on map
data represented as occupancy grids, which allows great scalabity for heteroge-
neous multi-robot swarms and makes algorithm easily deployable with various
simultaneous localization and mapping (SLAM) algorithms. The map-merging
algorithm was implemented as publicily available Robot Operating System (ROS)
package and was accepted in ROS distribution. Performance of the algorithm has
been evaluated in ROS enviroment using Virtual Robot Experimentation Plat-
form (VREP) simulator. For purposes of evaluation ROS package for exploring
was developed as part of this work.

Keywords: map-merging multi-robot system ROS SLAM image stitching

ii

I acknowledge my colleague Lukas Jelinek for sharing his insights into VREP
simulator. I wish to thank to my family for support.

iii

Contents

Introduction 3

1 Initial pose estimation problem 4
1.1 Direct map merging . 4
1.2 Indirect map merging . 4

2 Merging algorithm 6
2.1 Stitching pipeline . 6
2.2 Feature detection . 9
2.3 Pairwise matching . 9
2.4 Finding largest connected component 11
2.5 Estimate final transformation . 12

3 ROS packages 14
3.1 multirobot map merge package 14

3.1.1 Inter-robot communication 14
3.1.2 Dynamic robot discovery 15
3.1.3 Initial poses estimation . 15
3.1.4 Map composition . 16

3.2 explore lite package . 16
3.2.1 Navigation . 16
3.2.2 Map sourcing . 16
3.2.3 Frontier search . 17

4 Evaluation 18
4.1 Simulation setup . 18
4.2 MIT dataset . 18
4.3 Merging with known initial positions 19
4.4 Minimal overlapping area . 19
4.5 Retaining largest transformation 22
4.6 Probability model evaluation . 24

5 Future works 29

Conclusion 30

Bibliography 31

List of Figures 34

List of Abbreviations 35

List of Attached Files 36

Appendices 37

1

Appendix A multirobot map merge 38
A.1 Package Summary . 38
A.2 Overview . 38
A.3 Architecture . 38
A.4 Merging modes . 39

A.4.1 merging with known initial positions 39
A.4.2 merging without known initial positions 39

A.5 ROS API . 40
A.5.1 map merge . 40

A.6 Acknowledgements . 42

Appendix B explore lite 43
B.1 Package Summary . 43
B.2 Overview . 43
B.3 Architecture . 43
B.4 ROS API . 44

B.4.1 explore . 44
B.5 Acknowledgements . 45

2

Introduction

Multi-robot exploring swarms have several advantages over a single robot. When
properly coordinated performace of the multi-robot system is higher and multiple
robots can possibly do tasks single robot could not. In fully distributed systems
single point of failure is eliminated.

Multi-robot swarms can overcome imperfections in underlying navigation and
mapping algorithms especially when using heterogeneous robot swarms, where
one stucked robot can be replaced by another robot which uses different algorithm.

This work focuses on map-merging, which is a challenging problem, especially
in heterogeneous robot swarms. In multi-robot systems shared map is required for
effective coordination. Map-merging algorithm producing global map is therefore
essential component of multi-robot systems.

This text is structured as follows: Key aspects of map-merging and related
works are discussed in Section 1. In Section 2, I present a novel map-merging al-
gorithm based on image stitching techniques, which can work with heterogeneous
multi-robot swarms and is scalable to large number of robots.

Section 3 presents ready-to-use ROS packages implementing presented map-
merging algorithm and frontier-based autonomous exploration. Section 4 dis-
cusses performace of presented map-merging algorithm achieved in several simu-
lation experiments.

Documentation for ROS packages presented in Section 3 is attached as Ap-
pendices A, B.

3

1. Initial pose estimation
problem

Key problem of map-merging is getting transformation between reference frames
of robots. When the transformation is known, merging maps produced by robots
is simple. In such a case we can compute transformation to chosen global reference
frame and overlay maps in global reference frame. Errors in maps especially while
mapping in dynamic environment may lead to different values across maps for
specific global frame coordinates, but this can be solved by taking arithmetic
mean, median or extremal values for such coordinates.

Transformation between grids can be acquired from initial poses of robots
and vice versa, considering initial pose is represented as origin in the map (or
generally any fixed point). This holds usually true for existing implementations
of SLAM algorithms.

Problem arises when initial poses of robots are not known to merging algo-
rithm. When robots are starting from the same place, initial relative positions
can be measured with basic equipment either present on the site or mounted on
robots. When robots are starting from distant locations measuring initial poses
might require more sophisticated equipment, as widely available hardware such
as Global Positioning System (GPS) sensors might not provide required preci-
sion. In indoor environments determining starting positions might be even more
challenging.

Because of these difficulties, algorithms that can estimate transformations
between maps and then merge maps without knowledge of initial positions have
been developed. A comprehensive survey of map-merging techniques is done
in [LLL+12], which classifies algorithms as Direct Map Merging and Indirect
Map Merging.

1.1 Direct map merging

Direct map-merging algorithm relies on sensors to directly compute transforma-
tion between reference frame of robots. This includes techniques relying on direct
robot rendezvous [ZR06] and similar. This techniques can provide a highly accu-
rate transformation estimate, but are limited by relying on specific conditions to
estimate this transformation such as the robot rendezvous or encountering specific
landmark. These systems also exchange specific data related to selected feature
or sensor to estimate transformation; some algorithms even require control over
robot such as solution presented in [KFL+03]. Implementations therefore tend
to be monolithic, because they rely on exchange of custom messages and specific
sensors data, which makes them hard to implement especially for heterogeneous
robots.

4

1.2 Indirect map merging

Indirect map-merging algorithms use overlapping areas in maps to estimate trans-
formation between maps. Merging maps based on map data only naturally cre-
ates a common interface and works well for heterogeneous groups of robots. Each
robot is only required to expose its map in a common format, sensor equipment
mounted on robots may be different as well as a SLAM algorithm used for cre-
ating the map. This makes indirect map-merging algorithms more flexible than
direct map merging: robots may visit overlapping area at different times (in con-
trast to robot rendezvous) and this approach is also absolutely passive requiring
no control over robot.

Wide range of techniques has been employed for indirect map merging. In his
work [LLL+12] mentions in this category techniques based on scan matching al-
gorithms. These algorithms are working with SLAM representation of maps and
they are usually tightly coupled with specific SLAM algorithm. This makes them
share some disadvantages (such as difficult scalability through heterogeneous sys-
tems) with direct map merging algorithms. Algorithms in this category include
[WJL+12] work based on visual scale-invariant feature transform (SIFT) features
and topology nodes, approach of [TLKJ10] combining omnidirectional vision and
laser scans, [CWBD12] using graph SLAM with condensed maps and non-linear
constrained optimization to acquire transformation between maps. Data used by
the SLAM algorithm to represent map may be too big to exchange all of them be-
tween robots, this was addressed in the work by [LPP+13], which uses condensed
measurements and multi-robot graph SLAM.

Only a few algorithms works exclusively with portable map representation
(maps represented as two-dimensional occupancy grids), despite this promises
better scalability and by design supports heterogeneous multi-robot systems.
Works using occupancy grids include spectra-based approach of [Car08]. [LL11]
combines his approach with concept of virtual supporting lines to merge custom
sparse maps of infrared features. [Mar13] used algorithm of [Sch12] based on
image features to merge maps of 2 robots, which is limitation of this algorithm.

The novel algorithm for map merging presented in Section 2 is using only oc-
cupancy grids to produce the merged map. This algorithm is inspired by image
stitching algorithms for creating photo panoramas. It is designed to merge maps
from arbitrary number of robots, overcoming the limitation of both [Sch12] and
[Car08]. It employs random sample consensus (RANSAC) for robust transform
estimation and uses probability model to evaluate confidence of estimated trans-
formation. Matching phase is accelerated using parallel hierarchical clustering
trees proposed by [ML12] so that algorithm scales well to large number of robots.

5

2. Merging algorithm

In this chapter I present a map-merging algorithm for two-dimensional maps
based on computer vision techniques. This approach is not completely new. First
map-merging algorithm implemented for ROS based on image features is [Sch12].
Purpose of this package is stitching map created by SLAM to existing static map.

Although this package was not developed for map-merging in multi-robot
configuration, algorithm and its original implementation were used by [Mar13] for
merging maps of two robots and in coordinated multi-robot exploration solution
presented in [ANB14].

Due to its original purpose, mapstitch algorithm shows some limitations for
multi-robot map-merging setup. The algorithm was originally designed for offline
use [ANB14]. Also, it was designed for stitching two maps, one them being
large reference map covering most of the environment. Although it is possible to
incrementally merge maps from multiple robots with this algorithm, global map
quality generally decreases with increasing number of robots. Significant decrease
in performance was observed for 4 robots [ANB14].

Algorithm 1 Mapstitch original algorithm. Implemented for ROS in [Sch12]

Input: 2 occupancy grids
Output: transformation between 2 grids
1: procedure StitchedMap(grid1, grid2)
2: detect Oriented FAST and Rotated BRIEF (ORB) features
3: match keypoints with Brute-Force matcher
4: find matching point pairs with same distance in both images
5: estimate affine transformation
6: end procedure

Algorithm 1 is original algorithm used in [Sch12], version used in [ANB14] is
only a slightly modified.

Although our algorithm also uses computer vision based approach, it deals
with limitations of the Algorithm 1. Proposed algorithm is designed to work
with arbitrary number of grids (while Algorithm 1 can only work with two grids).
There is no need for iterative merging and moreover algorithm can determine
optimal order of individual pairwise merges. I assume this might be the main
reason for decrease in performance in 4-robot setup observed by [ANB14]. Also
proposed algorithm deals with other problems arising for general n-map merge
problem such as situations when it is not possible to merge some of the maps
because transformation to others could not be reliably estimated, cases where
map transformation can be estimated from more sources (multiple neighbours)
etc.

2.1 Stitching pipeline

As discussed in Section 1.2 our algorithm is inspired by image stitching al-
gorithms. Stitching algorithms are well-understood and implementations are
broadly available. General concept of multi-step stitching pipeline is described

6

Figure 2.1: OpenCV Stitching pipeline.

in [BL06]. Stitching pipeline is also well established code in Open Source Com-
puter Vision Library (OpenCV), mostly based on [BL06], along with [Sze04]
[SS98] and others. Figure 2.1 highlights processing steps in stitching pipeline
implemented in OpenCV.

Our algorithm will solve the registration part (estimating transformation be-
tween grids) according to Figure 2.1. Compositing part of stitching is relatively
simple for occupancy grids compared to images from camera, because we don’t
need to compensate exposure errors, gain and other deficiencies. Registration
solves the main problem of acquiring transformation between individual frames
of robots and bridges the problem of merging maps with known initial positions
and unknown initial positions.

ROS node for map merging described in Section 3.1 implements also com-
positing part of the pipeline, which is an easy problem when transformation is
estimated.

For description of the algorithm we will assume maps are represented as occu-
pancy grids, with each cell containing value in range [0, 100] indicating probabil-
ity that there is obstacle in the cell and −1 for indicating unknown probability.
ROS uses the same representation. This representation can be mapped easily to
greyscale image, hence using image processing algorithms is natural.

We will consider occupancy grids greyscale images through Algorithm 2 and
vice versa. Values in the range [0, 100] are the same, −1 is mapped to 255 in the
image. This way we get standard 8-bit depth greyscale image.

Algorithm 2 offers overview of the proposed algorithm, detailed description is
provided in following sections.

7

Algorithm 2 Proposed algorithm for estimating transformation between multi-
ple occupancy grids. Uses Algorithm 3 to estimate final transformations.

Input: k occupancy grids
Output: for each grid: transformation between grid and global reference frame,

or value indicating transformation could not be be estimated for current grid
1: procedure estimateGridTransform(grids)
2: detect ORB features (keypoints) for each grid
3: for all (i, j) pair of grids do . compute transform for each pair
4: match features
5: n← number of matches
6: if n ≤ matches threshold then
7: confidence ← 0
8: else
9: try find restricted affine transformation for features with RANSAC
10: ψ ← number of inliers in RANSAC
11: if transformation found then
12: confidence ← ψ

8+0.3·n
13: P(i,j) ← restricted affine transformation
14: else
15: confidence ← 0
16: end if
17: end if
18: end for
19: matches ← (i, j) for matches with confidence ≥ 1.0
20: g ← (grids,matches)
21: h← largest connected component in g
22: t← maximum spanning tree in h
23: estimateFinalTransform(t, P(i,j)∀e ∈ edges of t) . walk t and

compute transformations to global reference frame. See Algorithm 3.
24: end procedure

8

2.2 Feature detection

Stitching pipeline proposed in [BL06] is using SIFT features. SIFT features have
been used with success for stitching in many applications. Some of the recent
approaches to stitching, improving traditional SIFT-based algorithm, are also
building on top of SIFT features [XXL+15]. Use of SIFT features is limited by
US patent [Low04].

I have decided to use ORB feature detector and descriptor, which was intr-
toduced by [RRKB11]. ORB algorithm is patent-free, and available in OpenCV.
Moreover ORB features has already been used with occupancy grid images [Sch12]
and [ANB14].

Other alternatives for feature detection and feature description has not been
tested yet. Performance of other detectors for map-merging and effect of choose
of detector to overall merging performance remains to be evaluated. Some feature
detectors and descriptors promising good performance are [AOV12], [AS11] and
[CLSF10].

For image stitching, images are usually downscaled for further processing as
seen is Figure 2.1. Feature extraction and feature matching on smaller images
is considerably faster and overall accuracy is acceptable. I don’t propose any
such down scaling for occupancy grids. Occupancy grids acquired from mapping
are usually smaller than multi-megapixel images from camera, so stitching time
is reasonable even for full-scale grids. Also occupancy grids have usually much
smaller number of features than photos making stitching harder and less accurate.

During online merging stitching can run with low frequency even if higher map
update frequencies are required by simply using previously estimated transfor-
mation between grids. This further reduces cost of estimation over time. Trans-
formation between grids is fixed in most cases (when SLAM algorithm works
reasonably well), because transformation depends only on starting positions of
robots. Therefore reusing previous transformations does not reduce map quality
considerably.

In most scenarios estimated transformation change only during initial phase.
After there is enough overlapping regions in the map, such that transformation
can be estimated with high precision, transformation estimated with stitching
algorithm remains stable over time. This property allows to run re-estimation
with even lower frequencies if map quality in initial phase is not a problem.

2.3 Pairwise matching

Pairwise matching is the most resource demanding part of the algorithm. We
do matching for all O(n2) pairs of grids. For panorama images it is possible to
push this down to O(n) matchings by expecting photos to be taken in ordered
sequence. Then we can match only k neighbours (for small k) in image sequence,
because only neighbours are expected to have overlapping area.

For occupancy grids in multi-robot mapping scenario it is impractical to as-
sume any such ordering in initial poses of robots. It is not even possible in
certain scenarios especially when robots are exploring given areas independently.
Our algorithm therefore always match all O(n2) pairs.

9

3

13

Nm=129, Ni=92, C=1.97002

14

Nm=117, Ni=73, C=1.69374

32

Nm=102, Ni=100, C=2.59067

6

22

Nm=183, Ni=105, C=1.66932

27

Nm=164, Ni=107, C=1.87063

7

8

Nm=80, Ni=53, C=1.65625

11

Nm=128, Ni=77, C=1.65948

12

Nm=151, Ni=98, C=1.83865

15

Nm=110, Ni=67, C=1.63415

21

Nm=63, Ni=40, C=1.48699

23

Nm=60, Ni=38, C=1.46154

35

Nm=86, Ni=71, C=2.10059

Nm=160, Ni=110, C=1.96429

17

25

Nm=212, Ni=158, C=2.2067

19

Nm=166, Ni=106, C=1.83391

26

Nm=162, Ni=160, C=2.82686

Figure 2.2: Graph showing matches between 36 occupancy grids during map
merging. This graph was acquired for maps from MIT dataset described in Sec-
tion 4.2. Grids without any matches are omitted. Legend: Nm number of
matches, Ni number of inliers from RANSAC, C confidence.

Figure 2.2 shows matching results for 36 occupancy grids acquired during
experiment presented in Section 4.6. Computations for each pair are independent,
so it is easy to run matching of all pairs in parallel. This approach is used in map
merging node presented in Section 3.1.

Because of non-linear number of pairs it is usually too computationally ex-
pensive to search for matches using simple brute-force search (even if it runs in
parallel) unless it can be offloaded to GPU. For matching on CPU it is better to
use approximate methods, which can be much faster.

For vector-based features, such as SIFT and Speeded Up Robust Features
(SURF), the solution has been to use approximate nearest-neighbour search, but
these existing algorithms are not suitable for binary features [ML12]. For ORB
features, which are binary based, searching for nearest neighbours using parallel
hierarchical clustering trees proposed in [ML12] can provide similar speed-up for
ORB features. This method is used through the Fast Library for Approximate
Nearest Neighbors (FLANN) by the same authors, which is now part of OpenCV.

When matching keypoints are found for pair of grids, algorithm estimates
transformation between grids. Traditional image stitching algorithms are using
homography in projective spaces, which is a good for modelling perspective affect-
ing camera images. For occupancy grids this is not an expected transformation
under normal circumstances, and even when there are errors in maps produced
by SLAM algorithm, these are not errors produced by projective transformation.

For occupancy grids I propose a different model based on reduced affine
transformation. This is a partial affine transformation with 4 degrees of free-
dom. This model extends the usual definition of map-merging problem as defined
in [LLL+12] by allowing scaling. Scaling allows maps to have different resolutions,
which may occur in heterogeneous multi-robot systems.

Definition 1 (Reduced affine transformation). For given matrices R (rotation),
S (scaling), T (translation), where

R =

(
cos θ − sin θ
sin θ cos θ

)
(2.1)

S =

(
s 0
0 s

)
(2.2)

T =

(
tx
ty

)
(2.3)

we define matrix of reduced affine transformation as

10

A =
(
RS|T

)
=

(
cos(θ)s − sin(θ)s tx
sin(θ)s cos(θ)s ty

)
(2.4)

As usual when representing translations we will work with reduced affine
transformation in homogeneous coordinates, where this transformation is homo-
morphism. Therefore we extend A as

A′ =

cos(θ)s − sin(θ)s tx
sin(θ)s cos(θ)s ty

0 0 1

 (2.5)

to represent reduced affine transformation in homogeneous coordinates space.
For pair of matched points X = (x1, x2, 1)>, Y = (y1, y2, 1)> we can then

solve

A′X = Y (2.6)cos(θ)s − sin(θ)s tx
sin(θ)s cos(θ)s ty

0 0 1

x1x2
1

 =

y1y2
1

 (2.7)

for (cos(θ)s, sin(θ)s, tx, ty)> to obtain transformation between grids. This
system is easy to solve and we need only 2 points to get the transformation.

Reduced affine transformation is chosen to model transformation between
initial robot poses in 2D space. Each robot can start at different position and have
different orientation in terms of rotation in 2D space. Scaling enables occupancy
grids to have different resolution.

We combine (2.6) with RANSAC [FB81] method to obtain final transforma-
tion. RANSAC is used to estimate homography in image stitching method pro-
posed in [BL06]. We use the same method for robust estimation of reduced affine
transformation. Using RANSAC has another advantage. We can use number of
inliers from RANSAC to estimate transformation accuracy.

For each pair we compute transformation confidence as ψ
8+0.3·n , where n is

number of matches and ψ is number of inliers in RANSAC. Model for confidence
is based on probabilistic model for image match verification proposed in [BL06].

For RANSAC I have chosen following parameters: maximum number of iter-
ations 500, good ratio 0.5. Same parameters are used internally in OpenCV. If
maximum number of iterations is reached and transformation therefore could not
be found, its confidence is set to 0.

2.4 Finding largest connected component

As seen in Figure 2.2 it is common that some transformations can not be estab-
lished between grids. Graph of matchings therefore can have multiple connected
components. We need to deal with missing transformations between components
to estimate transformations for grids.

We could include all components to resulting map and position them such
they don’t overlap. This setup would preserve all information, but resulting map

11

can’t be topologically correct. Another approach is to choose only one connected
component for final merge. This approach preserves map’s topological accuracy.
I have chosen the latter approach.

As a next step in the algorithm we filter out matches according to selected
probabilistic model for accuracy. Matches with computed confidence less than or
equal to 1.0 are not further considered.

After matches are filtered, largest component is found in the matches graph.
Transformation will be established only for grids in largest connected component.

Choosing largest connected component might seem natural, but this approach
has its caveats. Largest connected component represents matches between largest
number of robots, however maps from the largest number of robots does not need
to represent largest area in the map. This might be a problem especially in
systems with heterogeneous robots, where mapping performance differs greatly
between robots. Also some parts of maps might be much harder for robots to
explore and despite large number of robots in such an area, produced map may
be smaller than map produced by other group of robots (represented in graph as
smaller component).

Modifications of this algorithm might choose to find weighted largest con-
nected component in matchings graph. Weight could be based on discovered
area in each map, such that the largest weighted connected component would
represent largest discovered area.

I have chosen to use unweighted largest connected component, because it is less
computationally expensive (weighting grids to represent discovered area in each
grid require visiting each cell of each grid). Algorithm using unweighted largest
connected component showed good results in tested scenarios, see Section 4.4.
Approach using weighted components needs to be evaluated for more robots and
larger environments.

2.5 Estimate final transformation

Remaining graph is connected and it is possible to estimate transformation for
all grids. We have estimated transformations between all pairs of grids, but edges
for some pairs in the connected component may be missing, because they were
filtered out in previous steps.

Final part of the algorithm estimates transformation to global reference frame
for each grid. We can choose reference frame of one of the grids as global reference
frame, because we are interested in relative transformations between all grids for
merging. This will be the reference frame of merged map.

Selecting global reference frame is not enough, because there may exist mul-
tiple paths from grid selected as reference frame to other grids. We construct
maximum spanning tree to break these cycles. Edges are weighted with number
of inliers to prefer stronger matches. This approach is routinely used for image
stitching, the same construct is implemented in OpenCV.

Finally we can walk through spanning tree to obtain final transformations.
There is now only one path from grid selected as reference frame to other grids.
For each grid we can get the final by compositing pairwise transformations along
the path. As we are working in homogeneous coordinates this is equivalent to

12

matrix product of pairwise transformations along the path. This can be done in
linear time with Algorithm 3.

Algorithm 3 Algorithm estimating transformations to global reference frame
from pairwise transformations on spanning tree.

Input: t maximum spanning tree on grids, P(i,j) pairwise reduced affine trans-
formation in homogeneous coordinates between grids i, j.

Output: Ti∀i ∈ V transformations to global reference frame
1: procedure estimateFinalTransform(t = (V,E), Pe∀e ∈ e)
2: e← edges of t sorted by discover time in breadth-first search (BFS) start-

ing from grid with global reference frame . using BFS or depth-first search
(DFS) does not matter here

3: ∀Ti : Ti ← I . initialize transformations with identity
4: for all (i, j) in e do Tj ← TiP(i,j)

5: end for
6: end procedure

13

3. ROS packages

It this section I present ROS packages developed as part of this work. Merging
algorithm presented in Section 2 was implemented in ROS package multirobot -

map merge. To evaluate performance of map-merging in multi-robot exploring
scenarios I have developed the second package, explore lite for autonomous
exploring.

Both packages are now part of the ROS distribution. Documentation for
packages is available online at the ROS wiki pages:

• http://wiki.ros.org/multirobot_map_merge

• http://wiki.ros.org/explore_lite

This documentation is also reproduced as Appendix A and Appendix B.

3.1 multirobot map merge package

multirobot map merge package solves several problems for merging maps from
multiple robots. Dynamic robot discovery, initial poses estimation and map com-
position.

Dynamic robot discovery allows efficient easy-to-use auto-configuration of the
package and also allows number of robots to change during exploring. This de-
sign allows robots to be launched and assigned to system based on exploration
progress.

Initial poses estimation is the key feature of this package allowing merging
maps for robots with unknown initial positions. For situations where robots initial
positions are known (simulations) or can be measured with required precision
(required equipment is available on robots or at the starting place) multirobot -

map merge package supports merging with user-provided initial robots positions.
This was also used for producing a reference map to evaluate performance of
estimation algorithm.

Regardless of how transformation between grids have been acquired (from user
supplied initial poses or estimated by the algorithm) map composition is the final
step to produce a merged map. This phase must be able to deal with different
map sizes between robots, different map resolutions and be able to apply scaling,
rotation and translation transformations.

3.1.1 Inter-robot communication

Running map-merging for multiple physical robots requires network connection
between robots. Managing this connection is deliberately out-of-scope of this
package. However, solutions exists in ROS to make this task relatively easy.

First of all ROS is designed to work natively across multiple computers. This
setup requires almost no configuration and is supported by default. In this con-
figuration one of the computers/robots runs a roscore service (also referred as
ROS master), which acts as a directory listing (broker) service. All ROS topics
and ROS services are available transparently through the whole network.

14

http://wiki.ros.org/multirobot_map_merge
http://wiki.ros.org/explore_lite

Main disadvantage of this setup is a single-point-of-failure roscore service.
Although the communication in the ROS network is always peer-to-peer, roscore
is required for advertisement, enumerating topics and establishing communica-
tion. This might not be acceptable for exploration robots communicating over
unreliable link.

ROS community is aware that single ROS master is a limiting factor for many
applications. There is a ROS Multi-master Special Interest Group (SIG) [Mul15]
coordinating efforts for multi-master support.

As part of these efforts there exists the multimaster fkie package, described
in technical report [HH15], which allows setting a multi-master network trans-
parently.

multirobot map merge can work transparently with both configurations as
it is not tied to any particular communication between robots, allowing a great
flexibility. It can take an advantage of native ROS communication in environ-
ments with reliable network link (such as a simulation running on a cluster) and
use a user provided communication (such as the multimaster fkie package) for
exploring harsh environments with unrelible link. This is an important difference
to framework presented in [ANB14], which always depends on custom ad-hoc
messaging.

3.1.2 Dynamic robot discovery

This package allows merging maps from arbitrary number of robots. To make
configuration of map-merging easy, robots are auto-discovered during the merging
procedure. This also allows robots to be added or removed during exploring.

This package requires only maps produced by SLAM and does not depend on
any additional info about robots. Robot discovery is implemented by scanning
available ROS map topics, each map topic is being considered as one robot (one
map to be added for merging). This approach is inspired by a discovery algorithm
introduced in [YFLB14].

Robot discovery runs in parallel to map-merging at rate which is configurable.
Robot discovery therefore does not negatively impacts map-merging performance,
when configured at low rate.

3.1.3 Initial poses estimation

Initial poses estimation is necessary for situations where initial robot positions
could not be measured with required precision by user. Package uses algorithm
discussed in Section 2, which was specifically designed for this purpose. When
robots are starting from different places, getting the initial positions might be
difficult without proper equipment. Even when robots are starting exploration
from common place, it might be more comfortable for users to let merging system
estimate initial positions itself. In this situation merging algorithm can take the
advantage of initial overlapping area and produce high-quality merges quickly.

Estimation is designed to run in parallel to other parts of this package. Esti-
mation rate is user-settable.

15

3.1.4 Map composition

After estimating transformation between grids, map composition combines final
merged map. For map-merging task I have adapted the relevant code from occu-

pancy grid utils package [Mar14]. This package is no longer available in current
ROS distribution, current version is maintained by Clearpath Robotics in github
repository [Rob16]. I have contributed some fixes to this repository, but as the
code of occupancy grid utils is mostly obsolete in current ROS distribution
(most of the functionality is provided by ROS navigation stack), I have decided
to incorporate merging-related code directly to multirobot map merge package.

The code is robust, it can deal with all differences in size and resolution
to allow merging maps in heterogeneous systems. This code however does not
provide expected performance for merging big maps from large number of robots.
In future versions of multirobot map merge, this algorithm may be changed for
more efficient one. Current solution works well for smaller groups of robots (up
to 10 robots) on low end hardware.

Merging frequency is user-adjustable and can be increased to deliver faster
update frequency.

3.2 explore lite package

explore lite package provides ROS node for autonomous exploration. Although
there exists ROS packages for exploring [KMG+14], [DuH10], [Bov15] and ex-
ploring node from [ANB14], none of the existing packages met my requirements
out-of-the-box. [KMG+14] is complex and includes custom navigation stack,
[DuH10], [Bov15] are not available as of Apr 2016 for current version of ROS and
[ANB14] offers some multi-robot coordination capabilities, but relies on custom
ad-hoc communication between robots, which is an approach different from the
map-merging node presented in Section 3.1.

For purposes of evaluation of the presented map-merging node, I have devel-
oped a new exploration node for ROS. This node is based on code of [DuH10]
with major improvements. Main design goal of this node is light-weightiness. I
have needed to allow running more robots in a testing environment with limited
resources. Although the node does not have multi-robot coordination capabilities
as this was not required for running selected simulation scenarios, this node must
handle properly ROS namespaces and tf namespaces to allow running multiple
robots under the same ROS master. As a result of these requirements major
parts of the node have been redesigned.

3.2.1 Navigation

explore lite uses ROS standard stack for navigation through the move base

node. The same approach is used by [DuH10], [Bov15] and [ANB14].

3.2.2 Map sourcing

Exploring packages, which use the ROS navigation stack [Bov15] and [DuH10] are
using a local costmap provided by ROS navigation packages through Costmap-

16

2DROS. The local costmap is then used to search for frontiers and finding paths
to frontiers from the robot’s position.

Costmap2DROS is a feature-rich framework for building costmaps, allowing
usage of plugins and several layers for costmaps. It can build costmaps from
various sources including laser scans and handle inflating obstacles on-the-fly.
Although all these features are great when building a costmap for robot navigation
purposes it brings an unnecessary overhead when using the costmap for searching
for frontiers and other exploration purposes.

For the explore lite package I have introduced a custom costmap client

code, which subscribes to a map source in the ROS and provides a local costmap
with only minimal processing. This reduces the overhead significantly compared
to the situation when the costmap is build by ray-tracing from scans in explore
node. Provided local costmap is then used for both frontier search and planing.

Choosing the right map source can also improve frontier discovery accuracy.
Constantly better results has been achieved when the local costmap has been
built from SLAM-constructed map, instead of a laser ray-traced costmap, such
as the costmap created by move base node.

3.2.3 Frontier search

Frontier search algorithm is based on the code in [DuH10]. Minor changes have
been made to improve performance.

During frontier search frontiers are weighted, so that frontier with biggest
weight could be forwarded to navigation node (move base) as the next goal. To
weight frontiers explore lite needs to run at least basic path planning to get
distance to frontier.

This planning is done through NavfnROS planner. During development it was
apparent that this planner have several limitations, limiting its use to Costmap-

2DROS as a source of costmap where planning happens. I have submitted a patch
extending NavfnROS planner in the core ROS navigation stack. These changes
have been accepted for the upcoming ROS Kinetic Kame release.

17

4. Evaluation

To evaluate map-merging algorithm introduced in Section 2 and to test perfor-
mance of implemented map-merging node described in Section 3.1, I used 2 data
sources. Data from simulation running several P3DX robots is the first source.
Map-merging node was running through the whole exploring session testing on-
line behaviour of the algorithm. Maps produced by SLAM on Massachusetts
Institute of Technology (MIT) Stata Center dataset presented in [FJKL13] are
the second data source. MIT dataset is produced by a single PR2 robot start-
ing from different locations. Although this data does not come from multi-robot
mapping, it is possible to test offline merging performance.

4.1 Simulation setup

I used VREP simulator for experiment. All simulated robots were Pioneers P3-
DX, which formed a homogeneous exploring team. Robots were set up using
p3dx robot package available at [HJ16], which also configures SLAM and naviga-
tion for robots. Robots were using the hector slam package [KMG+14] providing
SLAM algorithm and move base package [MELF16], part of the ROS navigation
stack, providing navigation for robots.

Cluster of 5 computers was formed to run simulator, robots, map-merging
and exploring nodes. ROS network was configured across all workstations using
a single ROS master running roscore. Every robot was using its own ROS
namespace for topics and was using a prefix for published tf frames to allow
running multiple robots under the same ROS master. This setup is well supported
in p3dx robot package.

While VREP is powerful and feature-rich simulator, its usage for multi-robot
simulation have some limitations. First of all, VREP support for headless mode
(running without graphical environment) is not complete. Virtual framebuffer or
similar technology is required, which adds performance overhead. Further VREP
does not scale properly to large number of threads, limiting number of robots for
which simulation runs at bearable speed. For this reason it wasn’t possible to
test more than 4 robots with this setup.

4.2 MIT dataset

MIT dataset is data available online in the form of rosbags [FJKL13]. Data was
captured by a PR2 robot mapping multi-floor MIT building. I have used only
datasets from the second floor.

For all rosbags I have created maps using the hector slam package. It is
the same SLAM algorithm, which was used in simulation. This resulted in 36
occupancy grid maps with sizes ranging from 2048 × 2048 cells to 5585 × 4895
cells.

Produced maps have been statically served in ROS. This setup is therefore
limited to test offline merging, but allows a greater number of maps to participate
in merging.

18

Figure 4.1: Scene for experiment with 3 robots in VREP simulator. Robot posi-
tions in scene are used as initial positions of robots for experiment.

It is important to note that presented maps has been created by a single robot
in a multi-session mapping. It is not a result of multi-robot mapping, although
the robot initial positions vary between sessions and produced maps are similar
to maps we would expect from multi-robot mapping.

4.3 Merging with known initial positions

Presented merging node can work with both known and unknown initial positions
of robots. In the fist case the node uses initial positions to obtain transformation
between grids. This setup was used in this experiment. Maps in this mode are
not required to have any overlapping area.

Simulation scene is shown in Figure 4.1. Figure 4.2 shows initial maps, Fig-
ure 4.3 shows maps after simulation ended. Note that Figures 4.2, 4.3 shows
maps rotated compared to Figure 4.1.

Video capturing map-merging during whole simulation, rosbag with map top-
ics, scene with 3 robots for VREP simulator and full quality graphics are attached.

4.4 Minimal overlapping area

Map-merging algorithm presented in Section 2 relies on overlapping areas of oc-
cupancy grids to produce a merged map. Minimal overlapping area to produce a
reliable merge depends on environment being explored. Areas with high number
of features in occupancy grids require small overlaps and vice versa.

Experiments showed that a reliable merge requires only about 90 inliers, some-
times only 80 inliers is enough to produce a correct transformation as seen in Fig-
ure 4.4. This excerpt is from the log of map-merging node presented in Section 3.1
acquired during simulation.

19

Figure 4.2: Initial maps produced by robots during experiment in the simulator.
Merged map is produced with knowledge of initial positions and can be therefore
produced even without overlapping areas. In this situation merged map can be
sparse.

20

Figure 4.3: Final maps produced in the simulator. Merged map is produced with
knowledge of initial positions.

21

AffineMatcher: have 121 matches

estimate:

[1.002576035215622, 0.00299917716022613, 62.49276756175958;

-0.00299917716022613, 1.002576035215622, -240.2015971108993]

num_inliers 83

AffineMatcher: have 147 matches

estimate:

[1.002175802299877, -0.0004136975345276905, -15.26120294301828;

0.0004136975345276905, 1.002175802299877, -120.7595895934327]

num_inliers 95

AffineMatcher: have 193 matches

estimate:

[1.000933706668138, 0.001232315845354937, 78.01218357952351;

-0.001232315845354937, 1.000933706668138, -119.6792960984003]

num_inliers 157

Figure 4.4: Excerpt from the attached log of the map-merging node captured
during simulation. Shows output of matching phase of the algorithm for 3 pairwise
matches along with number of inliers.

Full log containing number of matches and number of inliers required to pro-
duce a transformation along with other details is available in the attachments.
Scene for VREP simulator, merged map and maps produced by robots are also
attached. Maps has been taken as screenshots in rviz visualiser.

Simulation featured 3 robots exploring common area. Figure 4.1 shows the
scene used in the experiment and initial robots positions. Figure 4.5 shows maps
produced by SLAM and the merged map produced by a map-merging node with
unknown initial positions after mapping finished.

Simulation showed that a reliable merge between maps can be produced for
5 − 6 overlapping rooms. After transformation is estimated, produced map is
comparable to the reference map.

4.5 Retaining largest transformation

During online merging the merging algorithm presented in Section 2 is launched
repeatedly on growing grids. It might seem natural to preserve the transformation
between largest number of grids. If the algorithm was able to produce a merge
between n grids in one point of time, it might seem like a good idea to preserve this
transformation and use it for merging grids when the transformation is estimated
for less than n grids.

Experiments showed that this approach produce worse results than approach
always using the newest transformation. Largest transformation retaining be-
haviour is problematic when there is not enough overlapping area between grids.
Experiment presented in Section 4.3 have maps that have very small overlaps.

Map-merging with unknown initial positions with largest transformation re-
taining launched in the same experiment as presented in Section 4.3 shows the key
problem of a such approach. Problem occurs when incorrect merge is produced

22

Figure 4.5: Maps produced by a multi-robot mapping in the simulator with 3
robots. The merged map (bottom right) is estimated by the map-merging node
without knowledge of initial positions. Simulated scene can be seen in Figure 4.1.
Positions of the robots are final positions where robots finished mapping.

23

Figure 4.6: Map-merging with largest transformation retaining. From the left:
Maps have no overlaps, unable to merge more than a single map. Incorrect
transformation estimated due to too small overlaps. Overlapping space is still
too small to produce a merge, but incorrect transformation was rejected. Due to
largest transformation retaining incorrect merge is still produced.

due to too small overlaps. As shown in Figure 4.6, incorrect unstable transforma-
tions, which are usually corrected quickly with small maps changes, are preserved
due to largest transformation retaining after the estimation algorithm is no longer
producing incorrect transformation. Incorrect transformations can be preserved
for a long period of time with largest transformation retaining behaviour, when
there is not enough overlapping area in the maps, so the incorrect transformation
can be replaced with correct larger transformation.

Based on this and others experiments largest transformation retaining be-
haviour has been removed from map-merging node presented in Section 3.1.

Data for this experiment including rosbag with map topics, scene for VREP
simulator and presented maps is available in the attachments.

4.6 Probability model evaluation

Data from MIT dataset is complex and difficult for SLAM to produce a map
without errors. In some cases overlapping areas does not exists. Such data is
therefore suitable to test capabilities of map merging node to reject incorrect or
non-mergeable maps.

Figure 4.7 shows 36 maps obtained from MIT dataset, all of them are from
second floor. Empty maps are caused by SLAM node failure. Note that maps
contain many errors, some of them are completely broken as SLAM localization
failed (this can’t be prevented by the map-merging node). hector slam node
uses only scans from base-mounted laser, better results might be achieved with
different SLAM approaches using stereo cameras and 3D scanning.

This dataset is very difficult to merge properly, because most of the maps
are broken. It is possible to filtrate broken maps from merge, because the area
where mapping failed should not match any other maps, but this is very difficult
when most of the maps are broken. Furthermore broken maps tend to have more
features than correct maps of the same area, these features than may cause invalid
matches between two broken maps to be generated making rejecting broken maps
even more difficult.

24

Figure 4.7: 36 maps created by hector slam from MIT dataset. Note that the
most of the maps contain serious mapping errors. These errors usually come from
SLAM invalid estimation of rotation, generating misaligned walls and corners.
Because of the new walls and corners, broken maps tend to have more features,
especially in broken areas, making filtering of broken maps hard.

25

Figure 4.8: Merged map created from 36 maps shown in Figure 4.7. 12 maps
are included in the merged map. Confidence threshold is set to 1.0. Although
the map-merging algorithm was able to reject 24 maps, the merged map still
includes severely broken maps. Broken areas are feature-rich and thus a wrong
transformation is estimated.

Merging algorithm uses thresholding described in Section 2.4 based on prob-
abilistic model to reject low-confident matches. I have experimented with confi-
dence threshold, which directly affects which matches will be present in merging
(matches with low confidence are not considered). Figures 4.8, 4.9 and 4.10 show
maps merged with confidence thresholds 1.0, 1.5 and 2.0 respectively. Note that
number of maps included in the merged map goes from 12 to 3.

Experiment has showed that increasing the confidence threshold to values
greater that 1.0 may lead to better results when maps are difficult to merge.
Increasing threshold decreases number of maps merged significantly.

Data used for this experiment are available in the attachments. This data
consist of maps produced by SLAM on MIT dataset and merged maps for tested
thresholds. Raw data of MIT dataset are available online [FJKL13].

26

Figure 4.9: Merged map created from 36 maps shown in Figure 4.7. 9 maps
are included in the merged map. Confidence threshold is set to 1.5. This map
contains even less maps than Figure 4.8, but threshold is not high enough to
reject all broken maps. Severely broken maps are still included in the merged
map. Broken areas in the maps were matched together. These areas are relatively
feature-rich and matches between them has got enough RANSAC inliers to be
considered confident enough.

27

Figure 4.10: Merged map created from 36 maps shown in Figure 4.7. 3 maps
are included in the merged map. Confidence threshold is set to 2.0. All broken
maps have been rejected. The merged map is correct, transformation between
grids was estimated correctly. Maps included in this merged map are small, for
larger maps the SLAM algorithm mostly failed on presented dataset as seen in
Figure 4.7.

28

5. Future works

This work has focused on map-merging of two-dimensional maps. Map-merging
for tree-dimensional maps is a challenging problem in robotics. Despite two-
dimensional maps are still routinely used for navigation in systems using tree-
dimensional SLAM algorithms, tree-dimensional maps are becoming more com-
mon in robotics. While two-dimensional maps may provide a better overview
for a human eye, three-dimensional maps contain more information and there-
fore might provide better accuracy for map-merging. A hybrid solution capable
working with both two-dimensional and tree-dimensional maps might bring the
best from both worlds together.

Although the merging algorithm has been partially evaluated on data captured
by a PR2 robot, online properties of the merging algorithm has been evaluated
only in the simulator. Evaluation with physical robots is yet to be done; building
a multi-robot exploring system is purposely out of scope of this work. However
I expect performance for real-world applications to be comparable to the experi-
ments in the simulator or even better, because indoor physical environments are
usually more feature-rich than scenarios in the simulator.

29

Conclusion

Map-merging algorithm presented in Section 2 can efficiently work with arbitrary
number of robots. It scales well to large multi-robot systems and is designed
with parallel processing in mind. The algorithm is suitable for heterogeneous
multi-robot swarms and is easily deployable with various SLAM algorithms.

Proposed algorithm is based on image processing techniques and uses OpenCV
through implementation. I have proposed a project implementing presented affine
transformation estimation for OpenCV stitching pipe. This project have been
accepted for Google Summer of Code 2016.

The algorithm is implemented in multirobot map merge ROS package pre-
sented in Section 3.1. This implementation is flexible, imposes low requirements
on participating robots, does not depend on any particular communication be-
tween robots and does not have any presumptions on underlying mechanisms
of SLAM algorithms used by robots. Those properties allows easy deployment
in ROS environment for both existing systems and systems build from scratch.
Performance of the implemented initial pose estimation algorithm is sufficient
to merge maps from large number of robots (more than 30) on a laptop-grade
processor. For large number of robots map composing is the bottleneck for map-
merging node, this will be addressed in the next version of the map-merging
node.

For purposes of evaluation I have created explore lite package presented in
Section 3.2 for autonomous exploring. Both packages have been accepted by the
ROS project and are included in the ROS binary distribution.

During development I have make contributions to the ROS project includ-
ing changes to the ROS navigation stack and ROS wiki. Changes for the ROS
navigation stack have been accepted and will be included in the upcoming ROS
release, changes to the ROS wiki (support for HTML5 videos) are already online.

The map-merging algorithm has been evaluated in the simulation and showed
reliable estimates for maps with enough overlapping area. Necessary overlaps
range from 5 to 7 rooms in a feature-poor simulation. Behaviour for online
merging has been studied and implementation has been adapted to produce a
consistent map when there is not enough overlapping space.

30

Bibliography

[ANB14] T. Andre, D. Neuhold, and C. Bettstetter. Coordinated multi-robot
exploration: Out of the box packages for ROS. In IEEE GLOBECOM
WiUAV Workshop, December 2014.

[AOV12] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina key-
point. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 510–517, June 2012.

[AS11] Pablo F. Alcantarilla and TrueVision Solutions. Fast explicit diffusion
for accelerated features in nonlinear scale spaces. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 34(7):1281–1298, 2011.

[BL06] Matthew Brown and David G. Lowe. Automatic panoramic image
stitching using invariant features. International Journal of Computer
Vision, 74(1):59–73, 2006.

[Bov15] Paul Bovbel. frontier exploration. http://wiki.ros.org/

frontier_exploration, 2015. [Online; accessed 2016-05-20].

[Car08] Stefano Carpin. Fast and accurate map merging for multi-robot sys-
tems. Autonomous Robots, 25(3):305–316, 2008.

[CLSF10] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal
Fua. Brief: Binary robust independent elementary features. Computer
Vision–ECCV 2010, pages 778–792, 2010.

[CWBD12] A. Cunningham, K. M. Wurm, W. Burgard, and F. Dellaert. Fully
distributed scalable smoothing and mapping with robust multi-robot
data association. In IEEE International Conference on Robotics and
Automation (ICRA), pages 1093–1100, May 2012.

[DuH10] Charles DuHadway. explore. http://wiki.ros.org/explore, 2010.
[Online; accessed 2016-05-20].

[FB81] Martin A Fischler and Robert C Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[FJKL13] Maurice Fallon, Hordur Johannsson, Michael Kaess, and John J
Leonard. The mit stata center dataset. The International Journal
of Robotics Research, 32(14):1695–1699, 2013.

[HH15] S. Hernández and F. Herrero. Multi-master ROS systems. Technical
Report IRI-TR-15-01, Institut de Robòtica i Informàtica Industrial,
CSIC-UPC, 2015.

[HJ16] Jiri Horner and Lukas Jelinek. p3dx robot. https://github.com/

hrnr/robo-rescue, 2016. [Online; accessed 2016-05-01].

31

http://wiki.ros.org/frontier_exploration
http://wiki.ros.org/frontier_exploration
http://wiki.ros.org/explore
https://github.com/hrnr/robo-rescue
https://github.com/hrnr/robo-rescue

[KFL+03] K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart. Map
merging for distributed robot navigation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 1, pages 212–
217, October 2003.

[KMG+14] Stefan Kohlbrecher, Johannes Meyer, Thorsten Graber, Karen Pe-
tersen, Uwe Klingauf, and Oskar von Stryk. RoboCup 2013: Robot
World Cup XVII, chapter Hector Open Source Modules for Au-
tonomous Mapping and Navigation with Rescue Robots, pages 624–
631. Springer Berlin Heidelberg, 2014.

[LL11] Heon-Cheol Lee and Beom-Hee Lee. Improved feature map merg-
ing using virtual supporting lines for multi-robot systems. Advanced
Robotics, 25(13–14):1675–1696, 2011.

[LLL+12] H. C. Lee, Seung-Hwan Lee, Tae-Seok Lee, Doo-Jin Kim, and B. H.
Lee. A survey of map merging techniques for cooperative-slam. In
9th International Conference on Ubiquitous Robots and Ambient In-
telligence (URAI), pages 285–287, November 2012.

[Low04] D.G. Lowe. Method and apparatus for identifying scale invariant
features in an image and use of same for locating an object in an
image. http://www.google.com/patents/US6711293, March 2004.
US Patent 6,711,293.

[LPP+13] M. T. Lázaro, L. M. Paz, P. Piniés, J. A. Castellanos, and G. Grisetti.
Multi-robot slam using condensed measurements. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
1069–1076, November 2013.

[Mar13] J.A.S. Martins. MRSLAM – Multi-Robot Simultaneous Localization
and Mapping. Master of Science Dissertation. University of Coimbra,
2013.

[Mar14] Bhaskara Marthi. occupancy grid utils. http://wiki.ros.org/

occupancy_grid_utils, 2014. [Online; accessed 2016-05-20].

[MELF16] Eitan Marder-Eppstein, David V. Lu, and Michael Ferguson. move -
base. http://wiki.ros.org/move_base, 2016. [Online; accessed
2016-05-20].

[ML12] Marius Muja and David G. Lowe. Fast matching of binary features.
In Computer and Robot Vision (CRV), pages 404–410, 2012.

[Mul15] Multimaster special interest group. http://wiki.ros.org/sig/

Multimaster, 2015. [Online; accessed 2016-05-20].

[Rob16] Clearpath Robotics. occupancy grid utils. https://github.com/

clearpathrobotics/occupancy_grid_utils, 2016. [Online; ac-
cessed 2016-05-20].

32

http://www.google.com/patents/US6711293
http://wiki.ros.org/occupancy_grid_utils
http://wiki.ros.org/occupancy_grid_utils
http://wiki.ros.org/move_base
http://wiki.ros.org/sig/Multimaster
http://wiki.ros.org/sig/Multimaster
https://github.com/clearpathrobotics/occupancy_grid_utils
https://github.com/clearpathrobotics/occupancy_grid_utils

[RRKB11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An effi-
cient alternative to SIFT or SURF. In 2011 International Conference
on Computer Vision, pages 2564–2571, November 2011.

[Sch12] Philipp M. Scholl. mapstitch. http://wiki.ros.org/mapstitch,
2012. [Online; accessed 2016-05-20].

[SS98] Heung-Yeung Shum and Richard Szeliski. Construction and refine-
ment of panoramic mosaics with global and local alignment. In Sixth
International Conference on Computer Vision (ICCV’98), pages 953–
958, Bombay, January 1998. IEEE Computer Society.

[Sze04] Richard Szeliski. Image alignment and stitching: A tutorial. Technical
Report MSR-TR-2004-92, Microsoft Research, October 2004.

[TLKJ10] F. Tungadi, W. L. D. Lui, L. Kleeman, and R. Jarvis. Robust online
map merging system using laser scan matching and omnidirectional
vision. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 7–14, October 2010.

[WJL+12] K. Wang, S. Jia, Y. Li, X. Li, and B. Guo. Research on map merging
for multi-robotic system based on rtm. In International Conference
on Information and Automation (ICIA), pages 156–161, June 2012.

[XXL+15] Xin Xie, Yin Xu, Qing Liu, Fengping Hu, Tijian Cai, Nan Jiang, and
Huandong Xiong. A study on fast sift image mosaic algorithm based
on compressed sensing and wavelet transform. Journal of Ambient
Intelligence and Humanized Computing, 6(6):835–843, 2015.

[YFLB14] Zhi Yan, Luc Fabresse, Jannik Laval, and Noury Bouraqadi. Team
size optimization for multi-robot exploration. In Simulation, Mod-
eling, and Programming for Autonomous Robots: 4th International
Conference, SIMPAR 2014, Bergamo, Italy, pages 438–449. Springer
International Publishing, October 2014.

[ZR06] X. S. Zhou and S. I. Roumeliotis. Multi-robot slam with unknown
initial correspondence: The robot rendezvous case. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
1785–1792, October 2006.

33

http://wiki.ros.org/mapstitch

List of Figures

2.1 OpenCV Stitching pipeline. 7
2.2 Matches between occupancy grids during map merging. 10

4.1 Scene for experiment with 3 robots. 19
4.2 Initial maps produced by robots in the simulator. 20
4.3 Final maps produced in during experiment the simulator. 21
4.4 Excerpt from the attached log of the map-merging node. 22
4.5 Maps produced by a multi-robot mapping in the simulator. 23
4.6 Map-merging with largest transformation retaining. 24
4.7 36 maps created by hector slam from MIT dataset. 25
4.8 The merged map created with confidence threshold 1.0. 26
4.9 The merged map created with confidence threshold 1.5. 27
4.10 The merged map created with confidence threshold 2.0. 28

A.1 The merged map for 2 robots. 38
A.2 Architecture of multirobot map merge. 39

B.1 Visualisation of robot during exploring. 43
B.2 Architecture of explore lite . 44

34

List of Abbreviations

BFS breadth-first search. 12

DFS depth-first search. 12

FLANN Fast Library for Approximate Nearest Neighbors. 9

GPS Global Positioning System. 3

MIT Massachusetts Institute of Technology. 17, 23–25

OpenCV Open Source Computer Vision Library. 6, 8–11, 29

ORB Oriented FAST and Rotated BRIEF. 5, 7–9

RANSAC random sample consensus. 4, 7, 9, 10, 26

ROS Robot Operating System. ii, 2, 5, 6, 13–17, 29, 33, 34, 39

SIFT scale-invariant feature transform. 4, 8, 9

SIG Special Interest Group. 14

SLAM simultaneous localization and mapping. ii, 3–5, 8, 9, 14, 16, 17, 21,
23–25, 27–29

SURF Speeded Up Robust Features. 9

VREP Virtual Robot Experimentation Platform. ii, 17, 18, 21, 23

35

List of Attached Files

This is a list of files attached to this work. Source code is also available online,
see Appendices A B.

attachements.zip

merging-with-known-initial-positions experiment data, see 4.3
minimal-overlapping-area...................experiment data, see 4.4
retaining-largest-transformation..........experiment data, see 4.5
probability-model-evaluation...............experiment data, see 4.6
m-explore.........................source code for ROS packages, see 3

explore..see 3.2
doc.............................package and code documentation
include

explore

explore.hROS node
navfn ros.h.....ROS planner with extended API, see 3.2.3
explore frontier.h............................. see 3.2.3
costmap client.h see 3.2.2

launch

src

map merge.. see 3.1
doc.............................package and code documentation
test...gtest based tests
include

combine grids....implements algorithm presented in Section 2
occupancy grid utils.............................. see 3.1.4
map merge

map merge.hROS node
launch

src

36

Appendices

37

A. multirobot map merge

A.1 Package Summary

Merging multiple maps with knowledge of the initial relative positions of robots.

• Maintainer status: developed

• Maintainer: Jiri Horner <laeqten AT gmail DOT com>

• Author: Jiri Horner <laeqten AT gmail DOT com>

• License: BSD

• Source: git https://github.com/hrnr/m-explore.git (branch: master)

A.2 Overview

This package provides global map for multiple robots. It can merge maps from
arbitrary number of robots. It expects maps from individual robots as ROS topics.
If your run multiple robots under the same ROS master then multirobot map -

merge will probably work for you out-of-the-box. It is also very easy to setup an
simulation experiment.

If your run your robots under multiple ROS masters you need to run your
own way of communication between robots and provide maps from robots on
local topics (under the same master). Also if you want to distribute merged map
back to robots your communication must take care of it.

multirobot map merge does not depend on any particular communication
between robots.

A.3 Architecture

multirobot map merge finds robot maps dynamically and new robots can be
added to system at any time.

Figure A.1: Output of multirobot map merge, map merging node for ROS. The
merged map for 2 robots. Robots in the environment visualised on the left,
merged map on the right.

38

https://github.com/hrnr/m-explore.git

Figure A.2: Architecture of multirobot map merge, proposed map merging node
for ROS.

To make this dynamic behaviour possible there are some constrains placed on
robots. First all robots must publish map under <robot namespace>/map, where
topic name (map) is configurable, but must be same for all robots. For each robot
<robot namespace> will be of cause different.

This node support merging maps with known initial positions of the robots
or without. See below for details.

A.4 Merging modes

Two merging modes are currently supported as orthogonal options. If you know
initial positions of robots you may preferably use the first mode and get exact
results (rigid transformation will be computed according to initial positions). If
you don’t know robot’s starting points you are still able to use the second mode
where transformation between grids will be determined using heuristic algorithm.
You can choose between these two modes using the known init poses parameter.

A.4.1 merging with known initial positions

This is preferred mode whenever you are able to determine exact starting point
for each robot. You need to provide initial position for each robot. You need
to provide set of <robot namespace>/map merge/init pose parameters. These
positions should be in world frame. See Section A.5.

In this merging these parameters are mandatory. If any of the required pa-
rameters is missing robot won’t be considered for merging (you will get warning
with name of affected robot).

A.4.2 merging without known initial positions

If you can’t provide initial poses for robots this mode has minimal configuration
requirements. You need to provide only map topic for each robot. Transformation
between grids is estimated by feature-matching algorithm and therefore requires
grids to have sufficient amount of overlapping space to make a high-probability
match. If grids don’t have enough overlapping space to make a solid match,
merged map can differ greatly from physical situation.

39

Estimating transforms between grids is cpu-intesive so you might want to
tune estimation rate parameter to run re-estimation less often if it causes any
troubles.

A.5 ROS API

A.5.1 map merge

Provides map merging services offered by this package. Dynamically looks for
new robots in the system and merges their maps.

Subscribed Topics

<robot namespace>/map (nav msgs/OccupancyGrid)
Local map for specific robot.

<robot namespace>/map updates (map msgs/OccupancyGridUpdate)
Local map updates for specific robot. Most of the nav msgs/OccupancyGrid

sources (mapping algorithms) provides incremental map updates via this topic
so they don’t need to send always full map. This topic is optional. If your
mapping algorithm does not provide this topic it is safe to ignore this topic.
However if your mapping algorithm does provide this topic, it is preferable
to subscribe to this topic. Otherwise map updates will be slow as all partial
updates will be missed and map will be able to update only on full map
updates.

Published Topics

map (nav msgs/OccupancyGrid)
Merged map from all robots in the system.

Parameters

Robot Parameters Parameters that should be defined in the namespace of
each robot if you want to use merging with known initial poses of robots (known -

init poses is true). Without these parameters robots won’t be considered for
merging. If you can’t provide these parameters use merging without known initial
poses. See Section A.4
<robot namespace>/map merge/init pose x (double, default: <no default>)

x coordinate of robot initial position in world frame. Should be in meters. It
does not matter which frame you will consider global (preferably it should be
different from all robots frames), but relative positions of robots in this frame
must be correct.

<robot namespace>/map merge/init pose y (double, default: <no default>)
y coordinate of robot initial position in world frame.

<robot namespace>/map merge/init pose z (double, default: <no default>)
z coordinate of robot initial position in world frame.

<robot namespace>/map merge/init pose yaw (double, default: <no -

default>)

40

yaw component of robot initial position in world frame. Represents robot
rotation in radians.

Node Parameters Parameters that should be defined in the namespace of this
node.
~robot map topic (string, default: map)

Name of robot map topic without namespaces (last component of topic name).
Only topics with this name will be considered when looking for new maps to
merge. This topics may be subject to further filtering (see below).

~robot map updates topic (string, default: map updates)
Name of robot map updates topic of map msgs/OccupancyGridUpdate with-
out namespaces (last component of topic name). This topic will be always
subscribed in the same namespace as robot map topic. You’ll likely need to
change this only when you changed robot map topic. These topics are never
considered when searching for new robots.

~robot namespace (string, default: <empty string>)
Fixed part of robot map topic. You can employ this parameter to further
limit which topics will be considered during dynamic lookup for robots. Only
topics which contain (anywhere) this string will be considered for lookup.
Unlike robot map topic you are not limited by namespace logic. Topics will
be filtered using text-based search. Therefore robot namespace does not need
to be ROS namespace, but can contain slashes etc. This must be common
part of all robots map topics name (all robots for which you want to merge
map).

~known init poses (bool, default: true)
Selects between merging modes. true if merging with known initial positions.
See Section A.4

~merged map topic (string, default: map)
Topic name where merged map will be published.

~world frame (string, default: world)
Frame id (in tf tree) which will be assigned to published merged map. This
should be frame where you specified robot initial positions.

~merging rate (double, default: 4.0)
Rate in Hz. Basic frequency on which this node discovers merges robots maps
and publish merged map. Increase this value if you want faster updates.

~discovery rate (double, default: 0.05)
Rate in Hz. Frequency on which this node discovers new robots. Increase this
value if you need more agile behaviour when adding new robots. Robots will
be discovered sooner.

~estimation rate (double, default: 0.5)
Rate in Hz. This parameter is relevant only when merging without known
positions, see Section A.4. Frequency on which this node re-estimates trans-
formation between grids. Estimation is cpu-intensive, so you may wish to
lower this value.

~estimation confidence (double, default: 1.0)
Relevant only when merging without known positions, see Section A.4. Confi-
dence according to probabilistic model for initial positions estimation. Default
value 1.0 is suitable for most applications, increase this value for more confi-

41

http://wiki.ros.org/tf

dent estimations. Number of maps included in the merge may decrease with
increasing confidence. Generally larger overlaps between maps will be required
for map to be included in merge. Good range for tuning is [1.0, 2.0].

A.6 Acknowledgements

This package was developed as part of my bachelor thesis at Charles University
in Prague.

Idea for dynamic robot discovery is from map merging package from Zhi Yan.
Merging algorithm and configuration are different.

42

http://www.mff.cuni.cz/to.en/
http://wiki.ros.org/map_merging

B. explore lite

B.1 Package Summary

Lightweight frontier-based exploration.

• Maintainer status: developed

• Maintainer: Jiri Horner <laeqten AT gmail DOT com>

• Author: Jiri Horner <laeqten AT gmail DOT com>

• License: BSD

• Source: git https://github.com/hrnr/m-explore.git (branch: master)

B.2 Overview

This package provides greedy frontier-based exploration. When node is running,
robot will greedily explore its enviroment until no frontiers could be found. Move-
ment commands will be send to move base.

Unlike similar packages, explore lite does not create it’s own costmap.
Node subscribes to nav msgs/OccupancyGrid messages. Commands for robot
movement are send to move base node.

B.3 Architecture

explore lite uses move base for navigation. You need to run properly config-
ured move base node.

explore lite subscribes to a nav msgs/OccupancyGrid and map msgs/Occu-

pancyGridUpdate messages to construct a map where it looks for frontiers. You
can either use costmap published by move base (ie. <move base>/global cost-

map/costmap) or you can use map constructed by mapping algorithm (SLAM).
Better results were achieved on maps constructed by SLAM as they usually con-
tain less noise.

Figure B.1: Visualisation of robot during exploring. Frontiers found in the map
are visualised as blue arrows.

43

https://github.com/hrnr/m-explore.git
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base

Figure B.2: Architecture of explore lite, exploring node for ROS.

B.4 ROS API

B.4.1 explore

Provides exploration services offered by this package. Exploration will start im-
mediately after node initialization.

Actions Called

move base (move base msgs/MoveBaseAction)
move base actionlib API for posting goals. See move base#Action API for
details. This expects move base node in the same namespace as explore -

lite, you may want to remap this node if this is not true.

Subscribed Topics

costmap (nav msgs/OccupancyGrid)
Map which will be used for exploration planning. Can be either cost from
move base or map created by SLAM (see above). Occupancy grid must have
got properly marked unknown space, mapping algorithms usually track un-
known space by default. If you want to use costmap provided by move base
you need to enable unknown space tracking by setting track unknown space:

true.
costmap updates (map msgs/OccupancyGridUpdate)

Incremental updates on costmap. Not necessary if source of map is always
publishing full updates, i.e. does not provide this topic.

Published Topics

~frontiers (visualization msgs/MarkerArray)
Visualization of frontiers considered by exploring algorithm. Each frontier is
visualized as vector in the middle of frontier pointing towards unknown area.

Parameters

~robot base frame (string, default: base link)
The name of the base frame of the robot. This is used for determining robot
position on map. Mandatory.

~costmap topic (string, default: costmap)
Specifies topic of source nav msgs/OccupancyGrid. Mandatory.

~costmap updates topic (string, default: costmap updates)

44

http://wiki.ros.org/move_base
http://wiki.ros.org/move_base#Action_API
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base

Specifies topic of source map msgs/OccupancyGridUpdate. Not necessary if
source of map is always publishing full updates, i.e. does not provide this
topic.

~visualize (bool, default: false)
Specifies whether or not publish visualized frontiers.

~planner frequency (double, default: 1.0)
Rate in Hz at which new frontiers will computed and goal reconsidered.

~progress timeout (double, default: 30.0)
Time in seconds. When robot do not make any progress for progress -

timeout, current goal will be abandoned.
~potential scale (double, default: 1e-3)

Used for weighting frontiers. This multiplicative parameter affects frontier
potential component of the frontier weight.

~orientation scale (double, default: 0)
Used for weighting frontiers. This multiplicative parameter affects frontier
orientation component of the frontier weight.

~gain scale (double, default: 1.0)
Used for weighting frontiers. This multiplicative parameter affects frontier
gain component of the frontier weight.

~transform tolerance (double, default: 0.3)
Transform tolerance to use when transforming robot pose.

Required tf Transforms

global frame → robot base frame

This transformation is usually provided by mapping algorithm. Those frames
are usually called map and base link. For adjusting robot base frame name
see respective parameter. You don’t need to set global frame. The name for
global frame will be sourced from costmap topic automatically.

B.5 Acknowledgements

This package was developed as part of my bachelor thesis at Charles University
in Prague.

This project uses parts of frontier exploration algorithm from explore package
by Charles DuHadway.

45

http://www.mff.cuni.cz/to.en/
http://wiki.ros.org/explore

	Introduction
	Initial pose estimation problem
	Direct map merging
	Indirect map merging

	Merging algorithm
	Stitching pipeline
	Feature detection
	Pairwise matching
	Finding largest connected component
	Estimate final transformation

	ROS packages
	multirobot_map_merge package
	Inter-robot communication
	Dynamic robot discovery
	Initial poses estimation
	Map composition

	explore_lite package
	Navigation
	Map sourcing
	Frontier search

	Evaluation
	Simulation setup
	MIT dataset
	Merging with known initial positions
	Minimal overlapping area
	Retaining largest transformation
	Probability model evaluation

	Future works
	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	List of Attached Files
	Appendices
	Appendix multirobot_map_merge
	Package Summary
	Overview
	Architecture
	Merging modes
	merging with known initial positions
	merging without known initial positions

	ROS API
	map_merge

	Acknowledgements

	Appendix explore_lite
	Package Summary
	Overview
	Architecture
	ROS API
	explore

	Acknowledgements

