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Introduction 

The thesis is divided into three parts. The first part is a compilation of previous knowledge, which has 

the aim of introducing the physical background of the studied problem, related to the analysis of 

quantum flows of superfluid helium 4. It also includes a general description of the mathematical tools 

used to model the chosen problem. The second part presents the existence theory of the non-

stationary PDE system describing the Landau two-fluid model of superfluid helium. In it I specifically 

prove the existence of a weak solution of this system and its convergence to the initial conditions. 

The last part is focused on a number of numerical simulations of this system of equations, based on 

actual experimental conditions, that is, the described numerical methods are applied on the solution 

of a real problem. 

The introduction, as just mentioned, is motivated by two goals: one is to introduce the reader to 

some of the physical problems connected with superfluid helium flows, including the existence of 

quantized vortices; the other is focused on the description of the mathematical tools used in the 

second part, that is, the existence theory. The description of the physics of superfluid helium is 

divided into three parts. The first one is focused on general properties, the second part is on 

quantized vortices and the third one introduces the two-fluid Landau model. The thesis is written 

either for a mathematician or for a physicist, who has basic knowledge of mathematical and 

functional analysis. 
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Helium 4 – normal fluid and superfluid 

Helium is a chemical element. It was discovered in the spectrum of sunlight in 1868 and it was named 

by Lockyer from Helios, which means sun in Greek. Helium, which was isolated from uranium 

minerals by Ramsay in 1895, is, at room temperature and atmospheric pressure, a transparent gas. 

We know two isotopes,    
  and    

 , which have different physical properties. The atoms of    
  

are fermions while    
  ones are bosons. This thesis is focused only on    

 . To obtain more 

information on    
 , see, for example, [1]. 

Helium was first liquefied in 1908 in Leiden by the Dutch physicist H. Kamerlingh Onnes. He was 

awarded the Nobel prize in 1913 for his investigations of the low-temperature properties of matter, 

which led, among other results, to the production of liquid helium. The phase diagram of    
  is 

shown in Figure 1. 

Figure 1: Phase diagram of Helium 4 

 

We can see that there is no triple point. Another line of equilibrium connects the solid with the gas 

and the normal (viscous) fluid (the latter is often called He I). The superfluid can be assumed to be an 

inviscid fluid, behaving, in certain conditions, as a Bose-Einstein condensate. Additionally, its 

properties can be described as a macroscopical manifestation of superfluidity, which will be 

discussed below in more detail. 

We can observe that He II behaves (above ca. 1 K) like a mixture of two fluids: one is the superfluid 

component and the other is the normal fluid. The behavior of this mixture will be described below, in 

the chapter on the Landau model. The most important base property of    
  is probably the 

temperature dependency of its heat capacity (see Figure 2). This dependence was measured for the 

first time in 1930 by Keesom. The peak in the diagram was called the Lambda-peak due to its form, 

resembling the Greek letter  . 
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Figure 2: Heat capacity    of    
 , plotted as a function of temperature T. 

 

The Lambda peak corresponds to the phase transition from the normal fluid to the superfluid. As 

already mentioned, He II is made of two components, between ca. 1 K and 2.17 K (the latter is the 

transition temperature, at the saturated vapour pressure, between He I and He II). The sum of the 

densities of both components is almost temperature independent, see Figure 3. 

Figure 3: Density of the normal and superfluid components of He II, plotted as a function of 

temperature. 

 

We can observe in Figure 3 that, at temperatures below 1 K, He II is made almost entirely by the su-
perfluid component and that the normal fluid component vanishes. The most important mechanical 
property of He II is called superfluidity, which was discovered by Kapica in 1937. He submerged in the 
liquid a pile of thin discs, suspended vertically, and observed that, above the lambda point, the disc 
motions had a certain resistance, as expected. However, after decreasing the temperature, there was 
less resistance to the motion of the discs, indicating that the liquid became less viscous. This property 
of He II will be discussed below in more detail, in the derivation of the Landau model. 

Additionally, we also mention here another property of He II, which is called thermo-mechanical. In 
1937 Allen and Jones performed the following experiment: a test tube was immersed in the liquid 
and closed on both ends by extremely porous plugs (often called superleaks). Consequently, only the 
superfluid component can go out of the tube (on relevant time scales). One end of the test tube was 
connected to a vertical pipe terminating above the bath, while the other end was entirely immersed 
in the liquid. The test tube was illuminated by light, which caused the heating of the fluid inside the 
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tube, leading to the generation of pressure and, consequently, to a liquid fountain, flowing outside 
the vertical pipe into the bath, see Figure 4. The outcome can be derived from equations 15.a) and 
15.b) below, by using adequate assumptions. 

Figure 4: Fountain effect, obtained by illuminating the helium bath. 

 

The same effect can be observed if the helium bath is heated differently, see Figure 5. Similarly, it 
also occurs in the opposite way, that is, a pressure gradient in the bath can cause a temperature gra-
dient. 

Figure 5: Fountain effect obtained by using a heater. 

 

Another remarkable property of this liquid is related to the generation of this films on solid surfaces 
in contact with He II, see Figure 6, due to its extremely low viscosity. 
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Figure 6: Helium II film. 
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Quantum vortices 

Let’s now focus on the properties of the superfluid and on its non-classical behaviour. As mentioned 

above, the superfluid can be seen, in certain conditions, as a Bose-Einstein (BE) condensate, that is, 

the entire fluid behaviour can be represented by one wave function (a BE gas has zero viscosity, 

infinity heat conductivity and low heat capacity). However, the superfluid does not behave as an 

ideal BE gas due to the mutual interactions between the superfluid particles. Consequently, we need 

to describe the superfluid by using the so-called quasiparticles that enable us to employ the one-

particle description, as in the case of the ideal BE gas. 

Additionaly, the superfluid has a critical velocity, above which its non-dissipative flow is thought to 

break down and whose value was experimentally measured [1]. The existence of such a critical 

velocity can be derived theoretically and it is due to the generation of quantized vortices, which are 

lines singularities within the superfluid. 

More specifically, the energy of the superfluid moving without excitations is given by the following 

equation: 

   
 

 
    

  

  
,    1) 

where    is the initial fluid energy,   its mass, v its velocity and     its momentum. Now we can 

calculate the increase of the fluid energy, by adding one excitation, and we assume a linear addition 

of momentum, that is: 

             .     2.a) 

We calculate the new energy as: 

  
   

  
      

        
 

  
               

  

  
     ,  2.b) 

where      is the excitation energy. The third term on the right hand side can be neglected because 

we assume a low-momentum excitation and we obtain the following equation for the energy: 

               .     2.c) 

The necessary condition for the formation of an excitation is the decrease of the total energy. So the 

following inequality holds: 

    .     3.a) 

We input equations 1) into 2.c) and we obtain this condition: 

  
    

 
     .    3.b) 

for the critical velocity estimate. Here we also assume that the angle between the fluid velocity and 

the momentum of the excitation is 180°, so that the corresponding scalar product is a minimum. 

Now the minimum of f(p) corresponds to set its first derivative to zero. This gives us the condition: 



7 
 

     

  
 

    

 
.     4) 

The explanation of the excitations as rotons and phonons (see [1] for further details) failed because 

the experimental value of the critical velocity for rotons is too low and that for phonons is too large. 

There must be another source. It was experimental confirmed that this source can be found in the 

so-called quantum vortices. 

Let us assume         to be a solution of the Schroedinger equation: 

  
  

  
  

  

   
               ,    5) 

where m4 is the mass of one helium atom (the other symbols are customary). Then we can calculate 

its momentum as an eigenvalue of the momentum operator: 

       ,     6) 

the solution of which is, after dividing by the mass: 

        
 

  
  ,     7) 

where         is the superfluid velocity. This implies that the superfluid flow (often called superfluid) is 

potential, that is: 

                 8) 

We define the circulation as the line integral: 

             
 

 

  
   
 

  .    9.a) 

where   is a curve and   is an area bounded by  . Then we obtain, by using the Stokes theorem: 

  
 

  
   
 

                 
.   9.b) 

For a simple connected region the circulation must be equal to zero, as we see from 9.b). For 

multiple connected regions it must be quantized, so we obtain the Bohr-Sommerfeld condition: 

   
   

  
    ,    10) 

So the circulation is quantized. Now we assume the existence of one vortex. We can see from 10) 

that for the superfluid velocity it holds: 

        
  

   
,     11) 

where r is the distance from the core of the vortex and   is the circulation quantum. We define the 

characteristic length b which indicates either the dimension of the considered volume or the distance 

between two vortices. Then the energy of one vortex is equal to: 

         
     

     
 

  
   

 

  
 

 

  
,    12) 
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where    is a radius of the core of the vortex. This core can be seen as a hole in the superfluid 

because the existence of such singularities in the domain S follows from the discussion above. This 

can explain, for example, the conservation of superfluidity. 

Note also that the most general form of motion of superfluids is called quantum turbulence and that 

the latter is mostly due to the dynamics of the quantized vortex tangle within the two-component (in 

the case of He II above 1 K) flow. 
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Thermal counterflow and the Landau model 

Hall and Vinen (see [1], page 136) postulated the existence of a force, called mutual friction force, 

between the normal fluid and the superfluid components of He II, given by the equation: 

           
    

 
                                                      ,   13) 

where                 and B, B‘ are tabulated constants, depending on temperature [1];         and         are 

the velocities of the superfluid and normal fluid components, respectively. 

The implications of equation 13) can be suitably studied experimentally in thermal counterflow, 
which is a thermally generated flow of He II where the two fluid components flow, on large enough 
scales, larger than the average distance between the vortices, in opposite directions, see Figure 7. 

Figure 7: Thermal counterflow. 

 

The heat source is usually placed at the bottom of a channel (inside a cryostat) filled with He II. The 
normal component flows away from it (upward), while the superfluid moves downward (toward the 
heater), in order to conserve the null mass flow rate. 

A simplified form of equation 13), will be used below: 

      
 

 
                             .    14) 

L.D. Landau derived the following equations for the two components of He II (see [1], page 124): 

         

  
                   

 

  
             

  

  
    

  

 
                                 15.a) 

        

  
                   

 

  
                    

  

 
                  .  15.b) 

In the case of isothermal flow the terms including temperature and enthropy can be neglected (this 
will be assumed in the following). We will also assume small gradients of counterflow velocities and 
neglect the terms including the gradient of the difference between the velocities. The assumption of 
no quantum turbulence (no vortices) can be given by 8). 

 



10 
 

For low velocity values we assume the condition: 

                      .    16) 

In the case of large velocities, we will assume the non-divergence condition for each one of the 

components, that is: 

                             .    17) 

The conditions 17) will be automatically assumed in case of non-zero vorticity of the superfluid; the 
condition 16) is instead assumed in the case of zero vorticity of the superfluid velocity. We define the 
Reynolds number: 

   
  

 
,     18) 

where V is a typical (suitably defined) velocity of the flow, L is a characteristic flow dimension (for 
example, the diameter of a pipe or the largest size of an obstacle) and   is the kinematic viscosity of 
the fluid. 

The just introduced physical notions have the aim of define the background for the problem studied 
below, that is, their relevance is clarified in the following. 
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Tools 

This part of the thesis is devoted to a general introduction of the employed mathematical 
techniques: we will specifically define the functional vector spaces (see [2] for more details, 
especially for the proofs; the reader should also have a basic knowledge of standard Lebesgue spaces 
and measure theory). 

Definition (Def.) 1: 

a) X is a vector space. A set of all linear maps on X is called a dual space, we denote it X‘. If X is a 
normed space, we can introduce a norm on X‘ in this way: 

                                 .    18) 
b) The dual space of X‘ is called a bidual space of X and we denote it X‘‘. The space X is called 

reflective, if and only if (iff) a map         exists and if the latter is an isomorphismus. All 
Hilbert spaces are reflective. X is called separable, iff a dense subspace of X exists. 

c) The map J is, for Lebesgue spaces, given by theformula: 

           
 

,     19) 

where g is a function. This formula can be generalized for Sobolev spaces as follows: 

                 
 

.    20) 

Derivations can be defined in the sense of distributions too, see Def. 3. It’s customary to call this map 

a duality. 

Def. 2: Let us define           , where the numbers      are nonnegative integer numbers. 

  is then called multiindex. Its norm is defined as:        
 
    and we denote the multiindex 

derivation as: 

    
     

         
.    21) 

Def. 3: Let us define the functions         
      where the latter denote the space of all local 

integrable functions on an open set  . v is then called the      weak derivation of u, iff 

                    
  

.   22) 

     
     (infinitely differentiable functions with compact support). 

Def. 4: We call         a Sobolev space, iff it consists of all locally integrable functions       , in 

such a way that for each multiindex        , it exists     in the weak sense and belongs to      . 

Theorem 1:         is a Banach space         , separable           , reflective          

and a Hilbert space for p=2. We define the norm of         as: 

            
           

       
   

       

          
               

 .    23) 

The scalar product on         is defined as: 
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      .     24) 

Note: we often denote         as      .   
       indicates the closure of   

     in        . It’s 

then customary to write:   
         

    . We know that an orthonormal basis exists in each 

Hilbert space and this will be discussed below in the theoretical part of thesis. We use for the norm 

of a Lebesgue space       the notation     . 

Def. 5: Let   be an open set. We say that 

          , iff:                            
           

     
  ,   25) 

where u is called a Lipschitz continuous function. We say that Ω is a Lipschitz domain, iff it is possible 

to describe its boundary by a Lipschitz continuous function. 

Def. 6: 

a) Let        
         . We define convergence in         as: 

                      .    

 26.a) 

b) As        
          the weak convergence is defined as: 

                           26.b) 

Theorem 2:                holds. Then b) implies a). 

Theorem 3: the following inequalities hold: 

a) As                 for            where M is a dimension of a domain in such 

a way that             . Let        . Then         and it holds: 

            
     

   ,    27) 

where C is a constant independent on the function f. 

b) Poincaré inequality:         and   is a subset with at least one bound. Then 

         and the following holds: 

           .    28) 

More common inequalities (especially Minkowski, Hölder, Young etc.) are not reported here as we 

assume their knowledge, see [2,3]. 

Now we write two fundamental theorems for the existence of a solution. A is an operator:       . 

We focus on an operator equation in the form: 

     ,     29.a) 

where f is an element of X‘. By using the fact that X‘ is a dual space of X, we reformulate the problem 

in this way: 
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                     .    29.b) 

The following two theorems hold: one is called the (generalized) Lax-Milgram theorem and the other 

is the main theorem of monotone operators. We state directly the generalized Lax-Milgram theorem. 

The special version, which holds for eliptical operators, is given below and is its direct consequence. 

Def. 7: A is an operator. Then we say that A is: 

a) Coercive, iff:         
      

   
  . 

b) A is a (strictly) monotone operator, iff                            ,   

                   . 

c) A is strongly monotone, iff it exists a constant C>0, such that: 

                                 
 .   30) 

d) A is bounded, iff it exists a constant M>0:                        

e) Let A be a symmetrical operator. Then A is eliptic, iff it exists a constant:    : 

              
 .     31) 

f) A is a weak continous operator iff it holds                         whenever     . 

Theorem 4 (uniquness): A is strictly monotone. Then       it exists at most one solution of 29.b). 

Theorem 5 (generalized Lax-Milgram): X is a Hilbert space. Def 7c) holds and hence A is a Lipschitz 

map. Then it exists a unique solution of 29.b)      . 

Special case (Lax-Milgram): A is a bilinear mapping and X is a Hilbert space. Def 7d) and 7e) hold. 

Then it exists a solution of 29.b)      . This solution is unique. 

Theorem 6 (the main theorem of monotone operators): let Def 7a), 7b) and 7f) hold. Then it exists a 

solution of 29.b)      . 

Now we focus on non-stationary problems. We introduce the Bochner spaces and remind two im-
portant theorems, that is, the Gelfand triplet and the Aubin-Lions lemma. We will not define here 
basic terms such as simple function or Bochner integrable functions, because they are natural gener-
alization of the same terms from the standard Lebesgue spaces and measure theory, see [2,3]. 

 

As a first step, we define         spaces: 

Def. 8: X is a Banach space, with      ,    . Then         is the set of all strong measurable 

functions      , such that: 

     
 

 
               32.a) 

                 .     32.b) 
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Note: it’s usual to use (0,T) instead of I to denote a time interval, because we often solve the given 

problem for some finite T>0. 

Theorem 7:         is a Banach space, whose norm is defined as: 

                 
 

 
   

   

         33.a) 

                          .    33.b) 

X‘ is dual of X. Then each functional is represented in the following way: 

     
         

 
         

              
                     .   33.c) 

These spaces are reflective for       and separable for      . Additionaly, p‘ denotes the 

conjugated coefficient: 

 

 
 

 

  
  .     34) 

Now we must formulate the definitions of continous and compact embeddings: 

Def. 9: X is a Banach space and Y is its subspace,        are the corresponding norms. Then we 

say that Y is continuously embedded in X, iff it holds                   and we denote    . 

We say that Y is compactly embedded in X, iff Y is continuously embedded in X and every bounded 

sequence      has a subsequence       that has its limit in X and we indicate     . 

Now we can formulate the Gelfand triplet lemma: 

Theorem 8: X is a reflective Banach space, X‘ its dual and H is a Hilbert space.           

densely. As                       , 1<p< , it follows that u is almost everywhere equal to a 

smooth function on      , which is defined on       in  , and there the following holds: 

 

  
    

             ,      35) 

in         (a space of all functionals from the space of all smooth functions of R). 

Finally, we formulate the Aubin-Lions lemma, which is very important in the theory of weak solutions 

of the nonstationary problems. We define a needed function space first: 

Def 10:         
   

                           , where   and    are Banach spaces. 

        are three Banach spaces and it holds:         , with       reflective. As       

and      , then for      , it holds:             . 
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Theoretical part of the thesis 
The governing equations: 

We consider the following system of partial differential equations: 

         

  
                   

 

  
                             1.a) 

        

  
                   

 

  
               ,     1.b) 

where 1.a) describes a normal fluid and 1.b) describes a superfluid. We consider our two-fluid system 

isothermal, additionally we neglect the influence of S and T, and we assume that both equations are 

bounded by the condition: 

 
2

ns s n s

B
f rotu u u   .    1.c) 

If both move fast enough, in such a way that they are decoupled, we can write: 

                                 .                          1.d) 

And for a low fluid velocity, it holds: 

                .     1.e) 

We consider for simplicity that the velocity of the superfluid is small enough if and only if its vorticity 

is zero, that is: 

0srotu  .                   2) 

The force formula 1.c) is simplified. For a more general expression, see [1], equation (3). The 

boundary conditions are discussed below and we finally assume that the only physical reason of the 

existence of the volume forces are either the quantized vortices or the gravitation, which give the 

different signs in equations 1.a) and 1.b).  

It is possible to consider a slip boundary condition and no superfluid vorticity, because of the small 

thickness of the boundary layer. The vortices in the layer might possibly have the same effect as the 

classical viscosity, so we can introduce the boundary conditions for both components in the same 

way. The densities of both components are space independent. 

With respect to the solved tasks we have to prove the existence and uniquness of the weak solution 

on the outer domains and find a numerical solution using the FEM and discontinous Galerkin 

methods for the system. We will use the special property of the system, following [1]. Because of the 

assumed special property of the volume force we will get no dependence of the apriori estimates on 

the force. 

The goal is to prove the existence of the weak solution of the following problems, physically 

different. So finally we obtain two tasks to solve. The existence theory and the numerical simulations 

of the following equation systems: 
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Without quantized vortices: 

               
         

  
                   

 

  
                      3.a) 

 
        

  
                   

 

  
                          3.b) 

0srotu           3.c) 

                      .        3.d) 

And the system including quantized vortices: 

               
         

  
                   

 

  
                               4.a) 

 
        

  
                   

 

  
                                   4.b) 

      
2

ns s n s

B
f rotu u u          4.c) 

                                      .       4.d) 
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The geometry of the task and the boundary conditions 

The geometry of the problem is as follows: an obstacle, of rectangular cross-section, is placed in the 
middle part of our experimental volume (in the inner part of cryostat). Around the obstacle the two-
component fluid moves: the normal component flows from below, that is, upward, while the 
superfluid flows downward. We assume the no-slip boundary condition on the inner sides of the 
cryostat. These are caused for the normal component by the non-zero value of the viscosity and for 
the superfluid by the quantized vortices in the boundary layer. This can be justified by the non-zero 
viscosity of the normal component and by the existence of quantized vortices for the superfluid, due 
to the boundary roughness. Moreover, the thickness of the boundary layer is considered small, 
compared to the experimental volume size. We also assume that both components have a 
parabolical velocity profile. 
 
Figure 1: geometry of the problem. 

 

It then follows that the velocity of the obstacle is equal to the velocity of the fluid around the 

surfaces parallel with the flow direction. The problem is solved in the reference system of the 

obstacle. 

We consider a parabolical profile on the top and the bottom of the domain, where the problem is 

solved. We consider the upper and the lower parts of the experimental volume to be far enough 

from the obstacle, so that the latter do not affect it. U0 indicates the obstacle velocity and Vn and Vs 

are fluid velocities, depending on temperature, given by the equations: 

                   
 

      

  

  
                       1.a) 

                                
 

       

  

  
 .          1.b) 

Q is the thermal energy of the heating, R is the dimension of the cylindrical cryostat with square cross 

section, S is the enthropy of the normal liquid. The density ρ is the sum of the densities of both 

components and depends weakly on temperature. The densities of the two components have a 

stronger temperature dependence and are tabulated. r, x and y are the coordinates, in the cartesian 
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system, describing the obstacle. r indicates the obstacle position inside the cryostat. a and b are the 

dimensions of the obstacle, perpedicular and parallel to the flow. We consider no condition on 

pressure on the boundary. 

The boundary conditions are marked as Vn1; Vs1 – Vn2; Vs2 (in the existence theory they will be 

marked with the more general Vn and Vs) and are: 

           2.a) 

            2.b) 

    
     

  
           2.c) 

     
     

  
     .      2.d) 

We can include the oscillations of the obstacle. This can be obtained easily if we put          

instead of only U0. So, we can write for the nonstationary problem: 

                3.a) 

                 3.b) 

    
     

  
           3.c) 

     
     

  
     .      3.d) 

These boundary conditions hold only for the flow without gravitation (only caused by heating in the 

lower part of the cryostat). The influence of the gravitation (or of other volume forces) can be 

obtained using the compatibility condition (derived below): 

                   
         

 
,        4) 

which is the way for a simple derivation of the velocity gradient boundary conditions. We consider a 

zero velocity gradient on the left and the right wall of the cryostat and nonzero on the upper and 

lower parts. We assume a nonzero gradient component only in the direction of the z axis so: 

          

   
   

  
   

 

  

 .         5) 

So we obtain from 5) this equation: 

   
   

 

  
              6.a) 

  

  
 

   
 

  
     6.b) 
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The nonstationary PDE system, describing the Landau model 
The weak solution theory of the nonstationary PDE system without the vortices: 

1.1 Definition: The weak solution of the Landau model: 

Let                                                                           
                    are obtained from continous 

functions, defined on the two boudaries, which are the inner and outer Ω domain boundaries, which 

do not penetrate or touch each other. Then the functions satisfying 

                                  
         

       
 
                

 
    

         

  
 
        

  
            

       
 
 
 

 , 

are called a weak solution of the system 1.a) –1.c) without quantized vortices, formulated as: 

 
         

  
    

   
       

 
    

       
                         

                  
                     

   

                   
 

                     1.a) 

 
        

  
    

   
       

 
    

       
                         

                 
         

 
         1.b) 

                        
                           1.c) 

         
                  1.d) 

For all           
 
        . 
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The preliminaries of the existence theory 

Here we use the Green theorem, applied on the Laplace operator, as it is customary in the theory of 

the N-S equations. In the first step we derive the energetic inequality. We sum both PDEs and, as a 

test function, we use a sum of the solutions and obtain: 

                   

  
                   

 

 
                     

                     
     

 

 

 
           

                     
             

   

                        
  

  
             

                                  
           

                                    
.         2) 

We see that the member with pressure vanishes and we use the Gelfand triplet for the time-

derivation member. The volume-integrated members vanish, using the divergence equation. The 

nonlinear members are consequently equal to zero and we obtain: 

 

  
                  

               
             

           
                         

             3) 

which we integrate from 0 to t and get 

                  
                   

  

 
                     

                
           

                         
  .        4) 

This equality is not as useful as we would need, because it gives no estimate for the norm of both 

functions, but only for the normal component. We will derive one equality of another type, which 

will be more helpful. We can use the Bernoulli equation, deriving the apriori estimates for the 

superfluid component: 

        

  
                                 5.a) 

and integrate it over a stream line. This is well defined and gives: 

 
        

   
                       

            .     5.b) 

The substitution theorem, with         dt, gives us for the time-derived member the integration over 

time from 0 to t and we obtain finally the Bernoulli equation for the superfluid: 

 
        

   
                      

 
 

             .          6) 

Now we can evaluate the second integral and integrate over Ω: 

  
        

  
            

       
 
   

        
             

      
 

        
 

                   
      

  
.      7) 

Using the Gelfand triplet we obtain: 

 

 
          

      
 

        
 

         
 

 
          

      
  

.              8) 

But there is no estimate for the norm of the gradient, so we have no estimate for the norm in the 

Sobolev space. We must find it throught the limit of the Galerkin approximation, as it will be shown. 
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The existence theory without superfluid vorticity 

At first, we use equation 2.c). The zero rotation is equivalent to the theorem: 

                             9) 

and equation 2.d) gives: 

                                    10.a) 

                .   10.b) 

So this shows the existence and uniqness of the solution of the problem, because it is now given by 

an explicit formula. 

Let us solve now a problem for the pressure. It is now simply given by the formula 8): 

           
        

   
                      

 
 

   ,    11.a) 

where the velocity terms give the classical Bernoulli equation as a non-integral formula: 

           
        

   
           

 

 
         

     
 

 
         

    .   11.b) 

And we rewrite the time term to get a non-integral form: 

          
 

 
         

     
 

 
         

         11.c) 

The formulae 11.c, 9 and 10.b will be used for the numerical simulations too. 
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The weak solution theory of the system, including the superfluid vorticity: 

1.2 Definition: The weak solution of the Landau model: 

Let                                                                          
                    are obtained from the 

continous functions, defined on the two boundaries, which are the inner and outer Ω domain 

boundaries, which do not penetrate or touch each other. Let B>0. Then the functions satisfying: 

                 

                 
         

       
 
                

 
   

         

  
 
        

  
            

       
 
 
 

 , 

are called a weak solution of the system 1.a) –1.c) with quantized vortices, formulated as: 

 
         

  
    

   
       

 
    

       
                         

                  
                

   

                          
         

 
                12.a) 

 
        

  
    

   
       

 
    

       
                         

                 
 

                
         

 
  12.b) 

              
                   

                         12.c)

 
2

ns s n s

B
f rotu u u          12.d) 

For all           
 
        .  

Setting       we obtain the compatibility condition: 

                   
          

 
     12.e) 

in such a way that the right hand side vanishes in equations 12.a) and 12.b). Then we sum both and 

both vorticity terms will be subsequently subtracted from each other. 
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The construction of the Galerkin approximation 

Before we start to derive the Galerkin approximation, we summarize what we know about the 

solution of the Stokes problem in the function space       
      . 

1.3 Definition: The operator Λ: 

        
           

          
       

 
.                   13.a) 

It follows that 

       ,                    13.b) 

where u is a weak solution of the Stokes problem: 

                              
 

      
                      

                 
      .   13.c) 

1.4 Theorem: Ω is a bounded domain. Then the eigenfunctions of the operator Λ build an 

orthonormal basis of the space       
      . 

These facts enable us to define the Galerkin approximation very effectively. We take           
  as an 

orthonormal basis from 1.4. 

1.5 Definition: We define the Galerkin approximation with an artificial viscosity: 

The functions   
           

      
 
   ;   

           
      

 
    are called the Galerkin approximations of the 

solution of the problem 1.a – 1.c, if they fulfill: 

 
   

       

  
         

      
           

                  
      

                   
                

     
                     

 

 

 
       

           
          

                  
             

         14.a) 

 
   

       

  
         

      
           

                  
 

         
                  

                  
   

 

 
       

           
          

                  
             

   

            14.b) 

      
                14.c) 

      
                14.d) 

for all                 
 , which represents the ortogonal system from Definition 1.3. The initial 

conditions are expressed as: 

  
              

                
 
       

              
               

 
           15) 

Note that we consider that the Euler PDE is a special limit of the N-S Equations, describing the 

superfluid on finite-dimensional subspaces of       
      . The use of the eigenfunctions ensures that 
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the pressure members give zero values. The boundary conditions will be expressed using the 

integration of the Galerkin approximation over the domain boundary. 
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The existence of the Galerkin approximations 

First we must prove the existence of the Galerkin approximations. Let’s take the definition of the 

Galerkin approximation for both equations and we obtain from 14.c) and 14.d) the equality of the 

pressure terms to zero. Because of the properties of the chosen basis of the function space, we 

obtain from this system of equations: 

 
   

       

  
         

      
           

                  
      

                   
     

                     
 

 

 
       

           
        

 

  
                              

            16.a) 

 
   

       

  
         

      
           

                  
          

                  
    

 

 
       

           
          

                  
 

            
  .           16.b) 

For the time-derivation terms we obtain: 

 
   

       

  
         

    
    

      
 
   

  
         

      
           

    
 

  
     

   
       

  
         

     
  ,  17.a) 

which we derived from the orthonormality of the basis. For the Laplace term we obtain: 

    
                  

     
         

                  
     

   ,    17.b) 

where    is an eigenvalue of the Laplace operator. The convection terms can be treated as follows: 

   
           

                  
   

      
                                  .    17.c) 

The vorticity term can be written as: 

 

 
       

           
          

                  
 

 

 
   

    
         

                 
   

 
 

 

 
   
    

         
                    

 
 

  
 

 
 

 
   
    

    
        

          
 

 
 

 
   
    

    
     

        
 

 17.d) 

We then obtain these equations: 

  
   

   
      

                                      
        

                    
 

 

 
   
    

    
                       

   
 

 

            
         18.a) 

  
   

   
      

                                      
           

                    
 

 

 
   
    

    
                       

   
 

             
         

 18.b) 

with these estimates: 
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             18.c) 

  
      

      
                                      

           
                    

 
 

 
   
    

    
     

        
 
 

     
 .            18.d) 

It is possible to apply the Carathéodory on this system, because the right hand side is continous in 

coefficients and is measurable in eact; additionally, it is constant and the boundary conditions are 

continous in time. The right hand side is Lebesgue measurable too, so the assumptions on the ODE 

systems are satisfied. It follows that the Galerkin approximations:   
           

      
 
   ;   

           
      

 
   , 

exist in the sense of the definition 14.a) – 14.d). 
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The apriori estimates for the Galerkin approximations 

We can derive these apriori estimates for the problem 14.a) – 14.d). Now we can multiply the 

equations by the corresponsing coefficients for each function from the orthogonal system; for 

example, equation 14.a) can be written as: 

 
   

       

  
   

         
      

           
          

           
      

           
           

        
           

     
        

  

   
            

 

 
       

           
          

          
           

       
         

   .        19) 

We then sum these equations for i=1…N and we obtain the equation for the Galerkin solution with 

artificial viscosity tested by their solution: 

 
   

       

  
   

       
 

      
           

          
         

 
      

           
         

 
        

         
 

     
           

          
  

 

 

 
       

           
          

          
         

 
       

       
 

  .         20.a) 

Similarly, for the other equation we get: 

 
   

       

  
   

       
 

      
           

          
                  

            
       

 
          

         
  

  

 

 
       

           
          

          
         

 
       

       
 

           20.b) 

We now sum both equations to neglect the quantized vorticity term. Before it, we need to make 

some calculations to simplify the work. Let us take the convective terms and calculate: 

   
           

          
         

 
    

           
       

 

 
      

          
   

  
   

 

 
    

   
  

  
              

 

 
     

 

  
  
                            21) 

The same we obtain in the case of the equation for the superfluid: 

   
           

          
         

 
 

 

 
     

 

  
  
                    22) 

The sign of this term depends on the boundary conditions. In this case we obtain zero. We derive the 

consistency condition for the volume forces and for the boundary conditions below. The pressure 

terms vanish because of the zero-divergence conditions: 

       
         

 
           

         
 

  .        23) 

Together with the calculations for the convection and pressure terms we obtain, after summing the 

equations 17.a) and 17.b): 

 
   

       

  
   

       
 

    
   

       

  
   

       
 

        
           

          
 

        
            

       
 

   

 
 

 
     

 

  
  
            

 

 
     

 

  
  
                

           
          

  
        

           
          

  
 

 

 
       

           
          

        
 
  

 
        

          
        

 
  .            24) 
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The quantized vorticity term is negative and we can put it to the left hand side. We then neglect the 

boundary terms derived from the Laplace member because we assume zero velocity gradient on the 

boundaries. 

 
   

       

  
   

       

 

    
   

       

  
   

       

 

        
           

          

 

        
            

       

 

  

   
 

 
       

           
          

        
 
  

 

  

                                    
          

        
 

   
 

 
     

 

  
  
            

 

 
     

 

  
  
            .       25) 

The right hand side is bounded and we obtain: 

       
          

        
 

   
 

 
     

 

  
  
            

 

 
     

 

  
  
            

       

 
    

       
 

  

    

 
   

          
        

       
 

 
                   

        

 
    

       
 

                    
    

 
    

        

   
        

       
 

 
.                26) 

The estimate for the gradient norm term is: 

    

 
    

           
        

       
 

 
 

    

 
     

        
       

 

 
      

        
       

     
        

       
  

    
        

       
 

 

  
     

 
     

        
       

 

 
     

        
       

 

 

 .          27) 

 

Consequently, the whole estimate of the right hand side can be written as: 

       
          

        
 

   
 

 
     

 

  
  
            

 

 
     

 

  
  
            

     

 
     

        
       

 

 
 

    
        

       
 

 

  
        

 
    

       
 

                   .            28) 

So, we can write the following estimates for the left hand side: 

 
   

       

  
   

       
 

    
   

       

  
   

       
 

        
           

          
 

        
            

       
 

    

 

 
       

           
          

        
 
  

 
  

   
       

  
   

       
 

    
   

       

  
   

       
 

        
          

          
          

 .      29) 

And, by using the Gelfand triplet, we obtain: 

 
   

       

  
   

       
 

   
 

 

 

  
   

        
 

 
   

   
       

  
   

       
 

   
 

 

 

  
   

        
 

 
.       30) 
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It follows that the whole inequality is of the form: 

 

 

 

  
   

        
 

 
 

 

 

 

  
   

        
 

 
      

          
          

          
  

     

 
     

        
 

 
     

        
 

 
  

        

 
     

                   ,            31.a) 

and we integrate it: 

   
        

 

 
       

        
 

 
            

          
          

          
    

 

 
 

     

 
      

        
 

 
     

        
 

 
 

 

 
   

        

 
      

   
 

 
                      

 

 
    

        
 

 
    

   
        

 

 
   .            32.b) 

The series          
   

 
           

  are bounded, because      converges to zero. So, finally, we 

have these apriori estimates: 

   

        
  
        

 

 

    
   

        
  
        

 

 
          

     

 
     

         
 

 
 
 

 
        

         
 

 
   

 

 

 
        

 
      

   

 

 

                      

 

 

    
        

 

 
       

        
 

 
    

                                                                                                       .     33.c) 

So it is proven: the series    
        

   

 
,    

        
   

 
 are bounded in the space of functions 

          
       

 
                

 
 . 
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The time derivation apriori estimates and the limit passage 

Now let us estimate the time derivation terms. We calculate them for both components, in order not 

to have to do the same thing two times. 

As the function                  
       

 
  , it follows: 

  
   

        

  
   

   
        

  
  

               
       

 
 
 

 
 

   
         

   
        

  
        

 

 

 
     

   
        

  
        

 

 

 
   

   
         

   
        

  
             

 

 

 
     

   
        

  
             

 

 

 
  .     34.a) 

We do not write the maximum and make the estimates for the norm of the time derivative terms: 

   
   

        

  
             

 

 

 
     

   
        

  
             

 

 

 
        

           
                        

                   
 

 
 

 

 

               
 

     
                    

  
 

 

 
       

           
          

                  
 

             
 

        

      
           

                        
                   

 
                

 
     

                    
  

 
 

 

 

 

 
       

           
          

                  
 

             
 

        

      
           

                          
                    

 
      

                    
  

         
            

        
  

 

 

  
                                   

 
           

           
                             

                    
 

 
 

 

 

        
                     

  
      

       
        

 

 

    
          

                 
 

 
     

           
                     

 
 

    
           

                     
 

     
         

              
                    

 
          

                    
 

 

        
        

        
 

 
         

        
 

 
 

 

 
     

        
        

 

 

   
        

 

 
      

        
 

 

   
        

 

 
 

   
        

 

 
    

        
 

 
       

 dt.         

            34.b) 

We obtain, using the apriori estimates 33.c), the estimates for the time derivatives: 

  
   

        

  
   

   
        

  
  

                  
       

 
 
 

 
                                               35) 

where      is a function, for M=2, equal to 2, and, for M=3, equal to 4/3 (M is a dimension). 

 

 

 

 

 



31 
 

The existence of the weak solution: 

The estimates above give us more results for the studied PDE system than derived in [1], where 

better results for the solution uniqueness are presented. 

Note that the quality of the solution does not depend on the convective members. Let us use the 

Aubin-Lions lemma: 

As X0:=  
      ; X:=  

    ; X1:=   
       

 
;         ; it follows that all sequences have their 

subsequences, converging in the corresponding function spaces. This is enough for the linear 

members but not for the nonlinear convective one. We multiply equations 14.a) and 14.b) by       and 

investigate if they converge weakly to the equations: 

 
   
       

  
         

      
          

                 
      

                  
 

    
                    

 
 

 
       

          
         

                 
             

      36.a)

     

 
   
       

  
         

      
          

                 
 

 

 
       

          
         

                 
             

  . 36.b) 

For the linear members, as we already said, it is enought the Aubin-Lions lemma. For the second 

right-hand side member in 19.b) it is enough the convergence       ; similarly for the Laplace 

member of the superfluid. So, we obtain from the Aubin-Lions lemma these convergences: 

           
 
                   

 
      37.a) 

                              
            37.b) 

    

  

         
 

  

  
                     

       
 
 ,   37.c) 

and using the boundness of            in               
 
  and               

         we obtain the 

strong convergence: 

                              
 
         37.d) 

                              
 
                     . 37.e) 

This give us the convergence of the time derivatives and of the Laplace operator. For both nonlinear 

terms it is necessary to prove the convergence using some estimates. Now we prove the 

convergence of the convective terms, so we want to prove that the following holds: 

                       
           

                  
       38.a) 

                       
           

                    
 

     38.b) 
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We multiply both equations by         and integrate over (0,T). We then obtain: 

                        
           

                  
   

 

 
       

                   
                                      

  
 

 
 

                        
          

                   
   

 

 
          

  
              

 
 
          

       
             

   
         

            
    

         
            

.        39) 

The first estimate term was derived as in [3]. The rewriting of the boundary conditions is due to the 

orthonormality of the system           
 . Similarly we can do these calculations for the convective 

member of the superfluid: it is identic. Now let us calculate it for the vorticity term too: 

   
 

 
       

           
          

                  
 

 

 
       

          
         

                 
 

 

 
      

 

 
          

           
          

                  
        

          
          

                  
          

           
        

 

 

 

  
                         

           
         

                 
       .      40) 

We use the fact that it is possible to estimate the norm of the rotation from the norm of the 

gradient, using the equivalence of the norms of the divergence and of the rotation, and we obtain: 

 

 
          

           
          

                  
        

          
          

                  
       

 

 
 

 

 
       

        
 

 

  
        

 

 

   
         

      
 

 
                          

  
              

       
 
 
              41) 

         
           

          
                  

        
           

         
                 

      
 

 
      

        
 

 

    
        

 

 

  
       

 

 

    
          

       
 

 

                  

           
  

              
 
 
           

  
              

 
 
           

       
            .  

            42) 

We used above the weak convergence of the Galerkin approximations and their convergence to their 

norm in order to obtain the strong convergence, used in equation 42).We then used the Friedrichs 

inequality for the basis function. So, it holds that the system of equations 14) converges to the 

system 36.a) and 36.b). 

Let us now prove the energy inequality. We take equations 20.a) and 20.b) and rewrite them in the 

same way as during the derivation of the apriori estimates. We obtain: 

    
        

 

 

  
    

              
        
 
  

  
      

           
         

 
     

           
          

  
 

 

 
       

           
        

 

  
          

                
       

 
  .         43.a) 

 

 



33 
 

Similarly, for the other equation: 

    
        

 

 

  
    

              
        
 
           

            
       

 
       

           
          

  
 

  
 
 

 
       

           
        

 

  
          

                
       

 
  .         43.b) 

We then sum both equations: 

    
        

 

 

  
 

    
        

 

 

  
    

              
        
 
      

              
        
 
  

  
         

            
       

 
   

  

    
           

          
  

        
           

          
  

  
 

 
       

           
          

        
 
  

 
       

       
 

   

      
       

 
              44) 

We now integrate over (0,t) and we obtain: 

 

 
   

        
 

 
    

 

 
   

        
 

 
    

     
              

        
 
      

              
        
 
  

  
              

        
 

 
      

        
 

 
 

 

   

 

 
   

 

 
   

        
 

 
    

 

 
   

        
 

 
          

           
          

  
        

           
          

  
 

 

 
   

 
 

 
       

           
          

        
 
  

 
  

 

 
          

       
 

         
       

 
     

 

 
.   45)

           

To prove the energy inequality we multiply 45) by     
          and integrate over (0,T). So, 

we want to investigate the convergence of this equation: 

  
 

 
   

        
 

 
    

 

 
   

        
 

 
    

 

 

     
              

        
 
      

              
        
 
  

  
              

        
 

 
      

        
 

 
 

 

   

 

 
       

  
 

 
   

        
 

 
    

 

 
   

        
 

 
          

           
          

  
        

           
          

  
 

 

 
   

 

 

 
 

 
       

           
          

        
 
  

 
  

 

 
          

       
 

         
       

 
     

 

 
    .  

        46) 

Everything has been prepared to investigate the convergence. The terms multiplied by the artificial 

viscosity vanish, because the integrals are bounded and due to the definition of the artificial 

viscosity. It then holds: 

       
           

          
  

      47.a) 

        
           

          
 

  .    47.b) 

The norm of the initial conditions of the Galerkin approximation converges to the exact initial 

conditions because of the comprehensiveness of the orthonormal basis and of the Parseval equality. 



34 
 

The same holds for the boundary conditions. For the last term it is enough the weak convergence 

and we use for the diffusion term the lower weak convergence of the norm and the Fatou lemma: 

                
        
 
  

 

 

 
      

 

                 
        

 
  

 

 

 
      

 

 

       
       

 

  
 

 

 
     

 

 
.         48) 

For the vorticity term it is not enough the strong convergence of the solution of the Galerkin 

approximations to the exact solution 37.d)-37.e) but this term is positive on the left side and we then 

obtain the inequality: 

  
 

 
   

        
 

 
    

 

 
   

        
 

 
    

 

 

     
              

        
 
      

              
        
 
  

  
              

        
 

 
      

        
 

 
 

 

   

 

 
   

      
           

          
  

        
           

          
  

 
 

 
           

       
 

    
 

 
       

 

 
   

        
 

 
    

 

 

 

 
   

        
 

 
       .          49) 

Using the regularization kernel as test function and the convergence     , we obtain: 

 

 
   
       

 

 

    
 

 
   
       

 

 

    

     
             

       
 

      
             

       
 

  
  

              
       

 

 

      
       

 

 

 
 

   

 

 
   

 

 
   
       

 

 

    
 

 
   
       

 

 

          
          

         
  

        
          

         
  

 
 

 
                   

 

 
 

               
 

 
 .           50) 

Now let us investigate the convergence of the solution to the initial conditions. We take the 

equations 16.a) and 16.b) and multiply them by an element of the orthonormal basis and by a 

function                 . We integrate the equations over the cylinder Ω x [0,T] and obtain: 

     
               

  

   
        

                        

 

 
     

           
                   

  
 

 
 

      
                    

  
 

 
      

                      
  

 

 
 

 

 
        

           
          

                   
  

 

 
 

             
     

 

 
           51. a) 

     
               

  

   
        

                        

 

 
     

           
                   

  
 

 
 

         
                    

  
 

 
 

        
                      

  
 

 
 

 

 
        

           
          

                   
  

 

 
              

     
 

 
. 

             51. b) 

Thanks to the comprehensiveness of the orthonormal basis, using the limit passage, we obtain the 

exact equations: 
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           52. a) 

     
          

  

   
        

                   
 

 

 
     

          
             

 
  

 

 
 

 
 

 
        

          
         

             
 

  
 

 
         

 
     

 

 
.     52. b) 

Now we focus on the time derivative term. We make the calculation: 

  
         

  
        

 

 
  

                

  
                   

  

  
                     

 
  

  
                

 

 

 

 

 

 

         .           53) 

We know that                       
            

     
 
 . Setting       , we obtain the 

equality: 

                                      
 

,    54) 

and we calculate the same for the superfluid terms. So, finally, we obtain these limit passages: 

                                               55) 

in        
 

for      . Especially, we obtain: 

                       
                

 

 
   56.a)

 56.a) 

                       
                

 

 
,   

        56.b) 

which is called weakly lower semicontinuity and is a consequence of the weak continuity. We use it 

to obtain the convergence to the initial conditions. As a consequence of the inequalities 56.a) and 

56.b) we obtain (from the triangle inequality and lineratity of a weak convergence): 

                                  
                             

 

 
.   57) 

It then holds from the energetical inequality: 

                                  
                             

 

 
.   58) 

So, we obtain the convergence of the solution to the initial conditions in the form: 

                                                        
 

 
  .   59) 
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The numerical solution with the zero vorticity term 
The stationary problem 

As a first step, we discretize the stationary problem, with time-independent boundary conditions, by 

using the amplitude of the oscillations of the obstacle. The boundary conditions will be indicated in 

the same way as in the part about the existence theory, by the symbols                   . The solution of 

the stationary problem will then be used as an initial condition for the non-stationary problem. To 

solve the stationary problem we use the so called upwind method, see [5],[6]. We discretize the 

stationary problem as follows: 

                  
 

  
                     1.a) 

                  
 

  
            1.b). 

We use the boundary conditions given in the second chapter, equations 2.a) - 2.d). These are 

considered time-independent ones. We expect the solution as a six-component vector, consisting of 

the three components of the normal fluid and of three components of the superfluid. We use the 

recomended value of the artificial viscosity from [6] to stabilize the solution. Besides, it holds the 

incompressibility condition: 

                           1.c) 

and we assume zero vorticity of superfluid: 

            .     1.d) 

We consider stationary boundary conditions as written on pages 15 and 16 above. 

As recommended in [5], page 117, we introduce the artificial viscosity for the Euler equation and we 

approximate equation 1.b) as: 

   
           

                  
         

                  
                

          2.a) 

In a similar way, we discretize the stationary Navier-Stokes problem: 

   
           

                  
      

                  
           

 
               

  .     2.b) 

We now introduce an elegant formalism. We define the following equalities: 

                   
 

           3.a) 

                         
 

              3.b) 

                
 

  .         3.c) 

We then consider the weak formulation of the problem 1.a) - 1.c), by using these equalities. 
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Def.1: Let                                 
       . These equations hold: 

                                                            4.a) 

                                              4.b) 

                     
            4.c) 

               
    .         4.d) 

We then call                    a weak solution of 1.a) – 1.d). 

The existence of the solution of the problem is to be proven by using the existence of a potential as a 

consequence of 4.d), in such a way that, for the superfluid, it holds that a function   exists: 

          .            5) 

We then obtain from 4.c) the existence of the normal component in the form: 

                 ,            6) 

where    is an unspecified vector function. Equation 5) enables us to derive the Bernoulli equation for 

the superfluid: 

  

 
         

                       
  

 
         

                       7) 

where we consider as the only volume force    the gravitation field, denoted with   . 

Now we start to build the solver. We can define the approximate solution in the following way. We 

consider an approximate solution from a finite dimensional subspace of the vector space   
     , 

where the dimension of the function space is indicated by N and the finite dimensional subspace is 

denoted as VN. In a similar way it holds for the space of the pressure:       
    . We denote the 

approximation of the boundary conditions as   
        and   

        for the normal liquid and superfluid, 

respectively. The approximations are defined as extensions of the boundary conditions, defined on 

the domain  , satisfying the condition on the boundary: 

  
         

                  
         

                     8) 

where h is the diameter of either a circle (2D) or a sphere (3D), defined by the shape of the cell of the 

mesh. We will generate such a mesh for the whole geometry where we solve the given problems. 

Now we can define the approximate (discrete) solution of the problem 2.a)-2.b). 

 

 

 



39 
 

Def.2: The functions   
          

          
      and       are discrete solutions of the problem 4.a) -4.c), 

iff: 

  
          

          
          

                 9.a) 

     
          

                
          

                                   9.b) 

        
          

                
          

                                  9.c) 

              
       

 
             9.d) 

    
          

            
 

          9.e) 

              

Standard methods for the solution of the incompressible stationary N-S equations [6] cannot be used 

here because of equation 9.e). But we can assume low Reynolds numbers in such a way that the 

methods discussed in [6],[7] can be employed. As there is only one dominating flow caused by the 

movement of the obstacle, we choose the Oseen method (see below). The calculated velocity of the 

normal liquid is then used to calculate the potential of the superfluid, which is then used, by the 

means of the Bernoulli equation, to calculate the pressure. We write initially the iterative Oseen 

scheme for 8.b). It is based on a relative scheme found in [5] but it does not consider 

incompressibility: 

1) Choose   
                  (an initial iterative step). 

2) Calculate the next step, by satisfying the equation: 

     
               

                
               

                                   .   10) 

As a generalization we can write it for each iterative step:   
                 , where N and k are positive finite 

integers. Then the step k+1 is obtained as: 

1) Choose   
                  (calculated). 

2) Calculate the next step, by satisfying the equation: 

      
                      

                
               

                                            .  11) 

This iterative process is called Oseen iterative process. If we know   
       in the whole space, we can 

calculate the superflluid potential as a solution of the Laplace equation: 

              ,              ,    12) 

and this can be input into the Bernoulli equation to calculate the pressure: 
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              13) 

We now define the so-called Triangulation (that is, the mesh) of the finite elements and the base 

functions. We will use the same mesh for both velocity fields and for the pressure. 

Def. 3: The Triangulation of the computational domain is a decomposition of the computational 

domain  , denoted as   , such as that, for all     , the following holds: 

1)   is closed and its interior is non-empty and connected. 

2) The boundary    is, for any T, Lipschitz-continous. 

3)          . 

4) The intersection of the interiors of any two different sets of    is empty. 

A finite element is called a triplet         , where T is a bounded closed subset of   , with a 

nonempty interior and a Lipschitz-continous boundary. 

1)    is a finite dimensional subspace of real functions, defined on T, with dim      

2)   is a set of N linear forms              , such as that    is uni-solvent: 

              
                 .   14.a) 

Thus we have: 

          
 
         .     14.b) 

Note: we call the points where more than two T touch nodes. 

Def. 4: a base function in the node number l is a polynom of order   
 

 and is called a base function, 

iff it holds:       , and p is equal to zero outside the outlying T. 

It is possible to write an approximate solution in the form: 

    
     

              
        15.a) 

    
     

              
        15.b) 

      
 
   

   ,     15.c) 

where    are base functions. The functions              are then vector base functions, defined as 

                      for d=1;                       for d=2; and, similarly, for the third component. We 

assume that we know the base functions that we need in order to calculate the coefficients to obtain 

the approximate solution. We choose such base functions in order to have            
 

, where 

    is the standard Kronecker delta. We assume that the system of vector base functions is defined in 

the following way: for the system      we define a system of                such that                

          
   

 
,                          

   

 
 and                          

   

 
. 
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Now we can formulate the numerical scheme: 

1) Choose   
                  (calculated). 

2) Calculate the next step satisfying the equations: 

      
                      

                
               

                                          .   16.a) 

3) Calculate      
                   . 

4) Calculate the potential        of an approximative solution   
                    by using the application 

of FEM (finite element method, described below) on the Laplace equation: 

              
                   ,          

  
   

                    .   16.b) 

5) Calculate the superfluid velocity:   
                           . 

6) Use the Bernoulli equation to calculate the pressure values in each cell of the mesh: 

              

   
             

 
 

 

    
                     

 
 

 

 
,     16.c) 

where     denotes the standard Euclid vector norm. The number of iterations depends on the 

concrete case and it can be adjusted. Each one step 1)-6) is detail rewritten below. 

Let us now focus on steps 2) – 5). The error of the used method can be estimated then using by this 

equation: 

   
          

       
       

       
       

       17.a) 

where h is the diameter of the used mesh and C depends on the chosen approximation of the data, 

see [4], page 62. 

It holds for the potential of the superfluid velocity the Céan Lemma: 

      
       

      
     

      
       

,    17.b) 

see [4], pages 22/23. 

2) The problem is rewritten as: 

         
             

             
         

           
                      

                  ,  18) 

where A’m, B, F and G are matrices, and m=x,y or z. Let us describe them. G is non-zero only for the z 

component, because it is a discretization of the gravitational field. We assume the solution in this 

form: 

    
         

         
        19.a) 
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        19.b) 

          
 
   

   .     19.c) 

We input 19.a) and 19.c) into 16.a) and multiply by the base function   . We denote: 

  
         

  
   

 
    

             
  

   

 
   20.a) 

  
         

  
   

 
    

             
  

   

 
   20.b) 

              
 
                    

 
.   20.c) 

Then the matrices                                     exist in such a way that: 

            
   

  
   

 
             

   

  
   

 
            

   

  
  

 
. 21.a) 

It then holds for a x-component equation: 

     
              

   
           

                     
           

   

  
      

       
 

    
 

  21.b) 

where     
    are the coefficients multiplied in 19.a) by the base functions         . In this way we 

define the other coefficient vectors     
   

 and     
   . The matrix     can be calculated as: 

           
 

  .    21.c) 

We used in equation 21.b) the standard Einstein convention. We can write this schematically, using 

20.a) – 20.c): 

    
         

    
   

 
     

         
   
 
   

 
      

         
    

   

 
   22.a) 

    
             

    
   

 
     

             
   

 
   

 
      

             
    

   

 
.  22.b) 

And now we can write schematically 21.b): 

     
          

          
             

                 
        ,  22.c) 

where the matrix R is defined as: 

      
   

  
  

 
      22.d) 

and     
         is defined as: 

B :=    
       

 
     .     22.e) 

This problem can be solved using Gauss elimination. We define the matrix A: 
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          ,   23) 

and then we rewrite 22.c) as: 

     
             .     24) 

This system of linear algebraic equations can be solved using the method of preconditioned 

conjugated gradients. 

3) We obtained from the step 2)   
     . We specifically estimated the coefficients      

  
   

 
, 

which enable us to calculate the coefficients      
  

   

 
, using 16.b). The discretization      

                    can 

be calculated using the base functions: 

     
                         

                 
       25) 

4) Now, we can use equation 16.b) and solve it by using the FEM method: 

              
                   ,          

  
   

                    .   26.a) 

We multiply 26.a) by   , integrate over the whole domain and obtain: 

   
          

               
      

                
   ,   26.b) 

where A denotes a matrix (usually called the stiffness matrix), which is defined as: 

           
 

   .    26.c) 

We see that it holds: 

   .      27) 

The solution of 26.b) can be found in the same way as in the case of 24). 

5) Using the calculated values of the coefficients   
      we can combine them with the 

calculated superfluid velocity. It is meaningful to compute them now in order to obtain the value of 

pressure in the next step, by using formula 17). 

To implement the derived numerical scheme we derive the base functions as the first step. We 

assume a quadratical finite element; the whole mesh will consist of regular quadrates, as we can see 

in Figure 1. To make it illustrative, we make all calculations in 2D: 
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Figure 1: Used mesh. 

 

The drawn mesh is likely not enough fine. We made calculations with cells of 1x1 mm. It was not 

possible to store larger matrices in the computer. 

We introduce a reference element in order to avoid the calculation of integrals in the previous 

numerical scheme. We evaluate the integrals only on a regular rectangle or on a square and use a 

transformation to each finite element. It is very simple in the case of a regular mesh due to the fact 

that we need only to translate the reference element on the considered cell. As we make calculations 

in the coordinate system of the oscillating obstacle, we can put the base functions in the area of the 

obstacle equal to zero, including the nodes on the boundary of the oscillating object. The scalar base 

functions on the reference element are shown in Figure 2. They are denoted using the angles of the 

reference element; the corresponding letter stays at that angle in which it is nonzero.  

 

It is possible to derive that the functions must be of the form: 

              28.a) 

           28.b) 

              28.c) 

                 28.d) 

The graph of the base functions is pyramide-like and its support is created by four elements, which 

are around the node, where the base function is equal to one. 
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Figure 2: Reference element. 

 

Now we derive the form of the matrices. Because of the support of the base functions, we obtain 

them as band matrices. We see that they are tridiagonal. Now, we can write the form of matrices. It 

holds: 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 
 

 

 
 
 

 

 

 

 
 

 
 

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

 

 

 

 
 

 

 

 

 

 

 

 
 

 
 

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

 
 

 
 

 

 

 

 

 

 

 
 

 

 

 

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

 
 

 
 

 

 
 
 

 

 

 

 
 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 29.a) 
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We can see that D is a bound matrix and, for the components on the positions corresponding to the 

obstacle (rectangle in 2D), we obtain zeros. Because we consider a mesh of 24x24 cells and for the 

rectangle we use 3x10 (the original dimensions are 3x10 mm), we obtain the whole matrix as 

576x576 and the “hole” including only zeros as a matrix 30x30. Those dimensions of matrices are 

implied by equations 21.a), 22.d), 22.e) and 26.c). Because the area of one finite element is 1x1=1 

mm2, it must be that all matrices are multiplied during the computation by this number (in meters) to 

obtain the velocity coefficients in the correct units. It is better to write the matrices without this 

scaling, for the sake of clarity.  

There are two smaller matrices representing the no-slip boundary condition on the rectangle around 

the “hole”, having 1/3 on the main diagonal. Let us have a look at the matrices discretizing the 

convection terms. The matrices are three block cubes of numbers. We obtain this cube 576x576x576 

(the not displayed positions are identically zero): 

        

 
 
 

 
 

 

 
 

  

 

  
 

 
 

  
 
 

 
 

   

  

 

 
 

 

 

 

 
 

  
 

 

 

  

  
 

  
 
 

  

 
 
 

 
 
 

 
 

.   29.b) 

For the matrices on the right hand side we obtain: 

                
     

  

 

 
     

 

 
    

     

  
 
 

,  29.c) 

and for the x component we obtain zeros. The matrix R is: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

 

 
 

 

 
 

 

 
 

 

 

  
 

 
 

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 

  
 

 
 

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

  
 

 
 

 
 

 
 

 

 
 

 

 

  
 

 
 

 

 

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

 
 

 
 

 

 

 

  

 

 

 
 

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   29.d) 

Now we need only to subtract from the y-component the gravitation (-10N/kg), because for the 2D 

case this is the vertical axis. This method is iterative, so we will start with a parabolical profile of the 

velocity field and with the pressure value over the surface of liquid helium in the cryostat. The matrix 
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B depends on the physical conditions of the studied problem. We used the values from [8]. For U0 we 

put        , where f is the frequency of the oscillations of the obstacle and a is the amplitude of 

oscillations.                , which corresponds to        , so we need to use an artificial 

viscosity to stabilize the matrix A. We calculate it as        . I assume T=1.24 K, which 

corresponds to              ,           ,                , see [9]. As an initial velocity 

for the iterative process I used a constant velocity field, equal to the boundary conditions with 

parabolical profile with zero on the place of the obstacle. We assume absence of counterflow, so in 

the matrix B it is equal to zero. For the numerical results after 10 iterations, see Figures 3.a)-3.c) with 

the normal liquid velocity field, superfluid velocity field and with the pressure field: 

Figure 3.a: Pressure field in the stationary case. 

 

Figure 3.b: Velocity field of the normal liquid in the stationary case. 
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Figure 3.c: Velocity field of the superfluid in the stationary case. 

 

The numbers on the axes correspond to the experiment dimensions and the length of the longest 

arrow in the figure of the velocity of the normal liquid is around 3 mm/s, while for the superfluid it is 

around 1.4 mm/s. We can see that the results are not physical because they are not symmetric. 

Additionally, this can be seen as a property of the Oseen scheme at high Reynolds numbers; so, it 

should not be used for flows over Re=1000. For higher pressure around 1 atmosphere we obtained 

those figures: 

Figure 4.a: Pressure field in the stationary case, over the liquid p=101133.3 Pa. 

 

Figure 4.b: Velocity field of the normal liquid in the stationary case, over the liquid p=101133.3 Pa. 
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Figure 4.c: Velocity field of the superfluid in the stationary case, over the liquid p=101133.3 Pa. 

 

In Figure 4.a we substracted 1 Bar for better clarity. The length of the longest arrow corresponds to 

around 0.3 mm/s, while for the superfluid it is 10 mm/s. We obtained in both cases solutions that are 

not physical for the reasons mentioned above. 
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The nonstationary problem 

We have now the solution of the system of equations 9.a) - 9.e), which is an approximate solution of 

4.a) – 4.d). We use it as an initial condition for the problem: 

Def.5: Let                                         
             ;      ;     

             
              . 

These equations hold: 

 
         

  
                                                            30.a) 

 
        

  
                                             30.b) 

                     
       30.c) 

               
    ,     30.d) 

then we call                    a weak solution of 1.a) – 1.d). 

To find a numerical solution we change the stationary solution. We define a partition and a time 

step: 

Def.6: Let T>0 and       is an interval. Then we call the finite sequence of numbers        
     

                  , a partition. Let define   in such a way that it holds             for 

all i. Then we call   a time step and the partition an equidistant partition. 

Def.7: Let      ;     
              

               . Then the functions   
          

                 
       and 

              are a semidiscrete solution of the problem 4.a) -4.c), iff: 

  
          

          
          

                     29.a) 

 
   

        

  
          

          
                

          
                              29.b) 

 
   

        

  
             

          
                

          
                              29.c) 

              
       

 
         29.d) 

    
          

            
 

      29.e) 

                            . 

We consider      , like in the stationary case. The boundary conditions are discretized in the same 

way as in the stationary case. The only difference is that we assume time-dependent coefficients; so, 

we assume an approximate solution in this form: 

    
        

            
        30.a) 
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        30.b) 

         
       

   .     30.c) 

We assume the time dependent coefficients to be one-time differentiable. For the discretization we 

denote the value of the coefficient    at the time step k as      in such a way that it holds for the 

pressure and both velocity fields at the step k: 

    
         

         
        31.a) 

    
         

         
        31.b) 

          
 
   

   .     31.c) 

For the stationary case we denoted k an iteration step; for the nonstationary scheme k corresponds 

to a time step. We consider that we know the initial values of the coefficients, so that we can solve 

the system as a system of ordinary differential equations. 

Now we can formulate the numerical scheme: 

1) Choose   
                  (calculated in a previous time step). 

2) Calculate the next step, satisfying the equations: 

  
                      

                   
               

                 
               

                                     .32.a) 

3) Calculate      
                    in the same way as in the stationary case. 

4)Calculate the potential        of the approximate solution   
                   , by using the application of 

the FEM (finite element method, described below) on the Laplace equation: 

              
                   ,          

  
   

                    .   32.b) 

5) 5)Calculate the superfluid velocity:   
                           . 

6) 6)Use the Bernoulli equation to calculate the pressure values in each cell of the mesh: 

               

   
             

 
 

 

    
                     

 
 

 

 
,     32.c) 

The unsteady numerical algorithm can be obtained from the stationary one. The steps 1), 3)-5) are 

not changed, because they discretize the same equations as in the stationary non-vorticity case. The 

step 6) is only adapted by adding a multiplicative constant in the second term on the right side of 

equation 32.c). It is caused by a different form of the Euler equation in the nonstationary case. The 

step 2) gives this matrix: 

    
         

        
         

        
         

           33.a) 
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                   .    33.b) 

The matrices are defined in the same way as in the stationary case, excluding the matrix A, which is 

defined by 33.a). The numerical scheme 33.a)-33.b) is usually called one-step Euler forward method; 

for more numerical ODE solution techniques see [4]. As test functions the same functions used in the 

stationary case, defined as constant functions in time, are chosen. The error estimation can be 

calculated by using the standard formula for Euler methods for each cell of the mesh: 

   
      

 
  ,      33.c) 

where ek is the error after k steps of length  , L is the Lipschitz constant of the right hand side and N 

is the Lipschitz constant of its approximation. The time step was set to        . Equation 33.c) 

gives us the error rapid increase as a function of time. The solution is then not enough exact and 

another method must be used, that is, the finite volume method, see below. It does not allow long 

enough time intervals. It exists at least one positive eigenvalue of the matrix: 

              ,    33.d) 

which implies that the solution is not stable. The results of the calculations after 100 iterations are 

shown below in the Figures: 

Figure 5.a: Pressure field in the unsteady case. 

 

Figure 5.b: Velocity field of the normal liquid in the unsteady case. 
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Figure 5.c: Velocity field of the superfluid in the unsteady case. 

 

The pressure of saturated helium vapour was used as the pressure value over helium as in the 

previous case. We used the previous calculations as an initial condition for this case, which leads to 

the propagation of the mistake of the Oseen scheme. We chose such small number of iterations 

because we observed a high nonstability. The velocity fields are in an area of 24 x 24 mm as in the 

previous case. The longest arrow corresponds to 0.49 m/s in case of the normal liquid velocity and to 

258.80 m/s in the case of the velocity of superfluid. 

Figure 6.a): Pressure at atmospherical pressure over fluid. 
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Figure 6.b): normal liquid velocity at atmospherical pressure over fluid. 

 

Figure 6.c): the superfluid velocity at atmospherical pressure over fluid. 

 

We can observe that the pressure value reaches 8 Bar, which is nonphysical. More iterations (around 

1000) would give such numbers that the computer cannot process. The velocity fields are in an area 

of 24 x 24 mm as in the previous case. The longest arrow corresponds to 28.73 m/s in the case of the 

normal liquid velocity and to 37.65 m/s in the case of the velocity of the superfluid. We can observe 

that the method of lines cannot be used for those flows with such a high Reynolds number. 
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Numerical model including the nonzero superfluid vorticity 

Existence of the weak solution of the stationary problem: 

We proved that it exists a solution of the system with given boundary conditions: 

               
         

  
                   

 

  
                              1.a) 

 
        

  
                   

 

  
                                   1.b) 

      
2

ns s n s

B
f rotu u u          1.c) 

                                      .       1.d) 

We used it in the last chapter in this way: we calculated a solution of the stationary problem and 

used the solution as an initial condition. It is impossible to use it here because of the equivalence of 

the norms of rotation and divergence, combined with the condition 1.d). We want now to apply the 

Main existence theorem, which is very general tool for stationary problems. It functions for the 

normal fluid velocity equation 1.a) without the time-derivative term, but not for equation 1.b), 

reduced of the time derivative term. We write the stationary system as a first step: 

                                 
 

  
                              2.a) 

                   
 

  
                                    2.b) 

      
2

ns s n s

B
f rotu u u          2.c) 

                                      .       2.d) 

We can formulate equation 2.b) as a functional, defined as a standard duality on a reflective 

Lebesgue space: 

                  
 

  
                                                              

   
 

 
                                         

   3.a) 

          
                  

           
            

   
 

 
                                        

 

                       
 

 
                                          

 

 
                                         

,   3.b) 

where C is a constant, depending only on the boundary conditions. And if we input this result to the 

definition of coercivity, we obtain: 

              
      

  
 

 
                                         

           
      

  
 

 
   

           
      

                                         

           
      

                    

 3.c) 
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which holds because of the equivalence of the norms of the divergence and rotation operators. It 

follows: 

 
 

 
   

           
      

                                         

           
      

  ,    3.d) 

which implies 3.c). So, there is no chance for the Main existence theorem. It does not say that there 

exists no stationary solution, but only that we would have to use another existence theorem or 

technique. 
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Solver algorithm 

We assume that the vorticity will be generated during time. So, we will use both boundary conditions 

for both cases and the assumption if the vorticity of the superfluid is zero is to be decided by the 

user. We will solve it using an explicite finite volume method (FVM): 

We divide the domain into cells and assume constant values of velocity fields and pressure in the 

cells, denoted as    , which fulfill the condition        . We call     finite volumes. The system of 

finite volumes is called finite volume mesh, if they are polygons. Two finite volumes are either 

disjoint or their intersection is created by a common boundary. The boundaries of two neighbouring 

finite volumes are called faces. We will use the same mesh of squares as in the previous case and an 

equidistant time step. We assume a 2D problem but the program can calculate 3D problems too (be 

careful that it requires a powerful computer). 

The derivation of the general finite volume method is written for example in [6], page 55. The 

approximate solution will be searched as a constant on a finite volume, as an integral middle value of 

the velocity fields or pressure. We write directly the result for equation 1.a)-1.d): 

                
  
            

  
            
     

 

 
 
  
               

             
  

  
  

   
               

             
  

  
 
 ;    

    
             

        
            
   4.a) 

    
                        

              
 

     
          

    
  

    
  

     
  

  
  

 

      
             

  
               

            

  
               

            
 

   
    

    
  

, 4.b)  

where             , if    is a standard normal vector of the surface of the finite volume and 

              
            . We assume the approximation of all functions as piecewise constant, on each finite 

volume equal to one value. As nonviscid flux we call the matrix U and as viscid flux we call the matrix 

T. Equation 4.b) is then rewritten in a discretized form: 

    
                         

              
 

     
         
    

     
  

  
  

 

      
             

  
               

            

  
               

            
 

   
  . 4.c) 

Now we evaluate the integrals. We start with evaluating the first one. We approximate the 

differential operators T and         .       indicates the volume of a cell,        is its surface and D is the 

length of the edge of a cubic cell in the mesh. 

The circulation can be calculated in 2D by using the Stokes formula in this way:  

           
 

      
   

              
 

 
 

 
     

        
    .    5) 

Before we use the given initial condition for this scheme, we must approximate it by a piecewise 

constant function on the finite volumes, that is: 
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 .    6) 

We assume initially both velocity fields equal to zero. The vorticity and the boundary values of 

velocity change with time (the same boundary conditions as in the previous two cases without 

vorticity). To calculate the values of T and U at the time iteration k+1 we will need not only the values 

of the velocity fields and of the pressure in the central cell but also those in the neighbouring cells, 

see Figure 1: 

Figure 1: 

 

The viscid flux can be approximated by using a curve integral along the line connecting the centers of 

two opposite faces of a cube of the mesh: 

  
 

      
    

             

        
            
    

 
  

   
             

       
            
      

   
             

       
            
    , 7) 

where A and B are two edges of a cell and the integration is calculated for each component. We 

denote this matrix F. The direction of the integration curve corresponds to the derivative variable in 

the velocity gradient. So we obtain this approximation: 

         
 

 
  
   

             

       
            
      

   
             

       
            
         

 

 
    .  8) 

To approximate the nonviscid flux we must evaluate the integral over the surface of a cell. We must 

evaluate an integral of a piecewise constant function, whose discontinuity is exactly on the 

integration set. We solve it using an adjustable weight parameter  , which is given by the user before 

the calculations. We obtain for the surface integral of the nonviscid flux this approximation: 
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   ,  9) 

where i,j are the positions of the cell. The first term is given by the value of nonviscid flux in the 

previous time step and during the integration process vanishes because we integrate a constant 

function over the opposite faces of the same measure, whose normal vectors are oriented in 

opposite directions. We obtain this approximation of U: 

       
    

   
   

 
    ,    9) 

where   signs a sum of U in the neighbouring cells at the previous time iteration around the central 

one. The approximation of the first integral is then: 

 

     
         
    

      
   

             

       
            
      

   
             

       
            
           

   

 
    . 10) 

We already approximated the vorticity of the superfluid. As the term including the mutual friction is a 

volume integral, we need only the values of both velocity fields in the central cell. We calculate it 

directly: 

 

     
             

  
               

            

  
               

            
 

   
   

 

 
            

  
               

            

  
               

            
 .   11) 

So, finally we obtain the numerical scheme: 

   
                        

              
  

 
   

   

 
        

  

  
  

 

 
            

  
               

            

  
               

            
 .  12) 

The initial condition on the pressure is equal to the pressure of saturated vapour, because we neglect 

a depth of the cryostat. From equation 12) we cannot obtain the pressure values but we can assume 

that each cell is so small that there it holds the nonstationary Bernoulli equation from the previous 

chapters: 

               

   
             

 
 

 

    
                     

 
 

 

 
.     13) 
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If we assume a flow in such a small scale like a cell in the mesh, we obtain a lower Reynolds number 

than in the global case; so, we can assume a flow in one cell as laminar; it follows that equation 13) 

holds.  

We say that the finite volume scheme is stable, if there exists such a constant C that: 

     
              

  
      

       
              

  
      

.    14.a) 

The initial condition for the velocity fields is equal to zero and the rectangle starts moving from rest.  

The necessary stability (CFL) condition must fulfill this inequality: 

        

     
  .     14.b) 

where c denotes the sound propagation speed, which can be calculated using the thermodynamics 

and is written in [9]. For more information about the CFL condition, see [6], page 58. Here we 

considered the same temperature as in zero vorticity case, so the physical values are the same as in 

the previous chapters. We choose a time step to fulfill the CFL condition 13.b) to avoid a blow up in 

time. 

For the results of the numerical simulation after 100 iterations, see Figures 3-a) -3-c). We assumed as 

an initial pressure 133.3 Pa everywhere. We started from the initial condition, shown in Figure 2-a) 

and 2-b). The length of time interval is set to 0.0001s. The velocity corresponding to the longest 

arrow is 1 mm/s in all images below. 

Figure 2-a: The normal liquid initial condition. 
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Figure 2-b: The superfluid initial condition. 

 

Figure 3-a: The normal liquid after 1000 steps. 

 

Figure 3-b: The superfluid after 1000 steps. 

 



62 
 

Figure 3-c: Pressure after 1000 steps 

 

The solution obtained by using the finite volume method is better then the one obtained for higher 

Reynolds numbers by using the finite element method, because it is symmetric. We can, however, 

say that it is not good enough because there is too slow velocity propagation for the x component, if 

it is equal to zero for zero time. It may be that the pressure remained constant. For longer times 

(around 10000 iterations) the solution does not converge.We can observe a large numerical error in 

the pressure field, which can be caused by an initial nonstability. 
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Conclusion: 

The work aim is to derive (i) the existence theory for the weak solution of a system of equations 
based on the Landau model of superfluid helium 4 and (ii) appropriate numerical schemes to solve 
these equations. We used succesfully an analogous way to prove the existence of the weak solution 
of the Landau model, as it is customary in the case of the classic Navier-Stokes equations, and proved 
some of its properties. 

We showed that it is suitable to use potential methods if the Landau model does not include 

quantized vortices. We derived the Bernoulli equation for the stationary and nonstationary cases. We 

also derived apriori estimates of the Landau model, including quantized vortices, and proved the 

existence of the weak solution, using Galerkin approximations. Moreover, we demonstrated the 

convergence of the weak solution to initial conditions. We derived the consistence conditions for the 

studied systems of equations. 

We designed numerical schemes for three cases, which solve the Landau model without quantized 

vortices (stationary and unsteady) and including them (unsteady). We wrote three scripts in Mathlab 

to demonstrate the solution behavior, based on the designed schemes. We observed that the finite 

element method including the Oseen scheme does not work for too low pressure and for too high 

Reynolds numbers. We demonstrated that the method of lines is also not suitable, because of its 

nonstability. We showed that it is necessary to use the finite volume method to solve the Landau 

model including the vortices. 

For the future we would like to focus on the uniqueness of the Landau model for the 2D case. We 

would like also to create a compact solver included into some existing solver platform, such as 

OpenFOAM, for the zero superfluid vorticity and for the system including quantum vortices. It would 

also be suitable if it includes some models of turbulence, customary used in CFD. 
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