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Introduction

The thesis is divided into three parts. The first part is a compilation of previous knowledge, which has
the aim of introducing the physical background of the studied problem, related to the analysis of
guantum flows of superfluid helium 4. It also includes a general description of the mathematical tools
used to model the chosen problem. The second part presents the existence theory of the non-
stationary PDE system describing the Landau two-fluid model of superfluid helium. In it | specifically
prove the existence of a weak solution of this system and its convergence to the initial conditions.
The last part is focused on a number of numerical simulations of this system of equations, based on
actual experimental conditions, that is, the described numerical methods are applied on the solution
of a real problem.

The introduction, as just mentioned, is motivated by two goals: one is to introduce the reader to
some of the physical problems connected with superfluid helium flows, including the existence of
guantized vortices; the other is focused on the description of the mathematical tools used in the
second part, that is, the existence theory. The description of the physics of superfluid helium is
divided into three parts. The first one is focused on general properties, the second part is on
guantized vortices and the third one introduces the two-fluid Landau model. The thesis is written
either for a mathematician or for a physicist, who has basic knowledge of mathematical and
functional analysis.



Helium 4 — normal fluid and superfluid

Helium is a chemical element. It was discovered in the spectrum of sunlight in 1868 and it was named
by Lockyer from Helios, which means sun in Greek. Helium, which was isolated from uranium
minerals by Ramsay in 1895, is, at room temperature and atmospheric pressure, a transparent gas.
We know two isotopes, 3He and 2He, which have different physical properties. The atoms of %He
are fermions while 3He ones are bosons. This thesis is focused only on 3He. To obtain more
information on %He, see, for example, [1].

Helium was first liquefied in 1908 in Leiden by the Dutch physicist H. Kamerlingh Onnes. He was
awarded the Nobel prize in 1913 for his investigations of the low-temperature properties of matter,
which led, among other results, to the production of liquid helium. The phase diagram of $He is
shown in Figure 1.

Figure 1: Phase diagram of Helium 4
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We can see that there is no triple point. Another line of equilibrium connects the solid with the gas
and the normal (viscous) fluid (the latter is often called He I). The superfluid can be assumed to be an
inviscid fluid, behaving, in certain conditions, as a Bose-Einstein condensate. Additionally, its
properties can be described as a macroscopical manifestation of superfluidity, which will be
discussed below in more detail.

We can observe that He Il behaves (above ca. 1 K) like a mixture of two fluids: one is the superfluid
component and the other is the normal fluid. The behavior of this mixture will be described below, in
the chapter on the Landau model. The most important base property of 5He is probably the
temperature dependency of its heat capacity (see Figure 2). This dependence was measured for the
first time in 1930 by Keesom. The peak in the diagram was called the Lambda-peak due to its form,
resembling the Greek letter A.



Figure 2: Heat capacity C, of 2He, plotted as a function of temperature T.
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The Lambda peak corresponds to the phase transition from the normal fluid to the superfluid. As
already mentioned, He Il is made of two components, between ca. 1 K and 2.17 K (the latter is the
transition temperature, at the saturated vapour pressure, between He | and He Il). The sum of the
densities of both components is almost temperature independent, see Figure 3.

Figure 3: Density of the normal and superfluid components of He Il, plotted as a function of

temperature.
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We can observe in Figure 3 that, at temperatures below 1 K, He Il is made almost entirely by the su-
perfluid component and that the normal fluid component vanishes. The most important mechanical
property of He Il is called superfluidity, which was discovered by Kapica in 1937. He submerged in the
liquid a pile of thin discs, suspended vertically, and observed that, above the lambda point, the disc
motions had a certain resistance, as expected. However, after decreasing the temperature, there was
less resistance to the motion of the discs, indicating that the liquid became less viscous. This property
of He Il will be discussed below in more detail, in the derivation of the Landau model.

Additionally, we also mention here another property of He Il, which is called thermo-mechanical. In
1937 Allen and Jones performed the following experiment: a test tube was immersed in the liquid
and closed on both ends by extremely porous plugs (often called superleaks). Consequently, only the
superfluid component can go out of the tube (on relevant time scales). One end of the test tube was
connected to a vertical pipe terminating above the bath, while the other end was entirely immersed
in the liquid. The test tube was illuminated by light, which caused the heating of the fluid inside the
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tube, leading to the generation of pressure and, consequently, to a liquid fountain, flowing outside
the vertical pipe into the bath, see Figure 4. The outcome can be derived from equations 15.a) and
15.b) below, by using adequate assumptions.

Figure 4: Fountain effect, obtained by illuminating the helium bath.
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The same effect can be observed if the helium bath is heated differently, see Figure 5. Similarly, it
also occurs in the opposite way, that is, a pressure gradient in the bath can cause a temperature gra-
dient.

Figure 5: Fountain effect obtained by using a heater.
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Another remarkable property of this liquid is related to the generation of this films on solid surfaces
in contact with He Il, see Figure 6, due to its extremely low viscosity.



Figure 6: Helium Il film.
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Quantum vortices

Let’s now focus on the properties of the superfluid and on its non-classical behaviour. As mentioned
above, the superfluid can be seen, in certain conditions, as a Bose-Einstein (BE) condensate, that is,
the entire fluid behaviour can be represented by one wave function (a BE gas has zero viscosity,
infinity heat conductivity and low heat capacity). However, the superfluid does not behave as an
ideal BE gas due to the mutual interactions between the superfluid particles. Consequently, we need
to describe the superfluid by using the so-called quasiparticles that enable us to employ the one-
particle description, as in the case of the ideal BE gas.

Additionaly, the superfluid has a critical velocity, above which its non-dissipative flow is thought to
break down and whose value was experimentally measured [1]. The existence of such a critical
velocity can be derived theoretically and it is due to the generation of quantized vortices, which are
lines singularities within the superfluid.

More specifically, the energy of the superfluid moving without excitations is given by the following
equation:

1, o  P?

EO = —Mv =, 1)

2 2M
where E|; is the initial fluid energy, M its mass, v its velocity and P its momentum. Now we can
calculate the increase of the fluid energy, by adding one excitation, and we assume a linear addition
of momentum, that is:

P =P+p. 2.a)

We calculate the new energy as:
E=" b =P b)) = By + 55+ 2+ E) 2b
T 2M P)="3u P)=Lo TP VToy p), -b)

where E(p) is the excitation energy. The third term on the right hand side can be neglected because
we assume a low-momentum excitation and we obtain the following equation for the energy:

E=Ey,+p-v+E({p). 2.c)

The necessary condition for the formation of an excitation is the decrease of the total energy. So the
following inequality holds:

E <E,. 3.3)

We input equations 1) into 2.c) and we obtain this condition:
E(p)
v > T” = f(p). 3.b)

for the critical velocity estimate. Here we also assume that the angle between the fluid velocity and
the momentum of the excitation is 180°, so that the corresponding scalar product is a minimum.
Now the minimum of f(p) corresponds to set its first derivative to zero. This gives us the condition:
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4)
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The explanation of the excitations as rotons and phonons (see [1] for further details) failed because
the experimental value of the critical velocity for rotons is too low and that for phonons is too large.
There must be another source. It was experimental confirmed that this source can be found in the
so-called quantum vortices.

Let us assume Y (7; t) to be a solution of the Schroedinger equation:
. 0P _i — 5%
lh; =~ Zm AY + V(F)Y, 5)

where m, is the mass of one helium atom (the other symbols are customary). Then we can calculate
its momentum as an eigenvalue of the momentum operator:

Py = hVy, 6)

the solution of which is, after dividing by the mass:
— R
=y, 7)

where ug is the superfluid velocity. This implies that the superfluid flow (often called superfluid) is
potential, that is:

rotu, = 0 8)
We define the circulation as the line integral:
— h
[=¢ ugdl= m—495L Vi dl. 9.a)
where L is a curve and S is an area bounded by L. Then we obtain, by using the Stokes theorem:
h —
r =m—45§L Vi dl = [ rotugds. 9.b)
For a simple connected region the circulation must be equal to zero, as we see from 9.b). For

multiple connected regions it must be quantized, so we obtain the Bohr-Sommerfeld condition:

2mh
r=nt= nK, 10)
my
So the circulation is quantized. Now we assume the existence of one vortex. We can see from 10)

that for the superfluid velocity it holds:

u—s’—ﬂ 11)

2nr’

where r is the distance from the core of the vortex and k is the circulation quantum. We define the
characteristic length b which indicates either the dimension of the considered volume or the distance
between two vortices. Then the energy of one vortex is equal to:

b n?pgr? b
gy = fao Tpgvirdr = f—nln (—), 12)

QAo
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where ag is a radius of the core of the vortex. This core can be seen as a hole in the superfluid
because the existence of such singularities in the domain S follows from the discussion above. This
can explain, for example, the conservation of superfluidity.

Note also that the most general form of motion of superfluids is called quantum turbulence and that
the latter is mostly due to the dynamics of the quantized vortex tangle within the two-component (in
the case of He Il above 1 K) flow.



Thermal counterflow and the Landau model

Hall and Vinen (see [1], page 136) postulated the existence of a force, called mutual friction force,
between the normal fluid and the superfluid components of He Il, given by the equation:

—

Fos = BEZ2 O [Q X (U — )] + B x (75 — i), 13)

where O = rotu, and B, B’ are tabulated constants, depending on temperature [1]; u, and u,, are
the velocities of the superfluid and normal fluid components, respectively.

The implications of equation 13) can be suitably studied experimentally in thermal counterflow,
which is a thermally generated flow of He Il where the two fluid components flow, on large enough
scales, larger than the average distance between the vortices, in opposite directions, see Figure 7.

Figure 7: Thermal counterflow.
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The heat source is usually placed at the bottom of a channel (inside a cryostat) filled with He Il. The
normal component flows away from it (upward), while the superfluid moves downward (toward the
heater), in order to conserve the null mass flow rate.
A simplified form of equation 13), will be used below:

7 B — — —>
fus = -3 |T0tus|(un - us)- 14)

L.D. Landau derived the following equations for the two components of He Il (see [1], page 124):

%+ﬁ-7ﬁ=—in+vAu_n’—Z—ZSVT—%V(ﬁ—u_S’)+m+g’ 15.a)
Uy | — 1 - > Pnwy—s —
= Tus Vs = _EVP_fns +g +5VT+7V(un - Uy). 15.b)

In the case of isothermal flow the terms including temperature and enthropy can be neglected (this
will be assumed in the following). We will also assume small gradients of counterflow velocities and
neglect the terms including the gradient of the difference between the velocities. The assumption of
no quantum turbulence (no vortices) can be given by 8).



For low velocity values we assume the condition:
div(u, +ug) = 0. 16)

In the case of large velocities, we will assume the non-divergence condition for each one of the
components, that is:

divu, = 0; divug = 0. 17)
The conditions 17) will be automatically assumed in case of non-zero vorticity of the superfluid; the

condition 16) is instead assumed in the case of zero vorticity of the superfluid velocity. We define the
Reynolds number:

Re == —, 18)

where V is a typical (suitably defined) velocity of the flow, L is a characteristic flow dimension (for
example, the diameter of a pipe or the largest size of an obstacle) and v is the kinematic viscosity of
the fluid.

The just introduced physical notions have the aim of define the background for the problem studied
below, that is, their relevance is clarified in the following.
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Tools

This part of the thesis is devoted to a general introduction of the employed mathematical
techniques: we will specifically define the functional vector spaces (see [2] for more details,
especially for the proofs; the reader should also have a basic knowledge of standard Lebesgue spaces
and measure theory).

Definition (Def.) 1:

a) Xis avector space. A set of all linear maps on X is called a dual space, we denote it X’. If X is a

normed space, we can introduce a norm on X’ in this way:
fEX NI =sup{lf () ;x € X; [Ix|l < 1}. 18)

b) The dual space of X’ is called a bidual space of X and we denote it X“. The space X is called
reflective, if and only if (iff) a map J: X —» X"’ exists and if the latter is an isomorphismus. All
Hilbert spaces are reflective. X is called separable, iff a dense subspace of X exists.

c) The maplis, for Lebesgue spaces, given by theformula:

(f:9) = [, fgdx, 19)

where g is a function. This formula can be generalized for Sobolev spaces as follows:

(f;9)=Jy fg +Vf-Vgdx. 20)

Derivations can be defined in the sense of distributions too, see Def. 3. It’s customary to call this map
a duality.

Def. 2: Let us define a = (a4; ... ay), Where the numbers @; — ayare nonnegative integer numbers.
a is then called multiindex. Its norm is defined as: |a| = Y¥_, a; and we denote the multiindex
derivation as:

lal
D%y = _ 0% 21)

T 9x@1..9x%N’

Def. 3: Let us define the functions u,v € L},.(Q), where the latter denote the space of all local
integrable functions on an open set Q. v is then called the a* weak derivation of u, iff

Jo, uD*pdx = (—1)ll Jo, vedx. 22)
Vo € C°(Q) (infinitely differentiable functions with compact support).

Def. 4: We call WP (Q) a Sobolev space, iff it consists of all locally integrable functions u: Q — R, in
such a way that for each multiindex a, |@| < k, it exists D%u in the weak sense and belongs to L? ().

Theorem 1: W*P(Q) is a Banach space Vp € [0, ], separable Vp € [0,00), reflective Vp € (0, o)
and a Hilbert space for p=2. We define the norm of W*?(Q) as:

1/p
(Ziatstc o 1DulPdx) " 1<p < oo 23)

”u”Wk.p(Q) =
Sjelsk esssupalDéul p = oo

The scalar product on W*2(Q) is defined as:

11



(u,U)Wk,Z(Q):=Z|a|Ska DafDagdx. 24)

Note: we often denote W2(Q) as H*(Q). W, () indicates the closure of C() in W*P(Q). It's

then customary to write: Wok’z(Q) = HYX(Q). We know that an orthonormal basis exists in each
Hilbert space and this will be discussed below in the theoretical part of thesis. We use for the norm
of a Lebesgue space L? () the notation ||f|l,,.

Def. 5: Let £) be an open set. We say that

ueC(Q),iffueC@),Ic>0:Vx,yeQx +y: %;tl(y)l <c 25)

where u is called a Lipschitz continuous function. We say that Q is a Lipschitz domain, iff it is possible
to describe its boundary by a Lipschitz continuous function.

Def. 6:
a) Let {u,}>, € W*P(Q). We define convergence in WP (Q) as:

U, > u < lim,ellu, —ul =0
26.a)

b) As{u,}x., € W*P(Q) the weak convergence is defined as:
U, ~u & lim, (U, —u;v) =0 26.b)
Theorem 2: lim,,_,,, ||u, || = ||ul| holds. Then b) implies a).
Theorem 3: the following inequalities hold:

a) Asf € WkP(Q)NLI(Q)for1l < q < oo,p<M,where M is adimension of a domain in such
awaythat Q € RM; Q € C%. Let a € (0,1). Then f € L"(Q) and it holds:

AN < CUFNENAIGE, 27)
where C is a constant independent on the function f.

b) Poincaré inequality: p:1 <p <o and Q is a subset with at least one bound. Then
C = C(p, Q) and the following holds:

Ifllp < CNVEl,. 28)

More common inequalities (especially Minkowski, Holder, Young etc.) are not reported here as we
assume their knowledge, see [2,3].

Now we write two fundamental theorems for the existence of a solution. A is an operator: A: X — X'.
We focus on an operator equation in the form:

Au=f, 29.a)

where f is an element of X’. By using the fact that X‘ is a dual space of X, we reformulate the problem
in this way:

12



(Au; v)x v, = (f; V) VV € X, 29.b)

The following two theorems hold: one is called the (generalized) Lax-Milgram theorem and the other
is the main theorem of monotone operators. We state directly the generalized Lax-Milgram theorem.
The special version, which holds for eliptical operators, is given below and is its direct consequence.

Def. 7: Ais an operator. Then we say that A is:

a) Coercive, iff: 1im||u||—>oo % -

b) Ais a (strictly) monotone operator, iff Vu, v: u # v (A(u) — A(v);u —v) =0,
(A(w) —A(W);u—v) > 0).

c) Ais strongly monotone, iff it exists a constant C>0, such that:
vu,v:u #= v {(A(w) — AWw); u — v) = Cllu — v||%. 30)
d) Aisbounded, iff it exists a constant M>0: |[{A(u); v)| < M||v||x Vv € X.
e) Let A be asymmetrical operator. Then A is eliptic, iff it exists a constant: a > 0:
(A); u) = allullf. 31)
f) Alis a weak continous operator iff it holds (A(u,); v) = (A(u); v) Vv € X whenever u,, - u.
Theorem 4 (uniquness): A is strictly monotone. Then Vf € X' it exists at most one solution of 29.b).

Theorem 5 (generalized Lax-Milgram): X is a Hilbert space. Def 7c) holds and hence A is a Lipschitz
map. Then it exists a unique solution of 29.b) Vf € X'.

Special case (Lax-Milgram): A is a bilinear mapping and X is a Hilbert space. Def 7d) and 7e) hold.
Then it exists a solution of 29.b) Vf € X'. This solution is unique.

Theorem 6 (the main theorem of monotone operators): let Def 7a), 7b) and 7f) hold. Then it exists a
solution of 29.b) Vf € X'.

Now we focus on non-stationary problems. We introduce the Bochner spaces and remind two im-
portant theorems, that is, the Gelfand triplet and the Aubin-Lions lemma. We will not define here
basic terms such as simple function or Bochner integrable functions, because they are natural gener-
alization of the same terms from the standard Lebesgue spaces and measure theory, see [2,3].

As a first step, we define LP (I; X) spaces:

Def. 8: X is a Banach space, with 1 < p < o, I c R. Then LP(I; X) is the set of all strong measurable
functions f:1 = X, such that:

S, IfIRdt <o, 1<p<oo 32.a)
esssup;||fllx < oo;p = 0. 32.b)

13



Note: it’s usual to use (0,T) instead of | to denote a time interval, because we often solve the given
problem for some finite T>0.

Theorem 7: LP (I; X) is a Banach space, whose norm is defined as:

1/p
fllraso = (J Ifzde) " 1<p <o 33.)

Iflleix) = esssupyllfllx; p = oo. 33.b)

X’ is dual of X. Then each functional is represented in the following way:

@ N raxy wrax) = J, (o fxrxdt; f € IP(X), @ € LP'(I; X). 33.c)
These spaces are reflective for 1 < p < oo and separable for 1 < p < oo. Additionaly, p* denotes the
conjugated coefficient:

1y 34)
p p

Now we must formulate the definitions of continous and compact embeddings:

Def. 9: X is a Banach space and Y is its subspace, | |lx,ll |lyare the corresponding norms. Then we
say that Y is continuously embedded in X, iff it holds Vf € X, Y: ||flly < |If|lx and we denote Y & X.
We say that Y is compactly embedded in X, iff Y is continuously embedded in X and every bounded
sequence {u,} has a subsequence {unk] that has its limit in X and we indicate Y < X.

Now we can formulate the Gelfand triplet lemma:

Theorem 8: X is a reflective Banach space, X’ its dual and H is a Hilbert space. X © H =H' o X’
densely. As u € LP(I;X),u’ € LP'(I; X"), 1<p<oo, it follows that u is almost everywhere equal to a
smooth function on (0, T), which is defined on [0, T] in H, and there the following holds:

d '
—llullf = 20, uhyry, 35)
in D'(0,T) (a space of all functionals from the space of all smooth functions of R).

Finally, we formulate the Aubin-Lions lemma, which is very important in the theory of weak solutions
of the nonstationary problems. We define a needed function space first:

Def10: W = W)(Ii))"‘j(1 ={v e LP(0,T;X); v' € L1(0,T;X)}, whereX, and X; are Banach spaces.

Xy, X1, X are three Banach spaces and it holds: X, ©© X © X, with X, X; reflective. As 1 <p <
and1 < g < o, thenfor1 < T < o, it holds: W % LP(0,T; X).

14



Theoretical part of the thesis

The governing equations:

We consider the following system of partial differential equations:

—+un-l7ﬁ:—pi\7p+vAu_n)+]§+§ 1.a)
— 1 -~ -
us - Vug = —;Vp —fas TG 1.b)

where 1.a) describes a normal fluid and 1.b) describes a superfluid. We consider our two-fluid system
isothermal, additionally we neglect the influence of S and T, and we assume that both equations are
bounded by the condition:

ns

f :—§|rotﬁs|(ﬁn—ﬁs). 1.c)

If both move fast enough, in such a way that they are decoupled, we can write:
divii, =0  divi, = 0. 1.d)
And for a low fluid velocity, it holds:
div(dy, + u,) = 0. 1l.e)

We consider for simplicity that the velocity of the superfluid is small enough if and only if its vorticity
is zero, that is:

rotd, =0. 2)

The force formula 1.c) is simplified. For a more general expression, see [1], equation (3). The
boundary conditions are discussed below and we finally assume that the only physical reason of the
existence of the volume forces are either the quantized vortices or the gravitation, which give the
different signs in equations 1.a) and 1.b).

It is possible to consider a slip boundary condition and no superfluid vorticity, because of the small
thickness of the boundary layer. The vortices in the layer might possibly have the same effect as the
classical viscosity, so we can introduce the boundary conditions for both components in the same
way. The densities of both components are space independent.

With respect to the solved tasks we have to prove the existence and uniquness of the weak solution
on the outer domains and find a numerical solution using the FEM and discontinous Galerkin
methods for the system. We will use the special property of the system, following [1]. Because of the
assumed special property of the volume force we will get no dependence of the apriori estimates on
the force.

The goal is to prove the existence of the weak solution of the following problems, physically
different. So finally we obtain two tasks to solve. The existence theory and the numerical simulations
of the following equation systems:

15



Without quantized vortices:

%+ﬁ-|7u_n’=—i\7p+vAﬁ+§ 3.a)
6u_)5 —_— — 1 -
¥+us-l7us=—g\7p+g 3.b)
rotd, =0 3.c)
div(u™ + us) = 0. 3.d)

And the system including quantized vortices:

%#m-vm:—ivmmﬁﬂzﬂj 4.2)
SV = =P~ fag + 4.b)

f = —%|rotﬁs|(ﬁn —0,) 4.c)

divi, =0  divis = 0. 4.d)
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The geometry of the task and the boundary conditions

The geometry of the problem is as follows: an obstacle, of rectangular cross-section, is placed in the
middle part of our experimental volume (in the inner part of cryostat). Around the obstacle the two-
component fluid moves: the normal component flows from below, that is, upward, while the
superfluid flows downward. We assume the no-slip boundary condition on the inner sides of the
cryostat. These are caused for the normal component by the non-zero value of the viscosity and for
the superfluid by the quantized vortices in the boundary layer. This can be justified by the non-zero
viscosity of the normal component and by the existence of quantized vortices for the superfluid, due
to the boundary roughness. Moreover, the thickness of the boundary layer is considered small,
compared to the experimental volume size. We also assume that both components have a
parabolical velocity profile.

Figure 1: geometry of the problem.

Vn2; Vis2

Vnl Vsl

Vnl Vsl

Un

Vna; Ws2

It then follows that the velocity of the obstacle is equal to the velocity of the fluid around the
surfaces parallel with the flow direction. The problem is solved in the reference system of the
obstacle.

We consider a parabolical profile on the top and the bottom of the domain, where the problem is
solved. We consider the upper and the lower parts of the experimental volume to be far enough
from the obstacle, so that the latter do not affect it. Uy indicates the obstacle velocity and V, and Vi
are fluid velocities, depending on temperature, given by the equations:

1 dQ
n " mR2STp dt

1.a)

_ 1 dQ
S mR2STpg dt’

1.b)

Qs the thermal energy of the heating, R is the dimension of the cylindrical cryostat with square cross
section, S is the enthropy of the normal liquid. The density p is the sum of the densities of both
components and depends weakly on temperature. The densities of the two components have a
stronger temperature dependence and are tabulated. r, x and y are the coordinates, in the cartesian
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system, describing the obstacle. r indicates the obstacle position inside the cryostat. a and b are the
dimensions of the obstacle, perpedicular and parallel to the flow. We consider no condition on
pressure on the boundary.

The boundary conditions are marked as Vnl; Vsl — Vn2; Vs2 (in the existence theory they will be
marked with the more general Vn and Vs) and are:

Va1 = Uy 2.a)
Vs1 = Uy 2.b)
Voo = %rz + 1, 2.c)
Vg = =228 72 4V, 2.d)

We can include the oscillations of the obstacle. This can be obtained easily if we put Uycoswt
instead of only U,. So, we can write for the nonstationary problem:

Vp1 = Ugcoswt 3.a)
Vg1 = Uycoswt 3.b)
Voo = %rz + 1, 3.c)
Vi = =220 72 4V, 3.d)

These boundary conditions hold only for the flow without gravitation (only caused by heating in the
lower part of the cryostat). The influence of the gravitation (or of other volume forces) can be
obtained using the compatibility condition (derived below):

0=v [y, Vipds + [, gédx, 4)

which is the way for a simple derivation of the velocity gradient boundary conditions. We consider a
zero velocity gradient on the left and the right wall of the cryostat and nonzero on the upper and
lower parts. We assume a nonzero gradient component only in the direction of the z axis so:

0 0 O
Vo, = 0 0 OZ ' 5)
0 0 &
0z
So we obtain from 5) this equation:
0= v%ZnRZ — gnR?h 6.a)
gn _ ovj
v oz 6.b)
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The nonstationary PDE system, describing the Landau model

The weak solution theory of the nonstationary PDE system without the vortices:
1.1 Definition: The weak solution of the Landau model:

Let Q € RM,with M = 2,3; U, g — Vo and Ug g — Vs € L5(Q); Uy, Vg are obtained from continous
functions, defined on the two boudaries, which are the inner and outer Q domain boundaries, which
do not penetrate or touch each other. Then the functions satisfying

W — v, ul— v €L (0, T (WO“(Q))M) nL® (0, T; (L2 (Q))M) ;

Iy OUs _ 11 NIOEEYANLAY
22 e (o1 ((w2@) ) )

are called a weak solution of the system 1.a) —1.c) without quantized vortices, formulated as:

aﬁ?{ - S Pr——— —, - . — _ =

S v)(Wol'z(Q))*,(Wol'z(ﬂ)) + [ @y - Mugvdx +v [, Vi Vidx + [, pdivipdx =v [, ¥

Vigds + [, g-vdx 1.a)

afs - — — .o _ > 2

?’”)(wg'z(m)*,(wg%m) + [, @ Vugvdx + [, pdividx = [, §-vdx 1.b)
Jo @ + 1) - Vedx =0 1.c)
Jo, usrotidx =0 1.d)

Forall v € (LZ(Q))M,<p € L?(Q).
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The preliminaries of the existence theory

Here we use the Green theorem, applied on the Laplace operator, as it is customary in the theory of

the N-S equations. In the first step we derive the energetic inequality. We sum both PDEs and, as a

test function, we use a sum of the solutions and obtain:

0 (un+us) |
at

Jo pdiv(uy +ug)dx
=0

— — 1 . —— . —— 1 — . — J— P —
(u, +ug) — Efﬂ (divu, [u,|? + divug|ug|?)dx _Efﬂ (lus)3diva, + |u,|*divug) dx =
VIV I3 + [ 7 (g + u) (17 + (14 ]2) + vV, (, + ug)nids. 2)

We see that the member with pressure vanishes and we use the Gelfand triplet for the time-
derivation member. The volume-integrated members vanish, using the divergence equation. The
nonlinear members are consequently equal to zero and we obtain:

d — —_— — —_— — — —\ &
I +usllZ + 2vIVilIZ = [oo (1wl + [us1?) - (us +up)iids, 3)
which we integrate from 0 to t and get
— — t — P — — P — —\ =
2 + w13 (0) + 2v [[IVEL 113 dt = llwy +wl13(0) + [ (] + [551%) - (g + uy)iids. 4)

This equality is not as useful as we would need, because it gives no estimate for the norm of both
functions, but only for the normal component. We will derive one equality of another type, which
will be more helpful. We can use the Bernoulli equation, deriving the apriori estimates for the
superfluid component:

6;' — —
% + (g -V)ug +Vp=20 5.a)
and integrate it over a stream line. This is well defined and gives:

oug

L SRdl+ f, (@ - V)T dl+ p(t) = p(0). 5.b)

The substitution theorem, with dl = Udt, gives us for the time-derived member the integration over
time from 0 to t and we obtain finally the Bernoulli equation for the superfluid:

ous  — —
A a_“t.usd1:+f/1 V[wel? - dl + p(t) = p(0). 6)

Now we can evaluate the second integral and integrate over Q:

ou; — — —
f,l (a_ut:us (W01,2(Q))*(W01,2(Q)) dt + fﬂ |us|2(t)dx + fg p(t)dx = fQ p(O)dx + fg |us|2(0)dx- 7)

Using the Gelfand triplet we obtain:
3 — 3 —
Efﬂ lusl> (@) dx + [, p(®)dx = [, p(0)dx +Efﬂ |ug|2(0)dx. 8)

But there is no estimate for the norm of the gradient, so we have no estimate for the norm in the
Sobolev space. We must find it throught the limit of the Galerkin approximation, as it will be shown.
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The existence theory without superfluid vorticity

At first, we use equation 2.c). The zero rotation is equivalent to the theorem:

3d: u, =V, 9)
and equation 2.d) gives:
I4:  u, + U, =rotA 10.a)
U, = rotA — V. 10.b)

So this shows the existence and unigness of the solution of the problem, because it is now given by
an explicit formula.

Let us solve now a problem for the pressure. It is now simply given by the formula 8):
dug

p(t) =p(0)_f)L E'u_s)dt_fl Vlu_s)lz'dl/ 11-3)

where the velocity terms give the classical Bernoulli equation as a non-integral formula:

a‘; —_— —_— —_—
p() = p(0) — f, S=-wgdt — 2 [ug|2(8) + [u]2 (0). 11.b)

And we rewrite the time term to get a non-integral form:
3,— 3,—
p() = p(0) —3 [us1(®) + 5] (0) 11.c)

The formulae 11.c, 9 and 10.b will be used for the numerical simulations too.
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The weak solution theory of the system, including the superfluid vorticity:
1.2 Definition: The weak solution of the Landau model:

Let Q€RM withM =2,3;U, — Upoand U — Uso € L5(Q); ¥y, Vs are  obtained from  the
continous functions, defined on the two boundaries, which are the inner and outer Q domain
boundaries, which do not penetrate or touch each other. Let B>0. Then the functions satisfying:

—_— g
Un — Uny
*

U — 7 € L2 (0, T; (%1'2(0))M) nLe (0, T; (12 (Q))M> [ din O ¢ 12 (0, T; ((WO“(Q))M> )

are called a weak solution of the system 1.a) —1.c) with quantized vortices, formulated as:

aﬁ - — —_— —, - . o> _ >

(W'v)(Wg'z(ﬂ))*,(Wol'z(ﬂ)) + [, (- Vupvdx +v [, Vig:Vidx + [, pdividx =v [, ¥

Vonds + [, fasdx + [, gV dx 12.a)

afs - — —_— .o _ T > -

?’”)(wg'z(m)*,(wg%m) + [, @ Vugvdx + [, pdividx  =— [ fasVdx + [, gvdx 12.b)
Jo WnVodx =0; [, ug-Vedx =0 12.c)
.Fns = _%|rOtUs|(Un _US) 12.d)

Forall v € (LZ(Q))N,fp € L2 (Q).
Setting ¥ = € we obtain the compatibility condition:
0=v [, € Vods+2[, gédx 12.e)

in such a way that the right hand side vanishes in equations 12.a) and 12.b). Then we sum both and
both vorticity terms will be subsequently subtracted from each other.
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The construction of the Galerkin approximation

Before we start to derive the Galerkin approximation, we summarize what we know about the

solution of the Stokes problem in the function space Wol,,dziv(Q)'

1.3 Definition: The operator A:

A: LG g, (Q) = Wol,};w(ﬂ) c (Wol'2 (Q))M- 13.a)
It follows that
Af =1, 13.b)
where u is a weak solution of the Stokes problem:
Jo Vai:Vidx = (f,9), for f € L3 4,(Q), for all B € Wy, (Q), 1 € Wy, (Q). 13.¢)

1.4 Theorem: Q is a bounded domain. Then the eigenfunctions of the operator A build an
orthonormal basis of the space Wy 7;, (Q).

These facts enable us to define the Galerkin approximation very effectively. We take {w;}{2; asan

orthonormal basis from 1.4.

1.5 Definition: We define the Galerkin approximation with an artificial viscosity:

The functions ul) == YN ciw;; ul == ¥N . ciw; are called the Galerkin approximations of the
solution of the problem 1.a — 1.c, if they fulfill:

—_—

auN — Y Y — N — . — Y —
Iy o widx + Jo uX - Vuy - widx +v [ Vul:Vwidx + [, pdivwdx = v [, uy - Vwds —

gfﬂ |rotu§" (uﬁ — u’sV)Wl’dx +J, §-wdx 14.a)

—_—

oug’ N .puN .5y —
Iy at-wldx+fn ud¥ - vul - wdx =

-v(N) [, V@VW{dx+fQ pdivw,dx + +§fQ |r0tu—’s\’)

(Y — o) widx + f,, § W, dx

14.b)
div (EV)) =0 14.c)
div (u) = 0 14.d)

for all w; € {w;}j2,; , which represents the ortogonal system from Definition 1.3. The initial

conditions are expressed as:
uy (0) = XiL; (0w, , uff (0) = XL, ¢ (0w, 15)

Note that we consider that the Euler PDE is a special limit of the N-S Equations, describing the

superfluid on finite-dimensional subspaces of Wolj';iv(ﬂ). The use of the eigenfunctions ensures that
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the pressure members give zero values. The boundary conditions will be expressed using the
integration of the Galerkin approximation over the domain boundary.
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The existence of the Galerkin approximations

First we must prove the existence of the Galerkin approximations. Let’s take the definition of the
Galerkin approximation for both equations and we obtain from 14.c) and 14.d) the equality of the
pressure terms to zero. Because of the properties of the chosen basis of the function space, we
obtain from this system of equations:

—>

oul — N —o— g . B —_— —
0 50 Widx+ Jo un Vuﬁ widx +v [, Vu):Vwdx = v [, uy - Vwds _Efn |r0tu§" (uﬁ —
u)wdx + Jo G-wdx 16.a)

aul N o B NI(N N\—
00 W wydx + [, us Vu’sv widx = —v(N) [, Vui:Vw dx + Efﬂ |r0tu’s" (u,’\l’ - u’s") w,dx +
Jo G-W,dx. 16.b)

For the time-derivation terms we obtain:

—_—

aul

oW dx = ct, 17.a)

aull - d . o .
fn ;tn dx—fg —Zlaltcnwl dX—f chlw,|?dx =ck; fﬂ

which we derived from the orthonormality of the basis. For the Laplace term we obtain:
Jo Vul: VW dx = cpdi; [, Vuf:Vw, dx = cla;, 17.b)
where 4; is an eigenvalue of the Laplace operator. The convection terms can be treated as follows:
Jo uy - ru - widx = ck kO)eh @ [ (we - vw) - widx. 17.c)
The vorticity term can be written as:

[w,|?dx <

N _ N\ B, n_ s N
(un —ud )Wldx =—(cl' - ) [, |rotuS

B N
~Ja |rotus

—_— R —
g(ci" -, |rotu’sV dx [, [w;|* dx = g(c}1 —c)ef [, |rotwl |dx < g(ci" —c)cf

_—
I,

17.d)

We then obtain these equations:
ch =

i — — — i Y — B —_—
K @cp@) [ (Wi - VW) -wdx —vepdi +v [, v - Vwids + S (el = c))cf [ rotwi|[w;]?dx +

Jo G- widx 18.a)
¢t =
—ck@®)cl (o) [ (Wi - VW) - wydx — veld; + v(N) faﬂvn Vw,ds +
E(Cin = c))ei [y Irotwl[w;|?dx + [, G- w,dx,

18.b)

with these estimates:
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¢t < -k [ (W - VW) - wydx —vehd; +v [, vy - Vwids +§(ci” - )

Vw, ” =+
2

19113 18.c)
ch<—ck@)el©® [ (Wk - VW) - wydx — velid; + v(N) faﬂv—ﬁ’) -Vw,ds +§(ci" —cf)c? ||Vw, ”2 +
Ig1l3. 18.d)

It is possible to apply the Carathéodory on this system, because the right hand side is continous in
coefficients and is measurable in eact; additionally, it is constant and the boundary conditions are
continous in time. The right hand side is Lebesgue measurable too, so the assumptions on the ODE

—

—_— . .
systems are satisfied. It follows that the Galerkin approximations: uf := YN . ciw;; ul == YN, ciw,

exist in the sense of the definition 14.a) — 14.d).
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The apriori estimates for the Galerkin approximations

We can derive these apriori estimates for the problem 14.a) — 14.d). Now we can multiply the
equations by the corresponsing coefficients for each function from the orthogonal system; for
example, equation 14.a) can be written as:

gull S .
0 0 G fwydx + | un Vun c'wdx +v [, Vun Vel'wdx + [, pdive]'wdx = v [5, uy -

Vel'wds — gfﬂ |rotus (un —ul ) c'wdx + [, g cl'w, dx. 19)

We then sum these equations for i=1...N and we obtain the equation for the Galerkin solution with
artificial viscosity tested by their solution:

aul
0 %- Ndx+fQ N Vun undx+vfQ Vun Vunclx+fQ pdwundx = vf(mun Vuﬁds —
—f |rotus (u_’)[—g) ndx+ [, G- uﬁ dx. 20.a)

Similarly, for the other equation we get:

N — —_— —_— _— —
Jo a&-ul\’ dx + [, uf - vuf -ufdx + v(N) [, Vuf:Vuy dx = [, pdivufdx +

at
—f |rotus (u_’)[—g) Ydx+ [, G- u’svdx 20.b)

We now sum both equations to neglect the quantized vorticity term. Before it, we need to make
some calculations to simplify the work. Let us take the convective terms and calculate:

1 —
Jo un Vun undx =fyu ﬁVluﬁlzdx =—3Jq dlvunlunl2 dx += faglun ,"l’ 7ds =
1 ~
Efanlvn | Vn - 7ds. 21)
The same we obtain in the case of the equation for the superfluid:

2/
|"vs -7ds 22)

N.paN . N 1
Jo uf - vuf -ufdx =§faQ|VS

The sign of this term depends on the boundary conditions. In this case we obtain zero. We derive the
consistency condition for the volume forces and for the boundary conditions below. The pressure
terms vanish because of the zero-divergence conditions:

Jo pdlvun dx =0; [, pdlvus dx = 0. 23)

Together with the calculations for the convection and pressure terms we obtain, after summing the
equations 17.a) and 17.b):

N
oy 2 o+ [, 28 4 v )Vl Vadx +v(V) [, Vvl dx +

1 S 2,
Efaﬂlvs | Vg 1ids +Efag|vn | v, 7ids = vfmun Vunds +v(N) faﬂus Vu?’ds —

(u_f,f—u_gv’)zdxﬂﬂ G- (ul +ul) dx. 24)

B N
~Ja |r0tus
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The quantized vorticity term is negative and we can put it to the left hand side. We then neglect the
boundary terms derived from the Laplace member because we assume zero velocity gradient on the
boundaries.

oufl —y g o
f 5t -undx+f T dx+vaun Vu dx+v(N)fVus Vug dx
Q Q 2

B —_ — —\ 2
+ +Ef |rotu§V (u,"l’—ué\’) dx =

. (N, N 1 2/, 2/,
Jo G- (u,’;’ + uQ’) dx — Efanlvs | vs 7ids — %faﬂ|vn | v, rids. 25)
The right hand side is bounded and we obtain:

fo 0 (G =)= e v s = o Poits < SC52g0e

v |7 _ || — oy 26V o —, v(N)
I ey CTTD ST o OO + 752 |7l +
—2
N
ul|| ()" 26)
The estimate for the gradient norm term is:
YN e o w2 v(N) —21|2 — —2
|7l — v ()" < (||Vuﬁ| ) 2 || vud] )" | 7ud ()"
—2 20(N) —2 —2
v (LZ(Q))M> < 2 (||Vug|| e (Lz(m)M). 2)
Consequently, the whole estimate of the right hand side can be written as:
s (TN W 1 27, 1 2, 2v(N) |2
Joy 8- (uﬁ — u’s") dx — Efanlvs | vg 7ids — Efa(z'Vn | v, ids < VT<||VU,IY| (LZ(Q))M +
—2
” N (Lz(m)’”> 4 zc(V3(N)) ||j|IZL2(Q))M + C(Vy; V5)- 28)

So, we can write the following estimates for the left hand side:

ouV —w ouy —w
0 ?-uﬁdx+fQ 2" Us dx+vfQ Vun Vundx+v(N) Jq Vus Vus dx +

(ug—us) dx < f, 22 unazx+fQ 2wl o+ v VUl 113 + vV IVl 3. 29)

gfﬂ |rotu15V
And, by using the Gelfand triplet, we obtain:

2

ouly ” ” ol — 1d || W
: “ug dx = u . 30
Q ot uy d T 2ar Q ot S “zatll s I, )
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It follows that the whole inequality is of the form:

—_—

ul vu¥

2 + V”VU—Ir\l’) 5 + V(N)||Vus 12 < 2 2V(N) <||Vu—lr\zi||2 4 | 2) s
2 2 :

+ C(vp; vg), 31.a)

o |
Zdl’ 2 2dt

2c(v(v) G 712
3 2
and we integrate it:

|2 —II? t - -
[, @ + [ 0+ 2 15 (vivall 12 +vem v 13) dr <

=20 (I +

vul

2 c(v(n o T ICET ¢ o
2) dr + w[gugugdr +2 f(f C(Vn; vs)dt + ||u1"l’ ||2 0) +

32.b)

The series {C(V(N))};;l; {v(N)}%_, are bounded, because v(N) converges to zero. So, finally, we

2
dt

have these apriori estimates:

t ESI[l(I)?,T] ”u—j’\{)”2 )+, eSI[gj,T] uf 2

Vus

T
[ <<2v_4”<’”> vt |+ 2|
0

T T
4C(v(N) . L — 12 —2
< % j 1g113dr + 2 j @y mdr+ || @+ [[u¥] ©
0 0
< K(0n; Us; 15 (0); u5(0); g5 v). 33.¢)

— OO — OO
So it is proven: the series {uﬁ’} , {u?’} are bounded in the space of functions
N=1 N=1

12 (0, T; (W, (Q))N) nL® (0, T; (L2 (Q))N>.
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The time derivation apriori estimates and the limit passage

Now let us estimate the time derivation terms. We calculate them for both components, in order not
to have to do the same thing two times.

1,2 M
As the function @ € L2 0,T; ((Wo dw(Q)) ) , it follows:

ouflll | ||ow ) (I o [+ o )
ot ot 5 = pdxdt| + pdxdt|) =
( o ot LZ(O,T;((WOf';iU(Q))N) ) loll <1 i P
sup aun ] N | aus N |)
lloll < 1( dxdt| + dxdt 34.a)

We do not write the maximum and make the estimates for the norm of the time derivative terms:

6 n 6 dug’
‘f Ja ;t' Ndth‘ ‘f Jo 5 L Ndth|—|—ff o -7l - ¢Ndx—vf vul: VN dx —

Jo pdiveNdx + vfmun -qu”ds — —f |r0tus

(_N)—us)go"’dx + o G oV dxdxdt| +
|—f0TfQ @) VuTX)-de v [, Vuf :V(dex - Jq pdivﬁdx+vfmu—’s\’)-Vst -

B N
~Ja |rotus

(uf —uY) pVex + f,, G- " drdxdt| <
fOTfQ |—u_’TY)Vu_’T‘L’)W| dx +v [, |Vu_’,‘{):Vq0_N)| dx+vfaQ|W-V¢W|ds +BJ, |rot@

—
Ch

u—’SV))W| dx+2 [, |§W| dxdt +f0TfQ |—u—§\’) V@)W] dx +v(N) |, |Vu—’SV) VW| dx +

v(N) [, V—Q’)Vﬁ| ds <2||gll5+B |||7u$ ”(;—u—n))—)” +J, ul - (us Ve )|dx+
Jo |u—’,¥)-(u—’,¥)-VW)|dx+C(v—ﬁ’);@)+vfﬂ |Vun:V(p |dx+v(N)fQ |VuS:V(p |dx§
S (2008 + +v 7|+ vew 7] ) o+ ( |[7a || ]| + 8|7l ] +

]|+ (|| ) 1vg et
4 4
34.b)
We obtain, using the apriori estimates 33.c), the estimates for the time derivatives:
—_— o < C(vy;vg;uy,(0);ug(0); g; v 35
( ot ot LZ<M>(0,T;((W01,'51-U(Q))N)) (O3 Vg3 1 (0);25(0): ) )

where z(M) is a function, for M=2, equal to 2, and, for M=3, equal to 4/3 (M is a dimension).
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The existence of the weak solution:

The estimates above give us more results for the studied PDE system than derived in [1], where
better results for the solution uniqueness are presented.

Note that the quality of the solution does not depend on the convective members. Let us use the
Aubin-Lions lemma:

As XO:=I/I/;)1'2 (Q); X:=L3(Q); X1:=(I/I/01’2 (Q)) ; Xo ©9 X & X;; it follows that all sequences have their

subsequences, converging in the corresponding function spaces. This is enough for the linear
members but not for the nonlinear convective one. We multiply equations 14.a) and 14.b) by w; and
investigate if they converge weakly to the equations:

—_—

aun — - - — — — _
0 7-W1d96+fQ Uy, - Vuy, -widx +v [, Vu,:Vwdx =

—_—

vfaQE-VW{ds —gfﬂ |rotus (;—I)Wldx+fn g-w,dx 36.a)

.

dug
Q ot

—

—_ _ B
wdx + [ ug - Vug -wdx = Efﬂ |r0tu5

(un —us ) wdx + [, §-w,dx. 36.b)

For the linear members, as we already said, it is enought the Aubin-Lions lemma. For the second
right-hand side member in 19.b) it is enough the convergence v(N) — 0; similarly for the Laplace
member of the superfluid. So, we obtain from the Aubin-Lions lemma these convergences:

wniwin 12 (0,T; (17 )" ) 37.a)
W =y in L2 (0, T; (Woidin () ) 37.b)
Utk ou .

=~ 2 in 1700 (0,7 (Wi, () ), 37.0)

and using the boundness of u™ in L% (O, T; (LZ(Q))M) and L? (0, T; (Woljfiv(ﬂ)) ) we obtain the

strong convergence:
U in L9 (0, T; (LZ(Q))M) Vg < o 37.d)
> . 2 M
Wk s uin L (o,T; (LP () ) M=2:Vp<o;M=3:Vp<6. 37

This give us the convergence of the time derivatives and of the Laplace operator. For both nonlinear
terms it is necessary to prove the convergence using some estimates. Now we prove the
convergence of the convective terms, so we want to prove that the following holds:

Jo | @ 7y — ulf - vul|widx - 0 38.0)
A ((u—;- Py —ub - V@) widx — 0, 38.b)
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We multiply both equations by ¥ € C*(Q) and integrate over (0,T). We then obtain:

—

o Jo [ vy = u - vull|widyae = [ gy | (- vw) uf = Goy- v dx de +

N e - - 3
Jo e [(vn Vv, — vi VVn]Wll/JdS dt <|lu, un||L2(0’T;(L3(Q))N)||VW1||(L2(Q))N2||1/J||L on t
Joq €EVIW; 1Pwyds — [, c?VIW;|*wds. 39)

The first estimate term was derived as in [3]. The rewriting of the boundary conditions is due to the
orthonormality of the system {w;};2; . Similarly we can do these calculations for the convective

member of the superfluid: it is identic. Now let us calculate it for the vorticity term too:

T (B (N N\— B I T\ —
|f0 (Efﬂ |7‘otu15V (ug - uQ’) w,dx _Efﬂ |rotus (un —ug )Wldx) Ydt | <
B T g — — . —_— — — N e —
Efo (|fQ |7‘otu15V (ug - uQ’) wdx — [ |rotus (u,’\l’ - u’s") wldxl + |fQ |r0tu2’ (uﬁ -
uV)widx — Jo, |rotud (un —uq )W{de [yp|dt. 40)

We use the fact that it is possible to estimate the norm of the rotation from the norm of the
gradient, using the equivalence of the norms of the divergence and of the rotation, and we obtain:

501y rotu?| (ul — ul w,dx — |, rotug
2J0 Q S n S i Q S

(o ] i <2 (9 (-

u ” |c‘—c‘ ) dt < B - C(data)||d,, — ul 0 -0 41
s, [l =<5 ) tw (ata) i, =l 3z oy W )
T —_— — g N —_— —> I— . T —n2 g

Jy |fQ |rotu§\’ (uﬁ —ug’) wydx — [, |rotu§\’ (un — ug )Wldx| lyldt < |, ”VuQ’ , ”uﬁ—

2 2

unllg + | = ;| ) 1wl 1lae <

— =N - =N —
U, — U m + ||ug —u M Vw. 2 0 .
<|| I o)) I B ) )> V1 g0
42)
We used above the weak convergence of the Galerkin approximations and their convergence to their
norm in order to obtain the strong convergence, used in equation 42).We then used the Friedrichs

inequality for the basis function. So, it holds that the system of equations 14) converges to the
system 36.a) and 36.b).

Let us now prove the energy inequality. We take equations 20.a) and 20.b) and rewrite them in the
same way as during the derivation of the apriori estimates. We obtain:

2

d|ul¥ — =2 — N N . uN | (N
||d:||2+faﬂu11\lll?l|ug| ds+v [, Vul:Vuldx = v [, ul - Vullds —gfn |rotu’s\’ (u,’\{—
ny)agdx+fn ﬁ-ﬁgdx. 43.a)
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Similarly, for the other equation:

2
d S — — 2 Y -
||:t . + [oqus 7 |ud| ds +v(N) [, vul:vul dx = vfaﬂus vulds + 2 fg |rotus ( N—
ub )ug’dx +J, 9 UISV dx. 43.b)

We then sum both equations:

— 2 — 2
d||uév||2+d||“ﬁ||2+f o R[] ds + [, ol R[] ds £ v(N) [ vl vl dx =
dt dt aq s s s s o e

— —\2
(uﬂ—ué") dx + [, g-uf uV dx +

Jo 9 u d 44)

vfaﬂun Vunds +v(N) fmus Vu’svds — —fﬂ |rotu—§")

We now integrate over (0,t) and we obtain:

el 1|m’
—2 t —s2 —n 2
ffm< 7 |ul ds+faﬂus 7 |ul ds)dr+f (V(N) 7|+ |[vu] )dr=
l| | ( f(mun Vu ds +v(N)faQus Vuévds)dr—
ETA |rotus (_N’—ugv) dxde +2 [ [ Gl dx+ [, §-ul dxdr. 45)

To prove the energy inequality we multiply 45) by ¥ € C;°(Q2); ¥ = 0 and integrate over (0,T). So,
we want to investigate the convergence of this equation:

ds+faﬂus 1

2 —2
+v ”Vu,"l’” )dr] Ydt =

2
, 0 +f0t (vfmun Vunds +v(N) faﬂus Vu?’ds)dr—

ugf

2 —_—
f fan (us i [ul ds) dt +ft(v(N) ”Vu’sV
o)+ 2|
2 2
— —\2
(u?’l—u’s") dx dt +2f0tfQ g - ud dx+fQ g - ul dxdr]ll)dt
46)

tB —
Jo3 o |rotu15V

Everything has been prepared to investigate the convergence. The terms multiplied by the artificial
viscosity vanish, because the integrals are bounded and due to the definition of the artificial
viscosity. It then holds:

v(N) faﬂ@-Vu—y)ds -0 47.a)
V(N) f,, Vul¥ - Vuldx - 0. 47.5)

The norm of the initial conditions of the Galerkin approximation converges to the exact initial
conditions because of the comprehensiveness of the orthonormal basis and of the Parseval equality.
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The same holds for the boundary conditions. For the last term it is enough the weak convergence
and we use for the diffusion term the lower weak convergence of the norm and the Fatou lemma:

—2 — 2
iMoo inf [y fy Sy [Vull| dx drpde > [ limg o inf [y f, [Vull| dx drypde >
-2
Iy Jy Jo |Vin | dax drydt. 48)

For the vorticity term it is not enough the strong convergence of the solution of the Galerkin
approximations to the exact solution 37.d)-37.e) but this term is positive on the left side and we then
obtain the inequality:

By [
fi oo (0 -7
f ( faﬂun Vunds +v(N)faQus Vu’svds)dr—zf Jo G ISVdXdT]l/JdtstTE

[ ] v &

® +1||@||z )+

N Nz | 2 ||
7 |ub ds+faﬂus-n ub +v||Vun|| )dr—
2 2

ds) dr + f(f (V(N) ”V@\’)

Using the regularization kernel as test function and the convergence € = 0%, we obtain:

J—
2

ng

O+ ||$||z ) +

ds+faﬂu5 7 |ug

—_
1 |us

2 , 2 2
ds) dr + | <v(N) ”Vus , +v ”Vun ”2) dr <

2 — 2 _ _ —_— —
%l us || (0) +%||un ”2 0) + fot (v JoqUn - Vuzds +v(N) [ us - Vu ds)dr + fot(ﬁ,u_g)dr +
[REA™ES 50)

Now let us investigate the convergence of the solution to the initial conditions. We take the

equations 16.a) and 16.b) and multiply them by an element of the orthonormal basis and by a

function y € C”[0,T],¥(T) = 0. We integrate the equations over the cylinder Q x [0,T] and obtain:
— W, 2L dxdt — f, uy (0) - Wp(0)dx + f, f, ul - vulf - Wipdx dt +

vfo Jq Vun:lel,bdx dt = vaTfaQu_’X-VW[wds dt —gfoT Jo |rot@

(uf — uY) Wpdz dt +
Iy f, G- W pdxdt 51. a)

—J fy u W;‘Z”dxdt fy us ) wip@dx + [ [, o - vull - wipdx dt +
v(N) f Jo Vus'lel,bdxdt=
V(N)f fmus Vwpds dt——ff |r0tus

( —ul ) wdx dt + f Jo G- W Ydxdt.
51. b)

Thanks to the comprehensiveness of the orthonormal basis, using the limit passage, we obtain the
exact equations:
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—Jy Jo un -(pa—tfdxdt—fQ u,, (0) - g(0)dx + [ [, up - Vuy, - gpdxdt +
v, fo Vun:Vewdxdt =v [ [5,u, - V@pds dt _Efo Jq |rotus (un — Uy )gol,bdx dt +

fOT Jo G- @ pdxdt 52. a)

— .9 —_— N — — N
—fOTfQ Ug -(pa—lfdxdt —Jq us (0)-<pl/)(0)dx+f0TfQ u; - Vug - gpdxdt =

B T — — — T > -
240 Ja (un — U )<p¢dx dt+ [ [, G- @ pdxdt. 52.b)

Now we focus on the time derivative term. We make the calculation:

rotug

T ,0U;, - T d(Uy, @) T,— — dy T — dy N
T Gy pde = [) L8P yde = — (Vs §) Lde = — [ ([, @ - Gx) Lt — [, w(0)-
pdx(0). 53)

We know that [ %(0) - $dxp(0) € C ([0, T]; (LZW(Q))M). Setting ¥(0) # 0, we obtain the
equality:
Jo ®n(0)- @dx = [, Ung- @dx, 54)
and we calculate the same for the superfluid terms. So, finally, we obtain these limit passages:
Uy = Upyg; Us = Usg 55)

in (LZ(Q))Mfor t — 0%, Especially, we obtain:

lim, g+ inf T (D113 > [[Tro| 56.2)
56.a)

2

limeorinf [T (O3 = [[asoll,,

56.b)

which is called weakly lower semicontinuity and is a consequence of the weak continuity. We use it
to obtain the convergence to the initial conditions. As a consequence of the inequalities 56.a) and
56.b) we obtain (from the triangle inequality and lineratity of a weak convergence):

. . — — —_ — 2

lim,_,o+inf||u5(¢) + u, (O3 = ”us,O + un,0||2- 57)
It then holds from the energetical inequality:

. . — — —_— — 2

lim,_,o+ inf [[25(t) + %, (DI < [[itgg + Unol]- 58)
So, we obtain the convergence of the solution to the initial conditions in the form:

lim, g+ [T (6) + T (6) = T g — T[> 0. 59)
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The numerical solution with the zero vorticity term

The stationary problem

As a first step, we discretize the stationary problem, with time-independent boundary conditions, by
using the amplitude of the oscillations of the obstacle. The boundary conditions will be indicated in
the same way as in the part about the existence theory, by the symbols 7,, and v,. The solution of
the stationary problem will then be used as an initial condition for the non-stationary problem. To
solve the stationary problem we use the so called upwind method, see [5],[6]. We discretize the
stationary problem as follows:

W-Vﬁ=—pi|7p+vAu_”)+g’ 1.a)
zTS-Vu—;=—pl|7p+§ 1.b).

We use the boundary conditions given in the second chapter, equations 2.a) - 2.d). These are
considered time-independent ones. We expect the solution as a six-component vector, consisting of
the three components of the normal fluid and of three components of the superfluid. We use the
recomended value of the artificial viscosity from [6] to stabilize the solution. Besides, it holds the
incompressibility condition:

diviug +u,) =0 1.c)
and we assume zero vorticity of superfluid:
rotug = 0. 1.d)
We consider stationary boundary conditions as written on pages 15 and 16 above.

As recommended in [5], page 117, we introduce the artificial viscosity for the Euler equation and we
approximate equation 1.b) as:

Jo u—ls") VE-W{dx +v(N) [, VZN:)VW{dx = J, §-w dx. 2.a)
In a similar way, we discretize the stationary Navier-Stokes problem:
Jo u—’,‘l’) Vu—’,\l’)-W{dx +v Vu—,’\l’:)VW{dx = [, pdividx + [, g-w,dx. 2.b)

We now introduce an elegant formalism. We define the following equalities:

a(i; v) = [, Vii-Vidx 3.a)
n(W,w,v) = [, v-(W)udx 3.b)
b(#,p) = - [, pdivi dx. 3.c)

We then consider the weak formulation of the problem 1.a) - 1.c), by using these equalities.
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Def.1: Letv > 0; f € H-1(Q)M; v, Vo € HY2(Q)M. These equations hold:

va(iy; ) + n(iy, iy, 3) + b(B,p) = (f; 9) 4.2)
n(its, %, %) + b(#,p) = (f; D) 4.b)

Jo @s +u)Ve =0 4.c)

Jo V-rotugdx = 0. 4.d)

We then call p, u,,, u, a weak solution of 1.a) — 1.d).

The existence of the solution of the problem is to be proven by using the existence of a potential as a
consequence of 4.d), in such a way that, for the superfluid, it holds that a function ® exists:

u, = Vo, 5)
We then obtain from 4.c) the existence of the normal component in the form:
u, = -Vo + rotA, 6)

where 4 is an unspecified vector function. Equation 5) enables us to derive the Bernoulli equation for
the superfluid:

% [usI?(®) + p(©) + gpsx(t) = p(0) + % [us1?(0) + gpsx(0), 7)

where we consider as the only volume force fthe gravitation field, denoted with g.

Now we start to build the solver. We can define the approximate solution in the following way. We
consider an approximate solution from a finite dimensional subspace of the vector space Ha(Q)M,
where the dimension of the function space is indicated by N and the finite dimensional subspace is
denoted as V". In a similar way it holds for the space of the pressure: QN ©& L3(()). We denote the

approximation of the boundary conditions as Y and v for the normal liquid and superfluid,
respectively. The approximations are defined as extensions of the boundary conditions, defined on
the domain (), satisfying the condition on the boundary:

—

v, = v_rzy)+ O(hN*+1), v, = U_SN’_|_ 0(hN+1), 8)

where h is the diameter of either a circle (2D) or a sphere (3D), defined by the shape of the cell of the
mesh. We will generate such a mesh for the whole geometry where we solve the given problems.

Now we can define the approximate (discrete) solution of the problem 2.a)-2.b).
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Def.2: The functions un,us € HY(Q)M and pV € QN are discrete solutions of the problem 4.a) -4.c),
iff:

u_N)—v,’Z’,uév—vs evy 9.a)

va(u_’){)—vn, )+n(un,un, )+b(vp ) = (f; D) 9.b)
v(N)a(u —vs, )+n(us,us,_’)+b(v pV) = (f; D) 9.c)
Jq v_h)-rotu—gv)dxzo 9.d)
Ll(aﬁ'Fay)qux::O 9.e)

viveVVN qeQl.

Standard methods for the solution of the incompressible stationary N-S equations [6] cannot be used
here because of equation 9.e). But we can assume low Reynolds numbers in such a way that the
methods discussed in [6],[7] can be employed. As there is only one dominating flow caused by the
movement of the obstacle, we choose the Oseen method (see below). The calculated velocity of the
normal liquid is then used to calculate the potential of the superfluid, which is then used, by the
means of the Bernoulli equation, to calculate the pressure. We write initially the iterative Oseen
scheme for 8.b). It is based on a relative scheme found in [5] but it does not consider
incompressibility:

1) Choose u))’ ,pNO (an initial iterative step).

2) Calculate the next step, by satisfying the equation:
va(uNl—vn, )+n( No, Nl ﬁ)+b(va1)—(f V). 10)

As a generalization we can write it for each iterative step: uN Wk ,p’K, where N and k are positive finite

integers. Then the step k+1 is obtained as:
1) Choose ul*, pN¥ (calculated).
2) Calculate the next step, by satisfying the equation:

va(uNk+1 vn, )+n( Nk uNk+1 ﬁ)+b(v pVktL) = (f; D). 11)

This iterative process is called Oseen iterative process. If we know u,, in the whole space, we can
calculate the superflluid potential as a solution of the Laplace equation:
Ap = —divity, Yplag = Vs, 12)

and this can be input into the Bernoulli equation to calculate the pressure:
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2
%S + pﬂ + gh = const. 13)

We now define the so-called Triangulation (that is, the mesh) of the finite elements and the base
functions. We will use the same mesh for both velocity fields and for the pressure.

Def. 3: The Triangulation of the computational domain is a decomposition of the computational
domain Q, denoted as Ty, such as that, for all T € T}, the following holds:

1) T isclosed and its interior is non-empty and connected.

2) The boundary dT is, for any T, Lipschitz-continous.

3) Q=Urer, T

4) The intersection of the interiors of any two different sets of Ty is empty.

A finite element is called a triplet (T,V",X), where T is a bounded closed subset of R, with a
nonempty interior and a Lipschitz-continous boundary.

1) V" is afinite dimensional subspace of real functions, defined on T, with dimV" = N.
2) Zisasetof Nlinear forms ®;, withi = 1...N, such as that V'V is uni-solvent:
Va;..ay ERApeVN:d;(p) =a;,i=1..N. 14.a)
Thus we have:
p=XL ®:(p;,Vp eV, 14.b)
Note: we call the points where more than two T touch nodes.

Def. 4: a base function in the node number | is a polynom of order "N and is called a base function,
iff it holds: p(1) = 1, and p is equal to zero outside the outlying T.

It is possible to write an approximate solution in the form:

Ul =¥V clrprd 15.a)
il =3V cfprd 15.b)
p" =3, clol, 15.¢)

where @' are base functions. The functions W are then vector base functions, defined as
W= ((pi;O; 0) for d=1; W= (O;(pi; 0) for d=2; and, similarly, for the third component. We
assume that we know the base functions that we need in order to calculate the coefficients to obtain
the approximate solution. We choose such base functions in order to have fQ pipldx = §Y, where
84 is the standard Kronecker delta. We assume that the system of vector base functions is defined in

the following way: for the system {(pi} we define a system of {ﬁ} such that {E_f} =
: N (—= ; N — NN
(¢, 0,00}, {07} = {(0,0%, 0)}_, and {0**} = {(0,0,0))}_,.
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Now we can formulate the numerical scheme:

1) Choose ul*, pV'k (calculated).

2) Calculate the next step satisfying the equations:
va (uN k+l vn, ) + n( NE Ul uVkHT _’) + b(B,p"k) = (f; D). 16.a)

3) Calculate dwuN Lans

N,k+1

4) Calculate the potential ¢ of an approximative solution uév'k“ by using the application

of FEM (finite element method, described below) on the Laplace equation:

ApNH 1 = —dipy**T ypN. k+1| = kL 16.b)
5) Calculate the superfluid velocity: u" ¥+t = vpNk+1,

6) Use the Bernoulli equation to calculate the pressure values in each cell of the mesh:

pNk+L = pNk 4 5 16.c)

where | |, denotes the standard Euclid vector norm. The number of iterations depends on the
concrete case and it can be adjusted. Each one step 1)-6) is detail rewritten below.

Let us now focus on steps 2) — 5). The error of the used method can be estimated then using by this
equation:

(e " =1 Nz < Ch 17.a)

|
" w2

where h is the diameter of the used mesh and C depends on the chosen approximation of the data,
see [4], page 62.

It holds for the potential of the superfluid velocity the Céan Lemma:
o™ — o ||W2_2m) < Cinf v, n|lv" - v||W2,2(m, 17.b)
see [4], pages 22/23.
2) The problem is rewritten as:
AT (@) + A (@Y%) + A, @) a4 4 vB (w4 - o) = F(p"X) + 6, 18)

where A’,,, B, F and G are matrices, and m=x,y or z. Let us describe them. G is non-zero only for the z
component, because it is a discretization of the gravitational field. We assume the solution in this
form:
—>N k
=%, Czk‘/’ 19.a)
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_>Nk Zz 1Czk§0 19-b)

Zl 1clk(p 19.c)

We input 19.a) and 19.c) into 16.a) and multiply by the base function ¢,,. We denote:

b= () Un = (elien) e, 20.)
UM = (cf)iys U = (i) 20.)

k _ N pNk+1
- (Ci,k)i=1' ( lk+1)l 1 20.c)

Then the matrices A, = {ax,imj}, Ay = {ay,imj}, A, = {azlimj} exist in such a way that:

) . g/ . . g/ . . ¢/
U imj = Jo Q'O 500X ayimj = [ @0'QT S SdX; Az = [ @™ G dx. 21.a)
It then holds for a x-component equation:

(i Qximj + €l Qyimj + i Qgimj + VD)) Clier1 = Cine Jy ‘Pm F i dx + Jo i €0mdx 21.b)

where clk are the coefficients multiplied in 19. a) by the base functions ((pf 0; 0) In this way we

define the other coefficient vectors cl o Y and c “. The matrix Dy, can be calculated as:

Dpj = |, Vo™Ve/ dx. 21.¢c)

We used in equation 21.b) the standard Einstein convention. We can write this schematically, using
20.a) — 20.c):

N,k nx\N . Nk n,z\N
Unyx = (Ci,k i=1 ( =Gk )._ 22.a)

Nk+1 Nk+1 Nk+1

(Cl k+1 22'b)

( lk+1 (Cl k+1

And now we can write schematically 21.b):
(UNEA, + UNFA, + UNFA, +vD)UNET™ = PMFR + vB (v)), 22.¢)

where the matrix R is defined as:

R:= {fﬂ Pm ’dx} 22.d)
and B ( ) is defined as:
B ::{fQ v—,ly)fpmdx}. 22.e)

This problem can be solved using Gauss elimination. We define the matrix A:
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Uk Ay + UNKA, + UNKA, +vD = 4, 23)
and then we rewrite 22.c) as:
AUNKT = PN*R 4+ B. 24)

This system of linear algebraic equations can be solved using the method of preconditioned
conjugated gradients.

N,k+1
Un

3) We obtained from the step 2) . We specifically estimated the coefficients (ci’}k)liil,

which enable us to calculate the coefficients (cifk)i:l, using 16.b). The discretization dwuf{'k+1 can

be calculated using the base functions:

divull ¥+t = yN i trVepbd 25)
4) Now, we can use equation 16.b) and solve it by using the FEM method:
Nk+1 _ . N,k+1 N,k+1 _ ..Nk+1
Ag = —divuy", Vo g =vs - 26.a)

We multiply 26.a) by qoj, integrate over the whole domain and obtain:
AUNK = B (vsfv) + 2 (el ey ) VeHe, 26.b)
where A denotes a matrix (usually called the stiffness matrix), which is defined as:

S = {fﬂ Vol: Vol dx}. 26.c)
We see that it holds:
S=0D. 27)

The solution of 26.b) can be found in the same way as in the case of 24).

U;V'kﬂ we can combine them with the

5) Using the calculated values of the coefficients
calculated superfluid velocity. It is meaningful to compute them now in order to obtain the value of

pressure in the next step, by using formula 17).

To implement the derived numerical scheme we derive the base functions as the first step. We
assume a quadratical finite element; the whole mesh will consist of regular quadrates, as we can see
in Figure 1. To make it illustrative, we make all calculations in 2D:
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Figure 1: Used mesh.

Vn2Vs

ey

i 5

a3

[y

5
#

Vnd Vs2

The drawn mesh is likely not enough fine. We made calculations with cells of 1x1 mm. It was not
possible to store larger matrices in the computer.

We introduce a reference element in order to avoid the calculation of integrals in the previous
numerical scheme. We evaluate the integrals only on a regular rectangle or on a square and use a
transformation to each finite element. It is very simple in the case of a regular mesh due to the fact
that we need only to translate the reference element on the considered cell. As we make calculations
in the coordinate system of the oscillating obstacle, we can put the base functions in the area of the
obstacle equal to zero, including the nodes on the boundary of the oscillating object. The scalar base
functions on the reference element are shown in Figure 2. They are denoted using the angles of the
reference element; the corresponding letter stays at that angle in which it is nonzero.

It is possible to derive that the functions must be of the form:

01 =—xy+x 28.a)
QO =Xy 28.b)
QP33 =—xy+Yy 28.c)
Qs =xy—x—y+1 28.d)

The graph of the base functions is pyramide-like and its support is created by four elements, which
are around the node, where the base function is equal to one.
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Figure 2: Reference element.
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Now we derive the form of the matrices. Because of the support of the base functions, we obtain

them as band matrices. We see that they are tridiagonal. Now, we can write the form of matrices. It

holds:

0 0 00O0OOOOOOOOOOOO0OTGO0ODTO

\)
T
[e)]
(gl
coocoocoocococo cocoococoocoocococo
coocoocoocococo coococoocoocococo
coocoococococo coococoococococo
i
S Nlm Ihe
coocoococococo coococoococococo I
O
coocoocoocococo cocoococoocoocococo 2_31_ i
coocoocoocococo cocoococoocoocococo
Nlon O©
coocoococococo coococoococococo
coocoococococo coococoococococo
coocoocoocococo cocoococoocoocococo
CO0OO000O0OC OO0 OO0 O NnMNInNOOO00 OO0 O
COO00COOO OO0 COOONINNINNINO OO0 O OO O
CoOOOCO0CO0OO0O O0CO0 COO - NMO CoO0COO0O00 O
CO0OO000O0C OO0 OO0 000 O00CO0O0O0O0O
CO0OO000O0C OO0 OO0 OO0 O00CO0OO0O0O0O
COOO000O0D OO0 OO0 000 0000000
COOO0O0O0O0O O nim » OO0 OO0 OO00OO0O0O0O
C OO0 00O CANIMNINANINO OO OO0 O0000O00 O
CoocOocOCOoOOoCOoNImMNIn O OO0 OO0 OO0O0O0O0O00Oo
coocoococococo coocococococo
cocoococoocoocococo coocococococo
coocoocoocococo coococoocococo
S Nlm
coococoococococo coococococoo
| o
Nieo Sle coocoococooo coococococoo
“lo coocoococococo coococoocococo
_2_30
coocoocoocococo coococoocococo
coocoococococo coococococoo
coococoococococo coocococococo

D=

0 000 OOOOOOTOOOTOOTOTG OO
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We can see that D is a bound matrix and, for the components on the positions corresponding to the
obstacle (rectangle in 2D), we obtain zeros. Because we consider a mesh of 24x24 cells and for the
rectangle we use 3x10 (the original dimensions are 3x10 mm), we obtain the whole matrix as
576x576 and the “hole” including only zeros as a matrix 30x30. Those dimensions of matrices are
implied by equations 21.a), 22.d), 22.e) and 26.c). Because the area of one finite element is 1x1=1
mm?, it must be that all matrices are multiplied during the computation by this number (in meters) to
obtain the velocity coefficients in the correct units. It is better to write the matrices without this
scaling, for the sake of clarity.

There are two smaller matrices representing the no-slip boundary condition on the rectangle around
the “hole”, having 1/3 on the main diagonal. Let us have a look at the matrices discretizing the
convection terms. The matrices are three block cubes of numbers. We obtain this cube 576x576x576
(the not displayed positions are identically zero):

1 1
(/_5 5 3 2 )
A = ! o -1 3 29.b
XY,z — -5 3 ol ~a o |- .b)
(No o o/ \o —% —% )

For the matrices on the right hand side we obtain:

N Up—Vp, 1 1 Uo—V\T
By = (Vo + 22 0.0 0 .2U G +Tm) 29.¢)
and for the x component we obtain zeros. The matrix R is:
0000O0O0O0TO 0O 0000O0O0O0TO 0O
0000O0O0GO0TO 0O 0000O0O0O0TO 0O
R 0000O0GO0O0UO0O 0000O0O0O0O0O
zoa 0000O0O0UO0O0O 0000O0O0O0O0O
75 s 00 00O0O0UO0O0O 0000O0O0O0TO 0O
0 _1 0000O0O0UO0O0O 0000O0O0UO0TO0O
1 0000O0O0TO0UO0O 0000O0O0UO0TO0O
0000O0O0O0TO 0O 0000O0O0O0TO 0O
00 00O0O0O0O0O 0000O0O0UO0TO 0O
1T 1
?{‘;01000 000
000000000 -, -2 =000 000 000000000
0000O0O0T 0T OO 1 000 00O O0OO0O0OOOOUOTO 0O
000000000 ° 73 0000O0O0UO0TO 0O
00000O0DO0OOO 00O 00O 00O ©0O0OUOOT O OTOO
0000 O0OO0OUOU OO 0 0 0 0 00 0 00 0 00O0O0UOT OO 0O 29.d)
000000000 00O 00O 00O ©0O0OOOTG OTOTOO
0000O0O0TGO0TO 0O 1 3 000000O0O0O
000000000 00O 000 ~ +# " 000000000
000000000 000 000 -, = =,000000000
000 000 o i 1
4 3
0000O0O0TO0TO 0O 0000O0O0GO0TO 0O
0000O0O0TO0TO 0O 0000O0O0O0TO 0O
0000O0O0TO0TO 0O 0000O0O0UO0O 0O 19
0000O0O0TGO0TO 0O 0000O0O0UO0O0O D
0000O0O0TGO0TO0O 0000O0O0UO0O0O S5
0000O0O0UO0TO 0O 0000O0O0UO0O0O o 1 1
0000O0GO0UO0TO 0O 0000O0O0UO0TO 0O PRT
0000O0O0TGO0TO 0O 0000O0O0GO0TO 0O
0000O0O0TGO0TO 0O 0000O0O0GO0TO 0O

Now we need only to subtract from the y-component the gravitation (-10N/kg), because for the 2D
case this is the vertical axis. This method is iterative, so we will start with a parabolical profile of the
velocity field and with the pressure value over the surface of liquid helium in the cryostat. The matrix
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B depends on the physical conditions of the studied problem. We used the values from [8]. For U, we
put Uy = 2mfa, where f is the frequency of the oscillations of the obstacle and a is the amplitude of
oscillations. v = 1.66 - 1078m? /s, which corresponds to Re ~ 9500, so we need to use an artificial
viscosity to stabilize the matrix A. We calculate it as v(N) = Uh. | assume T=1.24 K, which
corresponds to p,, = 4.99 kg/m3, p, =3 kg/m3, S = 6.56- 1072 J /K, see [9]. As an initial velocity
for the iterative process | used a constant velocity field, equal to the boundary conditions with
parabolical profile with zero on the place of the obstacle. We assume absence of counterflow, so in
the matrix B it is equal to zero. For the numerical results after 10 iterations, see Figures 3.a)-3.c) with
the normal liquid velocity field, superfluid velocity field and with the pressure field:

Figure 3.a: Pressure field in the stationary case.
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Figure 3.c: Velocity field of the superfluid in the stationary case.
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The numbers on the axes correspond to the experiment dimensions and the length of the longest
arrow in the figure of the velocity of the normal liquid is around 3 mm/s, while for the superfluid it is
around 1.4 mm/s. We can see that the results are not physical because they are not symmetric.
Additionally, this can be seen as a property of the Oseen scheme at high Reynolds numbers; so, it
should not be used for flows over Re=1000. For higher pressure around 1 atmosphere we obtained
those figures:

Figure 4.a: Pressure field in the stationary case, over the liquid p=101133.3 Pa.
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Figure 4.c: Velocity field of the superfluid in the stationary case, over the liquid p=101133.3 Pa.
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In Figure 4.a we substracted 1 Bar for better clarity. The length of the longest arrow corresponds to
around 0.3 mm/s, while for the superfluid it is 10 mm/s. We obtained in both cases solutions that are
not physical for the reasons mentioned above.
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The nonstationary problem

We have now the solution of the system of equations 9.a) - 9.e), which is an approximate solution of
4.a) — 4.d). We use it as an initial condition for the problem:

Def.5: Let v > 0;f € L2(0, T; H-1(M); ¥, ¥5 € L2(0, T; HL(M); 0 < T < 00; uy, 0, ug o € L2(Q).

These equations hold:

(285 5) + va(Tly; B) + (i, W, D) + b(3,p) = {f; 5) 30.2)
(O ) + (i, T, D) + b(3,p) = {3 5) 30.b)

Jo @s + )V =0 30.c)

fﬂ V- rotu, dx = 0, 30.d)

then we call p, u,,, u; a weak solution of 1.a) — 1.d).

To find a numerical solution we change the stationary solution. We define a partition and a time
step:

Def.6: Let T>0 and [0,T] is an interval. Then we call the finite sequence of numbers {t;}/~,; Vi €
I,with0 < t; <t, <--<T, apartition. Let define T in such a way that it holds T = |t; — t;_;]| for
alli. Then we call T a time step and the partition an equidistant partition.

Def.7: Let 0 < T < oo; ulg,uly € [2(Q). Then the functions ul,ul € C1(0,T; HE(@)M) and
p" € L2(0,T; QN) are a semidiscrete solution of the problem 4.a) -4.c), iff:

uld — v ulV —u¥ € 2(0,T;VN) 29.a)

(%; o) +va (ulf = v %) +n (ul, ull,3) + b(@,p") = (f; D) 29.b)
@?; B) +vNa (vl = vl 8) +n (ull,u, 5) + b(@,p") = (F; 5) 29.0)
Jq v_h)-rotu—év)dx =0 29.d)

Jq (ﬁ + @) Vgdx =0 29.e)

v e L?(0,T;VN),q € L2(0,T; QV).

We consider f = g, like in the stationary case. The boundary conditions are discretized in the same
way as in the stationary case. The only difference is that we assume time-dependent coefficients; so,
we assume an approximate solution in this form:

al () =T, (et 30.a)
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() = IV, cf (¢! 30.b)
M OGEDXNA (1 30.c)

We assume the time dependent coefficients to be one-time differentiable. For the discretization we
denote the value of the coefficient ¢; at the time step k as ¢; ; in such a way that it holds for the
pressure and both velocity fields at the step k:

ﬁfl"k = Zli\;l c{fka‘) 31.a)

= yN cfot 31.b)
N,k i

P =T ot 31.c)

For the stationary case we denoted k an iteration step; for the nonstationary scheme k corresponds
to a time step. We consider that we know the initial values of the coefficients, so that we can solve
the system as a system of ordinary differential equations.

Now we can formulate the numerical scheme:

1) Choose uﬁ'k,p"’"‘ (calculated in a previous time step).

2) Calculate the next step, satisfying the equations:

—_—

Nk+1 Nk Nk _N.3 Nk Nk > 5> Nk 2, >
wy) " =u)* —1va (un' —vn;v)—m (un' Uy ,v) —1b(%,pVk) + 7(f; ¥).32.2)

3) Calculate divu,ﬁ"“1 in the same way as in the stationary case.

Nk+1 of the approximate solution u**?, by using the application of

the FEM (finite element method, described below) on the Laplace equation:

4)Calculate the potential ¢

ApNK+L = —dipyl) T, VfPN'k+1|aQ = v 32.b)
5) 5)Calculate the superfluid velocity: ul*** = vpNk+1,

6) 6)Use the Bernoulli equation to calculate the pressure values in each cell of the mesh:

|||
|us' | B us‘ |
2

pNk+L = pNk 4 35 2 — 32.¢)

The unsteady numerical algorithm can be obtained from the stationary one. The steps 1), 3)-5) are
not changed, because they discretize the same equations as in the stationary non-vorticity case. The
step 6) is only adapted by adding a multiplicative constant in the second term on the right side of
equation 32.c). It is caused by a different form of the Euler equation in the nonstationary case. The
step 2) gives this matrix:

Upk AU + UK AL U + UN KA, UK +vD = A 33.a)
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U+t = gl — 14 — tPV*R + 1B + 16. 33.h)

The matrices are defined in the same way as in the stationary case, excluding the matrix A, which is
defined by 33.a). The numerical scheme 33.a)-33.b) is usually called one-step Euler forward method;
for more numerical ODE solution techniques see [4]. As test functions the same functions used in the
stationary case, defined as constant functions in time, are chosen. The error estimation can be
calculated by using the standard formula for Euler methods for each cell of the mesh:

ek‘rL_l

ey = N‘[' 33C)

L

where e, is the error after k steps of length t, L is the Lipschitz constant of the right hand side and N
is the Lipschitz constant of its approximation. The time step was set to T = 107%s. Equation 33.c)
gives us the error rapid increase as a function of time. The solution is then not enough exact and
another method must be used, that is, the finite volume method, see below. It does not allow long
enough time intervals. It exists at least one positive eigenvalue of the matrix:

M= A—-PY*R+B+¢G, 33.d)

which implies that the solution is not stable. The results of the calculations after 100 iterations are
shown below in the Figures:

Figure 5.a: Pressure field in the unsteady case.
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Figure 5.c: Velocity field of the superfluid in the unsteady case.
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The pressure of saturated helium vapour was used as the pressure value over helium as in the
previous case. We used the previous calculations as an initial condition for this case, which leads to
the propagation of the mistake of the Oseen scheme. We chose such small number of iterations
because we observed a high nonstability. The velocity fields are in an area of 24 x 24 mm as in the
previous case. The longest arrow corresponds to 0.49 m/s in case of the normal liquid velocity and to
258.80 m/s in the case of the velocity of superfluid.

Figure 6.a): Pressure at atmospherical pressure over fluid.
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Figure 6.b): normal liquid velocity at atmospherical pressure over fluid.
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Figure 6.c): the superfluid velocity at atmospherical pressure over fluid
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We can observe that the pressure value reaches 8 Bar, which is nonphysical. More iterations (around
1000) would give such numbers that the computer cannot process. The velocity fields are in an area
of 24 x 24 mm as in the previous case. The longest arrow corresponds to 28.73 m/s in the case of the
normal liquid velocity and to 37.65 m/s in the case of the velocity of the superfluid. We can observe
that the method of lines cannot be used for those flows with such a high Reynolds number.
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Numerical model including the nonzero superfluid vorticity

Existence of the weak solution of the stationary problem:

We proved that it exists a solution of the system with given boundary conditions:

%+m-vm=—pi|7p+mﬁ+ﬂ+g 1.a)
aTS — — 1 -~ -
¥+us-l7us=—gl7p—fns+g 1.b)
= B, ... =
fe =—E|rotus|(un —4,) 1.c)

divi, =0  divug = 0. 1.d)

We used it in the last chapter in this way: we calculated a solution of the stationary problem and
used the solution as an initial condition. It is impossible to use it here because of the equivalence of
the norms of rotation and divergence, combined with the condition 1.d). We want now to apply the
Main existence theorem, which is very general tool for stationary problems. It functions for the
normal fluid velocity equation 1.a) without the time-derivative term, but not for equation 1.b),
reduced of the time derivative term. We write the stationary system as a first step:

ﬁ-Vﬁ=—p—1n|7p+vAﬁ+E+g’ 2.a)

— 1 i

us'Vus:_EVp_fns‘Fg 2.b)

- B, ... =

f =—E|rotus|(un —4,) 2.¢)
divip, =0  divis = 0. 2.d)

We can formulate equation 2.b) as a functional, defined as a standard duality on a reflective
Lebesgue space:

— S— 1 7 — — — . — B — — —

(ug - Vug + p—SVp + fosi Us) = [ Us - Vugugdx — [, pdivug dx — Efﬂ |rotug|(u, — ug)usdx 3.a)
2 o 2 g B s s

faﬂluslz(us -n)dS — fQ |us|2d”7us dx — Efﬂ |r0tus|(un - us)usdx =

C(Boundary conditions) — gfﬂ |rotug|(w,, — ug)usdx = C — gfﬂ |rotug|(w,, — ug)usdx, 3.b)

where C is a constant, depending only on the boundary conditions. And if we input this result to the
definition of coercivity, we obtain:

B e — s
. C—5 [q Irotus] (un—us)usdx B ) Jo IrotTs| (U —u5)ugdx
limyzgy ., o =—2 _lim = =0,
wy“ Q) s Wé’z(ﬂ) ”uS”W(lJ'Z(.Q) s Wé’z(ﬂ)

3.c)
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which holds because of the equivalence of the norms of the divergence and rotation operators. It
follows:

fn |divu_s)| (ﬁ_u_s))u_s)dx _

~2  lim =0, 3.d)

2 1z Ug 1,2
lluS”W%'z(ﬂ.) l 5”W0 @

which implies 3.c). So, there is no chance for the Main existence theorem. It does not say that there
exists no stationary solution, but only that we would have to use another existence theorem or
technique.
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Solver algorithm

We assume that the vorticity will be generated during time. So, we will use both boundary conditions
for both cases and the assumption if the vorticity of the superfluid is zero is to be decided by the
user. We will solve it using an explicite finite volume method (FVM):

We divide the domain into cells and assume constant values of velocity fields and pressure in the
cells, denoted as D;;, which fulfill the condition Q= UD;;. We call Dy finite volumes. The system of
finite volumes is called finite volume mesh, if they are polygons. Two finite volumes are either
disjoint or their intersection is created by a common boundary. The boundaries of two neighbouring
finite volumes are called faces. We will use the same mesh of squares as in the previous case and an
equidistant time step. We assume a 2D problem but the program can calculate 3D problems too (be
careful that it requires a powerful computer).

The derivation of the general finite volume method is written for example in [6], page 55. The
approximate solution will be searched as a constant on a finite volume, as an integral middle value of
the velocity fields or pressure. We write directly the result for equation 1.a)-1.d):

——— —— k
— N,k N,k 14 —_—
—= ulk g Un Qu," + ;I 0 Y AL 0
wht =1 _ | ;U'_E N N k ,T~— N 43)
ul* 0 uM* @uiNt + ’;—Sl 0 vN)vul*
1t ﬁ B t ulk — Nk
Nk+1 _ Nk 1 rlk+a e _ k+1 _;‘{| n s
Wi = W e [, (T = UidS de 4 7 (g) o I ¥ B S avde ab)
S n

where 7 := (V;¥)T, if V is a standard normal vector of the surface of the finite volume and

Ok = rotui,v’k. We assume the approximation of all functions as piecewise constant, on each finite
volume equal to one value. As nonviscid flux we call the matrix U and as viscid flux we call the matrix
T. Equation 4.b) is then rewritten in a discretized form:

- [N g» B . uN,k _uN,k
N,k+1 N,k T = n S
wp T = w4 — T—UndS+T(_,)——T |Qk| L, 2, |dV.4c
DL] DL] |D,-j|f6D,-j( ) g 2|Dij| fDij uN'k —uN’k )
S n

Now we evaluate the integrals. We start with evaluating the first one. We approximate the

differential operators T and Q. |Dij| indicates the volume of a cell,

c’)Dl-j| is its surface and D is the
length of the edge of a cubic cell in the mesh.

The circulation can be calculated in 2D by using the Stokes formula in this way:

ok| = 1 Nk _2¢ Nk, Nk
|Q | = |6Di,-|fl ug"dl = D(usyx +ugy ). 5)

Before we use the given initial condition for this scheme, we must approximate it by a piecewise
constant function on the finite volumes, that is:
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NK
fDU uy" dx

N,0 1
= — 6)
Dy |y [ ul

Dy; S

We assume initially both velocity fields equal to zero. The vorticity and the boundary values of
velocity change with time (the same boundary conditions as in the previous two cases without
vorticity). To calculate the values of T and U at the time iteration k+1 we will need not only the values
of the velocity fields and of the pressure in the central cell but also those in the neighbouring cells,
see Figure 1:

Figure 1:

central cell Uy

The viscid flux can be approximated by using a curve integral along the line connecting the centers of
two opposite faces of a cube of the mesh:

[ Tdi=] (“V”n 0_,> dl = ("”" 0_,> 4) - (V”" °_>> ®, 7
0 v(N)Vul* 0 v(Nul* 0 v(Nulk

where A and B are two edges of a cell and the integration is calculated for each component. We
denote this matrix F. The direction of the integration curve corresponds to the derivative variable in
the velocity gradient. So we obtain this approximation:

Nk Nk
N vu,,’ 0 vu,’ 0 . .
Tp == " S ) I —_|®|i=5F. 8)
0 v(N)uév'k 0 v(N)uéV'k

To approximate the nonviscid flux we must evaluate the integral over the surface of a cell. We must
evaluate an integral of a piecewise constant function, whose discontinuity is exactly on the
integration set. We solve it using an adjustable weight parameter A, which is given by the user before
the calculations. We obtain for the surface integral of the nonviscid flux this approximation:
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where i,j are the positions of the cell. The first term is given by the value of nonviscid flux in the
previous time step and during the integration process vanishes because we integrate a constant
function over the opposite faces of the same measure, whose normal vectors are oriented in
opposite directions. We obtain this approximation of U:
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where X signs a sum of U in the neighbouring cells at the previous time iteration around the central
one. The approximation of the first integral is then:
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We already approximated the vorticity of the superfluid. As the term including the mutual friction is a
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volume integral, we need only the values of both velocity fields in the central cell. We calculate it

directly:
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So, finally we obtain the numerical scheme:
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The initial condition on the pressure is equal to the pressure of saturated vapour, because we neglect
a depth of the cryostat. From equation 12) we cannot obtain the pressure values but we can assume
that each cell is so small that there it holds the nonstationary Bernoulli equation from the previous
chapters:

pNk+l = pNk 4 35 13)
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If we assume a flow in such a small scale like a cell in the mesh, we obtain a lower Reynolds number
than in the global case; so, we can assume a flow in one cell as laminar; it follows that equation 13)
holds.

We say that the finite volume scheme is stable, if there exists such a constant C that:

—_—
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The initial condition for the velocity fields is equal to zero and the rectangle starts moving from rest.

The necessary stability (CFL) condition must fulfill this inequality:

‘L'ClaDi]'|

<1. 14.b)
Dy

where ¢ denotes the sound propagation speed, which can be calculated using the thermodynamics
and is written in [9]. For more information about the CFL condition, see [6], page 58. Here we
considered the same temperature as in zero vorticity case, so the physical values are the same as in
the previous chapters. We choose a time step to fulfill the CFL condition 13.b) to avoid a blow up in
time.

For the results of the numerical simulation after 100 iterations, see Figures 3-a) -3-c). We assumed as
an initial pressure 133.3 Pa everywhere. We started from the initial condition, shown in Figure 2-a)
and 2-b). The length of time interval is set to 0.0001s. The velocity corresponding to the longest
arrow is 1 mm/s in all images below.

Figure 2-a: The normal liquid initial condition.
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Figure 2-b: The superfluid initial condition.
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Figure 3-a: The normal liquid after 1000 steps.
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Figure 3-b: The superfluid after 1000 steps.
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Figure 3-c: Pressure after 1000 steps
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The solution obtained by using the finite volume method is better then the one obtained for higher

Reynolds numbers by using the finite element method, because it is symmetric. We can, however,

say that it is not good enough because there is too slow velocity propagation for the x component, if

it is equal to zero for zero time. It may be that the pressure remained constant. For longer times

(around 10000 iterations) the solution does not converge.We can observe a large numerical error in

the pressure field, which can be caused by an initial nonstability.
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Conclusion:

The work aim is to derive (i) the existence theory for the weak solution of a system of equations
based on the Landau model of superfluid helium 4 and (ii) appropriate numerical schemes to solve
these equations. We used succesfully an analogous way to prove the existence of the weak solution
of the Landau model, as it is customary in the case of the classic Navier-Stokes equations, and proved
some of its properties.

We showed that it is suitable to use potential methods if the Landau model does not include
guantized vortices. We derived the Bernoulli equation for the stationary and nonstationary cases. We
also derived apriori estimates of the Landau model, including quantized vortices, and proved the
existence of the weak solution, using Galerkin approximations. Moreover, we demonstrated the
convergence of the weak solution to initial conditions. We derived the consistence conditions for the
studied systems of equations.

We designed numerical schemes for three cases, which solve the Landau model without quantized
vortices (stationary and unsteady) and including them (unsteady). We wrote three scripts in Mathlab
to demonstrate the solution behavior, based on the designed schemes. We observed that the finite
element method including the Oseen scheme does not work for too low pressure and for too high
Reynolds numbers. We demonstrated that the method of lines is also not suitable, because of its
nonstability. We showed that it is necessary to use the finite volume method to solve the Landau
model including the vortices.

For the future we would like to focus on the uniqueness of the Landau model for the 2D case. We
would like also to create a compact solver included into some existing solver platform, such as
OpenFOAM, for the zero superfluid vorticity and for the system including quantum vortices. It would
also be suitable if it includes some models of turbulence, customary used in CFD.
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