
MASTER THESIS

Bc. Vlastimil Dort

String Analysis for Code Contracts

Department of Distributed and Dependable Systems

Supervisor of the master thesis: RNDr. Pavel Parízek, Ph.D.
Study programme: Computer Science

Study branch: Software Systems

Prague 2016

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

ii

Title: String Analysis for Code Contracts

Author: Bc. Vlastimil Dort

Department: Department of Distributed and Dependable Systems

Supervisor: RNDr. Pavel Parízek, Ph.D., Department of Distributed and De-
pendable Systems

Abstract: Using contracts such as method preconditions, postconditions, and
class invariants in code is an approach to preventing bugs in object-oriented
programs. In the .NET Framework, this is possible due to the framework of Code
Contracts, which includes Clousot, a tool for static program analysis based on
abstract interpretation. Although string is a fundamental type in .NET programs,
Clousot does not have a usable support for analysis of string values. In this
thesis, we explore the specifics of string manipulation in the C# language and
in the .NET Framework, and show how they can be covered by static analysis.
Our approach is to use the methods of the String class and a subset of regular
expressions to specify string properties in code, and to use abstract interpretation
with non-relational abstract domains to reason about those properties. We chose
a small number of already published abstract domains for strings, which vary
in their complexity and ability to represent different properties. We adapted
those domains to our setting, including definitions of abstract semantics for the
supported string methods. We implemented the abstract domains in Clousot in
a way that cooperates with numerical analysis and allows adding more string
abstract domains in the future.

Keywords: strings, static analysis, abstract interpretation, Code Contracts

iii

iv

I would like to thank RNDr. Pavel Parízek, Ph.D. for regular consultations
and numerous comments and suggestions. I would also like to thank Francesco
Logozzo for taking time to answer a few questions about Clousot. Finally, thanks
to my parents for their support.

v

vi

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Goals . 4
1.3 Structure of the Thesis . 4

2 Background 5
2.1 Mathematical Foundations . 5
2.2 Strings in C# and .NET . 8
2.3 Regular Expressions . 19
2.4 Code Contracts . 21

3 Analysis 25
3.1 Examples of String Properties . 25
3.2 Existing Solutions . 27
3.3 Chosen Approach . 28

4 Abstract Domains for Strings 31
4.1 Design of String Abstract Domains 31
4.2 Constant-based Abstract Domains 32
4.3 Length-based Abstract Domains 34
4.4 Substring-based Abstract Domains 34
4.5 Character-set-based Abstract Domains 44
4.6 Bricks . 51
4.7 Graph-based Abstract Domains 59

5 Implementation 67
5.1 New Features in Clousot . 67
5.2 Tests . 72
5.3 System Requirements . 72

6 Evaluation 73

7 Conclusion 77
7.1 Future Work . 77

A Contents of the CD 85

B User Guide 87
B.1 Writing String Contracts . 87
B.2 Running from the Command Line 87

1

2

1 Introduction
1.1 Motivation
Presence of bugs in programs is a major problem of software engineering and
programming. There are various approaches to reducing occurrences of bugs and
making it easier to find them. One of those approaches is writing contracts in
the code. Contracts are conditions associated with classes or methods. Method
preconditions specify what conditions must hold when the method is called, post-
conditions should be guaranteed by the method when the control returns from it,
and class invariants should hold at certain points during the lifetime of an object.
Listing 1.1 shows an example method with a precondition involving a parameter
and a postcondition involving the return value.

Listing 1.1 Example of a method with informal contracts

int Abs(int x){
Contract.Requires(x != int.MinValue); // precondition
Contract.Ensures(Contract.Result<int>() >= 0); // postconsition
return x < 0 ? −x : x;
}

This way the programmer reduces the set of possible valid program states,
and a tool can be used to check that the specified contracts are not violated by
the code. Reaching of an invalid program state is a programming bug, which
could be caught using contracts before it propagates further. Contracts can also
provide documentation about the code.

The language known for introducing contracts under the name “Design by
Contract” is Eiffel. For mainstream object-oriented programming languages, ap-
proaches to specifying contracts have been proposed, such as for C++ [1] and
C# [2]. Currently, solutions using libraries or external tools are possible.

Code Contracts [3] is an existing implementation of contracts for .NET
languages, notably C#. It allows specifying contracts in code without any special
support from the compiler, using normal method calls such as those shown in
Listing 1.1. The Code Contracts project was released in January 2015 as open-
source under the MIT license [4]. It implements both runtime checking and static
analysis of contracts.

The runtime checking is conceptually straightforward. The contracts are
checked by simply evaluating the conditions every time. The problem is a per-
formance overhead (depending on the complexity of the contracts). Also, test
inputs must be provided in order to reach the conditions, and the coverage is
directly dependent on the quality of the test suite. Static analysis, on the other
hand, does not impose any runtime overhead, but it can slow down the build pro-
cess, and report false warnings. It is also not as easy to implement, because the
analysis must consider multiple program states at once, and not just the specific
ones provided.

The static checker of Code Contracts uses abstract interpretation to track
possible values of variables. It has an advanced support for numeric values,

3

providing multiple abstract domains with varying precision and complexity [5].
However, the support for string values is currently very limited.

This is a significant shortcoming, because string is an important data type,
present in most programming languages. Strings can be used for representing all
kinds of information from short tokens to large and structured data. They are
easy to understand by humans, so they have a major role in user interfaces, but
they are also used in communication protocols and data storage. Bugs concerning
manipulation of strings can easily be means of security threats. For example, the
infamous SQL injection attacks are caused by an invalid assumption that the
structure of a generated query, which is a result of string concatenation, is fixed.
This works only if the part provied by a user does not contain certain special
characters. That condition may not be true for strings that are a direct and
unchecked input from a user.

Having a support for analysis of string values in a static checker could help
prevent bugs that allow such attacks.

1.2 Goals
The goal of this thesis is to extend the Code Contracts static checker to also check
properties of string values. This requires the following:

• to find interesting properties of string values that can be checked,

• to find a way to specify the properties about strings in Code Contracts,

• finding suitable string abstract domains for the static checker, which would
be able to represent and verify those properties,

• to implement checking of the properties in the Code Contracts checker using
the abstract domains.

To achieve the goals, it is important to understand the role of strings in .NET,
the framework of abstract interpretation, and the usage and implementation of
the Code Contracts static checker.

1.3 Structure of the Thesis
The second chapter contains formal definition of strings and the mathematical
notation used in this thesis, introduces the basic concepts of abstract interpreta-
tion, and summarizes various aspects of strings specific to the .NET framework.
The third chapter explores the possible useful string properties and the ability
of current tools to check string properties. The abstract domains for strings that
were considered and implemented are discussed in the fourth chapter. The fifth
chapter describes the details of how the string analysis was implemented in the
Code Contracts static checker. The sixth chapter shows results of experimental
evaluation of the implemented features. A user guide is provided in the appendix.

4

2 Background
In this chapter, we introduce the necessary context, needed to implement the
analysis of string values in Code Contracts. This includes a way to formally
describe the static analysis using mathematical definitions and the framework
of abstract interpretation. Then, the role of strings in the .NET framework is
discussed, and the semantics of standard library operations is defined using the
notation introduced in Section 2.1. Finally, the Code Contracts framework itself
is described, focusing on its static checker, Clousot.

2.1 Mathematical Foundations
The analysis of string values can be described mathematically, using the abstract
interpretation framework and mathematical definition of strings that we provide
below.

2.1.1 Basic Definitions
First, we define a few basic notations used in mathematical expressions.

Definition 2.1.1. N = [0,∞) is a set of natural numbers (non-negative integers).

Definition 2.1.2. Let X be a set, then P(X) = {Y : Y ⊆ X} is a power set (set
of subsets) of X.

Definition 2.1.3. B = {t, f} is a set of boolean values.

To represent possible values of a boolean variable, we need a four-valued logic,
which can be defined and interpreted in multiple ways: as subsets of B, mapping
from B to B, or tuples of B. When using the tuples, the first item tells whether
the value can be false, and the second item whether the value can be true. To
make that clear, we use the 〈f:B, t:B〉 notation.

Definition 2.1.4. The four-valued logic is a set {⊥, f, t,>} with the following
isomorphic representations:

Meaning Symbol P(B) B→ B BB 〈f:B, t:B〉
Bottom ⊥ {} λx.f 〈f, f〉 〈f: f, t: f〉
False f {f} λx.¬x 〈t, f〉 〈f: t, t: f〉
True t {t} λx.x 〈f, t〉 〈f: f, t: t〉
Top > {f, t} λx.t 〈t, t〉 〈f: t, t: t〉

2.1.1.1 Strings

Now we define the notion of strings mathematically.

Definition 2.1.5. Let the alphabet Σ be a finite set of characters. Then a
string s = 〈s0, s1, . . . , sl−1〉 is a finite sequence of characters from Σ. The empty
string is ε = 〈〉, i.e. a sequence of length 0. The set of all strings is Σ∗, and a
language L is a set of strings L ⊆ Σ∗.

5

A basic operation on strings is concatenation.
Definition 2.1.6. Let s = 〈s0, s1, . . . , sl−1〉 and t = 〈t0, t1, . . . , tk−1〉 be strings,
then st = 〈s0, s1, . . . , sl−1, t0, t1, . . . , tk−1〉 is a concatenation of s and t.

We define substring and indexing operators to support referring to a part of
a string. The characters are indexed starting from zero.
Definition 2.1.7 (Indexing). Let s = 〈s0, s1, . . . , sl−1〉 ∈ Σ∗ be a string, then
the length of s is |s| = l. The prefix of s of length i is s[: i] = 〈s0, s1, . . . , si−1〉,
the suffix of s starting at index i is s[i :] = 〈si, si+1, . . . , sl−1〉 and the substring
of s of starting at index i, of length j − i, is s[i : j] = 〈si, si+1, . . . , sj−1〉. The
character of s at index i is s[i] = si.

If there is a linear order ≤ on Σ, we define the lexicographical linear order ≤
on Σ∗. We assume <, ≥ and > are defined in terms of ≤ as usual.

Definition 2.1.8. c ≤ d⇔

t c = ε ∨ c[0] < d[0]
f c 6= ε ∧ (d = ε ∨ c[0] > d[0])
c[1 :] ≤ d[1 :] c[0] = d[0]

Now, we define a few operations on strings that will be used later in other
definitions.
Definition 2.1.9 (Common parts). Let S ⊆ Σ∗ be a set of strings.

Then the length of the longest common prefix of strings in a set S is lcpl(S) =
max {i : ∀0 ≤ j < i : ∀s, t ∈ S : s[j] = t[j]} and the length of the longest common
suffix is lcsl(S) = max {i : ∀0 ≤ j < i : ∀s, t ∈ S : s[|s| − j − 1] = t[|t| − j − 1]}.

The longest common prefix of strings in S is lcp(S) = s[: lcpl(S)] and the
longest common suffix is lcs(S) = s[|s| − lcsl(S) :].
Definition 2.1.10 (Character substitution). Let c, f, t ∈ Σ be characters. Then

c[f := t] =
{
c c 6= f
t c = f

.

Definition 2.1.11. Let s = 〈s0, s1, . . . , sl−1〉 ∈ Σ∗, then s[f := t] =
〈s0[f := t], s2[f := t], . . . , sl−1[f := t]〉 is a substitution of t for f in s.
Definition 2.1.12. Let s = 〈s0, s1, . . . , sl−1〉 ∈ Σ∗, then char(s) =
{s0, s2, . . . , sl−1} is the set of characters in s.
Definition 2.1.13 (Searching). Let s, t ∈ Σ∗ be strings. Then a set of indices
of occurrences of s in t is indexset(t, s) = {i : t[i : i+ |s|] = s}, the index of the
first occurrence of s in t is firstindex(t, s) = min indexset(t, s), and the index of
the last occurrence of t in s is lastindex(t, s) = max indexset(t, s).

We also define a few operators on languages.
Definition 2.1.14. Let K,L ⊆ Σ∗ be languages. Then the concatenation of
languages K and L is KL = {st : s ∈ K, t ∈ L}, the i-th power of language L is

Li =
{

ε i = 0
Li−1L i > 0 , and the iteration of L is L∗ = ⋃

i∈[0,∞) L
i .

Definition 2.1.15. We will use # to mean a language of single characters (Σ)
and ~ to mean the language of all strings (Σ∗).
Example 2.1.16. Writing t ∈ ~s~ means that s is a substring of t. Writing
t ∈ p~ means that p is a prefix of t.

6

2.1.2 Abstract Interpretation
The approach of abstract interpretation was introduced by Cousot [6]. It can
be used to analyze various properties of programs, but we are interested in a
particular setting, where the concrete domain C describes the program state at
some point in the program. The program state is represented by the mapping
V→ V from variables to their values. The statements of the program determine
transition functions between the program states, and can be used to construct
a system of equations about the possible program states at respective program
points. The exact solution of such a system is generally not computable, so we
choose an abstraction of the possible program states. The abstraction is usually
defined as a complete lattice of abstract elements.
Definition 2.1.17. A complete lattice 〈D,vD, tD,uD,⊥D,>D〉 is a set D, with:

A partial order vD.
The meet operator uD, which is the greatest lower bound.
The join operator tD, which is the least upper bound.
The bottom element ⊥D, which is the lowest element ⊥D = ⊔

D ∅, meaning
unreachable.

The top element >D, which is the highest element >D = d
D∅, meaning all

possible values.
The concrete domain of possible program states is a lattice

〈P(C),⊆,∪,∩, ∅, C〉.
The abstract domain is a lattice 〈D,vD, tD,uD,⊥D,>D〉, which is connected

to the concrete domain by an abstraction function αD : P(C)→ D and concretiza-
tion function γD : D → P(C). Ideally, they together form a Galois connection
P(C) −−−→←−−−

αD

γD
D.

2.1.2.1 Non-relational Domains

An easy way to approximate sets of possible assignments of values variables
(P(V→ V)), is considering the variables one by one (cartesian abstraction). This
is represented by a mapping V → P(V) from variables to sets of values. That
way we track possible values for individual variables, but we have no information
about their relations. For example, in a program, it might hold that a string
variable is always a prefix of another variable. In a non-relational domain, this
information cannot be kept, so the result is that both variables can contain any
value.

For variables of string type, the possible values are V = Σ∗, and the mapping
V→ P(Σ∗) tells us for each variable the language specifying the strings that the
variable can have. To design a non-relational abstract domain for strings, we can
consider Σ∗ to be the concrete domain and the abstraction and concretization
functions will be αD : P(Σ∗)→ D and γD : D → P(Σ∗).

2.1.2.2 Reduced Product

An important operation on abstract domains is the reduced product. It allows
us to combine the strengths of multiple abstract domains into a single abstract
domain. It is similar to cartesian product but excludes unnecessary elements,
which represent the same set of concrete values as some other elements.

7

2.1.2.3 Data-flow Analysis (fixpoint algorithm)

Data-flow analysis can be used to compute the abstraction of possible program
states at all program points. It works on a control flow graph (CFG) of the
program (possibly analysing one method at a time), and starts with assigning
the bottom element to all program points, except the entry points. Then it
iteratively increases the abstract values at the program points according to the
transition relation on the edges of the CFG, until the values are stable (i.e., until
the fixed point is reached).

2.1.2.4 Widening

To ensure that the fixpoint algorithm terminates, either the lattice of the abstract
domain must have a finite height (or, more precisely, must not contain an infinite
ascending chain). Alternatively, when joining a newly computed value with the
previous value at a program point, instead of using the fully precise join operator
tD, we can use a less precise widening operator ∇D instead. The widening oper-
ator overapproximates the result of the join operator to avoid infinite increasing
sequences in the data-flow analysis. Using widening, termination of the algorithm
is guaranteed even for lattices of infinite height.

2.1.2.5 Soundness, Completeness, Overapproximation

Soundness and completeness are desirable properties of the static analysis. In our
setting, soundness of the static analysis means that the computed abstraction
covers all possible program states and does not miss any state, so when the
analysis says that something cannot happen, we can be sure about that. But a
sound analysis can overapproximate the result, which means that the result can
represent more states, including some that are not really reachable. This results
in reporting false positives, warning about bugs that are not in the program. We
want to avoid false positives, so the ultimate overapproximation of computing >
for everything is sound but not useful.

On the other hand, completeness would mean that the analysis does not pro-
vide answer that cannot really occur during the program execution. The analysis
cannot be generally complete and sound.

The abstraction function αD alone introduces overapproximation by mapping
multiple sets of concrete values to a single abstract value. Further overapprox-
imation occurs when using the widening operator. Moreover, the soundess of
the analysis is not violated by overapproximating at any other point. This is
important for definitions of the abstract semantics of operations (used in the
transition function), where the precise specification would be too complex. In-
stead, we can define the abstract semantics of the operation as an upper bound
on the abstract result. We can imagine this as analysing a modified program that
non-deterministically introduces additional program states at some transitions.

2.2 Strings in C# and .NET
Strings are supported by almost all programming languages and platforms. How-
ever, there can be significant differences in how they are implemented and what

8

Listing 2.1 Usage of various types of strings in C#

// Using string
string s = "a" + "b";
s = s.Replace("a", "aa");
// Using char[]
char c = new char[]{’s’, ’t’, ’r’};
c[2] = ’d’;
// Using StringBuilder
StringBuilder sb = new StringBuilder();
sb.AppendLine("OK");
string s = sb.ToString();
// Using IEnumerable<char>
IEnumerable<char> f = "user@domain.com";
IEnumerable<char> z = from c in f
where c>=’a’ && c<=’z’ select char.ToUpper(c);
string value = string.Concat(z);
// Using char*
fixed char* src = "string"
char* dst = stackalloc char[16];
while(*src) *dst++ = *src++;
// Using SecureString
using (SecureString ss = new SecureString()){
ss.AppendChar(’A’);
ss.InsertAt(0, ’B’);
using (Process.Start(file, s, ss, domain)){
//...
}
}

relevant features are available in the language or standard library. The analysis
tools must reflect that. Therefore, in this section, we focus on specific details of
working with strings in the .NET Framework and C#.

2.2.1 Representations of Strings
The .NET Framework provides multiple types capable of representing strings,
where each type defines different efficient or easy-to-use operations, provides dif-
ferent guarantees to the programmer, or allows interoperability with other sys-
tems. Examples of multiple ways of handling strings are shown in Listing 2.1.

The string type. The basic representation of strings in C# is the type string
(System.String) [7]. It is an immutable sequence of char values, which are UTF-
16 code units. It can even contain invalid UTF-16 sequences and the character
’\0’, which is used as a terminator in some programming languages. Because
string is a reference type, variable of type string can have the null value, which
is a different value than an empty string ("").

Being an immutable reference type, string is very efficient for passing strings
around. However, immutability also means that operations such as concatenation
or truncation cannot mutate the string in place, and therefore a new instance must
be created every time. If a lot of string modifications is performed in a program,

9

using a mutable representation of the strings might be more appropriate.

The char[] type. The simplest type of mutable strings is an array of charac-
ters, char[]. It can represent exactly the same sequences of chars as string.
Once an array is allocated, its length cannot be changed. However, the contents
(individual characters) can be changed.

The StringBuilder type. A fully mutable string representation is provided
by the System.Text.StringBuilder class [8]. It is particularly useful for gener-
ating a string by multiple successive concatenations: first, we create an empty
StringBuilder, then append the individual parts of the generated string, and at
the end we convert to it to an immutable string value.

The IEnumerable<char> type. The IEnumerable<char> interface is a common
interface implemented both by string and char[]. The only operation it allows
is a forward enumeration of the characters. However, using extension methods
and LINQ operators, this type can be used to do transformations of strings. The
interface can also be implemented by user types. This allows IEnumerable<char>
to also represent possibly infinite or non-deterministic sequences.

Other types. There are other types capable of representing strings, mainly
used for interoperability. The char* type, known from C, also exists in C#. It
is a pointer type, which can only be used in unsafe code. The byte[] array can
be used when communicating through byte streams, using the Encoding class for
conversion from UTF-16 to a specific encoding. System.Security.SecureString
can be used if the string should be deleted from memory for security purposes,
instead of leaving that to garbage collector.

2.2.2 Unicode Characters
Unicode is a character set used on modern computer systems. It supports multiple
encodings, but in .NET, UTF-16 [9, Chapter 3] is used for all in-memory strings.
Each char value is a single code unit of UTF-16.

The string is a sequence of chars (code units). However, two successive code
units can form a surrogate pair, representing a single code point (which represents
a Unicode character). Therefore, we must not confuse the Unicode characters and
characters (chars) in C#.

In the .NET framework, indexing of characters in a string always works with
chars (code units), not code points. There are some methods that do work with
code points, for example the static methods of char have overloaded versions with
a string and an index as parameters, so that the character or a surrogate pair at
that index in the string can be examined. There is also an API for indexing text
elements (System.Globalization.StringInfo). This is a higher-level concept
which in addition considers sequences of combining characters to be a single
element.

In this thesis, we will treat all strings as sequences of UTF-16 code units,
implicitly assuming the alphabet Σu16.

10

Definition 2.2.1. The set of UTF-16 code units is Σu16 = {]0000 . . .]ffff}.
The code units are written as four-digit hexadecimal numbers. When referring

to characters from the ASCII range, we will use the character directly, written in
a non-proportional font. For example, a =]0061.

2.2.2.1 Categories, Blocks and Scripts

The Unicode characters are divided according to various criteria [9]. Unicode
categories roughly describe how the character is used, for example Upper-case
Letter or Math Symbol. Each category has a two letter acronym. This informa-
tion is available in .NET using the UnicodeCategory enumeration [8]. There is a
fixed list of categories, but the assigned category for a character can change [10].
The assignment of characters is not absolutely stable and depends on the version
of Unicode that is implemented in the used runtime [11]. In particular, in future
versions, the unassigned characters will change to assigned.

Unicode blocks are based on ranges of code points. For example, the block
containing ASCII characters (most of C# code is ASCII characters) is called
“Basic Latin”. Although the blocks often contain characters from the same writing
system, more precise information is provided by the Script property [12].

2.2.3 Language Constructs
The string type plays a special role in several language constructs of the C#
programming language.

Literals. C# supports writing literals of type string in code, using the com-
mon syntax in double quotes with backslash escape sequences. String constants
can be stored in const fields. String values can be used as the parameters of
attributes. However, it has been shown that the encoding used for attributes in
.NET cannot represent all possible values that the string type can hold [13].

C# identifiers. The source code of C# programs is also a string (but not
available in the program itself). However, identifiers used in the source code can
appear in the program at runtime as string values using features such as nameof,
reflection, dynamic calls, or caller attribute, as demonstrated in Listing 2.2.

Switch. The switch statement supports switching on integral types and
string. While integral types have a direct support for the switch statement
in the CIL (switch instruction), for strings it can be implemented by a sequence
of Equals comparisons (as shown in Listing 2.3). This is efficient for a small
number of cases. For a larger number of cases, the compiler will use a different
implementation, for example the compiler for C# 5.0 converts the string to an
integer index by a lookup in a Dictionary, and then uses the switch instruction.
The Roslyn compiler uses a hash-based decision tree. Simplified implementations
are shown in Listing 2.4. The generated code is much more complicated than a
chain of comparisons. It is also dependent on the particular compiler used, so it
would be difficult to recognize and analyze this pattern in tools.

11

Listing 2.2 Using identifier names as strings

void Identifiers(string parameter){
string s1 = nameof(parameter); // s1 = "parameter"
string s2 = typeof(Dynamic).Name; // s2 = "Dynamic"
dynamic d = new Dynamic();
string s3 = d.Property; // s3 = "Property"
string s4 = Caller(); // s4 = "Identifiers"
}
string Caller([CallerMemberName]string callerName=null){
return callerName; //The name of the calling method
}
class Dynamic : DynamicObject{
public override bool TryGetMember
(GetMemberBinder bnd, out object value){
value = bnd.Name;
return true;
}
}

Listing 2.3 Switch statement and equivalent code
string Method(string arg){
switch(arg){
case "A":
return A();
case "B":
return B();
case "C":
return C();
case null:
return Null();
default:
return Default();

}
}

string Method(string arg){
if(arg == null)
return Null();
else if(arg.Equals("A"))
return A();
else if(arg.Equals("B"))
return B();
else if(arg.Equals("C"))
return C();
else
return Default();

}

12

Listing 2.4 Alternative implementations of switch
Dictionary<string, int> map =
new Dictionary<string, int>{
{"A", 0}, {"B", 1}, {"C", 2},
};
int index;
if(arg == null)
return Null();
else if(
map.TryGetValue(arg, out index)
){
switch(value){
case 0:
return A();
case 1:
return B();
case 2:
return C();

}
}
return Default();

uint hash = ComputeHash(arg);
if (num <= 3289118412u){
if (num != 0u){
if (num == 3289118412u)
if (arg == "A")
return A;

}
else if (arg == null)
return Null();

}
else{
if (num != 3322673650u) {
if (num == 3339451269u)
if (arg == "B")
return B;

}
else if (arg == "C")
return C;

}
return Default();

Listing 2.5 String interpolation and equivalent code
String interpolation:
string x = "A", y = "B";
string z = $"From {x} to {y}";

Equivalent code:
string arg = "A", arg2 = "B";
string text = string.Format("From {0} to {1}", arg, arg2);

String interpolation. String interpolation is a new feature of C# 6 [14]. It
allows to use a concise syntax instead of explicitly writing string.Format, as
shown in Listing 2.5. The generated IL code for the two examples is the same.

2.2.4 Operations
In this section, we will look at operations on string types provided by the C#
language and the .NET Framework Class Library. The operations can be used
to query information about strings and to create new string values.

2.2.4.1 Culture-specific Operation

Because strings are used to communicate with users, and users can come from
different cultures, some of the operations may have different semantics in different
cultures, for example string comparison. Other operations are independent of the
user’s culture, for example Length. A lot of operations by default perform culture
specific behavior according to the user’s current culture. This can sometimes lead
to unexpected results [15].

We must distinguish between three kinds of operatins: ordinal operations,
culture-invariant operations, and culture-specific operations. Ordinal operations

13

work directly with code unit values. This makes static analysis of them feasi-
ble. Culture invariant operations do not allow modification of their behavior by
culture, but their exact definition can still be too complex. The culture-specific
operations are out of scope of static analysis.

The methods in the .NET Framework Class Library handle this situation in
different ways:

• The operation is only culture-invariant or ordinal (for example Substring,
Concat).

• The method accepts an argument of enumeration type StringComparison.
This argument specifies, whether the operation will be ordinal, invariant or
use the current culture, and specifies case sensitivity. The argument can be
StringComparison.Ordinal.

• The operation accepts a boolean flag saying whether it should be
case sensitive, and an argument of type CultureInfo. This can be
CultureInfo.InvariantCulture.

• The method is culture specific and there is a variant with a differ-
ent name that is culture invariant or ordinal (for example ToLower,
ToLowerInvariant).

• The method takes CultureInfo and CompareOptions as arguments. The
second argument allows optionally ignoring more properties of characters
for the purpose of sorting. It can be CompareOptions.Ordinal.

2.2.4.2 Handling of null Values

As mentioned in Section 2.2.1, string is a reference type, and therefore all vari-
ables of type string can have the null value. The null value is handled in these
ways by operations:

• In the case of instance methods, if the value on the left side of the dot
operator is null, NullReferenceException is always thrown even before
the method is called.

• A null argument is treated as an empty string by concatenation operations.

• In comparison operations, a null argument is treated as a special value,
which compares lower than all other values.

• A null argument causes an exception (ArgumentNullException is thrown)
in most other operations.

Some operations are implemented as static methods to accept null as the first ar-
gument. String operations rarely return null value. One example is IsInterned.

2.2.4.3 Methods of the string Class

The string type provides a wide range of operations [8]. In this section, we
describe them and provide formal definitions for some of the operations.

14

Concatenation. The Concat method is provided with multiple overloaded ver-
sions, based on the number of arguments. If there are too many arguments, an
array is created to pass the strings to the method. If any of the strings is null,
it is treated as an empty string. Concat is also used to implement the operator
+ on strings [7]. The compiler might optimize concatenations of string constants
and null values [16].

Definition 2.2.2. We will model the Concat method by the function ConcatS ,
which is defined as ConcatS(s, t) = st.

In Definition 2.2.2, the S subscript of the Concat function indicates that the
arguments of the function are concrete strings.

A string can be also inserted at a specific index into another string by Insert.
In this case, a null argument causes an exception.

Definition 2.2.3. We model the Insert method by the expression
InsertS(s, i, t) = s[: i]ts[i :].

Comparison. To compare strings and other types in .NET, we can use
two distinct comparisons - equality comparison (supported by implementors of
IEquatable) and ordering (supported by implementors of IComparable). The
string class implements both of those interfaces. The equality comparison is
implemented by the Equals method with various overloaded versions. There is
a static two-parameter version, which allows treating null values as a distinct
value, without throwing exceptions. The same logic is also used for the == op-
erator [7]. Additionally, a comparison mode can be specified. It is Ordinal by
default.

Definition 2.2.4. We model the Equals method with Ordinal comparison on
non-null values by EqualsS(s, t)⇔ s = t.

Ordered comparison is done by the static method Compare and the interface
method CompareTo, with various overloaded versions to specify the case, culture,
and comparison mode. There are also overloaded versions accepting the index
and length of the substrings that should be compared. There is also an ordinal
variant called CompareOrdinal.

Definition 2.2.5. We model the CompareOrdinal method on non-null values

by CompareS(s, t) =

(−∞,−1] s < t

0 s = t

[1,∞) s > t

.

The exact value of the returned number is not specified, and might depend
on the implementation. For example, it can be the difference between the first
differing pair of characters, or the difference of the lengths of the strings.

Additionally, on reference types including string, programmers can also use
a third type of comparison, which is reference equality. The reference equality
always implies value equality. For interned strings, this holds also in the other
direction.

15

Containment. The Contains methods uses ordinal comparison to check
whether a string contains another string.

Definition 2.2.6. We model Contains by ContainsS(t, a)⇔ t ∈ ~a~.

The StartsWith and EndsWith methods limit the occurrence of the contained
substring to the start (prefix) or end (suffix). They are by default culture sensi-
tive.

Definition 2.2.7. We model StartsWith with ordinal comparison by
StartsWithS(s, t)⇔ s ∈ t~, and EndsWith by EndsWithS(s, t)⇔ s ∈ ~t .

Searching. Searching a string returns a position of a substring within the
string. IndexOf(string) is by default a culture-sensitive operation, but
IndexOf(char) uses ordinal comparison. It returns the index of the first oc-
currence, or −1 if there is no occurrence.

Definition 2.2.8. We model IndexOf with ordinal comparison by

IndexOfS(s, t) =

firstindex(s, t) s ∈ ~t~

−1 s /∈ ~t~
.

LastIndexOf is similar to IndexOf, but returns the index of the last occur-
rence. When searching an empty string in a non-empty string, it returns the
index of the last character.

Definition 2.2.9. We model the LastIndexOf method with ordinal comparison

by LastIndexOfS(s, t) =

lastindex(s, t) s ∈ ~t~ ∧ t 6= ε

−1 s /∈ ~t~

max(0, |s| − 1) t = ε

.

Formatting. The Formatmethod is used to generate a new string from a format
string and values of other objects. If the format string is constant, it can be
modeled by concatenations of the constant parts with the variable parts.

Copying and Conversion. There are several methods which do not change
the represented value. Both ToString and Clone return the same instance (this).
Copy creates a new instance with the same value. ToCharArray converts a string
to char[], while string has a constructor that constructs a string from char[].

Interning. Strings in .NET can be interned, to ensure that the same instance
is used to represent the same string value. This influences reference equality, but
has no effect when we are only interested int the string value. The Intern method
returns an interned instance of the same value. The IsInterned returns null if
the string is not interned.

Normalization. Unicode defines normalization forms in order to make a single
representation for different character sequences that should be handled equiva-
lently. Normalization can be achieved and checked using the Normalize and
IsNormalized methods. Supporting this feature would require the analysis to
know the exact definitions of normalization.

16

Emptiness. We can check whether a string is empty by comparing Length ==
0, but the static IsNullOrEmpty combines this with a null-check.

Definition 2.2.10. We model the IsNullOrEmpty method on non-null values
by IsEmptyS(s)⇔ s = ε.

The IsNullOrWhitespace method also ignores white-space characters, but
it is dependent on what characters are currently considered to be white-space
(Unicode categories).

Array Delimiters. We can convert between an array and delimited strings by
the Join and Split methods. Arrays of strings are out of scope of this thesis.

Length. The Length property returns the number of characters.

Definition 2.2.11. We model the Length property by LengthS(s) = |s|.

Padding. Padding extends the string to have at least the specified length, using
a padding character. If character is not specified, a space character (]0020) is
used.

Definition 2.2.12. We model the PadLeft method by PadLeftS(s, n, c) =cn−|s|s |s| < n

s |s| ≥ n
and the PadRight method by PadRightS(s, n, c) =scn−|s| |s| < n

s |s| ≥ n
.

Replace. The Replace method has two overloaded versions: one replaces a
single character by another character, the other version replaces occurrences of
a string by another string. For the string replacement, it is significant that
the string is searched from the beginning, and if an occurrence is found, the
search continues after the end of the occurrence. It does not replace overlapping
occurrences or new occurrences arising by the preceding replacements. The result
string therefore can still contain occurrences of the old string. Replacing an empty
string is not allowed.

Definition 2.2.13. We model the Replace methods by ReplaceCS(s, c, d) =
s[c := d] and

ReplaceSS(s, t, u) =

s[: i]uReplaceSS(s[i+ |t| :], t, u) i = firstindex(s, t)
s s /∈ ~t~

⊥ t = ε

.

Substring. The Substring methods extract a part of the strings based on an
index from the start. The length is optional.

Definition 2.2.14. We model Substring by SubstringS(s, i, l) = s[i : i+ l] and
SubstringEndS(s, i) = s[i :].

17

The Remove method is similar, but removes the specified part and keeps the
rest.

Definition 2.2.15. We model Remove by RemoveS(s, i, l) = s[: i]s[i+ l :] and
RemoveEndS(s, i) = s[: i] i < |s|.

Case conversion. The ToLower and ToUpper methods replace characters by
their counterparts of the selected case. This is a culture-dependent operation,
however, there are methods ToLowerInvariant and ToUpperInvariant that are
culture-invariant. However, the result is still dependent on the specific definition
of character case pairs.

Trimming. The TrimStart, TrimEnd, and Trim methods remove characters
belonging to a specific set from the start, the end, or both ends, of a string. If
called with no argument or a null argument, or if an empty array is provided,
then white-space characters are trimmed.

Definition 2.2.16. We model the TrimStart method with a non-empty second
argument by

TrimStartS(s, d) =

s[i :] i = min {k : s[k] /∈ char(d)}
ε char(s) ⊆ char(d)

,

the TrimEnd method by

TrimEndS(s, d) =

s[: j] j = max {k : s[k] /∈ char(d)}
ε char(s) ⊆ char(d)

,

and the Trim method by

TrimS(s, d) =

s[i : j + 1] I = {k : s[k] /∈ char(d)} ∧ i = min I ∧ j = max I
ε char(s) ⊆ char(d)

.

2.2.4.4 Methods of the StringBuilder Class

StringBuilder provides different operations than string. The methods of the
StringBuilder class usually mutate the object-in place and return this.

Appending. The Append method is a counterpart of the Concat method on
string, but changing the StringBuilder instance in place. It can therefore be
modeled by the same function ConcatS(s, t).

The AppendLine variant adds a new-line character which is "\n" 〈]000a〉 or
"\r\n" 〈]000d,]000a〉 depending on the Environment.NewLine property.

Length and capacity. The Length property works the same as for string and
can be modeled by LengthS . StringBuilder also has a Capacity property, which
corresponds to the amount of allocated memory. Additionally, it allows to specify
a maximum capacity, however, this limit is not reliable.

Conversion. The constructor can be used to initialize StringBuilder with an
existing string value. The standard ToString method converts the value of
StringBuilder to string.

18

2.2.4.5 Operations with the Character Arrays

Character arrays (char[]) support getting length (Length property), and getting
or setting a character at an index using the [] operator.

2.3 Regular Expressions
Regular expressions are a flexible and popular way of manipulating strings in
many programming languages. They can be used for searching and replacing a
pattern in a string. Although they are called regular expressions, the class of
languages they can recognize are not limited to the mathematical definition of
regular languages1.

2.3.1 Regex in .NET
Regular expressions are supported in the .NET Framework by the Regex class.
The regular expression is specified by a string argument to a constructor or a
static method. The syntax of the regular expression language is not standardized
and the .NET Framework uses its own definition [17]. Furthermore, the semantics
of the regular expression string can be altered by using a RegexOptions flags ar-
gument to the methods or constructors. Some of the options can be also changed
inside the regular expression, so that they apply only to a part of it.

A notable diferrence from the current Unicode recommendation [18] is that
regex matching in .NET operates on UTF-16 code units. Character sets might
be named by Unicode category or a name corresponding to a char.Is* method.

2.3.2 Specifying a Language
In this thesis we will consider only one method of the Regex class – the IsMatch
method. It determines, whether a specified string contains a match of the specified
regular expression. The regular expression therefore represents a language, and
can be used in contracts to check that a string value belongs to that language.

An essential feature of regular expressions are anchors. Without using an-
chors, IsMatch would return true if any substring matches the expression, so
it would be only possible to express languages of the form ~L~. To check a
property of the whole string, the begin and end anchors must be used. "^" is the
anchor for the beginning a string. The "$" anchor is for the end of a string, but
if the last character is end-of-line (’\n’), it matches before that character too.
To match only the end of the string, "\\z" must be used. The meaning of the
anchors can be also changed by the RegexOptions.Multiline flag.

2.3.3 Formal Definitions
To allow formally representing regular expressions including anchors, we define a
subset of regular expressions in terms of mappings from strings to sets of matches.

1For example, the context free language {anban : n ∈ N} is recognized by regex
"^(?<a>a*)b\\k<a>$", and the context-sensitive language {anbncn : n ∈ N} is recognized
by regex "^(?<a>a)*(?<b-a>b)*(?<-b>c)*(?(a)(?!))(?(b)(?!))$".

19

Each match is represented by two indices (begin and end of the interval of the
match).

Definition 2.3.1. A matcher M is a function from a string to a set of intervals
within the string, M : Σ∗ → P(N2), where ∀ 〈i, j〉 ∈M(s) : 0 ≤ i ≤ j ≤ |s|.

We build a matcher for a regular expression using a few matcher constructors,
which roughly correspond to the AST of the regex string. The first parenthesis
contains constructor aguments, the second parenthesis means application of the
matcher to a string value.

Definition 2.3.2. The empty string matcher is empty()(s) =
{〈i, i〉 : 0 ≤ i ≤ |s|}. The begin and end anchor matchers are begin()(s) =
{〈0, 0〉} and end()(s) = {〈|s| , |s|〉}. The matcher for a single character from a
set of characters S ⊆ Σ is single(S)(s) = {〈i, i+ 1〉 : s[i] ∈ S}.

Definition 2.3.3. Let M1, . . . ,Mn be matchers, then
a concatenation matcher is concat(M1, . . . ,Mn)(s) =
{〈i0, in〉 : ∃i1, . . . , in−1 : ∀1 ≤ k ≤ n : 〈ik−1, ik〉 ∈Mk(s)} and a union matcher is
union(M1, . . . ,Mn)(s) =⋃ni=1 Mi(s).

Definition 2.3.4. Let M be a matcher, f be the lower bound on the number
of repetitions, and t be the upper bound. Then a bounded loop matcher is
loop(M, f, t)(s) = {〈i0, j〉 : ∃n ∈ [f, t] : ∃i1, . . . , in : j = in ∧ 〈ik, ik+1〉 ∈M(s)},
and an unbounded loop matcher is loop(M, f,∞)(s) =
{〈i0, j〉 : ∃n ∈ [f,∞) : ∃i1, . . . , in : j = in ∧ 〈ik, ik+1〉 ∈M(s)}.

When using the bounded loop matcher constructor, we will only consider cases
where t ≥ 2. Otherwise, we will use the following equivalent representations:
loop(M, 0, 0) = empty(), loop(M, 0, 1) = union(M, empty()), and loop(M, 1, 1) =
M . The following matchers are also defined in terms of matchers defined before.

Definition 2.3.5. The non-matcher is none()(s) = single(∅) = ∅, the wildcard
matcher is wildcard() = single(Σ), and a maybe matcher is maybe(M)(s) =
union(M, empty()) = M(s) ∪ empty()(s)

2.3.4 Parsing Regular Expression Strings
In order to construct the matcher, the regular expression string must be parsed.
We are only concerned about regular expression strings that are compile-time
constants. Furthermore, some features are too complex to be modeled by match-
ers, such as backreferences. We will not support expressions containing them.
Since we do not need to distinguish multiple matches, lazy loops such as "x*?"
can be treated the same as normal loops.

Definition 2.3.6. The matcher for a regular expression r is regex(r). The syntax
elements are transformed as in Table 2.1. The expression in the left column might
contain subexpressions e and f, which are recursively parsed to matchers M and
N .

20

Regex Matcher
e|f union(M,N)

e{m,n} or e{m,n}? loop(M,m, n)
e* or e*? loop(M, 0,∞)
e+ or e+? loop(M, 1,∞)

ef concat(M,N)
e? maybe(M)
a single({a})

[abc] single({a, b, c})
^ begin()
\z end()
$ concat(maybe(single(]000a)), end())
. wildcard()

(?!) none()
(?:e) M

Table 2.1: Correspondence between regular expression strings and matcher con-
structors

Example 2.3.7. The matcher for the regular ex-
pression "^(?:a|bc*)$" is regex(ˆ(?:a|bc*)$) =
concat(begin(), union(single(a), concat(single(b), loop(single(c), 0,∞))),
maybe(single(]000a)), end()).

Definition 2.3.8. We model the Regex.IsMatch method by IsMatchS(s, r) ⇔
regex(r)(s) 6= ∅.

2.4 Code Contracts
Code Contracts is a language-independent implementation of contracts for .NET
[5, 19, 3], implemented in C#. Currently, the source code is hosted on Github
[4]. This website is also used for issue tracking. The recent development focuses
on adaptation for VisualStudio 2015 and the Roslyn Compiler.

2.4.1 Writing Contracts in Code
Using Code Contracts means writing assertions in code, using special classes and
methods that can be recognized by the Code Contract tools. The contracts in
the source look like a normal code, but do not work without the provided tools.
The contract classes are part of the .NET Framework Class Library and do not
require using external libraries [19].

The most important class is System.Diagnostics.Contracts.Contract. It
provides static methods that are used to specify contract assertions. The Assert
and Assume methods can be used anywhere in the code and their argument is
a boolean condition that must hold at that point. The condition can be any
expression that calls only methods marked by the [Pure] attribute.

The static checker tool, Clousot, tries to prove that the Assert conditions
are guaranteed to hold, assuming the Assume conditions hold. The Requires

21

Listing 2.6 Example of class with contracts

using System.Diagnostics.Contracts;
class WithContracts{
private int x;
[ContractInvariantMethod]
public void Invariants(){
Contract.Invariant(x >= 0);
}
public int AddValue(int a){
Contract.Requires(a > 0);
Contract.Ensures(Contract.Result<int>() > 0);
Contract.Ensures(x > Contract.OldValue(x));
x += a;
return x;
}
public void AddArray(int[] arr){
Contract.Requires(arr != null);
for(int i = 0; i < arr.Length && arr[i] > 0; ++i){
x += arr[i];
}
}
}

and Ensures clauses can be used only at the beginning of a method. They are
the preconditions and postconditions of the method. For the purpose of static
analysis, they are transformed into asserts and assumes (depending whether the
body of the method or a method calling it is analyzed – for example, in the
method body, the preconditions are assumed and postconditions asserted [5]).

The Listing 2.6 shows an example of a class with postconditions, preconditions
and an invariant method.

2.4.2 Runtime and Static Checking
The Code Contracts framework consists of multiple tools.

• Runtime checking is provided by Foxtrot (or ccrewrite.exe), which
rewrites the compiled assembly to contain code checking the contracts at
runtime.

• Static checking is provided by Clousot (or cccheck.exe). It implements
static analysis based on abstract interpretation. It tries to prove that the
specified contracts are not violated. The analysis is not complete, so it
might report false positives (unproven assertions). Its strength depends
on the selected abstract domains. However, the analysis is generally not
sound either, due to an optimistic abstraction of heap [5]. That means false
negatives might also occur.

• ccdoc.exe exports contracts to documentation.

• There is also an extension for Visual Studio, which allows configuring the
checkers in a graphical user interface form and running them automatically
on build.

22

2.4.3 Overview of Clousot Internals
The concepts used in Clousot were described by Fähndrich and Logozzo [5]. We
will introduce specific parts of implementation found in the source code [4], that
are relevant to implementing a new value analysis.

The executable project is Executables/Clousot2, but the main code of the
program is in the project ParticularAnalysis/ClousotMain3.

The static checker works on a compiled assembly. It decodes the CIL, and
constructs a control-flow graph. All invariants, preconditions and postconditions
are changed to assert and assume instructions. Assume instructions are also
implicit after conditionals. Clousot also tries to decode some expressions and
makes an abstraction of the heap (OptimisticHeapAbstraction).

Clousot contains multiple analyzers, which are grouped as nested classes of the
Analyzers class in ParticularAnalysis/Analyzers4. The analyzers are found
by reflection. An analyzer may specify options, which are by reflection filled
from arguments on the command line. The analyzer calls the corresponding
analysis, which usually runs the data-flow algorithm (ForwardAnalysisSolver
in AnalysisInfrastructure/CodeAnalysis/DFA.cs5) on the decoded program
with symbolic variables, using a selected abstract domain, which implements
IAbstractDomain (from AnalysisInfrastructure/Abstract Domains6). This
interface includes the standard operators of abstract domains, such as Bottom,
Top, Join, Meet and Widening. The analysis also handles the transfer function
using the visitor pattern, where each instruction of the IL has an associated
handler method. For example, the Call method handles transfer function for
method calls and Newobj handles constructor calls and Assume handles assume
statements. After the DFA reaches the fixpoint, the analysis is queried whether
it could prove various facts using IFactQuery.

Some of the classes are nested inside the TypeBindings class, so that the
generic parameters do not have to be repeated for each of them.

2Executables/Clousot is the path within the CodeContracts.sln Visual Studio
solution. The path on the file system is Microsoft.Research\Clousot.

3Microsoft.Research\Clousot on the file system.
4Microsoft.Research\Analyzers on the file system.
5Microsoft.Research\CodeAnalysis on the file system.
6Microsoft.Research\AbstractInterpretation\Abstract Domains on the file

system.

23

2.4.3.1 Using Multiple Analyses

In the basic setting, the analyses are executed independently. However, this can
mean unnecessary loss of information, because two analyses can be more precise
if they have access to the information from the other one. The approach used
in Clousot is to allow an analysis to accept “plug-ins”, which will be called at
appropriate places (for example from the IL visitor methods), and allow the plug-
ins to increase precision of analysis results. The abstract domain is a reduced
product of domains of the individual analyses.

The array analysis (ArrayAnalysis in ParticularAnalysis/Analyzers/
Array Analysis/ComposedAnalysisWithArrays.cs) is implemented this way.
When the array analysis is enabled on the command line, the other
analyses are no longer executed independently, but work as plug-ins
(GenericPlugInAnalysisForComposedAnalysis) to the array analysis. The plug-
in can be just a wrapper calling the original independent analysis.

24

3 Analysis
The analysis of string values should ideally be able to capture interesting prop-
erties of strings. In this chapter, we list a few of such properties. Then we look
at existing solutions for string analysis, focusing on their approach and the kinds
of properties they can handle. Finally, we choose our approach to the problem,
which will be suitable in the context of .NET and Code Contracts and will be
able to reason about enough properties.

3.1 Examples of String Properties
All non-relational string properties can be defined as sets of strings (languages)
that have the property. In this section, we describe a few selected properties of
strings that may appear in .NET programs.

Usually, the properties concern strings that are intended to be processed by the
computer (programming languages, serialized data, escape or control sequences),
because properties related to strings viewed by users are not very easily defined,
and they also typically depend on the runtime environment (using culture specific
operations, Section 2.2.4.1), so they are not suitable for static checking. For
example, the number of glyphs as seen by the user depends not only on the
characters in the string, but also on the used font.

Limited length. String processing code might limit the length of the inputs, for
example for buffer allocation. Passing a longer string can lead to buffer overflow,
which used to be a common type of bug in C programs. In C#, this would be a
problem only in unsafe code. Otherwise, unexpected IndexOutOfRangeException
or OutOfMemoryException exceptions might be thrown.

Valid UTF-16 string. .NET strings may contain invalid UTF-16
code unit sequences. A valid UTF-16 string cannot contain surro-
gate code units that do not form surrogate pairs. The surrogate
pair is formed by the high surrogate first, followed by the low sur-
rogate. This property can be represented by the language Sutf16 =
({]0000 . . .]d7ff} ∪ {]e000 . . .]ffff} ∪ ({]d800 . . .]dbff} {]dc00 . . .]dfff}))∗.

ASCII. Strings allowing only ASCII characters [20] are frequently used for
their simplicity and interoperability. The set of ASCII characters is Cascii =
{]0000 . . .]007f}.

Escaped strings. Escaping is a common way to write characters with special
meaning such as delimiters or non-printable characters. For example, string lit-
erals in C# are delimited by "" and characters such as newline or double quote
must be escaped ("\n\""). Escaping input is frequently needed when generating
code of a formal language, where the program must ensure that the part gen-
erated from the input does not contain unescaped characters that would alter
the structure of the result in an unwanted way. Enabling the input to contain
unescaped delimiters is the basis of SQL or script injection.

25

Regex. The Regex class requires the expression (passed as a string argument
to the constructor or to the matching methods) to be valid – to contain valid
escape sequences and to have balanced parentheses. Regex expressions are often
compile time constants (string literals in the C# code), so compile-time warning
for invalid expressions is possible.

At runtime, a regex representing a constant string can be created by a call
of Regex.Escape. Then we know it does not contain any special characters and
inserting it into a regex will not change its structure.

Format Strings. For generating strings or for stream I/O, format methods
(string.Format, StringBuilder.AppendFormat or methods of the streams) are
used. The format is a string, where curly braces contain the index and format
modifier ("{0:d}") of the argument that should be inserted at that location. Lit-
eral brace characters must be doubled. Format strings are often compile time
constants so they could also be checked at compile time. It is, however, not
so much of an issue as in C, where the mismatch of the format string and ar-
gument type can lead to undefined behavior. If the format string is invalid,
FormatException is thrown.

Primitive Types. The primitive types of C# can be converted to strings using
ToString methods. For example, integers in decimal format (C10 = {0 . . . 9}) or
hexadecimal format (C16 = {0 . . . 9} ∪ {a . . . f} ∪ {A . . . F}). The minus sign and
decimal point can be altered by the local culture [15].

Date and Time. Dates and times are more complex common data types. The
textual representation varies highly for different locales. The ISO standard spec-
ifies fixed format for date (C4

10-C2
10-C2

10, for example 2013-01-08), and time
(C2

10:C2
10).

GUID. GUID (Guid struct) is a 128-bit number which has a hexadecimal text
representation with delimiters at fixed places: Sguid = C8

16]001d (C4
16]001d)3

C12
16 .

Base64. The Base64 encoding [21] is used to transfer binary data through
ASCII channels. It contains only a safe subset of ASCII characters (Cbase64 =
{a . . . z} ∪ {A . . . Z} ∪ {0 . . . 9} ∪ {+, /, =,]000a}). Base64 can be easily used from
.NET by the ToBase64String or FromBase64String methods of the Convert
class.

IP address. IP addresses are used in networking code. Version 4 addresses are
usually presented in dotted-decimal format [22, 23], while version 6 addresses use
colon-delimited hexadecimal format, and can be shortened [24, 25]. IP addresses
can be used in conjunction with subnet prefix or port number [24].

URIs and URLs. URI can contain a limited set of ASCII characters, other
characters must be escaped [22]. The language of a URI part without delimiters
is Suri = ({0 . . . 9}∪{A . . . Z}∪{a . . . z}∪{]002d,]002e,]005f,]007e}∪%C16C16)∗.
URLs often begin with common prefixes such as http://.

26

E-mail Addresses. E-mail addresses are used frequently in web page forms.
The exact specification is quite complicated [26], so approximations such as
^(?("")("".+?""@)|(([0-9a-zA-Z]((\.(?!\.))|[-!#\$%&’*\+/=\?\^‘\{\}
\|~\w])*)(?<=[0-9a-zA-Z])@))(?(\[)(\[(\d{1,3}\.){3}\d{1,3}\])|
(([0-9a-zA-Z][-\w]*[0-9a-zA-Z]\.)+[a-zA-Z]{2,6}))$ [27] or
\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+) [28] are often used.

HTML and XML. XML formats can be used for data serialization, and
HTML code is generated by ASP web pages. The grammar for XML [29] and
especially HTML is quite complex. When generating HTML from user inputs,
attention should be given to escaping (using entities).

3.2 Existing Solutions
Code Contracts. The current version of Code Contracts already sup-
ports some properties of strings. This is because the Length prop-
erty of strings is analyzed as an integer value and the string opera-
tions have preconditions and postconditions that describe effects of the
operation on this property. The contracts are specified in the file
Microsoft.Research/Contracts/MsCorlib/System.String.cs (see Appendix
A). There is also a very limited support for string operations in the code of
the arithmetic analysis.

There was also an incomplete implementation of string abstract domains, only
available in DEBUG builds. It had support for operations returning strings, but
the implementation was not precise1. Results of operations returning integers or
booleans were ignored, so using them in contracts was not possible. The domain
was also not tested – for example, it was possible to trigger an infinite recursion
in the checker.

BRICS Java String Analyser. Christensen et al. [30] use a constructed flow
graph containing join nodes, string operation nodes, and nodes representing reg-
ular languages. The flow graph defines a grammar, which is then approximated
by multilevel automata built using the Mohri-Nederhof algorithm. Multilevel au-
tomata allow transitions to refer to a string operation applied to a subautomaton
at a lower level. The multilevel automaton is then converted to a deterministic
finite automaton, which can be doubly exponential in size in the worst case.

Hampi. Hampi [31] is a solver for string constraints, which uses bit vector logic
to represent strings and makes use of the STP bit-vector constraint solver. It is
an useful tool for generating test inputs and counterexamples. Hampi supports
regular expression or context free grammars as input languages. However, it
restricts the languages to fixed size, claiming it does not pose a limitation.

1For example, on the Top element, the abstract version of Concat always re-
turns Top, while a constant concatenated with Top has a known prefix. Similarly,
StringAbstraction.Contains always returns Top, while if the argument is "", it could
return true, because all strings contain it (except null, but then the operation would throw
an exception).

27

Z3str. Z3str (“string theory plug-in to Z3”) [32] adds support for string con-
straints to the SMT solver Z3. It combines string constraints with the strengths
of Z3 for non-string constraints. Strings are not reduced to a uniform domain,
but string operations are reduced to concatenation and boolean formulae. There
is no support for regular expressions.

Canal. A LLVM-based static analyzer for C programs, Canal, supports a few
abstract domains for strings [33]. The thesis presents domain of prefixes, suffixes
and finite sets of prefixes.

A Suite of Abstract Domains for Static Analysis of String Values.
Costantini [34] proposed several abstract domains for strings. It uses the frame-
work of abstract interpretation, including the definition of domain operators with
proofs and abstract semantics for a limited selection of operations.

None of the solutions described above is directly applicable to .NET code. In
our solution, we want to support regular expressions, because they can represent
most of the properties mentioned in Section 3.1. We want to avoid limiting the
lengths of strings considered by the analysis to fixed number, because the string
length itself is also an important property that can be used in contracts.

3.3 Chosen Approach
For our implementation of string analyis in Code Contracts, we use abstract in-
terpretation of string values with custom abstract domains. This is because the
approach of abstract interpretation is already implemented in Clousot. Design
and implementation of suitable abstract domains for strings is the major remain-
ing step.

We decided to implement the string abstract domains proposed by Costantini
[34], because they are defined in terms of abstract interpretation, they are not
platform-specific, and they provide increasing complexity.

For each abstract domain, we repeat its formal definition in this thesis. Then
we define the abstract semantics for the operations specific to .NET. Most of
them are our new definitions.

We decided to use the current implementation of string analysis in Clousot
as a guide, but we created a different design of the abstract domains. We avoid
using SMT solvers or any external software, which would introduce dependencies,
non-determinism, etc. Furthermore, using an approach that does not fit into the
abstract interpretation framework and the DFA algorithm would complicate reuse
of existing features of Clousot and cooperation with other abstract domains.

We do not consider null values in our abstract domains. For most of the
operations, they can be ignored. For the purpose of Concat and IsNullOrEmpty,
we consider null to be an empty string. In other cases, null values can be
analyzed by the existing “non-null” analysis in Clousot, and this can be utilized
using the reduced product of our analysis with other analyses. That way we also
make use of the numerical analysis to get information about integer values.

28

We use the Regex.IsMatch method and methods of string that return bool
to specify properties, which can be checked in contracts. Belonging to a language
specified by a regular expression covers many of the properties listed in Section
3.1.

By using only the methods of the standard libary, there is no need to extend
the contract classes and to require adding references to our assemblies to the
projects of the users. The runtime checker works seamlessly with properties
written this way, and any existing code already using the supported methods in
contracts for runtime checking would also get the benefits of static checking if
using our implementation.

29

30

4 Abstract Domains for Strings
In this chapter, we describe in detail the abstract domains we chose to implement,
and some variants of them, which we did not implement. We used all abstract
domains defined in the article by Costantini [34] (i.e., Prefix, Suffix, Character
Inclusion, Bricks and String Graphs), and we extended and modified them to suit
our needs.

4.1 Design of String Abstract Domains
All abstract domains described here are non-relational, based on a set of elements
together with a concretization function. The concretization function assigns a
(possibly infinite) language to each element of the domain. For each domain D,
apart from the concretization function γD, we need to define the bottom and
top elements, and the join (least upper bound) and widening operators. Those
are needed for the DFA algorithm. We may also define the meet (greatest lower
bound) operator and an abstraction function, which forms a Galois connection
with γD. However, this is not possible for all domains described here.

Operations. For each abstract domain D, we also need to define the ab-
stract semantics, which means implementing the selected string operations on
the abstract elements. We consider the methods described in Section 2.2.4,
involving strings, integers and booleans. The best possible abstract semantics
for the function FS returning string value is FD, such that FD(x1, . . . , xn) =
αD({FS(s1, . . . , sn) : ∀i : si ∈ γD(xi)}). Sometimes, such precise abstract seman-
tics would be too complex or not efficient to evaluate. In those cases, we overap-
proximate the result (in extreme cases returning >D). Such definitions can be
improved in the future.

For some of the operations and abstract domains, the precision is much better
and definition is much simpler, when we assume that some of the arguments are
constants. In the case of domains that can exactly represent constants1, there
may be a special case for constant elements in the definition of the operation.
For abstract domains that are not precise enough to represent constants (such as
the Prefix domain), we add definitions for variants of the operation where some
of the arguments are not abstract elements but concrete values.

For operations taking or returning integers, we consider an interval abstrac-
tion of integers. Because the integers represent string lengths or indices, we are
only interested in non-negative integers. There are two exceptions: IndexOf,
which can return −1, and Compare, which can return any integer value. For
the Compare operation, the return value is not specified exactly, and the only
interesting property of the result is the sign. We use the 〈l: , e: , g: 〉 notation to
specify which signs can the result have (meaning negative, zero and positive).
The corresponding set of integers can be obtained as a union of at most three
intervals.

1An abstract domain can exactly represent constants if for each string, there is an abstract
element which represents a language containing exactly the one string.

31

As method arguments are evaluated eagerly in .NET, when any of the argu-
ments is bottom then the result of the operation is always bottom too. Therefore,
in this chapter, we omit the cases of bottom arguments in the definitions of op-
erations.

Assume and assert. To support string properties in contracts, we also need to
handle the assert and assume statements. We are particularly interested in those
that contain calls to boolean operations on strings. For the Assert statement, we
simply need to evaluate the abstract operation to know whether the result can be
true or false. This information can then be handed to the framework (through
the IFactQuery interface) and possibly displayed to the user.

For Assume statements, we should use the assumed expression to improve our
knowledge about the string variables used in the assumed expression. Because of
that, we identify for each domain those boolean operations that help us reason
about their arguments, provided that we know the result of the operation.

Regular expressions. To support asserts and assume statements containing
Regex.IsMatch, we implement for each domain:

• checking whether the abstract element can or must match the regular ex-
pression,

• assuming that an element matches (or does not match) the regular expres-
sion.

The latter can be done by defining a conversion from a regular expression to an
element of the abstract domain, and then combining it with the previous element
by the meet operator.

4.2 Constant-based Abstract Domains
Abstract domains based on explicitly listing the possible values are very straight-
forward and can be defined for any type of values.

4.2.1 Flat Domain
The Flat Domain is the simplest abstract domain that tracks constant values (and
constant values only). Using a flat domain is similar to constant propagation in
compilers. The elements are string values and two special elements for top and
bottom.

Definition 4.2.1 (Flat abstract domain). FL =
〈Σ∗ ∪ {⊥,>} ,uFL,tFL,⊥FL,>FL〉. The domain operators are defined in
Figure 4.1.

4.2.2 Constant Sets
The Constant Set domain tracks finite sets of strings. To avoid too much memory
consumption, the size of the sets is limited.

32

x tFL y =

x x = y ∨ y = ⊥
y x = ⊥
> ⊥ 6= x 6= y 6= ⊥

x uFL y =

x x = y ∨ y = >
y x = >
⊥ otherwise

>FL = >
⊥FL = ⊥

x vFL y ⇔ x = y ∨ x = ⊥ ∨ y = >
γFL(x) = x

αFL(S) =

> |S| > 1
c |S| = 1 ∧ c ∈ S
⊥ |S| = 0

Figure 4.1: FL domain

αCSn (S) =

S |S| ≤ n

> |S| > n

γCSn (x) =

x x 6= >
Σ∗ x = >

Figure 4.2: CSn domain

Definition 4.2.2 (Constant set abstract domain). CSn =
〈{S ⊆ Σ∗ : |S| ≤ n} ∪ {>} ,uCSn ,tCSn ,⊥CSn ,>CSn〉. The domain operators
are defined in Figure 4.2.

Remark 4.2.3. CS1is equivalent to FL.

The operations are implemented by evaluating them for each combination of
the constants of the arguments.

4.2.3 Variants of Constant-Set Based Domains

The limit on the number of constants guarantees termination, but the memory
consumption can be still large if the constants themselves are large. We may
limit the length of the constants too. On the other hand, we might not limit the
number of constants and instead use widening, which returns the top element if
the number of constants exceeds the limit n.

33

αL(S) = {|c| : c ∈ S}
γL(x) =

{
#i : i ∈ x

}
⊥L = ∅
>L = N

x tL y = x ∪ y
x uL y = x ∩ y
x vL y ⇔ x ⊆ y

Figure 4.3: L domain

4.3 Length-based Abstract Domains
Every string value has an integer length. In .NET it is a non-negative integer of
a 32-bit signed type (int).

4.3.1 Length
The Length abstract domain uses sets of natural numbers (including zero) to
represent a language of strings of the specified lengths.

Definition 4.3.1 (Length abstract domain). L = 〈P(N),∪,∩, ∅,N〉. The domain
operators are defined in Figure 4.3.

The abstraction can be composed with any abstract domain for integers
(P(Σ∗) −−−→←−−−

αL

γL P(N) −−−→←−−−
αD

γD
D). Suitable domains might be, for example, in-

tervals or a union of a limited number of disjoint intervals.

4.3.1.1 Operations

The operations for the length domain are defined in Figure 4.4. The arguments
and results of the string operations are sets of integers. For example, the PadLeft
operation may return strings of the same lengths as the input (X), but only those
that are at least as long as some of the target lengths (N). Otherwise, the string
would be padded to some length in N . The PadRight operation is exactly the
same.

The IndexOf operation returns a known index if the needle is known to be
empty. If the needle is longer than the haystack, then it cannot be a substring,
so the operation returns -1. Otherwise, the occurrence may be at any index,
until the last on possible, which is the difference of the lengths. The LastIndexOf
operation is similar, but handles an empty needle differently.

4.4 Substring-based Abstract Domains
Abstract domains based on whether the string contains some constant can be
easily constructed. This includes restricting the occurence to prefixes or suffixes.

34

ConcatL(X, Y) = {x+ y : x ∈ X ∧ y ∈ Y }
InsertL(X, I, Y) = {x+ y : x ∈ X ∩ [min I,∞) ∧ y ∈ Y }

ReplaceCL(X,C,D) = X

ReplaceSL(X, Y, Z) = [min(X,m),max(X,n)]

where m =
⌊minX

max Y

⌋
minZ

where n =
⌈maxX

min Y

⌉
maxZ

SubstringL(X, I, L) = L ∩ [0,maxX −min I]
SubstringEndL(X, I) = {x− i : x ∈ X ∧ i ∈ I} ∩ N

RemoveL(X, I, L) = {x− l : x ∈ X ∧ l ∈ L} ∩ [min I,∞)
RemoveEndL(X, I) = I ∩ [0,maxX − 1]
PadLeftL(X,N,C) = (X ∩ [minN,∞)) ∪ (N ∩ [minX,∞))

PadRightL(X,N,C) = PadLeftL(X,N,C)
TrimL,S(X, s) = [0,maxX]

TrimStartL,S(X, s) = [0,maxX]
TrimEndL,S(X, s) = [0,maxX]

IsEmptyL(X) = 〈f:X * {0} , t: 0 ∈ X〉
ContainsL(X, Y) = 〈f:Y * {0} , t: min Y ≤ maxX〉

StartsWithL(X, Y) = ContainsL(X, Y)
EndsWithL(X, Y) = ContainsL(X, Y)

EqualsL(X, Y) = 〈f:X ∪ Y * {0} , t:X ∩ Y 6= ∅〉
CompareL(X, Y) = 〈l:Y * {0} , e:X ∩ Y 6= ∅, g:X * {0}〉

LengthL(X) = X

IndexOfL(X, Y) =

{0} Y = {0}
{−1} maxX < min Y
[−1,maxX −min Y] otherwise

LastIndexOfL(X, Y) =

{max(x− 1, 0) : x ∈ X} Y = {0}
{−1} maxX < min Y
[−1,maxX −min Y] otherwise

Figure 4.4: L operations

35

x tPR y = lcp(x, y)

x uPR y =

x y ∈ x~
y x ∈ y~
⊥ otherwise

>PR = ε

⊥PR = ⊥
x vPR y ⇔ x ∈ y~
γPR(x) = x~

αPR(S) = lcp(S)

Figure 4.5: PR domain

4.4.1 Prefix
The Prefix domain [34] is a good starting example of an abstract domain designed
specifically for strings, because it is very simple and allows easy and precise
implementation of most operations. However, it is very limited in what properties
it can represent.

Definition 4.4.1. The prefix domain is defined as PR = (Σ∗ ∪
{⊥},uPR,tPR,>PR,⊥PR). The domain operators are defined in Figure 4.5.

There is no infinite increasing sequence in the lattice, so the widening operator
is not necessary.

4.4.1.1 Operations

The operations for PR are defined in Figures 4.6 and 4.7. The function names
have the PR subscript to indicate that their arguments are abstract elements
from the prefix domain. The integer arguments are also abstract (sets of integers).
When the subscript contains S, it means one or more of the arguments (position
indicated in the subscript) is a constant string. That version can be used in the
analysis when the argument is a known constant string.

The result of boolean operations is a tuple of the form 〈f: , t: 〉, where the f
part represents a possibility of returning false, and t returning true, as shown
in Definition 2.1.4. For example the ContainsS,PR function, which evaluates the
Contains method, where the first argument is a known constant and the second
argument has a known prefix. It is always possible to find a string with such
prefix that is not contained in the constant, so there is t in the f part, meaning
that the method can always return false. However, it can only return true, if
the known prefix of the second argument is contained in the first argument.

The prefix domain nicely supports operations such as concatenation of a con-
stant string from the left, or inserting a constant into the known part. On the
other hand, there is no upper bound on the length of a string, so for example
padding is never guaranteed to occur.

36

ConcatPR(x, y) = x ConcatS,PR(s, y) = sy

InsertPR(x, I, y) =

x min I > |x|
x[: i]y I = {i} ∧ i ≤ |x|
x[: min I] otherwise

InsertPR,S(x, I, t) =

x min I > |x|
x[: i]tx[i :] I = {i} ∧ i ≤ |x|
x[: min I] otherwise

InsertS,PR(s, I, y) =

⊥ min I > |s|
s[: i]y I = {i} ∧ i ≤ |s|
s[: min I] otherwise

ReplaceCPR(x,C,D) =

x[c := d] C = {c} ∧D = {d}
x[: i] C ∩ char(x) 6= ∅ ∧max(|C| , |D|) > 1

where i = min {j : x[j] ∈ C}
x otherwise

ReplaceSPR,S,S(x, s, t) =

x[: i]tReplaceSPR,S,S(x[i+ |s| :], s, t) x ∈ ~s~

where i = firstindex(x, s)
x[: min {i : x[i :] = s[: |x| − i]}] x /∈ ~s~

ReplaceSPR(x, y, z) =

x[: firstindex(x, y)] x ∈ ~y~

x[: min {i : x[i :] = y[: |x| − i]}] x /∈ ~y~

SubstringPR(x, I, L) =

x[i :] I = {i} ∧ i < |x| ≤ i+ minL
x[i : minL] I = {i} ∧ i+ minL < |x|
ε otherwise

SubstringEndPR(x, I) =

x[i :] I = {i} ∧ i < |x|
ε otherwise

RemovePR(x, I, L) =

x min I ≥ |x|
x[: i]x[i+ l :] I = {i} ∧ L = {l} ∧ i+ l < |x|
x[: min I] otherwise

RemoveEndPR(x, I) =

x min I ≥ |x|
x[: min I] min I < |x|

PadLeftPR(x,N,C) =

x |x| ≥ maxN
lcp
(
x, cmaxN

)
|x| < maxN ∧ C = {c}

ε otherwise
PadRightPR(x,N,C) = x TrimPR,S(x, s) = TrimS(x, s)

TrimStartPR,S(x, s) = TrimStartS(x, s)
TrimEndPR,S(x, s) = TrimEndS(x, s)

Figure 4.6: PR operations

37

IsEmptyPR(x) = 〈f: t, t:x = ε〉
ContainsPR(x, y) = >

ContainsS,PR(s, y) = 〈f: t, t: s ∈ ~y~〉
ContainsPR,S(x, d) = 〈f:x /∈ ~d~, t: t〉
StartsWithPR(x, y) = 〈f: t, t:x ∈ y~ ∨ y ∈ x~〉

StartsWithS,PR(s, y) = 〈f: t, t: s ∈ y~〉
StartsWithPR,S(x, d) = 〈f:x /∈ d~, t:x ∈ d~ ∨ d ∈ x~〉

EndsWithPR(x, y) = >
EndsWithS,PR(s, y) = 〈f: t, t: s ∈ ~y~〉
EndsWithPR,S(x, d) = 〈f: d 6= ε, t: t〉

EqualsPR(x, y) = 〈f: t, t:x ∈ y~ ∨ y ∈ x~〉
EqualsS,PR(s, y) = 〈f: t, t: s ∈ y~〉

ComparePR(x, y) =

〈l: t, e: t, g: t〉 x ∈ y~ ∨ y ∈ x~
〈l: t, e: f, g: f〉 x < y ∧ y /∈ x~
〈l: f, e: f, g: t〉 x > y ∧ x /∈ y~

CompareS,PR(s, y) =

〈l: t, e: t, g: t〉 s ∈ y~ ∧ s 6= y

〈l: t, e: t, g: f〉 s = y

〈l: t, e: f, g: f〉 s < y

〈l: f, e: f, g: t〉 s > y ∧ s /∈ y~
LengthPR(x) = [|x| ,∞)

overlaps(x, s) = {i : x[i :] = s[: |x| − i]}
firstindexset(s, y) = {firstindex(s, s[i :]) : i ∈ indexset(s, y)}

IndexOfPR(x, y) = {−1} ∪ indexset(x, y) ∪ overlaps(x, y) ∪ [|x| ,∞)

IndexOfS,PR(s, y) =

{−1, 0} s = y = ε

{−1} ∪ firstindexset(s, y) otherwise

IndexOfPR,S(x, s) =

firstindex(x, s) x ∈ ~s~

{−1} ∪ overlaps(x, s) ∪ [|x| ,∞) x /∈ ~s~

LastIndexOfPR(x, y) = {−1} ∪ indexset(x, y) ∪ overlaps(x, y) ∪ [|x| ,∞)

LastIndexOfS,PR(s, y) =

{−1, 0} s = y = ε

{−1} ∪ indexset(s, y) \ {|s|} otherwise

LastIndexOfPR,S(x, s) =

[lastindex(x, s),∞) x ∈ ~s~ ∧ s 6= ε

[0,∞) x = s = ε

[|x| − 1,∞) x 6= s = ε

{−1} ∪ [min overlaps(x, s),∞) x /∈ ~s~

Figure 4.7: PR operations returning integers and booleans

38

Listing 4.1 Using Contract.Assume with PR

// x −> Top
Contract.Assume(
x.StartsWith("prefix", StringComparison.Ordinal));
// x −> Prefix("prefix")
x = "some" + x;
// x −> Prefix("someprefix")
Contract.Assert(
x.StartsWith("someprefix", StringComparison.Ordinal));
// assertion proven

Some of the operations check whether two prefixes are comparable (using
vPR). For example, the StartsWith or Equals operations can never tell for sure
that one argument starts or is equal to the other one, because there might be
anything following the known prefix. If the prefixes are comparable, that means
they are the same or one of them is longer, so the strings can be the same. If they
are incomparable, then there is no chance of them being the same. On the other
hand, the EndsWith method always returns unknown because we know nothing
about the ends of the strings.

4.4.1.2 Regular Expressions

The regular expressions that correspond to prefixes are of the form "^prefix".
Figure 4.8 shows definitions of regular expression matching and conversion

from regular expressions to prefixes. In the first case, we have a known prefix
and we want to know whether the strings starting with the prefix can or must
match the regular expression. We interpret the regular expression, passing along
a parameter z, which carries the offset from the begin() anchor. If z is ⊥, it means
we have not found the anchor yet, if it is >, it means the offset from the anchor
is not known.

The function fromRE interprets the regular expression to generate a prefix
that overapproximates the set of string matching the regular expression. We
again do a forward depth-first traversal of the tree, keeping the state in the
parameter z. When z becomes >, no more characters are added to the prefix.

4.4.1.3 Assume

The StartsWith predicate exactly represents the relationship between a string
variable and its prefix abstraction. If we know that StartsWith returns t, we know
that the first argument is soundly represented by the abstraction of the second
argument, as shown in Figure 4.9. The same holds for Equals. We support IsMatch
by converting the regular expression to a prefix using the fromRE function.

The assume statement can be used like in Listing 4.1.

4.4.2 Suffix
The Suffix domain is very similar to the prefix domain. The definition and domain
operators are symmetric. The difference is in the operations that use indexing
or look at the string in the forward direction (ReplaceS). Their implementation

39

IsMatchPR(x, r) = isMatch(x, regex(r),⊥)

isMatch(x, begin(), z) =

〈t, 0〉 z = ⊥ ∨ z = 0
〈f,⊥〉 z > 0

isMatch(x, end(), z) = 〈>,>〉

isMatch(x, concat(M1, . . . ,Mn), z0) =
〈

n∧
i=1

bi, zn

〉
where 〈bi, zi〉 = isMatch(x,Mi, zi−1)

isMatch(x, union(M1, . . . ,Mn), z) =
〈

n∨
i=1

bi,
n∨
i=1

zi

〉
where 〈bi, zi〉 = isMatch(x,Mi, z)

isMatch(x, single(S), z) =

〈x[z] ∈ S, z + 1〉 z ∈ [0, |x| − 1]
〈>, z + 1〉 z ≥ |x|

fromRE(union(M1, . . . ,Mn), z) = 〈ε,>〉

fromRE(begin(), z) =

〈ε, 0〉 z = ⊥ ∨ z = 0
〈⊥,>〉 z > 0
〈ε,>〉 z = >

fromRE(end(), z) = 〈ε,>〉
fromRE(empty(), z) = 〈ε, z〉

fromRE(concat(M1, . . . ,Mn), z0) =
〈

n∏
i=1

xi, zn

〉
where 〈xi, zi〉 = fromRE(Mi, zi−1)

fromRE(single(S), z) =

〈s, z + 1〉 S = {s} ∧ z ∈ N
〈⊥,>〉 S = ∅
〈ε,>〉 |S| > 1 ∨ z /∈ N

fromRE(M) = x

where 〈x, z〉 = fromRE(M,⊥)

Figure 4.8: PR support for regular expressions

StartsWithPR(αPR(S), y) = t⇒ S ⊆ γPR(y)
EqualsPR(αPR(S), y) = t⇒ S ⊆ γPR(y)

IsMatchPR(αPR(S), r) = t⇒ S ⊆ γPR(fromRE(regex(r)))

Figure 4.9: PR assume operations

40

Listing 4.2 Example program for SU

string FileName(string n){
Contract.Ensures(
Contract.Result<string>().
EndsWith(".jpg", StringComparison.Ordinal)
);

string fn;
if(n == null){
fn = "default.jpg";
}
else if(n.EndsWith(".jpg")){
fn = n;
}
else{
fn = n + ".jpg";
}
return fn;
}

x tSU y = lcs(x, y)

x uSU y =

x y ∈ ~x

y x ∈ ~y

⊥ otherwise
>SU = ε

⊥SU = ⊥
x vSU y ⇔ x ∈ ~y

γSU(x) = ~x

αSU(S) = lcs(S)

Figure 4.10: SU domain

is more difficult and less precise with the Suffix domain, because the indexing is
from the start, which is unknown.

Listing 4.2 shows an example program using strings where the file suffixes are
always .jpg.

Definition 4.4.2 (Suffix domain). SU = (Σ∗ ∪ {⊥},uSU ,tSU ,>SU ,⊥SU). The
domain operators are defined in Figure 4.10.

4.4.2.1 Operations

The operations for SU are defined in Figure 4.11.

4.4.2.2 Regular Expressions

The regular expressions that correspond to prefixes are of the form "abc\\z".
Regular expressions of the form "abc$" are more common, but they do not rep-

41

ConcatSU(x, y) = y

ConcatSU ,S(x, t) = xt

InsertSU(x, I, y) =

x[i :] y = ε

lcs(x[: i], y, y[: |y| − 1])x[i :] y 6= ε

where i = min {|x| , sup I}

InsertSU ,S(x, I, t) =

x t = ε ∨ i = 0
lcs(x[: i]t, x[: i− 1]tx[i− 1])x[i :] t 6= ε

where i = min {|x| , sup I}

InsertS,SU(s, I, y) =

ys[i :] I = {i}
InsertSU(s, I, y) otherwise

ReplaceCSU(x,C,D) =

x[c := d] C = {c} ∧D = {d}
x[i+ 1 :] C ∩ char(x) 6= ∅ ∧max(|C| , |D|) > 1

where i = max {j : x[j] ∈ C}
x otherwise

ReplaceSSU(x, y, z) = ε

SubstringSU(x, I, L) = ε

SubstringEndSU(x, I) = x[min {|x| , sup I} :]

RemoveSU(x, I, l) =

lcs(x[m :], x[m+ l :])

where m = min {|x| − l, sup I}
ε l ≥ |x|

RemoveEndSU(x, I) = ε

PadLeftSU(x,N,C) = x

PadRightSU(x, n, c) =

x |x| ≥ n

lcs(x, cn) |x| < n

TrimSU ,S(x, c) = TrimS(x, c)
TrimStartSU ,S(x, c) = TrimStartS(x, c)
TrimEndSU ,S(x, c) = TrimEndS(x, c)

Figure 4.11: SU operations

42

IsEmptySU(x) = 〈f: t, t:x = ε〉
ContainsSU(x, y) = >

StartsWithSU(x, y) = >
EndsWithSU(x, y) = 〈f: t, t:x ∈ ~y ∨ y ∈ ~x〉

EndsWithSU ,S(x, d) = 〈f:x /∈ ~d, t:x ∈ ~d ∨ d ∈ ~x〉
EqualsSU(x, y) = 〈f: t, t:x ∈ ~y ∨ y ∈ ~x〉

CompareSU(x, y) = 〈l: t, e:x ∈ ~y ∨ y ∈ ~x, g: t〉
LengthSU(x) = [|x| ,∞)

IndexOfSU ,S(x, c) =

0 c = ε

[0,∞) x ∈ ~c~ ∧ c 6= ε

[−1,∞) x /∈ ~c~

LastIndexOfSU ,S(x, c) =

[0,∞) x = c = ε

[|x| − 1,∞) x 6= c = ε

[lastindex(x, c),∞) x ∈ ~c~ ∧ c 6= ε

[−1,∞) x /∈ ~c~

Figure 4.12: SU operations

resent a language of strings with the same suffix, because the anchor can match
the newline character at the end of the string. Otherwise, it is symmetric with
prefixes, so we use the same algorithm as in Figure 4.8, but considering both the
string value and the regular expression in reverse.

4.4.2.3 Assume

The EndsWith predicate exactly represents the relationship between a value and
its suffix abstraction (EndsWithSU(αSU(S), y) = t ⇒ S ⊆ γSU(y)), similarly to
PR and StartsWith. Equals and IsMatch work similarly to PR (see Figure 4.9).

4.4.3 Variants of Domains Based on Substrings
The ideas of the prefix and suffix domains can be used to create other similar
domains.

String containment. The prefix and suffix domains require a specific position
where the substring must occur. This could be relaxed to allow the string any-
where. The operation used in assume statements would be Contains. However,
because the relative positions of the substrings is not fixed, there is not a unique
lowest upper bound for all pairs of elements.

Sets of prefixes and suffixes. The definitions of PR and SU allow only one
possible prefix or suffix. We could allow more of them, like in the CSn domains.

43

αCEf (S) =

|s|−1∏
i=0

f(s[i]) : s ∈ S

γCEf (X) =

|s|−1∏
i=0

f−1(s[i]) : s ∈ X

Figure 4.13: CEf domain

Reduced products. The PR, SU and similar domains could be combined
using reduced product. However, the known prefix and suffix may or may not
overlap.

Relational domains. The domains above track values of variables individually
by relating a variable to a constant. We could also use another variable as the
substring (prefix or suffix). In addition to assertions of the kind “variable has
a constant prefix”, we would have also “variable is a prefix of a constant” and
“variable is prefix of another variable”. Such domain would also track equality
(when both strings are prefixes of each other).

4.5 Character-set-based Abstract Domains
Abstract domains based on sets of characters consider the characters in isolation,
not looking at their relative or absolute positions within the string.

4.5.1 Character Set Abstraction
It might be unnecessarily precise to consider every single character of the alpha-
bet, which is not small when using Unicode. We can partition the alphabet into
equivalence classes and consider all equivalent characters to be the same. The
useful classes may be ASCII characters or Unicode categories. What we must be
aware of, is that if the abstractions of two characters are the same, it only means
they are the same characters if the equivalence class has size 1.

Definition 4.5.1 (Character set abstraction). Let Σ1,Σ2 be finite alpha-
bets, f a function f : Σ1 → Σ2, and f−1 : Σ2 → P(Σ1), such that f−1(d) =
{c ∈ Σ1 : f(c) = d}. Then the domain of strings with equivalent characters is
CEf = 〈P(Σ∗2),∩,∪, ∅,Σ∗2〉. The abstraction and concretization funtions are de-
fined in Figure 4.13.

4.5.2 Allowed Characters
The domain of allowed characters restricts the set of available characters. This
domain can track the property that a string does not contain certain characters.

Definition 4.5.2 (Domain of allowed characters). CA =
〈P(Σ) ∪ {⊥} ,uCA,tCA,⊥CA,>CA〉. The domain operators are defined in
Figure 4.14.

44

γCA(x) = x∗

αCA(S) =
⋃
c∈S

char(c)

x tCA y = x ∪ y
x uCA y = x ∩ y
x vCA y = x ⊆ y

>CA = Σ
⊥CA = ⊥

Figure 4.14: CA domain

γCM(x) = {s ∈ Σ∗ : x ⊆ char(s)}
αCM(S) =

⋂
c∈S

char(c)

>CM = ∅
⊥CM = ⊥

x tCM y = x ∩ y

Figure 4.15: CM domain

The char function represents the set of character in a string.

4.5.3 Mandatory Characters
The domain of mandatory characters is similar to CA, but all characters are
allowed and the specified characters must all occur at least once in the string.

Definition 4.5.3 (Domain of mandatory characters). CM =
〈P(Σ) ∪ {⊥} ,uCM,tCM,⊥CM,>CM〉. The domain operators are defined
in Figure 4.15.

4.5.4 Character Inclusion
The reduced product of the previous two domains, CA and CM, is defined by
Costantini as “Character Inclusion” [30]. It tracks information about both char-
acters that are allowed in a string and about characters that are mandatory in a
string. We use a tuple syntax 〈m: , a: 〉 to represent the abstract elements, where
the first part is the set of mandatory and the second part is the set of allowed
characters. The subscript notation is used to extract one of the sets from the
tuple.

Definition 4.5.4 (Character inclusion abstract domain). CI =
〈{〈m:xm, a:xa〉 : xm ⊆ xa ⊆ Σ} ∪ {⊥} ,uCI ,tCI ,⊥CI ,>CI〉. The domain op-
erators are defined in Figure 4.16.

45

γCI(x) = {s ∈ Σ∗ : xm ⊆ char(s) ⊆ xa}

αCI(S) =
〈

m:
⋂
c∈S

char(c), a:
⋃
c∈S

char(c)
〉

x tCI y = 〈m:xm ∩ ym, a:xa ∪ ya〉

x uCI y =

〈m:xm ∪ ym, a:xa ∩ ya〉 xm ⊆ ya ∧ ym ⊆ xa

⊥ xm * ya ∨ ym * xa

⊥CI = ⊥
>CI = 〈m: ∅, a: Σ〉

x vCI y ⇔ x = ⊥CI ∨ (ym ⊆ xm ∧ xa ⊆ ya)

Figure 4.16: CI domain

4.5.4.1 Operations

The definitions of abstract operations for CI are in Figures 4.17 and 4.18. We
take advantage of the fact that when there are any mandatory characters, then
the string must not be empty. Some operations give more precise result if only a
single character is allowed, or if the argument is a single-character constant. For
example, Contains cannot return f if the second argument is a single-character
constant that is mandatory in the first argument.

4.5.4.2 Regular Expressions

The Character Inclusion domain is less sensitive to the structure of the regular
expression than in the case of Prefix and Suffix domains. To get a CI element from
a regular expression, we interpret the expression bottom-up. The set of allowed
characters can be only constrained if a part of the regular expression is closed
between the begin() and end() anchors. This is signaled by the p parameter
of the fromRE function. If it is c (closed), it means the regular expression must
match the whole string end-to-end. Otherwise, if the parameter is o (open), all
characters are allowed, because the match can occur on any substring and there
can be any characters before or after the match.

For this abstract domain, the abstraction for a negative match (when
Regex.IsMatch returns false) can also be computed. For example, if a string
is known not to match a regular expression that is a set of characters, it means
that none of those characters are allowed in the string.

The isMatch function also uses the open/closed parameter. In the concate-
nation and loop cases, it uses fromRE and fromNRE to get more precision than
can be achieved by just recursively applying isMatch. The regular expression
functions are defined in Figures 4.19 and 4.20.

4.5.4.3 Assume

The operation suited for use in assume statements for the CI domain is Contains.
We can use both positive and negative assumptions (when the second argument is

46

ConcatCI(x, y) = 〈m:xm ∪ ym, a:xa ∪ ya〉

InsertCI(x, I, y) =

〈m:xm ∪ ym, a:xa ∪ ya〉 xa 6= ∅ ∨ 0 ∈ I
⊥ xa = ∅ ∧ 0 /∈ I

ReplaceCCI(x,C,D) =

〈
m:

xm \ C ∪D C ⊆ xm ∧ |D| = 1
xm \ C otherwise

a:

xa C ∩ xa = ∅
xa \ C ∪D |C| = 1
xa ∪D otherwise

〉
ReplaceSCI(x, y, z) =

〈m:xm \ ya, a:xa ∪ za〉 ym ⊆ xa

x ym * xa

SubstringCI(x, I, L) =

⊥ xa = ∅ ∧ 0 /∈ I ∩ L
〈m: ∅, a: ∅〉 L = {0}
〈m:xa, a:xa〉 0 /∈ L ∧ |xa| = 1
〈m: ∅, a:xa〉 otherwise

SubstringEndCI(x, I) =

⊥ 0 /∈ I ∧ xa = ∅
x I = {0}
〈m: ∅, a:xa〉 otherwise

RemoveCI(x, I, L) =

⊥ xa = ∅ ∧ 0 /∈ I ∩ L
x L = {0}
〈m:xa, a:xa〉 0 /∈ I ∧ |xa| = 1
〈m: ∅, a:xa〉 otherwise

RemoveEndCI(x, I) =

⊥ xa = ∅
〈m: ∅, a: ∅〉 I = {0} ∧ xa 6= ∅
〈m:xa, a:xa〉 0 /∈ I ∧ |xa| = 1
〈m: ∅, a:xa〉 otherwise

PadLeftCI(x,N,C) =

〈
m:

C minN > 0 ∧ xa ⊆ C ∧ |C| = 1
xm minN = 0 ∨ xa * C ∨ |C| ≥ 1

a:

xa |xm| ≥ maxN
xa ∪ C |xm| < maxN

〉
PadRightCI(x,N,C) = PadLeftCI(x,N,C)

TrimCI(x, y) =

〈m:xm \ ya, a:xa〉 xa * ym

〈m: ∅, a: ∅〉 xa ⊆ ym

TrimStartCI(x, y) = TrimEndCI(x, y) = TrimCI(x, y)

Figure 4.17: CI operations returning strings

47

IsEmptyCI(x) = 〈f:xa 6= ∅, t:xm = ∅〉
ContainsCI(x, y) = 〈f: ya 6= ∅, t: ym ⊆ xa〉

ContainsCI,S(x, s) = 〈f: s 6= ε ∧ (|s| > 1 ∨ s[0] /∈ xm) , t: char(s) ⊆ xa〉
StartsWithCI(x, y) = 〈f: ya 6= ∅, t: ym ⊆ xa〉

StartsWithCI,S(x, s) =
〈

f: s 6= ε ∧ (|s| > 1 ∨ s[0] /∈ xm ∨ xa 6= {s[0]})
t: char(s) ⊆ xa

〉
EndsWithCI(x, y) = StartsWithCI(x, y)

EndsWithCI,S(x, s) = StartsWithCI,S(x, s)
EqualsCI(x, y) = 〈f:xa 6= ∅ ∨ ya 6= ∅, t:xm ⊆ ya ∧ ym ⊆ xa〉

CompareCI(x, y) = 〈l: anyLess(x, y), e:xm ⊆ ya ∧ ym ⊆ xa, g: anyLess(y, x)〉
anyLess(x, y)⇔ ya 6= ∅ ∧ (xm = ∅ ∨min xa < max ya ∨max xm ≤ max ya)

LengthCI(x) =

{0} xa = ∅
[|xm| ,∞) xa 6= ∅

IndexOfCI(x, y) =

{0} ya = ∅
{−1, 0} ya = xa ∧ |xa| = 1
{−1} ym * xa

[−1,∞) otherwise

IndexOfCI,S(x, s) =

{0} |s| = 1 ∧ s[0] ∈ xm ∧ |xa| = 1
[0,∞) |s| = 1 ∧ s[0] ∈ xm ∧ |xa| > 1
IndexOfCI(x, αCI(s)) otherwise

LastIndexOfCI(x, y) =

[0,∞) ya = ∅
{−1} char(s) * xa

[−1,∞) otherwise

LastIndexOfCI,S(x, s) =

[0,∞) |s| = 1 ∧ s[0] ∈ xm

LastIndexOfCI(x, αCI(s)) otherwise

Figure 4.18: CI operations

48

fromRE(single(S), p) =
〈

m:

∅ |S| > 1
S |S| ≤ 1

, a:

Σ p = o
S p = c

〉

fromRE(begin(), p) =
〈

m: ∅, a:

Σ p = o
∅ p = c

〉

fromRE(end(), p) = fromRE(begin(), p)

fromRE(concat(M1, . . . ,Mn), p) =
〈

m:
n⋃
i=1

xim, a:
n⋃
i=1

xia

〉
where xi = fromRE(Mi, q)

where q =

c M1 = begin()
∧Mn = end()

p otherwise

fromRE(union(M1, . . . ,Mn), p) =
〈

m:
n⋂
i=1

xim, a:
n⋃
i=1

xia

〉
where xi = fromRE(Mi, p)

fromRE(loop(M, i, j), p) =

fromRE(M, p) i > 0
〈m: ∅, a: fromRE(M, p)a〉 i = 0

fromNRE(single(S)) = 〈m: ∅, a: Σ \ S〉
fromNRE(begin()) = ⊥

fromNRE(end()) = ⊥
fromNRE(empty()) = ⊥

fromNRE(concat(M1, . . . ,Mn)) =

⊥ n = 0
fromNRE(M1) n = 1
〈m: ∅, a: Σ〉 n > 1

fromNRE(union(M1, . . . ,Mn)) =
〈

m: ∅, a:
n⋂
i=1

xia

〉
where xi = fromNRE(Mi)

fromNRE(loop(M, i, j)) =

⊥ i = 0
fromNRE(M) i = 1
〈m: ∅, a: Σ〉 i > 1

Figure 4.19: CI support for regular expressions, part 1

49

isMatch(x, single(S), o) = 〈f:S = ∅ ∨ S * xm, t:S ∩ xa 6= ∅〉
isMatch(x, single(S), c) = 〈f: t, t:S ∩ xa 6= ∅ ∧ xm ⊆ S ∧ |xm| ≤ 1〉
isMatch(x, empty(), o) = t
isMatch(x, empty(), c) = 〈f:xa 6= ∅, t:xm = ∅〉

isMatch
(x, concat(M1, . . . ,Mn), p) =

isMatch(concat(M2, . . . ,Mn−1), c)

where M1 = begin() ∧Mn = end()〈
f: t, t:∧n−1

i=2 bit ∧ xm ⊆ T
〉
otherwise

where T = fromRE(concat(M1, . . . ,Mn), q)a

where q =

p n = 1
o n > 1

isMatch
(x, union(M1, . . . ,Mn), p) =

〈
f:

n∧
i=1

bif , t:
n∨
i=1

bit

〉
where bi = isMatch(x,Mi, p)

isMatch(x, loop(M, i, j), o)t = d ∨ i = 0
isMatch(x, loop(M, i, j), c)t = (d ∧ xm ⊆ fromRE(M, c)a) ∨ (i = 0 ∧ xm = ∅)

where d = isMatch(x,M, o)t

isMatch(x, loop(M, i, j), c)f =

xa ∩R 6= ∅ i = 0 ∧ j =∞
xa ∩R 6= ∅ ∨ xm = ∅ i = 1 ∧ j =∞
t otherwise

isMatch(x, loop(M, i, j), o)f =

f i = 0
xm ⊆ R i = 1
t i > 1
where R = fromNRE(M)a

Figure 4.20: CI support for regular expressions, part 2

50

ContainsCI(αCI(S), x) = t⇒ S ⊆ γSU(〈m:xm, a: Σ〉)
ContainsCI,S(αCI(S), s) = f ∧ |s| = 1⇒ S ⊆ γSU(〈m: ∅, a: Σ \ {s[0]}〉)

StartsWithCI(αCI(S), x) = t⇒ S ⊆ γSU(〈m:xm, a: Σ〉)
EndsWithCI(αCI(S), x) = t⇒ S ⊆ γSU(〈m:xm, a: Σ〉)

EqualsCI(αCI(S), x) = t⇒ S ⊆ γSU(x)
IsEmptyCI(αCI(S)) = t⇒ S ⊆ γSU(〈m: ∅, a: ∅〉)

IsMatchCI(αCI(S), r) = t⇒ S ⊆ γSU(fromRE(regex(r), o))
IsMatchCI(αCI(S), r) = f ⇒ S ⊆ γSU(fromNRE(regex(r)))

Figure 4.21: CI assume operations

a single character), as defined in Figure 4.21. The positive assumptions work the
same also for StartsWith and EndsWith, but those operations do not provide any
information if the result is negative. Assumptions about the IsMatch operation
use the definitions in Figure 4.20. For IsEmpty, we know that no character is
allowed, and for Equals, we can use the abstract element of the other argument.

4.5.5 Variants of Domains Based on Character Sets
Number of occurrences. Instead of requiring a character to occur one or
more times, or to not occur at all, we might specify for each character how many
times it should occur (using an integer abstraction such as intervals).

Multiple sets. If we allow multiple possible sets of characters, the analysis
might be more precise, but we would have to figure out how to merge the sets to
prevent the elements from growing too much.

4.6 Bricks
The Bricks domain is also defined by Costantini [34]. It represents a set of
strings by a list of “bricks”, where each brick specifies a set of allowed strings in
a given part of the string and an interval saying how many times a string from
that set might be used. The domain is parameterized by integers kL, kI and kS,
which limit the size of the elements in the widening operator (we use the set size
limit also in the abstraction function).

4.6.1 Single Brick
First, we consider just a single brick. It is a set of string constants with the
number of repetitions limited by an interval.

Definition 4.6.1 (Single brick domain). B =
〈{[S]m,n : 0 ≤ m ≤ n ≤ ∞, S ⊆ Σ∗} ,vB,uB,tB,⊥B,>B,∇B〉. The domain
operators are defined in Figure 4.22.

51

γB ([S]m,n) =
n⋃

i=m
Si

αB(S) =

[S]1,1 |S| ≤ kS

>B |S| > kS

[S]m,n tB [T]k,l = [S ∪ T]min{m,k},max{n,l}

[S]m,n uB [T]k,l = [S ∩ T]max{m,k},min{n,l}

[S]m,n∇B [T]k,l =

>B |S ∪ T | > kS

[S ∪ T]0,∞ max {n, l} −min {m, k} > kI

[S]m,n tB [T]k,l otherwise
>B = [Σ]0,∞

⊥B = [∅]1,1

Figure 4.22: B domain

A brick can precisely represent simple escaped strings. For example,
[Σ \ {]0022,]005f} ∪ {]005f]0022,]005f]005f}]0,∞ represents strings containing
the characters only in escaped form.

4.6.2 Brick Lists
Brick list is simply a finite sequence of bricks.

Definition 4.6.2 (Bricks abstract domain). BR =
〈{〈Xi〉ni=1 : n ∈ N, ∀i ∈ [1, n] : Xi ∈ B} ,vBR,uBR,tBR,∇BR,>BR⊥BR〉 The
domain operators are defined in Figure .

The operators are defined in terms of the operators for single bricks, applying
them to corresponding pairs of bricks from the lists. If one of the lists is shorter,
it is extended by an algorithm that can be found in the original article [34].
The extension algorithm must add empty bricks to increase the length, but the
algorithm also tries to insert them between other bricks so that equal bricks are
aligned in the two lists if possible. There is also a set of normalization rules,
which do not change the represented language, but simplify the list, including
removing empty bricks. The rules are, informally:

• merge two bricks with the same sets of strings into one,

• split a brick with non-zero lower bound and a higher upper bound into a
brick with constant bounds and a brick with a zero lower bound,

• expand the constants in a brick with constant repetitions,

• remove empty bricks.

52

>BR = 〈>B〉
⊥BR = 〈⊥B〉

X tBR Y =

extend(X, Y) tBR Y |X| < |Y |
X tBR extend(Y,X) |X| > |Y |
〈Xi tB Yi : 1 ≤ i ≤ |X|〉 |X| = |Y |

X∇BRY =

〈Xi∇BYi : 1 ≤ i ≤ |X|〉 |X| = |Y | ≤ kL

>BR max {|X| , |Y |} > kL

Figure 4.23: BR domain

4.6.2.1 Drawbacks

Definition. The Bricks domain is not defined very precisely in the original
article [34]. For example, it is not absolutely clear from the definition, whether
infinity is a possible upper bound on the number of repetitions. This is obviously
needed to construct the top brick, however, the definitions simply states that the
bounds are integers. The definition also does not say that the sets of strings in
the bricks must be finite.

Soundness. Secondly, the defined meet operation (uBR) is not sound. Consider
these two lists of bricks:

X = [{ab}]0,1 [{c}]1,1 ∈ BR
Y = [{a}]1,1 [{bc}]0,1 ∈ BR

There is no normalization rule that can be applied to X or Y , so these brick
lists are normalized. According to the definition of γBR, they represent these
languages:

γBR(X) = {abc, c}
γBR(Y) = {a, abc}

γBR(X) ∩ γBR(Y) = {abc}

The intersection of the represented languages is non-empty. However, if we
compute the meet of those brick lists, doing so by individual bricks results in
bottom bricks as we show below, so the language of the meet is empty.

[{ab}]0,1 uB [{a}]1,1 = [∅]1,1

[{c}]1,1 uB [{bc}]0,1 = [∅]1,1

X uBR Y = [∅]1,1 [∅]1,1

γBR(X uBR Y) = ∅

53

This means that the meet operator is not sound, γBR is not a complete meet
morphism and it does not form a Galois connection.

The meet operation works if the bricks are aligned. That can happen when
the two lists are the same or similar, or when the list extension algorithm succeeds
in aligning the bricks in the right way.

We asked the authors of the article about this problem, however, they did not
respond. The meet operation is not needed for the DFA, and in places where we
would use the meet operator, we can use an overapproximation of the greatest
lower bound (a trivial overapproximation is to return one of the operands).

Normalization. The normalization rules do not account for the empty string
in S, which is equivalent to having the lower bound 0.

Theorem 4.6.3. There is an equivalence of bricks ∀S ⊆ Σ∗, 0 ≤ m ≤
n : γB([S ∪ {ε}]m,n) = γB

(
[S ∪ {ε}]0,n

)
= γB

(
[S]0,n

)
.

Proof. We prove a cycle of subset relations:

γB([S ∪ {ε}]m,n) =
n⋃

i=m
Si ⊆

n⋃
i=0

Si = γB
(
[S ∪ {ε}]0,n

)
c ∈ γB

(
[S ∪ {ε}]0,n

)
⇔ ∃k ≤ n, c1, . . . , ck ∈ S ∪ {ε} : c =

∏
i∈[1,k]

ci

⇒ ∃k ≤ n, c1, . . . , ck ∈ S ∪ {ε} : c =
∏

i∈[1,k]∧ci 6=ε
ci

putting l=k−|{ci : ci=ε}|∧∀i≤l : di=c
i+|{cj : j≤i∧cj=ε}|

⇒ ∃l ≤ n, d1, . . . , dl ∈ S : c =
∏
i∈[1,l]

di

⇔ c ∈ γB
(
[S]0,n

)
c ∈ γB

(
[S]0,n

)
⇔ ∃l ≤ n, d1, . . . , dl ∈ S : c =

∏
i∈[1,l]

di

⇔ ∃l ≤ n, d1, . . . , dl ∈ S : c =
∏
i∈[1,l]

di
∏

i∈[l+1,m]
ε

putting k=max{m,l}∧∀i≤l : ci=di∧∀l<i≤k : ci=ε

⇒ ∃m ≤ k ≤ n, c1, . . . , ck ∈ S : c =
∏

i∈[1,k]
ci

⇔ c ∈ γB([S ∪ {ε}]m,n)

The first subset relation is trivial. In the second case, we remove all occurences
of empty strings in the sequence c1, . . . , ck and shift the indices (by subtracting
the number of preceding empty strings) to create a sequence d1, . . . , dl of non-
empty strings, which has the same or shorter length and concatenates to the
same string. In the third case, we add empty strings to the end of the sequence
to satisfy the lower bound.

The zero lower bound affects applicability of normalization rules: while
[{a, ε}]1,1 [{b, ε}]1,1 would be normalized to [{ab, a, b, ε}]1,1, we cannot apply any
rule to [{a}]0,1 [{b}]0,1, which represents exactly the same language.

54

The normalization rules that expand repetitions and merge bricks can lead to
exponential growth of the string sets. Consider for example the GUID language,
represented precisely by a brick list:

Xguid = [C16]8,8 [-]1,1 [C16]4,4 [-]1,1 [C16]4,4 [-]1,1 [C16]4,4 [-]1,1 [C16]12,12

As all bricks of this list have constant number of repetitions, the normalization
rules would concatenate all bricks into one brick containing all possible GUIDs
as constants. This set would obviously not fit into memory. It seems reasonable
not to apply those normalization rules in some cases.

It should also be noted that the normalization rule about merging bricks
with the same sets should not be used if it would produce a brick that would be
broken by the splitting rule (such as [{a}]0,1 [{a}]1,1), otherwise the normalization
algorithm would enter an infinite loop merging and splitting the bricks over and
over again.

4.6.2.2 Operations

We define a few helper functions first, and then use them to define operations
on bricks and brick lists in Figures 4.24 and 4.25. The minLen and maxLen
compute the minimum and maximum length of strings represented by the brick
lists. The char function returns the set of allowed charcters. The isConst and
const functions determine whether the brick list represent a single string constant,
and return it. The prefix and suffix try to extract the common prefix or suffix of
the represented language.

To trim the list of bricks, trimStart uses a parameter, indicating, whether the
current position is before (b) or after (a) the position where trimming ends. If
the parameter is u, the characters may or may be not trimmed. The definition
of trimEnd would be symmetric. The before function reutrns a list of bricks
overapproximating a substring from the start up to an index from a specified
interval. The definition of after would be similar, but keeping the parts of the
string that are removed in before.

Several operations use the meet function with is the overapproximating version
of the meet operator. We do not provide a formal definition here.

The operations defined in 4.26 are sound, but not necessarily the most precise.
We had to choose some overapproximation that is efficiently computable. In some
cases there are multiple possible ways how to do that.

4.6.2.3 Regular Expressions

Brick lists can naturally represent regular expressions containing non-nested con-
catenations of loops of unions. The formal definitions are shown in Figure 4.27.

Conversion from a regular expression to a list of bricks is defined recursively.
There are three aditional paramters: l and r indicate, whether the left and right
ends of the expression are tied to the start or end of the string by anchors.
By default, the parameters are o (open), which means they are not tied. If an
anchor is encountered in a cocatenation, the corresponding parameter is set to
c (closed). The last parameter selects, whether the resulting list of brick should
overapproximate (t) or underapproximate (f) the set of matching strings.

55

[S]m,n [c := d] = [{s[c := d]; s ∈ S}]m,n

minLen
(

n∏
i=1

Xi

)
=

n∑
i=1

minLen(Xi)

minLen([S]m,n) = min {|c| : c ∈ S}m

maxLen
(

n∏
i=1

Xi

)
=

n∑
i=1

maxLen(Xi)

maxLen([S]m,n) = max {|c| : c ∈ S}n

char
(

n∏
i=1

Xi

)
=

n⋃
i=1

char(Xi)

char([S]m,n) =
⋃
c∈S

char(c)

const
(

n∏
i=1

Xi

)
=

⊥ ∃i : const(Xi) = ⊥∏n
i=1 const(Xi) ∀i : isConst(Xi)
> otherwise

const([S]m,n) =

⊥ m > n ∨ (S = ∅ ∧m > 0)
sm S = {s} ∧m = n

ε S = {ε} ∧m ≤ n

ε m = n = 0
> otherwise

isConst
(

n∏
i=1

Xi

)
⇔ ∀i : isConst(Xi)

isConst([S]m,n)⇔ const([S]m,n) ∈ Σ∗

prefix
(

n∏
i=1

Xi

)
=

ε n = 0
const(X1)prefix(∏n

i=2 Xi) isConst(X1)
prefix(X1) otherwise

prefix([S]m,n) =

lcp(S) m > 0
ε m = 0

suffix
(

n∏
i=1

Xi

)
=

ε n = 0
suffix

(∏n−1
i=1 Xi

)
const(Xn) isConst(Xn)

suffix([S]m,n) otherwise

suffix([S]m,n) =

lcs(S) m > 0
ε m = 0

Figure 4.24: Helper functions for B and BR, part 1

56

trimStart
(

n∏
i=1

Xi, C

)
=

n∏
i=1

trimStart(Xi, C, pi)

where pi =

b pi−1 = b ∧ char(Xi) ⊆ C

u pi−1 6= a ∧ ∃d ∈ S : char(d) ⊆ C

a otherwise
where p0 = b

trimStart([S]m,n , C, b) =

[{ε}]0,0 char([S]m,n) ⊆ C

[T]1,1 [S ∪ T]m−1,n−1 ∃d ∈ S : char(d) ⊆ C

[T]1,1 [S]m−1,n−1 ∀d ∈ S : char(d) * C

trimStart([S]m,n , C, u) =

[S ∪ T]m,n ∃d ∈ S : char(d) ⊆ C

[S ∪ T]1,1 [S]m−1,n−1 ∀d ∈ S : char(d) * C

where T = trimStart(S,C)
trimStart([S]m,n , C, a) = [S]m,n

trimStart(S,C) = {TrimStartS(s, C) : s ∈ S}

before
(

n∏
i=1

Xi, I

)
=

n∏
i=1

before(Xi, [pi, qi])

where pi = pi−1 −maxLen(Xi)
where qi = qi−1 −minLen(Xi)
where p0 = min I, q0 = max I

ps(S, i, j) = {s[: k] : s ∈ S ∧ k ∈ [i,min {|s| , j}]}

before([S]m,n , [p, q]) =

[S]m,n p ≥ nh

[S]k,l before
(
[S]m−l,n−k , [p− lh, q − kh]

)
nh > p > g

[ps(T, p, q)]1,1 p < g ≥ q

[ps(T, p, q) ∪ ps(R, p, h)]1,1 [ps(R, 0, h)]0,r otherwise

where k =
⌊
p

h

⌋
, l =

⌊
p

g

⌋
, r = min

{
n,

⌈
q

g

⌉}
− 1

where R = {s : s ∈ S ∧ |s| < q}
where T = {s : s ∈ S ∧ |s| ≥ q}
where g = min {|c| : c ∈ S} , h = max {|c| : c ∈ S}

Figure 4.25: Helper functions for B and BR, part 2

57

ConcatBR(X, Y) = XY

InsertBR(X, I, Y) = before(X, I)Y after(X, I)
ReplaceCBR(K, f, t) = 〈ReplaceCB(Ki, f, t) : i ∈ [0, |K|]〉

ReplaceSBR(X, Y, Z) = >B
SubstringBR(X, I, L) = before(after(X, I), L)

SubstringEndBR(X, I) = after(X, I)
RemoveBR(X, I, L) = before(X, I)after(after(X, I), L)

RemoveEndBR(X, I) = before(X, I)
padding(X,N,C) = [C]max(minN−maxLen(X),0),maxN−minLen(X)

PadLeftBR(X,N,C) = padding(X,N,C)X
PadRightBR(X,N,C) = Xpadding(X,N,C)

TrimBR,S(X, s) = trimEnd(trimStart(X, s), s)
TrimStartBR,S(X, s) = trimStart(X, s)
TrimEndBR,S(X, s) = trimEnd(X, s)

IsEmptyBR(X) = 〈f: maxLen(X) 6= 0, t: minLen(X) = 0〉

ContainsBR(X, Y) =

t isConst(Y)∧

∃ [S]m,n ∈ X : S ⊆ ~const(Y)~ ∧m > 0
f meet(X,>BY>B) = ⊥BR
> otherwise

StartsWithBR(X, Y) =

t isConst(Y) ∧ prefix(X) ∈ const(Y)~
f meet(X, Y>B) = ⊥BR
> otherwise

EndsWithBR(X, Y) =

t isConst(Y) ∧ suffix(X) ∈ ~const(Y)
f meet(X,>BY) = ⊥BR
> otherwise

EqualsBR(X, Y) =

t isConst(X) ∧ const(X) = const(Y)
f meet(X, Y) = ⊥BR
> otherwise

CompareBR(X, Y) = ComparePR(prefix(X), prefix(Y))
LengthBR(X) = [minLen(X),maxLen(X)]

IndexOfBR(X, Y) =

{0} const(Y) = ε

{−1} d < 0
[−1, d] otherwise

where d = maxLen(X)−minLen(Y)

LastIndexOfBR(X, Y) =

[max {m− 1, 0} ,max {n− 1, 0}] const(Y) = ε

where m = minLen(X) ∧ n = maxLen(X)
[−1,maxLen(X)−minLen(Y)] otherwise

Figure 4.26: BR operations
58

For a set of characters, we create a single brick with a single repetition. If
the expression is not tied to the end of the string, a top brick is inserted before
and/or after the brick, to accomodate for the rest of the string. Concatenation is
implemented by concatenating lists of bricks, but if all the bricks are constants, we
simply create a new constant brick from them. For loops, we multiply the repeat
counts of a brick if the inner expression converts to a single brick. Otherwise, the
whole loop is overapproximated by the top brick.

To evaluate a match of a list of bricks against a regular expression, the regular
expression is converted to a list of bricks. If the two lists do not represent any
common string (which we find out by checking, whether an overapproximation of a
meet of the two lists is bottom), there cannot be a match. On the other hand, the
result cannot be false if the underapproximation of the regular expression contains
all strings represented by the list of bricks. (lessEqual is an underapproximation
of vBR).

4.6.2.4 Assume

Support for assume statements using the BR domain is possible on all boolean
operations. For the IsEmpty operation, both positive and negative assumptions
are possible. If the value is assumed to be empty, it can be represented by an
empty brick. If it is assumed not to be empty, the representing brick allows all
characters, but requires the repeat count to be at least 1. For Contains, StartsWith,
and EndsWith, we extract a constant part from the second argument (that part
must be contained in the first argument) and add top bricks to represent the
unknown part. Figure 4.28 shows the formal definitions.

4.6.3 Variants of the Bricks domain
The parameters for widening allow the Bricks domain to be tuned for speed or
precision. Furthermore, the list extension algorithm and the normalization rules
provide room for modifications. For example, we might define normalization rules
that merge bricks that might overlap (overapproximating), to try to simplify the
implemenation of the operations.

4.7 Graph-based Abstract Domains
It is common to represent languages by graph structures such as finite automata
and grammars. We consider a single String Graph domain of that nature.

4.7.1 String Graphs
The String Graph domain (SG) is defined by Costantini [34]. It is an adaptation
of type graphs, which were used to analyze Prolog types. To represent strings,
single characters and concatenation are considered to be functors.

In this thesis, we use a term notation with variables to describe string graphs,
using back(x) to mean a backward edge to node x. For example, a string
graph containing a cycle, that represents the language c∗, can be written as
x = or(empty(), concat(char(c), back(x))).

59

fromRE(single(S), l, r, a) = wrap(l) [S]1,1 wrap(r)

wrap(l) =

>B l = o
〈〉 l = c

fromRE(loop(M, i, j), l, r, a) =

〈〉 fromRE(M) = 〈〉
[S]mi,nj fromRE(M) = [S]m,n

>B |fromRE(M)| > 0 ∧ a
⊥B |fromRE(M)| > 0 ∧ ¬a

fromRE
(concat(M1, . . . ,Mn), l, r, a) = fromConcat(Mi, . . . ,Mj, l0, r0, a)

where l0, i =

c, 2 M1 = begin()
l, 1 otherwise

where r0, i =

c, n− 1 Mn = end()
r, n otherwise

fromConcat
(M1, . . . ,Mn, l, r, a) =

[{∏n

i=1 si}]
1,1 ∀i : Yi = [{si}]1,1

n∏
i=1
Yi otherwise

where ∀i : Yi = fromRE(Mi, li, ri, a)
where l1 = l ∧ ∀i > 1: li = c
where rn = r ∧ ∀i < n : ri = c

fromRE
(union(M1, . . . ,Mi), l, r, a) =

⊥B i > 1 ∧ ¬a⊔n
BR
i=0

fromRE(Mi, l, r, a) otherwise

IsMatchBR(X, r) =
〈

f:¬lessEqual(X, fromRE(regex(r), o, o, f))
t: meet(X, fromRE(regex(r), o, o, t)) 6= ⊥BR

〉

Figure 4.27: BR support for regular expressions

IsEmptyBR(αBR(S)) = t⇒ S ⊆ γBR
(
[{ε}]0,0

)
IsEmptyBR(αBR(S)) = f ⇒ S ⊆ γBR

(
[Σ]1,∞

)
ContainsBR(αBR(S), X) = t⇒ S ⊆ γBR

(
>B [{const(X)}]1,1>B

)
StartsWithBR(αBR(S), X) = t⇒ S ⊆ γBR

(
[{prefix(X)}]1,1>B

)
EndsWithBR(αBR(S), X) = t⇒ S ⊆ γBR

(
>B [{suffix(X)}]1,1

)
EqualsBR(αBR(S), X) = t⇒ S ⊆ γBR(X)
IsMatchBR(αBR(S), r) = t⇒ S ⊆ γBR(fromRE(regex(r), o, o, t))

Figure 4.28: BR assume operations

60

x tSG y = or(x, y)

γSG(x) =
∞⋃
n=0

LSG(x, n)

αSG(S) = or(concat(char(ci) : i ∈ [0, n− 1]) : 〈c0, c1, . . . , cn−1〉 ∈ S)
>SG = max()
⊥SG = bot()

LSG(x, n) =

{c} x = char(c)∏k
i=1 LSG(yi, l) x = concat(y1, . . . , yk)⋃k
i=1 LSG(yi, l) x = or(y1, . . . , yk)
∅ x = bot()
Σ∗ x = max()
∅ x = empty()
LSG(y, n− 1) x = back(y) ∧ n > 0
∅ x = back(y) ∧ n = 0

Figure 4.29: SG domain operators

Domain operators are defined in Figure 4.29. The concretization function [34]
is defined using a system of recursive equations. Such definition can have multiple
solutions, but the smallest one should be used. We present the definition using
limited number of transitions over a backward edge. The language LSG(x, n) is
the language of a string graph with root node x, limited to strings which are
generated by using at most n backward edges on every path from the root node.

4.7.1.1 Drawbacks

The problem with the string graph domain is that, unlike in prolog types, where
concat/2 and concat/3 would be separate types, results of concatenation of
different numbers of strings are not distinguishable. This means that not all
properties of type graphs are also applicable to string graphs. This problem
is partially eliminated by normalization, but not fully. For example, we can-
not use the meet operator to over-approximate operations such as Contains.
Consider the following three string graphs: x = concat(max(), char(a),max()),
y = concat(char(a),max()) and z = concat(max(), char(b),max()). No normaliza-
tion rules apply. They all have non-empty intersection, for example ab ∈ x∩y∩z.
However, computing xuSGy fails at the root node, because the labels of the concat
nodes are different. For x uSG y, it fails on the character node.

4.7.1.2 Operations

Similarly to the bricks domain, we define a few helper functions on the nodes of
the graphs in Figures 4.30 and 4.31. Then the operations can be defined as in
Figure 4.32.

61

char(x) =

c x = char(c)⋃n
i=1 char(yi) x = concat(y1, . . . , yn)⋃n
i=1 char(yi) x = or(y1, . . . , yn)
∅ x = bot() ∨ x = back(y)
Σ x = max()
∅ x = empty()

minLen(x) =

1 x = char(c)∑n
i=1 minLen(yi) x = concat(y1, . . . , yn)

minni=1 minLen(yi) x = or(y1, . . . , yn)
∅ x = bot() ∨ x = back(y)
0 x = max()
0 x = empty()

maxLen(x) =

1 x = char(c)∑n
i=1 maxLen(yi) x = concat(y1, . . . , yn)

maxni=1 maxLen(yi) x = or(y1, . . . , yn)
∅ x = bot()
∞ x = max() ∨ x = back(y)
0 x = empty()

Figure 4.30: Helper functions for SG, part 1

62

const(x) =

c x = char(c)∏n
i=1 const(yi) x = concat(y1, . . . , yn)
> x = max() ∨ x = or(y1, . . . , yn) ∨ x = back(y)
ε x = empty()
⊥ x = bot()

prefix(x) =

c x = char(c)
c1c2.. x = concat(y1, . . . , yn)
> x = max() ∨ x = or(y1, . . . , yn) ∨ x = back(y)
ε x = empty()
⊥ x = bot()

replaceC(x, f, t) =

char(t) x = char(f)
concat(replaceC(yi, f, t) : i ∈ [1, n]) x = concat(y1, . . . , yn)
or(replaceC(yi, f, t) : i ∈ [1, n]) x = or(y1, . . . , yn)
x otherwise

repeat(x) = y

where y = or(empty(), concat(x, back(y)))

Figure 4.31: Helper functions for SG, part 2

63

ConcatSG(x, y) = concat(x, y)
InsertSG(x, I, y) = concat(before(x, I), y, after(x, I))

ReplaceCSG(x,C,D) = replaceC(x,C, or(char(d : d ∈ D)))
ReplaceSSG(x, y, z) = concat(beforeC(char(y)),max(), afterC(char(y)))

SubstringSG(x, I, L) = before(after(x, I), L)
SubstringEndSG(x, I) = after(x, I)

RemoveSG(x, I, L) = concat(before(x, I), after(after(x, I), L))
RemoveEndSG(x, I) = before(x, I)

PadLeftSG(x, n, c) = concat(repeat(char(c)), x)
PadRightSG(x, n, c) = concat(x, repeat(char(c)))

TrimSG,S(x, s) = trimEnd(trimStart(x, char(s)), char(s))
TrimStartSG,S(x, s) = trimStart(x, char(s))
TrimEndSG,S(x, s) = trimEnd(x, char(s))

IsEmptySG(x) = 〈f: maxLen(x) > 0, t: minLen(x) = 0〉

ContainsSG(x, y) =

t isConst(y) ∧ containsS(x, const(y))
f meet(x, concat(max(), y,max())) = bot()
> otherwise

StartsWithSG(x, y) =

t isConst(y) ∧ prefix(x) ∈ const(y)~
f meet(x, concat(y,max())) = bot()
> otherwise

EndsWithSG(x, y) =

t isConst(y) ∧ suffix(x) ∈ ~const(y)
f meet(x, concat(max(), y)) = bot()
> otherwise

EqualsSG(x, y) =

t isConst(x) ∧ const(x) = const(y)
f meet(x, y) = bot()
> otherwise

CompareSG(x, y) = ComparePR(prefix(x), prefix(y))
LengthSG(x) = [minLen(x),maxLen(x)]

IndexOfSG(x, y) =

{0} const(y) = ε

[−1,maxLen(x)−minLen(y)] otherwise

LastIndexOfSG(x, y) =

[max {m− 1, 0} ,max {n− 1, 0}] const(y) = ε

where m = minLen(x)
where n = maxLen(x)

[−1,maxLen(x)−minLen(y)] otherwise

Figure 4.32: SG operations

64

wrap(x, l, r) =

x l = r = c
concat(x,max()) l = c ∧ r = o
concat(max(), x) l = o ∧ r = c
concat(max(), x,max()) l = r = o

fromRE(single(S), l, r, a) =

bot() S = ∅
wrap(char(c), l, r) S = {c}
wrap(or(char(c) : c ∈ S)) otherwise

fromRE(empty(), l, r, a) = wrap(empty(), l, r)

fromRE(loop(M, i, j), l, r, a) =

bot() ¬a
wrap(repeat(fromRE(M, c, c, t))) a

fromRE
(union(M1, . . . ,Mn), l, r, a) = or(fromRE(Mi, l, r) : i ∈ [1, n])

fromConcat
(M1, . . . ,Mi, l, r, a) = concat(fromRE(Mi, li, ri) : i ∈ [1, n])

where l1 = l ∧ ∀i > 1: li = c
where rn = r ∧ ∀i < n : ri = c

isMatch(x,M) =
〈

f:¬lessEqual(x, fromRE(M, o, o, f))
t: meet(x, fromRE(M, o, o, t)) 6= ⊥SG

〉

Figure 4.33: SG support for regular expressions

4.7.1.3 Regular Expressions

We convert regexes to string graphs. The mapping between string graphs and
regex is defined very similarly as in the case of bricks, using the same three
parameters l, r, a with the same meaning. not so straightforward as in the case
of bricks. Concatenation and union translate directly to the concat() and or()
nodes. Loops are overapproximated by loop in the graph, similar to those used
in the padding operations. If the ends of the match are not tied to the end of the
strings, max() nodes are inserted. The full definition is in Figure 4.33.

4.7.1.4 Assume

Assumptions are supported for the first argument of all boolean operations, by
using the string graph for the second argument, possibly with adding concatena-
tion to max() nodes to account for the unknown part. For IsEmpty, a graph with
empty() root node is used. The formal definitions are in Figure 4.34.

65

IsEmptySG(αSG(S)) = t⇒ S ⊆ γSG(empty())
ContainsSG(αSG(S), x) = t⇒ S ⊆ γSG(concat(max(), x,max()))

StartsWithSG(αSG(S), x) = t⇒ S ⊆ γSG(concat(x,max()))
EndsWithSG(αSG(S), x) = t⇒ S ⊆ γSG(concat(max(), x))

EqualsSG(αSG(S), x) = t⇒ S ⊆ γSG(x)
IsMatchSG(αSG(S), r) = t⇒ S ⊆ γSG(fromRE(regex(r), o, o, t))

Figure 4.34: SG assume operations

66

5 Implementation
We implemented the analysis of strings using the abstract domains described in
Chapter 4 in Clousot.

Implementation of the analysis consisted of the following tasks:

• Adding a new analyzer that can be enabled from the command line.

• Implementing the abstract domains. The abstract domain to be used can
be selected from the command line.

• Usage of the DFA algorithm and with the abstract semantics of string op-
erations corresponding to the selected abstract domain.

• Parsing of regex strings in a way that can be used to extract the relevant
string properties.

• Integrating the string analysis with other abstract domains already imple-
mented in Clousot, so that they can seamlessly cooperate

This required changes at several locations in the original Code Contracts project.
The upstream source code is available at https://github.com/Microsoft/
CodeContracts. The modified code is attached (see Appendix A).

Apart from published research papers, there is no documentation of the in-
ternal APIs or detailed comments which would help navigate the source code
of Clousot. Therefore, we used the existing string analysis implementation as
a starting point and used other more developed analyses as a guide on how to
implement the new features.

5.1 New Features in Clousot
The whole codebase of Code Contracts is very large, and only a small part was
added or modified for the purposes of this thesis. We marked our changes by
those comment lines:
// Modified by Vlastimil Dort (2015−2016)
or
// Created by Vlastimil Dort (2015−2016)
// Master thesis String Analysis for Code Contracts

5.1.1 String Abstraction
All the string abstract domains are represented by classes that implement a com-
mon interface, IStringAbstraction (see Figure 5.1). This interface defines the
domain operators in a type-safe way and also inherits from IAbstractDomain,
which is used by the algorithms in Clousot, but this interface is not type-safe and
needs type casts.

The string operations are defined in IStringOperations and implemented in
an inner class of each string abstraction class. The abstract domains implement
many of the string operations listed in Section 2.2.4. The method signatures are

67

https://github.com/Microsoft/CodeContracts
https://github.com/Microsoft/CodeContracts

similar to the signatures of the concrete methods, but instead of string param-
eters, they take the abstract values. To allow more precise implementation for
constant arguments (when the abstraction cannot precisely represent constants),
we use a struct type which can contain either abstract values or constant strings.
Integers are passed as intervals (IndexInterval) of possible values. Because all
the integers are string indices, we do not distinguish between negative values,
and there is also a special value for infinity (used for example to represent open
intervals). The CharInterval class is used for parameters of type char.

For example, the PadLeftPR operation is implemented in method Prefix
PadLeft(Prefix,IndexInterval,CharInterval).

Operations that return bool in the concrete, have for each string parameter an
additional parameter, which contains the variable corresponding to the argument.
This variable is needed to construct the predicate that can be later used in assume
statements.

Prefix and Suffix domains. The PR and SU domains are implemented as
wrappers around a string value, which is the prefix or suffix.

Character Inclusion domain. The CI domain is implemented by the class
CharacterInclusion. There is an bit array of allowed and mandatory charac-
ters. The ICharacterClassification interface represents the CEf domain by
returning the index to the bit array for each character.

Bricks. The Bricks class is a wrapper around a list of Brick objects. The
implementation of widening, normalizaiton and list extension is delegated to the
field of type IBricksPolicy.

String Graphs. String graphs are constructed from nodes. Each type of node
has its class in a class hierarchy, except empty(), which we represent as a con-
catenation of zero child nodes. Most of the operations on the string graphs are
implemented using the visitor pattern. The visitor base class is generic, with a
result type parameter and data type parameter. The visitor caches the results
for each node to allow handling backward edges.

The source codes of the abstractions are in individual files in the folder
AnalysisInfrastructure/Abstract Domains/String (see Section 2.4.3 and Ap-
pendix A).

5.1.2 The Main Abstract Domain
The abstract domain used for the string analysis is StringAbstractDomain. The
selected type of the string abstraction is a generic parameter of this class. The
implementation of operations for that abstraction is passed as an argument to
the constructor.

For each supported string operation, there is a method, which takes
as arguments the expressions that represents the arguments of the called

68

Prefix

-prefix:string[0..1]

Suffix

-suffix:string[0..1]

CharacterInclusion

-mandatory:BitArray
-allowed:BitArray

«interface»
IStringAbstraction<Self,...>

+Join(Self):Self
+Top:Self
⋯

Brick

-values:string[0..*]
-min:IndexInt
-max:IndexInt

Bricks

«interface»
ICharacterClassification

+ Buckets:int
+ Item(char:c):int
+ IsSingleton(bucket:int):bool

ASCIICharacterClassification

FullCharacterClassification

StringGraph

GraphNode

MaxNode

CharNode

-value:char

BottomNode

OrNode

InnerNode

- incoming:int

root

bricks[0..*]

«interface»
IAbstractDomain

+Join(IAbstractDomain):IAbstractDomain
+Top:IabstractDomain
⋯

«interface»
IBricksPolicy

+Normalize(Bricks):Bricks
+Widen(Bricks, Bricks):Bricks
+Extend(Bricks, Bricks):Bricks

ConcatNode

DefaultBricksPolicy

classification

policy

child[0..*]

CategoryCharacterClassification

Figure 5.1: Class diagram of string abstractions

method and also a target expression, where the return value is as-
signed. For example, the PadLeft operation corresponds to the method void
PadLeft(Expression,Expression,Expression,Expression).

Clousot does not decode expressions containing string operations, and we
chose not to extend it with this feature. Therefore for string expressions, we only
recognize expressions that are string constants or variables that were previously
assigned to and we know the corresponding abstract value. Then we call the im-
plementation of the operation for the selected abstract domain using the abstract
values, and assign the result abstract value to the target variable.

The abstract domain represents a mapping from variables to elements of the
string domain. This is handled by the class FunctionalAbstractDomain, which
is one of the generic abstract domains provided by Clousot.

Because we do not decode string expressions, in order to support assert and
assume statements, we also keep a mapping from variables to boolean abstract
values. The main abstract domain is actually a reduced product of functional
domains from variables to string abstract values and to abstract predicates.
This is achieved using the generic class ReducedCartesianAbstractDomain.
The predicates can either be boolean constants (true or false) implemented
by FlatPredicate, or it can be a StringAbstractionPredicate, which con-
tains a variable together with two string abstract values, trueAbstraction and
falseAbstrations. The meaning of this construct can be explained as follows:
if the predicate is true, then the variable must contain only values specified by
trueAbstraction. If the predicate is false, then the variable can only contain
values represented by falseAbstraction. When an assume statement is reached,
we now know that the assumed predicate must be true or false, so we assign

69

StringValueAnalysis
StringAbstractDomain

<Variable,Expression,Prefix>
Prefix.Operations

<Variable>
FunctionalAbstractDomain

<Variable,Prefix>

Call

WithConstants<Prefix>

*[2]: get_Item

Variable

set_Item

(Variable,Prefix)

Concat
BoxedExpression[3]

Concat

WithConstants<Prefix>[2]

Prefix

Figure 5.2: Operation call sequence diagram

the corresponding abstract value to the variable.
The assumptions are handled by the TestTrue and TestFalse methods. We

use an expression visitor to decode boolean expressions. The SimpleTestVisitor
class uses subclasses of TestTrueVisitor and TestFalseVisitor that are pro-
vided by Clousot.

The source code is in the file AnalysisInfrastructure/Abstract
Domains/String/StringAbstractDomain.cs, loosely based on the previous im-
plementation.

The diagram in Figure 5.2 shows a sequence of calls that handles a opera-
tion transfer function. The framework calls the Call method of the analysis,
which recognizes the operation and calls the corresponding method of the ab-
stract domain. There, the current values of the expressions are evaluated and
the corresponding abstract implementation of the operation is applied on those
values. Then the new value is stored to the target variable in the domain.

5.1.3 String Analysis
The string analysis StringValueAnalysis inherits from GenericValueAnalysis.
It is handed a factory object that is used to construct the top value of
StringAbstractDomain, which is then used to construct all the other elements.

The analysis contains visitor methods for IL instructions, which are called
by the DFA algorithm according to the CFG. The Call method handles the
transition for method calls. If a call to method of class System.String is de-
tected, then the method signature is compared to the known signatures, and
if the method is supported, the arguments are converted to BoxedExpressions
and the corresponding method is called on the current StringAbstractDomain.
Similar approach is used to handle methods of Regex and StringBuilder.

The FactQuery method is used to check whether the assertions have
been proven. The FactBase provides the basic answers by querying the
StringAbstractDomain for the predicate assigned to the boolean variable at the
fixed point.

The code of this class is in the file Particular Analysis/Analyzers/String

70

Analysis/StringAnalysis.cs and is heavily based on the previous implementa-
tion.

5.1.4 String Analyzer
The Analyzers.Strings class acts as an entry point to the string analysis.
Clousot finds the analyzer by reflection and enables it if an option of the same
name is specified on the command line. The class also defines the options of the
analysis as a class that is filled from the command line options by reflection.

We implemented a single analyzer, which has an option selecting
the string abstract domain. The code is in the file Analyzers\String
Analysis\StringAnalysis.cs and is heavily based on the previous implementa-
tion.

5.1.5 Combining with Other Abstract Domains
The cooperation with other abstract domains had to be done by mak-
ing a plug-in to the analysis of arrays. We added a new plug-in,
StringWrapperPlugin, based on the code of EnumAnalysisPlugin in the folder
Particular Analysis/Analyzers/Additional Analyses. The plug-in handles
the transition function by taking the current ArrayState, containing abstract
values of all the running analyses. That may include array, non-null, numerical,
and string, or other analyses. The plugin selects the string element from the ar-
ray state in the IL transition handlers, then evaluates the transition on the string
part using StringValueAnalysis and updates the array state with the new value.
For the Call transition, it also queries and updates the numerical and non-null
domains, because some string operations take or return integers, or handle null
values in a special way. The StringAbstractDomain handlers for operations tak-
ing or returning integers have a parameter of type NumericalAbstractDomain,
which is used to get or set the intervals for integer arguments or integer return
values of the methods. If the string analysis runs in isolation, this parameter is
null. The non-null information is wrapped using the INullQuery interface.

We modified the array analysis so that the string analysis is instantiated
and propagated to where the plug-ins are set up (the SetUpAdditionalAnalyses
method). We added a new index to the ArrayState to keep the string abstract
domain element along with the other elements.

The last thing we needed to do, was to add the string analysis as a dependency
of the array analysis in ClousotMain.InitAndCheckArrayAnalysisDependences
(ParticularAnalysis/ClousotMain/ClousotMain.cs).

5.1.6 Regex
To support regular expressions, we implemented a recursive descent parser, which
converts the regex string to an AST. The parser is located in a new project Regex
in AnalyisInfastrucutre. The AST can be traversed using the visitor pattern
(Visitor). Because we support only a subset of possible regular expressions, the
SimpleRegexVisitor checks that the regular expressions consists of supported
operator and provides a simpler interface to the implemeters.

71

5.2 Tests
The Code Contracts codebase does not contain unit tests. However, we
used unit tests to test the string abstract domains, the implementation
of operators, and that the operations have the expected output. The
tests can be found in the Regressions/Clousot/StringDomainUnitTests and
Regressions/Clousot/RegexUnitTests projects)

5.3 System Requirements
The code implemented in this thesis do not use any platform specific features.
The running platform is limited by the implementation of the Code Contracts
itself. The following system configuration or higher versions are supported:

• Windows 7

• Visual Studio 2013

• .NET Framework 4.5

72

6 Evaluation
We ran a few experiments on small benchmarks to evaluate the performance and
precision of the implemented analysis with each string abstract domain. We do
not know about any project that would use string properties in contracts, so we
could not run our analysis on existing production code. Instead, we put together
several example programs and run the analysis on them.

Test code. The code of the test programs and libraries is attached (Appendix
A). Each test is in a separate project in the src\Demos\Strings directory.

The PrefixTests, SuffixTests and CharacterInclusionTests projects are
designed specifically to test the code patterns that can be analyzed by the re-
spective abstract domains. The class Proven contains methods with contracts or
assert/assume statements, that should be proven by running the analysis with the
abstract domain. On the other hand, the class Unproven contains assertions that
should not be proven – either because they do not hold, or because the abstract
domain is not precise enough to prove that property. The classes IntegerProven
and IntegerUnproven contain tests involving integer properties. Therefore, the
assertions in IntegerProven should only be proven when the array analysis is
enabled.

The test Properties is an example application containing methods that re-
quire the arguments to have certain properties, similar to the ones described in
Section 3.1.

The test QueryGeneration is a program that generates a SQL query using
provided values and demonstrates the expected use of preconditions, postcondi-
tions and invariants regarding string values. The StringManipulation program
performs string manipulation operations to transform an input into a derived
output.

Running the tests. The domains are tested by running the whole analysis
on the compiled binary file (.exe or .dll). We launched Clousot separately for
each abstract domain, and also for a combination of the string domain with array
analysis. We used the built-in time measurement feature of Clousot to measure
the overall time of the analysis and the time spent per method.

To run the experiments, the run.bat batch file was used, with command line
arguments specifying the selected abstract domain, the name of the test project,
and a flag determining whether the array analysis should be run.

Results. The results of the experiments are in Tables 6.1 and 6.2. The table 6.1
shows the number of validated assertions1 in the tests for the individual abstract
domains. The domains were for comparison also run on tests designed for other
domains.

Table 6.2 shows results for all the example programs. The Validated columns
contains the number of assertions that were proven by the analysis, while the
Uproven column shows the number of unproven assertions. The sum of the two
numbers are higher for the analysis combined with arrays, because the other

1Unreachable assertions are counted as validated.

73

Domain Test
Prefix Suffix CharacterInclusion

Prefix 46 8 0
Prefix+arrays 56 8 2

Suffix 8 34 1
Suffix+arrays 13 34 3

Character Inclusion 10 10 16
CI+arrays 15 11 26
Bricks 39 26 7

BR+arrays 43 26 7
String graphs 33 13 7
SG+arrays 39 13 9

Table 6.1: Evaluation of abstract domains on PrefixTests, SuffixTests and
CharacterInclusionTests

analyses add implicit assertions about array and integer operations. The last two
columns are the times reported by Clousot.

The results show that the Prefix and Suffix domains are similarly fast. The
Character Inclusion domain working on the full range of characters is significantly
slower. However, this can be improved by only considering ASCII characters
(using a character set abstraction that treats all non-ascii characters as a single
character). This domain has exactly the same results on the test programs.

The Bricks domain has reasonable results on all tests. The String Graph
domains is a bit slower, but does not prove more assertions than the Bricks
domain.

Combining the string analysis with array analysis makes it approximately 1
to 1.5 times slower and improves the result in almost all cases.

Overall, the tests do not show massive differences between the strength of
the implemented abstract domains on the test programs. However, if we had to
recommend the best abstract domain for a practical use, the Character Inclusion
domain on ASCII characters and the Bricks domain seem to reasonable.

74

Domain Validated Unproven Time Time / method
Prefix 47 22 7.786 s 337 ms

Prefix+arrays 55 27 13.571 s 590 ms
Suffix 47 22 7.821 s 340 ms

Suffix+arrays 55 27 13.286 s 577 ms
Character Inclusion 56 13 1:07 min 2944 ms

CI+arrays 64 18 1:34 min 4260 ms
CI-ASCII 56 13 28.809 s 1252 ms

CI-ASCII+arrays 64 18 31.817 s 1383 ms
Bricks 53 16 34.932 s 1518 ms

BR+arrays 61 21 36.119 s 1570 ms
String graphs 50 19 45.190 s 1964 ms
SG+arrays 58 24 45.258 s 1967 ms

Table 6.2: Evaluation of abstract domains on Properties, StringManupulation
and QueryGeneration

75

76

7 Conclusion
We achieved the goals stated in Section 1.2. First, we summarized the string data
types and operations in .NET that can be analyzed, and proposed a means of
specifying string properties through usage of the string class methods and the
Regex.IsMatch method to achieve a limited support for regular expressions. We
took abstract domains for strings that have been already published in a research
paper, and defined the abstract semantics for a wide range of string operations
available in .NET. For each domain, we also identified the operations that can be
used to specify the properties expressed by that domain, and proposed a way to
extract the properties from parsed regular expressions. We discovered problems
with the definitions of the more complex abstractions, and worked around them.

We added support for string analysis to Code Contracts by implementing the
string abstract domains in Clousot, allowing it to do automated checking of string
properties. The task was complicated by the verbosity of the C# source code
and by the lack of a documented API. The implemenation is general and can be
easily extended by adding new abstract domains.

7.1 Future Work
Adding more string abstract domains to select from is one of the possible exten-
sions of this work. The domains may be based on the ones described here with
some modifications or others based on completely different principles. If neces-
sary, support for more string operations may be added, particularly for methods
working with arrays or more complex features of regular expressions, such as
replacing or group matching. Interaction with arrays and IEnumerable might
be improved. The operations that are overapproximated may be defined with a
better precision.

This work enabled static checking of new properties, which could be used by
adding contracts to APIs of the Framework Class Library and most importantly
by adding contracts to projects already using Code Contracts. For easy use of
the new analysis, the corresponding new options should be integrated into the
Visual Studio extension.

If static analysis of contracts involving strings is adopted by users, the abstract
domains should be evaluated on real programs.

77

78

Bibliography
[1] Reis, Gabriel Dos et al. Simple Contracts for C++ [online]. April 2015.

[Accessed 22. 3. 2016]. Available from: http://www.open-std.org/JTC1/
SC22/WG21/docs/papers/2015/n4415.pdf.

[2] stephentoub [Toub, Stephen] et. al. Proposal: Method Contracts [on-
line]. [Accessed 22. 3. 2016]. Available from: https://github.com/dotnet/
roslyn/issues/119.

[3] Code Contracts [online]. Microsoft. [Accessed 24. 7. 2016]. Available from:
http://research.microsoft.com/en-us/projects/contracts/.

[4] Code Contracts [online]. [Accessed 24. 7. 2016]. Available from: http://
github.com/Microsoft/CodeContracts.

[5] Fähndrich, Manuel and Logozzo, Francesco. Static contract check-
ing with abstract interpretation. In Formal Verification of Object-Oriented
Software. Springer, 2010. p. 10–30.

[6] Cousot, P. and Cousot, R. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, p. 238–252, Los An-
geles, California, 1977. ACM Press, New York, NY.

[7] C# Language Specification Version 5.0 [online]. [Accessed 9. 7. 2014]. Avail-
able from: http://www.microsoft.com/en-us/download/confirmation.
aspx?id=7029.

[8] .NET Framework Class Library [online]. [Accessed 9. 7. 2014]. Avail-
able from: http://msdn.microsoft.com/en-us/library/gg145045%28v=
vs.110%29.aspx.

[9] Unicode 8.0.0 [online]. Unicode, Inc., June 2015. [Accessed 24. 7. 2016]. Avail-
able from: http://unicode.org/versions/Unicode8.0.0/.

[10] Unicode Character Encoding Stability Policies [online]. Unicode, Inc., April
2015. [Accessed 10. 4. 2016]. Available from: http://www.unicode.org/
policies/stability_policy.html.

[11] Skeet, Jon. When is an identifier not an identifier? ... [on-
line]. December 2014. [Accessed 22. 3. 2016]. Available from:
http://codeblog.jonskeet.uk/2014/12/01/when-is-an-identifier-
not-an-identifier-attack-of-the-mongolian-vowel-separator/.

[12] Davis, Mark and Whistler, Ken. Unicode Script Property. UAX #24,
Unicode, Inc., June 2015. Available from: http://unicode.org/reports/
tr24/tr24-24.html.

79

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4415.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4415.pdf
https://github.com/dotnet/roslyn/issues/119
https://github.com/dotnet/roslyn/issues/119
http://research.microsoft.com/en-us/projects/contracts/
http://github.com/Microsoft/CodeContracts
http://github.com/Microsoft/CodeContracts
http://www.microsoft.com/en-us/download/confirmation.aspx?id=7029
http://www.microsoft.com/en-us/download/confirmation.aspx?id=7029
http://msdn.microsoft.com/en-us/library/gg145045%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/gg145045%28v=vs.110%29.aspx
http://unicode.org/versions/Unicode8.0.0/
http://www.unicode.org/policies/stability_policy.html
http://www.unicode.org/policies/stability_policy.html
http://codeblog.jonskeet.uk/2014/12/01/when-is-an-identifier-not-an-identifier-attack-of-the-mongolian-vowel-separator/
http://codeblog.jonskeet.uk/2014/12/01/when-is-an-identifier-not-an-identifier-attack-of-the-mongolian-vowel-separator/
http://unicode.org/reports/tr24/tr24-24.html
http://unicode.org/reports/tr24/tr24-24.html

[13] Skeet, Jon. When is a string not a string? [online]. November 2014. [Ac-
cessed 22. 3. 2016]. Available from: http://codeblog.jonskeet.uk/2014/
11/07/when-is-a-string-not-a-string/.

[14] .NET Compiler Platform (“Roslyn”) [online]. Microsoft. [Ac-
cessed 24. 7. 2016]. Available from: https://roslyn.codeplex.com/
wikipage?title=Language%20Feature%20Status&referringTitle=
Documentation.

[15] Skeet, Jon. The BobbyTables culture [online]. August 2014. [Ac-
cessed 22. 3. 2016]. Available from: http://codeblog.jonskeet.uk/2014/
08/08/the-bobbytables-culture/.

[16] Lippert, Eric. String concatenation behind the scenes [online]. [Ac-
cessed 20. 3. 2016]. Available from: http://ericlippert.com/2013/06/17/
string-concatenation-behind-the-scenes-part-one/.

[17] Regular Expression Language - Quick Reference [online]. Microsoft. [Ac-
cessed 1. 6. 2016]. Available from: https://msdn.microsoft.com/en-us/
library/az24scfc%28v=vs.110%29.aspx.

[18] Davis, Mark and Heninger, Andy. Unicode Regular Expressions. UTS
#18, Unicode Consortium, November 2013. Available from: http://www.
unicode.org/reports/tr18/tr18-17.html.

[19] Code Contracts User Manual [online]. Microsoft Corporation. [Ac-
cessed 24. 7. 2016]. Available from: http://research.microsoft.com/en-
us/projects/contracts/userdoc.pdf.

[20] Cerf, V.G. ASCII format for network interchange. STD 80, RFC Editor,
October 1969. Available from: http://www.rfc-editor.org/rfc/rfc20.
txt. doi: 10.17487/RFC0020.

[21] Josefsson, S. The Base16, Base32, and Base64 Data Encodings. RFC 4648,
RFC Editor, October 2006. Available from: http://www.rfc-editor.org/
rfc/rfc4648.txt. doi: 10.17487/RFC4648.

[22] Berners-Lee, Tim; Fielding, Roy T. and Masinter, Larry. Uniform
Resource Identifier (URI): Generic Syntax. STD 66, RFC Editor, January
2005. Available from: http://www.rfc-editor.org/rfc/rfc3986.txt.
doi: 10.17487/RFC3986.

[23] Braden, R. Requirements for Internet Hosts - Application and Support.
STD 3, RFC Editor, October 1989. Available from: http://www.rfc-
editor.org/rfc/rfc1123.txt. doi: 10.17487/RFC1123.

[24] Hinden, R. and Deering, S. IP Version 6 Addressing Architecture.
RFC 4291, RFC Editor, February 2006. Available from: http://www.rfc-
editor.org/rfc/rfc4291.txt. doi: 10.17487/RFC4291.

[25] Kawamura, S. and Kawashima, M. A Recommendation for IPv6 Address
Text Representation. RFC 5952, RFC Editor, August 2010. Available from:
http://www.rfc-editor.org/rfc/rfc5952.txt. doi: 10.17487/RFC5952.

80

http://codeblog.jonskeet.uk/2014/11/07/when-is-a-string-not-a-string/
http://codeblog.jonskeet.uk/2014/11/07/when-is-a-string-not-a-string/
https://roslyn.codeplex.com/wikipage?title=Language%20Feature%20Status&referringTitle=Documentation
https://roslyn.codeplex.com/wikipage?title=Language%20Feature%20Status&referringTitle=Documentation
https://roslyn.codeplex.com/wikipage?title=Language%20Feature%20Status&referringTitle=Documentation
http://codeblog.jonskeet.uk/2014/08/08/the-bobbytables-culture/
http://codeblog.jonskeet.uk/2014/08/08/the-bobbytables-culture/
http://ericlippert.com/2013/06/17/string-concatenation-behind-the-scenes-part-one/
http://ericlippert.com/2013/06/17/string-concatenation-behind-the-scenes-part-one/
https://msdn.microsoft.com/en-us/library/az24scfc%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/az24scfc%28v=vs.110%29.aspx
http://www.unicode.org/reports/tr18/tr18-17.html
http://www.unicode.org/reports/tr18/tr18-17.html
http://research.microsoft.com/en-us/projects/contracts/userdoc.pdf
http://research.microsoft.com/en-us/projects/contracts/userdoc.pdf
http://www.rfc-editor.org/rfc/rfc20.txt
http://www.rfc-editor.org/rfc/rfc20.txt
http://dx.doi.org/10.17487/RFC0020
http://www.rfc-editor.org/rfc/rfc4648.txt
http://www.rfc-editor.org/rfc/rfc4648.txt
http://dx.doi.org/10.17487/RFC4648
http://www.rfc-editor.org/rfc/rfc3986.txt
http://dx.doi.org/10.17487/RFC3986
http://www.rfc-editor.org/rfc/rfc1123.txt
http://www.rfc-editor.org/rfc/rfc1123.txt
http://dx.doi.org/10.17487/RFC1123
http://www.rfc-editor.org/rfc/rfc4291.txt
http://www.rfc-editor.org/rfc/rfc4291.txt
http://dx.doi.org/10.17487/RFC4291
http://www.rfc-editor.org/rfc/rfc5952.txt
http://dx.doi.org/10.17487/RFC5952

[26] Klensin, J. Application Techniques for Checking and Transformation of
Names. RFC 3696, RFC Editor, February 2004. Available from: http:
//www.rfc-editor.org/rfc/rfc3696.txt. doi: 10.17487/RFC3696.

[27] How To: Use Regular Expressions to Constrain Input in ASP.NET [on-
line]. Microsoft. [Accessed 11. 5. 2016]. Available from: https://msdn.
microsoft.com/en-us/library/ff650303.aspx.

[28] RegularExpressionValidator.ValidationExpression Property [online].
Microsoft. [Accessed 11. 5. 2016]. Available from: https://msdn.
microsoft.com/en-us/library/system.web.ui.mobilecontrols.
regularexpressionvalidator.validationexpression.aspx.

[29] Bray, Tim et al. Extensible Markup Language (XML) 1.0 (Fifth Edition).
W3C recommendation, W3C, November 2008. Available from: http://www.
w3.org/TR/2008/REC-xml-20081126/.

[30] Christensen, Aske Simon; Møller, Anders and Schwartzbach,
Michael I. Precise Analysis of String Expressions. In Proceedings of the
10th International Conference on Static Analysis, SAS’03, p. 1–18, Berlin,
Heidelberg, 2003. Springer-Verlag. Available from: http://dl.acm.org/
citation.cfm?id=1760267.1760269. ISBN 3-540-40325-6.

[31] Kieżun, Adam et al. HAMPI: A solver for string constraints. In ISSTA
2009, Proceedings of the 2009 International Symposium on Software Testing
and Analysis, Chicago, IL, USA, July 21–23, 2009. Available from: https:
//people.csail.mit.edu/akiezun/issta54-kiezun.pdf.

[32] Zheng, Yunhui; Zhang, Xiangyu and Ganesh, Vijay. Z3-str: A Z3-
based String Solver for Web Application Analysis. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013, p. 114–124, New York, NY, USA, 2013. ACM. Available from: http:
//doi.acm.org/10.1145/2491411.2491456. ISBN 978-1-4503-2237-9. doi:
10.1145/2491411.2491456.

[33] Šuta, Matej. String abstract domains. Master’s thesis, supervisor: Karel
Klíč, Masarykova univerzita, Fakulta informatiky, Brno, 2013. Available
from: http://is.muni.cz/th/389959/fi_m/.

[34] Costantini, Giulia; Ferrara, Pietro and Cortesi, Agostino. A
suite of abstract domains for static analysis of string values. Software:
Practice and Experience. 2015, 45, 2, p. 245–287. Available from: http:
//onlinelibrary.wiley.com/doi/10.1002/spe.2218/abstract. ISSN
1097-024X. doi: 10.1002/spe.2218.

81

http://www.rfc-editor.org/rfc/rfc3696.txt
http://www.rfc-editor.org/rfc/rfc3696.txt
http://dx.doi.org/10.17487/RFC3696
https://msdn.microsoft.com/en-us/library/ff650303.aspx
https://msdn.microsoft.com/en-us/library/ff650303.aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.mobilecontrols.regularexpressionvalidator.validationexpression.aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.mobilecontrols.regularexpressionvalidator.validationexpression.aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.mobilecontrols.regularexpressionvalidator.validationexpression.aspx
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://dl.acm.org/citation.cfm?id=1760267.1760269
http://dl.acm.org/citation.cfm?id=1760267.1760269
https://people.csail.mit.edu/akiezun/issta54-kiezun.pdf
https://people.csail.mit.edu/akiezun/issta54-kiezun.pdf
http://doi.acm.org/10.1145/2491411.2491456
http://doi.acm.org/10.1145/2491411.2491456
http://dx.doi.org/10.1145/2491411.2491456
http://is.muni.cz/th/389959/fi_m/
http://onlinelibrary.wiley.com/doi/10.1002/spe.2218/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.2218/abstract
http://dx.doi.org/10.1002/spe.2218

82

List of Figures
4.1 FL domain . 33
4.2 CSn domain . 33
4.3 L domain . 34
4.4 L operations . 35
4.5 PR domain . 36
4.6 PR operations . 37
4.7 PR operations returning integers and booleans 38
4.8 PR support for regular expressions 40
4.9 PR assume operations . 40
4.10 SU domain . 41
4.11 SU operations . 42
4.12 SU operations . 43
4.13 CEf domain . 44
4.14 CA domain . 45
4.15 CM domain . 45
4.16 CI domain . 46
4.17 CI operations returning strings 47
4.18 CI operations . 48
4.19 CI support for regular expressions, part 1 49
4.20 CI support for regular expressions, part 2 50
4.21 CI assume operations . 51
4.22 B domain . 52
4.23 BR domain . 53
4.24 Helper functions for B and BR, part 1 56
4.25 Helper functions for B and BR, part 2 57
4.26 BR operations . 58
4.27 BR support for regular expressions 60
4.28 BR assume operations . 60
4.29 SG domain operators . 61
4.30 Helper functions for SG, part 1 62
4.31 Helper functions for SG, part 2 63
4.32 SG operations . 64
4.33 SG support for regular expressions 65
4.34 SG assume operations . 66

5.1 Class diagram of string abstractions 69
5.2 Operation call sequence diagram 70

83

84

A Contents of the CD
• README.txt Instructions on how to build and run the program

• src\CodeContracts\Microsoft.Research\ Source code of Code Contracts

– AbstractInterpretation\Abstract Domains\ The Abstract
Domains project

∗ Strings\ String abstract domains, operations and related utility
classes

– Analyzers\ The Analyzers project
∗ Additional Analyses\ Plug-ins for the array analysis
∗ Array Analysis Analysis of arrays allowing plug-ins
∗ String Analysis Analysis of strings

– Clousot\ The executable project
– ClousotMain\ Implementation of Clousot
– Regex\ Parsing regular expressions
– RegressionTest\StringDomainUnitTests Unit tests for abstract do-

mains
– RegressionTest\RegexUnitTests\ Unit tests for regular expressions

• src\CodeContracts\Demo\Strings Test and example program source codes

• bin\Clousot Executable static checker

• bin\Examples Compiled example programs and libraries

• doc\generated.chm Generated documentation from the C# source code

• doc\text.pdf Text of the thesis

85

86

B User Guide
B.1 Writing String Contracts
You can write string expressions in Contracts, namely in the methods of the
Contract class such as Assert, Assume, Requires, Ensures and Invariant. If
you enable runtime contract checking, they will be checked as expected. When
using the static checker, they might not be proven, also depending on the string
abstract domain you choose.

Make sure you use StringComparison.Ordinal or invariant culture where
appropriate. If you use culture-specific features, the results may vary depending
on the culture, and cannot be reliably statically checked.

B.2 Running from the Command Line
To run the string analysis from the command line, add -strings:domain=name to
the command arguments of Clousot.exe, where name is one of the names listed
in Table B.1. By default, only failed assertions are printed to the output. To see
the results for all assertions including the proven, add -show:validations. The
help for other command line switches can be displayed by -help option.

To run the string analysis together with array and artihmetic analysis, also
add those two options: -array -bounds.

To show the trace of the DFA algorithm including the abstract elements, add
-trace:dfa to the list of options.

Name Abstract domain
prefix Prefix
suffix Suffix

characterinclusionfull Character Inclusion with individual characters
characterinclusionascii Character Inclusion for ASCII characters

bricks Bricks
stringgraphs String Graphs

Table B.1: Abstract domain command line names

87

	Introduction
	Motivation
	Goals
	Structure of the Thesis

	Background
	Mathematical Foundations
	Basic Definitions
	Strings

	Abstract Interpretation
	Non-relational Domains
	Reduced Product
	Data-flow Analysis (fixpoint algorithm)
	Widening
	Soundness, Completeness, Overapproximation

	Strings in C# and .NET
	Representations of Strings
	Unicode Characters
	Categories, Blocks and Scripts

	Language Constructs
	Operations
	Culture-specific Operation
	Handling of keywordcolornull Values
	Methods of the keywordcolorstring Class
	Methods of the typecolorStringBuilder Class
	Operations with the Character Arrays

	Regular Expressions
	Regex in .NET
	Specifying a Language
	Formal Definitions
	Parsing Regular Expression Strings

	Code Contracts
	Writing Contracts in Code
	Runtime and Static Checking
	Overview of Clousot Internals
	Using Multiple Analyses

	Analysis
	Examples of String Properties
	Existing Solutions
	Chosen Approach

	Abstract Domains for Strings
	Design of String Abstract Domains
	Constant-based Abstract Domains
	Flat Domain
	Constant Sets
	Variants of Constant-Set Based Domains

	Length-based Abstract Domains
	Length
	Operations

	Substring-based Abstract Domains
	Prefix
	Operations
	Regular Expressions
	Assume

	Suffix
	Operations
	Regular Expressions
	Assume

	Variants of Domains Based on Substrings

	Character-set-based Abstract Domains
	Character Set Abstraction
	Allowed Characters
	Mandatory Characters
	Character Inclusion
	Operations
	Regular Expressions
	Assume

	Variants of Domains Based on Character Sets

	Bricks
	Single Brick
	Brick Lists
	Drawbacks
	Operations
	Regular Expressions
	Assume

	Variants of the Bricks domain

	Graph-based Abstract Domains
	String Graphs
	Drawbacks
	Operations
	Regular Expressions
	Assume

	Implementation
	New Features in Clousot
	String Abstraction
	The Main Abstract Domain
	String Analysis
	String Analyzer
	Combining with Other Abstract Domains
	Regex

	Tests
	System Requirements

	Evaluation
	Conclusion
	Future Work

	Contents of the CD
	User Guide
	Writing String Contracts
	Running from the Command Line

