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Abstract: While the formalism of isolated horizons is known for some time, only
quite recently the near horizon solution of Einstein’s equations has been found
in the Bondi-like coordinates by Krishnan in 2012. In this framework, the space-
time is regarded as the characteristic initial value problem with the initial data
given on the horizon and another null hypersurface. It is not clear, however,
what initial data reproduce the simplest physically relevant black hole solution,
namely that of Kerr-Newman which describes stationary, axisymmetric black
hole with charge. Moreover, Krishnan’s construction employs the non-twisting
null geodesic congruence and the tetrad which is parallelly propagated along
this congruence. While the existence of such tetrad can be easily established in
general, its explicit form can be very difficult to find and, in fact it has not been
provided for the Kerr—-Newman metric. The goal of this thesis was to fill this
gap and provide a full description of the Kerr-Newman metric in the framework
of isolated horizons. In the theoretical part of the thesis we review the spinor
and Newman—Penrose formalism, basic geometry of isolated horizons and then
present our results. Thesis is complemented by several appendices.
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Introduction

This thesis deals with the framework of isolated horizons in general relativity. As a
research goal, we will construct a Newman—Penrose null tetrad with some specific
properties in the Kerr—-Newman space-time, namely a null tetrad such that vector

,,,L[l

is non-twisting, geodesic, and all other vectors of the tetrad are covariantly
constant along n®. This is, however, a very specific goal and the essential part of
the thesis is devoted to the physical and mathematical background of the topic
we study. The result itself is to be presented in detail in a paper which is to
be submitted to the journal Physical Review D. Here we motivate the study of
isolated horizons from a wider perspective and give an overall review of structure

of the thesis.

Black hole horizons

Black holes became one of the most interesting object of study in gravitational
physics already with the discovery of the Schwarzschild solution, the very first
exact solution of Einstein’s equations [1]. Although the singularity of the solution
at the Schwarzschild radius turned out to be merely a coordinate singularity,
rather than a singularity of the space-time, horizon is nevertheless a surface with
very special and surprising properties. Moreover, there was initial scepticism that
the singularity at the centre could represent anything physical. It was thought
that the solution is valid only outside a spherical body and the interior of the
solution should be disregarded. An important step to answer this question was
the analysis of the spherical collapse by Oppenheimer and Snyder [2]. They shown
that during the collapse of spherically symmetric matter, a singularity and the
event horizon will form. This is not yet conclusive because similar thing happens
in the Newtonian theory, but only in the case of perfect spherical symmetry.
Hence, the question was whether the formation of singularity is just an artefact
of spherical symmetry or not. The most convincing argument that the formation
of singularity is a real process in general relativity, is by Penrose and Hawking
[3, 14, 5]. They have formulated a set of results known as the singularity theorems
according to which the formation of singularity is inevitable once a closed trapped
surface exists in a space-time. Since the assumptions of the proof are very mild,
requiring essentially only some sort of energy condition and global hyperbolicity
[5, 6], the singularity theorems provide a powerful evidence that the formation of
black holes is a generic feature of general relativity. An appropriate interpretation
of the Schwarzschild solution as a black hole and clarifying its global causal
structure is mainly due to Kruskal, who found maximal analytic extension of
the Schwarzschild solution [7].

Today, black holes are considered as standard astrophysical objects and there



are essentially no doubts about their existence. Black holes have been more or less
directly observed in binary systems, they are located in the active galactic nuclei
or powering quasars. For a review on observational evidence for black holes, see,
e.g. [8] and references therein. The most direct and most striking confirmation of
black holes is recent observation of gravitational waves where the wave pattern
corresponding to a merger of two black holes has been observed [9).

It was soon recognized that the event horizon exhibits many interesting and
puzzling properties. Among the interesting ones, let us mention the uniqueness.
In physics in general, exact solutions are usually just useful approximations to
realistic situations. We expect that some simplified model will exhibit important
properties of a studied system, but full system is supposed to be more complic-
ated and complex and corresponding exact solution is infeasible. Of course, this
is also the case for black holes and we will return to that point later, but exist-
ing solutions describing black holes are, despite their high degree of symmetry,
believed to be very realistic ones.

First, it was shown by Birkhoff [10] that any spherically symmetric vacuum
solution of Einstein’s equations which is asymptotically flat must be isometric to
the Schwarzschild solution. Notice that time dependence of the metric is allowed
here. For example, we could have a pulsating or collapsing star which is spheric-
ally symmetric so that the exterior is always exactly given by the Schwarzschild
metric. If, in addition, the space-time is required to be static, the full geometry
must coincide the the Schwarzschild solution. In this sense, Schwarzschild solu-
tion is the unique spherically symmetric black hole.

Similar uniqueness theorems apply to the Kerr—-Newman metric which de-
scribes axially symmetric rotating black hole with charge |11} |12], although here
the results are not so strong. For a review on uniqueness theorems of black holes,
see |13]. Essentially, it can be stated that any stationary axisymmetric solution
which is asymptotically flat and regular everywhere except for the singularities
below the horizon is necessarily the Kerr—-Newman metric.

These uniqueness results are summarized in the no-hair theorem [14; 15, 16].
According to this theorem, black hole solution of Einstein—-Maxwell equations is
characterized by just three parameters, mass M, spin a and (possibly magnetic)
charge (). Taking different sources, e.g. the scalar field, one can elude the no hair
theorem and produce a “hairy black hole”, see, for example [17].

To conclude, although the most important solutions representing black holes,
the Schwarzschild and the Kerr-Newman solutions, exhibit high degree of sym-
metries, they actually represent highly astrophysically relevant solutions and we
expect that a collapse of realistic matter will produce a Kerr—-Newman black hole,
provided there is no accretion disk surrounding the black hole.

This class of black holes have very interesting properties, in particular, they
satisfy the laws resembling the laws of classical thermodynamics. We will briefly
review these laws in chapter [3] This analogy shows that the surface gravity x of



a black hole plays the role of temperature T, the relation between the two being
T = k/27m, and the area of the event horizon A is related to the entropy S by
S = A/4. Originally it was thought that this analogy is purely formal, because
in classical relativity, black hole is absolute black body with zero temperature, as
it cannot emit anything. However, it was suggested by Bekenstein to interpret
the entropy of black hole as a measure of information about the interior of black
hole which is not accessible to the external observer [1§]. Final justification
for this hypothesis has been provided by Hawking who showed that, taking the
quantum effects into account, a black hole must evaporate through the emission
of the so-called Hawking radiation which has a thermal spectrum [19]. Later, an
interpretation of the Hawking particles as a tunnelling of particles through the
horizon has been given in [20].

It turns out that the event horizon of the Kerr—Newman black hole can be
characterized by several criteria. In general space-time, these criteria define dif-
ferent types of the horizon but in the Kerr—-Newman case they all coincide. Geo-
metrically, null geodesics in the space-time containing a black hole can be divided
into two sets: those which are able to escape to future null infinity .#* and those
which end up in the singularity. All geodesics of the first family form the so-
called causal past of £, denoted by J~(£1) [6, |21]. In Minkowski space-time,
all null geodesics can escape to infinity and hence J~(#*) is in fact the entire
space-time. If the space-time contains a black hole, J~(#7) is not identical with
the space-time M. Then, the black hole is defined as B = M\ J~(#*) and the
event horizon is defined as the boundary H = 0B of the black hole region.

We can see that the event horizon has a clear geometrical meaning but also
suffers from some disadvantages. They have what is usually called a teleological
nature [22]. From the definition it is clear that one cannot identify the event
horizon unless the whole space-time is known because one has to find the causal
past of future null infinity; so, the knowledge of global solution is necessary.
Moreover, during the collapse, the event horizon forms even before the actual
black hole is formed. In a sense, the formation of a black hole is “anticipated” by
the event horizon even before the entire mass of collapsing object falls under the
event horizon which is the stage when the black hole is actually formed. This is
also problem for numerical relativity, because the presence of the horizon cannot
be detected locally. Only after the full evolution is obtained, one can integrate
backwards from .#* and find the event horizon [23].

For many other purposes and, in particular, in the context of singularity
theorems, another definition of the horizon is important, namely that of apparent
horizon. Imagine an observer above the horizon of black hole who is emitting
signal oriented outwards with respect to a black hole, i.e. signals directed towards
infinity. Next, suppose that this observer approaches the black hole. Then, at
some distance, even the outward pointing light rays will eventually fall into black
hole. The apparent horizon is a boundary between region where outward pointing
null geodesics will escape to infinity and region where even the light rays emitted



in an outward direction fail to escape [5]. Compared to the event horizon, the
advantage of the apparent horizon is its quasi-local nature: only a finite region
must be known to locate the apparent horizon and this makes it more suitable
for numerical computations [24].

Finally, an important notion is that of the Killing horizon. Kerr—-Newman
metric admits two Killing vectors: stationary Killing vector 0, where v is ad-
vanced time in the Kerr coordinates, and axial Killing vector 0,. Their linear
combination is a “helical” Killing vector

K=0,+00,  Qu=

a
a?+r2’ (1)

where a is the spin of a black hole, 7, = M + /M2 — a2 — Q2 is the horizon
of the black hole (with @ being the charge) and Qy is the angular frequency of

the horizon. Since (y is constant, K is also a Killing vector and it becomes
null on the event horizon. In general, a Killing horizon is a null hypersurface
on which the norm K,K® vanishes. In the case of the Kerr—-Newman black hole
it is easy to understand why Killing horizon is important. Above the horizon,
orbits of the Killing vector are time-like curves and correspond to an observer
which is stationary, i.e. hovering above the horizon at constant distance. Below
the Killing horizon the norm K,K* becomes negative and hence the orbits of
the Killing vector are space-like. Thus, they cannot correspond to any physical
observer. This shows that under the Killing horizon it is impossible to have a
stationary observer.

In the case of the Kerr-Newman metric, all these three concepts of horizon,
i.e. the event horizon, the apparent horizon and the Killing horizon, coincide, but
they do not coincide in general. For example, during the Oppenheimer-Snyder
collapse, the event horizon starts to form in the centre of spherical symmetry, its
radius increases up to the Schwarzschild radius and then becomes constant. In
contrast, the apparent horizon starts to form on the surface of collapsing matter
and it approaches the event horizon only asymptotically. For an apparent horizon,
the laws of thermodynamics cannot be satisfactorily formulated [25].

Isolated horizons and distorted black holes

We have stressed that beside many simplifications exhibited by existing black hole
solutions, they are in fact of great astrophysical importance thanks to uniqueness
theorems. However, general as they are, these solutions do not encompass all im-
portant astrophysical situations. For the detection of black holes it is absolutely
essential to have an accretion disk surrounding the black hole. Black holes admit-
ting the accretion disk or arbitrary matter near the horizon are called distorted
or dirty black holes.

Natural approach to describing distorted black holes is to consider fixed Kerr—
Newman geometry and study the test matter on given background or, to get

6



better approximation, to study perturbations of the Kerr-Newman solution cor-
responding to the presence of the accretion disk. Usually, it is possible to neglect
the mass of the accretion disk compared to the mass of black hole. However,
recently, experiments were proposed in order to test the no-hair theorem men-
tioned above or possible deviations from this theorem using the Event Horizon
Telescope with Sagittarius A* |26, 27]. These experiments will be sensitive to the
presence of the accretion disk. It is important, because if some deviations from
the no-hair theorem will be detected, one might tend to interpret it in favour of
some alternative theory, but it might well be due to the presence of the accretion
disk. Hence, it is necessary to study distorted black holes from a theoretical point
of view and include the back-reaction of the disk on the geometry, not to treat
the disk as a test matter on given background.

The presence of an accretion disk is also essential for measuring the properties
of black holes. While the mass of a black hole can be calculated from the influence
of a black hole on neighbouring stars, this cannot be done for measuring the
spin, because the effect of frame dragging is far too small to be detected by
observations of neighbouring stars. Instead, methods like continuum fitting or
iron line method are employed |28, 29, 30, 31|. For example, the iron line method
is based on the fact that X-ray photons emitted from the coronal region of a black
hole will eventually hit the accretion disk. The matter forming the accretion disk
usually comes from neighbouring star which forms a binary system with the
black hole and contains light elements like hydrogen and helium, but also heavier
elements, in particular the iron which was produced in the neighbouring star.
Thanks to the Auger effecﬂr], lighter elements hit by X-ray photons will emit
electrons on deexcitation, while the iron atoms hit by X-rays will emit photons
of energy 6.4keV. However, when observed, those photons are Doppler shifted
because of the two reasons. First, different locations in the accretion disk have
different projection of velocities on which the Doppler effect depends. Second,
these photons are moving in the gravitational field of a black hole. Therefore,
instead of single peak for energy 6.4keV, spectrum has characteristic extended
shape from which the value of the spin can be inferred. Of course, if the back-
reaction of the accretion disk on the space-time geometry is taken into account,
expected profile of the spectrum of iron lines for a black hole of given spin will
change.

For all these reasons, it is necessary to have a formalism which allows for dis-
torted black holes, where the effect of surrounding material is taken into account.

The framework of isolated horizons aims to provide a general definition of a
black hole horizon which will:

e be quasi-local, in order to circumvent difficulties related to the teleological
nature of the event horizon and to make the notion of horizon convenient

IRecall that the Auger effect is emission of an electron which accompanies the filling of a
vacancy in an inner electron shell [32].



for numerical relativity;

e reproduce the laws of black hole thermodynamics;

e describe the black hole in the equilibrium with its neighbourhood.

Of course, these requirements are not all independent. In particular, one
expects that the laws of (equilibrium) thermodynamics are related to the as-
sumption that the black hole is in equilibrium with the neighbourhood. This
means that there is no flux of matter or radiation through the horizon. The as-
sumption of equilibrium seems plausible also from the numerical point of view,
since the back-scattering effects for the late stage of the collapse become smaller
than numerical errors. However, the notion of equilibrium here is much weaker
than the assumption of stationarity for the Kerr-Newman black hole. It turns
out that the intrinsic metric of the horizon s stationary (i.e. it is Lie constant
along the generators of the horizon), but the black hole itself can be embedded in
otherwise dynamical space-time, e.g. in the expanding universe or as a component
of a binary system. Since the isolated horizons are the main topic to be studied
in this thesis, we relegate appropriate references and technical details to chapters

2 and [3l

Isolated horizons play also an important role in loop quantum gravity. The
fact that black holes possess entropy is very puzzling since the presence of entropy
usually means the presence of some microscopic degrees of freedom. It is not clear,
however, what do these degrees of freedom describe. According to the stretched
horizon paradigm, these degrees of freedom “live” on the space-like sphere with the
radius rg + £p, where rg is the Schwarzschild radius and /p is the Planck length.
This proposal was made by Susskind et al. in order to resolve the black hole
information paradox [33]. This theory, however, is just phenomenological. One
of the great achievements claimed by the string theory is the actual calculation of
microscopic degrees of freedom for a black hole, and the result coincides with the
usual Bekenstein-Hawking entropy [34] (however, see some objections to similar
calculations, summarized in, e.g. [35]).

In loop quantum gravity, an attempt is made to introduce appropriate phase
space for an isolated black hole and perform the quantization in the Hamiltoni-
an framework. According to [25], there are obstacles if one considers the event
horizon as a definition of a black hole. For example, the phase space of globally
stationary solutions is too restricted in order to account for the quantum fluctu-
ations. Formalism of isolated horizons was motivated also to circumvent these
problems and allow for a black hole which is isolated but the space-time is not
globally stationary.



Motivation of the thesis

The formalism of isolated horizons turned out to be very fruitful and has ap-
plications which were not foreseen. This thesis is mainly motivated by work of
Girlebeck and Scholtz [36] where the Meissner effect for black holes was analysed.
It describes the expulsion of the magnetic field from the horizon of extremal, axi-
ally symmetric black holes. This effect was known to exist for the Kerr—Newman
black hole where the magnetic fields were treated as the test fields, although
some exact results were known as well, see [36] and the references therein for
more complete discussion. In [36], the authors have employed the formalism of
isolated horizons and generalized existing results for all types of distorted hori-
zons provided they are axially symmetric. They also explain why the Meissner
effect does not hold when the axial symmetry is violated.

We have mentioned that the no-hair theorem asserts that properties of black
holes depend on the three parameters M, a and () only. This is true for non-
distorted black holes. An indication that the no-hair theorem can be extended
to distorted black holes has been given by Girlebeck [37]. He was able to prove
in the static case that contributions to multipole moments of the space-time can
be disentangled into those generated by the black hole and those which describe
contribution from surrounding matter. The contribution from the black hole
coincides with the multipole moments of the Schwarzschild space-time. In this
sense, the no-hair theorem still holds.

This raises a natural question which properties of black holes are universal, like
their “baldness”, and which are special for the Kerr—-Newman family of solutions.
Scholtz and Giirlebeck were able to show that the Meissner effect belongs to
universal properties. In their setting, based on the isolated horizons formalism,
they considered arbitrary distorted black hole. For such general black hole, the
Meissner effect does not occur, because the magnetic flux through the horizon is
part of the free data which is not constrained with other geometrical quantities. In
the axially symmetric case, however, it was proved that such constraints exist and,
indeed, imply the Meissner effect. It is remarkable that this result is insensitive
to distortions caused by external matter. Although there is an interesting result
by Lewandowski and Pawlowski that the intrinsic geometry of extremal isolated
horizon is, in fact, isometric to the extremal Kerr—Newman case, the proof [36]
applies to full space-time geometry.

In practice, we expect that distorted black holes will be different from the
Kerr-Newman black holes, but still similar to them. The main achievement
of the formalism of isolated horizons, which was also used in [36], is that the
back-reaction of the accretion disk is taken into account. Nevertheless, for small
masses of accretion disks we expect that the geometry will not be too different
from the Kerr-Newman one. In addition, since the Kerr—-Newman geometry is
well-understood, it is useful to have it as a reference point. For example, in [36],
magnetic fields around distorted black holes have been visualised, where the de-



formed Kerr metric was assumed. In order to specify such a deformation, it is
necessary first to translate the Kerr geometry into the language of isolated ho-
rizons and then consider specific deformations. In [36], this was partially done
for the purposes of paper, i.e. the appropriate initial data reproducing Kerr geo-
metry has been found. However, the deformations have been chosen ad hoc, just
to illustrate the transition from non-extremal case to the extremal one for a black
hole different from pure Kerr. Nevertheless, physical interpretation of such de-
formations is highly desirable and for that a full analysis of the Kerr-Newman
metric in the framework of isolated horizons is necessary.

In this thesis, the paper of central interest is by Krishnan [38]. There, the
author translates existing results on intrinsic geometry of isolated horizons in-
to the Newman—Penrose formalism [39] and, in addition, provides perturbative
expansion of the geometrical quantities (in terms of the Newman—Penrose form-
alism which, at the end, can be translated to the expansion of the metric) in the
neighbourhood of the horizon. This is very similar to analogous expansion near
null infinity #* [40] by Newman and Unti. Such expansion are the Newman-—
Penrose version of asymptotic expansions obtained earlier by Bondi et al. [41,
42]. Historically, these works were fundamentally important because it was shown
that despite the difficulties one encounters in order to define the notion of energy
in general relativity, it is possible to define the global energy of a space-time.
This mass is called Bondi mass [43] and it is different from another concept, the

lcomplex conjugate (ADM)| mass [44], because it is not constant in time. Rather,

it is measured at the null infinity .# and describes the mass of isolated system
which decreases whenever the system emits gravitational or other type of radi-
ation. Today, standard form of the Bondi mass is given in the Newman—Penrose
formalism for electro-vacuum space-times [45] and it has been generalized recently
to include scalar field sources, conformal scalar fields and interacting electromag-
netic and scalar sources [46], 47].

In the so-called Bondi coordinates which are constructed on, say, past null
infinity .# ~ and in its neighbourhood, one employs a time coordinate v along the
generators of .~ and two spherical coordinates on the cuts of constant v. Then,
a congruence of non-twisting null geodesics is constructed in the neighbourhood
of #~ and the affine parameter r along these geodesics is used as the fourth
coordinate. The expansions are then performed in the coordinate r and the
asymptotic solution of the field equations is given in the form of series in 7.

In [38], similar construction has been applied in the neighbourhood of isolated
horizon ‘H. Again, a non-twisting congruence is constructed and entire Newman—
Penrose null tetrad is parallelly propagated along this congruence. While the
topology and other properties of isolated horizons guarantee that this construction
is always possible, the construction has not been performed explicitly even in the
Kerr-Newman case.

With the Bondi-like coordinates and adapted null tetrad at hands, the space-

10



time in the neighbourhood of isolated horizon is a solution to characteristic initial
value problem with the initial data given on the horizon H and some, arbitrar-
ily chosen, null hypersurface transversal to H. In [38] it was analysed which
Newman—Penrose quantities are free, which part of the Einstein equations are
constraints, and which are the evolution equations giving the solution in the re-
gion between the two null hypersurfaces. Construction has been given in general
for arbitrary isolated horizon, but the author claims, without proof, that it has
been checked numerically that the construction works for Kerr-Newman space-
time. However, it is not discussed what initial data reproduce the Kerr—-Newman
metric, neither what is the explicit form of the tetrad and the metric in such
Bondi-like coordinates.

On the other hand, kind of generalized Bondi coordinates have been found by
Fletcher and Lun [48] for the Kerr metric (i.e. without charge). The authors em-
ploy the fact that the geodesic equation on the Kerr—Newman space-time is sep-
arable using the Hamilton—Jacobi equation, as was first demonstrated by Carter
[49]. This allows one to parametrize all geodesics of the Kerr—-Newman metric by
four constants of motion, namely the norm (equal to 1 for time-like, and 0 for
null geodesics), the energy F, the angular momentum L and the so-called (fourth)
Carter constant. The latter arises either from the separation of the Hamilton—
Jacobi equation or from the projection of the Killing tensor [50]. Authors of [4§]
choose the simplest choice of these constants which yields the non-twisting con-
gruence, arguing that non-twisting congruence has vanishing angular momentum,
L = 0. This allows them to construct generalized Bondi coordinates in the Kerr
space-time. The full null tetrad and description in the Newman—Penrose formal-
ism is not discussed in [48].

Goals and organization of the thesis

In this thesis we aim to combine the approaches of [38] and [48] in order to
explicitly construct the tetrad in the Kerr-Newman space-time which meets the
criteria imposed in [38], generalizing the technique employed in [48]. We proceed
as follows:

e we construct the null tetrad satisfying the criteria of [38] on the outer
horizon of the Kerr—-Newman metric;

e calculating relevant spin coefficients, we extract appropriate initial data
given on the horizon;

e we construct general null congruence of geodesics emanating from the ho-
rizon and analyze the integrability conditions for the congruence be non-
twisting;

11



e we adjust the Carter “constants” (they became space-time functions for a
congruence) in order to reproduce the null tetrad we find on the horizon;

e using the Killing—Yano tensor of the Kerr—-Newman metric, we construct
full null tetrad in the neighbourhood of the horizon such that all vectors of
the tetrad are parallelly transported along vector n® of the null tetrad;

e we identify the congruence of [48] as a special case of our construction and
compare both approaches.

These results are not a part of the main text of the thesis, but they are to
be published in the aforementioned paper. The thesis itself is organized in the
following way.

Chapter [I| contains a review of the tetrad formalism and its connection to the
spinor formalism. We follow [51], [52] and [53]. While the tetrad formalism can
be formulated in purely tensorial language, the actual motivation for particular
definitions comes from the formalism of the two-component spinors on curved
space-times. For this reason, we develop both Newman—Penrose formalism and
the spinor formalism together.

In the chapters [2] and [3] we introduce, step by step, the formalism of non-
expanding and isolated horizons, emphasizing the aspects important for our work.
Ultimately, we describe the procedure of [38] and clarify some details of the
construction which are missing or even misleading in that article. In particular,
we spend some effort on proving that the Lie dragging of the tetrad along the
horizon is mathematically consistent which is not discussed in [38].

The last part of the work, mainly contained in chapter [4] establishes a non-
twisting null tetrad in the Kerr-Newman space-time. In this chapter, we explain
the gauge freedom in the choice of the Newman—Penrose null tetrad and give
explicit relations for all possible transformations, because not all of them are
present in the literature and we had to employ all of them in our construction.

In appendix [A] we give basic definitions and relations of the Newman-Penrose
formalism, in appendix [B] we list perturbative expansions referenced earlier in the
text.

In order to achieve the aforementioned goals, we have used the computer al-
gebra system Mathematica. For the work with the Newman—Penrose formalism,
we have employed existing script made by the supervisor of this thesis and in-
troduced in detail in [54]. Moreover, in appendix |C| we list Mathematica code
developed for the purposes of this thesis, so that the reader can follow the calcu-
lations that have been done.
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1. Tetrad formalism

The metric tensor is the fundamental object of study in the standard formulation
of general relativity. It is represented by a matrix the elements of which are
components of the metric tensor with respect to a particular coordinate system
x#, and its coordinates-induced basis vectors 0, and dual one-forms dx“E] The
metric tensor, together with its derivatives, is the only constituent of the Riemann
tensor, and therefore is the solution of the Einstein field equations.

However, in some cases, it is more convenient to work in a non-coordinate
basis, called an n-ade. The entire process of introducing this approach was for
the 4-dimensional space-time nicely described in [52, sections 6 and 7]. However,
there is not only vector motivated point of view, but also spinor motivated one,
also described in [52, section 102}, which was the one initiating a special choice of
tetrad we are going to use. Therefore we shall describe these two sides of a coin
side by side. We shall discuss the benefits of such a basis later. At this point, we
want to construct the non-coordinate basis, and find a relation between the two
frames (coordinate and non-coordinate).

Before we set sail, let us start with a useful notation.

1.1 Abstract index notation

We will be using lower-case Latin letters as so called abstract indices which
were introduced by Roger Penrose. Such an index only tells us to which vector
space the tensor belongs to. It says nothing about its components — it is not
an n-tuple. This notation is kind of a compromise between a physicist and a
mathematician view. It uses the advantages of the index notation and is avoiding
the drawback of having to refer to a particular basis, whether explicitly or not. To
do so, we need to introduce basis-free operation which could be mirrored exactly
to the ones used during computation with tensor components.

For example, V* is a vector from abstract vector space (module) &* and ay

a one-form from &;. A tensor of type (p, ¢) is then analogically QZII;I"

To be still able to use the standard tensor notation with components, we shall
use a hat to denote a set of components; hence, V% stands for (V°, ..., V3). When
using a number as an index, it is clear that it is a component, therefore there is
no need for the hat, still it will sometimes be used to make obvious link between
quantities. In the following section, we shall use also bold face upright indices
with the same meaning (they will be indexing components), the only difference
lies in the fact that we want to distinguish between an arbitrary tetrad (denoted
by bold indices) and a particular one with which will have a great significance to

'The term 9, is the usual abbreviation of 9/9z*.
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us (we use the hat for this tetrad).

In the tensor notation, as we know, V@ # Ve, Therefore, we need two objects,
V4 and V°, which both stand for the same vector V' but are completely different,
to be able to rewrite terms including both V% and Vb to the abstract index
notation. Thus any vector V' has to be associated with an inﬁniteﬂ collection of
different copies V¢, V?, V¢, ... ; each being an element of one copy of the module
V belongs to.

For the modules refer to [55, page 76]. For more information on this topic,
e.g. the axioms, one can take a look at [55|, chapter 2] or |35, section 12.8].

Now we are arriving back to the tetrads.

1.2 Geometrical structures on manifolds

We can assign a tangent space TpM to any point P of the manifold M which
forms the space-time. Also cotangent space TpM can be constructed and is, by
definition, dual to the tangent space. These two spaces have the same dimen-
sionality n as the manifold M. Consequently, the tensor algebra 7 (TpM) exists.
In this tangent space, we can choose an arbitrary basis, both coordinate and
non-coordinate. We pick the non-coordinate one and denote it e,. The index a
runs from 0 to n — 1 and the basis is a set of n vectors. The vectors e, are thus
said to constitute an n-ad (also called vielbeinED. It has several special names
reflecting the particular dimension of the space-time. For 3-dimensional manifold
it is referred to a triad (or dreibein). In the usual (3+1)-dimensional physical
case, which we are interested in, we talk about a tetrad (vierbein) and it can
be represented by a set of 4 vectors {eg, €1, €2, €3}.

We could also be interested in the tangent spaces at all points of the manifold
(or points from its connected subset) altogether, then a disjoint union of the
tangent spaces assigned to these points is a tangent bundle. The vielbeins
within the tangent bundle become fields because the basis is prescribed separately
for every tangent space and thus each component of the basis is a vector chosen
at every point of the manifold[] They are called frame fields.

We can also generalize this procedure and project all tensors onto vectors
(vielbeins) and rephrase all equations in terms of these projections. This is known
as the Cartan formalism or, equivalently, as the formalism of reperes mobiles.

We have been talking about coordinate and non-coordinate bases and we hope
that the usage of the non-coordinate one will give us some simplification or new
results; hence, we shall explain the difference between these two bases. Both of

2 Arbitrarily long expressions must be allowable.

3This word from German stands for “many legs” and is pronounced as [feelbain].

4We are restricting ourselves to smooth manifolds; hence, the vector fields have to be smooth
too, which means that the choice is not completely arbitrary.
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(a) (b)

Figure 1.1: A comparison of integral curves of coordinate and non-coordinate
bases. (a) Integral curves of a coordinate basis. (b) Integral curves of a non-
coordinate basis[]

“The images were done according to [56].

them live in the tangent space. The non-coordinate bases are those which cannot
be derived from coordinate systems. The operators d, and 0, commute for all
i, v, but two arbitrary vector fields do not. The commutator of two vector fields
is also a vector field whose components do not vanish in general [56]. If the two
vector fields are two elements of a basis and the commutator is non-zero, then it is
not possible to re-express the basis as derivatives with respect to any coordinates,
therefore the basis is non-coordinate.

The distinct character of the two types of bases cannot be seen at a single
point. It depends on derivatives and accordingly is a matter of some neighbour-
hood in the manifold. The commutator [X, Y] of the two vector fields X and Y
is called the Lie bracket. As an example, we can look at a coordinate grid on
a 2-dimensional manifold as it is discussed in [56]. The coordinates are constant
alongside the integral curves of the remaining coordinate. This is the reason why
they commute, an example is shown in the picture However, the integral
curves of two arbitrary vector fields are not necessarily curves of constant para-
meter of the other field. When not, the basis is non-coordinate. The Lie bracket
has geometrical interpretation of the difference between paths on a parallelogram
carried out alongside the integral curves in reversed order as it can be seen in
picture (1.1b

A basis with vanishing commutators is called holonomic (this is the coordin-
ate one), otherwise it is non-holonomid’

The convenience of usage of vielbeins arises from the fact that it can reflect
important physical aspects of the space-time, e.g. the symmetries of the space-
time. The symmetry should be taken in account when choosing the vector bases

5 Anholonomic can also be seen.
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of the tangent bundle.

Since both the coordinate basis 0, and the tetrad e, form the basis of the
same tangent space, we can express the one in terms of the other. Thus, the
general tetrad e, is a linear combination of the basis vectors d,,

Ca = €5 GMH (1.1)

where e," is a regular matrix, dete,” # 0 (otherwise e, would be linearly de-
pendent and hence not constitute a basis). This set of vector fields is chosen in
such a way that

9(ea; €p) = 7an , (1.2)

where ¢ is the space-time metric tensor and 7 is a (habitually constant) non-de-
generate matrix, usually the Minkowski matrix, which is only an expression of
the tangent space metric tensor in another frame. The equation ([1.2) can be
rewritten in terms of components of the Lorentz frame e,* with respect to the
basis d,, as

Guv€aen” = Nap - (1.3)

We can define the dual tetrad in terms of the inverse matrix
(eau)_l = eua (1.4)

and invert also ([1.3]) to get the space-time metric in terms of inner product in the
tetrad frame

Guv = nabeuaeub . (].5)

Note that the inverse tetrad vectors are denoted by the same character and look
like

e = e, da (1.6)

and the only thing distinguishing the two inverse matrices is the position of their
indices.

Why do we actually use the coordinate bases? The reason is that a coordinate
basis not only provides the dot product, as the Minkowski metric (or any other
non-coordinate metric) but, moreover, it allows us to compute Christoffel symbols
by means of derivatives of the metric, and it gives us the line element. None of
these can be done with a non-coordinate basis.

The choice of the vielbein is a matter of convenience. One of the most fruitful
choices is that of Newman and Penrose (1962), [53]. In honour of the authors, it

is called the [Newman—Penrose (NP)| formalism.

6This type of transformation would give us a new, possibly holonomic, basis in general.
However, we will have mainly non-holonomic bases in mind.
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z
Figure 1.2: A construction of the null vectors from the Minkowski time coordin-
ate and z-direction.

1.3 Newman—Penrose tetrad

The formalism is also known as the spin-coefficient formalism. It is based
on a null tetrad, a tetrad composed of null vectors. This is convenient, for
example, when treating gravitational waves, because then we are investigating
null geodesics, and when finding exact solutions. As is nicely summed up in [53],
the main advantages are:

1. All the equations are of the first order.
2. They can be grouped into sets of linear equations.
3. The number of equations is reduced by half as they are complex.

4. The equations can be written out explicitly without index and summation
conventions.

5. One can focus on individual scalar equations and their geometrical and
physical meaning.

6. It allows to search for solutions with specific features.

To introduce the null tetrad, we start with the Minkowski set of vectors
{t*, x* y* 2*}. We know that in the four-dimensional space-time, we can find
two independent null vectors — these are, e.g., the ones which lie on the opposite
sides of the light cone in t* and 2 plane. They are given by

"=

(t"+2), (1.7a)

S-Sl

(17— 29). (1.7b)

The situation is covered by figure (1.2

Any other two null vectors which are a linear combination of the Minkowski
set of vectors with real coefficients would necessarily be linearly dependent (at
least one of them).



Proof. We would like to know how many vectors v® exist that they are of the form
V¥ =at*+ bz + cy® + dz® (with a, b, ¢, d € R), that they are null (v*v, = 0) and
they are linearly independent. The condition of nullness gives us constraining equation
for the coefficients: a? = b> + ¢ + d?. This is an equation for a sphere with radius
a. This sphere represent a 3-parametric space — we can check this by using spherical
coordinates. Hence, only three independent vectors can be found. At least the last one

has to have complex coefficients. ]

For symmetry reasons and latter convenience, we introduce two other complex
vectors to form a tetrad which could be such a basis in the tangential space that
all the vectors are null. We choose them as

a_il,a_ia c
m—\/ﬁ( y'), (1.7¢)

—a_ixa iy®
m —\/5( +iy?). (1.7d)

Which contractions are non-zero? We can easily compute this with usage
of the Minkowski vectors, and find out there are only two of them which are
non-zero. They are

I'n, =1, (1.8a)
M, = —1. (1.8b)

When we have been discussing the ((1.3)), we have pointed out that the matrix
Nab is usually the Minkowski matrix. However, this is not the case in the
formalism. Let’s rewrite in the abstract index formalism and the components
of the new tetrad as

Map = Javea’ey’ - (1.9)
Then we get an analogue of ([L.3) where 7),; is a matrix representing the metric in
the [NP] tetrad frame and g, is the metric tensor. We remind that indices which
have a hat over them refer to the components of tensors with respect to the null

tetrad (they are indexing the basis vectors). Undecorated Latin indices are the
abstract indices. The tetrad itself is e;* = (1%, n®% m®, m®).

We would also like to have the dual basis to the e;*. It has to meet
eate’, = 52, (1.10)

where (52 is the unit matrix — diag(1, 1,1, 1) It can be easily found, with usage
of the contractions between basis vectors, that e,? = (N lay =g, —Myg).

Do not confuse (52 which is a matrix with 62 which is a tensor, equivalently a map between
two copies of the same abstract vector space.
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Why were there no coordinate indices in ? The reason is that in the
first section we were basically explaining how to work locally in a flat Minkowski
space instead of a general curved space-time. Now we do not want to work in
Minkowski frame anymore, we want to work with the null tetrad. However, we
defined its basis as the linear combination of Minkowski basis, therefore we are
locally rewriting a curved space-time into the Minkowski one and then using
the procedure again to work in a null frame. We have gone directly from the
coordinate basis to the null tetrad to avoid the Minkowski metric just by plugging
(1.3) into and joining e *e;? into e;* and then used the general, basis free,
abstract notation. According to this, we wanted to emphasize that it is a similar
process which differs in the notation of indices, only.

It is very important to distinguish between the Minkowski metric tensor 74,
matrix n,p and the representation of the metric in the null basis n,;. Though
same notations are used for them, they are completely different. The matrix 7,;
is not even diagonal as 7, is, and 74 is not a matrix at all.

We only need the knowledge of the contractions between the null basis vectors
to find out how n,; looks like. To compute an element of the matrix, we set the
numerical value of its indices and then only compute inner product between two
basis vectors of the tetrad, e.g., the element 7;;:

Moi = Jan€y”ei’ = gapl'n” =10, = 1. (1.11)

We do not need to know how the representation of the metric tensor g, looks like,
it is enough to know that it performs the inner product. The resulting matrix is

01 0 O
10 0 O
= 1.12
nab 0 0 0 -1 ( )
00 -1 0

In relativity, usually, we solve the Einstein equations where the unknown
variable is the metric. Now we know how it looks like for the tetrad. So, have
all the work been done already? Of course not. We have chosen how the matrix
representation of the metric looks like. Usually, when using a coordinate tetrad,
the metric gives us covariant derivative, Christoffel symbols and because the
Riemann tensor is given only by metric and its derivatives, it is also granted. Now,
they are not. Not even the metric is really known, we know only its representation
in the Newman—Penrose tetrad, but the tetrad is not given, we have to find it in
order to get the metric tensor. It is clear from that only by contracting the
equation with the tetrad, we arrive at an expression for the metric:

Gab = 2l(@anp) — 2m, M) (1.13)

where the parentheses denote symmetrization. We shall discuss this topic later
on in section [L.7]
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Table 1.1: A table of connection coefficients.

1.4 Spin coefficients

We start a discussion of the formalism with the computation of a covariant de-
rivative in the null frame and its projection onto the null tetrad.

The following symbol V; is the covariant derivative projected onto the tetrad,
this can be written as V; = ¢;°V,. The covariant derivative we shall be using,
unless otherwise stated explicitly, is the metric compatible and torsion free Leuvi-
Cwita covariant derivative.

The Ricci rotation coefficients are defined, [53], by
Vaey® = 7,3 e (1.14)
and )
Yabe = ~Thae = nacﬂdiye' (1.15)
Some of them are real, some pure imaginary and the rest of them is complex.

Let V?® be a vector field. Using the Ricci coefficients, we can calculate its
covariant derivative as

ViV = Va(Vie;") = (ea(VE) +754° VP)es (1.16)
As it is usual in mathematical notation, by the action of e; on V¢, e, (Vf‘), we
mean e;" 9, V¢,

We can find a list of spin coefficients in table [l.1, [57]. As can be seen
from the table, they are simply given as complex combinations of the Ricci spin
coefficients. The V symbol in the first and last lines is substituted by the cor-
responding letter in the first column. The letters in it denote the projections of
covariant derivative operatorﬂ onto direction of the bases vectors as follows

D=1"V,, A=n"V,, §=m"V,, §=m"V,. (1.17)

We could also write it as D = Vg, ... 0= V.

8Tt is not a projection of the covariant derivative because that would be projected twice.
The result of this operation is a vector, not a scalar as it would be in the case of projection of
covariant derivative.
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The last line in the table is the spinorial form of the first one. This way of
description will be discussed in the section to follow. From this definition arises
the complex combinations. This point of view is discussed also in [53].

As an example of how to read the table, we take the coefficient k, it is de-
termined as
k = m®Dl, = m®®Vyl, . (1.18)

Let us compute the covariant derivative of the first basis vector in the direction
of itself to demonstrate the usage of the spin coefficients. It surely has to be given
in terms of the basis such as

DI* = al® + bn® + em® + em” [ (1.19)

In order to express a,b and c in terms of the spin coefficients, we project the
equation successively onto the tetrad and use the contractions . Contracting
with [,, we get

lo DI* =b. (1.20)

And using that the basis vectors are null, it follows

l1*=0 /D, (1.21)
2l,DI* =0. (1.22)

This gives us
b=0. (1.23)

To compute a, we just multiply by n,.. For we get n, DI* = a, we are
interested in € spin coefficient from the table [I.I} Our situation is slightly com-
plicated by the fact that this coefficient is not given only by the term we want,
but also by m*Vm,. This term is complex in contrast to the real one we want

to compute. On the other hand, considering both £ and its [complex conjugate

, we find

1
e+ &=n"Dl, — §(TTLGDma +m*Dmy,)
1
=n"Dl, — §(m“Dma + D(m®m,) — m*Dm,,)
=n*DI,
=a. (1.24)

We used the contraction ({1.8b]) and the fact that covariant derivative of a constant
is zero. Note that complex conjugate of D is D itself because covariant derivative

90One might have wondered why is the last term proportional to the |coefficient (coef.) &
instead of some d. The reason is that the [left-hand side (LHS)|is real and therefore the
lhand side (RHS)|also has to be real.
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is real operator and so is the vector [*. When treating the term m®Dm,, we have
commuted the two resulting terms using the symmetry of the scalar product and
also used that we can lower and raise indices around the covariant derivative (by
the means of the metric, covariant derivative of which is zero, for we are using
metric covariant derivative).

We are left with computation of ¢. As we can see, it is related to the spin

lcoefl «:
c¢=-mDl, = —k. (1.25)

The final expression for the covariant derivative of the first tetrad vector in
its own direction is

Di*=(e+&)I"—RFm* — km". (1.26)

We have not chosen this certain example for no reason. The resulting equation
has two important explications.

Firstly, it is an equation that tells us how is [* propagated to the space-
time. For this reason, it is called transport equation. For the complete set of
transport equations, one can take a look into appendix [A.T]

The second significance of this particular transport equation is even more
important for us. If the spin k = 0, the equation becomes a geodesic
equation. As we can see, the real part of ¢ then measures deviation from the
affine parametrization. It turns out that the case k = 0 is the one we are typically
interested in.

Before we describe in the next chapter why x should have such a specific value
in our investigation, let us make a few digressions, we start with introduction of
a complementary notation to the [NP| tetrad.

1.5 Spinor formalism

As mentioned earlier, the spinor formalism motivated our particular choice of
tetrad and, in fact, is the underlying reason for the appearance of terms in the
tetrad formalism. It is also more powerful for some kinds of computations, which
is useful thanks to a straight link to the tetrad allowing us to change the point of
view. Nevertheless, the tetrad is the main object of study for us, and, therefore,
we establish the spinorial basis to meet the tetrad although it was originally done
otherwise. One can take a look into the original paper by Penrose [39] or into
some more recent works, e.g. [55].

When using the spinor formalism, we think of the tetrad as constructed
from a pair of spinors: (04, LA)H The spin-frame basis is normalised by conditions

10To read equations properly, please note that the first spinor is usually denoted by Greek
letter omicron.
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eapo’o? =0, eagotB =1, (1.27)

where €45 is a skew-symmetric tensor in 2-dimensions (the Levi-Civita tensor).
The first normalization condition is necessarily fulfilled due to (anti-)symmetry.
The Levi-Civita symbol behaves similarly to the metric tensor on the spinors —
it is performing the inner product

eap&n’ = €pn® = —Ma. (1.28)
Alternatively, we could write
¢ =e"Pep, £a=epal”, (1.29)

where €45 and €*? are inverse to each other in the sense of

GACEBC = (5g . (130)

For ([1.27)) holds true, we can easily determine the dual basis to be (—t4,04).

Also the Levi-Civita symbol can be expressed via the spinor basis. It has two
indices and is skew-symmetric, therefore, it has to have the form

€ap = aoalp + bopty . (1.31)

The coefficients ¢ and b can be determined from the fact that it raises and lowers

indices, see (|1.29)).

€Ap0” = aoaLpo™ + bogLaot

=0+ bogecatf ot
|

= 0p. (1.32)

Hence, b = —1. Analogously we would get a = 1. The Levi-Civita symbol in the
spinor formalism is given as

€AB = 0Alp — OBLA . (1.33)

The convention is €g; = 1, which leads to the matrix representation of € 45 in this

€AB = <_01 (1)) : (1.34)

Using the spinor formalism, we can also perform scalar product of 4-vectors

basis:

thanks to their equivalence. Let V@ = 06?4, where the primed spin-space is
of the unprimed. Hence, the conjugation is

A =N (1.35)

As indicated, there is a correspondence between the spin-frame and the tetrad,
therefore, there is also a relation between the indices — one lower case abstract
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index is in accordance to a pair of upper case spinor indices — a ~ AA’. The
vectors of the dyad have two components, in comparison with the tetrad indices

ae{0,1,2,31, Ae{0,1}. (1.36)

The normalization of the vector V¢ is

!

VeV, = 026 0404 = 020 egaeg 40P = 0. (1.37)

The dot product V'V, is zero because of the anti-symmetry of eg4 and the sym-

metry of 0%0®. The pair 06" can be regarded as V? from which we have that

VYV, = egaepa VeV, (1.38)

so the pair of metrics on the two spin-spaces is the metric in the 4-dimensional
space

EBAEB’ A’ = (Jab - (139)

As we can see, the anti-symmetry of the spinor metric is in the relation to the [NP]
metric (which is symmetric) compensated by multiplicity of the e4p. Similarly,
one can show that the spinorial equivalent of the volume form €, is

€abed = i(EABECDGA/c'GB'D/ - €A'B'€C/D'€ACEBD) . (1'40)

We have chosen one particular vector’s spinor form, what other choices could
we have done? One can easily see that for another choice W = 474, the
situation is the same — it is null. We have found two null vectors, what is their
scalar product?

!

VaWa == OA5A/€AB€A/B/LBZB =1. (141)
These two vectors are therefore good candidates for spinor form of the first two
tetrad vectors. We would also like to find the remaining two of them.

We have been combining o and (* with themselves, we are left with their
combinations

~a

Ut =o', U =/". (1.42)

It can be easily checked that they are null, and meet the desired contractions
without any factor.

We arrive at simple relations between the tetrad and the spin-frame

’ ! / ’
¢ = oY, n® = A4, m® = o714 | me = 47 . (1.43)

These relations can be also taken as the definition of the spin-frame.
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Figure 1.3: Stereographical projection onto the complex plane.ﬂ

@A part of the code for this figure was adopted and modified from an example of usage of
the Tikz system written by TRZECIAK, ToMASZ M. which was on the 8th of February, 2016,
available at http://www.texample.net/tikz/examples/map-projections/.

1.6 Geometrical introduction of spinors

The spinors can also be established from geometrical considerations. We start
with a compler plane described by a complex number 3. The number can be
expressed as a quotient of two numbers ¢ and 7: 3 = (/n. The plane is ste-
reographically projected onto a sphere (zero is projected to one pole a and the
complex infinity to the other), the situation is shown in the figure .

We can introduce a Cartesian coordinate system on the sphere, where the
coordinates are

_ S+ IR _ i
P+l L+ <P+ Inl?

This sphere is a space-like hyperplane. Let us add the time-like direction to

(1.44)

complete the space-time. We can start with a choice ¢ = 1 as our first simple pick
to get the sphere as a section of the space-time. The situation can be seen in the
figure [1.4] From the picture it is clear that any other plane for different time is
also a sphere, with a different radius. We can choose

t=¢C+nq (1.45)

in our convenience. It is easily seen that this term is exactly the denominator
of X, Y and Z. It was chosen so we can adopt their nominators as lower case
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X

Figure 1.4: Section of the null cone which creates a sphere. The direction of
the coordinate Z is not displayed.

version of these coordinates:

r=CT+Cn,  y=—i(T—Cn), z=(—n7. (1.46)

We introduce a spinor ¢4 as a pair

¢4 = (f]) : (1.47)

The point is that we are able to express the new coordinates using the spinor and
its Hermitian conjugate which is to be denoted with + as superscript. Therefore,

e.g.

t="AE=(C ) A (f]) , (1.48)

where A; is a matrix. This matrix has to be

A, = ((1] (1’) (1.49)

in order to meet the choice (1.45)). In analogy we get

r=cag=@ na () (1.50

A = ((1) (1)) (1.51)
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The coordinates t, x, y, z are components of a null vector k* which lies in the
light cone. The covariant form of expressing its coordinates using spinors is then
given by equation

ko = €48 61 (1.52)
where o4 ,, is a vector of matrices A; with i = ¢, z, y and z. It is a soldering
form — an isomorphism between two tangent spaces [58]. As was broached, it is
a vector of matrices and in our case they are the Pauli matrices. This particular
one takes tensors into spinors and vice versa.

1.7 Set of unknown parameters and their field
equations

We have already indicated that the situation is different from the most usual case
when we are solving Einstein equations to find out the proper metric. We shall
arrange our variables and field equations for our case.

However, let us firstly discuss a set of transformations of the tetrad. The
topic is included at this place because at the end of the discussion, we will be
able to see that the neat notation for our variables is connected with two of them.
Transformations which we proceed to introduce will be later used to discuss the
gauge freedom in the choice of the null tetrad (its fixation). We start with two
similar transformations important for the notion: the spin and the boost. The
transformations can be found in [55].

1.7.1 Spin weight

The first one is a rotation in the plane spanned by m® m® and is given by
m® s eXm? m® e~ Xm® (1.53)

where y is a real function. Therefore a function 7 is said to have spin weight s
when it transforms under the rotation as

n > eXn . (1.54)

The origin of the transformation rules (1.53)) can be easily seen on the spinorial
level. Clearly, a transformation

ot s el3o? A e 34 (1.55)

preserves the normalization condition ((1.27)) and by means of (1.43) it leads to
(1.53]).
In the next subsection we will introduce a similar concept, the boost weight.

A quantity can have none of the weights, one of the weights or even both of them
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defined. Note that undefined weight is different state from having zero weight.
An example of a quantity which does not have defined the spin weight is the
product of the Newman—Penrose operator § (and of course also the 5) and a spin-
weighted function. Let us proceed to show how ¢ acting on an arbitrary function
with spin weight s transforms under the spin:

o =m*Vn— eXm*V, (eisxn) = e (eisX Van + isne'™x Vax)
= ! CTVX (5 4 isn 0) . (1.56)

At first, it might look like it has the spin weight s + 1, but there is an additional
inhomogeneous term isn dy. Therefore, § and § do not preserve the spin weight.
However, we can add a compensation term to ¢ to define a new operator 0,

on=dn+s(a—p)n. (1.57)
This operator transforms homogeneously with spin weight s + 1:
On s elCtx gy (1.58)
There is also a conjugate operator by which ¢ can be replaced:
577:577—3(@—3)77. (1.59)

These two operators will be with convenience used later.

1.7.2 Boost weight

The boost is, on the other hand, a transformation in a plane spanned by [* and
n®. Therefore, we want to scale the spinors which give these directions. If we
impose the change

o s Azot A AT (1.60)
the equations of the transformation in the tetrad formalism are

1 Al°, n® e A'n (1.61)

Function A is real and positive. Vectors m® and m® and the normalization [,n® =
= 1 alike are unchanged. Similarly to the spin weight, a function n has boost
weight w if it transforms according to the relation

n— A“n. (1.62)

Unlike in the case of the rotation, it is not immediately obvious that the
transformation is the boost. Let us demonstrate this. The transformation of
vector t¢ is

t*=—("+n") — L(Al“ +A7'n%) =

% (A" +2%) + A7t — 2%))

Nig
[\
DN | —

= at® —az" (1.63)
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where

a:%(A_l—I—A), d:%(A‘l—A). (1.64)
It is straightforward to check that, independently of A, equation
a*—a*=1 (1.65)
holds true. For this reason, we can write a and a as
a = coshf, a = sinh6. (1.66)

Situation is analogical for 2%, which gives us the usual formulation of the boost
transformation

t* +— cosh 0 t* — sinh 0 2% (1.67)
2%+ coshf 2% — sinh 0 ¢*. (1.68)

It is a well known fact, [55], that the Lorentz group, which consists of
rotations and boosts, has 6 parameters. So far, we have introduced only two of
them. This should lead us to a search of other, more complicated, transformations
which would complete the set. It turns out that they can be represented by two
more general rotations: rotation about [* and about n®. Both of them give us two
more parameters. We shall show the one around [*, the second one is analogous.

As before, its form can be better understood from the spinorial frame. The
vector 1%, about which we want to rotate, is in this formalism given only by 0%,

therefore, we want to leave o

as it is. The transformation is given by a change
of 14. We have already scaled it and changed its phase, we are left with addition
of 04 to it. Together the transformation is

ot 0t A ot (1.69)

This gives us the Newman—Penrose form of the transformation

1 17 (1.70a)
m® — m® +él”, (1.70Db)
n® = n® 4+ em® + em® + |c|*1*. (1.70c)

The function ¢ is complex; hence, gives us two parameters.

Beside the Newman—Penrose formalism, there exists so called [Geroch—Held—
IPenrose (GHP)|formalism in which equations are written gauge invariantly, [59].

It is about time to get back to what is different from Einstein’s formulation
of general relativity.
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1.7.3 The usual approach

The usual approach is pretty well-known, and we very briefly review it only to be
able to point out the differences we are experiencing with the Newman—Penrose
formulation. One can refer, e.g., to [6] for more information on the topic of the
standard formulation.

Our unknown is the metric tensor g,,, which is found by means of the Einstein
equationsE]
Gw,(g,agﬁ?g) =8nT,, . (1.71)

We have omitted the term with the cosmological constant for we shall not consider
it later on. As we have indicated, the Einstein tensor G, depends on the metric
tensor up to its second derivatives (through the Ricci curvature tensor). The
Einstein equations are therefore partial differential equations of the second-order.

1.7.4 Spin coefficient approach

We would like to simplify the situation, namely we do not want to solve second-
order differential equations, instead, we can have only first-order differential equa-
tions whose solution would yield the metric. To achieve this, we have to increase
the number of equations and variables. This is somewhat analogous to passing
from the Lagrangian formulation to the Hamiltonian one, where the reduction of
the order of equations of motion is compensated by an increase of the number of
equations.

Identities which are usually trivially satisfied, namely the Ricci and Bianchi
identities, are now our field equations. These equations are projected onto the
tetrad, and expressed in terms of the spin coefficients and components of the
Riemann tensor — these are the variables of ours. The reason is that the Riemann
tensor actually cannot be calculated by the well-known definition because we do
not know how the connection looks like, its components are the desirable spin
coefficients. On the other hand, Einstein’s equations are now only an algebraic
relation between the energy-momentum tensor and the Ricci tensor. This section
is in correspondence with [52] and [57], be aware that [52] uses a different sign
convention, we use the one referred to as “— — —"[%in [60] and used by Roger
Penrose.

As mentioned, components of the Riemann tensor are included into our vari-
ables. It turns out that they can be represented by 5 non-zero complex com-
ponents of the Weyl tensor and 9 components of the Ricci tensor, for both of
which a neat labelling arises from the spinor formalism, completed with the scal-
ar curvature R (or A, to be explained) which gives us 16 unknowns. Therefore,

HWe use the geometrized units; G = ¢ = 1.
12Not to be confused with the signature, though, its sign is included in the first minus which
shows we are using the mostly negative one.
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we proceed with a decomposition of the Riemann tensor in the spinor formalism.
It is well known that it can be divided into parts according to their trace as (in

four dimensions)

1
_Rga[cgd]b . (172)

Rabcd = C(abcd + (ga[cRiCd]b - gb[cRiCd]a) - 3

The square brackets denote antisymmetrization.

The Weyl tensor C,peq is in the spinor formalism given by the Weyl spinor
and the metric-like acting Levi-Civita tensor as

Cabed = Caappccpp = VYapepeapecp + Varpcrpeapecn - (1.73)

Similarly, the Ricci tensor in the spinor formalism can be divided into trace-free
part consisting of the Ricci spinor and the scalar curvature, while the scalar
curvature in the spinor formalism is written as A = R/24:

RiCab = RiCAA’BB’ = _2¢)ABA’B’ + 6A€AB€A’B’ . (174)
Finally, the Riemann tensor is in spinor terms decomposed as follows:

Raved = Vapepeapecn +Vapcrpeapecn
+ ®apcrpeapecp + Popapeapecp

- QAEABECDGA’(C/ED/)B/ - 2A€A’B’EC’D’€A(CED)B . (175)

The five non-zero components of the Weyl spinor are

Ty = Yooo0 = Y apcpo0P0%0P = Chpeq 19mP1m? (1.76a)
Uy = Wooo1 = Yapcpo0”0“t” = Copea 1*n"1°m (1.76Db)
Uy = Uoo11 = Uapcpo?oP 19l = Cupeq 1°mPmc nd (1.76¢)
U3 = Wo111 = VapepotPi9P = Cupeq 1°n"mn? (1.76d)
U, = Uypq1 = UagoptBiOP = Copen m“nbmcnd (1.76e)

where the tensorial form is, for completeness, also shown. The components of

the Ricci spinor are

(DOO = (DABA/B/OAOB_A/_B/ = —%RiCab lalb, (177&)
CI)Ol = (I)ABA/B/OAO OA/ B = —%Ricab 1“m (177b)
By = Papapo?oPiViP = —%Ricab mm®, (1.77¢)
(I)IO = (DABA/B/OALBéAlaB/ = —%Ricab Z“mb, (177d)
@11 = @ABA/B/OALB_A/ B = —leRiCab (lanb + mamb) s (]_ 776)
(I)lg = (I)ABA/BIOALBLA % = —lRiCab n“mb (177f)
(I)QO = (I)ABA/B/LAL OA/ _B, RlCabm mb (177g)
cI)Ql = @ABA/B/LALBOA, i = = —RlCabn mb (177h)
(I)QQ = (I)ABAIB/LALBLA/ Bl 1Rlcab nanb (1771)
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Notice that some of them are complex conjugates of others and we only need
®,; with a < b.

The field equations for the spin coefficients (and components of the Weyl
tensor) are broken into three sets according to their meaning. The equations
from the latter two groups shall be covered only by examples — to reveal their
structure — while the full sets of them can be found in the appendix [A] At this
place, we only describe the purpose and origin of these equations.

1. The commutation relations are obtained by writing down commutations
between the Newman—Penrose derivative operators explicitly using the spin
coefficients. They are

AD—-DA=(y+79)D+(e+)A—-(T+m)o—(1+7)6, ( )
D—-Di=(@+B-7)D+rA—(g+ec—&)5—04, ( )
SA—ANS=-TD+(t—a—FA+(p—y+7)5+ A0, (1.78c)

00 =00 =([R—p)D+(@—0)A+(a—pB)d—(@—p)d, (1.78d)
and they are valid when acting on a scalar. They can also be seen in an al-

ternative form which arises from a natural choice of the scalar — coordinates.
Then we have

Al* = Dn* = (y+)I*+ (e+&)n* — (T+m)m* — (r+7)m*, (1.79a)
3 —Dm®* =(a+p—7)"+kn* — (0+¢e —&m" —om?, (1.79Db)
on* — Am® = —vl* + (1 — & — B)n® + (u — v +y)m* + Am®,  (1.79¢)
dm® — 6m® = (m — p)l* + (6 — o)n® + (o — B)m" — (@ — B)m*. (1.79d)

2. The spin-coefficient equations which are in fact the tetrad version of the
Ricci identities. They express derivatives of the spin coefficients in terms
of themselves and components of the Riemann tensor. The list of them,
other forms of them as well as procedure of getting the tetrad version is in
section [A.2] We have 36 equations of this type. As an example we mention
one of them:

Dr— Ak =(t+T7)o+ (T+mo+(e—8)r
— (3’7+’7)H+\I}1+¢01. (180)

3. The Bianchi identities are equations for components of the Riemann
tensor, i.e. for the Weyl scalars, Ricci components and scalar curvature A.
Details can be found in section . There are 8 complex equations (a—
h) and 4 real of which two are concatenated into one complex (i-k). The
equations are of form

DU, — 6Uy — DOy + Doy = (7 — 4a) Vg + 2(20 + &) W) — 36Ty + 26Dy,
- (7_T — 20 — 26)@00 - 20'(1)10 - 2(@—{— 6)(1301 + E(I)OQ (181)

and can be found in section [A.3]
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As we could already notice, the procedure of projecting the field equations
onto the tetrad (and abandoning of the covariant derivative in favour of the
Newman—Penrose operators) convert tensor equations into scalar ones. We have
to give up on summations in order to use the spin coefficients explicitly, this leads
to large sets of equations, however, space-time symmetries can help to reduce the
number of equations, and, even though, that we have still not a few of them, they
are in particular cases simple to use and solve.

As we have seen, there are 12 complex spin carrying information equi-
valent to 24 independent Christoffel symbols. Next, the curvature is encoded in
6 complex components of the Ricci spinor ®,,,, and the scalar curvature A, which
describe the matter through Einstein equations. Finally, there are 5 Weyl scalars
depicting degrees of freedom of the gravitation field itself.

1.7.5 Maxwell equations

Maxwell field tensor can be represented by a symmetric 2-spinor usually denoted
oap- It is associated to the Maxwell tensor via [57]

1

bap = §FABC’CI = ¢pa . (1.82)

Equivalently,

Fu=Fapap = dapean + dapean. (1.83)

Using a relation €18 = 048 — 40P (which can be obtained analogously to (1.33)))
the identity ¢pap = ea%ep”dcp goes to

$ap = $20405 — 2¢10(aLB) + Polalp (1.84)

where 3 complex scalars were identified
¢o = papoo” ¢1 = papo™?, pap = a7 (1.85)
Then we have four complex equations
VA5 =0 (1.86)

which stand for the eight real Maxwell equations. The introduced spinor ver-
sion of covariant derivative is an analogue to the vector one with one additional
requirement — any linear map obeying the Leibniz rule acting on spinors/tensors
can be written as a contraction of tangential space-time vector 44" and the co-
variant differential when acting on a spinor field. The complete set of axioms for

the spinor version of covariant differential can be found in |57, p. 81].

This equations can be rewritten analogically to the Bianchi and the Ricci
identities by means of a projection onto the basis where we employ the 3 complex
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Table 1.2: A table of spin weights of important scalars in the Newman—Penrose
formalism.

scalars. The projections are

Doy — 6y = (1 — 20) o + 2001 — ks , (1.87)
Doy — 8¢y = —Ago + 21 + (0 — 2€) ¢, (1.88)
Apg — 6y = (27 — 1) — 27¢ + 0¢hs (1.89)
Apy — 0a = vy — 2ud1 + (28 — 7)o . (1.90)

In an electrovacuum space-time we can express the traceless Ricci tensor (no
scalar curvature is, therefore, present) as

In the electrovacuum, these are the Einstein equations.

In table [I.2] spin weights for the scalars and the spin coefficients are listed.
Note that the convenient spinor notation is directly connected to spin weights of
the scalars. Only the spin coefficients possessing a spin weight are present. The
boost possesses analogical property.
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2. Non-expanding horizons

Having established the convenient formalism for the null hypersurfaces, we are
prepared to introduce a special class of horizons, so-called isolated horizons,
and analyse them in the Newman-Penrose formalism. Ultimately, we are in-
terested in the intrinsic geometry of these horizons and in the geometry of the
space-time near the horizon. A general analysis has been done in [38], and the
main goal of the thesis is to perform analogous analysis for the special case of
the Kerr—-Newman metric, as explained in the introduction. We warn reader that
we employ different conventions than that of [38]. Differences result in different
signs in several equations.

In order to introduce isolated horizons properly, it is necessary to address the
issue of kinematics of null geodesic congruences. This is most easily done in the
Newman—Penrose formalism where certain spin coefficients are to be identified
with the so-called optical scalars. The definition of an isolated horizon imposes
several restrictions on the Newman—Penrose quantities, which will reduce a huge
gauge freedom in the formalism, as we developed it in chapter [1, and will allow
us to define a null tetrad adapted to a space-times with isolated horizons in an
invariant, geometrical way.

2.1 Expansion, shear and twist

One of the most powerful tool for understanding the geometry of a curved space-
time is based on an analysis and visualization of geodesics of the given space-time.
Among all geodesics, the null ones are clearly privileged, as they define the causal
structure. However, the Schwarzschild space-time shows that the analysis of the
geodesics must be done carefully: a freely falling observer will never cross the
horizon from the point of view of an external observer, while the same observer
penetrates the horizon in a finite proper time in his own frame of reference. Thus,
an invariant, coordinate independent description is necessary. For this reason, it
is more useful to characterize the behaviour of congruences of null geodesics by
scalar quantities, in particular, by the Newman—Penrose spin coefficients. For a
brief review of optical scalars in the formalism, see [61], for a general and
comprehensive treatment of time-like and null congruences, see [62].

We consider a congruence of null geodesics with the tangent vector field [*. At
each point of the congruence, we complete [* to a Newman—Penrose null tetrad
and define a projector to the space orthogonal both to [* and n* by

Gab = —mamb — mamb. (2.1)

In fact, gu plays the role of the metric on the 2-dimensional subspace, cf. (2.14]).
This is analogous to a similar construction for time-like congruences where a
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projector hy to a 3-dimensional subspace orthogonal to a time-like vector u® is
defined. However, such a construction fails for null congruences since the induced
3-dimensional metric is degenerate [5, 6].

The expansion of [* is defined by the relation
Ow = ¢"" Valy, (2.2)

i.e., the expansion is a 2-dimensional trace of V,l,. The so-called shear tensor
is defined by

1
oab = (Vialy)) — 59(1)%1;, (2.3)

where the parentheses denote symmetrization and #(...) is a projection onto the
2-dimensional orthogonal space-like plane spanned by m® and m®. The shear
tensor oy, is a rank two tensor but, for many purposes, information encoded in

the scalar

b

o0 = 62 (2.4)

is sufficient. In that case, & is referred to simply as the shear. We decorated the
shear ¢ by a hat in order to distinguish it from the spin coefficient for which we
reserve the symbol o.

The complementary antisymmetric part to the shear tensor (2.3) gives us
analogically the twist tensor

wap = H(Viuéy) (2.5)

and the twist scalar

Wapw™ = &2 (2.6)

Optical scalars have intuitive geometrical meaning [57]. Consider the flat
Minkowski space-time and a family of null geodesics (which are straight lines)
forming a surface of a cylinder. That is, any cross-section of the family is a
circle, see figure [2.1b] Now, suppose that the family of geodesics enters a region
with negative expansion, while remaining optical scalars vanish. The effect of
negative expansion is an exponential focusing of the geodesics at a rate given by
O, figure . If, on the other hand, the geodesics enter a region with non-
vanishing twist, with remaining optical scalars being zero, the cross-section of the
family will remain circular but the geodesics are helices lying on the surface of
the cylinder, see figure Finally, in the region with just non-vanishing shear,
the circular cross-section is deformed to an ellipse. One semi-axis of the ellipse
tends exponentially to zero at the rate given by the shear, while the other semi-
axis is increasing at the same rate, so that the area of the cross-section remains
constant, see figure[2.1¢l In general, all the three effects are present, as illustrated
in figure 2.1ff Behaviour of the 2-dimensional cross-section in all the cases is also
plotted in figure
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Figure 2.1: A family of null geodesics as it is affected by optical scalars: (a) The
family of null geodesics in the flat space-time forming a surface of a cylinder.
(b) The cross-section of the family is circular. (c) Focusing of the geodesics
in a region of negative expansion ©,. (d) Helical shape of the geodesics in the
presence of twist. (e) Shearing of geodesics preserves the area of a cross-section.
(f) A combination of negative expansion, shear, and twist.
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2.2 Non-expanding horizon

We have already planted all the seeds needed to understand the definition of
the special horizon we are going to discuss in depth. The concept of an isolated
horizon representing a black hole in equilibrium with its neighbourhood has been
proposed by Ashtekar and collaborators [63]. Subsequently, a complete formalism
has been developed in works [64, 65, 66, 67], and it was shown that isolated
horizons satisfy usual laws of black-hole thermodynamics. In addition, multipole
moments can be assigned to isolated horizons [68] which are different from usual
Hansen—Geroch multipoles defined at the spatial infinity [69).

Definition 2.1. A non-expanding horizon H is a null hypersurface with to-
pology R x S2, where §? is a two-sphere, which meets the following properties:

1. Any null normal to the horizon [* has vanishing expansion.
2. Einstein’s equations hold on H.

3. For any future pointing null normal [%, the vector T, is also future point-
ing where T, is the energy momentum tensor.

Definition refers to an arbitrary null normal [*. It is a specific feature
of null hypersurfaces that any vector orthogonal to a null hypersurface is also
tangent to it. Although this is a bit counter-intuitive, it is clear that any null
vector is orthogonal to itself. Conversely, the only vector which is orthogonal to
any vector tangent to a null hypersurface, is itself a tangent. This is related to the
fact that a three-dimensional metric induced on a null hypersurface is degenerate
[5].

However, not only is the normal [* tangent to a null hypersurface, but its
orbits are also necessarily null geodesics. These geodesics are called generators
of the null hypersurface. Different normals [* and ['* can differ, at most, by a
scaling, i.e. I'* = ¢l® where ¢ is an arbitrary function. Both such normals have
the same orbits (as sets), but they can be parametrized differently. In particular,
any null normal [ is tangent to a null geodesic, but this is not necessarily affinely
parametrized. In the following, we prove aforementioned properties of [*.

Proof. A hypersurface can be given, at least locally, by a condition u = 0, where u
depends on all coordinates. Then a 1-form [, annihilating all tangent vectors (which
means that [* is normal to the hypersurface) is therefore of the form l,|y,—0 = f Vau
where f is an unspecified function, for it holds that any tangent vector t® satisfies
% Vu|y—0 = 0, since u = constant on the hypersurface. Then

1°f Vquu|ueo = 1°ly = 0 (2.7)
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shows that [ is tangent and

1 Valplueo = 1% Vaf Vou = fI*VoViu + 14(Vaf) (Vo) = fI°VVau + 1%(Va f) (Vou)
= f1*Vla + 14V o) (Vi) = 3V, (1a1%) + 19(Va f) (Viu)
=0+1%(Vaf)(Vou) = (Dlog f)ly (2.8)

is an equation of a non-affinely parametrised geodesic for [*, where the “acceleration”,
i.e. deviation from the affine parametrization, is given by D log f, where D = [*V, is
the usual [NP| operator. O

Let us get back to the fact that [* is a normal to the hypersurface H. It is
well-known that not any congruence of curves is hypersurface orthogonal, which
means that, in general, for a given congruence, it is impossible to construct a
foliation of a manifold M by hypersurfaces such that each vector of the congru-
ence is orthogonal to the hypersurface containing that point. In more geometrical
language, any 1-form [, defines a distribution on a manifold, that is, at each point
P € M, it selects a subspace Vp C TpM of the tangent space by the condition
[, X*=0. If these subspaces Vp define a foliation of the manifold, distribution is
said to be integrable.

A practical tool to decide whether a given distribution is integrable is provided
by the Frobenius theorem [6] [70]: a vector field [* is hypersurface orthogonal, if
relation

l[avbld =0 (2'9>

is satisfied. Therefore, the congruence of [* is also twist-free. In other words, the
obstacle for a congruence being hypersurface orthogonal is the presence of twist.
Without a rigorous proof, the Frobenius criterion can be justified as follows: If [,
arises as a gradient of a scalar function, say, [, = V,u, its twist is automatically
zero, because Vigly = VoVyu = 0 by the absence of a torsion. Moreover, a
congruence will be twist free also if [, is just proportional to a gradient, i.e. [, =
= fV,u. However, the exterior derivative now does not automatically vanish,
for we have

V[bla] = —f_ll[avb]f. (2.10)
Multiplying with [. and antisymmetrizing in [abc| we find
l[cvbla] = —f_ll[clavb]f =0, (2.11)

because of a symmetry of the expression in (ca). Thus, the Frobenius criterion
actually checks if a given 1-form [, is a gradient or a multiple of a gradient.

We shall show that the absence of expansion implies also zero shear. Thanks
to that, we are treating horizons which do not expand, neither shear nor twist.
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Figure 2.2: Local topology of the space-time.

2.3 Structure of the horizon

We would like to be able to picture the structure of the horizon in terms of the
Newman—Penrose tetrad adapted to the horizon in an appropriate sense. Since a
null tetrad is a basis of the tangent space, we can always imagine a “Minkowski”
orthonormal tetrad (t%,z% y%, 2*) induced by the null tetrad via relations .
As early as in the definition, we have wordlessly separated the basis vectors of a
null tetrad into two pairs. The elements of the first of them, [* and n®, contain
the Minkowski time direction ¢*. When studying gravitational waves, we usually
interpret [* as an outgoing wave and n® as an ingoing one (or vice versa). In other
words, directions given by [* and n® contain the time evolution, and, typically,
we choose (one of) them to be geodesics. On the other hand, vectors m® and m®
are orthogonal to both ingoing and outgoing null directions and, hence, they do
not contain the time direction. In fact, relations show that they arise from
a complex rotation of vectors z* and y* of the Minkowskian frame. In this sense,
they form a basis of space-like subspace of the tangent space at each point. Let
us now turn to the question how to choose the null tetrad in the presence of an
isolated horizon. Such a choice should respect the geometry of the horizon in
some sense; let us clarify this point.

From the definition we know that the horizon has topology R x 82. The
generators [ are topologically isomorphic to R. We already know that there is a
2-dimensional space-like hypersurface orthogonal to [¢, and it can be now easily
concluded that we can choose vectors m® and m® as a basis of the (space tangent
to the) sphere S%, and we will do so shortly. The structure is schematically illus-
trated in figure It is assumed that the whole space-time in a neighbourhood
of the horizon can be foliated by such null hypersurfaces so that the topology of
the space-time is, at least locallyﬂ R x R x S2.

In principle, global topology S x R x &2 is not excluded, although we consider it as non-
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Now we would like to construct convenient coordinates on the horizon which
reflect the structure we have found. Let us pick one particular 2-sphere, and
denote it by Sy. We define a coordinate v by putting it equal to zero on &y and
propagating it along the generators [(*:

v=0 onS,, Dv=1. (2.12)

The equality with a dot means that two quantities are equal on the horizon,
however, they do not necessarily have to be equal elsewhere. Recall that D is the
Newman—Penrose covariant derivative operator. From the fact that the topology
of R is given by [¢, it follows that the spheres are labelled by the coordinate v.

The spheres are 2-dimensional spaces, and we need to introduce two other
coordinates 2% and 2® — let them be the spherical coordinates 22 = ¥ and 2 = ¢
which are given on the sphere §y. They are propagated on the entire horizon H
as

Dzl =0, I=23. (2.13)

Thus, we have established coordinates (v,x') on H.

Next, we wish to complete the generator [* to a full null tetrad on the horizon.
On Sy, consistently with the discussion of the horizon topology above, we choose
vectors m® and m® in an arbitrary way. With these vectors, we associate a
projector on Sy

¢ = —mm’ —m,sm® onS. (2.14)

It acts as identity on T'Sy and annihilates (. It also gives us degenerate induced
metric on the horizon ‘H and non-degenerate metric on Sy.

Naturally, we want to extend vectors m® and m® off the initial sphere Sy
to the entire horizon. One natural choice would be to parallelly propagate m®
along (%, and such a choice is often done in the context of Bondi tetrad at the
null infinity. However, an isolated horizon is supposed to describe a black hole
in an equilibrium with its neighbourhood. This does not mean that the space-
time metric is stationary, i.e., the presence of a Killing vector is not required.
In this sense, isolated horizons are generalizations of stationary Killing horizons.
Nevertheless, the condition of being in an equilibrium imposes restrictions on the
intrinsic metric of the horizon. Namely, it turns out that for a weakly isolated
horizon, the induced intrinsic metric ¢s stationary and the pull-back of [, is the
Killing vector of the induced metric. For this reason, it is more convenient to
propagate vectors m® off the sphere Sy in terms of the Lie derivative, rather than
using the covariant derivative. That is, we would like to propagate m® requiring
that the Lie derivative of m® vanishes along [*. Then, the projector can be
interpreted as a Lie constant metric on H.

There is an issue, however. In general, a Lie transport does not preserve the
scalar product. Hence, if we have a null tetrad at one point and we Lie drag it,

physical situation. However, even such topology is locally, in the neighbourhood of the horizon,
of desired type.
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in general, we end up with differently normalized set of vectors. In what follows,
we carefully show that a non-expanding horizon is non-shearing and non-twisting
as well. This implies that the Lie dragging preserves the normalization of vectors
tangent to the horizon and, consequently, the Lie dragging preserves the induced
metric, and we can conclude that the intrinsic metric is stationary.

2.4 Geometrical interpretation of optical scalars
and their relation to spin coefficients

To elucidate physical interpretation of equations from section it is conveni-
ent to get some intuition for the geometrical interpretation of at least some of
the spin coefficients. This topic is in detail covered in [52]. We briefly review the
most important parts.

The physical meaning of the optical scalars is not seen at a point, we need to
investigate how the horizon change when the tetrad is being parallelly propagated
along the congruence. The term V,l, is therefore in the centre of our interest.
We recall the discussion of the geodesic equation (1.26). We have seen that the
spin coefficient k = 0. Moreover, it is possible to make the geodesic affinely
parametrized, i.e. set € = OEI by a transformation of type (|1.70)).

From the definitions of the optical scalars, we then get

%Val“ = —%(Q +2) =00, (2.15)

%V[bla}vbla - —}L(Q -0’ =07, (2.16)

%v(bla)vbz“ =00’ +6/> (2.17)

We see that ©() = —Rep and & = Img. In the last equation, we have to consider

that it is composed from the expansion and the shear. We already know that the
expansion is given by p, and, therefore, the rest gives us the shear, it turns out
lo| = a.ﬂ The phase of the shear correspond to its polarization — see figure .

Figure shows how the three types of propagation of the horizon look like.
The source of the shear is the Weyl tensor while the expansion is determined by
matter, and the twist is merely an initial condition [5].

Theorem 2.1. A non-expanding horizon has no twist and no shear, which means

that the spin coefficients p = o = 0. Moreover, the Ricci spinor ®gy = 0.

Proof. We have already found that vanishing expansion ensures zero real part of g,
and orthogonality to hypersurfaces from which it follows that the twist and therefore

2Tt would be enough to zero the real part of e.
3The apparent chaos in naming the spin coefficients stemmed from the fact that some of the
spin coefficients were already named quantities.
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Figure 2.3: A graphical illustration of the meaning of the (a) expansion,
(b) shear, and (c) twist. The circle (ellipse) is around a point in the null congru-
ence and is in the 2-plane spanned by [* and m®, which is one of the two space-like
vectors orthogonal to [*. The dashed lines represent the original horizon while
the full lines are the final states of the horizon after the effect of the correspond-
ing operation and the arrows symbolize the processes, which takes place in the
future null direction of the congruence. The markings in the case of the twist
show how points have moved to make it clear it is not the case of two shears with
different polarization. Deeper discussion and especially pictures really reflecting
the evolution in 3-dimensions can be found in [54][]

®The figure was inspired by the one in [61, p. 5].

the imaginary part of g are zero. To be able to show the other two zeros, we can use the
Sach’s equation, which is only other name for one of the Ricci identities, namely (A.10g)),
when we employ that [ is a geodesic (k = 0) it reads

Do=0*+ (e +&)o+ 05 + Py (2.18)
Together with the zero expansion and twist on the horizon we have
o2 + ®go = 0. (2.19)

The first term is manifestly greater or equal to 0. To see that the second also is, we
have to use the energy condition from definition The Ricci spinor is defined to

be (L.77a)
1
oo = —Rica 1" = dn Ty 11", (2.20)

we have used also the Einstein’s equations. The energy condition says that for [ is
future pointing, Typl° also is, therefore, T,;1%1® > 0. Both terms are non-negative and

sum to zero, so both terms must in fact vanish separately. O

2.5 Adapted coordinates

To have the horizon completely described, we are left to introduce m® and m® on
the entire horizon, recall they were chosen on §y. We have already proposed we
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can use the Lie-dragging as it is done in [38], however, we should discuss why it
is an appropriate choice which is not done in [38]. The fourth vector (n®) is then
completely determined by the triad (I, m®,m*) and the conditions (1.8]).

We Lie-drag along the only vector we have in the entire H. The problem
to discuss is that we need relations to be preserved despite the fact the
Lie-dragging does not conserve scalar products in general. It turns out, however,
that vanishing of the expansion and, consequently, shear and twist, is sufficient
for the Lie dragging to preserve the scalar products we need.

Theorem 2.2. Let (I*,n* m® m®) be a tetrad satisfying conditions , defined
on the spherical cut Sy of a non-expanding horizon H. The vector field m® on H
obtained by the Lie dragging

£m® =0 (2.21)

preserves the normalization conditions
“mg, =0, mimg =0, mm, = —1 (2.22)
everywhere on H. Moreover, the spin coefficient € is real on H.:

e—z=0. (2.23)

Proof. The Lie derivative [71] of vector and covector fields, respectively, is given by

£ X0 =1"V, X - X0 v,e, (2.24)
Lo, = 1 Vi + o Valb . (2.25)

When applying the Lie derivative on the three scalar products, we get

L1(mem®) = m®£ymg = m*(1° Vymg + my Val®)

=m*Dmg +mpdl’ =0 =0, (2.26)
£1(mgl®) = 1°£ymy = 1*Dmg + my DI® = D(1%n,) — mg DI* +my DI> =0, (2.27)
£1(mgm®) =M Lymg = M*Dmg +mpdll =p+—c=c—¢. (2.28)

We see that if the Lie transport preserves the scalar product, the term & — € has to be
zero. To prove that this is indeed the case, let us introduce another vector field m®
which is identical with m® on &y and is propagated by condition

Dm®=0. (2.29)

In this new basis, the term & — & vanishes, as we wanted, for it is defined to be & — e =
= Mmq DM® = 0. The original vector m® can be expressed in the new basis

m® = Al* + Bm®. (2.30)
Condition ([2.21]) then gives us requirements onto the unknown coefficients A and B.
DA=B(a+p), DB=B(E-¢) =0. (2.31)
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The difference of the two spin coefficients in the original basis is then
e—£=B(DB+B(¢—-2))=0. (2.32)

Also other properties are conserved. O

So far, we have constructed the tetrad on the horizon where the tangent triad
(1%, m® m®) is given in the introduced coordinates as

"= (%)a, (2.33)
me = gf(%y. (2.34)

The vector n® is the only one which is not tangent to the horizon, and, there-
fore, we can conveniently use it to get the tetrad also off the horizon. An advant-
ageous way is to construct a geodesic in the direction of n® at every point of the
horizon. This means that we require

An® =0, (2.35)

Then the easiest way to get [ and m® everywhere is to parallelly transport them
because that preserves the normalizations:

Al* = Am® =0. (2.36)

Since the coordinates are closely related to the vectors on the horizon, we propag-
ate them alike:
Av=Az"=0. (2.37)

We have the Bondi-like [38] coordinates in the entire neighbourhood of the
horizon; hence, we can write down how are the vectors of the tetrad given in
terms of the coordinates. The simplest is the vector n® along which only the

n = <%)a. (2.38)

For the vector {* = [#(0,)?, the normalization condition [*n, = 1 determines the

coordinate r varies:

component [V to be 1 because n, = (dv),. This statement follows from the fact
that n, is normal to hypersurfaces N, labelled by v which are generated by the
geodesics along n® arising from the foliation S, of the horizon. The situation can
be seen in figure 3.1} The functions for the other three coordinates are outside of
the horizon general, and we denote them in the following way:

1° = (%>Q+U(£)G+Xf(%>a (2.39)

while the m® vector analogically is

a __ 2 ¢ I i ¢
v 2) ve( )" a0
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The functions have to obey
U=X'=Q=0 (2.41)

to meet the conditions for [¢ and m?* on the horizon. However, the
functions are not arbitrary even off the horizon. We know that the metric tensor
is, in the Newman—Penrose formalism, related to the tetrad, cf. . There-
fore, the coordinate components of the tetrad vectors constitute the coordinate
components of the metric tensor; for this reason we refer to them as the met-
ric functions. The so-called frame equations [57, section 3.10] for the metric
functions then follow from the commutation relations by applying them
onto the coordinates. Before writing them down, let us make a digression which
will simplify them.

The construction of the tetrad gives us a further simplification by making
some of the spin coefficients vanish. The conditions of the parallel transport are
in fact directional derivatives of the tetrad, which are called transport equations.
We have already seen one of them — , however, we are interested in the “A”

set of them, namely: (A.4b)), (A.4e), and (A.4h)). Together with the conditions
(2.35)) and ({2.36]), we have
y=v=17=0. (2.42)

Firstly, we use commutators ((1.78a)) and ((1.78d]) (together with the coordinate v)
to get relations

T=a+fp, jg=p. (2.43)

The other two commutators applied on v give identities while all the commut-
ators ([1.78)) and the coordinates r and 2! result in the frame equations.

Now we can write the frame equations explicitly, taking into account the
simplifications implied by ([2.42)) and (2.43)). The first set of the frame equations
consists of tangential derivatives and reads

DQ—6U=—k+(6—E+e)Q+0Q, (2.44a)
DE' —6X! = (- +e)e! +5E, (2.44D)
N—0=0—0+ (a—B)Q— (a—p)Q, (2.44c)
66 3¢ = @~ p)E' — (a - )¢’ (2.44d)

while the second set of the frame equations represents the evolution of the metric
functions along n®:

AU =¢+&—-7Q-7Q, (2.44e)
AX! = —me! — 7" (2.44f)
AQ =7 — Q- AQ, (2.44g)
AT = —pel — N (2.44h)
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2.6 Geometry of the horizon

As we have seen, some of the spin coefficients can be eliminated by an appropriate
choice of the tetrad, but these are not the only quantities which can be eliminated
in this way. We have already found that the Ricci component ®g vanishes on
the horizon, and we shall investigate if there are others which do. It turns out
there are.

Thanks to ®gp = 0, the electrovacuum Einstein equations ((1.91]) give
$o=0. (2.45)
Using the equation one more time, we find

o =0, m=0,1,2. (2.46)

The remaining equations for components of the Riemann tensor we have not
used yet are the Ricci identities (A.10). Two of them are useful at this stage.

From (A.10d|), we realize that

U, =0 (2.47)
and (A.10p) gives
T, =0, (2.48)

Moreover, W, is invariant on H for null tetrads adapted to the horizon and to-
gether with ¢, is time independent, [38].

Next we turn our attention to the intrinsic covariant derivative of the horizon
‘H. Given a full space-time connection V, it is not possible to introduce a unique
induced covariant derivative on a general null hypersurface. This is different when
the hypersurface is a space-like hypersurface, since we can use the projector that
gives induced metric, and get the compatible covariant derivative by a projection.
On the other hand, null hypersurfaces exhibit an additional complication. The
induced metric is degenerate and, therefore, does not have a unique inverse.
Consequently, usual Christoffel symbols cannot be defined. Thus, there is no
preferred way of inducing the connection on a general null hypersurface from
the ambient space-time. Nevertheless, the non-expanding horizons do have a
preferred one which we introduce following [65].

Theorem 2.3. Let (M, ga) be a space-time in which is embedded a non-expan-
ding horizon H and let V, be the standard Levi-Civita connection compatible with
metric gq,- Then the induced covariant derivative D, on H defined by

XD, YY" = XV, Y for any tangent vectors X Y, (2.49)

is a well-defined covariant derivative on TH.

Proof. In order to appreciate the theorem, it is necessary to understand potential
obstacles. By the definition, derivative D, is just a restriction of the ambient connection
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to the horizon. The connection V, operates on the tangent bundle T M of the space-
time, while a well-defined induced connection should operate on TH only. The domain
of D, is, by definition, just T'H because we restrict V, to D,. However, in general,
it is not guaranteed that the image of D, will be in TH, even if the pre-image is. In
other words, a restriction of V, to T"H can act only on tangential vectors X, Y, but the
result may contain also non-tangential components. The point of the theorem is that
this problem does not occur if D, is induced on a non-expanding horizon.

The tangent vectors can be expanded in terms of the tangent basis:
X = 2% + zpym® + xmm?, Y'Y = 1% + ypom® + ymim®. (2.50)

The covariant derivative in the direction of X® then is

X°Vo=x;D+znd+zm0, (2.51)

where we have used decomposition . The action of this operator on the vector Y
yields two types of terms: derivatives of the factors y;, ¥, and ym — they clearly give
results tangent to H; and derivatives of the vectors {*, m? (and m") — we shall show that
they are for non-expanding horizons also tangent. Therefore, we want to demonstrate
that when we apply the transport equations to the latter terms, all expressions
containing n® are zero. For DI’ and §1°, there are no such terms. We are left with

Dmb — —kn?, omb — —on®, omb — —on®. (2.52)
The first one is zero for [® being a geodesic while the other two vanish thanks to
theorem 2.1] O
A consequence of this theorem is the existence of the so-called rotational 1-form

defined by the following theorem.

Theorem 2.4. For a non-expanding horizon H with the induced covariant de-
rivative D, of the type from theorem[2.3, there exists a 1-form w, such that

Dol’ = wyl”. (2.53)

Proof. Let us contract D,I” with a vector X?, then we can use the theorem and
decompose the covariant derivative in sense of (2.51)), we get

XD, = 2 DI® + 2y, 61° + 2 01°.. (2.54)

We recognize the transport equations (A.4]) which are fortunately very simplified on
the horizon in our tetrad, namely:

DI’ = (e+2a)b, P =R, (2.55)
We can define a one form w, to be
we = (4 &E)ng — Mg — TiMg (2.56)

to get
X% g4 =x1(e + &) + Ty + TmT . (2.57)
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Since the vector X is arbitrary,
Dol’ = ((e + &)ng — ™mg — Tmig )1 = wel®. (2.58)

O]

The rotational form w, has several interesting properties. First, it encodes an
important part of the connection D,, since it fully encodes all possible derivat-
ives of the vector [*. It also carries information about intrinsic geometry of the
spherical cuts of the horizon. Let us see how.

The rotational 1-form, as defined in theorem [2.4] is a four-dimensional object
which lives only on the horizon. But it is not a form intrinsic to the horizon. In
order to get a three-dimensional 1-form, we define the pull-back |71, |5

Wa = YV Wa, (2.59)

where ¢ : H — M is the embedding of the horizon into the space-time. Under
the pull-back, we have

L =0, (2.60)

because the 1-form [, annihilates all vectors tangent to H. If we pull it back on
the horizon, it annihilates all vectors of T"H, and, hence, as a three-dimensional
object, 1*l, is identically zero. It is again a manifestation of the fact that the
intrinsic metric on H is degenerate. Similarly, pull-back of n® to the horizon
is identically zero, because n® is not tangential to H and so cannot arise as a
push-forward of a vector from T"H. On the other hand, the 1-form n, can be
pulled-back,

Na = "N, (2.61)

and similarly for m, and m,. Since [* and m® are tangent to H even in the
space-time, we can freely identify three-dimensional [*, m® on the horizon and
their four-dimensional counter-parts. Thus, the pull-back of w, is
Wa =(e+ é)?& — Mg — Tl (2.62)
From a geometrical point of view, a non-expanding horizon is a fibre bundle
[67] H diffeomorphic to the product S x R with a canonical projection

I:HESXxR— S, (2.63)

see figure 2.4, Here, the base manifold is diffeomorphic to a sphere & and the
fibres are null geodesics generating the horizon. Local trivialization of this bundle
is provided by the coordinates 2! on S and coordinate v along each fibre. Thus, a
point with coordinates (v, z’) is mapped onto corresponding points on the sphere
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with the coordinates z!. For example, for the point P,Q and R in figure , we
have
I(P)=1(Q) =z €S, II(R)=y€S. (2.64)

The fibre at the point z € S is II7(z), i.e. a null geodesic in H.

Now, on &, we have a natural metric given by the projector,
(2)qab = —MgMyp — MMy y (265)

where the left superscript indicates that the quantity is defined on S. This metric
is non-degenerate on S, but its pull-back

Gab = H*(2)Qab (266)

is exactly the projector (2.14) which annihilates both [* and n®. Next, on S we
have a volume two form

(Q)Gab = €abed lcnd . (267)
Newman-Penrose form of e, can be easily found using the spinors and relation
(11.40):

@) C5C" D

—_ / . p— —_ p— - . —
€ab = €abed 0~ 0 P =1i(0ALBOpia — OBlLAGATE) = 2immy . (2.68)

If we think of the embedding of S in H, the pull-back of the rotational 1-form

is

(2)wa = —Tm, — ﬁma7 (269)
since the pull-back of n, on & must vanish (similarly to vanishing of I, under
the pull-back from M to H). Let us take the exterior derivative of the two-
dimensional form,

(d(2)w)ab = QV[a(z)wb] ) (2.70)
Since this is a form living on &, the volume form can have only one independent
component (the space of 2-forms on vector space of dimension 2 is 1), i.e.

2V, Py = F Pe,y (2.71)

where the factor F' can be found by a contraction with Pe® which is given by
(2.68). Writing the result in the Newman—Penrose formalism, we get

F= by @y, —j (—=Uy + Uy) =2Im Uy, (2.72)

where we have used the Ricci identities and (2.43). Thus, we have derived an
important result

d®w = 2Im U,Pe. (2.73)

Although we do not prove it here, imaginary part of W, is related to the angular
momentum of the horizon. In order to see this informally, consider ¥, for the
Schwarzschild metric and for the Kerr metric:

M

r3’

M

\I/SChw. —
? (r —iacos?)®

pher = (2.74)
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Figure 2.4: A non-expanding horizon as a fibre bundle H which is diffeomorphic
to S x R.

For Schwarzschild, ¥, is real and represents non-rotating, spherically symmetric
metric with zero angular momentum. On the other hand, Kerr metric describes
a rotating black hole with spin @ which enters imaginary part of the denomin-
ator. For a full treatment in multipole moments (mass and angular momentum
moments) of isolated horizons, see [68].
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3. Weakly isolated horizons

In this chapter, we will restrict the non-expanding horizons even further. The
investigated weakly isolated horizons are those for which the zeroth law of
thermodynamics holds. As in the previous chapter, we summarize results on this
topic from [38] and partly follow its construction while completing the results
with terms adequate to charge simultaneously. In [38], the charge corresponding
terms are presented separately and not as deeply. We have also employed [67]
for precise formulations of the definitions and theorems. The discussion of quasi-
locality of the isolated horizons, together with application of this framework to
some other space-times than we are going to investigate, can be found in [61].

Recall [6] that for an event horizon we have four basic laws resembling the laws
of classical thermodynamics:

0. Surface gravity » is constant on the horizon[l] This is an analogue of the
Oth law of thermodynamics that the temperature of a body in thermal
equilibrium is everywhere constant. This suggests that surface gravity plays
the role of the temperature, which was fully justified by the discovery of
the Hawking radiation, [72].

1. Under a perturbation of an event horizon, the change in the mass is
5Ar:éi&4+QH5J+¢5Q, (3.1)
s

where A is the area of the horizon, Qg its angular velocity and J is the
angular momentum of the black hole. In the case of charged black hole, ®
is the electric potential and @ is the charge. This is analogous to the 1st
law of thermodynamics, where the area A plays the role of entropy, and 2y
and ® play the roles of generalized forces.

2. Under a perturbation of an event horizon, the change of the area is always
non-negative,

§A>0, (3.2)

which resembles the 2nd law of thermodynamics and pushes the analogy
between entropy and area even further.

3. It is impossible to form an extremal black hole by a finite sequence of steps.
Extremal black holes are characterized by vanishing surface gravity x, which
is an analogue of the temperature. Hence, this law is an incarnation of
the 3rd law of thermodynamics, that absolute zero temperature cannot be
reached.

INot to be confused with the spin coefficient k. We leave the usual letter for the surface
gravity there, for we shall decorate it in just a moment.
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Let us make a remark on the third law. In fact, the analogy is not perfect.
One of the formulations of this law is that the entropy of a system at absolute zero
temperature is zero. For black holes that would mean that extremal black hole,
which has vanishing surface gravity and, hence, the temperature, should have
zero entropy. This is not true, however, because the area of extremal horizon
is not zero, although the temperature is, and therefore extremal black hole does
not have vanishing entropy. It is interesting that it is possible to construct black
holes in the (low energy limit of) string theory (“stringy black holes”) analogous
to the usual Reissner-Nordstrom solution containing the dilaton field coupled to
electromagnetic field [73]. These metrics have the same structure like Schwarz-
schild black holes in their t — r part, but the angular part differs and electric or
magnetic charges enter just this angular part. In the extremal limit, the radius of
the event horizon tends to zero and therefore the area of extremal stringy black
hole is zero. The analogy with the third law of thermodynamics is then restored
completely.

Although there are many concepts of the horizon, see section [3.4] what they
have in common is some sort of laws of thermodynamics. In fact, motivation for
the formalism of isolated horizons in classical general relativity, as a generalization
of standard event horizons, stems partially from the problems arising in loop
quantum gravity [74] where the relation between the area and entropy is crucial.

Non-expanding horizons defined in the previous chapter are not suitable for
recovering the laws of thermodynamics. It is easy to see why. We already know
that any normal [* is necessarily a geodesic, albeit not necessarily affinely para-
metrized. The “acceleration”, i.e. the deviation from affine parametrization, is
called the surface gravity () and it is defined as follows.

Definition 3.1. Given a non-expanding horizon #, the surface gravity s,
associated with a null normal [* is defined by

DI* = R(l)la. (3.3)
If I* is completed to a full tetrad, an alternative definition is

K(1) =n"Dl, = (E + 5_) . (34)

An important point is that, in the present formalism, the notion of surface
gravity is tied to a particular choice of the null normal [*. The situation is
different for an event horizon, since there exists a preferred choice of %, which
coincides with the Killing vector, and the notion of surface gravity refers to this
particular choice. On a general non-expanding horizon, however, no preferred
choice is available a priori.

On the other hand, the direction of [* is unique, and the freedom in the choice
of [* rests in the rescaling of [* by an arbitrary function,

1 f1°, (3.5)
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where f is a function of coordinates on the horizon. Theorem [2.4] shows that the
induced connection D, can be characterized by the rotational 1-form w,. One
can easily see that defining relation (2.56|) implies

Wo > wWa + [ Do f (3.6)

under rescaling. Obviously, rescaling [* with constant factor leaves the rotational
form invariant.

Since the intrinsic metric of the horizon is supposed to be stationary for a
black hole in an equilibrium, it is natural to require that the connection D, is
v-independent as well. Whether D, is time dependent or not, however, depends
on the choice of [*, while D, is independent of such choiceﬂ It turns out that in
order to ensure the zeroth law of thermodynamics it is sufficient to require that
w, is Lie constant along [*.

Definition 3.2. Equivalence class [I%] is a set

19 = {cl®|c € R} . (3.7)

Now we can proceed to define an appropriate notion of the horizon:

Definition 3.3. Weakly isolated horizon is a pair (H, [%]) where H is the non-
expanding horizon and [[?] is the equivalence class of normals and the condition

[£1, DI =0 (3.8)

is met. Recall that £, is a Lie derivative along [* and D,, is the induced covariant
derivative introduced in section[2.6] Note that it is enough to satisfy the condition
for one [* and it is automatically fulfilled for the entire equivalence class.

It is important to stress that there is no physical distinction between a non-
expanding horizon and a weakly isolated horizon. The difference is mathematical:
a non-expanding horizon was defined independently of the choice of the normal.
Weakly isolated horizon is a non-expanding horizon equipped with one particular
normal [ or corresponding equivalence class [I°]. By (3.6)), the rotational 1-
form is well-defined for a weakly isolated horizon, because it is independent of
the particular representative of the class [[*]. However, the surface gravity s,
depends on the choice of such a representative, since under rescaling [* — ¢l®
with constant ¢ the surface gravity transforms as

K@) = K(cl) = CKL . (39)

Formalism is built up in such a way that important results are insensitive to a
different choice of normal from the equivalence class [].

2Recall that the “time” coordinate v is chosen so that Dv = 1, i.e. it reflects the paramet-
rization of [*. On the other hand, D, is merely a restriction of V,, i.e. obviously independent
of the choice of [*.
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Definition 3.4. If k) = 0 for any (* € [I%], the weakly isolated horizon is called
extremal.

This is the only case when the whole equivalence class has the same surface
gravity, as (3.9)) implies.

Theorem 3.1. (Zeroth law of thermodynamics): Let (H,[1%]) be a weakly isolated
horizon, then:

1. The rotational 1-form Wa is time independent:
£iw, =0. 3.10
Yo (3.10)
2. The surface gravity associated with any normal [* € [I*] is constant on H.
And the two statements are equivalent.

The second statement is the usual formulation of the zeroth law of thermo-
dynamics where the surface gravity is identified with temperature.

Proof. We have
(L1wa)l? = £1(wal®) = £D,l" = [£,,Da)I" =0 (3.11)
where
£1°=[1,11*=0 (3.12)

have been used twice. The relation (3.11]) holds true for every I” and; hence, £;w, = 0.
Now we can use the pull-back, which commutes with the Lie derivative, to get the first
statement.

We are left to demonstrate that this is equivalent to the constant surface gravity on
the entire horizon. We can rewrite the Lie derivative of w, using its definition (2.56)),
and decomposition of a Lie derivative of a covector (2.25)) to get:

£y = =2|72ly + noD(e + &) — mg D1 — My DT . (3.13)

via
£1mg = 1°Viyng + nyVal® = Dng + (68)ng — mmg — Tiig = 0, (3.14)
£mg = 1"Vymg + mpVal° =7, . (3.15)

Recall that £;1* = 0.

We have to pull-back the expression, and this kills the [, term. Let us make a
remark to explain why:

The pull-back of an arbitrary 1-form Qq = @™ is defined by its action on a push-
forwarded vector:
(P a) X = agpa X (3.16)

The vector [* is tangent to the horizon, as we already know, and is annihilated by
1-form [,, which therefore is from the 1-dimensional space of forms annihilating
any tangent vector to H. The push-forwarded vector ¢, X% is tangent to the
horizon, and therefore annihilated by [,. Finally, we have La =0.
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We are left with
£1ga = naD(e + &) = ma D — T, D L0. (3.17)

Since only scalars are differentiated, and all terms are linearly independent, all of them
have to vanish individually. This implies, recall the definition of the surface gravity,

Drgy = D = 0. (3.18)

Unfortunately, this is not sufficient to say that x(;) is constant on the horizon. The
direction of m® is left to allow r(;) to change. To show that this is not the case, we
have to employ equations for derivatives of the spin coefficients — the Ricci identities.
It is conspicuous that the identities with de-like terms are the one we are looking for,

they are (A.10€) and (A.10hl). With the aforementioned simplifications, they readﬂ
DB —de =0, Da — e =0. (3.19)

The surface gravity is tied to the spin coefficient €; hence, we would like to extract its
derivative (in the direction of m®) from these equations. Complex conjugation of the
second one added to the first one gives (recall € = &):

D(@+ ) —25e=0. (3.20)
The first term is D7 vanishes on H by (3.18)) and therefore
Se =0, (3.21)

which ensures that x(;) is constant on H. It is simple to check that we can revert the

process, and the two statements are equivalent. ]

Theorem we just proved shows that in order to recover the zeroth law of black
hole thermodynamics, it is sufficient to impose the condition ([3.8|) or, equivalently,
condition (3.10). However, from a physical point of view it is more natural to
impose a stronger condition which reflects that the intrinsic geometry of black
hole in equilibrium, including connection, should be time independent.

Definition 3.5. Isolated horizon is a pair (H, [[%]) where H is the non-
expanding horizon and [I%] is the equivalence class of normals for which

[£1,Da] = 0. (3.22)

For a weakly isolated horizon, not entire connection is time independent, only the
part related to (*. For an isolated horizon, full connection is required to be time in-
dependent. Hence, an isolated horizon is more restricted concept than an weakly
isolated horizon, but physically well motivated. Nevertheless, in what follows we
will talk mainly about weakly isolated horizons because they are more general
but still exhibit laws of black hole thermodynamics. For simplicity, though, we
often use the term isolated horizon in the meaning of a weakly isolated horizon.

3The term —&3 —e(a — 7) from (A.10e), as an example of a term which may not be obvious,
is zeroed by both 7 = a4 § and € — & = 0.
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3.1 The intrinsic geometry of the horizon

Now we are in position to examine the intrinsic geometry of isolated horizon in
more detail. We have seen that in the Newman—Penrose formalism we describe
the geometry by a plenty of scalar quantities, but not all of them have physical
significance. For example, by the choice of outgoing null congruence n® we were
able to eliminate spin coefficients v + 7 and v, by the parallel transport of m*
along n* we have achieved 7 = 0 and v — v = 0. Quantities which depend
on the choice of tetrad or coordinates do not represent true physical degrees of
freedom, instead they are part of the gauge freedom. If they can be eliminated
by a gauge transformation (e.g., rotation of the tetrad) we say they represent
a pure gauge. We have already exploited the gauge freedom because we fixed
the tetrad and coordinates in a geometrical way completely, no additional gauge
transformation is possible, otherwise we would break some of the established
relations (for example, spin in m® would make € complex).

We can regard the space-time in the neighbourhood of an isolated horizon as a
solution to a characteristic initial value problem. In contrast to the usual Cauchy
initial value problem with the initial data given on the space-like hypersurface,
a characteristic problem is formulated on two intersecting null hypersurfaces.
In our case, the two null hypersurfaces are the horizon H and the transversal
hypersurface Ny, where surfaces N, have been defined in the section [2.5]

The Newman—Penrose formalism is particularly useful for the study of a char-
acteristic initial value problem. By construction of the tetrad, vector [*, with
associated derivative D, is tangent to the horizon, while vector n®, with asso-
ciated operator A, is tangent to Ny. So, the Newman-Penrose equations, con-
taining D and A derivatives describe the evolution along the horizon or along
No. Altogether they determine the solution in the interior between the two null
characteristic hypersurfaces. Equations containing just § and § derivatives are
constraints which must be satisfied by the initial data given on the initial hy-
persurfaces. Hence, in the Newman—Penrose formalism, it is easy to split field
equations into evolution equations and constraints, which is much more difficult
in the formalism with space-like initial hypersurface, [44].

Let Sy = H NN, be the spherical cut where the horizon and N intersect. For
an isolated horizon, cut Sy plays a special role because it turns out that the initial
data on H are completely determined by data on Sy. Thus, we are interested in
the characteristic initial value problem formulated on the set H U Sy U Ny. The
values of quantities on the Sy shall be decorated with |s,. For example als, is
the value of o on Sy.

The spin coefficient « in the previous example was not chosen thoughtlessly.
If we go back to the proof of the zeroth law of thermodynamics, and plug ((3.21))

into (3.19)), we get
Da=DB=0. (3.23)
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This means that a and [ are v-independent on the horizon, and therefore we can
prescribe for them

o= 04‘50 ) 6 = 6’30 ) (324)

which implies also
T=7ls, - (3.25)

And also the Weyl scalar ¥, is sufficient to introduce only on Sy thanks to
the Bianchi identity (A.15bf), which is on the horizon reduced to

DUy, =0. (3.26)
For completeness, this implies

Uy = Uy, . (3.27)

In section , we introduced operators @ and d and shown that they act
as a spin raising/lowering operators. Some of the Newman—Penrose equations
transform covariantly under the spin and hence, several terms in the equations
group together to give appropriate spin weight. For this reason, operators d and 0
appear frequently in the Newman—Penrose formalism and effectively they reduce
the number of terms necessary to be written down explicitly. In order to define
these operators in the present context, we denote

(llgo - Oé|$0 - B|SO ) (328)

and a|s, will denote its complex conjugate. In agreement with (1.57) and (1.59)),
we define (with 1 being a scalar, spin weight s quantity)

on = én + sals,n , On = on — sals,n - (3.29)

This kind of combinations appears in the Ricci identities, namely (A.10i) and
(A.10f). On the horizon (together with usage of the operators), they read

DA+ kA =0r+ 7%,  Du+ kg =01+ |7 + ¥, (3.30)

The spin weight of m could have been found in table [1.2] to be —1.

We are not lucky enough to have as simple expression for A and g on the
horizon, as for, e.g., a. However, we can solve these equations to get a formula for
them. Although D is a covariant derivative operator, it acts on scalar quantities
in these cases; hence, it can be regarded as a partial derivative. Still, it would
be complicated to project the gradient onto the {*. We can get around using the
notion of a quantity being on Sy, and D is then only a partial derivative with
respect to v. We can only get the solution on the horizon.

The solution of the first equation (the one for A, the other one analogically)
s 1 o

A= %(67('&) + 7ls,”) + e "0UCy (3.31)
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We have employed that 7 is sufficiently given on &y, and C) is an integration
constant which can be chosen to be such that for v = 0 it holds true that A =
= A|s,- This choice leads us to

Cy = Alg, — %(Sﬂ&) +ls?), (3.32)
which gives the solution in the form
A= Mg, e "0Y 4 %(67{"5‘0 + 7ls,%) (1 — e 0?) (3.33)
while for the spin coefficient p we get

. —K(V 1 2 —K(V
= /L‘Soe [OR e _fi( : (67T‘30 + ‘7(’50’ + \IJQ|50> (1 — e O ) X (334)
l

Although it is not discussed in [38], it is essential to come to realize that such
a simple solution is, in fact, another consequence of the non-expanding horizon
framework. In the equations to solve , there are 0 operators (the complex
conjugates are omitted from discussion as they are completely analogical) with §
operator in them which in turn have vector m® built in it. Therefore, when solving
the equations, we should consider all terms with the 0 operator as functions of v,
for we a priory do not know what is the dependence of £’ (recall (2.34)) on v. At
this place, the frame equation (2.44b]) comes in saying that &/ # £I(v), at least
on the horizon.

We have already found that ¢g = 0, cf. (2.45)), which can help us simplify,
through the Maxwell equation (A.17al), also ¢;. It turns out that (this is the
reduced Maxwell equation)

D¢, =0, (3.35)
which implies

&1 = P1ls, - (3.36)

The last scalar from the Maxwell spinor which is not known is ¢o. We
have Maxwell equation (A.17bf) for it. This equation can be solved analogically

to (3.30) to obtain

. —R()v L= —K(\V
P2 = als,e”"O" + %(5¢1|50 + 275, ) (1 — €770V (3.37)

Remaining unknowns which are to be determined are ¥y, W3 and ¥,. While
the first two have the Ricci identities with derivatives tangential to the horizon,
the third one has a non-tangential derivative, and would require more care, and
is in fact a major difference from |38], for charge brings the non-tangential term.

The aforementioned Ricci identities are (A.10q]) and ({A.10r)) of which the first
one, on the horizon, is

Sa— 0B = aa — af} — Wy + |p1]?. (3.38)
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Isolating the real and imaginary parts of this equation, we find

1 _
Re Usls, = |al® — 5((sa +6a) + |¢1ls | (3.39)
Im \1/2‘30 = —1Im 67’(”50 . (340)

The second Ricci identity in our case reads:
SA = =7p+ (@ —3B8)\ — Uy + dohy . (3.41)

The solution is, similarly as before,

Vs = ((5 + 7T|SO)N|SO - (6 + 7_T|30))\|80 + ¢2|30a|80>e_ﬁ(l>v

1 _
+— <<6 + 7T|30) (§W|50 + ‘W|So|2 + \112|30)
K@

— (04 7|s,) (075, + 7|so”) + (Ouls, + 27T|so¢1|so)a|so> (1—e o).
(3.42)

We are forced to use different approach for the last Weyl scalar. It is more con-
venient to use, instead of the Ricci identity, the Bianchi identity, namely ,
where is the non-tangential term A®y5. The term can be decomposed using the
Leibniz rule as

ADoy = ¢o Ay + ¢ Apy = ¢ Agy . (3.43)

Hence, we need the Maxwell equation (A.17c) to compute the derivative. The
equation is in our case simplified to:

Apg = ¢ . (3.44)
We can use, for we are discussing horizon, expansion:
¢o = 1o + O(r?) (3.45)

where the zeroth power is omitted, for it is zero according to aforementioned
reasons. When we plug (3.44) into it, it yields

& = vl . (3.46)

Recall the zero spin weight of ¢; (cf. table . The equation to solve for W,
(A.15d)), is then

DUy — §U5 + 6206\ — 6(ahr) = =3\, + 2(als, + 27|s,) Vs — 20y Wy

— 2\ |1 |* + 205, P21 - (3.47)
We can write the solution as
A B
U, = ‘I/4|Soe_2“(l>” + ﬁe—ﬁ(wv(l — e "0Y) 4+ %(1 — e—'f<z)”)2 ) (3.48)
R(1) 2’%(1)
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The functions are

A= 6\113 + 8@52 a - Sa ¢2 - 6@51 gbg + agbgﬂ' + 5\11371' - 2@51%/\ — 31112>\, (349)
B = 80Uy + 00¢, 1 + 80Uy — 2301 o1 — 2001 ¢y + 12U,y7
— 0¢1 (01 + 0¢y — 3d17) . (3.50)

All quantities in these functions are taken on the cut Sy and the 0 operators act
on the nearest term only.

It is desirable to have well-defined solution in the limit of extremal horizon,
k@ — 0. One can check that for the solutions we found, this limit is indeed
well-defined and coincides with the solution which we would obtain by setting
k@) = 0 from the beginning.

3.1.1 Physical meaning of the Weyl and Maxwell scalars

We already know that some of the scalars vanish. In the case of the spin coef-
ficients we have been able to state that it, e.g., means that [* is tangent to a
geodesic. We are left to interpret the “non-spin” scalars. Vanishing of ¥, and
U, implies that there are no gravitational waves going through the horizon. In
great analogy, the scalar ¢q is zero which means there is also no electromagnetic
radiation on the way across the horizon, [52].

3.2 The extrinsic geometry of the horizon

The analysis of how the variables propagate off the horizon is much simpler than
the intrinsic one. It is so, for we have some of the variables already zeroed, and
also because the analysis is almost simultaneous for all of them.

Since we have the unknowns explored on the horizon, we simply want to com-
pute how they are propagated from the horizon to its neighbourhood. This means
we want to compute covariant derivative in direction of n?, i.e. the A-derivative.
The only difference between the scalars is from where the equations for these
derivatives come, and this splits them into three expectable sets: the spin coeffi-
cients, the Weyl scalars and the Maxwell scalars.

The most simple are the spin coefficients. For example, from (A.10l) we
get:
N ) R 1)

This equation gives us the first order of the expansion in r. Rewriting it together
with all other equations we have:

kD =0, (3.52a)
e® 420 = 2|70 —2Re (W)") — 4|¢" |, (3.52b)
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e® — &) = 7O (o0 — FO) 1 700G — gO) — g0 1 G, (3.52¢)
a® 4 O = () = 70,0 _ 70O _ O _ 9450750 (3.52d)
a® = 5O = O (a® — FO) £ 2O @O - g) — v — 265, (3.52)
oM =0, (3.52f)
2 2 0)]2
pD = — (@) =A@ - |¢g )2 (3.52¢)
pM = —w (3.52h)
AW = —2, 030 _ g (3.52i)

We could get the higher orders by subsequently substituting into the Ricci iden-
tities.

The Weyl scalars are obtainable from the Bianchi identities . We
immediately see that we are missing an equation for ¥,. Hence, we can not
obtain ¥, in terms of quantities on the horizon, and we need to introduce it at
least on an arbitrary hypersurface of constant v — the most convenient choice is
the hypersurface NVy. The equations for the first orders of the scalars are:

vl =0, (3.53)

v = awl” + 26, 5" (3.54)
) = (0+70) 0 + 25,00 +70)6 — 25,0 5o

_ 3/1(0)\1/%0) — 44 ‘Qggo) 2 : (3.55)
U = (54 200)wl? — 4O W) — 26, @
—26,0(8 — 276l + N0V 5,0 — 470 |67 |* (3.56)

The only remaining undetermined quantities are the Maxwell scalars, which also
determine the Ricci scalars. The equations for them are the Maxwell equa-
tions (A.17)). Similarly to the Weyl scalars, there is no equation for ¢, and;

hence, it has to be given on Nj. The first order derivatives are:

80 = 560 | (3.57)
¢§1) _ (3 _ 7_‘_(0)) 50) _ 2u(0)¢§0) _ (3.58)

3.3 Initial value problem

The analysis of the geometry of the space-time comes close to its end, and we
shall slow down to recapitulate the results spread among many equations. The
situation we have found is shown in figure [3.1. There are three important hyper-
surfaces: the horizon H with the chosen cut Sy, and the hypersurface of constant
v (in our case the one emerging from the chosen cut) Ny. On each of these hy-
persurfaces, there are some of the scalars to be given to have well-defined initial
value problem. The scalars which are determined on Sy are also immediately
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80 : \1127 \1[37 a, T, W, >\7 (/)1

Figure 3.1: The neighbourhood of the horizon and initial value surfaces. The
scalars enlisted after the colons have to be introduced on the corresponding hy-
persurface.

given on the entire horizon. The remaining scalars, namely: &, 7,0, 0,7, v, ¢g and
Uy, are zero on the horizon (some of them even everywhere).

3.4 Motivation for the isolated horizons

So far, we have been introducing a “special” class of horizons. Now we would
like to show, with the aid of [25], that this class is, in fact, very general, and was
created as a result of need for a unified framework for a large spectrum of different
black hole treatments instead of having a very restrictive formalisms adapted only
to individual problems, as well as inability to answer some questions in terms of
then existing approaches. We also give briefly some other examples of usage of
the isolated horizons than the one to follow in this work.

3.4.1 Why should we introduce the isolated horizons

Black holes are very interesting objects connecting general relativity, quantum
mechanics, and statistical physics, which have ever had much attention of physi-
cists. They have been studied from many points of view, among which are, e.g.
numerical relativity, astrophysics, string theory. However, for a long time, the
only main result of exact general relativity for dynamical black holes was a the-
orem that the area of the black hole event horizon can not decrease for black
holes whose matter satisfies the null energy condition. The theorem was proved
by Hawking, and is similar to the second thermodynamic law, recall . The
first law , though, is only qualitative, the equation is not the fully dynamical
as one would prefer. It shows an adverse attribute of the event horizons: It is
often very difficult to physically interpret the results. This time, the peculiarity
is that while the surface gravity x and the angular velocity 2 are defined at the
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event 1
horizon

collapsing

matter

Figure 3.2: A diagram of a typical gravitational collapse. The thick part of the
event horizon, denoted by A, which is time distant from the collapsing matter,

is isolatedﬂ

?The figure was redone according to p. 8.

horizon, the angular momentum J and the mass M are defined at infinity, and
therefore it is perplexing to interpret any matter outside the horizon.

Another problem with approaches allowed by then existing frameworks were
too strong limitations. For example, it was supposed to have time Killing vector
field everywhere, while it is sufficient to have it in a small neighbourhood of the
black hole. The difference is that, although, it is reasonable to ensure that the
black hole itself is isolated when referring to the zeroth and first thermodynamic
laws, it is not justified to restrict the whole space-time to be in an equilibrium.

In figure [3.2] we can find the situation of a collapsing matter where the event
horizon is for late times isolated, while there can be e.g. radiation far outside the
black hole.

Another problem with event horizons is that they have global nature (tele-
ological nature). Graphical illustration of it can be found in figure [3.3] The
definition of the event horizon: it is the future boundary of the causal past of the
future null infinity, allows us to speak about the black hole only when the entire
space-time was constructed.

Of course, event horizons were not the only framework, e.g. in numerical
relativity apparent horizons were used, however, attempts to derive the black
hole mechanics laws have been unsuccessful.
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Figure 3.3: This figure demonstrates the global nature of the event horizons.
While both parts A; and A, are isolated, only A, is a part of the event horizon
when a mass 0 M falls into a collapsed star. However, if the mass shell did not
fall into the black hole, A; would be the event horizon. ﬂ

?The figure was adopted from p. 10].

3.4.2 Successes of the isolated horizon notation

Now we would like to briefly discuss the contribution of the isolated horizons,
which appeared as the resulted framework to overcome the aforementioned prob-
lems. The notion is richer than we are discussing since we are treating only black
holes in equilibrium, for which the isolated horizons were derived, while we leave
so called dynamical horizons for the interest of the reader (they can also be found

in [25]).

Considerations showed that the new paradigm should be quasi-local, as objects
under our astrophysical observations are. They encapsulate all physical areas in
which black holes appear, while being independent of the choice of the Cauchy
slice (in contrast with the apparent horizons). Namely:

e In black hole mechanics, it was possible to extend the zeroth and first
laws to isolated horizons without any additional assumptions (except for
the time independence) such as no radiation nearby. Moreover, the first
law looks the same as before, cf. , while all quantities are considered
on the horizon, and the law ensures that the time evolution is Hamiltonian.

e Quantum gravity successfully used the isolated horizons to show propor-
tionality of the area of the horizon to entropy, and is applicable also to
physical objects which are distorted and are not extremal.

e This approach appears to be more robust in numerical relativity, while
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being invariant, and having no need for a priory considerations about the
resulting horizon.

Also for gravitational waves, the isolated horizons can be very useful,
as it led to notion of horizon multipole moments which represent sources
and; hence, are more relevant in equations of motion than older Hansen
multipoles.
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4. Non-twisting null tetrad in
Kerr—Newman space-time

Now, our task is to find a non-twisting null tetrad in the Kerr-Newman space-
time. We have already been discussing the twist of the horizon and its connection
to the imaginary part of the spin coefficient o, however, this was a characteristic
of the generators of the horizon. This time, we want to construct a non-twisting
congruence going off the horizon — in the direction of n*. We could go through
a similar analysis as in the case of [, instead, we use a “symmetry” of table |1.1
of the spin coefficients. It turns out that the corresponding spin coefficient from
which we take imaginary part for the twist in the case of n® is u.

4.1 Kerr—Newman space-time

We start with a recapitulation of the Kerr-Newman space-time. For more in-
formation about this topic refer to |75] or [6]. We use Bondi-like (ingoing null)
coordinates (r,v, v, ¢) in which the metric (the line element) is:

2Mr — Q? 2

ds? = (1 _ FTQQ) dv? — 2dvdr + # (QMT’ — QQ) sinQﬁdUdgp—l—

sin? ¥
|p|?

+ 2asin® 9 dr dp — |p|* d¥* + (Aa2 sin® ¢ — (a2 + 7"2)2> dp?

(4.1)

where M is mass, ) is charge, a is spin of the black hole (angular momentum per
unit mass) and we have used functions defined as:

p=r-+iacos?, A=a*+1r*—2Mr+Q*. (4.2)

We identify the inner and outer horizons with hypersurfaces of constant r with
values:
re=M=*+\/M—a?>—Q? (4.3)

where A = 0. Functions evaluated at the horizons shall be denoted with the
appropriate sign (+ for the outer).

The space-time is stationary and axisymmetric which yields two Killing vec-
tors: time-translational and azimuthal. These two symmetries are very important
for we can conclude not to be bothered by coordinates v and ¢ in our considera-
tions as it will be done.

Another important characteristic of the Kerr—Newman space-time is that it
has two degenerated null principal directions and, therefore, is type D space-time
from the Petrov classification, also denoted as type (2, 2).
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4.1.1 Kinnersley tetrad

Although we could start from scratch, we are fortunate to have a null tetrad
(accomplishing the scalar products) in hand. The tetrad, named after William
Morris Kinnersley, reads, [76]:

A a
lx = 0, 0, d,,
K +2(a2+7“2) +a2—|—r2 v
2, .2
ng = —— 11 |+|27" d, | (4.4)
P

1 i
mg = iasint 0, +0y + —— 0, | .
S V2 ( ' sind “0>
It is no surprise that the last vector is complex conjugation of m®. The tetrad is
adapted to the principal null direction of the Weyl tensor, [77].

In this tetrad we can compute the spin coefficients. We have the metric in
hand and can use the Levi-Civita connection together with the tetrad vectors
definition. As an example we outline the computation of the spin coefficient x:

K =m*Dl, = m°Vyly = m®1°(Oyly + Tpal.) (4.5)

where I' are the usual Christoffel symbols. The covariant version of the tetrad is
simply given by contraction with the metric. For the tedious computation itself
we can with advantage use Mathematica software. In appendix [C] a function
ComputeSpinCoeffsNP is defined for this purpose. We get the spin coefficients as
follows:

a(a +1ircos)

k=c=v=A=0, v=— =
] pp
A iasind
0= — 5= 5 o> T= -,
2p(a? + r?) V2 |p|?
 Ma*+rQ* — Mr? GRS
2(a2+r2)2 ’ s pp’
L3 iasind — ia—rcos?
T=a« = —, a—f=— "
V2 p? V2 p? sind
_ 2ia—pcos? 5= cot v (4.6)
2\/§ﬁ2sin19 ’ 2\/§p' ‘

The Kinnersley tetrad was not constructed by the process we have described
and, therefore, it is very convenient to look at the spin coefficients, which have
geometrical meaning, to find in what the two tetrad differs. However, the prop-
erties of the tetrad are encoded also in the Weyl and Ricci tensors. Hence, we
find also them to be

M Q?

-

Uy = =
P> P

(4.7)
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while all other are zero where can just use its definition through the Riemann
tensor. Similarly the Ricci scalars are all zero except one:

QZ
Oy = —. (4.8)
2|pl*
And, therefore, the only non-zero Maxwell spinor is, recall (1.91):
b1 9 (4.9)

ERVeT

In appendix [C| we define functions for computation of the curvature tensors
(section [C.1.2)) and then the functions ComputeWeylsNP and ComputeRiccilNP
which can be used for this task.

Now, it is clear from the already done discussion that vector field [* is tangent
to geodesics in this tetrad, because the spin coefficient k = 0 and the congruence
of the vectors is shear free, for ¢ = 0 while its expansion and twist vanish only
on the horizon. This is because A, = 0.

4.1.2 Transformations of the spin coefficients

If we compare the two tetrads, the constructed (which we do not know yet how
does it look like) and the Kinnersley tetrad, using the values of the scalars, we
immediately see they are different. The main difference is that the Kinnersley
tetrad do not have purely real spin coefficient ;1 which we want as commented

before while the aforementioned construction gave us a non-twisting congruence
tangent to the vector field n® as a by-product, cf. (2.43).

To get a tetrad with properties of the constructed one, we have to transform
the Kinnersley tetrad. Since we have to conserve the normalization of the tetrad
(for we are looking for tetrad), the proper transformation is the Lorentz one.
We have already been discussing, in section [I.7, how it can be divided into four
different simpler transformations, it comes in handy now. We shall go through
these four transformations, and show how the individual scalars transforms to be
able to find such parameters for them to be applied on the Kinnersley tetrad to
get the desirable one.

Boost

If we apply the boost transformation ([1.61]), the spin coefficients transform as:

k= A%k, e Ae + ;DA, T,

THT, 7}—>A_17+%A_2AA, vis A%y, (4.10)
o Ao, BHB—I—%A‘I(SA, i A, '
o+— Ap, ow—>a—|—%A’15A, A— A7\
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where we can with convenience use Mathematica package imposed in [54] for
treating [NP|formalism where it is enough to define substitution rules for the basis
vectors. It shall be used also for computation of all the other transformations
of the spin coefficients and we display an example of how it can be done in

appendix [C.2]

The Weyl scalars and the electromagnetic scalars transform as

U, — A, m=0,1,2,3,4, (4.11)
Pm = ATy m=0,1,2. (4.12)

This can be seen from the definitions ((1.76) and (1.77)), for ¥ spcp and P agaarp
being general spinors without any weight.

Spin

The spin transformation translates the spin coefficients as follows:

K= e Xk 5'—>5+%Dx, T e X,
T el X7 oy 4+ SAY, v e Xy
. T T asx (4.13)
o e Xo, Bn—>e‘x(6+§5x), [ i
o 0, at—)e_ix(a+%5x), A\ e 2iX)

while the Weyl scalars and the Maxwell scalars are after the transformation:

W, — eFmixg, m=0,1,2,3,4, (4.14)
B 3 17X m=0,1,2. (4.15)

with the same reasoning as in the case of the boost.

Rotation about ¢

Under the rotation about [* with a parameter ¢, the principle of transformation
of the Weyl and Ricci scalars is all the same, although, the formulas look more
intricately:

Wy — Yy,

Uy = Wy + ey,

Wy = Wy + 20, + A2y, (4.16)
Uy 5 Ug + 3cWy + 3620, + A0,

Uy Uy +4cVs + 62T, + 4630, + 1y,

®o — @0,
¢1 > @1+ oo, (4.17)
Po  Go + cy + by -
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The spin coefficients undergo the change:

K K,
T T+ co + Co+ Klc|?,
O+ 0+ KC,

0 0+ KC,

Er—~»e+cK,

Vi y+e(B+7T)+ai+oc® + (e + 0)|c)* + ke’e,

B B+ co+ee+ k|c]?, (4.18)
a— a+cle+ o)+ ke,

T 7+ 2ce + 2k + Dc,

Vi v c(2y + )+ EX+ A28+ 1) + Ao 4 |c]A (T + 2a)
+c*¢(2e + ) + ek + |c]* De + Ac + cée + dc,

p o+ 2B+ ém + 2o+ 2|c|*e + ¢*ék + e De + dc,

A= A+ e(m + 2a) + (o + 2¢) + ke® + ¢ De+ dc.

Rotation about n?

To distinguish the rotation about n® from the previous one more visibly we choose
the parameter to be d, then the transformation of the spin coefficients is

K= K+ d(2e + o) + do + d*(m + 2a) + d*X + |d|* (T + 2)
+d*d(2y + p) + d*dv — |d|* Ad — Dd — dod — d od,

T 7+ 2dy +d*v — Ad,

o o+d(T+28)+d*(p+2y)+d*v —dAd - éd,

0 0+ 2da+dr + d* X+ 2|d|*y + d*dv — d Ad — dd,,

erre+dla+m)+ Bd+ A+ (u+7)|d? + vdd,

¥y +dy, (4.19)
B B+d(y+p)+ dPv,

a > a+d\+ds + |dPy,

T T4+ d\+dp+ |dfPy,
ViU,

W= p+dv,
A= A+ vd.
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For the Weyl and electromagnetic scalars we get:

Uy = Uy + 4d¥, + 6d*°Vy + 4d3 V5 + d* 0,

U = Uy + 3dV, + 3d°WUs + d* Uy,

Uy — Uy + 2dT4 + 20, (4.20)
Wy — U3 4 d¥y,,

Wy = Uy,

Po > o + 2dp1 + d* s,
o1 o1 +doa, (4.21)
P2 > Oa.

4.2 Expansion in neighbourhood of the horizon

Although it might seem that we are ready just to perform appropriate transform-
ations on the Kinnersley tetrad, there is a major drawback of this approach, to
be discussed in section [4.3] Instead of going directly to the transformations we
use perturbations at this place.

In [3§], there has been found a perturbative solution for the isolated horizons.
However, it is not clear then, how to choose the initial values of the scalars to
obtain Kerr—Newman space-time. Our approach starts with the desired space-
time (which is given by the Kinnersley tetrad) and then makes the tetrad to
have identical properties as the one found from the construction instead. The
perturbation lies in the fact that, though, it is difficult to find the transformation
in general, as mentioned in previous paragraph, we are able to do so on the
horizon itself.

The difference, of course, is that many quantities are zero on the horizon.
However, the most fruitful simplification, for us at this moment, is the much
plainer look of the metric functions.

We start with renormalization of the Kinnersley tetrad. The vector my is left
while Ik is multiplied by (2 + a?) /|p|? and nx is divided by the same factor to
conserve its scalar product with lx. Let us refer to this “new” tetrad with small k
in subscript instead of the KE] Simultaneously we relabel the coordinate ¢ to gZJE]
On the horizon, where = r,, the function A vanishes and vector [, becomes

2
. rita a

——05. 4.29
PHER (4.22)

Recall how the vector [* of the previously constructed tetrad looks like on the
horizon — (2.33). It has only v-component for what we would like to make the 0,

'We could have have omit this step, however, it bring us to a more nicely normalized ny.
2We proceed with coordinate transformation and do not want to use tildes (or other decor-
ations) after it.
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part disappear. We can do it more conveniently a by coordinate transformation
than by a Lorentz transformation because the vector ny is not affected by the

coordinate transformation. We transform
av
=0 - —Q. 4.23
P (4.23)

The resulting tetrad on the horizon reads

- a? +r2
k_ri—ka?cos?z? v
e = —0, (4.24)
1 i(r2 + a%cos??
my = iasin? 0, + Oy + (; TR )890 .
V2 (ry +iacos?) (% +1r3)sind

We have the vector [ almost in the form of (2.33)), except the v-component
is not properly normalized. To accomplish that, we perform a boost of the

form (1.61]) with the parameter

r2 + a? cos? ¥

A 4.25
The tetrad is changed to:
lB - @v )
a’ + Ti
=TT 4.26
B r2 + a? cos? ¥ (4.26)
1 i (r2 + a? cos? 19)
mpg = fasin®d, + Oy + — , O, | .
. \/§(r++iacosﬁ)< YT (@ +r2)sing ¢

As we have shown, cf. , vector fields m* and m® do not have v-com-
ponent. To remove it we want to perform another transformation, however, the
transformation has to conserve vector [* as it has the desired form on the horizon.
There are two such transformations: spin (which is unable to zero v-component)
and the null rotation about [® . It is not difficult to find that the parameter
¢ has to be o

- tasiny (4.27)
V2 (ry —iacos?)

in order to transform m® as desired. The entire basis, after the rotation, is

lRiava
2 gin2 2, .2
e = — 2a sin - a® +ri - a 0, (4.28)
2(r$ + a? cos? ) r4+ + a?cosV a?+ri
1 i(ry —i vV
— i(ry —iacos?)

+
V2 (ry +iacos?) ! V2 (a2 +r2) sin v
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and has the property that m® is Lie dragged along [* which was required.

Nevertheless, we want to have the tetrad at least in some neighbourhood of
the horizon. To get it, we can use a power series of r as it have been already done
during the construction the tetrad. This we manifestly expand around the value
of r on the horizon, namely

I = l((lO) + (T - r+)l?1) + O(T - T+)2 ) ?1) = ll(ll) (197 90) ) (429>

and similarly for other vectors. Recall the existence of the two Killing vectors
which give us the simplified coordinate independence.

4.2.1 The first order

From the metric, we can calculate the connection and covariant derivatives
Al*, An®, Am® on the horizon, (4.30)

with yet undetermined functions l?l), n‘(ll), m?l), and require that these covariant
derivatives vanish on the horizon.

The condition of the parallel transport (on the horizon) gives us system of
linear algebraic equations which can be solved to obtainﬂ

a*(M —ry)sin?9 ry —M
2(a? +12)” A

a? sin(29) ary
2002 +12)(r2 + a?cos?¥) (a2 +12)

l(l) - 8,,

5 0, (4.31a)

a’sin? ¥ (—a*(M — 33ry) + 32r% + 4a*r? (=M + 17r))
= ( 32 (a% +12)” (a2 cos? ¥ 4 12 )’
+a2 sin? 9 (a?(M —r4) (a? cos(49) + 4r% cos(20))) ) 5
32 (a2 4+ 12)? (a2 cos? ) + 12)° !

a?sin? ¥ (a? cos(20)(M — ry) 4+ a*(M — 5ry) + 2r2 (M — 3ry.)) 3
2 (a2 +12) (a2 cos? 9 +12)° '

a’ sin 9 cos ¥ ary (a? cos(29) + 3a® + 4r?)

9
(% +1r3) (a?cos? V¥ +12) 2 (a2 +12)° (a2 cos? ¥ + 12)

©

(4.31D)

3We have rewritten the charge @ in terms of r, a and M in order to simplify the equations.
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8v/2 (a2 +12) (a2 cos? ¥ +12) 8v2 (a2 +12) (a2 cos? ¥ +12)
ia®sind (6a? —iacos(30)(M —ry) —2Mry + 811%)) 3

. <a2 sind cos? (8r3 + a?(M +Try))  2ia®sind cos(29) (a + Mry)
n = o

8v/2 (a2 +12) (a2 cos? ¥ +12)

asin 19(@ cos(M —ry) —i(a®+r (2ry — M)))

Or
V2 (a2 +72) (a® cos? 9 +12)
a? +2r2 + 2iary cosY — a? cos(29) ri(acosd +iry)
2v/2 (a2 +72) (acos ) —ir, )2 ' \2sing (a4 7r2)° °

(4.31c)

Since the spin coefficients are derivatives of the tetrad and we have the tetrad
up to the first order, we can compute the spin coefficient on the horizon (the
zeroth order). The spin coefficients should (on the horizon) meet the conditions,
which can serve as a check that the vectors are parallelly transported as they
should be. The spin coefficients are:

0@ = g0 = 700 = O =
Ty — M
S+
o _ asind(acos (M —ry) —i(a® + 1y (2ry — M)))
V2 (a2 +72) (acosd +ir, )2 ’
rycosv —ia (4.32)
V2 (acosd +iry)2sing’
A© — a*sin* 9 (—acosY(M —ry) +i(2a® + 4. (3r. — M)))
B 2(a®?+12) (acost +1iry)? ’
H(O) _ a? Cos(?ﬁ)(M - 7’_,_) — a2(M + 3r+) — 47&
4 (a®+r%) (a®cos? ¥ 4 12) '

L0) _

a® _ 5O =

As we have desired, the spin coefficient y is, at least on the horizon, manifestly
real (no twist is present). Also note that the spin coefficient € gives through ([3.4))
the right surface gravity, compare [62].

To have the complete set of the variables we want to compute also the zeroth
order values of the Weyl scalars and of the Maxwell scalars. For we have the
transformation formulas and where no derivatives are present, we
can compute the zeroth order simply by multiplication without actual need of
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the first order of the tetrad. The Weyl scalars turn out to be

vy = v =0,

g _ _d®+iaMcosd +ry(ry — M)
’ (ry —iacos¥)3(ry +iacosd)’

7O _ _3iasind (¢® +iaM cos¥ +ry(ry — M)) (4.33)
P V2(ry —iacos®)(ry +iacosd)

p© — 3a?sin? 9 (a® +iaM cosV +ry(ry — M))

(ry —iacos?)®(ry +iacos)

Before, in the Kinnersley tetrad, we had only one non-zero Weyl scalar: W,
cf. (4.7). This was left unchanged, however, as we see, other component arose.
Finally, the components of the electromagnetic field are

o) =0,

50 = @
! V2(ry —iacos)?’ (4.34)
(0) i CLQ sin ¢

¢y =

(ry —iacosd)?’

4.2.2 Higher orders

Of course we do not have to stop at the first order. The routine is almost all
the same. We solve higher order of the linear algebraic system of equations,
and substitute for the lower orders which we have to have computed before.
Together with the 3rd order, derivatives of the lower ones come into play. Then
we can use the resulting order of the tetrad to compute a new order of the spin
coefficients. The other scalars require new treatment, for we do not know them
off the horizon and the transformations are giving us nothing new for the higher
orders. We have to use the metric and compute the curvature. We start with the
Christoffel symbols, which give us the Riemann tensor. Then we compute, using
contractions, its traceless part — the Weyl tensor, and project it onto the tetrad.
For the Maxwell scalars, we can similarly use the Ricci tensor, which we have
already computed during the computation of the Weyl scalars. It is projected
onto the tetrad, and, by the means of , we get the Maxwell scalars.

Nevertheless, the higher the order the more complicated the formulas are. In
fact, from the second order of the tetrad the results are pretty much useful only
in a computer. Nevertheless, the second order is needed to compute the first
order of the spin coefficients and, therefore, to know how they propagate off the
horizon.

In appendix [C] we introduce a Mathematica source code for computation of,
theoretically, any order of the expansion. The limitation is the computational
time and, probably more importantly, memory consumption. We have computed
the tetrad up to the third order while we are displaying, in appendix [B] only the
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second order of it (only the tetrad, the scalars are omitted), just to demonstrate
the “jump” in the intricacy.

4.3 Discussion of further difficulties

We would like to discuss the main difficulties of finding the tetrad non-pertur-
batively in the neighbourhood of the horizon and why we have to employ other
methods together with the already used. In the perturbative process we have
used the simplicity of the tetrad on the horizon in our favour. We have been able
to transform the vector [* into the very restricted form while, as discussed, there
was almost no freedom left for the vector m®.

In the general case, the tetrad looks quite difficult, recall (2.39)), (2.38]) and
(2.40)), while the equations for the metric functions ([2.44]) are not useful at first
place, for they depend on the tetrad itself.

Therefore, it is a better idea not to treat the tetrad and look at the transform-
ations of the spin coefficients instead. They encode all the important properties
— the parallel transport and congruences being geodesics. However, their trans-
formation rules are complicated and unlike in the case of the tetrad itself, we are
not guided to what transformation we should do.

For this reason, we turned our attention to description of the congruence of
the geodesics by the Carter constants [49]. This simplifies equations for the trans-
formations, however, there remains a very troublesome complication. It is clear
that we have to solve differential equations when trying to find the parameters
of transformations from how spin coefficients change. The problem is that, al-
though we have been able to determine the three integrals of motion with only
the Carter one left, the formula for non-twisting n® exhibits functions which can
not be integrated to elementary functions. This formulas, elliptic functions with
very complicated arguments (pages long in some cases), appear in the differential
equations to solve and complicate the solution too much.

It turned out that this type of terms appeared in any type of approach of ours.
For example, when we want to start with the integral curves for the congruence
of n® instead of the transformations, these terms appear as early, in fact, in
equations already given by Carter, [49):

22 P
v:a°+/i L + aEsin*? dﬁ+/L(1——>dr, 4.35a
P all + Lsin—249
:a1+/i(1——)dr+ v | 4.35b
’ TR /o (35
2 2 2
A= —a? — redr a” cos” ¥ dv (4.35¢)

7w T
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and most importantly

2) ve 2) VR’
The functions v© and R are these which are complicated, and this resulted in

us unable to find explicit formula for dependence of ¥ on r along a geodesic, and
therefore also to solve the rest of equations.

(4.35d)

Nevertheless, we have been able to find the non-perturbative tetrad at least
formally (it is not written explicitly) with the aid of other constructions such as
Killing—Yano tensor. The results together with the procedure and commentaries
are to be presented in the upcoming paper.
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Conclusion

In this thesis, we presented a review of basic results on black hole horizons and
motivated the formalism of isolated horizons. We gave detailed explanation of
the Newman-Penrose formalism and related two-spinor formalism. With this
tool, we were able to define and analyse non-expanding and isolated horizons,
following the works by Ashtekar et al., which are referenced in the text. Then we
explained the construction of Krishnan [38] which was a main pillar of our work.
Generalizing the procedure of [48], we have constructed a null tetrad satisfying the
criteria imposed in [38], which are in detail explained in the text. In particular,
the tetrad is non-twisting and parallelly propagated along the null vector n* which
is transversal to the horizon.

To summarize, we have provided an analysis of the Kerr-Newman metric in
the framework of isolated horizons. Technically more challenging exact solution
is to be given in the paper of ours. With the developed formalism, let us sketch
some possible applications. First, the analysis of the Meissner effect undertaken
in [36] can be pushed further by analysing the physical properties of deformations
of the Kerr metric considered therein. As a part of this programme, it would be
useful to formulate appropriate boundary conditions for electromagnetic fields in
the neighbourhood of an isolated horizon.

For example, especially in the context of the Meissner effect, fields which
are asymptotically aligned with the axis of symmetry of the Kerr metric are
considered. How can one impose such a condition in the present formalism?
More generally, how to interpret different boundary conditions for fields? What
happens to these conditions when deformations of the Kerr geometry are allowed?
We stress once again that we are not talking about perturbations of the Kerr
metric in a usual sense, because the back-reaction effects are not neglected.

Another interesting question would be whether it is possible to get appropriate
model for the accretion disk surrounding the black hole; again, we do not mean
just the test matter on the Kerr background, but Kerr geometry deformed by
the presence of an accretion disk. In order to do that, one will need Bondi-like
expansions for the solution where the sources are not just electromagnetic fields,
like in [38], but, say, fluid or dust.

These interesting questions will be analysed in the future work.
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A. Newman—Penrose formalism

The purpose of this appendix is to reveal mostly well-known (sets of) equations
in the form of the Newman-Penrose formalism.

Firstly, we review the basis:
“ng, =1, mim, = —1, 1%l, = 1mg = nng = m*m, =0. (A.1)
And the metric
Gab = lany + ngly — maimy — Mamy = 2l (qng) — 2,1y (A.2)
which gives for the covariant derivative

V=0V =1.A+n,D —mu6 — M6 . (A.3)

A.1 Transport equations

Directional derivatives of the tetrad vectors are called transport equations and
are as follows

= (e +8)I* — Fm" — km*® (Ada)
=(y+I*—7Tm* — T?T”La : (A.4b)

= (a+ p)I* — om® — om®, (A.4c)

= —(e+&)I"+mm" +7m*, (A.4d)
—(y+3)n* +vm® +vm®, (A.4e)

—(@+ B)n® + pum® + xm” (A.4f)

Dm® =7l — kn® 4 (¢ — &)m*", (A.dg)
Am® =vl* — 1+ (y — 7)m?, (A.4h)
m® = \* — on® + (B — a)m”, (A.4)
om® = fl* — on® + (o — B)m". (A .4j)

Note that m® is complex and therefore we need both ¢ and § directions.

A.2 Ricci identities

Derivation of the vectorial form of them can be found in [52] while the spinorial
approach to this topic is present in [55].

We list foregoing equations without torsion for we are using Levi-Civita cov-
ariant derivative. Then the Ricci identities, in the most common way, are written

as
_RijklZi = VleZj - VleZj . (A_5)
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In the spinor form, the Ricci identities can be written as follows, [54]:

VA/(AV’EI)&J = Wapent” — 20 uep)c (A.6)
VauwVinée = Popan”. (A7)

The equation(A.5)) can be simply rewritten as
—Rijkleai = Vlvke&j - Vkvleaj . (A8)

We have chosen the basis covector of the tetrad for the completely general Z;
because any other covector is linear combination of the basis for what it is enough
to ensure validity for the basis.

By means of the projection of (A.8) onto the tetrad basis, we get

_ f !
Roiei = ~2Vaped T Dai Ve a T D gai Vs 1 - (A.9)

Comma is used for partial derivative. We have used the definition of the Ricci
rotation coefficients twice to rewrite the covariant derivative. When written
out explicitly they read (the components of the Riemann tensor from which each
of the equations comes from, if needed, can be found in [52])

Dr—Ak=(1+T)o+ T+mo+(c—&)71—Bv+7)k+ V1 + Do, (A.10a)
Dy—Ae=(t+7)a+ (T+7m)B—(e+&)y

—(y+y)e+T1r —vE+ Uy — A+ Pyyq, (A.10Db)

Dv—Ar=(rm+T)u+ T+1)A+(y—7)mr— Be+&)v+ U3+ Py, (A.10c)
Do —ék=(0o+0+3—¢&)o—(tr—T+a+308)x+ ¥, (A.10d)
Df—de=(a+mo+(o—&)B—(u+7)k—(@—T)e+ ¥y, (A.10e)
Dp—on=@0—c—&)u+or+(TF—a+p)r—ve+ Uy +2A, (A.10f)
DQ—SH:Q2—0—(€—|—€_)Q—l€(3&—|—g—ﬂ'>—TI_£+U(7'+(I)00, (A.10g)
Da — e = (0+&—2e)a+ 36 — fe — kA — Ry + (e + o) + Py, (A.10h)
DX — 01 =(0—3e+e)A+ou+ (7 +a—B)1 — vk + ®y, (A.10i)
Ac—61=—(u—3y+7)o—do— (T+ B —a)T + ko — Ppy, (A.10j)
AB—dy=(a+B—T)y—pur+ov+ev+(y—75—pu)B—al— ®, (A.10k)
Ap—6v=—(pp+vy+J)p—I+0r+(@+38—71)v— Py, (A.101)
Ao—61=0+7—H)o—0A+(B—a—T)T+vk— Uy —2A, (A.10m)
Aa—=dy=(o+e)v—(T+ A+ (T —ma+ (B —7)y - Vs, (A.10n)
AN—bv=—(u+a+3y—PDA\+Ba+B+7—7)v—U,, (A.100)
50— b0 = (@ + B)o— (Ba— Bo+ (o — )7 + (i — F)s — Uy + Doy, (A.10p)

Sa— 6 = po — Ao + aa + BB — 2ap
+e—o)v+ (n—n)e— Vs + A+ Oy, (A.10q)
X —op=(0— 0w+ (p—mr+ (a+ B+ (@—38)A— Vs + Dy . (A.10r)
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A.3 Bianchi identities

The common way to write the Bianchi identities is
v[efiab]cd =0. (Al]_)

As discussed in section torsion is not included. The Bianchi identities have
the spinor form [54]

VO Uapen = V4 Cpcap +ecia Vs A — ; eas VepA. (A.12)
Projecting onto the basis leads through similar process as in the case
of the Ricci identities (section to the Bianchi identities in the formalism.
Let us rewrite one of the three terms arising from the antisymmetrization to see
how the term will look like and then apply the antisymmetrization to it (it would
be difficult to make the use of abbreviated notation for the antisymmetrization
clear with both types of indices, therefore we “remember” the antisymmetrization
for “later usage”)

é a b e d
VeRabcal =e evé <R@(§@j€ a€ b€ € d)

e o boe o d | e 0\ b e d
= (VeR,peq) € ceaevetees + €€ Rygpg > ((Véqe“a) ce’psetese d)
S

_ e a b ¢ d é Stéaf cb e cd
= (VeR,js5) € cea€’ve ce’s + € cRyjsi E <7é ! etpest e d)
S

e

(A.13)
where the summation over ¢ means that are added all terms where each term
(one at a time) marked with ¢ interchanges with the term marked with ¢;. The
term preceded with ¢,, if present, goes to the place of the interchanged one while

the term decorated with ¢; fills the remaining position. The three terms (from
antisymmetrization) together after the projection onto the tetrad are

Vefaged = —Aap (Z (Rg*fd;gégd ’Yéf@r&>> : (A.14)
S

The symbol A_;(X) is an antisymmetrization of X in indices éab. When the
summations are rewritten with aid of the special symbols for the spin coefficients
we get

DU, — §Wy — DPy; + 0oy = (7 — 4a) Vo + 2(20 4 &)W — 36y + 26Dy,
— (T —2a —2B)Pgg — 20P19 — 2(0 + €)Po1 + R P2, (A.15a)

D\Ijg — 5\111 + A(POO - 5(1)01 + 2DA = —)\\Ijo + 2(7’(’ - O{)\Pl + 3Q\I/2 - 21{\:[/3
+ 2@@11 + 5(1)02 + (2’}/ —+ 2”_}/ — ﬂ)q)oo — 2(0[ + ?)@01 — 27'(1)10 y (A15b)

D3 — 06Uy — D®yy + §Pgy — 20A = =20\, + 37V, + 2(0 — ) U3 — kU,
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+ Q,M(I)l() — 271'(1)11 — (25 + 7T — 2@)@20 — 2(@ - 5)@21 + E/(PQQ y (A]_5C)

D\I/4 — 5\113 + ACI)QQ — 5@21 = —3)\\112 + 2(0& + 27'(')\1/3 + (Q - 46)\114 + 2V(I)10

— 2)\@11 — (2’)/ — 2’_)/ —+ /j)q)zo — 2(7_' — Oé)q)Ql -+ 5’@22 y (A15d)
A\IJO - (5\111 + D(I)OQ — 5(1)01 == (4"}/ - ﬂ)qfo - 2(27' + 5>\I’1 + 30"1’2

+ (@ + 2 — 25)(1)02 + 20'@11 — 2/1@12 — 5\@00 + 2(77' - 6)(1301 s (A15e)
AUy — 60y — Adg + 6Pgy — 26A = vV + 2(y — p) ¥ — 3705 + 2003

— ﬁq)oo + 2(/7, — P)/)CI)OI + (20& + T — 26)@02 + 27’@11 — 2@@12 y (A15f)
A\IJQ - (5\113 + D(I)gg - 5(1)21 + 2AN = 2V\If1 - BM\DQ + 2(6 - T)\If3 + 0\1’4

— 2[,6(1)11 — /_\(1)20 + 27'('(1)12 + 2(6 + 77)@21 + (@ — 2 — 25)(1)22 s (A15g)
AU3 — 60y — Ady + 6oy = 30 Wy — 2(y + 2u) U3 + (48 — 1)Uy — 20Dy,

- ﬁq)go + 2)\(1312 + 2(’}/ + ﬂ)q)zl + (’7—' - 25 - 20&)(1322 s (A15h)
D®yy — 6Dy + Adgy — 0oy + 3DA = (2y + 25 — pu — i) DPoo

+ (71' — 20 — 27_')CI)01 + (7_T — 20 — 27’)(1)10 + 2(@ + @)CI)H + 5’@02

+ O'(I)Q(] - I?J(I)lz — H(I)Ql s (A151)
D<D12 — 5@11 —+ Aq)()l — gq)og -+ 30A = (2’}/ —u— 2/7)(1301 -+ 17(1300 — j\q)lo

+ 2(77' - T)q)ll + (7'(' + 25— 200 — 7_')@02 + (2Q + @ - 2{::)(1)12

+ 0Py — KDgo , (A.15j)
D(I)QQ — (5(1)21 —+ Aq)u - Sq)lg + 3AA = V(I)Ol -+ 17(1)10 — 2(,LL + /j)q)n — )\(I)OQ

— APy + (27 — T+ 28) P15 + (28 — 7 + 27) Py

+ (Q + @ — 2 — 25_)(1)22 . (A15k)

Again, the corresponding components of the Riemann tensor can be found in [52].

A.4 Maxwell equations

For convenience, we enlist also already discussed and displayed Maxwell equations
which in the spinor form read

VA5 =0 (A.16)
while the projections onto the tetrad are
Dle — S¢O = (7'(' — 20[)¢0 + 2Q¢1 - Iigbg s (A17a)
Doy — 8¢y = =g + 211 + (0 — 2¢) ¢, (A.17b)
A¢0 — 6¢1 = (2’)/ — u) — 2’7’¢1 + 0'¢2, (A17C)
Apy — 0pa = vdo — 21 + (28 — 7). (A.17d)
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B. Series

—1
ny = a’sin’(v) <64 (a® + ri)4 (a®cos(20) + a® + 27"1)3> X

X (6&10 cos(619) + 212a™ + a®M? cos(89) + 3a® M?

—16a®*Mr cos(609) — 2a® Mr cos(83) + 58a°Mr

+ 28a®r7 cos(69) + a®r? cos(80) + 59a°r? + 8a°M>r? cos(69)

+ 16a°M?r? — 32a° M 13 cos(60) + 320a° Mr3 + 30a°r cos(60)

— 1980a°r} + 48a* M?ri + 576a* Mr?. — 4192a*r$ + 384a” M’

~ 31680% + da’ cos(49) (11a° — a* (M2 + 14Mr. — 49r%)
%2 (~AM? — A8Mr, + 87r2) + 4rd (M? — 12M7 +1412) )
+ 2a* cos(29) (125@8 + 2a%r, (4M + 2497, )

+ a'ry (—4M? — 48Mr, +801r%) — 32a®r (M? + 6Mr, — 22r7)

+16r7 (197, — 12M)) - 768r1+0) , (B.1a)

n(y = a*sin®(¥) (8 (a® + ri)g (a® cos(29) + a® + 2ri)3) o X

X <44a8 — a®M? cos(699) + 2a° M? + 2a° M, cos(61) + 108a° M
— a®r% cos(69) — 150a°r% + 8a' M?r? + 416a" Mr? — 796a"r’.
+ 16a° M?r} + 544a”Mr5, — 1008a°rS
+ 2a* cos(49) (2a4 —a® (M? = 10Mry + 5r7)
— 22 (2M2 = 8Mr +5r2) ) + a? cos(20) (480°
+a* (M? +126Mry + 33r3) + 16a’r5 (20M — 9r)
— 16r (M? — 14Mry + 9r7) ) + 256 M1}, — 4167&) : (B.1b)
-1
n?z) = —a®sin(29) (8 (a® + 7"_2,_)3 (a® cos(29) + a® + 27"1)2) X
X < —a*cos(49)(M —ry) + a*M + 39a'r, + 4a®>Mr?
+4a?r, cos(209) (202 + 1 (3ry — M) + 84a%r® + 48&) ., (B.lc)
-1
nf, =a (16 (a®+ r2)* (a? cos(20) + a® + 2ri)2) X
X (28a8 + a®Mr cos(60) + 2a° Mry — a®r? cos(69) — 42a°r%
+ 12a* Mr? — 320a'r} — 432a*rS
+ 2a” cos(49) (2a* — a®ry (M + 3ry) + 205 (M — 4ry))

87



+ a? cos(20) <32a6 +a'*ry (497, — M)

— 16a%r3 (M + 3r,) — 80ri) - 192ri) . (B.1d)

Iy = —a®sin®(0) (8 (a® + ri)4 (a® cos(29) + a® + 27"3))1 N
X (8@6 —a*M? + a* cos(49) (M — ry)* — 18a*Mr . + 31a*r?
— 4a® M?r% + 4a® cos(29) (a4 +a’r, (5ry — 3M)
+ Ti (M2 —5Mry + 57‘1) ) — 44@2]\47“?r + 48a*r’,
— 32Mr + 28r3) : (B.2a)

Iy = <8 (a® + 'r’i)3 (a® cos(29) + a® + 27’i)>_1 X
X <a4j\42 —a" cos(49)(M — ry)? + 22a*Mry — 15a*r% + 4a®M>r?
+ 4a” cos(29) (2a* + 2a°r (M +ry) — 3 (M? — AMry +17%))
4802 M7 - 36a%rt + 32057 — 2415 ), (B.2b)
l?z) = a’sin(29) (a” cos(20) + a® + 217) (64 (a® + ri)g (a® cos®(¥) + ri):i) B X
X ( —a*cos(49)(M — 1) — 3a* M + 39a’r,
— 4a” cos(29) (a*(M — 2ry) + 13 (2M — 3ry))
— 8a®Mr? + 84a*r? — 8Mri + 487&) : (B.2¢)

lé) =—q (4 (a® + ri)4> o X

X (2@4 + a’r cos(20)(M —r,)
+a’ry(ry —3M) —2r3 (M + 7“+)> : (B.2d)
-1
My = —a” sin(¥) (128\/5 (a® + r2)* (a® cos®(V) + ri)2> X
X <cos(19)< —8a® + a® (3M? + 66 M1y + 1557
+8a'r2 (M + 21Mr, +6972) + 1607 (TM + 40r) + 2561% )
+a [4@7 cos(51) + 8ia® M cos(49) + 2ia® M cos(61) — 8ia® M
— 4ia®r, cos(499) — 2ia’r, cos(69) — 188ia’r, — a° M? cos(59)
+ a® M? cos(T0) — 18a° Mr . cos(59) — 2a° Mr. cos(79)

+ 27a°r? cos(59) + a°r? cos(TV) — 4ia" M*r, cos(49)
+ 2ia* M?r cos(69) + 4ia M?r, — 4ia" Mr% cos(49)
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— 2ia* Mr? cos(69) + 52ia* Mr? + 16ia’r? cos(49) — 656ia'r?

+ 4a® M?r? cos(509) — 28a* M3 cos(50) + 28a’r cos(59)

+ 8ia® M?r? cos(49) + 24ia® M*r% — 36ia” M1’ cos(40)

+ 196ia® Mr’ + 32ia’r’, cos(49) — 832iar). + a cos(39) x

x (4% + " (=3M2 = 46Mry + T3r%) + da®r? (= 3M2 = 35Mr,
+47r%) + 1677 (874 — 7M)> — 2icos(29) <a6(M +31r,)

+a'ry (]\/[2 +23Mr, + 64?"3) + 16a2ri (M2 +oMr, — ri)

+ 89S (11M = 87.) ) + 176107 — 38417‘1]) , (B.3a)

-1

My = asin() <32\/§ (a® + ri)g (a® cos®(¥) + ri)Q) X
X < — 8a’ cos(39) + 2ia® M cos(49) + 6ia® M — 2ia®r, cos(49))

+ 34iaSr, + a® M? cos(39) + a® M? cos(59) — 18a° M1 cos(31)

— 2a° M1 cos(59) + a®r? cos(39) + a®r2 cos(59) + 2ia* M?r cos(49)
— 2ia* M?r, — 2ia* Mr? cos(49) — 70ia” Mr? + 168ia’r?.

+ 4a® M?r? cos(30) — 24a® Mr? cos(30) + 12a’r cos(30)

— 8ia®M*rf, — 176ia” M + 256ia*r’, + 8ia® cos(2V) (a*(M — 4ry)
—a’r (M + 5ry) + Mri (M — 4r..)) — 2a cos(¥) (12(16 +a* (M?
+54Mry — 15r7) + 2a*r? (M? + 58Mr, — 37r7)

+ 1677 (AM — 3r+)> — 112iMr] + 12817”1) : (B-3b)

mé) = (64\/5 (a® + ri)s (acos(¥) — iry)*(acos(v) + ir+)> X
X ( — 10ia” cos(30) — 2ia” cos(59) — 2a® M cos(499) — a® M cos(699)
+2a°M — 2a°r, cos(499) + a®ry cos(69) — 14a’r,
+ 2ia® My cos(30) + 2ia® Mr cos(59) — 20ia’r? cos(30)
— 4ia’r? cos(59) — 4a* Mr?% cos(49) + 4a* Mr? — 96a’r?
+ 8ia® Mr% cos(30) — 16ia®r’. cos(30) — 144a°rS.
+ a” cos(20) (a*(M +47ry) + 96a°r? + 48r)
+ dia cos(V) (11a° + a*ry (6rp — M)
~2a%% (M +10r,) = 16r5) — 6417 ) (B.3¢)

-1
miy = csc(?) (32\/§ (a® + ri)4 (a® cos® (V) + Ti)) X
X ( — 4a" cos(30) — 6ia’r, cos(49) + 14ia®r, + 7a® Mr, cos(39)

— a’Mr cos(59) + 13a°r% cos(39) + a’r? cos(59)
— 2ia* Mr? cos(49) — 14ia* Mr? — 4ia"r? cos(49) + 36ia’r?.
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+ 4a® Mr? cos(39) + 20a®r’. cos(30) — 8ia® Mri + 48ia’r?,
— 8ia’r, cos(29) (3a* — 2a’r (M — 2ry) — Mr3)
— 2acos(9) (6a® + a*ry (3M + 7r.)

+2a%3 (M — Tr,) — 16r%) + 3217«1) . (B.3d)
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C. Mathematica source code

In this appendix, we present a few Mathematica source codes which were used
during our work with non-twisting tetrads in the Kerr—Newman space-time. The
version of Mathematica used was 10.4.1.0, and it was the Student Edition one
kindly provided by Charles University.

C.1 Computation of series of the tetrad at ho-

rizon

The source code to be presented and described in this section is, with a few
modifications in favour of usability instead of self-explanatority, also included on
an attached cD-ROM together with the computed series of the tetrad up to the
third order.

C.1.1 Transformation of the Kinnersley tetrad

The first code to be displayed is an implementation of the Lorentz transformations
of the tetrad and the coordinate change. At the end, there is also listed a function
CheckNPTetrad, which were used after each transformation to verify that the
resulting tetrad still has the proper Newman—Penrose normalizations.

Kerr = {pz > r?+a?cos[o]?,
A->1r2-2Mr + a%2+0Q?%, =2 -)—(Aa2 Sin[e]z— (a2+r2)2)};
Kerralt = {p2->r2+a2 Cos[6]%, =2 - —(A[r] a%?sin[e]? - (a2+r2)2)};

horizon = {rp - M+4/M2-a2_Q2 };

zrule = {32 » (r?+a’) p2+2a’Mr sin[6]%};

gd =
-0 2Mr-Q?) si 2
{{1_““_9, 1 o, 2f2Mx-0?) sinie] L (-1, 0, 0, asinfe1?}, (0, 0,
o2 p2
2Mr-Q?%) sin[e]? i 2
-p2, 0}, {a ( r-Q ) infel , asin[e]?, o, —m}} //. Kerr;

p2 p2
gu = Inverse[gd] // Simplify;
xu = {v, r, 6, ¢};

Horizon[x ] :=x/.r->M+ '\[Mz -a%? // FullSimplify
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Kinnersley tetrad

2 2

r‘+a a
1uk={ , 0,0, —}//.Kerr/.r—»rp;

p2 p2
nuk = {0, -1, 0, 0} /. r > rp;

1 . I
muk = {IaS1n[6], 0,1, —} /. T ->rp;
'\/2 (r+IacCos[6O]) Sin[6]
1 . -I

mukcc = {—Ia81n[6], 0,1, —} /. r->rp;

A2 (r-Iacos[e]) sin[e]

euk = {luk, nuk, muk, mukcc};

Coordinate transformation

T =

o o
o opRr o
o B OO
P O OO

~e

a

a%+rp?

{lut, nut, mut, mutcc} =TM.H & /@ {luk, nuk, muk, mukcc} //.xr->r1rp;

eut = {lut, nut, mut, mutcc};

gdt = Transpose[Inverse[TM]]. (gd).Inverse[TM] // Simplify;
gut = Inverse[gdt]| // simplify;

Boost

r? +a? Cos[6]?
Az —————;
a? +r?

Lu = Alut;

Nu = A ! nut;

Mu = mut;

Mucc = mutcc;

Eu = {Lu, Nu, Mu, Mucc};

Null rotation about ¢

rhos = {
p>r+IacCos[6], p»>r-IacCos[O]

}i

1
c = (rasin[e]) /. rhos;

V2 5

1

V2 p

c-= (-Tasin[e]) /. rhos;
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luel = Lu;

nuel = Nu + ¢Mu + cMucc + ccCLu;

muel = Mu + C Lu;

muelcc = Mucc + ¢ Lu;

euel = {1ue1, nuel, muel, muelcc} /. rhos // Simplify;

CheckNPTetrad|[nullTetrad_, gd_| := Module[{},
Table[ nullTetrad[[idxl]] .gd.nullTetrad[[ide]] // Expand,
{iax1, 1, 4}, {iax2, 1, 4}]]

C.1.2 Expansion of the tetrad

The main computational part consists of functions successively adding new orders
of the solution. These are functions ComputeOrder0fVector, ComputeOrder0f-
Der, and ComputeOrder0fTetrad. None of these commands should be run twice
(with the same parameters) or in wrong order of powers of the solution in the
construction of ours — they are rewriting (adding to it) the solution, so we work
with one list of rules giving the solution. If run twice, any of the commands,
therefore, uses the already found solution to “compute it again”. This leads to
information loss. Since we hope for a charitable user, we have not taken care of
this. Moreover, the last one (ComputOrderQfTetrad) is the only needed by the
end user.

Moreover, there is a function TestTetradUpToOrder, which verifies that the
computed series of the tetrad is up to the specified order really a proper
tetrad.

To decide whether the tetrad accomplishes the conditions of the parallel trans-
port, we need the spin coefficients which are provided by functions Compute-
SpinsUpToOrder and ComputeSpinCoeffsNP, which is used in the first one. Sim-
ilarly, Weyl scalars and the Ricci scalars are given by functions ComputeWeylsUp-
ToOrder and ComputeRiccisUpToOrder, in which a few other functions providing
the curvature are employed.

Because computation of covariant derivative of the general series of the tetrad
is time-consuming, there is a switch MaxOrder which determines the maximal
order we are going to compute and has to be greater of equal to the order set in
the function of type ComputeOrder0f<Something> or Compute<Something>Up-
ToOrder

The source code is:

1u0 = luel /. r->rp // Simplify;
nul0 =nuel /. r>rp // Simplify;
mu0 =muel /. r->rp // Simplify;
mulcc =muelce /. r->rp // Simplify;

93



CovariantDerivativeU[Xu_, xu_, I'_] :=
Table[ Oxypuy Xullv] + Sum[ I'[v, u, af Xuall, {a, 1, 4}], {u, 1, 4}, {v, 1, 4}]

MaxOrder = 3;

{1ui, nui, mui, mucei} =
sum|[Table[#[order]| [coor] [6], {coor, {iv, ir, ie, i¢}}] (r - rp)°r®~,
{order, 1, MaxOrder}] +0[r, rp]texorder+l g /@{1ux, nux, mux, muccx]»;

{1u, nu, mu, mucc} = {1lui, nui, mui, mucci} + {1u0, nuo, mu0, mudcc};
1u0 = luel /. r>rp // Simplify;

nu0 =nuel /. r->rp // Simplify;

mu0 =muel /. r > rp // Simplify;

mulcc =muelcec /. r->rp // Simplify;

{covder[lux], covder[nux], covder[mux]} =
nu.CovariantDerivativeU[#, xu, T't] & /@ {1lu, nu, mu};

Indices = {iv, ir, ie, i¢};

CurrentSol = {};
CurrentDer = {};

Compute tetrad expansion

ComputeOrderOfVector[order_, vect_, covder_, currentsol_, currentder_,
indices_] 1= Module[{expr, soltemp, sol, der, covdertemp},
(*compute the given vector of the desired orderx)
covdertemp = Coefficient[
Series [covder [vect], {r, rp, order - 1}] , r-rp, order - 1] ;

expr = covdertemp //. Q » '\/—az +2Mrp -rp? (*//Simplify=);

soltemp = Solve[{expr[[l]] =0, expr[[2]] == 0, expr[[3]] =0,
expr[[4]] = 0}, vect[order| [#][6] & /@indices];

sol[vect] [order] = soltemp /. currentsol /. currentder // Simplify;

Join[currentsol, sol[vect][order]|[[1]]]

]

ComputeOrderOfCCM[order_, currentsol_, indices_] :=
Module[{tab, tabsimpl},
tab = Table[muccx[order] [idx] [e]1 »
Conjugate [mux[order] [1dx] [e1 /. currentsol] ’ {idx, indices}] ;
tabsimpl = Simplify[ComplexExpand[{tab}],
{rp >0,M>0, a€Reals, 6 ¢ Reals}];
Join[currentsol, tabsimpl[1]]

]
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ComputeOrderOfDer[order_, vect_, currentsol_, currentder_, indices_] t=
Module[{expr, soltemp, sol, der, covdertemp},
der [vect] [order] =
Join[{vect[order][iv]'[6] » D[vect[order][iv][6] /. currentsol, 6]},
{vect[order][ir]’[6] » D[vect[order]|[ir][6] /. currentsol, 6]},
{vect [order][ie] [6] » D[vect|order][ie][6] /. currentsol, 6]},
{vect[order][i¢] [6] » D[vect[order][i¢][€] /. currentsol, 6]}];

Join[currentder, der[vect] [order]]

]

ComputeOrderOfTetrad [order_,
covder_, currentsol_, currentder_, indices_] t=
Module[{tempn, templ, tempm, tempf, dern, derl, derm, derf},
Print ["Computing n“] ;
tempn = ComputeOrderOfVector[order,
nux, covder, currentsol, currentder, indices];
dern = ComputeOrderOfDer[order, nux, tempn, currentder, indices];
Print["Computing 1"];
templ =
ComputeOrderOfVector[order, lux, covder, tempn, dern, indices];
derl = ComputeOrderOfDer [order, lux, templ, dern, indices];
Print["Computing m"];
tempm =
ComputeOrderOfVector[order, mux, covder, templ, derl, indices];
derm = ComputeOrderOfDer[order, mux, tempm, derl, indices];
Print["Computing @"];
tempf = ComputeOrderOfCCM[order, tempm, indices];
derf = ComputeOrderOfDer[order, muccx, tempf, derm, indices];
{tempf, derf}

Test of the tetrad being Newman—Penrose

TestTetradUpToOrder [nulltetrad_, gd_, order_, currentsol_] :=
Module[{testtetradmatrix, testmatrixseries,
testseriescoefs, tested, testedsimplified},
testtetradmatrix = Table[ nulltetrad[idx1].gd.nulltetrad[idx2],
{iax1, 1, 4}, {iax2, 1, 4}];
testmatrixseries = Series[testtetradmatrix, {r, rp, order}];

testseriescoefs = Table[Coefficient[testmatrixseries, r-rp, i] /.

Q- '\/—az +2Mrp-rp?, {i, 0, order}];
tested = testseriescoefs /. currentsol;
testedsimplified = tested // Simplify;
Table[testedsimplified[i]] // MatrixForm, {i, 1, order +1}]

]

The scalars are remaining to be computed. Since we need derivatives for the
spin coefficients, order n 4 1 of the tetrad is required to get order n of them.
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Spin coefficients

ComputeSpinCoeffsNP|[nullTetrad , x_, gd_, T_]| :=
Module[{lu, nu, mu, mucc, 1d, nd, md, mdce, D1, Dn, Dm, Dmec},
lu = nullTetrad[1]:
nu = nullTetrad[2] ;
mu = nullTetrad[3] ;
mucc = nullTetrad[4];
1d = gd.1lu; nd = gd.nu; md = gd.mu; mdcc = gd.mucc;
D1 = Table[dyp1d[v] - Sum[ Ta, u, v]1d[al, {a, 1, 4}],
{u, 1, 4}, {v, 1, 4}];
Dn = Table[dypynd[v] - Sum| Fa, u, vInd[al, {a, 1, 4}],
{u, 1, 4}, {v, 1, 4}];
Dm = Table[dypymd[v] - Sum| "a, u, vImd[al, {a, 1, 4}],
{1, 1, 4}, (v, 1, 4}]s
Dmce = Table[dxpgmdec[v] - Sum|[ Tfa, p, vlmdec[all, {a, 1, 4}],
{u, 1, 4}, (v, 1, 4}];
{{x, mu. (1u.pl)}, {z, mu. (nu.n1)}, {o, mu. (mu.D1)},

{p, mu. (mucc.Dl)}, {e, (nu. (lu.Dl) - mucc. (1u.Dm))}, {/3,

N |-

1 (nu. (mu.Dl) -mucc. (mu.Dm))}, {7,

2

{a, 1 (nu. (mucc.Dl) - mucc. (mucc.Dm))}, {pi, nu. (lu.Dmcc)},
2

{v, nu. (nu.Dmcc) }, {A, nu. (mucc.Dmcc) }, {u, nu. (mu.Dmcc) }}]

N |-

(nu. (nu.Dl) -mucc. (nu.Dm))},

ComputeSpinsUpToOrder[order_, tetrad_, coors_,
metric_, connection_, currentsol_, currentder_] :=
Module[{spins, spinsexpr, spinslabels, spinsol},
Print[“computing general spins“];
spins = ComputeSpinCoeffsNP[tetrad, coors, metric, connection];
Print["substituing known solution"];

spinsexpr = Series [spins, {r, rp, order}] /. Q- '\/—az +2Mrp-rp? /.
currentder /. currentsol;
spinslabels = {x, t, 0, p, €, B, ¥, a, Pi, v, A, u};
spinsol = {};
Do[Print["computing " spinslabels[idx]];
spinsol = Append[spinsol,
simplify[spinsexpr[[idx]], TimeConstraint » Infinity]]
 {iax, 1, 12}];
spinsol

]
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Curvature tensors

Connection[x_, gd_, gu_] 1= Module[ {Dg},
Dg = (0sgd) & /@ x;
1/2gu.(Transpose[Dg, {3, 2, 1}] + Transpose[Dg, {2, 1, 3}] - Dg)

]

Riemcal[x_, gd_, gu_, T_]| := Module[ { riem},
riem = Table][
OxnviTHa, B, ull - OxpupTla, B, vI+
Sum[ T'fa, v, ATTIA, w, BN, {A, 1, 4}] -
sum[ T'[a, u, XITLA, v, Bl ., {A, 1, 4}1,
{a, 1, 4}, {B, 1, 4}, {u, 1, 4}, {v, 1, 4}]:
riem

]

Riccal [x_, gd_,gu_, T_, riem_] t= Module[ { ric},
ric =
Table[ Sum[ riem[a, B, a, vI, {a, 1, 4}], {B, 1, 4}, {v, 1, 4}];
ric

]

Rcal [x_, gd_, gu_, I'_, riem_, ric_] := Module[ {R},
R = Tr[gu.ric];
R

]

Wecal [x_, gd_, gu_, I'_, riem_, ric_, R_, riemd_] t= Module[ {W},

W = Table[riemd[i, i, k, 1]]
- i (gd[i, ] ric[[1, 3] - gdfi, 1] ric[3., k] -
ngIj, k]] ric|I1, i]] + gd[[jr 1]] ric[[k, 1]])
. iR (ga[i., ] gd[1, 3] - eafi, 1] ea[3, k]).

{i, 1, 4}, {3, 1, 4}, {x, 1, 4}, {1, 1, 4}]:

]

Tt = Connection[xu, gdt, gut] // Simplify;

Riem = Riemcal[xu, gdt, gut, T't] // Simplify;

Ric = Riccal [xu, gdt, gut, Tt, Riem] // Simplify;
R = Rcal [xu, gdt, gut, I't, Riem, Ric] // Simplify;

Riemd = gdt.Riem // Simplify;
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W = Weal [xu, gdt, gut, T't, Riem, Ric, R, Riemd] // Simplify;

Weyl scalars

ComputeWeylsNP[W_, nullTetrad_] 1= Module[{lu, nu, mu, mucc, m},

lu = nullTetrad[1l];

nu = nullTetrad[2] ;

mu = nullTetrad[3] ;

mucc = nullTetrad[4];

2[0] = sum[W[i, §, k, 1] Luf[i] mu[[j] lu[k] muf1],
{i, 1, 4}, {3, 1, 4}, {x, 1, 4}, {1, 1, 4}]:

©[1] = sum[W[i, j, k, 1] 1u[i] nuf[i] 1ufk] muf1],
{i, 1., 4}, {3, 1, 4}, {x, 1, 4}, {1, 1, 4}];

g[2] = sum[W[i, j, k, 1] 1ufi] mu[[j] mucec[k] nuf1],
{i, 1., 4}, {3. 1, 4}, {x, 1, 4}, {1, 1, 4}];

T[3] = Sum[W[[i, i, k, l]] 1u|Ii]] nu[[j]]mucc[[k]] nu[[l]],
{i, 1., 4}, {3, 1, 4}, {x, 1, &}, {1, 1, 4}];

2[4] = sum[W[i, j, k, 1] muce[i] nuf[j] muce[k] nuf1],
{i, 1, 4}, {3, 1, 4}, {x, 1, 4}, {1, 1, 4}];

Table[{z/t[idx], m[idx]}, {idx, 0, 4}]

ComputeWeylsUpToOrder[order_, tetrad_, weyltensor_, currentsol_] $=

Module [{weyls , weylsexpr, weylsol},

]

Print["computing general weyls"];
weyls = ComputeWeylsNP [weyltensor, tetrad] ;
Print["substituing known solution"];

weylsexpr =

series[weyls, {r, rp, order}] /. Q- '\/—az +2Mrp-rp? /. currentsol;
weylsol = {};
Do[Print["computing @[", idx-1, "]"];
weylsol = Append[weylsol,
Simplify [weylsexprl[idx]] , TimeConstraint » Infinity] ]
. {iax, 1, 5}];
weylsol
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Ricci scalars

ComputeRicciNP[Ric_, nullTetrad_ ] :=
Module[{lu, nu, mu, mucc, Ricsp, Msp},
lu = nullTetrad[1l];
nu = nullTetrad[2] ;
mu = nullTetrad[3] ;
mucc = nullTetrad[4];

Ricsp[0][0] = - = sum[Ric[i, 3] u[i] w[3], {i, 1. 4}, {3. 1, 4}]:
2

Ricsp[0][1] = - = Sum[Ric[i, 3] i) m[5], {i, 1. 4}, {35, 1, 4}]:
2

Ricsp[0][2]

—}-Sum[Ric[i,jﬂnmﬂiﬂmmﬂjﬂ, {1, 1, 4}, {3, 1, 4}];

Ricsp[1l][1]

sum[ Ric[[i, 3]

lu[i] nuf[3] +mufi] muce[5]). {i. 1. 4}, {3, 1. 4}]:

—;—Sum[Ricﬂi,jﬂnuﬂiﬂmmﬂjﬂ, {1, 1, 4}, {3, 1, 4}];

R__ A RN

Ricsp[1l][2]

—E-Sum[Ricﬂi,jﬂnuﬂiﬂnuﬂjﬂ, {1, 1, 4}, {3, 1, 4}]:

Table[Table[{Phi[idx][idx2], Ricsp[idx][idx2]},
{iax2, iax, 2}], {iax, o0, 2}]

Ricsp[2][2]

ComputeRiccisUpToOrder[order_, tetrad_, riccitensor_, currentsol_] 1=
Module[{riccis, riccisexpr, riccisol},

Print["computing general ricci spinors“];

riccis = ComputeRicciNP|[riccitensor, tetrad];

Print["substituing known solution“];

riccisexpr =

Series [riccis, {r, rp, order}] /. Q- '\/—a2 +2Mrp-rp? /. currentsol;
riccisol = {};
Do [Do[Print[“computing Riccisp[", idx-1, "][", idx+idx2-2, "] "] ;
riccisol = Append[riccisol,
Simplify[riccisexpr[[idx, idxz]] , TimeConstraint -» Infinity]]
., {iax2, 1, 4 -iax}], {iax, 1, 3}];

riccisol

]

C.2 Example of computation of the spin coeffi-
cient transformation
We also present an example of how to get the transformation rules for the spin

coefficients. We show only the boost transformation, for the other be only change
of the list or rules at the beginning.

The other scalars are even simpler to get since there are no derivatives. We
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do not show any code for them.

rulesboost = {1[a_] » Al[a], n[a_] =» A"'n[a], m[a_] » m[a], W[a_] =» @[a]};
nab = {NablaT[a__] - Nabla[a], NablaT[a__] —)Nabla[af]};

spiny = {skappa, stau, ssigma, srho, sepsilon,
sgamma, sbeta, salpha, spi, snu, smu, slambda};

skappa =m[a] 1[b] NablaT[b, 1[a] ];
stau =m[a] n[b] NablaT[b, 1[a]];

ssigma =m[a] m[b] NablaT[b, 1[a]];
srho =m[a] @[b] NablaT[b, 1[a]];

sepsilon = 1 (n[a] 1[b] NablaT[b, 1[a]] -@[a] 1[b] NablaT[b, m[a]]):
2
sgamma = 1 (n[a] n[b] NablaT[b, 1[a]] -@[a] n[b] NablaT[b, m[a]]);
2
sbeta = 1 (n[a] m[b] NablaT[b, 1[a]] -@[a] m[b] NablaT[b, m[a]]):
2

salpha = 1 (n[a] @[b] NablaT[b, 1[a]] - @[a] @[b] NablaT[b, m[a]]);
2

spi = -fM[a] 1[b] NablaT[b, n[a]];

snu = -fM[a] n[b] NablaT[b, n[a]];

smu = -fi[a] m[b] NablaT[b, n[al];
slambda = -W[a] @[b] NablaT[b, n[a]];
expr = (#) & /@spiny /. nab;

kin = Penrose[expr]

{x, t, 0,0, €, v, B, a, pi, v, u, A}

boost = Penrose[ (#) & /@ spiny /. rulesboost /. nab] // Simplify;

trboost = Table[kin[[i]] »boost[[i]], {i, 1, 12}]

) DD [A] ¥ A[3]
{K%A K, T>T, 0->A0, p>Ap, € 5A€+ P ,
A 2A?
[A] 5[a] . . v % A
Bo>B+—, >0+ ——,pi->pi, vo —, u-> —, Ae*}
2A 2A A? A A

100



Bibliography

[12]

[13]

[14]

[15]

SCHWARZSCHILD, K. On the Gravitational Field of a Point-Mass, According
to Einstein’s Theory. In: 35.5 (1916), pp. 951-959. arXiv: 9905030.

OPPENHEIMER, J. R. and SNYDER, H. On continued gravitational con-
traction. In: Phys. Rev. 56.5 (1939), pp. 455-459. 1ssN: 0031899X. DOTI:
10.1103/PhysRev.56.455.

HAWKING, S. W. and PENROSE, R. The Singularities of Gravitational Col-
lapse and Cosmology. In: Proc. R. Soc. A 314.1519 (1970), pp. 529-548.
DOI: |10.1098/rspa.1970.0021.

PENROSE, R. Gravitational Collapse and Space-Time Singularities. In:
Phys. Rev. Lett. 14.3 (1965), pp. 57-59.

HAwKING, S. W. and ELuis, G. F. R. The large scale structure of space-
time. 1973, xi, 391 p. 1SBN: 0521099064. DOI: 10.1017/CB09780511524646.

WALD, R. M. General Relativity. University of Chicago Press, 1984. ISBN:
9780226870335.

KRUSKAL, M. D. ‘Maximal Extension of Schwarzschild Metric’. In: Black
Holes Sel. Repr. Ed. by DETWEILER, S. 1982, p. 56.

NARAYAN, R., McCLINTOCK, J. E. and JEFFREY, E. Observational evid-
ence for black holes. In: arXiv (2013). eprint: 1312.6698.

ABBOTT, B. P. et al. Observation of Gravitational Waves from a Binary
Black Hole Merger. In: Phys. Rev. Lett. 116.6 (2016).

BIRKHOFF, G. D. and LANGER, R. E. Relativity and Modern Physics. Har-
vard University Press, 1923.

KERR, R. P. and ScHILD, A. Republication of: A new class of vacuum
solutions of the FEinstein field equations. In: Gen. Relativ. Gravit. 41.10
(2009), pp. 2485-2499. 1SSN: 1572-9532. DOI: 10.1007/s10714-009-0857~

2.

Apamo, T. M. and NEWMAN, E. T. The Kerr-Newman metric: A Review.
In: 9.10 (2014). arXiv: [1410.6626.

CHRUSCIEL, P. T., CosTA, L. and HEUSLER, M. Stationary Black Holes:
Uniqueness and Beyond Imprint / Terms of Use. In: 7 (2012). 1SSN: 1433-
8351. DOI: 10.12942/1rr-2012-7.

IsrRAEL, W. Fvent horizons in static electrovac space-times. In: Comm.
in Math. Phys. 8.3 (1968), pp. 245-260. 1sSN: 1432-0916. poI: 10. 1007/
BF01645859.

CARTER, B. Azisymmetric Black Hole Has Only Two Degrees of Freedom.
In: Phys. Rev. Lett. 26.6 (1971), pp. 331-333. DOI:|10.1103/PhysRevLett.
26.331.

101


http://arxiv.org/abs/9905030
http://dx.doi.org/10.1103/PhysRev.56.455
http://dx.doi.org/10.1098/rspa.1970.0021
http://dx.doi.org/10.1017/CBO9780511524646
1312.6698
http://dx.doi.org/10.1007/s10714-009-0857-z
http://dx.doi.org/10.1007/s10714-009-0857-z
http://arxiv.org/abs/1410.6626
http://dx.doi.org/10.12942/lrr-2012-7
http://dx.doi.org/10.1007/BF01645859
http://dx.doi.org/10.1007/BF01645859
http://dx.doi.org/10.1103/PhysRevLett.26.331
http://dx.doi.org/10.1103/PhysRevLett.26.331

[16]

[17]

[22]

[23]

[24]

[25]

RoBINSON, D. C. Uniqueness of the Kerr Black Hole. In: Phys. Rev. Lett.
34.14 (1975), pp. 905-906. DOI: 10.1103/PhysRevLett.34.905.

HERDEIRO, C. A. R. and RADU, E. Kerr Black Holes with Scalar Hair. In:
Phys. Rev. Lett. 112.22 (2014), p. 221101. pOI: |10. 1103 /PhysRevLett .
112.221101.

BEKENSTEIN, J. D. Black holes and entropy. In: Phys. Rev. D 7.8 (1973),
pp. 2333-2346. DOT: [10.1103/PhysRevD.7.2333.

HAWKING, S. W. Particle creation by black holes. In: Commun. Math. Phys.
43.3 (1975), pp. 199-220. 1sSN: 14320916. DOI: [10.1007/BF02345020.

ParikH, M. K. and WILCZEK, F. Hawking Radiation As Tunneling. In:
Phys. Rev. Lett. 85 (2000), pp. 5042-5045.

PENROSE, R. Techniques of Differential Topology in Relativity. CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics, 1972. 1SBN: 9780898710052.

Frorov, V. and Novikov, 1. Black Hole Physics: Basic Concepts and
New Developments. Fundamental Theories of Physics. Springer Nether-
lands, 2012. 1SBN: 9789401151399.

LI1BSON, J., MAssO, J., SEIDEL, E., SUEN, W. and WALKER, P. Event
horizons in numerical relativity: Methods and tests. In: Phys. Rev. D 53.8
(1996), pp. 4335-4350. 1SSN: 0556-2821. DOI: 10.1103/PhysRevD.53.4335.

FRAUENDIENER, J. Conformal infinity. In: Living Rev. Relat. 3 (2000).
ISSN: 14338351. DOI: 110.12942/1rr-2004-1.

ASHTEKAR, A. and KRISHNAN, B. Isolated and Dynamical Horizons and
Their Applications. In: Living Reviews in Relativity 7.10 (2004). por: 10.
1007/1rr-2004-10.

Psavrris, D., WEX, N. and KRAMER, M. A Quantitative Test of the No-
hair Theorem with Sgr A* Using Stars, Pulsars, and the Event Horizon
Telescope. In: Astrophys. J. 818.2 (2016), p. 121. 1SSN: 1538-4357. DOI: [10.
3847/0004-637x/818/2/121.

JOHANNSEN, T. et al. Testing general relativity with the shadow size of Sqr
A* In: Phys. Rev. Lett. 116.3 (2016). pOI: 10.1103/physrevlett.116.
031101.

ReErs, R. C., REyNoLDs, M. T., MILLER, J. M. and WALTON, D. J. Reflec-
tion from the strong gravity regime in a lensed quasar at redshift z = 0.658.
In: Nature 507.7491 (2014), pp. 207-209. DOI: 10.1038/nature13031.

RisALITI, G. et al. A rapidly spinning supermassive black hole at the centre
of NGC 1365. In: Nature 494.7438 (2013), pp. 449-451. por: 10 . 1038/
naturel1938.

102


http://dx.doi.org/10.1103/PhysRevLett.34.905
http://dx.doi.org/10.1103/PhysRevLett.112.221101
http://dx.doi.org/10.1103/PhysRevLett.112.221101
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.53.4335
http://dx.doi.org/10.12942/lrr-2004-1
http://dx.doi.org/10.1007/lrr-2004-10
http://dx.doi.org/10.1007/lrr-2004-10
http://dx.doi.org/10.3847/0004-637x/818/2/121
http://dx.doi.org/10.3847/0004-637x/818/2/121
http://dx.doi.org/10.1103/physrevlett.116.031101
http://dx.doi.org/10.1103/physrevlett.116.031101
http://dx.doi.org/10.1038/nature13031
http://dx.doi.org/10.1038/nature11938
http://dx.doi.org/10.1038/nature11938

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[43]

McCLINTOCK, J. E., NARAYAN, R. and STEINER, J. F. Black Hole Spin
via Continuum Fitting and the Role of Spin in Powering Transient Jets.
In: Space Sci. Rev. 183.1-4 (2014), pp. 295-322. 1SSN: 15729672. DOI: 10.
1007/s11214-013-0003-9. arXiv: 1303.1583 [astro-ph.HE].

PROJECT, E. F.-S. research. Strong Gravity. URL: http://stronggravity.
eu/l

N1c, M., JIRAT, J. and KOSATA, B. TUPAC goldbook. TUPAC, 2006.

SUSSKIND, L., THORLACIUS, L. and UGLUM, J. The stretched horizon and
black hole complementarity. In: Phys. Rev. D 48.8 (1993), pp. 3743-3761.
DOI: |10.1103/PhysRevD. 48.3743|

STROMINGER, A. and VAFA, C. Microscopic origin of the Bekenstein-
Hawking entropy. In: Phys. Lett. B 379.1-4 (1996), pp. 99-104. 1SSN:
03702693. por: 10 . 1016 / 0370 - 2693(96 ) 00345 - 0. arXiv: 9601029
[hep-th].

PENROSE, R. The Road to Reality: A Complete Guide to the Laws of the
Universe. Vintage Series. Vintage Books, 2007. 1SBN: 9780679776314.

GURLEBECK, N. and SCHOLTZ, M. Meissner effect of black holes and jet
efficiency production. In: To appear in Phys. Rev. Lett. (2016).

GURLEBECK, N. No-hair theorem for black holes in astrophysical environ-
ments. In: Phys. Rev. Lett. 114.15 (2015). DOI: 10.1103/physrevlett .
114.151102.

KRISHNAN, B. The spacetime in the neighborhood of a general isolated
black hole. In: Classical and Quantum Gravity 29.20, 205006 (Oct. 2012),
p- 205006. DOI: 10.1088/0264-9381/29/20/205006. arXiv: 1204 .4345
[gr-qcl.

NEwMAN, E. and PENROSE, R. An Approach to Gravitational Radiation
by a Method of Spin Coefficients. In: Journal of Mathematical Physics 3.3
(1962), pp. 566-578. DOI: 10.1063/1.1724257.

NEWMAN, E. T. and UNnT1, T. W. J. Behavior of Asymptotically Flat Empty
Spaces. In: J. Math. Phys. 3.5 (1962).

Bonbi, H., BurG, M. G. J. van der and METZNER, A. W. K. Gravita-
tional waves in general relativity. VII. Waves from Axi-Symmetric isolated
systems. In: 269.1336 (1962), pp. 21-52. DOI: 10.1098/rspa.1962.0161.

SacHs, R. K. Gravitational waves in general relativity. VIII. Waves in
asymptotically flat space-time. In: Proc. R. Soc. A Math. Phys. Eng. Sci.
270.1340 (1962), pp. 103-126. 1SSN: 1364-5021. DOI: |10.1098/rspa.1962.
0206.

Bonbpi, H. Gravitational waves in general relativity. In: Nature 186.4724
(1960), p. 535. 1sSN: 0028-0836. DOTI: 10.1038/186535a0.

103


http://dx.doi.org/10.1007/s11214-013-0003-9
http://dx.doi.org/10.1007/s11214-013-0003-9
http://arxiv.org/abs/1303.1583
http://stronggravity.eu/
http://stronggravity.eu/
http://dx.doi.org/10.1103/PhysRevD.48.3743
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/9601029
http://arxiv.org/abs/9601029
http://dx.doi.org/10.1103/physrevlett.114.151102
http://dx.doi.org/10.1103/physrevlett.114.151102
http://dx.doi.org/10.1088/0264-9381/29/20/205006
http://arxiv.org/abs/1204.4345
http://arxiv.org/abs/1204.4345
http://dx.doi.org/10.1063/1.1724257
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0206
http://dx.doi.org/10.1098/rspa.1962.0206
http://dx.doi.org/10.1038/186535a0

[44]

[45]

[46]

[47]

[48]

[54]

[55]

[56]

[57]

[58]

ARNOWITT, R., DESER, S. and MISNER, C. W. Republication of: The dy-
namics of general relativity. In: General Relativity and Gravitation 40 (Sept.
2008), pp. 1997-2027. por: 10. 1007 /s10714-008-0661-1. eprint: gr-
qc/0405109.

SZABADOS, L. B. Quasi-Local Energy-Momentum and Angular Momentum
in General Relativity. In: Living Reviews in Relativity 12.4 (2009). DOI:
10.1007/1rr-2009-4.

BI1CAK, J., ScHOLTZ, M. and Tob, P. On asymptotically flat solutions of

FEinstein’s equations periodic in time II. Spacetimes with scalar-field sources.
In: Class. Quantum Grav. (2010). arXiv: 1008.0248.

ScHoLTZ, M. and HOLKA, L. On the Bondi mass of Mazwell-Klein-Gordon
spacetimes. In: Gen. Rel. Gravit. 46.2 (2014), pp. 1-23. 1SSN: 15729532. DOI:
10.1007/s10714-014-1665-7. arXiv: 1312.7084.

FLETCHER, S. J. and LuN, A. W. C. The Kerr spacetime in generalized
Bondi-Sachs coordinates. In: Class. Quantum Grav. 20.19 (2003), pp. 4153
4167. 18SN: 0264-9381. DOI: 10.1088/0264-9381/20/19/302.

CARTER, B. Global structure of the Kerr family of gravitational fields. In:
Phys. Rev. 174.5 (1968), pp. 1559-1571. DOI: 10.1103/PhysRev.174.1559.

WALKER, M. and PENROSE, R. On quadratic first integrals of the geodesic
equations for type {22} spacetimes. In: Commun. Math. Phys. 18.4 (1970),
pp- 265-274. 18SN: 00103616. DOI: [10.1007/BF01649445.

KINNERSLEY, W. Type D gravitational fields. California Institute of Tech-
nology, 1969.

CHANDRASEKHAR, S. The mathematical theory of black holes. Interna-
tional series of monographs on physics. Clarendon Press, 1983. ISBN:

9780198512912.

NEwWMAN, E. T. and PENROSE, R. Spin-coefficient formalism. In: Scholar-
pedia 4.6 (2009). revision #91805, p. 7445.

ScHOLTZ, M. Helical symmetry, spinors and periodic solutions in general
relativity. Lambert Academic Publishing, 2012. 1SBN: 9783659285806.

PENROSE, R. and RINDLER, W. Spinors and Space-Time: Volume 1, Two-
Spinor Calculus and Relativistic Fields. Cambridge Monographs on Math-
ematical Physics. Cambridge University Press, 1987. 1SBN: 9780521337076.

ScHUTZ, B. F. Geometrical Methods of Mathematical Physics. Cambridge
University Press, 1980. 1SBN: 9780521298872.

STEWART, J. Advanced General Relativity. Cambridge Monographs
on Mathematical Physics. Cambridge University Press, 1993. ISBN:
9780521449465.

D’EsposiTto, M. R. Complex General Relativity. Fundamental Theories of
Physics. Springer Netherlands, 2006. 1SBN: 9780306471186.

104


http://dx.doi.org/10.1007/s10714-008-0661-1
gr-qc/0405109
gr-qc/0405109
http://dx.doi.org/10.1007/lrr-2009-4
http://arxiv.org/abs/1008.0248
http://dx.doi.org/10.1007/s10714-014-1665-7
http://arxiv.org/abs/1312.7084
http://dx.doi.org/10.1088/0264-9381/20/19/302
http://dx.doi.org/10.1103/PhysRev.174.1559
http://dx.doi.org/10.1007/BF01649445

[62]

[63]

[64]

[65]

[72]

[73]

GEROCH, R., HELD, A. and PENROSE, R. A space-time calculus based on
pairs of null directions. In: J. Math. Phys. 14.1973 (1973), pp. 874-881.
DOI: 10.1063/1.1666410.

MIiIsSNER, C., THORNE, K. and WHEELER, J. Gravitation. Gravitation pt.
3. W. H. Freeman, 1973. 1SBN: 9780716703440.

KRisHNAN, B. ‘Quasi-local black hole horizons’. In: Springer Handbook of
Spacetime. Ed. by ASHTEKAR, A. and PETKOV, V. 2014, pp. 527-555.
arXiv: 1303.4635 [gr-qc].

Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mech-
anics. Cambridge University Press, 2004. 1SBN: 9781139451994.

ASHTEKAR, A., BEETLE, C. and FAIRHURST, S. Isolated horizons: a gener-
alization of black hole mechanics. In: Class. Quantum Gravity 16.2 (1999),
pp. L1-L7. 18sN: 0264-9381. DOI1: 10.1088/0264-9381/16/2/027.

ASHTEKAR, A. et al. Generic isolated horizons and their applications. In:
Phys. Rev. Lett. 85.17 (2000), pp. 3564-3567. 1ssN: 00319007. por: 10 .
1103/PhysRevLett.85.3564. arXiv: 0006006 [gr-qc]l.

ASHTEKAR, A., BEETLE, C. and FAIRHURST, S. Mechanics of isolated hori-
zons. In: Class. Quantum Gravity 17.2 (2000), pp. 2563-298. 1SSN: 0264-9381.
DOI: [10.1088/0264-9381/17/2/301. arXiv: 9907068 [gr-qc].

ASHTEKAR, A., BEETLE, C. and LEWANDOWSKI, J. Mechanics of rotating
isolated horizons. In: Phys. Rev. D 64.4 (2001). 1SSN: 05562821. DOI: 10.
1103/PhysRevD.64.044016. arXiv: 0103026 [gr-qc].

ASHTEKAR, A., BEETLE, C. and LEWANDOWSKI, J. Geometry of generic
isolated horizons. In: Classical and Quantum Gravity 19.6 (2002), p. 1195.

ASHTEKAR, A., ENGLE, J., PAWLOWSKI, T. and BROECK, C. V. D. Multi-
pole moments of isolated horizons. In: Class. Quantum Gravity 21.11 (2004),
pp. 2549-2570. 1sSN: 0264-9381. por: 10.1088/0264-9381/21/11/003.
arXiv: 0401114 [gr-qc].

HANSEN, R. O. Multipole moments of stationary space-times. In: J. Math.
Phys. 15.1 (1974), p. 46. 1ssN: 00222488. DOI: [10.1063/1.1666501.

CHOQUET-BRUHAT, Y., DEWITT-MORETTE, C. and DILLARD-BLEICK,
M. Analysis, Manifolds, and Physics. Analysis, Manifolds, and Physics
volume 1. North-Holland Publishing Company, 1982. 1SBN: 9780444860170.

Fecko, M. Differential Geometry and Lie Groups for Physicists. Cam-
bridge University Press, 2006. 1SBN: 9781139458030.

HAWKING, S. W. Black hole explosions? In: Nature 248 (Mar. 1974), pp. 30—
31. DOI: 110.1038/248030a0.

FaBBRI, A. and NAVARRO-SALAS, J. Modeling Black Hole FEvaporation.
Imperial College Press, 2005. 1SBN: 9781860947223.

105


http://dx.doi.org/10.1063/1.1666410
http://arxiv.org/abs/1303.4635
http://dx.doi.org/10.1088/0264-9381/16/2/027
http://dx.doi.org/10.1103/PhysRevLett.85.3564
http://dx.doi.org/10.1103/PhysRevLett.85.3564
http://arxiv.org/abs/0006006
http://dx.doi.org/10.1088/0264-9381/17/2/301
http://arxiv.org/abs/9907068
http://dx.doi.org/10.1103/PhysRevD.64.044016
http://dx.doi.org/10.1103/PhysRevD.64.044016
http://arxiv.org/abs/0103026
http://dx.doi.org/10.1088/0264-9381/21/11/003
http://arxiv.org/abs/0401114
http://dx.doi.org/10.1063/1.1666501
http://dx.doi.org/10.1038/248030a0

ASHTEKAR, A., BAEz, J. C. and Krasnov, K. Quantum geometry of
isolated horizons and black hole entropy. In: Adv. Theor. Math. Phys. 4.1
(2000), pp. 1-66. 15SN: 10950761. arXiv: 0005126 [gr-qc].

VISSER, M. The Kerr spacetime: A brief introduction. In: ArXiv e-prints
(June 2007). arXiv: 0706.0622 [gr-qc].

KINNERSLEY, W. Type D Vacuum Metrics. In: J. Math. Phys. 10 (1969),
pp. 1195-1203. DOT: [10.1063/1 . 1664958,

STEPHANI, H., KRAMER, D., MAcCALLUM, M., HOENSELAERS, C. and
HERLT, E. Ezact Solutions of Einstein’s Field Equations. Cambridge Mono-
graphs on Mathematical Physics. Cambridge University Press, 2009. 1SBN:
9781139435024.

106


http://arxiv.org/abs/0005126
http://arxiv.org/abs/0706.0622
http://dx.doi.org/10.1063/1.1664958

List of Figures

[1.1 A comparison of integral curves of coordinate and non-coordinate

| bases) . . ..

[ ordinate and z-direction . . . . . . . ... 17
[1.3 Stereographical projection onto the complex plane.| . . . . . . .. 25
[1.4  Section of the null cone which creates a sphere.| . . . . . ... .. 26
(2.1 A family of null geodesics as it is aftected by optical scalars| . . . 37
[2.2  Local topology ot the space-time.| . . . . . . .. ... ... .... 40
[2.3 A graphical illustration of the meaning of expansion, shear, and |

[ Twist]. . . . e 43
[2.4 A non-expanding horizon as a fibre bundle H which is diffeo- |

| morphicto S xR.| . . .. ... o o 51
[3.1 The neighbourhood of the horizon and initial value surfaces| . . . 64
[3.2 A diagram of a typical gravitational collapse,. . . . . . . . . . .. 65
3.3 Global nature of the event horizonsl. . . . . . . . ... ... ... 66

107



108



List of Tables

(.1 A table of connection coefficients. . . . . . ... ... ... ... 20
(1.2 A table of spin weights of important scalars in the Newman— |
[ Penrose formalism.) . . . .. ... ... ... .. ... ... ... 34

109



110



List of Abbreviations

ADM complex conjugate. [10]

c.c. complex conjugate. 21}, 23]
coef. coefficient. 21} 22]

GHP Geroch—Held—Penrose. 29
LHS left-hand side. 21]

NP Newman-Penrose. [I6H19} 22] [24] [35] 39} 54}, [TOH72],

RHS right-hand side.

111



112



	Contents
	Introduction
	Tetrad formalism
	Abstract index notation
	Geometrical structures on manifolds
	Newman–Penrose tetrad
	Spin coefficients
	Spinor formalism
	Geometrical introduction of spinors
	Set of unknown parameters and their field equations
	Spin weight
	Boost weight
	The usual approach
	Spin coefficient approach
	Maxwell equations


	Non-expanding horizons
	Expansion, shear and twist
	Non-expanding horizon
	Structure of the horizon
	Geometrical interpretation of optical scalars and their relation to spin coefficients
	Adapted coordinates
	Geometry of the horizon

	Weakly isolated horizons
	The intrinsic geometry of the horizon
	Physical meaning of the Weyl and Maxwell scalars

	The extrinsic geometry of the horizon
	Initial value problem
	Motivation for the isolated horizons
	Why should we introduce the isolated horizons
	Successes of the isolated horizon notation


	Non-twisting null tetrad in Kerr–Newman space-time
	Kerr–Newman space-time
	Kinnersley tetrad
	Transformations of the spin coefficients

	Expansion in neighbourhood of the horizon
	The first order
	Higher orders

	Discussion of further difficulties

	Conclusion
	Newman–Penrose formalism
	Transport equations
	Ricci identities
	Bianchi identities
	Maxwell equations

	Series
	Mathematica source code
	Computation of series of the tetrad at horizon
	Transformation of the Kinnersley tetrad
	Expansion of the tetrad

	Example of computation of the spin coefficient transformation

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations

